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 การสรางแบบจําลองทางคณิตศาสตรเพื่ออธิบายปรากฎการณทางวิทยาศาสตรวิธีหนึ่งคือ  นํา

ขอมูลจากการทดลองมาหาความสัมพันธระหวางตัวแปรที่ปรากฎในการทดลอง แลวเขียนฟงกชันหรือ

สมการทางคณิตศาสตร เพื่อเปนตัวแทนใชในการอธิบายปรากฎนั้น  อสมการไฮเพอรเซอรเคิล 

(Hypercircle inequality) ถือเปนอีกเคร่ืองมือหนึ่งที่ถูกนํามาประยุกตใชในการศึกษาการเรียนรูของ

เคร่ืองโดยใชเคอรเนลเปนฐานและเปนที่รูจักเปนอยางดีในการศึกษาแขนงนี้ แตเนื่องจากขอจํากัดของ

อสมการไฮเพอรเซอรเคิลที่สามารถใชกับการศึกษานี้ไดในกรณีที่ทราบคาของขอมูลอยางแนนอน ตอมา

ผูวิจัยไดศึกษาอสมการไฮเพอรเซอรเคิลสําหรับขอมูลที่มีคาคลาดเคล่ือนสองแนวทาง คือ การขยาย

อสมการดังกลาวไปยังขอมูลที่มีคาคลาดเคล่ือนทุกตัว และขยายอสมการดังกลาวไปยังขอมูลที่มีคา

คลาดเคล่ือนเพียงบางตัวเทานั้น ดังนั้นในงานวิจัยนี้ผูวิจัยไดนําองคความรูจากการขยายทั้งสองรูปแบบ

มาประยุกตกับปญหาการประมาณคาของฟงกชันในปริภูมิรีโพรดิวซิ่งเคอรเนิลฮิวลเบิรต นอกจากนี้ใน

งานวิจัยนี้ยังไดเสนอการแปลงสมการดังกลาวไปสูเซตเชิงตั้งฉาก (orthonormal set) ซึ่งเปนเคร่ืองมือที่

มีประโยชนมากในปริภูมิลเบิรต  แตอยางไรก็ตามอสมการดังกลาวก็ยังมีขอจํากัดในการประยุกตหลาย

ดานอาทิเชนปริภูมิที่จะนําไปประยุกตใชตองเปนปริภูมิลเบิรต  ดังนั้นผูวิจัยจริงเสนอแนวทางสําหรับ

งานวิจัยในอนาคตคือ ขยายอสมการดังกลาวไปยังปริภูมิบานาค  

 

คาํหลกั : อสมการไฮเพอรเซอรเคิล  ปริภูมิรีโพรดิวซิ่งเคอรเนิลฮิวลเบิรต   การหาคาเหมาะสมที่สุด

ฟงกชันนูล  ขอมูลทีม่ึคาคลาดเคล่ือน 
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Abstract  
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 A foundational concept in learning problem is to construct a functional representation 

from  given data. Among learning methods,  Hypercircle inequality (Hi) has been applied to 

kernel-based machine leaning when data is known exactly. Recently, we have extended   Hi to 

data error in two ways: First, we have extended it to circumstance for which all data is known 

within error. Second, we have extended it to partially-corrupted data. That is, data set contains 

both accurate and inaccurate data. In this research, we continue our study of this subject by 

using the material from both previous work to  estimate the unknown vectors in Hilbert space 

from knowledge of both its norm and linear observations of it, known within  error. Furthermore, 

we proposed the transformation of hypercircle inequality for partially-corrupted data to 

orthonormal bases  and also specialized the new result to the learning problem in Reproducing 

kernel Hilbert space (RKHS). In future work, we propose to  extend  Hi to Banach space. 

 

Keywords : Hypercircle inequality, Reproducing kernel Hilbert space, convex optimization 

and noisy data 
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บทท่ี 1 ท่ีมาและความสาํคญัของปัญหา 

 

 การสรางแบบจําลองทางคณิตศาสตรเพื่ออธิบายปรากฎการณทางวิทยาศาสตรวิธีหนึ่งคือ  นํา

ขอมูลจากการทดลองมาหาความสัมพันธระหวางตัวแปรที่ปรากฎในการทดลอง แลวเขียนฟงกชันหรือ

สมการทางคณิตศาสตร เพื่อเปนตัวแทนใชในการอธิบายปรากฎนั้น  นอกจากนี้เรายังสามารถนํา

ความสัมพันธดังกลาวมาคาดคะเนผลการทดลองที่ไมสามารถทําการทดลองจริงได ซึ่งอาจเกิดจาก

อันตรายที่อาจจะเกิดขึ้นกับผูทดลอง ตลอดจนอุปกรณที่ใชอาจมีราคาแพง  จึงทําใหการวิจัยในแขนงนี้มี

ความสําคญัและมีบทบาทอยางมากตอการพัฒนาความเจริญกาวหนาทางวิชาการในทางวิทยาศาสตร

และเทคโนโลยี    ประกอบกับปจจุบันคอมพิวเตอรมีวิวัฒนาการกาวหนาอยางมาก  จึงทําใหมีนัก

คณิตศาสตรจํานวนมากสนใจและศึกษาการเรียนรูของเคร่ืองโดยใชเคอรเนลเปนฐาน (kernel-based 

machine learning) ซึ่งมีจุดประสงคคือหาฟงกชันในปริภูมิรีโพรดิวซิ่งเคอรเนลฮิลเบิรต (Reproducing 

kernel Hilbert space) [1] เปนตัวแทนในการอธิบายความสัมพันธ ระหวางตัวแปรที่ปรากฎในขอมูล             

           ปริภูมิรีโพรดิวซิ่งเคอรเนลฮิลเบิรต H  ประกอบดวยสมาชิกของฟงกชัน K  จากเซต Λ  ไปยัง

จํานวนจริง  �  เมื่อ Λ เปนเซตยอยของจํานวนจริง  และ K  เปนฟงกชัน ของ s  และ t  เมื่อ ,s t∈Λ  

จะถูกเรียกวา  รีโพรดิวซ่ิงเคอร์เนล (Reproducing kernel) [1] ถาสําหรับทุกๆ t∈Λ และ ทุกๆ 

ฟงกชัน f H∈ แลว ให 

                                            ( ) , tf t f K=  

 

เมื่อ ,⋅ ⋅ แทนผลคูณภายใน และ tK แทนฟงกชันจากเซต Λ  ไปยังจํานวนจริง � และกําหนดให ทุก ๆ  

s∈Λ , ( ) ( , )tK s K s t=    เรานิยาม   ปริภูมิรีโพรดิวซ่ิงเคอร์เนลฮิลเบิร์ต [1] H  คือปริภูมิที่

ประกอบดวยสมาชิกของฟงกชันจากเซต Λ  ไปยังจํานวนจริง �   เมื่อΛ   เปนเซตยอยของจํานวนจริง  

และมีฟงกชัน K  ของ s และ t  เมื่อ ทุกๆ ,s t∈Λ  เปนรีโพรดิวซิ่งเคอรเนลสําหรับปริภูมิฮิลเบิรตนั้น   

ในป 1950 Aronszajn and Moore [1]  ไดคนพบทฤษฎีบท กลาวคือ ฟงกชัน K  ขางตนจะเปน  

รีโพรดิวซิ่งเคอรเนล ก็ตอเมื่อ สําหรับทุกๆ  { 1 2, ,..., }nt t t T⊆  และ   เมทริกซ ( , )i jK t t  ซึ่งกําหนดโดย 

                           

                                   
1 1 1

1

( , ) ( , )
( , )

( , ) ( , )

n

i j

n n n

K t t K t t
K t t

K t t K t t

 
 =  
  



  



  

 

เปนเมทริกซกึ่งบวกแนนอน  (positive semi-definite) ซึ่งนับไดวาเปนทฤษฎีบทที่มีประโยชนมากใน

การศึกษาการเรียนรูของเคร่ืองโดยใชเคอรเนลเปนฐาน  นอกจากนี้ยังพบวา  ทุกๆ รีโพรดิวซิ่งเคอรเนล 

K จะมี ปริภูมิรีโพรดิวซิ่งเคอรเนลฮิลเบิรต H  เพียงปริภูมิเดียวที่สมนัยกับรีโพรดิวซิ่งเคอรเนิล K     

ตัวอยางปริภูมิรีโพรดิวซิ่งเคอรเนลฮิลเบิรต H  ที่เปนที่รูจักและนิยมนํามาศึกษาในปญหาหลาย ๆ 
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ปญหาคือปริภูมิ 2 ( )H ∆ ประกอบดวยสมาชิกที่เปนฟงกชันวิเคราะห (analytic function) บนจานหนึ่ง

หนวย (unit disc)  : { :| | 1}z z∆ = ≤ , [7] และนอรมถูกกําหนดโดย 

                                
2 1

2 2

0 1 0

1|| || sup( | ( ) | )
2

i

r
f f re d

p
θ θ

p< <
= ∫  

และรีโพรดิวซิ่งเคอรเนลสําหรับปริภูมินี้คือ 

                                     1( , )
1

K z
z

ς
ς

=
−

 

สําหรับทุก ๆ , zς ∈∆ ,  

           Tikhonov  regularization [9,16,17,20] เปนวิธีหนึ่งที่เปนที่นิยมและเปนที่รูจักอยางมากใน

การศึกษาการเรียนรูของเคร่ืองโดยใชเคอรเนลเปนฐาน กลาวคือ กําหนดให H เปนปริภูมิรีโพรดิวซิ่ง

เคอร เนลฮิล เ บิ รตและ {( , ) : }j j nS t d j T= ∈ ⊆ ×� �  คื อ เซตที่ เปนตั วแทนของขอมู ล เมื่ อ 

{1,2,..., }n n=�  จากขอมูลดังกลาว หากเราตองการประมาณของคาขอมูลที่จุด 0t โดยวิธี Tikhonov 

regularization   เร่ิมตนโดยกําหนดให  เปน loss ฟงกชันจาก 2� ไปยังจํานวนจริง � และ L เปน

ฟงกชันที่วัดคาคลาดเคล่ือนจาก H ไปยังจํานวนจริง  และกําหนดให 

                                                    1( ) : ( , ( ))
n

j j
j

L f d f t
n ∈

= ∑
�

  

ให 0σ >  และฟงกชันที่เปนตัวแทนของขอมูลชุดนี้ถูกเลือกมาจาก 

 

                                2 2( ) || || min{ ( ) || || : }L f f L f f f Hσ σσ σ+ = + ∈  

 

จาก Representer Theorem  พบวา [8,16,17,20] 

                                      ( ) ( , )
n

j j
j

f t c K t tσ
∈

= ∑
�

                 เมื่อ t T∈  

ดังนั้น 0 0( ) ( , )
n

j j
j

f t c K t tσ
∈

= ∑
�

 คือคาประมาณที่ดีที่สุดจากวิธีการ  Tikhonov regularization    

 

อสมการไฮเพอรเซอรเคิล (Hypercircle inequality) ถือเปนอีกเคร่ืองมือหนึ่งที่ถูกนํามา

ประยุกตใชในการศึกษาการเรียนรูของเคร่ืองโดยใชเคอรเนลเปนฐานและเปนที่รูจักเปนอยางดีใน

การศึกษาแขนงนี้ แตเนื่องจากขอจํากัดของอสมการไฮเพอรเซอรเคิลที่สามารถใชกับการศึกษานี้ไดใน

กรณีที่ทราบคาของขอมูลอยางแนนอน [5, 11, 15] ซึ่งความเปนจริงแลว ขอมูลโดยไปมักจะมีความ

คลาดเคล่ือนรวมอยูดวยเสมอ ดังนั้นจากขอจํากัดนี้   ในป 2010 ดร. กรรณิการ ขําพึ่งสน และ  

Professor Charles A. Micchelli  ซึ่งเปนศาสตราจารยคณิตศาสตรชาวอเมริกัน ที่มีช่ือเสียงมากใน

การศึกษาแขนงทฤษฎีการประมาณคา (Approximation Theory) และมีผลงานวิจัยที่ไดตีพิมพเผยแพร

ในวารสารทางวิชาการระดับชาติที่มี impact factor สูง ไดศึกษาอสมการไฮเพอรเซอรเคิลสําหรับขอมูลที่

มีคาคลาดเคล่ือน [12] รวมทั้งเสนอการวิธีการใหมในการศึกษาการประมาณคาของฟงกชันจากขอมูลที่มี
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คาคลาดเคล่ือนโดยใชองคความรูจากอสมการไฮเพอรเซอรเคลิสําหรับขอมลูที่มีคาคลาดเคล่ือน และในป

เดียวกัน ดร. บริบูรณ เนาวประทีป และ ดร. กรรณิการ ขําพึ่งสน  ไดศึกษาปญหาการจําลองแบบเชิง

ตัวเลขของการประมาณคาของฟงกชันจากขอมูลที่มีคาคลาดเคล่ือนโดยใชองคความรูจากอสมการไฮ

เพอรเซอรเคิลสําหรับขอมูลที่มีคาคลาดเคล่ือนในปริภูมิรีโพรดิวซิ่งเคอรเนลฮิลเบิรต H  [13] กลาวคือ 

กําหนดให H เปนปริภูมิรีโพรดิวซิ่งเคอรเนลฮิลเบิรต และ {( , ) : }j j nS t d j= ∈ ⊆ Λ×� �  เมื่อ 

{1,2,..., }n n=� โดยที่เซต S เปนตัวแทนของขอมูล และจากขอมูลดังกลาว หากตองการประมาณคา

ของขอมูลที่จุด 0t  ดังนั้น กําหนดให I  เปนฟงกชันจาก H  ไปยัง n� และ  

( ( ) : )j nIf f t j= ∈�  

ให ε > 0 และ δ > 0 และ 0 0( , , ) { ( ) :| | ,|| || }I t f t d If fε d ε d= − ≤ ≤  เมื่อ | |� คอืนอรมใน n�  

จะเห็นไดชัดเจนวาตัวประมาณคาที่ดีที่สุดในการประมาณคาของฟงกชันที่จุด 0t  คือจุดกึ่งกลางของชวง 

0( , , )I t ε δ  เมื่อเราทราบคาของฟงกชันบางคา ซึ่งไดถูกแสดงในเซต S   และ เราเรียกวีธีการนี้วา

ขั้นตอนวิธีคากึ่งกลาง (midpoint algorithm)  องคความรูจากอสมการไฮเพอรเซอรเคิลสําหรับขอมูลที่มี

คาคลาดเคล่ือนเปนเคร่ืองมอืสําคญัที่ใชหาจุดกึง่กลางของ 0( , , )I t ε δ  นอกจากนี้ยังทราบวาตัวประมาณ

คาที่ดีที่สุดหรือคากึ่งกลางอยูในรูปของ 

                                                0 0( ) ( , )
n

j j
j

f t c K t t
∈

= ∑
�

 

ซึ่งจะเห็นไดวามีรูปแบบเดียวกับ วิธี Tikhonov regularization แตสัมประสิทธิ์นั้นแตกตางกันในกรณี

ทั่วไป นอกจากนี้ยังพบวาในการการทดลองดังกลาวแสดงใหเห็นวาขั้นตอนวิธีคากึ่งกลาง (midpoint 

algorithm) ซึ่งไดนําองคความรูจากอสมการไฮเพอรเซอรเคิลสําหรับขอมูลที่มีคาคลาดเคล่ือนมาใชนั้น

ใหผลการทดลองที่ดีกวาวิธี Tikhonov regularization ซึ่งเปนที่นิยมในปจจุบัน 

          ดวยเหตุนี้ ผูจัยจึงใหความสนใจที่จะขยายและพัฒนาอสมการไฮเพอรเซอรเคิลสําหรับขอมูลที่มี

คาคลาดเคล่ือน ใหสามารถนําไปใชในการศึกษาการเรียนรูของเคร่ืองโดยใชเคอรเนลเปนฐาน เพื่อใชใน

การแกปญหาไดอยางกวางขวางและมีประสิทธิภาพมากยิ่งขึ้น  รวมทั้งสรางทฤษฎีตางๆ ที่เปน

ประโยชนในการไปประยุกตใชไดกับขอมูลจริง และตอยอดงานวิจัยทางดานวิทยาศาสตรสาขาอื่นๆ และ

นอกจากนี้ในงานวิจัยนี้ยังมีความประสงคจะนําผลการศึกษาการเรียนรูของเคร่ืองโดยใชเคอรเนลเปน

ฐาน โดยใชวิธีการจากอสมการไฮเพอรเซอรเคิลสําหรับขอมูลที่มีคาคลาดเคล่ือนมาเปรียบเทียบกับ

วิธีการอื่นที่ถูกนํามาศึกษาในปญหานี้เชนกัน  ซึ่งจะเปนประโยชนตอผูใชงานในการพิจารณาเลือกไปใช

ใหเหมาะสมกับขอมูลมากที่สุด  จะเห็นไดวางานวิจัยที่เสนอขอทุนในโครงการนี้มีประโยชนอยางมากใน

สาขาวิชาทางวิทยาศาสตรอยางเห็นไดชัด  ดังนั้นผลของงานวิจัยที่ไดผูวิจัยคาดวาจะไดรับการตอบรับ

ใหตีพิมพในวารสารทางวิชาการระดับนานาชาติ ตามวัตถุประสงคที่ผูใหทุนตั้งไวไดอยางแนนอน และยัง

สามารถนําไปเผยแพรในเวทวิีจัยระดับนานาชาติ  อันจะนําไปสูการพัฒนาทางวิชาการดานคณิตศาสตร

ไทยในเวทีวิจัยระดับนานาชาติตอไป 
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บทท่ี 2 ทบทวนวรรณกรรม 

 

 ในหัวขอนี้  เราจะกลาวถึงความรูเบ้ืองตน นิยาม ความหมาย และสัญลักษณตางๆ ของ 

อสมการไฮเพอรเซอรเคิลสําหรับขอมูลที่มีคาคลาดเคล่ือน ซึ่งผูวิจัยใหความสนใจที่จะขยายและพัฒนา

อสมการไฮเพอรเซอรเคิสหรับขอมูลที่มีคาคลาดเคล่ือนใหสามารถนําไปใชในการศึกษาการเรียนรูขอ

เคร่ืองโดยใชเคอรเนลเปนฐาน ในการแกปญหาไดกวางขวางขึ้นและมีประสิทธิภาพมากขึ้น   

           กําหนดให H  เปนปริภูมิฮิลเบิรต ซึ่งผลคูณภายใน และนอรม (norm) นิยามโดย ,��  และ 

�  ตามลําดับ กําหนดใหเวกเตอร 1,..., nx x  เปนเวกเตอรอิสระเชิงเสนใน H และกําหนดให Q เปนตัว

ดําเนินการเชิงเสน (linear operator) จาก H  ไปยัง n�  และสําหรับทุก ๆ x H∈  

( , : )j nQx x x j= ∈�  

และกําหนดให TQ เปนตัวดําเนินการผูกพันของ Q (adjoin operator) จาก n� ไปยัง H และสําหรับทุก 

ๆ na∈�   

( )
n

T
j j

j
Q a a x

∈

= ∑
�

 

เรานิยาม Gram เมทริกซของเวกเตอร 1,..., nx x โดย 

1 1 1

1

, ,

, ,

n
T

n n n

x x x x
G QQ

x x x x

 
 = =  
  



  



 

นอกจากนี้เราพบกวา Gram เมทริกซของเวกเตอร 1,..., nx x เปนเมทริกซบวกแนนอน (positive 

definite) กําหนดให ( : ) n
j nd d j= ∈ ∈� � เรานิยามเซตระนาบเกิน (hyperplan) [5] คือเซตที่มี

สมาชิกสอดคลองกับเงื่อนไข                           

                                        Qx d=                                             (2.1) 

นอกจากนี้เรายังทราบวา เซตระนาบเกินไมเปนเซตวาง เนื่องจาก มีสมาชิก 1( ) Tx d Q G d−= ใน H ที่

สอดคลองเงื่อนไข (2.1) สําหรับทุก ๆ ( : ) n
j nd d j= ∈ ∈� � เสมอ  

เรานิยามเซตไฮเพอรเซอรเคิล (hypercircle) [5] คือ เซตที่มีสมาชิกอยูในเซตระนาบเกิน และ 

บอลหนึ่งหนวย B ใน H และเราใชสัญลักษณนี้แทนเซตไฮเพอรเซอรเคิล  

( ) { : ,|| || 1}d x Qx d xΗ = = ≤  

เราทราบวาเซตไฮเพอรเซอรเคิล (hypercircle) จะไมเปนเซตวาง สําหรับทุกๆ ( : ) n
j nd d j= ∈ ∈� �

ก็ตอเมื่อ 1( , ) 1d G d− ≤  เมื่อ ( ),�� คือผลคูณภายในแบบยุคลิดใน n�  และอสมการไฮเพอรเซอรเคิล 

[5,10,14] แสดงใหเห็นวา ทุก ( )x d∈Η และ 0x H∈ จะไดวา 
2

0 0 0( ), , ( , ) 1 || ( ) ||− ≤ −x d x x x dist x M x d  

นั้นคือ 0( ),x d x คือตัวประมาณคาที่ดีที่สุดในการประมาณคา 0,x x เมื่อ ( )x d∈Η หรือกลาวไดวา 

0( ),x d x  คือจุดกึ่งกลางของชวง 0 0( ) { , : ( )}I x x x x d= ∈Η  นั่นเอง นอกจากนี้เรายังทราบวา 
1( ) Tx d Q G d−=  ซึ่งทําใหเห็นวาตัวประมาณคาที่ดีที่สุดนั้นไมขึ้นอยูกับเวกเตอร 0x  
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        จากนิยามของไฮเพอรเซอรเคิล เห็นไดอยางชัดเจนวาอสมการไฮเพอรเซอรเคิลสามารถใชกับ

ปญหาการประมาณคาของขอมูล ในกรณีที่ทราบขอมูลอยางแนนอน  (Qx d= ) ตอมาในป 2010 ดร. 

กรรณิการ ขําพึ่งสน และ  Professor Charles A. Micchelli ไดกําหนดเซตไฮเพอร์อิลิฟซ ์

(hyperellipse) [12] ขึ้นมา โดยให { : ,| | }nE e e e e= ∈ ≤� ซึ่งเปนเซตที่ เปนตัวแทนการวัดคา

คลาดเคล่ือนสําหรับขอมูล เมื่อ 0ε >  และ  | |� คือนอรมบน n� จากนั้นกําหนดใหเซตไฮเพอรอิลิฟซ 

คือเซตที่มีสมาชิกสอดคลองเงื่อนไข | |d Qx ε− ≤  และ x อยูใน B  บอลหนึ่งหนวยใน H และเราใช

สัญลักษณตอไปนี้นี้แทนเซตของไฮเพอรอิลิฟซ 

 

( | ) { : ,|| || 1}d E x Qx d E xΗ = − ∈ ≤  

 

จากนิยามเซตของไฮเพอรเซอรเคิล และเซตของไฮเพอรอิลิฟซ เราพบวา 
( | ) ( )

e E
d E d e

∈
Η = Η +  

ให 0x H∈ จุดประสงคของเราคือตองการตัวประมาณคาที่ดีที่สุดใหการประมาณคาของ 0,x x เมื่อ 

( | )x d E∈Η  ในขณะนี้เราจะเห็นไดวาขอมูลที่เรามีนั้นเปนขอมูลที่มีคาคลาดเคล่ือน (Qx d e= +  เมื่อ  

e E∈ )  ซึ่งการหาจุดกึ่งกลางของชวง  

0 0( , | ) { , : ( | )}I x d E x x x d E= ∈Η  

นั้นขึ้นอยูกับหลายปจจยัอาทิเชน เวกเตอร 0x  รวมถึงคา ε  ซึ่งเปนคาความคลาดเคล่ือนของขอมูล 

จากความสัมพันธระหวางเซตไฮเพอรเซอรเคิลและเซตของไฮเพอรอิลิฟซ ทําใหเราทราบวา 

0 0( , | ) { , : ( | )}I x d E x x x d E= ∈Η  เปนเซตปดและมีขอบเขตดังนั้นเราจึงไดวา 

0 0 0( , | ) [ ( , | ), ( , | )]I x d E m x d E m x d E− +=  

เมื่อ 0 0( , | ) { , : ( | )}m x d E x x x d E+ = ∈Η  และ   0 0( , | ) { , : ( | )}m x d E x x x d E− = ∈Η  

และเราใชสัญลักษณนี้แทนจุดกึ่งกลางของชวง 0( , | )I x d E   

0 0
0

( , | ) ( , | )( , | )
2

m x d E m x d Em x d E + −+
=  

 เร่ิมตนในการศึกษาปญหานี้เราสามารถแสดงไดวามี e+ และ e− ใน E  ซึ่งทําใหเวกเตอร ( )x d e+ ++

และ ( )x d e− −+ ใน ( | )d EΗ ซึ่งทําให   

               0 0( ), ( , | )x d e x m x d E+ + ++ =  และ 0 0( ), ( , | )x d e x m x d E− −+ =  

หลังจากที่เราได  e+ และ e− เราพบวามี 0e E∈  ซึ่ง  0 0 0( ), ( , | )x d e x m x d E+ = นอกจากนี ้

เรายังทราบวา  1
0( ) ( (1 ) )Tx d e Q G d e eλ λ−

+ −+ = + + −  สําหรับบาง [0,1]λ∈  

จากที่กลาวมาขางตนจะเห็นไดชัดเจนวาถาเราทราบ e+ และ e−  เราจึงจะสามารถคํานวนคากึ่งกลางของ

ชวงได แตเนื่องจากมิติของปริภูมิฮิลเบิรตอาจจะไมใชปริภูมิจํากัด  จึงทําใหการคํานวณหาเวกเตอร

ดังกลาวนั้นทําไดยาก ดังนั้นเราจึงไดมีการศึกษาถึงวิธีการคํานวนหาคา  
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0 0( , | ) { , : ( | )}m x d E x x x d E+ = ∈Η  และ   0 0( , | ) { , : ( | )}m x d E x x x d E− = ∈Η และพบวาถา 

( )d φΗ ≠ เราจะได 

                      0 0 *( , | ) min{|| || | | ( , ) : }T nm x d E x Q c c c d cε+ = − + + ∈�                  (2.2) 

เมื่อ *| |� คือนอรมสงัยุคของ | |�บน n� (conjugate norm) 

จากนิยามของ 0 0( , | ) { , : ( | )}m x d E x x x d E− = ∈Η เราพบวา 

                         0 0 0( , | ) { , : ( | )} ( , | )m x d E x x x d E m x d E− += ∈Η = − −  

ดังนั้นเราสามารถใชสมการ (2.2) เพื่อหา 0( , | )m x d E+  และ   0( , | )m x d E− จากนั้นจึงคํานวณหาจุด

กึ่งกลางของชวงไดในลําดับตอไป 

 

              นอกจากนี้เรายังไดศึกษาในกรณีเฉพาะ 2{ : ,| | }nE e e e e= ∈ ≤� ซึ่งเปนเซตที่ตัวแทนการ

วัดคาคาดเคล่ือนสําหรับขอมูล เมื่อ 0ε >  และ  2| |�  คือนอรมยุคลิดบน n� และเราใชสัญลักษณนี้แทน

เซตไอเพอรอลิิฟซ  [12] 

                                            2 ( | ) { : ,|| || 1}d E x Qx d E xΗ = − ∈ ≤  

เราพบวาไดเราเงื่อนไขที่ออนกวาการแสดงสมการ (8.2) กลาวคือ ถา 2 ( | )d EΗ มีสมาชิกมากกวาหนึ่ง 

0x M∉ และ 0
2

0

( | )
|| ||

x d E
x

∈Η แลว  

                             0 0 2( , | ) min{|| || | | ( , ) : }T nm x d E x Q c c c d cε+ = − + + ∈�  

การพิสูจนในทฤษฎีบทนี้เราไดประยุกตทฤษฎีบทของ Von Neumann Minimax [2,3,6]  ซึ่งเปนทฤษฎี

บทที่ มีประโยชนและมี ช่ื อ เสี ย งมากมาช วย ในการแสดงสมการ  (2.2) และ เนื่ อ งจาก  

0 2|| || | | ( , )Tc x Q c c c dε→ − + +  เปนฟงกชันคอนเวกซโดยแท (strictly convex function) ดังนั้นเราจึง

ทราบวาจะมี * nc ∈�  เพียวตัวเดียวเทานั้นที่ทําให  

                                    * * *
0 0 2( , | ) || || | | ( , )Tm x d E x Q c c c dε+ = − + +  

และเมื่อเราหาความชันของฟงกชัน (gradient) ดังกลาวจึงทําใหไดวาเวกเตอร *c  สอดคลองกบัสมการ  

                                     
* *

0
* *

0 2

( ) 0
|| || | |

T

T

x Q c cQ d
x Q c c

ε−
− + + =

−
  

จากนั้นเรากําหนดการวิธีการทําซ้ํา 

                                  1 1
0( ) ( )k

k k k k kc G I Qx dρ ετ ρ ρ τ+ −= + −                           (2.3) 

เมื่อ 2| |k
k cρ =  และ 0|| ||T k

k x Q cτ = −   

          จากที่ไดกลาวมาแลวนั้น ในป 2010 ดร.บริบูรณ เนาวประทีป และ ดร.กรรณิการ ขําพึ่งสน  ได

นําอสมการไฮเพอรเซอรเคิลสําหรับขอมูลที่มีคาคลาดเคล่ือน มาศึกษาการประมาณคาของฟงกชันใน

ปริภูมิรีโพรดิวซิ่งเคอรเนลฮิลเบิรต จากขอมูลที่มีคาคลาดเคล่ือน [13,19] และทําการจําลองผลโดยวิธี

เชิงตัวเลขเพื่อนําวิธีการจากการศึกษาอสมการไฮเพอรเซอรเคิลสําหรับขอมูลที่มีคาคลาดเคล่ือนมา

เปรียบเทียบกับวิธี Tikhonov regularization  ซึ่งในการจําลองผลโดยวิธเีชิงตัวเลขดังกลาว ไดพิจารณา

เคอรเนลตางๆ ดังนี้ 
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Szeg o  kernel:  ซึ่งกําหนดโดย ทุก ๆ , ( 1,1)s t∈ −  
1( , )

1
K s t

st
=

−
 

Polynomial kernel:  ซึ่งกําหนดโดย ทุก ๆ 2,s t∈�  
4( , ) (1 , )K s t s t= +  

 

ในการหาคากึ่งกลางของชวงเราใชโปรแกรม  fminunc ใน optimization toolbox ใน Matlab 7.3.0 ใน

การคํานวนหาเวกเตอร *c รวมทั้งใชวีธีการทําซ้ําในสมาการ (2.3)  จากประสบการณการทดลองเชิง

ตัวเลขในการหาเวกเตอร *c พบวาวิธีการทําซ้ําในสมการ (2.3) ลูเขาหา *c แตอยางไรก็ตามงานวิจัยที่

ผานมาก็ยังไมสามารถพิสูจนไดวาวิธีการนี้ลูเขา  จึงทําใหเห็นวานี้ยังคงเปนอีกปญหาหนึ่งที่นาสนใจ 

ของการพัฒนาการศึกษาอสมการไฮเพอรเซอรเคลิสําหรับขอมลูที่มีคาคลาดเคล่ือน และมีประโยชนอยาง

มากสําหรับผูที่จะนําไปประยุกตใชในการจําลองผลโดยใชวิธีเชิงตัวเลข โดยใชเคอรเนลทั้งสองแบบ 

อยางไรก็ตาม จากที่กลาวมาขางตนนั้น การศึกษาการประมาณคาของฟงกชันจากขอมูลที่มีคา

คลาดเคล่ือน เราพบวาวิธีการจากอสมการไฮเพอรเซอรเคิลสําหรับขอมูลที่มีคาคลาดเคล่ือนใหผลการ

ทดลองที่ดีกวาวิธี Tikhonov regularization   

 

       เนื่องจากขอมูลในปจจุบันมีความหลากหลายมาก ทั้งรวมถึงขอมูลที่มคีาคลาดเคล่ือนบาง 

สวน ตอมาในป 2014 ดร.บริบูรณ เนาวประทีป และ ดร.กรรณิการ ขําพึ่งสน ไดขยายอสมการไฮเพอร

เซอรเคิลสาํหรับขอมูลทีม่ีคาเคล่ือนบางสวน โดยกําหนดให I X⊆  โดย m  แทนจํานวนสมาชิกในเซต 

I  และ \nJ N I=  โดย n m−  แทนจํานวนสมาชิกในเซต J  สําหรับทุก ๆ ne R∈  เราใชสัญลักษณ 

                        ( : ) m
I ie e i I R= ∈ ∈   และ ( : ) n m

J ie e i J R −= ∈ ∈  

     สาํหรับทุก nd R∈   และให  ||| |||: n mR R−⋅ →  เปนนอรมบน n mR −  กําหนดให  

  { : , 0,||| ||| }n
I Je e e e e= ∈ = ≤� E   เมื่อ ε  คือจํานวนจริงบวก  

เซตพาเช่ียวไฮเพอรอิลิฟซ (partial hyperellipse) คือเซตทีม่ีสมาชิกสอดคลองเงื่อนไข x อยูใน B  

บอลหนึ่งหนวยใน H และ เราใชสัญลักษณตอไปนี้แทนเซตของไฮเพอรอิลิฟซQx d− ∈E  

    ( | ) { : ,|| || 1}d x Qx d xΗ = − ∈ ≤E E  

[13] จากนยิามขางตนจะไดวา สําหรับทุก ๆ ( | )x d∈Η E  

                           ( ) 0IQx d− =   และ ||| ( ) |||JQx d ε− ≤  

นอกจากนี้เรายังพบวา 

                           ( | ) ( ) ( | )I J Jd d d EΗ = Η ∩ΗE     

เมื่อเรากาํหนดให ( ) { : ,|| || 1}I I Id x Q x d xΗ = = ≤   เมื่อ ( , : )I jQ x x x j I= ∈  และ  

( | ) { : ,|| || 1}J J J Jd E x Q x d E xΗ = − ∈ ≤   เมื่อ { : ,||| ||| }n m
JE e e e e−= ∈ ≤�  และ  

( , : )J jQ x x x j J= ∈  
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 ให 0x H∈ จุดประสงคของเราคอืตองการตัวประมาณคาที่ดีที่สดุใหการประมาณคาของ 0,x x

เมื่อ ( | )x d∈Η E  ในขณะนี้เราจะเห็นไดวาขอมูลที่เรามีนัน้เปนขอมูลทีม่ีคาคลาดเคล่ือนบางสวน 

( ||| ( ) |||JQx d ε− ≤ )  ซึ่งการหาจุดกึง่กลางของชวง 

    0 0( , | ) { , : ( | )}I x d x x x d= ∈ΗE E   

จากความสมัพนัธระหวางเซตไฮเพอรเซอรเคิลและเซตของไฮเพอรอิลิฟซ ทําใหเราทราบวา  

    0 0( , | ) { , : ( | )}I x d x x x d= ∈ΗE E  

 เปนเซตปดและมีขอบเขตดังนั้นเราจึงไดวา 

   0 0 0( , | ) [ ( , | ), ( , | )]I x d m x d m x d− +=E E E  

เมื่อ 0 0( , | ) max{ , : ( | )}m x d x x x d+ = ∈ΗE E  และ   0 0( , | ) min{ , : ( | )}m x d x x x d− = ∈ΗE E  

และเราใชสัญลักษณนี้แทนจุดกึ่งกลางของชวง 0( , | )I x d E   
 

                           0 0
0

( , | ) ( , | )( , | )
2

m x d m x dm x d + −+
=

E E
E  

 

ในทํานองเดียวกันในการพิสูจนจาก [11] เราสามารถแสดงไดวามี e+ และ e− ใน E  ซึ่งทําใหเวกเตอร 

( )x d e+ ++ และ ( )x d e− −+ ใน ( | )dΗ E ซึ่งทําให   

               0 0( ), ( , | )x d e x m x d+ + ++ = E  และ 0 0( ), ( , | )x d e x m x d− −+ = E  

 

 นอกจากนี้ในงานวิจัยนี้เรายังศึกษาการหาวิธีการหาคาจุดปลายของชวงดังกลาวอีกวิธีหนึ่ง

ดังตอไปนี้  

ถา ( | )dΗ E  มีสมาชิกมากวาหนึ่งเราจะไดวา 

                      0 0 *( , | ) min{|| || ||| ||| ( , ) : }T n
Jm x d x Q c c c d cε+ = − + + ∈�E                  เมื่อ 

*||| |||� คือนอรมสงัยุคของ ||| |||� บน n m−� (conjugate norm)   

 

     ถา 0 : { ( ) : }T m
I Ix M Q a a∉ = ∈�   และ ( )IdΗ  มีสมาชิกมากกวาหนึ่ง แลวจะไดวา 

         *
0 *arg min{|| || ||| ||| ( , ) : }T n

Jc x Q c c c d cε= − + + ∈�  และ * 0Jc =   ก็ตอเมื่อ 
*

0
*

0

( ) ( | )
|| ( ) ||

T
I
T
I

x Q a H d
x Q a
−

∈
−

E  เมื่อ 
*

0
0*

0

( ) min{|| ( ) || ( , ) : }
|| ( ) ||

T
T mI
I IT

I

x Q a x Q a a d a
x Q a
−

= − + ∈
−

�  

และ ( )T
I j j

j I
Q a a x

∈

=∑  นอกจากนีใ้นกรณีนีค้า 0( , |m x d+ E) * *
0|| || ( , )T

I Ix Q a a d= − +  

 

ถา 0 : { ( ) : }T n m
J Jx M Q b b −∉ = ∈�   และ ( | )Jd EΗ  มีสมาชิกมากกวาหนึ่ง แลวจะไดวา 

          *
0 *arg min{|| || ||| ||| ( , ) : }T n

Jc x Q c c c d cε= − + + ∈�  และ * 0Ic =    

ก็ตอเมือ่  
*

0
*

0

( ) ( | )
|| ( ) ||

T
J
T
J

x Q b H d
x Q b
−

∈
−

E  เมื่อ     

             
*

0
0 **

0

( ) min{|| ( ) || ||| ||| ( , ) : }
|| ( ) ||

T
T n mJ
J jT

J

x Q b x Q b b b d b
x Q b

ε −−
= − + + ∈

−
�  
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และ ( )T
J j j

j J
Q a a x

∈

=∑   นอกจากนี้ในกรณีนี้คา                   

                      0( , |m x d+ E) * * *
0 *|| ( ) || ||| ||| ( , )T

J Jx Q b b b dε= − + +  

 

 ในการวิจัยในคร้ังนี้ยังคงแสดงไดวาตัวประมาณคาที่ดีที่สุดในการประมาณคาของ 0,x x เมื่อ 

( | )x d∈Η E  ยังคงอยู ในรูปของผลรวมเชิงเสนของเวกเตอรในเซต X  โดยเราพบวา  
1

0( ) ( (1 ) )Tx d e Q G d e eλ λ−
+ −+ = + + −  สําหรับบาง [0,1]λ∈  
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    บทท่ี 3 วตัถปุระสงคข์องโครงการ 

 

  1. ขยายองคความรูของอสมการไฮเพอรเซอรเคิลสูขอมูลที่มคีาคลาดเคล่ือนบางสวน 

           2. ประยุกตองคความรูใหมที่กับปญหาการประมาณคาของฟงกชันจากขอมูลจริงทีม่คีา    

               คลาดเคล่ือนบางสวน โดยทาํการจาํลองผลทางคณิตศาสตรโดยวิธีเชิงตัวเลข 
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บทท่ี 4 ผลการดาํเนินงาน 

  

 การทํางานวิจัยเปนไปตามแผนที่วางไว โดยไดรวมรวมและศึกษาอมการไฮเพอรเซอรเคิล

สําหรับขอมูลที่มคีาคลาดเคล่ือน  รวมถึงขยายอสการดังกลาวใหใชไดกับขอมูลที่หลากหลายมากขึ้น  ซึ่ง

เปนไปตามจดุประสงคของการทําวิจัยในคร้ังนี้   ซึ่งผลการดําเนนิงานไดนาํเสนอไวดังตอไปนี ้

 จากจุดประสงคขอที่หนึ่งของโครงการคอื ขยายองคความรูของอสมการไฮเพอรเซอรเคิลสูขอมูล

ที่มีคาคลาดเคล่ือนบางสวน  โดยมีจุดเร่ิมตนโดยการที่ผูวิจัยจึงไดทําการศึกษาอสมการไฮเพอรเซอรเคิล

สําหรับขอมูลที่มคีาเคล่ือนบางสวนโดยคาคลาดเคล่ือนอยูใน �  และ 2�  กําหนดให H  เปนปริภูมฮิิล

เบิรต ซึ่งผลคูณภายใน และนอรม (norm) นิยามโดย ,��  และ �  ตามลําดับ   

 กําหนดให 1{ ,..., }nX x x=  เปนเซตยอยอสิระเชิงเสนใน H และ {1,2,..., 1}I n= −  และ 

{ }J n=  สําหรับทุก ๆ ne R∈  เราใชสัญลักษณ 

                                             1( : ) n
I ie e i I R −= ∈ ∈   

     สาํหรับทุก nd R∈   และให  | |: R R⋅ →  เปนสัมบูรณบน R  กําหนดให  

         { : , 0,| | }n
I ne e e e e= ∈ = ≤� E   เมื่อ ε  คือจํานวนจริงบวก  

เซตพาเชีย่วไฮเพอรอิ์ลิฟซ ์(partial hyperellipse) คือเซตทีม่ีสมาชิกสอดคลองเงื่อนไข x อยูใน B  

บอลหนึ่งหนวยใน H และ เราใชสัญลักษณตอไปนี้แทนเซตของไฮเพอรอิลิฟซ  Qx d− ∈E  

                ( | ) { : ,|| || 1}d x Qx d xΗ = − ∈ ≤E E  

จากการศึกษากอนหนานีพ้บวา  ( | )d φΗ ≠E  ก็ตอเมื่อ  

                                       ( )1min , ( ) 1
e

d e G d e−

∈
+ + ≤

E
    (4.1) 

ในวิจัยนี้ผูวิจัยไดศึกษารูปแบบของคําตอบ (1) โดยใชเร่ิมตนจากใชกระบวนการ Gram-Schmidt เปล่ียน

เซต X  เปนเซตเชิงตั้งฉาก (orthonormalized) นอกจากนี้พบวาสําหรับทกุ ๆ ( )x d∈Η  เงื่อนไข 

                                   Qx d=         สมนัยกับ        *Rx d=  

เมื่อตัวดําเนินการเชิงเสน : nR H → �  โดยกาํหนดโดย *( ) : ( , : )j nR x x x j= ∈�  และเวกเตอร 
* nd ∈�  ถูกกําหนดโดย 

                                           * 1
1

1( )
dd

G x
=  

สําหรับ 2,...,k n=                 

                                                 

         
( )

1 1 2 1 1

*

1 1 2 1 11 2 1 1 2

1 2

, , ... ,
1

, , ... ,, ,..., ( , ,..., )
...

k

k
k k k kk k

k

x x x x x x

d
x x x x x xG x x x G x x x

d d d
− − −−

=
  

 

จากสมการขางตนผูวิจัยไดกําหนดเมทริกซ A  ซึง่เปนตัวแทนสัมประสิทธิข์อง *
kd  สําหรับทุก ๆ 

1,2,...,k n=  ซึ่งกําหนดโดย 
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11

21 22

1 2

0 ... 0
... 0

A
...
...n n nn

β
β β

β β β

 
 
 =
 
 
 

  
 

 

นอกจากนีย้ังพบวา  1 1

1

( ,..., )
( ,..., )

k
kk

k

G x x
G x x

β −= สําหรับทุก ๆ 1,2,...,k n=  ดังนั้นเราสามารถสรุปไดวา 

                                   * * *( ) ( ) { : , A }d d x x B Rx d dΗ = Η = ∈ = =  

และ 

                       * *( | ) ( | (A)) { : (A),|| || 1}d d x Qx d xΗ = Η = − ∈ ≤E E E  

 

เมื่อ (A) { : }Ae e= ∈E E  นั้นคอืสําหรับทุก ๆ ( | )x d∈Η E   

                          Qx d e= +   จะสมนัยกับ  *Rx d Ae= +  

หรือสอดคลอง   *( )I IR x d=     และ  *( )n n nn nR x d eβ− =  

  

 นอกจากนี ้สําหรับทกุ ๆ  ( ) ( | )x d e d+ ∈Η E  จะไดวา              

                        * *( ) *( * ) ( ) ( )I n nn nx d e x d Ae x d x d eβ+ = + = + +  

และไดวา 

                2 2 * 2 * 2|| ( ) || || *( * ) || || ( ) || || ( ) ||I n nn nx d e x d Ae x d x d eβ+ = + = + +  

                                                         ( )* *,I Id d= ( )2*
n nn nd eβ+ +  

ดังนั้นเราจึงสามารถสรุปไดวา 

            * *( | ) ( | (A))d d φΗ = Η ≠E E   ก็ตอเมือ่  

                          ( ) ( )2* * *

| |
min 1 ,n nn I Ie

d e d d
e

β
≤

+ ≤ −                 (4.2) 

 ในงานวิจัยนี้ผูวิจัยไดศึกษาลักษณะของคําตอบ (1)  

                           ( )

*

2*

*| |
*

0,             
min

,  

n

n nne
n

n nn

d

d e
dd

e

e
β

β
β ee

β

≤


≤

+ = 
 + >


 

 

 ให 0x H∈  เราตองการประมาณคา 0,x x ที่ดีที่สุด เมือ่ I IQ x d e= +   และ | |n nQ x d ε− ≤  

จากงานวิจัยกอนหนานี้ผูจยัพบวา 
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ถา 0 : { ( ) : }T
n nx M Q b b∉ = ∈�   และ ( | )nd EΗ  มีสมาชิกมากกวาหนึ่ง แลวจะไดวา 

          *
0arg min{|| || | || ( , ) : }T n

nc x Q c c c d cε= − + + ∈�  และ * 0nc =    

ก็ตอเมือ่           

                               
*

0
*

0

( ) ( | )
|| ( ) ||

T
I
T
I

x Q a H d
x Q a
−

∈
−

E   

เมื่อ 
*

0
0*

0

( ) min{|| ( ) || ( , ) : }
|| ( ) ||

T
T mI
I IT

I

x Q a x Q a a d a
x Q a
−

= − + ∈
−

� และ ( )T
I j j

j I
Q a a x

∈

=∑   

นอกจากนี้ในกรณีนี้คา 0( , |m x d+ E) * *
0|| || ( , )T

I Ix Q a a d= − +  

  

ถา 
*

0
*

0

( ) ( | )
|| ( ) ||

T
I
T
I

x Q a H d
x Q a
−

∉
−

E  จะไดวา จะมีเวกเตอร * nc ∈�  เพียงตัวเดียวที่ทาํให 

                          
*

*0
*

0

T

T

x Q cQ w d
x Q c

ε
 − − + +
 − 

 

เมื่อเวกเตอร  *
*

0,          
sgn( ),n

i I
w

c i n
∈

=  =
  

 ดังนั้น  

                        0( ) arg max{ , : ( ) ( )}I nx d x x H d H d ε+ = ∩ ±                         (4.3) 

 

 ในลําดับตอไปผูวิจัยกําหนดให I X⊆  โดย 2n −  แทนจํานวนสมาชิกในเซต I  และ 

\nJ N I=  โดย 2  แทนจํานวนสมาชิกในเซต J  สําหรับทกุ ๆ ne R∈  เราใชสัญลักษณ 

                            2( : ) n
I ie e i I R −= ∈ ∈   และ 2( : )J ie e i J R= ∈ ∈  

     สาํหรับทุก nd R∈   และให  2
2||| ||| : R R⋅ →  เปนยูคลิเดยีนนอรมบน 2R  กําหนดให  

         2{ : , 0,||| ||| }n
I Je e e e e= ∈ = ≤� E   เมื่อ ε  คือจํานวนจริงบวก  

เซตพาเชีย่วไฮเพอรอิ์ลิฟซ ์(partial hyperellipse) คือเซตทีม่ีสมาชิกสอดคลองเงื่อนไข x อยูใน B  

บอลหนึ่งหนวยใน H และ เราใชสัญลักษณตอไปนี้แทนเซตของไฮเพอรอิลิฟซ  Qx d− ∈E  

        ( | ) { : ,|| || 1}d x Qx d xΗ = − ∈ ≤E E  

จากการศึกษากอนหนานีพ้บวา  ( | )d φΗ ≠E  ก็ตอเมื่อ  

                                       ( )1min , ( ) 1
e

d e G d e−

∈
+ + ≤

E
     

ในวิจัยนี้ผูวิจัยไดศึกษารูปแบบของคําตอบ (1) โดยใชเร่ิมตนจากใชกระบวนการ Gram-Schmidt เปล่ียน

เซต X  เปนเซตเชิงตั้งฉาก (orthonormalized) นอกจากนี้พบวาสําหรับทกุ ๆ ( )x d∈Η  เงื่อนไข 

                                   Qx d=         สมนัยกับ        *Rx d=  

เมื่อตัวดําเนินการเชิงเสน : nR H → �  โดยกาํหนดโดย *( ) : ( , : )j nR x x x j= ∈�  และเวกเตอร 
* nd ∈�  ถูกกําหนดโดย 

                                           * 1
1

1( )
dd

G x
=  
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สําหรับ 2,...,k n=                 

                                                 

         
( )

1 1 2 1 1

*

1 1 2 1 11 2 1 1 2

1 2

, , ... ,
1

, , ... ,, ,..., ( , ,..., )
...

k

k
k k k kk k

k

x x x x x x

d
x x x x x xG x x x G x x x

d d d
− − −−

=
  

 

จากสมการขางตนผูวิจัยไดกําหนดเมทริกซ A  ซึง่เปนตัวแทนสัมประสิทธิข์อง *
kd  สําหรับทุก ๆ 

1,2,...,k n=  ซึ่งกําหนดโดย 

                                 

11

21 22

1 2

0 ... 0
... 0

A
...
...n n nn

β
β β

β β β

 
 
 =
 
 
 

  
 

 

นอกจากนีย้ังพบวา  1 1

1

( ,..., )
( ,..., )

k
kk

k

G x x
G x x

β −= สําหรับทุก ๆ 1,2,...,k n=  ดังนั้นเราสามารถสรุปไดวา 

                                   * * *( ) ( ) { : , A }d d x x B Rx d dΗ = Η = ∈ = =  

และ 

                       * *( | ) ( | (A)) { : (A),|| || 1}d d x Qx d xΗ = Η = − ∈ ≤E E E  

 

เมื่อ (A) { : }Ae e= ∈E E  นั้นคอืสําหรับทุก ๆ ( | )x d∈Η E   

                      Qx d e= +   จะสมนัยกับ  *Rx d Ae= +  

หรือสอดคลอง *( )I IR x d=     และ  *( )J J JR x d e− = Α  เมื่อ JΑ คือ 2 2× เมทริกซซึ่งกาํหนดโดย 

                                       1 1

1

0m m
J

nm nn

β
β β

+ +

+

 
Α =  

 
 

  

 นอกจากนี ้สําหรับทกุ ๆ  ( ) ( | )x d e d+ ∈Η E  จะไดวา              

                        * *( ) *( * ) ( ) ( )I J J Jx d e x d Ae x d x d A e+ = + = + +  

และไดวา 

                2 2 * 2 * 2|| ( ) || || *( * ) || || ( ) || || ( ) ||I J J Jx d e x d Ae x d x d A e+ = + = + +  

                                                         ( )* *,I Id d= ( )* *,J J J J J Jd A e d A e+ + +  

ดังนั้นเราจึงสามารถสรุปไดวา 

            * *( | ) ( | (A))d d φΗ = Η ≠E E   ก็ตอเมือ่  

                          ( ) ( )* * * *min , 1 ,J J J J J J I Ie
d A e d A e d d

∈
+ + ≤ −

E
                (4.4) 
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   ในงานวิจัยนี้ผูวิจยัไดศึกษาลักษณะของคาํตอบ (4.4) โดยอางอิงจากงานวิจัย [9] และทําการศึกษา

วิธีการเดียวกนักับในกรณีที่มีคาคลาดเคล่ือนเพียวตัวเดียวจะสามารถหาคากลางในกรณีนี้ดวยเมื่อผูจยั

เลือก l∞ นอรมเปนเคร่ืองมือวัดคาคลาดเคล่ือน 

 

 ตอมาผูวิจัยนําองคความรูขางตนมาประยุกตใชการประมาณคาของฟงกชันในปริภูมิรึโพรดิวซิ่ง

เครอเนล ซึ่งผูวิจัยไดเลือก  2 ( )H ∆  คือเซตของ analytic function บนบอลปดหนึ่งหนวย และ 

Szeg o  kernel:  ซึ่งกําหนดโดย ทุก ๆ , ( 1,1)s t∈ −  
1( , )

1
K s t

st
=

−
 

 

          โดยกําหนดให    1 2{ , ,..., }nT t t t= (0,1)⊆     และจะไดวา   { : }
it nK i∈�  เปนเวกตอรอิสระ

เชิงเสนใน 2 ( )H ∆   เมือ่ 1( ) ,
1it n

i

K t i
t t

= ∈
−

�  กระบวนการ Gram-Schmidt เปล่ียนเซต 

{ : }
it nK i∈�  เปนเซตเชิงตั้งฉาก (orthonormalized)   โดย  

                                          
1

* 2
1 1 tK t K= −  

 สําหรับ 2,3,..,k n=  

                          
1* 2

1

1
1 ( 1) k

l

k
i l

l ik
ik l

k k t
l

l i
i

t t
K t K

t t

−

≠

∈+

=

∈

−
= − −

−

∏
∑

∏
�

�

 

 สําหรับทุก nd ∈�  จะไดวา  

                      ( ( ) : )j nQf f t j d= ∈ =�     สมนัยกบัเงื่อนไข   * *( , : )j nRf f K j d= ∈ =�  

 

เมื่อ    * 2
1 1 11d t d= −   และสําหรับ 2,3,...,k n=   

                                1* 2

1

1
1 ( 1) k

k
i l

l ik
ik l

k k l
l

l i
i

t t
d t d

t t

−

≠

∈+

=

∈

−
= − −

−

∏
∑

∏
�

�

 

และเซตพาเช่ียวไฮเพอรอิลิฟซถูกกําหนดโดย                        

                     * *( | ) ( | (A)) { : (A),|| || 1}d d f Qf d fΗ = Η = − ∈ ≤E E E  

เมื่อ (A) { : }Ae e= ∈E E  นั้นคอืสําหรับทุก ๆ ( | )x d∈Η E   

                      Qf d e= +   จะสมนัยกับ  *Rf d Ae= +  

หรือสอดคลอง *( )I IR f d=     และ  *( )n n nn nR f d eβ− =    
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  ลําดับถัดไปจะประมาณคาที่จดุ 0 (0,1)t ∈  โดยทราบวา *( )I IR f d=     และ  
*( )n n nn nR f d eβ− =  ในการหาคากลางซึ่งคอืคาที่ดีที่สดุสําหรัลการประมาณคาเราจะใชองคความรูจาก 

(4.1) – (4.3)  

 

 จากจุดประสงคขอที่สองของโครงการคือประยกุตองคความรูใหมทีก่ับปญหาการประมาณคา

ของฟงกชันจากขอมูลจริงที่มคีาคลาดเคล่ือนบางสวน โดยทําการจําลองผลทางคณิตศาสตรโดยวิธีเชิง

ตัวเลข  ผูวิจัยจึงไดทําการศึกษาอสมการไฮเพอรเซอรเคิลสําหรับขอมูลทีม่ีคาเคล่ือนบางสวนซึ่งถูกวัด

ดวยยูคลิเดียนนอรม กําหนดให H  เปนปริภูมิฮิลเบิรต ซึ่งผลคูณภายใน และนอรม (norm) นิยามโดย 

,��  และ �  ตามลําดับ กําหนดให 1{ ,..., }nX x x=  เปนเซตยอยอิสระเชิงเสนใน H และ I X⊆  

โดย m  แทนจํานวนสมาชิกในเซต I  และ \nJ N I=  โดย n m−  แทนจํานวนสมาชิกในเซต J  

สําหรับทุก ๆ ne R∈  เราใชสัญลักษณ 

                            ( : ) m
I ie e i I R= ∈ ∈   และ ( : ) n m

J ie e i J R −= ∈ ∈  

     สาํหรับทุก nd R∈   และให  2||| ||| : n mR R−⋅ →  เปนยูคลิเดยีนนอรมบน n mR −  กําหนดให  

         2{ : , 0,||| ||| }n
I Je e e e e= ∈ = ≤� E   เมื่อ ε  คือจํานวนจริงบวก  

เซตพาเชีย่วไฮเพอรอิ์ลิฟซ ์(partial hyperellipse) คือเซตทีม่ีสมาชิกสอดคลองเงื่อนไข x อยูใน B  

บอลหนึ่งหนวยใน H และ เราใชสัญลักษณตอไปนี้แทนเซตของไฮเพอรอิลิฟซ  Qx d− ∈E  

                ( | ) { : ,|| || 1}d x Qx d xΗ = − ∈ ≤E E  

[12] จากนยิามขางตนจะไดวา สําหรับทุก ๆ ( | )x d∈Η E  

                                      ( ) 0IQx d− =   และ 2||| ( ) |||JQx d ε− ≤  

นอกจากนี้เรายังพบวา 

                           ( | ) ( ) ( | )I J Jd d d EΗ = Η ∩ΗE     

เมื่อเรากาํหนดให ( ) { : ,|| || 1}I I Id x Q x d xΗ = = ≤   เมื่อ ( , : )I jQ x x x j I= ∈  และ  

( | ) { : ,|| || 1}J J J Jd E x Q x d E xΗ = − ∈ ≤   เมื่อ 2{ : ,||| ||| }n m
JE e e e e−= ∈ ≤�  และ  

( , : )J jQ x x x j J= ∈  

 

 ให 0x H∈ จุดประสงคของเราคอืตองการตัวประมาณคาที่ดีที่สดุใหการประมาณคาของ 0,x x

เมื่อ ( | )x d∈Η E  ในขณะนี้เราจะเห็นไดวาขอมูลที่เรามีนัน้เปนขอมูลทีม่ีคาคลาดเคล่ือนบางสวน 

( ||| ( ) |||JQx d ε− ≤ )  ซึ่งการหาจุดกึ่งกลางของชวง 

    0 0( , | ) { , : ( | )}I x d x x x d= ∈ΗE E   

จากความสมัพันธระหวางเซตไฮเพอรเซอรเคิลและเซตของไฮเพอรอิลิฟซ ทําใหเราทราบวา  

                0 0( , | ) { , : ( | )}I x d x x x d= ∈ΗE E  

 เปนเซตปดและมีขอบเขตดังนั้นเราจึงไดวา 

   0 0 0( , | ) [ ( , | ), ( , | )]I x d m x d m x d− +=E E E  

เมื่อ 0 0( , | ) max{ , : ( | )}m x d x x x d+ = ∈ΗE E  และ   0 0( , | ) min{ , : ( | )}m x d x x x d− = ∈ΗE E  
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และเราใชสัญลักษณนี้แทนจุดกึ่งกลางของชวง 0( , | )I x d E   

 

                           0 0
0

( , | ) ( , | )( , | )
2

m x d m x dm x d + −+
=

E E
E  

 ในกรณีพบวาการหาวิธีการหาคาจุดปลายของชวงคือ 

  

ถา ( | )dΗ E  มีสมาชิกมากวาหนึ่งเราจะไดวา 

                      0 0 2( , | ) min{|| || ||| ||| ( , ) : }T n
Jm x d x Q c c c d cε+ = − + + ∈�E                   

 

 ปริภูมิรีโพรดิวซิ่งเคอรเนลฮิลเบิรต H  ประกอบดวยสมาชิกของฟงกชัน K  จากเซต Λ  ไปยัง

จํานวนจริง  �  เมื่อ Λ เปนเซตยอยของจํานวนจริง  และ K  เปนฟงกชัน ของ s  และ t  เมื่อ ,s t∈Λ  

จะถูกเรียกวา   

รีโพรดิวซ่ิงเคอรเ์นล (Reproducing kernel)  ถาสําหรับทุกๆ t∈Λ และ ทุกๆ ฟงกชัน f H∈ แลว 

ให 

                                                   ( ) , tf t f K=  

 

เมื่อ ,⋅ ⋅ แทนผลคูณภายใน และ tK แทนฟงกชันจากเซต Λ  ไปยังจํานวนจริง � และกําหนดให ทุก ๆ  

s∈Λ , ( ) ( , )tK s K s t=    เรานิยาม   ปริภมิูรีโพรดิวซ่ิงเคอรเ์นลฮิลเบิรต์ H  คือปริภูมทิี่

ประกอบดวยสมาชิกของฟงกชันจากเซต Λ  ไปยงัจํานวนจริง �   เมื่อΛ   เปนเซตยอยของจํานวนจริง  

และมีฟงกชัน K  ของ s และ t  เมื่อ ทกุๆ ,s t∈Λ  เปนรีโพรดิวซิ่งเคอรเนลสําหรับปริภูมิฮิลเบิรตนัน้   

ในป 1950 Aronszajn and Moore ไดคนพบทฤษฎีบท กลาวคอื ฟงกชัน K  ขางตนจะเปน รีโพรดิวซิ่ง

เคอรเนล ก็ตอเมื่อ สําหรับทกุๆ  { 1 2, ,..., }nt t t ⊆ Λ  และ   เมทริกซ ( , )i jK t t  ซึ่งกําหนดโดย 

                           

                                   
1 1 1

1

( , ) ( , )
( , )

( , ) ( , )

n

i j

n n n

K t t K t t
K t t

K t t K t t

 
 =  
  



  



  

 

เปนเมทริกซกึ่งบวกแนนอน  (positive semi-definite) ซึ่งนับไดวาเปนทฤษฎีบทที่มีประโยชนมากใน

การศึกษาการเรียนรูของเคร่ืองโดยใชเคอรเนลเปนฐาน  นอกจากนี้ยงัพบวา  ทกุๆ รีโพรดิวซิ่งเคอรเนล 

K จะมี ปริภูมิรีโพรดิวซิ่งเคอรเนลฮิลเบิรต H  เพียงปริภูมิเดียวทีส่มนยักับรีโพรดิวซิ่งเคอรเนิล K     
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 ในลําดับตอไปผูวิจัยของเสนอผลการทดลองโดยวิธีเชิงตัวเลขเพื่อนําวิธีการจากการศึกษาการ

ประมาณคาของฟงกชันจากขอมูลที่มคีาคลาดเคล่ือนโดยวิธีคากึ่งกลาง (Midpoint Algorithm) มา

เปรียบเทียบกับวิธ ีTikhonov regularization ซึ่งผูวิจัยไดศึกษาในปริภูมิโดยใน Gaussian Kernel 2 มิติ 

Gaussian kernel:   
2
2 2( ) t sK t s e t s R| − |, = , , ∈Λ =  

โดยที่ฟงกชันแมนตรง กําหนดโดย 

 

                      (1 1) (1 1) ( 1 1) ( 1 1)( ) 3.5 ( ) 1.75 ( ) 3.25 ( ) 3.5 ( )g t K t K t K t K t, ,− − ,− − ,= + + −  

 

จากภาพที่ 1 เซต  { }j nT t j N= : ∈  เปนเซตของขอมูล 20 ตัว และจุดที่ตองการประมาณคาสามจดุซึ่ง

ตรงกลางวงรีดังภาพ 

                            
                                   ภาพท่ี 4.1 เซตของขอมูลที่ตองการประมาณคาจากขอมูลที่มคีาคลาดเคล่ือน 

 

 เร่ิมตนโดยกาํหนดให  เปน loss ฟงกชันจาก n� ไปยังจํานวนจริง � และ L เปนฟงกชันที่วัด

คาคลาดเคล่ือนจาก H ไปยังจํานวนจริง  และกําหนดให 

                                          1( ) : ( , ( ))
n

j j
j

L f d f t
n ∈

= ∑
�

  

ให 0ρ >  และฟงกชันที่เปนตัวแทนของขอมูลชุดนี้ถูกเลือกมาจาก 

 

                                2 2( ) || || min{ ( ) || || : }L f f L f f f Hρ ρρ ρ+ = + ∈  

จาก Representer Theorem  พบวา  

                                      ( ) ( ) ( , )
n

j j
j

f t c K t tρ ρ
∈

= ∑
�

                 เมื่อ t T∈  

และ 1( ) ( )nc G Iρ ρ −= +  เมื่อ nI  เปนเมทริกซเอกลักษณ    ดังนั้น 0 0( ) ( ) ( , )
n

j j
j

f t c K t tρ ρ
∈

= ∑
�

 คอื

คาประมาณที่ดีทีสุ่ดจากวิธีการ  Tikhonov regularization    
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 ตอมาเราจะนําคาทั้งสองมาใชในการพิจารณาวิธีค่าก่ึงกลาง (midpoint algorithm) ให  

กําหนดให = ρε ε และ 3 ρδ δ=   จากการกาํหนดดังกลาวจึงไดเซตไฮเพอรเซอรเคิล  

 

                           2( | ( )) { :| | ,|| || }d E x Qx d xd ε dΗ = − ≤ ≤  

 

  เนื่องจากตัวประมาณคาที่ดีทีสุ่ดของวิธีคากึ่งกลางคอื คากึ่งกลางของชวง        

        

                                0 0( , | ( )) { , : ( | ( ))}I x d E x x x d Edd = ∈Η    

 

ซึ่งสามารถคํานวนหาไดจาก   

                 
00 2( ( )) min ( )

n

T
tc R

m t d E K Q c c c ddd  ε+
∈

,± | = || − || + | | ± ,  

 

และไดคากึ่งกลางเทากับ 0 0 0
1( ( )) ( ( | ( )) ( | ( ))
2

m t d E m t d E m t d Eddd  + +, | = , − ,−   

                          
                         ภาพท่ี 4.2 ผลการประมาณคาของฟงกชันที่จดุ   0( )f t ณ σ  ตาง ๆ  และคาจริง 

0( ) 0.6767g t =  

 

 ลําดับถัดไปจะประมาณคาที่จุด 1t− โดยพิจารณเซตเซตพาเชีย่วไฮเพอรอิ์ลิฟซ ์คือ 

                           2( | )d dΗ =E 2 0 0{ :| | ,|| || , ( ) ( )}x Qx d x f t f tσε d− ≤ ≤ =  

 ผลการประมาณคาของฟงกชันทีจุ่ด   1( )f t−  เมื่อ 2( | )f d d∈Η E นั่นคือขอมูลที่มีคาคลาดเคล่ือน

ตางกันไดแสดงดังภาพ 3 ในขณะที่คาจริงของฟงกชันคือ 1.927 
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                               ภาพท่ี 4.3 ผลการประมาณคาของฟงกชันทีจุ่ด   1( )f t− ณ σ  ตาง ๆ 

 

 

                 ในทาํนองเดียวกนัการประมาณคาที่จุด 2t− โดยพิจารณเซตเซตพาเชีย่วไฮเพอรอิ์ลิฟซ ์

คือ 

                           2( | )d dΗ =E 2 0 0 1 1{ :| | ,|| || , ( ) ( ), ( ) ( )}x Qx d x f t f t f t f tσ σε d − −− ≤ ≤ = =  

ผลการประมาณคาของฟงกชันที่จดุ   2( )f t−  เมือ่ 2( | )f d d∈Η E นั่นคือขอมูลทีม่ีคาคลาดเคล่ือน

ตางกันไดแสดงดังภาพ 4 ในขณะที่คาจริงของฟงกชันคือ -0.0566 

 

 

                         
                                 ภาพท่ี 4.4 ผลการประมาณคาของฟงกชันที่จุด   2( )f t− ณ σ  ตาง ๆ 



 28 

 

 จากการรายงานดังกลาวผูวิจัยสามารถสรุปไดวาผูวิจัยไดพัฒนาอสมการไฮเพอรเซอรไปสูขอมลู

ที่มีความหลากหลายมากขึ้น รวมถึงผลการแสดงเชิงตัวเลขในการนําองคความรูทีไ่ดไปประยุกตใชกับ

ปญหาการประมาณคาของฟงกชันนนัน้มีคาใกลเคียงกับคาจริง ซึ่งถือเปนการพัฒนาองคความรูของ

อสมการไฮเพอรเซอรเคิลไปสูการนําไปใชกับขอมูลจริงไดมีประสิทธภิาพมากขึ้น  
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บทท่ี 5 สรปุและวิจารณ์ผลการวิจยั และข้อเสนอแนะสาํหรบังานวิจยัในอนาคต 

 

  จากผลการวิจยัที่ผูวิจัยไดนําเสนอในขางตนแสดงใหเหน็ถึงการพัฒนาองคความรูของ

 อสมการไฮเพอรเซอรเคิลสําหรับขอมูลที่มีคาคลาดเคล่ือนที่สามารถนาํไประยุกตกับปญหาการ

 ประมาณคาของฟงกชันดังตอไปนี ้

1. ผูวิจัยไดเสนอวิธีการเปล่ียนเซตพาเชีย่วไฮเพอรอิ์ลิฟซไ์ปสูฐานที่เปนเซตเชิงตั้งฉากซึง่ถือ

เปนเคร่ืองมือทีม่ีประโยนมากในปริภมูิฮิวเบริตร  โดยพบวา 

                    * *( | ) ( | (A)) { : (A),|| || 1}d d x Rx d xΗ = Η = − ∈ ≤E E E  

 เมื่อ (A) { : }Ae e= ∈E E  และเวกเตอร * nd ∈�  ถูกกําหนดโดย 

                                           * 1
1

1( )
dd

G x
=  

 สําหรับ 2,...,k n=                 

                                                 

              
( )

1 1 2 1 1

*

1 1 2 1 11 2 1 1 2

1 2

, , ... ,
1

, , ... ,, ,..., ( , ,..., )
...

k

k
k k k kk k

k

x x x x x x

d
x x x x x xG x x x G x x x

d d d
− − −−

=
  

 

 และ 

11

21 22

1 2

0 ... 0
... 0

A
...
...n n nn

β
β β

β β β

 
 
 =
 
 
 

  
 นอกจากนีย้ังพบวา  1 1

1

( ,..., )
( ,..., )

k
kk

k

G x x
G x x

β −= สําหรับทุก ๆ 

 1,2,...,k n=  

 

2. โดยผูวิจัยไดเสนอเงื่อนไขที่เห็นไดชัดมากขึน้ทีใ่ชในการตรวจสอบ  ( | )d φΗ ≠E    โดย

เร่ิมพิจารณาจากกรณีที่มคีาคลาดเคล่ือนอยูใน � และ 2�   

                กรณีท่ี 1 คาคลาดเคล่ือนอยูใน �  

  * *( | ) ( | (A))d d φΗ = Η ≠E E   ก็ตอเมื่อ  

                                     ( ) ( )2* * *

| |
min 1 ,n nn I Ie

d e d d
e

β
≤

+ ≤ −                  

       ในงานวิจยันี้ผูวิจัยไดศึกษาลักษณะของคําตอบ (1)  

                           ( )

*

2*

*| |
*

0,             
min

,  

n

n nne
n

n nn

d

d e
dd

e

e
β

β
β ee

β

≤


≤

+ = 
 + >

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   กรณีท่ี 2 คาคลาดเคล่ือนอยูใน 2�  

            * *( | ) ( | (A))d d φΗ = Η ≠E E   ก็ตอเมือ่  

                               ( ) ( )* * * *min , 1 ,J J J J J J I Ie
d A e d A e d d

∈
+ + ≤ −

E
                (1) 

    ในงานวิจัยนี้ผูวิจัยไดศึกษาลักษณะของคําตอบขางตนโดยอางอิงจากงานวิจัย [9]  

3.  ผูจัยไดเสนอวิธกีารหาคาขวาสุดของชวง I  สําหรับขอมูลทีค่ลาดเคล่ือนทั้งใน  � และ 2�

และใช l∞ นอรมเปนเคร่ืองมอืที่ใชวัดคาคลาดเคล่ือนดังตอไปนี ้

 ถา 
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|| ( ) ||
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∉
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E  จะไดวา จะมีเวกเตอร * nc ∈�  เพียงตัวเดียวที่ทาํให 

                          
*

*0
*

0
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T

x Q cQ w d
x Q c

ε
 − − + +
 − 

 

 มื่อเวกเตอร  *
*

0,          
sgn( ),n

i I
w

c i n
∈

=  =
  และ  

                        0( ) arg max{ , : ( ) ( )}I nx d x x H d H d ε+ = ∩ ±                        

 โดยใชวิธีการเดยีวกันสาํหรับคาคลาดเคล่ือนทีอ่ยูใน 2�  จากแนวคิดดังกลาวเราสามารถขยาย

 ไปยังกรณีมูลทีค่ลาดเคล่ือนทั้งใน  n�  

 

 4.ผูวิจัยไดนําองคความรูของอสมการไฮเพอรเซอรเคิลสําหรับขอมูลที่มีคาคลาดเคล่ือนและ 

 อสมการไฮเพอรเซอรเคิลสําหรับขอมูลที่มีคาคลาดเคล่ือนบางสวยมาประยุกใชในการประมาณ

 คาที่ดีที่สุดในการประมาณคาของฟงกชันที่จุด 1,t−  0t 1, t   และพบวาในการการทดลองดังกลาว

 แสดงใหเห็นการประมาณคาโดยใชวิธีจุดกึ่งกลางนั้นใหผลการทดลองที่ใกลเคียงกับคาจริง   

 

  แตอยางไรก็ตามขอมูลทีมีในปญหาจริงนั้นมีความหลากหลายซึงขึ้นอยูกับหลายปจจัย 

 ดังนั้น ผูวิจัยจริงเสนอแนวทางแรกสําหรับงานวิจัยในอนาคตคือการพํฒนาอสมการดังกลาว

 ไปสูขอมูลที่มีความหลากหลายมากขึ้น แนวทางที่สองคือ ขยายอสมการดังกลาวไปยัง

 ปริภูมิบานาค  
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Abstract

The classical hypercircle inequality has been applied to kernel-based learning to determine a function repre-

sentation when there is known data exactly. Our previous work which was motivated by this limited said data has

extended the hypercircle inequality to circumstances for which there is known both accurate and inaccurate data.

In this paper, we continue our study of this subject by presenting the transformation of its material to orthonormal

bases which are useful tools in Hilbert space and practice. Moreover, we also specialize the new result to the

learning problem in Reproducing kernel Hilbert space (RKHS). Specifically, we choose the Hardy space of square

integrable function on the unit circle which is well-known in RKHS.

2010 Mathematics Subject Classificatin: 46E22, 46C07

Keywords: Hypercircle Inequality, Convex Optimization and Reproducing kernel Hilbert space.

1 Introduction and preliminary results

Let X = {xj : j ∈ Nn} be a set of linearly independent vectors in H which is assumed to be Hilbert space

over the real number with inner product 〈·, ·〉 and norm || · ||. Let B be unit ball in H and we denote

Nn = {1, 2, .., n}. For any d ∈ Rn,

H(d) := {x : x ∈ B, Q(x) = d}

1



is called hypercircle where Q : H −→ Rn is a linear operator H onto Rn as

Qx = (〈x, xj〉 : j ∈ Nn). (1)

Consequently, the adjoint map QT : Rn → H is given at a = (aj : j ∈ Nn) ∈ Rn as

QT (a) =
∑

i∈Nn

aixi.

The Gram matrix of the vectors in X is GX = QQT = (〈xj , xl〉 : j, l ∈ Nn), a symmetric and positive definite

matrix. It is well-known that there exist a unique vector x(d) ∈ M such that

x(d) := arg min{||x|| : x ∈ H, Q(x) = d}, (2)

where M is the n−dimensional subspace of H spanned by the vectors in X , see for example [7]. If H 6= M

then H(d) consists of exactly on point if and only if ||x(d)|| = 1, [5]. The principal significance of hypercircle

ineqaulity ensures that the value 〈x(d), x0〉 is the best estimator to estimate 〈x, x0〉 when x ∈ H(d).

Moreover, the vector x(d) := QT (G−1
X d) and ||x(d)||2 = (d,G−1

X d). Therefore, the hypercircle inequality

states that.

If x ∈ H(d) and x0 ∈ H then

|〈x(d), x0〉 − 〈x, x0〉| ≤ dist(x0,M)
√

1− ||x(d)||2, (3)

where dist (x0,M) := min
{||x0 − y|| : y ∈ M

}
. Moreover, if H(d) 6= ∅ then there is an element x±(d) =

± x0−QT a±
||x0−QT a±|| for which equality above holds where the vector a± ∈ Rn is given by the formula

a± := G−1
X (Qx0 ∓

√
||x0||2 − (Qx0, G

−1
X Qx0)√

1− ||x(d)||2 d). (4)

Let the vectors in X be orthonormalized according to the Gram-Schmidt process yielding x∗1, ..., x
∗
n. Let

M∗ be the n−dimensional subspace of H spanned by the vectors x∗1, ..., x
∗
n, see [3]. Consequently, the Gram

matrix for x∗1, ..., x
∗
n is the identity matrix. For any x ∈ H(d), the condition

Qx = d is equivalent to Rx = d∗

where R : H −→ Rn is a linear operator H onto Rn as R(x) = (〈x, x∗j 〉 : j ∈ Nn) and d∗1 = d1√
|G(x1)|

d∗k =
1√

|G(x1, ..., xk−1)||G(x1, ..., xk)|

∣∣∣∣∣∣∣∣∣

〈x1, x1〉 〈x2, x1〉 · · · 〈xk, x1〉
...

...
〈x1, xk−1〉 〈x2, xk−1〉 · · · 〈xk, xk−1〉

d1 d2 · · · dk

∣∣∣∣∣∣∣∣∣

)
, k = 2, .., n (5)

2



Therefore, we represent the coefficients of d∗k for all k = 1, ..., n by the following matrix

A =




β11 0 0 · · · 0
β21 β22 0 · · · 0

...
...

βn1 βn2 βn3 · · · βnn


 ,

where βkk =
√
|G(x1,...,xk−1)|
|G(x1,...,xk)| for all k = 2, ..., n. Hence, we point out that

H(d) = H∗(d∗) := {x : x ∈ B, Rx = d∗ = Ad}

and the vector x(d) = x∗(d∗) := RT d∗ where the adjoint map RT is given by for each a ∈ Rn RT (x) =
∑n

j=1 ajx
∗
j .

Recently, an extension of hypercircle inequality to partially − corrupted data was proposed by Kannika

Khompurngson and Boriboon Novaprateep, [6]. We start with I ⊆ Nn which contains m elements (m < n).

For each e = (e1, ..., en) ∈ Rn, we also use the notations eI = (ei : i ∈ I) ∈ Rm and eJ = (ei : i ∈ J) ∈ Rn−m

where we denote J = Nn\I. We choose ||| · |||p : Rn−m −→ R+ is lp norm on Rn−m and define Ep = {e : e ∈
Rn : eI = 0, |||eJ |||p ≤ ε}, where ε is some positive number and 2 ≤ p ≤ ∞. For each d ∈ Rn, we define the

partial hyperellipse as follows

H(d|Ep) :=
{
x : x ∈ H, x ∈ B, Q(x)− d ∈ Ep

}
. (6)

Similarly, we use the notation Q
I
x = (〈x, xj〉 : j ∈ I) and Q

J
x = (〈x, xj〉 : j ∈ J) respectively. According to

the previous work [6], we observe that

H(d|Ep) = H(d
I
) ∩H(d

J
|E

J
), (7)

where we denote the hypercircle with the constant d
I

as H(d
I
) =

{
x : x ∈ B,Q

I
(x) = d

I

}
and the

hyperellipse with the constant d
J

as H(d
J
|E

J
) =

{
x : x ∈ B, Q

J
(x)− d

J
∈ E

J

}
, where we define E

J
= {c :

c ∈ Rn−m : |||c|||p ≤ ε}. For each e ∈ Ep, we have that

x(d + e) = QT G−1
X (d + e) and ||x(d + e)||2 = (d + e, G−1

X (d + e)).

Now, let us begin with an important result on this set.

Theorem 1.1 H(d|Ep) 6= ∅ if and only if

min{(d + e, G−1
X (d + e)) : e

I
= 0, |||e

J
|||p ≤ ε} ≤ 1 (8)

Moreover, if H 6= M then H(d|Ep) consists of exactly one point if and only if min{(d + e,G−1
X (d + e)) : e

I
=

0, |||e
J
|||p ≤ ε} = 1.

3



The main results address the following way: Given x0 ∈ H, we want to estimate 〈x, x0〉 when x ∈ H(d|Ep).

That is, data set contains both accurate and inaccurate data. The best estimator is the midpoint of this

interval

I(x0, d|Ep) :=
{〈x, x0〉 : x ∈ H(d|Ep)

}
. (9)

Next let us recall the duality formula for the right hand end point ,m+(x0, d|Ep), of the uncertainty interval.

We refer the reader to the paper [5] and [6]for more detail information on the theory and proof.

Theorem 1.2 If H(d|Ep) contains more than one element then

m+(x0, d|Ep) = min
{||x0 −QT (c)||+ ε|||c

J
|||q + (d, c) : c ∈ Rn

}
. (10)

Therefore, the midpoint is given by

m(x0, d|Ep) =
m+(x0, d|Ep)−m+(x0,−d|Ep)

2
. (11)

In addition, if X = {xj : j ∈ Nn} is an orthonormal set of vector and the Gram matrix becomes the identity

matrix. Consequently, we have that H(d|Ep) 6= ∅ if and only if

min
{
(d

J
+ c, d

J
+ c) : c ∈ Rn−m, |||c|||p ≤ ε

} ≤ 1− ||x(d
J
)||2.

For p = 2, we have the following H(d|E2) 6= ∅ if and only if

min
{
(d

J
+ c, d

J
+ c) : c ∈ Rn−m, |||c|||2 ≤ ε

}
= Λ + Λ

∑

j /∈I

d2
j

Λ− ε2
≤ 1− ||x(d

J
)||2,

where I := {j : dj = 0, j ∈ J} and Λ = ε2−
√∑

i∈J

d2
i . Summarizing, if Λ + Λ

∑

j /∈I

d2
j

Λ− ε2
≤ 1− ||x(d

J
)||2 then

H(d|Ep) 6= ∅ for all p ≥ 2, see [4, 6] . Therefore, we observe that if X is an orthonormal then the solution

for checking H(d|Ep) 6= ∅ differs from (8) which is useful for practice. For this observation, our goal is to

propose a dual problem of learning one feature from partially − corrupted data in the orthonormal bases

which is appeared in section II. Section III specializes the results of section II to the learning problem in the

Hardy space of square integrable function on the unit circle which is well-known in RKHS.

2 Main Results

First, we assumed that X
I

= {x1, ..., xm} and X
J

= {xm+1, ..., xn} respectively. Let the vectors in X
I
∪X

J
be

orthonormalized according to the Gram-Schmidt process yielding x∗1, ..., x
∗
m, x∗m+1, ..., x

∗
n. For our purpose,

we define Ep(A) := {Ae : e ∈ Ep} and

H∗(d∗|Ep(A)) := {x : x ∈ B, Rx− d∗ ∈ Ep(A)}. (12)

4



That is, for each x ∈ H∗(d∗|Ep(A))

RI (x) = d∗
I

and RJ (x)− d∗
J

= AeJ ,

where |||e
J
|||p ≤ ε and the n−m matrix A is given by

A =




βm+1 m+1 0 0 · · · 0
βm+2 m+1 βm+2 m+2 0 · · · 0

...
...

βn m+1 βn m+2 βn m+3 · · · βnn


 . (13)

Similarly, we point out that for each x ∈ H(d|Ep) the condition

Qx = d + e is equivalent to Rx = A(d + e) = d∗ + Ae.

Returning to our previous work, the solution of the primal problem in (9) is the midpoint of the uncertainty

interval I(x0, d|Ep) which is obtained by (11). Similarly, the midpoint of I(x0, d
∗|Ep(A)) := {〈x, x0〉 : x ∈

H∗(d∗|Ep(A))} is the solution of dual problem. We then begin with a general result on such dual problem.

According to the definition of H∗(d∗|Ep(A)), we obtain that H∗(d∗|Ep(A)) is a sequentially compact

subset of H and the function x → 〈x, x0〉 is weakly continuous. Therefore, there exist x± ∈ H∗(d∗|Ep(A))

such that

〈x±, x0〉 = m±(x0, d
∗|Ep(A)). (14)

where m+(x0, d
∗|Ep(A)) := max{〈x, x0〉 : x ∈ H∗(d∗|Ep(A))} and m−(x0, d

∗|Ep(A)) := min{〈x, x0〉 : x ∈
H∗(d∗|Ep(A))} respectively. In addition, for each Ae ∈ Ep(A) the vector x∗(d∗ + Ae) ∈ H∗(d∗|Ep(A))

⋂
M∗

can be written in the form

x∗(d∗ + Ae) = x∗(d∗
I
) + x∗(d∗

J
+ Ae) and ||x∗(d∗ + Ae)||2 = ||x∗(d∗

I
)||2 + ||x∗(d∗

J
+ Ae)||2, (15)

where x∗(d∗
I
) ∈ H∗(d∗

I
) :=

{
x : x ∈ B, RI (x) = d∗

I

}
and x∗(d∗

J
+ Ae) ∈ H∗(d∗

J
|Ep(A)) :=

{
x : x ∈

B,RJ (x)− d∗
J
∈ Ep(A)

}
when Ep(A) = {Ac : c ∈ Rn−m : |||c|||p ≤ ε}.

Lemma 2.1 H∗(d∗|(Ep(A)) 6= ∅ if and only if

min
{(

A−1d∗
J

+ εξ,AT A(A−1d∗
J

+ εξ
)

: |||ξ|||p ≤ 1
}
≤ 1− ||x(d∗

I
)||2. (16)

Proof. Let x ∈ H∗(d∗|(Ep(A)). Then there is Ae ∈ Ep(A) such that x = x∗(d∗ + Ae) = RT (d∗ + Ae) ∈ M∗

and ||x∗(d∗ + Ae)||2 = ||x∗(d∗
I
)||2 + ||x∗(d∗

J
+ Ae)||2 ≤ 1. We observe that ||x∗(d∗

J
+ Ae)||2 = (A−1d∗

J
+

εξ,AT A(A−1d∗
J
+εξ

)
. Hence, min

{(
A−1d∗

J
+εξ,AT A(A−1d∗

J
+εξ

)
: |||ξ|||p ≤ 1

}
≤ 1−||x(d∗

I
)||2. Conversely,

(15) and (16) certainly implies H∗(d∗|(Ep(A)) 6= ∅. ¤

5



For p = 2, we describe the solution of the optimization problem appearing in (16) as presented in [8].

We begin with the following definition.

Definition Let C be an n× n symmetric matrix and d ∈ Rn . The spectrum of the pair (C, d) is defined to

be the set of all real numbers λ for which there exists an x ∈ Rn with euclidean norm one such that

C(x− d) = λx. (17)

Let 0 < λ1 ≤ λ2 ≤ ... ≤ λn−m be eigenvalue of AT A, {uj : j ∈ Nn−m} be a corresponding orthonormal set

of eigenvector , write the vector A−1d∗
J

in the form A−1d∗
J

=
∑

j∈Nn−m

γju
j for some constants γj ∈ R and

define the subset I of Nn−m by I := {j : λjγj = 0}.

Theorem 2.2 If Λ is the least value in the spectrum of the pair (ε2AT A,
A−1d∗

J

ε ) then H∗(d∗|(E2(A)) 6= ∅
if and only if

Λ + Λ
∑

j /∈I

λj |γj |2
Λ− ε2λj

≤ 1− (d∗
I
, d∗

I
).

Proof. This result is proved in much the same as the paper [5] and we refer the reader to the paper [4] for

proofs of the solution of the optimization problem.

Here is another way of stating theorem 1.1: H(d|(Ep) 6= ∅ if and only if Λ+Λ
∑

j /∈I
λj |γj |2
Λ−ε2λj

≤ 1−(d∗
I
, d∗

I
)

for all p ≥ 2, Therefore, we establish the new version of theorem 1.2 with the different hypothesis.

Theorem 2.3 If Λ + Λ
∑

j /∈I

λj |γj |2
Λ− ε2λj

< 1− (d∗
I
, d∗

I
) then

m+(x0, d|Ep) = min
{||x0 −QT (c)||+ ε|||c

J
|||q + (d, c) : c ∈ Rn

}
. (18)

3 Example and Application

In this section, let us specialize the recent results to the problem of function estimation in reproducing kernel

Hilbert space (RKHS). To this end, we let HK be a RKHS of real-valued function on a set T . The real

value function K(t, s) of t and s in T is called a reproducing kernel of H if the following property is satisfied

for all t ∈ T and f ∈ H

f(t) = 〈Kt, f〉, (19)

where Kt is the function defined for any s ∈ T as Kt(s) = K(t, s). Moreover, for any kernel K there is unique

RKHS with K as its reproducing kernel [1]. Specifically, we choose the Hardy space of square integrable
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function on the unit circle with reproducing kernel

K(z, ζ) =
1

1− ζz
, ζ, z ∈ ∆

where the unit disc ∆ := {z : |z| ≤ 1}. Specifically, we let H2(∆) be the set of all functions analytic in the

unit disc ∆ with norm

||f || = sup
0<r<1

( 1
2π

∫ 2π

0

|f(reiθ)|2dθ
) 1

2 .

Let T = {tj : j ∈ Nn} be distinct point (increasing order) in (−1, 1). Consequently, we have a finite set of

linearly independent elements {Ktj
: j ∈ Nn} in H where Ktj

(t) := 1
1−tjt , j ∈ Nn and t ∈ ∆. Thus, the

vectors {xj : j ∈ Nn} appearing above are identified with the function {Ktj : j ∈ Nn}. Therefore, the Gram

matrix of the {Ktj
: j ∈ Nn} is given by

G(t1, ..., tn) := (K(ti, tj) : i, j ∈ Nn).

For this purpose, we recall the Cauchy determinant identity which state that for any {tj : j ∈ Nn}, {sj : j ∈
Nn} that

det(
1

1− tisj
)i,j∈Nn =

∏

1≤j<i≤n

(tj − ti)(sj − si)

∏

i,j∈Nn

(1− tisj)
, (20)

see for example [3]. From this formula we obtain that

det G(t1, ..., tn) =

∏

1≤i<j≤n

(ti − tj)2

∏

i,j∈Nn

(1− titj)
. (21)

From (19), the linear operator Q : H2(∆) −→ Rn defined for f ∈ H2(∆) as the following way

Qf =
(
〈f,Kti〉 = f(ti) : i ∈ Nn)

)
.

By Gram-Schmidt process and the formula (20) and (21), we obtain the vector K∗
j for any j ∈ Nn. In

particular, the vector K∗
j is given by the formula

K∗
1 =

√
1− t21Kt1 ,

K∗
k =

√
1− t2k

k∑

l=1

(−1)k+l

∏

i∈Nk−1

|1− tlti|
∏

i∈Nk
i6=l

|tl − ti|
Ktl

, (k = 2, 3, ..., n).

For any d = (d1, d2, ..., dn) ∈ Rn, we obtain that the condition
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Qf =
(
f(ti) : i ∈ Nn)

)
= d is equivalent to Rf = d∗

where R : H2(∆) −→ Rn is a linear operator H2(∆) onto Rn as R(f) = (〈f, K∗
j 〉 : j ∈ Nn) and

d∗1 =
√

1− t21d1,

d∗k =
√

1− t2k

k∑

l=1

(−1)k+l

∏

i∈Nk−1

|1− tlti|
∏

i∈Nk
i 6=l

|tl − ti|
dl, (k = 2, 3, ..., n)

For our example, we choose E as follows E := {e : e ∈ Rn, e
I

= 0, |en| ≤ ε} where I = {1, 2, ..., n − 1}. The

partial hyperellipse becomes

H(d|E) :=
{
f : f ∈ H2(∆), ||f || ≤ 1, Q

I
(f) = d

I
, |(Q(f)− d)

n
| ≤ ε

}
.

Clearly, we have only one inaccurate data and for any f ∈ HK

f(tj) = dj for all j ∈ Nn−1 and f(tn) = dn + e where |e| ≤ ε.

In this case, the corresponding partial hyperellipse H(d|E) is given by

H∗(d∗|(E(A)) :=
{
f : f ∈ H2(∆), ||f || ≤ 1, RI (f) = d∗

I
, Rn(f)− dn ∈ A(ε)

}
.

where A(ε) := {βe : e ∈ R, |e| ≤ ε} and β =
√

detG(t1,...,tn−1)
detG(t1,...,tn) =

√
1− t2n

∏

i∈Nn−1

|1− tnti|
∏

i∈Nn−1

|tn − ti|
.

Alternatively, we have that H∗(d∗|(E(A)) 6= ∅ if and only if

min
{
(d∗n + βe)2 : |e| ≤ ε

} ≤ 1− (d∗
I
, d∗

I
).

Moreover, we point out that formula

min
{
(d∗n + βe)2 : |e| ≤ ε

}
=

{
0, |d∗nβ | ≤ ε

d∗n + βε ê
|ê| , |d∗nβ | > ε

where ê = −d∗n
β .

Given t0 = 0 and t0 /∈ T := {tj : j ∈ Nn}. Again, the vector x0 appearing the previous is identified with

the function Kt0 . We wish to estimate f(0) = 〈f, Kt0〉 optimally, given that ||f ||K ≤ 1, f(tj) = dj for all
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j ∈ Nm and |(Q(f)− d)
J
| ≤ ε. According to theorem 2.4, we have that

m+(Kt0 , d|Ep(A)) = 〈f∗d∗
I
,Kt0〉+ m+(Kt0 ,d|δEp(A))

= 〈
n−1∑

i=1

d∗i K
∗
i , Kt0〉+ m+(Kt0 ,d|δEp(A))

=
n−1∑

i=1

d∗i D
∗
i + m+(Kt0 ,d|δEp(A))

where D∗ is the vector in Rn with components given by the formula

D∗
k =





√
1− t21, k = 1

√
1− t2k

∑k
l=1(−1)k+l

∏

i∈Nk−1

|1− tlti|
∏

i∈Nk
i 6=l

|tl − ti|
, k = 2, 3, ..., n

Therefore, we only need to evaluate the following equation

m+(Kt0 ,d|E(A)) = min
{
δ||Kt0 −RT (c)||+ βε|cn|+ d∗ncn : c ∈ Rn

}
.

To obtain the right hand endpoint, we consider two cases. Firstly, if f∗+ := δ
Kt0−RT

I
(D∗

I
)√

1−Pn−1
i=1 (D∗i )2

∈ H∗(d|δE(A))

then

m+(Kt0 ,d|E(A)) =
n−1∑

i=1

d∗i D
∗
i + δ

√√√√1−
n−1∑

i=1

(D∗
i )2,

where f∗+ := arg max{〈x, x0〉 : x ∈ H∗(0, δ)}. If f∗+ /∈ H∗(d|δE(A)) then the minimum c∗ ∈ Rn is unique

solution of the nonlinear equation

−δR(
Kt0 −RT c∗

‖ Kt0 −RT c∗ ‖ ) + εw∗ + d = 0,

where w∗ is the vector in Rn with components given by the formula

w∗i =
{

0, i ∈ I
βε sgn (c∗i ), i = n

and

f+(d|δE(A)) := δ
Kt0 −RT c∗

||Kt0 −RT c∗||
satisfies

f+(d|δE(A)) = arg max{〈x, x0〉 : x ∈ H∗(0, δ) ∩H(d∗
n

+ βε sgn (c∗i ), δ)}.

Using (4), the vector c∗ ∈ Rn is obtained by

c∗i =





D∗
i , i ∈ I

D∗
n −

√
1−Pn−1

i=1 (D∗
i )2√

1−(d∗n)2

(
d∗

n
+ βε sgn (c∗i )

)
, i = n.
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Abstract

A foundational concept in learning problem is to construct a functional representation from given data. Among

learning methods, Hypercircle inequality (Hi) has been applied to kernel-based machine leaning when data is known

exactly. Recently, we have extended Hi to data error in two ways: First, we have extended it to circumstance

for which all data is known within error. Second, we have extended it to partially-corrupted data. That is, data

set contains both accurate and inaccurate data. In this paper, we apply the material from both previous work

to estimate the unknown vectors in Hilbert space from knowledge of both its norm and linear observations of it,

known within error.

Keywords. Hypercircle Inequality, Convex Optimization and Noise data.

1 Introduction, Notations and Preliminary Results

The study of learning problem is a topic of current interest in approximation theory and a foundational

concept is to construct a functional representation from given data. Specifically, Hypercircle inequality (Hi)

has been applied to kernel-based machine leaning [8]. Unfortunately, the material on Hi only applies to

circumstance for which data is accurate data. Recently, we have extended Hi to data error in two ways:

First, we have extended it to circumstance for which all data is known within error [6, 7]. Second, we have

extended it to partially-corrupted data [5]. That is, data set contains both accurate and inaccurate data.
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In this paper, we apply the material from both previous work to estimate the unknown vectors in Hilbert

space from knowledge of both its norm and linear observations of it, known within error.

Following these introductory remarks are two sub-sections which describe some previous results on the

extension of hypercircle inequality for inaccurate data and partially-corrupted data respectively. In section

2 we apply the results in this section to the problem of learning the values of a function in a reproducing

kernel Hilbert space by our proposed midpoint algorithm.

1.1 Hypercircle inequality for inaccurate data

Let H be the Hilbert space over the real numbers with inner product 〈·, ·〉 and X = {xj : j ∈ Nn} be

a set of linearly independent vectors in H where we denote Nn = {1, 2, .., n}. Consequently, we define

M :=
{∑

j∈Nn
ajxj : (aj : j ∈ Nn) ∈ Rn

}
which is the n−dimensional linear subspace of H spanned by the

vectors in X . Let Q : H −→ Rn be a linear operator H onto Rn which is defined for x ∈ H as

Qx = (〈x, xj〉 : j ∈ Nn). (1)

Consequently, the adjoint map QT : Rn −→ H is given at a = (aj : j ∈ Nn) ∈ Rn as

QT a =
∑

j∈Nn

ajxj (2)

and the Gram matrix of the vectors in X is

G = QQT = (〈xj , xl〉 : j, l ∈ Nn). (3)

Moreover, G is positive definite matrix. For each d ∈ Rn, it is well-known that there exist a unique vector

x(d) ∈ M such that

x(d) := QT (G−1d) := arg min{||x|| : x ∈ P(d)}, (4)

where we denote the hyperplane as the following P(d) := {x : x ∈ H, Qx = d}. Moreover, we provide the

useful equation

min{||x|| : x ∈ H, Qx = d} = ||x(d)|| =
√

(d,G−1d).

Consequently, let us recall the definition of hypercircle as follows

H(d) := {x : x ∈ B, Q(x) = d}.

We remark that H(d) 6= ∅ if and only if ||x(d)|| =
√

(d,G−1d) ≤ 1. If H 6= M then H(d) consists of exactly

one point if and only if ||x(d)|| = 1. Next, we review basic fact about Hypercircle inequality for data error
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and discuss what we need for section 3. We begin with E = {e : e ∈ Rn, |e| ≤ ε}, where | · | : Rn → R+ is

some prescribed norm on Rn and ε > 0. For each d ∈ Rn, the definition of the hyperellipse is given by

H(d|E) := {x : x ∈ B, Q(x)− d ∈ E}.

Consequently, we have the useful fact

H(d|E) =
⋃

e∈E

H(d + e),

where B = {x : x ∈ H, ||x|| ≤ 1}. Given x0 ∈ H, we want to estimate 〈x, x0〉 when x ∈ H(d|E) and the

Hypercircle inequality for data error becomes in the following way.

If x0 ∈ H and H(d|E) 6= ∅ then there is a e0 ∈ E such that for any x ∈ H(d|E)

|〈x(d + e0), x0〉 − 〈x, x0〉| ≤ 1
2

(
m+(x0, d|E)−m−(x0, d|E)

)
,

where x(d + e0) = QT
(
G−1(d + e0)

) ∈ H(d|E), m+(x0, d|E) := max
{〈x, x0〉 : x ∈ H(d|E)

}
and

m−(x0, d|E) := min
{〈x, x0〉 : x ∈ H(d|E)

}
= −m+(x0,−d|E) respectively.

In particular, the Hypercircle inequality is given by the following.

If x(d) ∈ H(d) and x0 ∈ H then for any x ∈ H(d)

|〈x(d), x0〉 − 〈x, x0〉| ≤ dist(x0,M)
√

1− ||x(d)||2,

where dist (x0, M) := min
{||x0 − y|| : y ∈ M

}
.

According to Hypercircle inequality, the best estimator for x ∈ H(d) is x(d) which is independent

of x0. In case of inaccurate data, the best estimator still has the form of Representer Theorem (2)

but the choice of the coefficients are generally depended on the vector x0. In Geometrically speaking,

the best estimator 〈x(d + e0), x0〉 is the midpoint of the interval of uncertainty which is defined by

I(x0, d|E) := {〈x, x0〉 : x ∈ H(d|E)}. To find the best predictor, we provided the useful duality formula

for the right hand endpoint of the uncertainty interval. We then define the convex function V : Rn −→ R

defined for c ∈ Rn

V (c) := ||x0 −QT (c)||+ ε|c|∗ + (d, c),
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where | · |∗ : Rn −→ R+ is conjugate norm of | · | which is used to measure data error and (·, ·) is Euclidean

inner product on Rn. The result state as the following. If H(d) 6= ∅ then

m+(x0, d|E) = min
{
V (c) : c ∈ Rn

}
. (5)

Moreover, 0 = arg min{V (c) : c ∈ Rn} if and only if
x0

||x0|| ∈ H(d|E).

The detailed proof will appear in [3, 6, 10]. Alternatively, to find the best predictor, we only need

evaluate the two numbers m+(x0,±d|E) and then compute 1
2 (m+(x0, d|E)−m+(x0,−d|E)). In the special

case that data error is measured with square loss, the duality formula in (5) becomes

m+(x0, d|E) = min
{||x0 −QT (c)||+ ε|c|2 + (d, c) : c ∈ Rn

}
. (6)

We provided a possible iterative method to solve the minimum vector c∗ proceeds in the following manner, [7].

Let us introduce two positive constants given ρk := |ck|2 and τk := ||x0 −QT ck||. Next, we choose an initial

vector c0 6= 0 and then successively define ck, k ∈ N, by the formula

ck+1 = (ρkG + ετkI)−1(ρkQx0 − ρkτkd). (7)

Our computation experience indicates that this iteration converges if the vector Qx0 and d are linearly

independent in Rn. However, this has not been proved.

1.2 Hypercircle inequality for partially-corrupted data

Let I ⊆ Nn which contains m elements (m < n). Consequently, we use the notations X
I

= {xi : i ∈ I} ⊂ X
and X

J
= {xi : i ∈ J} ⊂ X , where we denote J = Nn\I. For each e = (e1, ..., en) ∈ Rn, we also use the

notations e
I

= (ei : i ∈ I) ∈ Rm and e
J

= (ei : i ∈ J) ∈ Rn−m respectively. We choose ||| · ||| : Rn−m −→ R+

is some prescribed norm on Rn−m and define E = {e : e ∈ Rn : e
I

= 0, |||e
J
||| ≤ ε}, where ε is some positive

number. For each d ∈ Rn, we define the partial hyperellipse as follows

H(d|E) :=
{
x : x ∈ H, ||x|| ≤ 1, Q(x)− d ∈ E}

. (8)

In this case, we also provided the existence of the best estimator which still has the form of linear

combination of vectors in X and the results follows by the same method as in [6]. Again, we provided the

useful duality formula for the right hand endpoint of the uncertainty interval and the midpoint is given by

1
2

(
m+(x0, d|E)−m+(x0,−d|E)

)
. The result state as the following.
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If H(d|E) contains more than one element then

m+(x0, d|E) = min
{||x0 −QT (c)||+ ε|||c

J
|||∗ + (d, c) : c ∈ Rn

}
, (9)

where ||| · |||∗ : Rn−m −→ R+ is conjugate norm of ||| · ||| which is used to measure data error. Moreover, if

either x0 /∈ M or ||| · |||∗ is strictly convex then the right hand side of equation (9) has a unique solution.

Moreover, we provided the necessary and sufficient condition on H(d|E) such that the minimum vector c∗

achieves with c∗J = 0 which is useful for practice. To this end, let us define the convex function V : Rn −→ R

defined for c ∈ Rn

V(c) := ||x0 −QT (c)||+ ε|||cJ |||∗ + (d, c).

If x0 /∈ M
I

:=
{
QT

I
(a) : a ∈ Rm

}
and H(d

I
) contain more than one point then c∗ = arg min{V(c) : c ∈

Rn} with c∗
J

= 0 if and only if
x0 −QT

I
(a∗)

||x0 −QT
I
(a∗)|| ∈ H(d|E)

where the vector
x0 −QT

I
(a∗)

||x0 −QT
I
(a∗)|| := arg min{〈x, x0〉 : x ∈ H(d

I
)}.

The detailed proof will appear in [5]. As we already said, we going to apply the results in this section in

learning problem. We then provide a possible iterative method to solve the minimum vector c∗ on the right

hand side in equation (9) when data error is measured with square loss. We choose an initial vector c0 6= 0

and then successively define ck, k ∈ N, by the formula

ck+1 = (G + τkDk)−1(Qx0 − τkd) (10)

where τk := ||x0 − QT ck|| and the matrix Dk is an n × n diagonal matrix and we define the elements on

diagonal by

dk
ii =





0, if i ∈ I

ε

ρk
J

, if i ∈ J
(11)

where ρk
J := |||ck

J |||2.
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2 Main Results

In this section, we shall apply the available material from both previous work to the problem of learning

the values of a function in a reproducing kernel Hilbert space(RKHS). They have an origin in the theory

of reproducing kernel in the classical paper of Golomb and Weinberger [1, 4]. Specifically, we choose the

gaussian kernel on R2, that is

K(x, y) := e−|x−y|22 , x, y ∈ R2.

In our example, we choose the value of T = {tj : j ∈ N20} on a ellipse curve surrounding the origin.

Consequently, we have a finite set of linearly independent elements {Ktj
: j ∈ N20} in H where Ktj

(t) :=

K(tj , t), j ∈ Nn and t ∈ R2. Therefore, the vectors {xj : j ∈ N20} appearing in previous section are identified

with the function {Ktj
: j ∈ N20}. These vectors determine a linear operator Q : H −→ Rn defined for

f ∈ H as

Qf =
(
〈f, Ktj 〉 = f(tj) : j ∈ N20

)
.

Moreover, the Gram matrix of the {Ktj : j ∈ N20} is given by

G := (K(ti, tj) : i, j ∈ N20).

Next, we choose the exact function is given by the formula

g(t) = 3.5K(1,1)(t) + 1.75K(1,−1)(t) + 3.25K(−1,−1)(t)− 3.5K(−1,1)(t), t ∈ R2

and compute the vector d := (g(tj) : j ∈ N20). Given t−2, t−1, t0 ∈ R2, we want to estimate

f(t−2), f(t−1), f(t0) knowing that ||f ||K ≤ δ and the data error vector e := (dj − f(tj)) : j ∈ N20 has

Euclidean norm ≤ ε and δ are prescribed. However, with no effort at all the observations we made so far

extend to the case that the unit ball B is replaced by δB where δ is any positive number. In addition, we

shall compare the midpoint estimator discussed in previous section to the regularization estimator which is

the stand method for learning problem. The computational steps are organized in the following steps:

Step 1. Given ρ > 0, we define the quadratic functional Rρ for f ∈ H as

Rρ(f) := |d−Qf |22 + ρ||f ||2K .

The Representer Theorem say that the unique function with minimizes Rρ has the form

fρ(t) :=
∑

j∈Nn

cρ(j)K(ttj , t), t ∈ R2
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Figure 1. Point on a ellipse curve and estimating points.

and cρ = (G + ρI)−1d. Next, we introduce two functions of ρ given by the formula

ε(ρ) := |d−Qfρ|2, δ(ρ) := ||fρ||K (12)

and choose fρ(t−2), fρ(t−1), fρ(t0) as regularization estimators.

Step 2. To compare midpoint estimator and estimate f(t0), we need to identify an hyperellipse which

contains fρ. To this end, we define the hyperellipse as followsH(d|δ(ρ)E) := {f : ||f ||K ≤ δ(ρ), Q(f)−d ∈ E}
where E = {e : e ∈ Rn, |e| ≤ ε(ρ)}. Clearly, the regularization estimator fρ can be view as an element in

hyperelipse

Since hyperllipse H(d|δ(ρ)E) consists one point our strategy compare the regularization and midpoint

estimator must consider a bigger hyperllipse. Consequently, we then compute both the regularization

estimator and midpoint estimator corresponding to this hyperellipse H(d|δE) where δ = 3δ(ρ) and compare

to the true value of g at t0.

As explained earlier, the midpoint algorithm requires us to find numerically the minimum of the function

in (5) for d and −d. then our midpoint estimator is given by m(t0) = m+(t0,d|δE)−m+(t0,−d|δE)
2 . For the

computation of m+(t0,±d|δE) we use the program fminunc in the optimization toolbox of Matlab 7.3.0

and also for comparison sake we use the iteration scheme (7) with an arbitrary chosen non zero initial vector.

Step 3. To estimate f(t−1), we define the partial hyperellipse as follows

H(d|δE) := {f : ||f ||K ≤ δ, f(t0) = fρ(t0), Q(f)− d ∈ E}.

Clearly, the regularization estimator fρ can be view as an element in H(d|δE). To obtain the midpoint,

7



the algorithm requires us to find numerically the minimum of the function in (9) for d and −d where the

vector d := (dj : j ∈ N20 ∪ {0}), d0 = fρ(t0) and dj = dj for j ∈ N20. Our midpoint estimator is given by

m(t−1) = m+(t−1,d|δE)−m+(t−1,−d|δE)
2 . For the computation of m+(t−1,±d|δE) we use the program fminunc

in the optimization toolbox of Matlab 7.3.0 and also for comparison sake (10) with an arbitrary chosen non

zero initial vector.

Step 4. To estimate f(t−2), we again define partial hyperellipse as follows

H(d|δE′) := {f : ||f ||K ≤ δ, f(t−1) = fρ(t−1), f(t0) = fρ(t0), Q(f)− d ∈ E}.

Clearly, the regularization estimator fρ can be view as an element in H(d|δE′) and our midpoint estimator

becomes as the following m(t−2) = m+(t−2,d|δE′)−m+(t−2,−d|δE′)
2 where the vector d := (dj : j ∈ N20∪{0,−1})

where d−1 = fρ(t−1),d0 = fρ(t0) and dj = dj for j ∈ N20.

The results of the computation are displayed below and at least for small values of the regularization

parameter, but away from zero, the midpoint algorithm is better than regularization.
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Figure 2. The result of regularization and midpoint algorithm
at the point t0 and exact value is g(t0) = 0.6767
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