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Abstract

Project Code : TRG5680030

Project Title : Further Extension of Hypercircle Inequality to Inaccurate Data

Investigator : Kannika Khompurngson

E-mail Address : kkannika13@hotmail.com

Project Period : 2 years

A foundational concept in learning problem is to construct a functional representation
from given data. Among learning methods, Hypercircle inequality (Hi) has been applied to
kernel-based machine leaning when data is known exactly. Recently, we have extended Hi to
data error in two ways: First, we have extended it to circumstance for which all data is known
within error. Second, we have extended it to partially-corrupted data. That is, data set contains
both accurate and inaccurate data. In this research, we continue our study of this subject by
using the material from both previous work to estimate the unknown vectors in Hilbert space
from knowledge of both its norm and linear observations of it, known within error. Furthermore,
we proposed the transformation of hypercircle inequality for partially-corrupted data to
orthonormal bases and also specialized the new result to the learning problem in Reproducing

kernel Hilbert space (RKHS). In future work, we propose to extend Hi to Banach space.

Keywords : Hypercircle inequality, Reproducing kernel Hilbert space, convex optimization

and noisy data
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m_(%,,d | E) ={(X,%,): x e H(d | E)}=—m, (x,,—d | E)
saraansaldauns (2.2) LW m, (X,,d |E) waz  m (x,,d | E)mﬂf?u%aﬁwmmmq@

Asnansvastlaludreudalyl

g v Y A { o
wananhingslaanwlunsdiants E={e:ec0",|e|,< s}Taduiranaiununns
o a o o o a A & a n Yo o e
Jadnanainfaudniudays e £>0 uaz [, Aeuasunafauu 0" uazinldqydnsoifiuny
@ lalwasaans [12]
H,(d |E)={x:Qx—d eE || x|<1}
1 v { { 1 1 1 U a 1 &
iwui litanlandawninnsuaasaunis (8.2) nanada 61 H,(d | E) IsanTnuinninni

X, € M Lag

0 IEHZ(d | E) a7

0
m, (X,,d |E)=min{]| x,—-Q'c||+&|c|, +(c,d):cell "}
mswaﬁmﬂlumuguwum%ﬂ‘swmﬂmmmgumlao Von Neumann Minimax [2,3,6] sml,ﬂummg
unfifduszlovduasidofosninuitislunisusaiganis (2.2) waziitedann
¢l x,-Qcll+&|c|, +(c,d) 1HunsriTunamantlasudt (strctly convex function) AITILTIT
1 a * n a o = 1 g; lﬂl o v
nueEl ¢ el " RgIALAsTINUBATN A
m, (%, d|E)=ll %, -Q"c" [[+&]c"|, +(c",d)
A o & . [ PR o v ¢ * o [
WAZIIBLIIMIANNTUDDIWINTY (gradient) AINE1ITIVIA leniaes ¢ saanRaInURUNT

-Q(

%-Q¢ y. . S Ld-0
1% -Q'c| |C|2

PMNBULIIFRWANTIDTANIHNG
1 -1
T =(pG+er 1) (0 Q% — 7 d) (2.3)
a k » _ Tk
Wa o =[c" |, waz 7, =[x, —Q ¢ ||
NN LANEIALEINW Twdl 2010 m.u‘%ylmf WU3eNY 1R AY.NTIMNNT TINIFW L
° & € Aa o o o AaA Al =< ) & o
maaumﬂmwaiLsﬁaiLﬂammwagammﬂmmﬂaau PIANBINTUTZ U AN AW IR T L
Uinfislwididuaefiuadaiifa ndeyaniidraaainfion [13,19] uazviinissiaesnalasds
L%aéhLamLﬁaﬁﬁ%msmnmsﬁﬂmaaums"lmwa%maﬂﬁaﬁﬂ%%’ﬂﬁagaﬁﬁmﬂmmﬂﬁaum
= A @ aA . . . = o ad A o v ! vAa
W3BUBUNUAT Tikhonov regularization T414N153NRINALALITIEIAAVAINETD LARAITIN
LABSILAGNT 9 A9
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Szeg G kernel: Garnualay nn 9 s,te(-11)

K‘“):i

Polynomial kernel: G3fnualagy nn g s,tel?
K(s,t) = (@+(s,t))*

Tunsrnanfanarsvastaaslaldsunsy fminunc 1w optimization toolbox 1% Matlab 7.3.0 lu
MIfmIuEIINeas ¢ unslEismvindnluanins 2.3) andszaunisainimanesid
suavlumamnniesd ¢ wuidsnsvhdnluauns (2.3) gidm ¢ usagnalsfimunuise
rwnfgslimnsafigalldinitnsigdn Ssiliduinddinsdudniamnisiinauls
°11aomiﬁ'@ummiﬁﬂmaaumﬂmwai‘maﬁﬁaﬁww%’u‘*ﬁagaﬁﬁ@hﬂm@mﬁau waedszlomiating
:mﬂﬁ%m%'ugﬁﬁ]:ﬁﬂﬂﬂizqﬂ@ﬂ,ﬂumﬁmawaTm pl351590a1 Tanldiaafiuaroganyy
81915 a0 nANa1INITI 9w msﬁﬂmmiﬂi:mmﬁwaeﬁeﬁ%’umnﬁaa&aﬁﬁm
AMALARD mwu'jﬁ"ﬁmiamaaums‘lmwai‘maﬂﬁaﬁ%ﬁﬁ%’ﬂ“ﬁagaﬁﬁmﬂm@Lﬂﬁaulﬁwams

1A

Aa a i .

NANBINANIIIT Tikhonov regularization

d' 3 v A g; =S % d'd ' d'

asnndayaluifatiudanunainnaisann ninaidayafiddamainfauuns
1 1 =3 ~a o & k%
fau doanlull 2014 av.uIysal wnadeid uaz a.nsadineg dieau ldveseaunslawas
iwasiRadnivteyandanafonunvdin lasdmuald 1 < X laom unudwinsangnluioe
I uaz J=N,\I lag n—-m unudrwnsandnlua J §miunn 9 eeR" ilddyansol

e,=(e:iel)eR™ uaz e, =(g:ieJ)eR™™"
dmiunn d eR" uazld [||-[:R™™ — R 1lunasuun R™" fnuald
E={e:ecl"e =0le, [IKe} Wa & AodmInaTIUIN
{ daa | & . . A Aa a v A f

iwannudyalawasaand (partial hyperellipse) faianiisninzanasosianly xadlu B

& 1 U Q [ ¥ aa
vaaniiniiole H use inldaysnueaide lubunuoaveslaiwesdandQx—d e £

H(d |E) ={x:Qx—-d e &,|| x|<}
[13] anfienadnagwas ladn §wIunn 9 xe H(d | £)
(Qx—d), =0 wuaz [[[(Qx—-d), [lxe
wanNNHLNEINDIN
H(d | £) =H(d,)nH(d, | E,)

A o Y A .
Wormndmualw H(d,) ={x:Q,x=d, || x|I<1} ia Q,x:(<x,xj>: jel) uae
H(d, |[E)={x:Q,x—d, € E, || x|<T} o E,={e:ecl "™ ||e|l<&} uaz
QJx=(<x,xj>: jeld)
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1% x, eH ﬁ]@ﬂiwﬁ\‘iﬂﬂla\‘lLi’]ﬂ@@la\‘lﬂ’ﬁ(ﬂ’lﬂiwu’]mm’] q@‘lﬁmiﬂivmmmmaa <x,x0>
A @ Aa A '
o xeH(d | E) IummzumazmuvlwnmagawLimuw,ﬂuma ANVAIARIALARDULIIFIN
o = \
([I1(Qx—d), [l &) TINIAIIANINAIVBITII
o o & 1 6 6 A eaa € o v 1
PMNANUFURUT TR Llaiwasioasidauazioaues laiwasaand vliismaui
I(XO!d |£) :{<X!XO>: XEH(d |£)}
Huralauazdvauuaainiwiadelain
(%, 0 | £) =[M_(%,d [ £),m, (%, d | )]
Wa m,(x,d|E)= max{(X,%,): x e H(d | £)} WAz m_(x,,d | ) =min{(x,%,): x e H(d | £)}

v o e = )
LLa:msL"mmuam:rmmmwg@mﬂmamaama 1(x,,d | E)

m, (%, d | £) +m_(%,d | E)

m(x,,d | €) = >

luuaadeanulunmsdigatann (1] maunsausedlding e uaz e lu & Gavnlhanaas
x,(d+e ) uaz x (d+e )lu H(d |€) Davinlw
(x,(d+e,),%)=m,(X,d|E) uaz (x(d+e),X))=m_(%,d|E)

uanmnﬁlumuﬁ%’mfﬁmsTaﬁm:nm‘mﬁ%'mimmﬁ;@ﬂmwaa"ﬁaaﬁaﬂénﬁﬂ’i%%ﬁa
odiolUit
1 H |€) Ssudnannimitamaezldi

m, (X,,d | €) = min{]| x, -Q"c|| +¢]llc, |l +(c,d):cel "} o

]Il Aeuesudsyazas [[F]us 0 "™ (conjugate norm)

i x, eM, ={Q' (a):ael™ uaz H(d,) Smndnunnimis udrazld
¢ =argmin{|| x, - Q'c||+&|llc, lll. +(c,d):cel "} uaz c; =0 Adalile

T (A" T (A"

x,—Q/ (a 4 % -Qf(a
%-Q@) _pgg) e =@
||X0_Q| (a)” ||X0_Q| (a)”

waz Q' (a) = a,x; wananilunsdlitdr m (), d |€) = x,—Q/a"[|+(@@",d,)
jel

— min{]|x, Q] (@) +(a,d,):a 1™}

1 x, &M, ={QT(b):bel ™} waz H(d, |E) Saundnunnimdts usrezlai

¢ =argmin{|| x,-Qc|l+&lllc, [l +(c,d):cel"} uaz ¢, =0

1 —_ T * 1
Adalle Li(b*)e H(|E) Wa
1% —=Q; (b))

Q) ) y
e ore M Q) Ol bl +(0.d,):b e )
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uwaz Q) (a)=> a,x, wananilundifien
jed

m, (%, d | &) =[x, —Q; (0") |+ [IIb" ||| +(b",d,)
Slumﬁ%'ﬂsl,uﬂ%'oﬁﬁ'amLLam"L@T’jw@T’;ﬂi:mmmﬁaﬁq@lumiﬂi:mm,ﬂ'waa (x, xO>ija
xeH(d | E) ﬁaﬂaaglugﬂmawamm%aLﬁumaanmmaﬂum@ X TasisIwuin
x(d +6,)=Q"G™(d + Ae, +(1-A)e ) &wivw1y 1€[0,1]
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unii 3 InnUszavazalasenis

1. °IJU’]Uaﬂﬁﬂ’l’]&ljﬂ]aﬂaaﬁJﬂ’]ivLaLWagLsﬁagLaaéﬁﬂ;&aﬁﬁﬁqﬂa’]@Lﬂﬁauﬂ’]ﬂa’l%
& & (A o : & o @ A da
2. ‘]_hzElqﬂ@ladﬂﬂ')']&lé;[ﬂNﬂﬂﬂﬂm%qﬂqiﬂizmqm@’]maﬂﬂdﬂ"ﬁ%ﬁnﬂma%aﬁ]s@“ﬂ“ﬂfl

ARIALARAWLIIEIN LaUVINNITIIRDINANNAIAAIRAS a8 ATITIALAY
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UNN 4 HANIIALHBIIY

o Aac o« P % o = & & a
marhnwdIdsduldauununngly laglanunuuazdnsaunmslawefiwesiaa
o % U Ad 1 d' = > ] U L% d' J di
fmiudayafifidiamainion Muisenvasnisainanlilslanudayaninannansuinin o
o A v g; ‘g é o a Y o v 1 Y
duldanugadszasdrasmaiiisoluasoft Ssmanmsduiunuldbiaueliasdallil
o o A & o & € a 1w
nnalemdtanniiatlaemifie sensasdanurasesunislanweiiseidagiaya
AA A \ A a Aen o K @ o =2 & & a
nlidnamanfouudu laslyadudulasnsfidiasislaiimsfinmesumslameiisefiaa
fmiudayanddnafonssulasdraaaniauaglu 0 uazl?® dnuald H 1uligiiga
a & a o a
\ife Sanagmenelu wazuatu (norm) denwlas (0 waz [ anwdeu
Mwnald X ={x,... x.} \waadosdaszidaduls Husz 1 ={1,2,..,n-1} uaz
J ={n} dmiunn 9 eeR" inldFyanwol
e, =(g:iel)eR™
§miunn d eR" uazld |-|:R — R luduysaluu R dwnuald
E={e:ecl"e =0,e <K&} o & AasIUIIILIN
iwanwngalainasaand (partial hyperellipse) Aavmafnfizandnzeansasionly xatlu B
& 1 U Qs Q ] ¥ aa
vaaniowinglu H uaz inldaysnwaide ldiunuwaavaslawesdand Qx—de®
H(d |€) ={x:Qx-d e &,|| x|< 1}
=2 ' o & ) = 4 A
IANMIANBINDWARIWNLIN H(d | E) # ¢ Neialle
min(d +e,G™(d +e)) <1 (4.1)
eeE
ac Aen o R o v a ¥ ¥ . A
Iwisedgidnldfnstuunvasdaey (1) lasldiuduainlenszuiunis Gram-Schmidt wWasu
e X (Hulwaliinian (orthonormalized) uananiwuitdwmiunn 9 x e H(d) Hauly
Qx =d RUBHNU Rx=d"
Waddiumadadu R:H 0" lasfwnualas R(X) = (<x,x’;>: jell ) LAZLINLABS
d"e0" gniwualay
d* _ dl
. T
G (%)

#%3U k=2,...,n

(o) a) e (ko)
. . . .

4 - : : :
‘ \/|G(X1,Xz,...,Xk71)||G(X1,X2,...,Xk)| <X1’Xk—1> <X2'Xk—1> <Xk’xk—1>
d, d, d,

v v L v vV o a ¢ I Qs Qs a t§ * o Qo
’iﬂﬂﬁ&lﬂ’]i"ll'ﬁ@l%;d’)ﬁ]F;Ivl,@m’]ﬁ%@m‘ﬂﬁﬂ‘f A Fuduarunuwaulszdndves dk ﬁ’]%iﬂ“qﬂ 9

A o
k=12,...n $aiuualas
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B O 0
A= ﬂZl ﬁ:22 0
ﬂnl ﬂnz ann

G (X, X, )|
G (X, %)

H(d)=H"(d")={x:xeB,Rx=d" = Ad}

WONINREINUIN S, = fwiunn 9 k=12,..,n ﬁdﬁummmsnagﬂ"lﬁd’l

LLRS

H(d | ) =H(d" | E(A) ={x:Qx—d e E(A), | x < T}

il E(A)={Ae:ecE} ffuﬁaém%’unﬂ 9 xe H(d | )
Qx=d+e awsutuny Rx=d" + Ae
wiogaanaed R (X)=d  usz R (X)-d =S ¢,

wanani §miunn 9 x(d +e) e H(d | E) azld
x(d +e) =x*(d*+Ae)=x(d,)+x(d, +B.¢e,)
uazlain
I x(d +e) [[P=]| x*(d *+Ae) |P=l| X" (d,) [P + 1| X (d, + B.e.) I
=(d;,d;) +(d; +B,e,)
é’aﬁf’unﬁammmagﬂvﬁdw
H(d|E)=H (d"|£(A) ¢ feoiile

min(d:+ﬂnne)2 <1-(d;,d}) (4.2)

le|l<e

a v

Twanwideagidn ldfnmansazvasdiney (1)

d*
0, —L<g
- 2 p
min(d, + B,e) =
le|l<e *
* n
d. +4.6 [H>¢

W x, e H imdasmisszanmdn (x,x,) Néfige 1la Qx=d, +e uaz |Qx—d,|<¢

[
v A vy

mmm‘i%’mﬁau%mugwwmw
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v = a 1 & v v
M X, M, ={Q  (b):bel} uaz H(d |E) Jan1znu1nninnit ua9zlen

¢ =argmin{|| x,-Q'c||+¢|c, || +(c,d):cel "} uaz c, =0

Adaile
%=Q@) g
1% —Q (@)l
b ||it’)%::é:,gnzmin{n X, —Q/ (a)||+(a,d,):aell "}uaz Q/ (a) :%:ajxj

wannilunsdidr m (x,,d|E) = x,-Qla"||+(a",d,)

& KT Q @)

g H(d|€) alain azlinnees ¢ el " iipadnda nvinls

1% —-Ql @)
_—
_Q XO_—(?C* +8W*+d
”XO—Q c
a ¢ « |0 iel
Wanneas w = ..
{sgn(cn),l =n
It
X, (d)=argmax{(x,X,):H(d,)~H(d_ *+&)} (4.3)
+ 0 I n

ludraudalddidaimuald | < X lasn-2 unudwusandnluoa | uas
J=N\1 lag 2 unudwausandnluaa J §wmiunn 9 eeR" mlddyanwal
e, =(g:iel)eR" uaz e, =(g:iel)eR?
fmiunn d eR" uazlid |||l R > R (ugafidounasuun R* dnuald
e={e:ecl e =0lle, lll,<&} e & AadwinaTauan
wannseg lamasaand (partial hyperellipse) faivafiisundnsaandasionly xaglu B
veanitowianlu H waz inlddnaneoidelufiunmoaaslamasdang Qx—d ez
H(d |£) ={x:Qx—d e &,||x|<
nnmIdneiawwiiinu i H(d |E) # ¢ Adaila
min(d +e,G™(d +e)) <1

ecE

% %

w3 Uﬁ::'?ﬁ]UVL@Tﬁﬂmgﬂmeaaﬁmau (1) Tagl#5uduanldnszuinms Gram-Schmidt 15amu

e X weaidsasenn (orthonormalized) uaﬂmﬂf:wudﬁém%'unﬂ 9 xeH(d) Fouly
Qx=d RNUONU Rx=d"

Wemdufiumadudu R:H > 0" lagtwualay R(x) = (<x,x’;>: jell ) uazInaas

d"e0" gnimualay

d,

do-—— %
G(x,)|
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#9%3u k=2,...,n

(X)) (X)) e (Xo%)
4 = 1 : : :
‘ \/|G(x1,xz,...,xk_1)||G(xl,x2,...,xk)| (XoXer) (%Xea) o (XX
d, d, .. d

v U L W Y o a é L Qs a Qg * o [-%
nawmyiwduwinlatnuawning A sududunuaudszdntves d; §wiunn 9
k=12,..,n daivualay

o 0 .. O
A= ﬂ.21 ﬂgz 0
ﬂnl ﬂnz ﬂnn
c‘lpv ' G a---lx, o s o & Y
BANIMNWINLN S, = ||G((X1—“))|mmunﬂ 9k=L2,.,n muummmmagﬂ"lm']
Xpyeo Xy

H(d)=H'(d")={x:xeB,Rx=d" = Ad}
ey

H(d | ) =H(d" | £(A) ={x:Qx~d e £(A), || x < T}

Wa E£(A) ={Ae:ec E} wufadmniunn 9 xeH(d|E)

Qx=d+e waunany Rx=d" + Ae
& @ * * A A a s o
wiagaanaad R (x)=d  usz R,(x)—d) =Ae, wla A, fa 2x2wwrsnddaimualas

AJ :|:ﬂm+lm+l 0 :|
ﬂnm+l ﬂnn

wananil #niunn 9 x(d +e) e H(d | £) azlein
x(d +e)=x*(d*+Ae)=x(d,)+x (d, + Ae,)
uazlain
I x(d +e) [[*=l x*(d*+Ae) |P=ll X" (d) [P +11 X (d, + Aje)) |

=(d;,d7) +(d; + Age,.d; + Ae, )

é’afumﬁammma‘gﬂ"ﬁdﬁ

H(d|€)=H'(d"|£(A) ¢ heaiila
min(d; + Ae,,dj +Aje, ) <1-(d/,d}) (4.4)

eeE
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a v d‘y L @ R s o v a a v o =
lu\‘]’]%’)’%qu{d’l"ﬂle@]?iﬂ‘]ﬂ"]aﬂiﬂ'mzmﬂ\‘iﬂﬁﬂﬂﬂ (4.4) I@smoadﬁnﬂmmw [9] waznINIIANTN

ad a o o AdaA o A o o ! ad o A oo
')ﬁﬂ’]SL@ﬂ?ﬂ%ﬂllluﬂ‘imﬂl]ﬂ']ﬂa’]@LﬂaauLWﬂjm'ﬂ@IEnﬁ]za’]Nqiﬂﬂqﬂqﬂaqdluﬂim%ﬂqUL?Jaﬁdﬁ]ﬂ

=) 0 6 g A A a 1 A
wan 1” watuidwiaTailalaa1naalaaet

' U & o 6 v v 2 L% ] 6 a A A A
deangiipihasdanuiiiduandndlinmdsznnmdvasfaisuludingisinsd g
A4 emnoe o . . N ~ .
\nIBlua Tagdnldiian H?(A) Aaiwavad analytic function unuaatlanitaniag uaz

Szeg G kernel: Garnualay nn 9 s,te(-11)

K(s,t):lL

laotdmuald  T={t,t,,...t }=(01) uszazlei {K, :iel } iwinaaidas:

Fadulu H2(A) e K, (t):ﬁ,iem - NITUIUNIT Gram-Schmidt \Wazuea

{K, :ie0 } ilwaaifsaian (orthonormalized) 1o
K =V1-t°K,

#1930 k=2,3,..,n

[T -t
K, =1t Z( Pt K
[T [t-t

iell
il

dmiunn d el " azldd
Qf =(f(t,):jen,)=d swivrivdonly Rf =((f.Kj):jel,)=d"

Wa  d; =1-td, wszdwdu k=2,3,..,n

) _H 1-tt]
=18 ) () e,
[1 [t-t]

iell
il

LLazLWWWL%m"laLwa%?}Wéfgﬂﬁwuﬂim
| H(d | E) ZWH*(d*|£(A)) ={f:Qf —de&(A),| f K1}
e £(A) ={Ae e £} Wufadmiunn 9 xeH(d | E)
Qf =d+e azaununy Rf =d”" + Ae
wingaaasad R (f)=d  usz R (f)-d =2 e,
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feudaldazzanmenfiae t, (0,2 lasnawd R (f)=d; uaz
R,(f)—d; = B,e, lummmdnasdshadnangadmnianmsdszanadunazlfadanuian
(4.1) — (4.3)

nnyavsasddanaasuaslassmsfetszundasdanuslninfiudgmmstszanme
°11aaﬂaﬁ%’umﬂ“ﬁagaa’%\iﬁﬁmﬂm@Lﬂﬁaumashu lagyinmsinaesnansamamanslasisig
ALaY ;ﬁ%’s?ﬁa"l@?ﬁwmiﬁﬂmaaumsvlaLwaiﬁnaﬁﬁaﬁ%’m‘fwﬁagaﬁﬁmm?z‘laumaﬁhwfidgﬂfm
dogafidouneiu hwuald H (Duligiigadsa G’f%waﬂmmﬂlu uazuasy (norm) fenalas
<DD> LR ||[|| auian el X ={x,... x } iiwoadesdasandaduls Huse | < X
lagm unuswausandnluae | sy J = N, \I lag n—m unwirwansandnlwiaa J
fmniunn 9 ee R inldayanwol
e, =(g:iel)eR™ uaz e =(g:iecd)eR™™
fmiunn d eR" uazld ||| [Il,;R™™ — R ilugafidounaiuuu R™" dnuali
e={e:ecl e =0lle, lll,<&} e & Aadwinasouan
wawnsulanasoand (partial hyperellipse) faizafidisandnsanndoaiianla xaglu B
vaanianiaslu H uwaz inlddyanealdeluiunwaaveslaweiaand Qx-dee
H(d [€) ={x:Qx—d e &,[| x|[< 1}
[12] anfisnadhsduazlddn dniunn 9 xe H(d | €)
(Qx—d), =0 uae [[[(Qx—d), [Il,<e
wanaNTINLI
H(d | £) =H(d|)ﬂH(dJ | EJ)
Wasmnuald H(d,)={x:Q,x=d,,|| x|} e Q,x=(<x,xj>: jel) uaz
H(d, |E)={x:Q,x—d, e E, || x|} e E,={e:ec" ™ |lle|ll,< &} uac
QJX=(<x,xj>: jeld)

Aa

v 6 =) v s 1 dl v 1
W x, € H 3adszasdaunfadasmimilzanadfdngaldmadszanmdives (x,x,)

X
o xe H(d | £) 1u‘umzfﬁﬁﬁmﬁuvlﬁdﬂ°ﬁa§aﬁmﬁfmﬂuﬁagaﬁﬁmﬂmmﬂﬁ'aumaﬁhu
(1 (Qx—-d), [I<€) %dﬂﬂimwﬁaﬂmwad"ﬁw
1(%,d | E) ={(x,%,): x e H(d | £)}
PNNANUFNNUT TR laiweSisasiAauazisavad laiwasaans vinliisnui
1(X%,d | E) ={(x,%,) : x e H(d | £)}
Hwwatlauasdveuassiwieldin
I(XOvd |£)=[mf(xo'd |£)1m+(XOvd | )]

B m, (%, d | £) = max{(x, X, ): x e H(d | £)} W8 m_(x,,d | €) =min{(x,x,): x e H(d | £)}
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U s [ rd” J [}
LLa:msLmryaﬂummmuﬁ;@mﬂmwaama I(X,,d|E)

m, (X,,d |E)+m_(X,,d | E)
2
luﬂitﬁwudwms%ﬁ%ﬂﬁmmq@ﬂmwadf*ﬁaaﬁa
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Abstract

The classical hypercircle inequality has been applied to kernel-based learning to determine a function repre-
sentation when there is known data exactly. Our previous work which was motivated by this limited said data has
extended the hypercircle inequality to circumstances for which there is known both accurate and inaccurate data.
In this paper, we continue our study of this subject by presenting the transformation of its material to orthonormal
bases which are useful tools in Hilbert space and practice. Moreover, we also specialize the new result to the
learning problem in Reproducing kernel Hilbert space (RKHS). Specifically, we choose the Hardy space of square
integrable function on the unit circle which is well-known in RKHS.

2010 Mathematics Subject Classificatin: 46E22, 46C07

Keywords: Hypercircle Inequality, Convex Optimization and Reproducing kernel Hilbert space.

1 Introduction and preliminary results

Let X = {z; : j € N,,} be a set of linearly independent vectors in H which is assumed to be Hilbert space
over the real number with inner product (-,-) and norm || - ||. Let B be unit ball in H and we denote
N, ={1,2,..,n}. For any d € R",

H(d):={z:2z € B,Q(z) =d}



is called hypercircle where () : H — R" is a linear operator H onto R" as

Qu = ((z,7;) 1 j € Np). (1)

Consequently, the adjoint map Q7 : R" — H is given at a = (a; : j € N,,) € R" as
Q" (a) = Z a;x;.
i€N,
The Gram matrix of the vectors in X is Gx = QQT = ((zj,2;) : j,1 € N,)), a symmetric and positive definite

matrix. It is well-known that there exist a unique vector z(d) € M such that
z(d) := argmin{||z|| : x € H,Q(x) = d}, (2)

where M is the n—dimensional subspace of H spanned by the vectors in X, see for example [7]. If H # M
then H(d) consists of exactly on point if and only if ||z(d)|| = 1, [5]. The principal significance of hypercircle
ineqaulity ensures that the value (x(d),xo) is the best estimator to estimate (x,x¢) when x € H(d).
Moreover, the vector z(d) := QT(G3'd) and |[z(d)||? = (d, G3'd). Therefore, the hypercircle inequality

states that.

If x € H(d) and xo € H then

[(2(d), zo) — (x,20)| < dist(zo, M)/1 — [[z(d)][?, (3)
where dist (zo, M) := min {|lzg — y|| : y € M}. Moreover, if H(d) # 0 then there is an element x4 (d) =

T
:I:Hig:giTZiH for which equality above holds where the vector ax € R™ is given by the formula

Vil = (@e0. G2z
T R@I

a4 1= G;(l (Qxo F (4)

Let the vectors in & be orthonormalized according to the Gram-Schmidt process yielding 7, ..., z}. Let
M* be the n—dimensional subspace of H spanned by the vectors z7, ..., 2%, see [3]. Consequently, the Gram

I no
matrix for z7, ...,z is the identity matrix. For any « € H(d), the condition
Qx = d is equivalent to Rx = d*
where R : H — R" is a linear operator H onto R™ as R(x) = ((z,z}) : j € N,,) and dj = m

(x1,21)  (@2,m1) -+ (T, 1)
E3 1 .

. : k=20 (5)
VIG(@y, )Gy, s xi) | (w1, 201) (@0, 2p_1) -+ (T, Tr1) )
dy doy - dy,




Therefore, we represent the coefficients of dj, for all k = 1,...,n by the following matrix

Bi1 0 0 - 0
Ba1 Ba2 0 --- 0

Brn1 Bn2 Bns - Bun
where [y, = % for all k = 2,...,n. Hence, we point out that
H(d):H*(d*) ::{x:wEB,Rg::d* :Ad}

and the vector z(d) = z*(d*) := RTd* where the adjoint map R” is given by for each a € R" RT(z) =
> i1 4T

Recently, an extension of hypercircle inequality to partially — corrupted data was proposed by Kannika
Khompurngson and Boriboon Novaprateep, [6]. We start with I C N,, which contains m elements (m < n).
For each e = (eq, ...,e,) € R™, we also use the notationse, = (e; :i € I) e R™ ande, = (e;:5€ J) e R"™™
where we denote J = N,,\I. We choose ||| - |||, : R"~™ — R is [’ norm on R"~" and define E, = {e: e €
R™:e, =0,||le,||lp < e}, where ¢ is some positive number and 2 < p < co. For each d € R", we define the

partial hyperellipse as follows
H(E,) :={z: 2 € HzeB, Q(z) —decE,}. (6)

Similarly, we use the notation Q,z = ({(x,z;) : j € I) and Q,z = ((z,z;) : j € J) respectively. According to

the previous work [6], we observe that
H(d|]El)) = H(dl) mH(dJ‘EJ)7 (7)

where we denote the hypercircle with the constant d, as H(d,) = {x cx € B,Q,(x) = d,} and the
hyperellipse with the constant d, as H(d,|E,) = {z:x € B, QJ(JJ) —d, € E,}, where we define E, = {c:

c e R |||, < €}. For each e € E,, we have that
z(d+e) = QTG (d+e) and |[z(d + €)||? = (d +e,G3' (d +¢)).
Now, let us begin with an important result on this set.
Theorem 1.1 H(d|E,) # 0 if and only if
min{(d + e, Gy (d+e)) e, = 0,]lle, |l <e} <1 (8)

Moreover, if H # M then H(d|E,) consists of exactly one point if and only if min{(d +e, G;(l (d+e)):e

03|H6J|HP S 5} =1



The main results address the following way: Given zy € H, we want to estimate (x, z¢) when € H(d|E,).
That is, data set contains both accurate and inaccurate data. The best estimator is the midpoint of this
interval

I(z,d|E,) := {(z,20) : & € H(d|E,)}. (9)
Next let us recall the duality formula for the right hand end point , m4 (xo, d|E;), of the uncertainty interval.
We refer the reader to the paper [5] and [6]for more detail information on the theory and proof.
Theorem 1.2 If H(d|E,) contains more than one element then
ma (w0, d|E,) = min {[lzo — Q" (c)|| +ellle, llly + (d,c) : c € R} (10)
Therefore, the midpoint is given by
o, d|E,) — my (20, —d|E,)

m(zo, dE,) = T+ 5 . (11)

In addition, if X = {z; : j € N,,} is an orthonormal set of vector and the Gram matrix becomes the identity

matrix. Consequently, we have that H(d|E,) # 0 if and only if
min {(d, +c,d, +¢) 1 c €R"™,||lefl], < e} <1 —]Ja(d,)]]*.

For p = 2, we have the following H(d|Ez) # 0 if and only if

2

s <1 el d)IP,

min {(d, +¢,d, +c):c €R"™ [lef[p < e} =A+ A
J¢l
2

2
where [:={j:d; =0,j € J} and A =2 — de Summarizing, ifA+AZ A _j52 <1—||z(d,)||* then
ieJ J¢l

H(d|E,) # 0 for all p > 2, see [4,6] . Therefore, we observe that if X is an orthonormal then the solution

for checking H(d|E,) # 0 differs from (8) which is useful for practice. For this observation, our goal is to
propose a dual problem of learning one feature from partially — corrupted data in the orthonormal bases
which is appeared in section II. Section III specializes the results of section II to the learning problem in the

Hardy space of square integrable function on the unit circle which is well-known in RKHS.

2 Main Results
First, we assumed that X, = {z1, ..., 2} and X, = {Tm41, ..., Tn } respectively. Let the vectors in X, UX, be
orthonormalized according to the Gram-Schmidt process yielding z7, ..., z},, 25,11, ..., T,. For our purpose,

we define E,(A4) := {Ae:e € E,} and

H*(d*[E,(A)) = {z: v € B, Rx — d* € E,(A)}. (12)



That is, for each x € H*(d*|E,(A))

Jo

R,(z)=d; and R,(z)—d% = Ae

where |||e, |||, < € and the n — m matrix A is given by

Brm+1 m+1 0 0o --- 0
ﬂm+2 m—+1 ﬁm+2 m+2 0 et 0

A= , e (13)
ﬁn m—+1 571 m—+2 ﬁn m—+3 e ﬂnn

Similarly, we point out that for each = € H(d|E,) the condition
Qr =d+e isequivalent to Rz = A(d+e)=d* + Ae.

Returning to our previous work, the solution of the primal problem in (9) is the midpoint of the uncertainty
interval I(zo,d|E,) which is obtained by (11). Similarly, the midpoint of I(zo,d*|E,(A)) := {{x,z0) : x €
H*(d*|E,(A))} is the solution of dual problem. We then begin with a general result on such dual problem.
According to the definition of H*(d*|E,(A)), we obtain that H*(d*|E,(A)) is a sequentially compact
subset of H and the function © — (x,z¢) is weakly continuous. Therefore, there exist x4 € H*(d*|E,(A4))
such that
(x4, m0) = M (w0, d"[Ey(A)). (14)
where my (zg, d*|E,(A)) := max{(x,x0) : * € H*(d*|E,(A))} and m_(zo,d*|E,(A4)) := min{(z,z0) : = €
H*(d*|E,(A))} respectively. In addition, for each Ae € E,(A) the vector x*(d* + Ae) € H*(d*|E,(A)) " M*

can be written in the form
o (dF + Ae) = x*(d}) + 2" (d} + Ae) and ||z*(d* + Ae)[|* = |[a*(d})[|* + [[a*(d} + Ae)][?, (15)

where z*(d?) € H*(d?) == {z : v € B,R,(z) = d’} and z*(d* + Ae) € H*(d*|Ey(A)) == {z : z €
B,R,(z) — d* € E,(A)} when E,(A) ={Ac:ceR"™: [||c|l|, <&}

Lemma 2.1 H*(d*|(E,(A)) # 0 if and only if
min{(A—ldj +e&, ATAATIE +2€) « |||¢]]], < 1} <1—|lz(d)|. (16)

Proof. Let x € H*(d*|(E,(A)). Then there is Ae € E,(A) such that z = z*(d* + Ae) = RT (d* + Ae) € M*
and |[z*(d* + Ae)||* = |Ja*(d})|]* + ||z*(d% + Ae)|[* < 1. We observe that |[z*(d* + Ae)||* = (A~d* +
e&, ATA(A™1d%+¢€). Hence, min{(A’ldj—l—&tf,ATA(A’ldj—i—Eﬁ) EN < 1} < 1—||z(d?)|[*. Conversely,
(15) and (16) certainly implies H*(d*|(E,(A)) # 0. O



For p = 2, we describe the solution of the optimization problem appearing in (16) as presented in [8].
We begin with the following definition.
Definition Let C be an n x n symmetric matrix and d € R™ . The spectrum of the pair (C,d) is defined to

be the set of all real numbers A for which there exists an x € R™ with euclidean norm one such that
C(z —d) = Az (17)
Let 0 < A1 < A2 < ... < A\p_m be eigenvalue of ATA, {v/ : j € N,,_,,} be a corresponding orthonormal set

of eigenvector , write the vector Afldj in the form Afldj = Z 'yjuj for some constants v; € R and
jean'rn

define the subset I of N,,_,,, by I:= {j : A;7; = 0}.

—1*

Theorem 2.2 If A is the least value in the spectrum of the pair (€2AT A, ———2L) then H*(d*|(Ea(A)) # 0
if and only if

Proof. This result is proved in much the same as the paper [5] and we refer the reader to the paper [4] for

proofs of the solution of the optimization problem.

Here is another way of stating theorem 1.1: H(d|(E,) # 0 ifand only if A+AD" A I —(d¥,d?)
for all p > 2, Therefore, we establish the new version of theorem 1.2 with the different hypothesis.
Theorem 2.3 IfA—i—AZ AA <1—(d7,dy) then

J¢l
mey (o, d[Ep) = min {||zo — QT ()| +lll¢, |llg + (d.c) : c € R} (18)

3 Example and Application

In this section, let us specialize the recent results to the problem of function estimation in reproducing kernel
Hilbert space (RKHS). To this end, we let Hx be a RKHS of real-valued function on a set 7. The real
value function K (t, s) of t and s in 7 is called a reproducing kernel of H if the following property is satisfied

forallt €7 and f € H
f(t) = (K, f), (19)

where K; is the function defined for any s € T as K;(s) = K(t, s). Moreover, for any kernel K there is unique

RKHS with K as its reproducing kernel [1]. Specifically, we choose the Hardy space of square integrable



function on the unit circle with reproducing kernel

1
K(Zvc):ﬁv C,ZGA

where the unit disc A := {z : |2| < 1}. Specifically, we let H2(A) be the set of all functions analytic in the

unit disc A with norm

2m 1
17l = s (5 [ 1fre)Ras).

0<r<1 2

Let T'= {t; : j € N, } be distinct point (increasing order) in (—1,1). Consequently, we have a finite set of

linearly independent elements {K;, : j € Ny} in H where Ky, (t) := ﬁ,j € N,, and t € A. Thus, the
N N J

vectors {z; : j € N,,} appearing above are identified with the function {Ky, : j € N, }. Therefore, the Gram

matrix of the {K3, : j € N,,} is given by
G(tl, ,tn) = (K(t“t]) : Z,] € Nn)

For this purpose, we recall the Cauchy determinant identity which state that for any {¢; : j € N, }, {s; : j €

N, } that
II & —t)s—s0)
1 1<j<i<n
det(;——)ijen, = — : (20)
- tisj H (1 — tiSj)
i,jEN,,

see for example [3]. From this formula we obtain that

IT ¢ -t)

1<i<j<n

IT a-tt;)

4,J€NR

det G(tl,...,tn) = (21)

From (19), the linear operator Q : H?(A) — R" defined for f € H?(A) as the following way
Qf = (K1) = J(t) s € Ny)).

By Gram-Schmidt process and the formula (20) and (21), we obtain the vector K for any j € N,. In

particular, the vector K7 is given by the formula

Ky 1—12K,,,

. H |1 — tit]
K = /1 —t§Z(—1)k+l@'f_‘f||Ktl, (k=2,3,...n).
tr —t;

=1

1€Ng
i#l

For any d = (di,ds, ...,d,) € R™, we obtain that the condition



Qf = (f(ti) e Nn)) — d is equivalent to Rf = d*

where R : H%(A) — R™ is a linear operator H?(A) onto R" as R(f) = ({f, K7):j€N,) and
\/1—t3dy,
IT 1ttt

k .
di = \J1-e3 (g (k=2.3,..m)
=1 IT 1t =l
1€Ng
il

dy

For our example, we choose E as follows E := {e:e € R", e, =0, |e,| < €} where I = {1,2,...,n — 1}. The

partial hyperellipse becomes

HW[E) := {f: fe H*(A), Il <1, Q,(f) =d,[(Q(f) —d),| <e}.
Clearly, we have only one inaccurate data and for any f € Hg
f(t;) =d; for all j € N,_q and f(t,) = dy, + e where |e| <e.
In this case, the corresponding partial hyperellipse H(d|E) is given by

H(d*|(E(A) = {f: feH*A), Ifll <1, R,(f) =d} R, (f) —d, € Ale)}.

IT 11— tatil

where A(e) :={Be:e € R, le|<e} and §= % = «/lft%iemfl—

|tn - ti| '
€N, 1
Alternatively, we have that H*(d*|(E(A)) # 0 if and only if
min {(d; + Be)? : |e| < e} < 1— (dF,dF).

Moreover, we point out that formula

0, %l <e
min {(d* + Be)?: le| <el = . gl =
{(n B) || } {d2+6€|27 |d?n|>€
where é = f%.

Given tg =0 and tg ¢ T := {t; : j € N,,}. Again, the vector z¢ appearing the previous is identified with

the function K;,. We wish to estimate f(0) = (f, Ky,) optimally, given that ||f||x < 1, f(¢;) = d; for all



j €N, and |(Q(f) —d),| < e. According to theorem 2.4, we have that
m-‘r(Ktovd'Ep(A)) = <f¢>1k*7Kt0> +m+(Kt07d|6Ep(A))

= Zd* s Kig) +my (Kyy, d[OE,(A))

n—1

= ) diD} +my (K, dISE,(A))
i=1

where D* is the vector in R™ with components given by the formula

VI—E, k=1
I 1ttt

Dp=q JI—2yF (cykrier 0 p—923 .n
[T 1t -l

1ENy
il

Therefore, we only need to evaluate the following equation

m4 (K, d|E(A)) = min {0]| Ky, — RT(c)|| + Belen| +dicn i c € R"}.

KtO—Rf(D;)

———L—L_ c H*(d|dE(A
=35 (D)2 (doE(4))

To obtain the right hand endpoint, we consider two cases. Firstly, if f :=¢

then
n—1 n—1
my (Ky,, dIE(A)) = > diD; +6,|1- > (D;)?,
=1 i=1

where fi := argmax{(zx,xo) : x € H*(0,0)}. If f} ¢ H*(d|0E(A)) then the minimum ¢* € R™ is unique
solution of the nonlinear equation

th - RTC*

_6R " - -
&, e

) +ew" +d =0,

where w* is the vector in R™ with components given by the formula
W — 0, iel
C Besgn(cl), i=n

and
RT *
dldE(A)) i=0 22—
f—‘r( | ( )) ||Kt0 RTC*H
satisfies
J+(d|0E(A)) = arg max{(z,zo) : x € H*(0,6) NH(d" + Be sgn (c}),d)}.

Using (4), the vector ¢* € R™ is obtained by

szv iel
G =91 pr_ VI D) ( " ) -
Dz Wiy d* + Be sgn (c}) i=n.
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Abstract

A foundational concept in learning problem is to construct a functional representation from given data. Among
learning methods, Hypercircle inequality (Hi) has been applied to kernel-based machine leaning when data is known
exactly. Recently, we have extended Hi to data error in two ways: First, we have extended it to circumstance
for which all data is known within error. Second, we have extended it to partially-corrupted data. That is, data
set contains both accurate and inaccurate data. In this paper, we apply the material from both previous work
to estimate the unknown vectors in Hilbert space from knowledge of both its norm and linear observations of it,
known within error.

Keywords. Hypercircle Inequality, Convex Optimization and Noise data.

1 Introduction, Notations and Preliminary Results

The study of learning problem is a topic of current interest in approximation theory and a foundational
concept is to construct a functional representation from given data. Specifically, Hypercircle inequality (Hi)
has been applied to kernel-based machine leaning [8]. Unfortunately, the material on Hi only applies to
circumstance for which data is accurate data. Recently, we have extended Hi to data error in two ways:
First, we have extended it to circumstance for which all data is known within error [6,7]. Second, we have

extended it to partially-corrupted data [5]. That is, data set contains both accurate and inaccurate data.



In this paper, we apply the material from both previous work to estimate the unknown vectors in Hilbert
space from knowledge of both its norm and linear observations of it, known within error.

Following these introductory remarks are two sub-sections which describe some previous results on the
extension of hypercircle inequality for inaccurate data and partially-corrupted data respectively. In section
2 we apply the results in this section to the problem of learning the values of a function in a reproducing

kernel Hilbert space by our proposed midpoint algorithm.

1.1 Hypercircle inequality for inaccurate data

Let H be the Hilbert space over the real numbers with inner product (-,-) and X = {z; : j € N,,} be
a set of linearly independent vectors in H where we denote N,, = {1,2,..,n}. Consequently, we define
M = {ZjeNn a;xj: (a;:jEN,) € R"} which is the n—dimensional linear subspace of H spanned by the

vectors in X. Let Q : H — R™ be a linear operator H onto R™ which is defined for x € H as

Q:L' = ((.’E,(Ej) .7 € Nn) (1)

Consequently, the adjoint map QT : R® — H is given at a = (a; : j € N,,) € R" as

QTa= > ajz, (2)

JEN,

and the Gram matrix of the vectors in X is
G=QQ" = ((zj,m): j,l €N,). (3)

Moreover, (G is positive definite matrix. For each d € R", it is well-known that there exist a unique vector

x(d) € M such that
z(d) := QT(G7'd) := argmin{||z|| : € P(d)}, (4)

where we denote the hyperplane as the following P(d) := {z : « € H,Qz = d}. Moreover, we provide the

useful equation
min{(|z|| : € H,Qz = d} = |[z(d)|| = /(d,G~"d).
Consequently, let us recall the definition of hypercircle as follows
H(d) :={z:z € B,Q(z) = d}.

We remark that H(d) # 0 if and only if ||z(d)|| = \/(d,G~1d) < 1. If H # M then H(d) consists of exactly

one point if and only if ||z(d)|| = 1. Next, we review basic fact about Hypercircle inequality for data error



and discuss what we need for section 3. We begin with E = {e: e € R", |e| < e}, where |- | : R" — Ry is

some prescribed norm on R™ and € > 0. For each d € R”, the definition of the hyperellipse is given by
H|E):={x:z € B,Q(x)—de E}.
Consequently, we have the useful fact
HE) = | H(d+e),
eCE

where B = {x : € H,||z|| < 1}. Given zy € H, we want to estimate (x,xq) when x € H(d|E) and the

Hypercircle inequality for data error becomes in the following way.

If xo € H and H(d|E) # 0 then there is a eg € E such that for any x € H(d|E)
1
[@(d + o), 7o) = (@, 0)]| < 5 (e (20, d|E) = m_(wo,d|E)),

where z(d + e9) = QT(G7(d + ep)) € H(d|E), my(wo,d|E) := max{(z,x0) : ¢ € H(d|E)} and
m_(zo,d|E) := min {(z, z) : * € H(d|E)} = —m(x0, —d|E) respectively.

In particular, the Hypercircle inequality is given by the following.

If x(d) € H(d) and zo € H then for any x € H(d)

[(z(d), x0) — (x,w0)| < dist(zo, M)/1— ||z(d)]]?,

where dist (zg, M) := min {||zo — y|| : y € M}.

According to Hypercircle inequality, the best estimator for x € H(d) is z(d) which is independent
of zy. In case of inaccurate data, the best estimator still has the form of Representer Theorem (2)
but the choice of the coefficients are generally depended on the vector zy. In Geometrically speaking,
the best estimator (z(d + ep),xo) is the midpoint of the interval of uncertainty which is defined by
I(xo,d|E) := {{(z,z0) : + € H(d|E)}. To find the best predictor, we provided the useful duality formula
for the right hand endpoint of the uncertainty interval. We then define the convex function V : R — R
defined for ¢ € R"”
V(e) = lzo — QT (c)l| +elels + (d, ),



where | - |« : R" — R is conjugate norm of | - | which is used to measure data error and (-,-) is Euclidean

inner product on R™. The result state as the following. If H(d) # () then

m4(2o,d|E) = min {V(c) : c € R"}. (5)
Moreover, 0 = argmin{V (c) : ¢ € R"} if and only if ||:c0|| € H(d|E).
o

The detailed proof will appear in [3,6, 10]. Alternatively, to find the best predictor, we only need
evaluate the two numbers m. (2o, £d|E) and then compute (m. (zo,d|E) — m4 (o, —d|E)). In the special

case that data error is measured with square loss, the duality formula in (5) becomes
m (z, d|E) = min {||zo — Q" (c)|| +€lc|2 + (d,c) : c € R"}. (6)

We provided a possible iterative method to solve the minimum vector ¢* proceeds in the following manner, [7].
Let us introduce two positive constants given py, := |c¥|o and 73 := ||zg — QT c¥||. Next, we choose an initial

vector ¢ # 0 and then successively define ¢*, k € N, by the formula
A = (oG + e ) T (ppQxo — prTid). (7)

Our computation experience indicates that this iteration converges if the vector Qxg and d are linearly

independent in R™. However, this has not been proved.

1.2 Hypercircle inequality for partially-corrupted data

Let I C N,, which contains m elements (m < n). Consequently, we use the notations X, = {z;:i € I} C X
and X, = {z; : i € J} C X, where we denote J = N,\I. For each e = (ey,...,e,) € R", we also use the
notations e, = (e; : i € I) e R™ and e, = (e; : i € J) € R ™ respectively. We choose |||-]|| : R"™™ — R4
is some prescribed norm on R~ and define E = {e: e € R" : ¢, =0, |||e, ||| < €}, where ¢ is some positive

number. For each d € R", we define the partial hyperellipse as follows
H(d|E) :={z: z € H, ||lz]| <1, Q(z) —d € E}. (8)

In this case, we also provided the existence of the best estimator which still has the form of linear
combination of vectors in X and the results follows by the same method as in [6]. Again, we provided the
useful duality formula for the right hand endpoint of the uncertainty interval and the midpoint is given by

%(er(a:o, d|E) — m, (o, —d\E)). The result state as the following.



If H(d|E) contains more than one element then

ma (w0, d|E) = min {{lzo — Q" (c)l| +elllc, [l + (d.c) : c € R}, (9)
where ||| - |||« : R*™™ — R4 is conjugate norm of ||| - ||| which is used to measure data error. Moreover, if
either xo ¢ M or ||| - |||« is strictly convex then the right hand side of equation (9) has a unique solution.

Moreover, we provided the necessary and sufficient condition on H(d|E) such that the minimum vector ¢*
achieves with ¢ = 0 which is useful for practice. To this end, let us define the convex function V: R® — R
defined for c € R"

V(e) = [lzo — QT ()] +ellle, Il + (d. c).

Ifzo ¢ M, :={Q%(a) : a € R™} and H(d,) contain more than one point then ¢* = arg min{V(c) : c €

R™} with ¢ = 0 if and only if

To — QIT(a*)
Tfzo — QT(a")]| € H(d[E)
where the vector
_ T, *
m = argmin{(z, zo) : x € H(d,)}.

The detailed proof will appear in [5]. As we already said, we going to apply the results in this section in
learning problem. We then provide a possible iterative method to solve the minimum vector ¢* on the right
hand side in equation (9) when data error is measured with square loss. We choose an initial vector ¢? # 0

and then successively define c*, k € N, by the formula

A = (G + 7 DF) Y (Qx — TFd) (10)
where 7% := [|z9 — QT c¥|| and the matrix D* is an n x n diagonal matrix and we define the elements on
diagonal by

0, ifiel

dy=9 - (11)
—-, ifieJ
Py

where pl := [[[¢5]]2



2 Main Results

In this section, we shall apply the available material from both previous work to the problem of learning
the values of a function in a reproducing kernel Hilbert space(RKHS). They have an origin in the theory
of reproducing kernel in the classical paper of Golomb and Weinberger [1,4]. Specifically, we choose the
gaussian kernel on R?, that is

K(x,y) = e"‘”—y@’ z,y € R%

In our example, we choose the value of T = {t; : j € Ngp} on a ellipse curve surrounding the origin.
Consequently, we have a finite set of linearly independent elements {K;, : j € Ny} in H where Ky () :=
K(t;,t),j € N, and t € R%. Therefore, the vectors {z; : j € Nog} appearing in previous section are identified
with the function {K3, : j € Nyo}. These vectors determine a linear operator @ : H — R™ defined for

f € H as
Qf = <<f,Ktj> =f(t;):j€ N20)~
Moreover, the Gram matrix of the {K; : j € Ny} is given by
G = (K(ti,tj) : i,j S Ngo).
Next, we choose the exact function is given by the formula
g(t) = 35K 1 1y(t) + LT5K 1 _1y(t) + 3.25K (1 _1)(t) — 3.5K(_11)(t), t€R?

and compute the vector d := (g(t;) : j € Nyo). Given t_o,t_1,tp € R? we want to estimate
f(t=2), f(t=1), f(to) knowing that ||f||x < § and the data error vector e := (d; — f(t;)) : j € Ny has
Euclidean norm < ¢ and § are prescribed. However, with no effort at all the observations we made so far
extend to the case that the unit ball B is replaced by 0 B where § is any positive number. In addition, we
shall compare the midpoint estimator discussed in previous section to the regularization estimator which is

the stand method for learning problem. The computational steps are organized in the following steps:

Step 1. Given p > 0, we define the quadratic functional R, for f € H as

Ry(f) = |d = QfI3 + pllfll%-

The Representer Theorem say that the unique function with minimizes R, has the form

fo) =Y (DK (t,, 1), tER

JEN,



Figure 1. Point on a ellipse curve and estimating points.

and ¢, = (G + pI)~'d. Next, we introduce two functions of p given by the formula

e(p) = d = Qfpl2, d(p) = [follx (12)

and choose f,(t_2), fo(t-1), fo(to) as regularization estimators.

Step 2. To compare midpoint estimator and estimate f(tp), we need to identify an hyperellipse which
contains f,. To this end, we define the hyperellipse as follows H(d|5(p)E) := {f : || fllx < d(p),Q(f)—d € E}
where E = {e : e € R", |e| < ¢(p)}. Clearly, the regularization estimator f, can be view as an element in
hyperelipse

Since hyperllipse H(d|d(p)E) consists one point our strategy compare the regularization and midpoint
estimator must consider a bigger hyperllipse. Consequently, we then compute both the regularization
estimator and midpoint estimator corresponding to this hyperellipse H(d|0E) where § = 36(p) and compare

to the true value of g at tg.

As explained earlier, the midpoint algorithm requires us to find numerically the minimum of the function

in (5) for d and —d. then our midpoint estimator is given by m(tp) =

M (to,d|SE)—m oy (to,—d|S E)
A0 5 . For the

computation of my (tg, £d|dF) we use the program fminunc in the optimization toolbox of Matlab 7.3.0

and also for comparison sake we use the iteration scheme (7) with an arbitrary chosen non zero initial vector.

Step 3. To estimate f(¢t_1), we define the partial hyperellipse as follows

H(AISE) :={f : [[fllx <6, f(to) = fo(t0), Q(f) —d € E}.

Clearly, the regularization estimator f, can be view as an element in H(d|6E). To obtain the midpoint,



the algorithm requires us to find numerically the minimum of the function in (9) for d and —d where the

vector d := (d; : j € Nog U{0}), dg = f,(to) and d; = d; for j € Nyy. Our midpoint estimator is given by

m(t_1) = m*“*l’dl‘m)_zm*(t*l’_d‘(SE). For the computation of m4 (t_1, £d|0E) we use the program fminunc
in the optimization toolbox of Matlab 7.3.0 and also for comparison sake (10) with an arbitrary chosen non

zero initial vector.

Step 4. To estimate f(t_2), we again define partial hyperellipse as follows

H(A[OE") :={f : || fllxc <6, f(t—1) = fo(t=1), f(to) = fo(to), Q(f) —d € E}.

Clearly, the regularization estimator f, can be view as an element in H(d|dE’) and our midpoint estimator

becomes as the following m(t_3) =

m+(t’27d‘6E/)72m+(t’2’7d|6E/) where the vector d := (d; : j € NyoU{0,—1})

where d_; = fp(t_l),do = fp(t()) and dj = dj fOI"j € Ngg.

The results of the computation are displayed below and at least for small values of the regularization

parameter, but away from zero, the midpoint algorithm is better than regularization.
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