

รายงานวิจัยฉบับสมบูรณ์

เรื่อง ฤทธิ์การต้านกระบวนสร้างเส้นเลือดใหม่ของโปรตีน ST7 ในมะเร็งต่อมลูกหมากเพาะเลี้ยง PC-3

ดำเนินโครงการโดย ดร.นุรดีนา จารง

กันยายน 2561

สัญญาเลขที่ TRG 5680035

รายงานวิจัยฉบับสมบูรณ์

เรื่อง ฤทธิ์การต้านกระบวนสร้างเส้นเลือดใหม่ของโปรตีน ST7 ในมะเร็งต่อมลูกหมากเพาะเลี้ยง PC-3

> นุรดีนา จารง มหาวิทยาลัยวลัยลักษณ์

สนับสนุนโดยสำนักงานกองทุนสนับสนุนงานวิจัย (สกว.)
และมหาวิทยาลัยวลัยลักษณ์

บทคัดย่อ

สัญญาเลขที่ : TRG 5680035

ชื่อโครงการ : เรื่อง ฤทธิ์การต้านกระบวนการสร้างหลอดเลือดใหม่ของโปรตีน ST7 ใน

มะเร็งต่อมลูกหมากเพาะเลี้ยง PC-3

ชื่อนักวิจัย: นุรดีนา จารง

มหาวิทยาลัยวลัยลักษณ์

E-mail Address: nurdina.ch@wu.ac.th, chnurdin@yahoo.com

ระยะเวลาโครงการ: 2 ปี

ยืน ST7 (Suppression of Tumorigenicity 7) ถูกรายงานว่าเป็นยืนกดการสร้างมะเร็ง มี บทบาทหน้าที่เกี่ยวข้องกับการรักษาโครงสร้างของเซลล์ การศึกษาครั้งนี้มีวัตถุประสงค์ในการศึกษา การเปลี่ยนแปลงที่เกิดขึ้นกับยืน ST7 และ ความถี่ของการเปลี่ยนแปลงของยืนดังกล่าวโดยใช้ข้อมูล ผู้ปวยมะเร็งจากโครงการแผนที่จีโนมมะเร็ง นอกจากนี้ยังได้ศึกษาหากความสัมพันธ์ระหว่างการ เปลี่ยนแปลงของยืน ST7 กับยืนที่ควบคุมการสร้างเส้นเลือดใหม่ได้แก่ ยืน SERPINE MMP13 และ VEGFA และระหว่างการเปลี่ยนแปลงของยืน ST7 กับยืนที่ควบคุมการแสดงออกของยืน ST7 ได้แก่ ยืน PRMT5 และ SMARCA4 ทำการศึกษาโดยการถ่ายโอนข้อมูลของตัวอย่างผู้ป่วยมะเร็ง 6 ชนิด ประกอบไปด้วย มะเร็งรังไข่ (OSC) มะเร็งตับ (LHC) มะเร็งต่อมลูกหมาก (PRAD) กระเพาะป[ั]สสาวะ (BUA) มะเร็งกระเพาะอาหาร (SC) และมะเร็งสมอง (GBM) จากฐานข้อมูลแผนที่ จีโนมมะเร็ง (TCGA dataset) และใช้ Cbioportal for cancer genomics เป็นเครื่องมือในการ วิเคราะห์ ผลการศึกษาพบว่ารูปแบบการเปลี่ยนแปลงของเนื้อยืน ST7 มี 3 ลักษณะได้แก่ การ เพิ่มขึ้นของ copy ของยีนในโครโมโซม การกลายพันธุ์ที่ทำให้ชนิดของกรดอะมิโนเปลี่ยนไป และการ ขาดหายไปของนิวคลีโอไทด์ พบลักษณะการเปลี่ยนแปลงร่วมกันระหว่างยืน ST7 SERPINE1 ในมะเร็งกระเพาะป[ั]สสาวะ มะเร็งรังไข่ และมะเร็งกระเพาะอาหาร (p<0.05) แต่ไม่มี ความสัมพันธ์กับอัตราการรอดชีวิตของผู้ป่วย เมื่อพิจารณาการแปลี่ยนแปลงของยืน ST7 ร่วมกับยืน PRMT5 และ SMARCA4 ซึ่งมีการรายงานว่าเกี่ยวข้องกับกลไกการกดการแสดงออกของยืน ST7 นั้น พบว่าการเปลี่ยนแปลงของยีนทั้งสามยีนมีความสัมพันธ์กับการลดลงของอัตราการอยู่รอดและ อัตราไม่มีโรคย้อนกลับเป็นซ้ำในผู้ป่วยมะเร็งกระเพาะปััสสาวะ ผลการศึกษาได้เสนอแนะวิธีการใช้ ข้อมูลจากโครงการแผนที่จีโนมมะเร็ง เพื่อใช้ในการศึกษาหายืนที่เกี่ยวข้องกับการเกิดมะเร็งเพื่อ พัฒนาไปเป็นตัวบ่งชี้ที่มีประสิทธิภาพ นอกจากนี้เสนอใช้การเปลี่ยนแปลงของยืน ST7 ร่วมกับ PRMT5 และ SMARCA4 เพื่อใช้เป็นตัวบ่งชี้มะเร็งในกระเพาะป ัสสาวะ และเป็น therapeutic target สำหรับการรักษามะเร็งในคนาคต

คำสำคัญ: ST7, PRMT5, SMARCA4, TCGA, Co-occurrence, Gene alteration

Abstract

Project code: TRG 5680035

Project Title: Anti-angiogenic effects of ST7 in prostate cancer cell line

Researcher: Nurdina Charong

Walailak University

E-mail Address: nurdina.ch@wu.ac.th, chnurdin@yahoo.com

Project Period: 2 years

ST7 (Suppression of Tumorigenicity 7) was reported as a protein playing a role in maintaining cellular structure. This study aims to investigate the ST7 alteration profiles and frequency of alteration in different cancers using data from The Cancer Genome Atlas (TCGA). The correlation between alterations of ST7 and angiogenesis-related genes, SERPINE1, MMP13 and VEGFA, was determined and the relation between ST7 and genes involved in suppression of ST7 transcription, PRMT5 and SMARCA4, were also analyzed. Data of six cancer groups from The Cancer Genome Atlas (TCGA) including ovarian serous cyst adenocarcinoma (OSC), liver hepatocellular carcinoma (LHC), bladder urothelial adenocarcinoma (BUA), stomach adenocarcinoma (SC), prostate adenocarcinoma (PRAD) and glioblastoma multiforme (GBM) were downloaded for this study. The results indicated that three alteration patterns including amplification, missense mutation and deletion were observed in six cancer studies. Gene pair between ST7 and SERPINE1 indicated cooccurrent alteration in BUC, OSC and SC (p < 0.05). However, no association between alterations of these two genes and survival events in our study was observed. Shorter overall survival rate and disease-free survival were found in BUC patients with ST7, PRMT5 and SMARCA4 alterations. These findings suggest that using TCGA data can target the potential genes involved in carcinogenesis. Combining ST7 with PRMT5 and SMARCA4 could be used as indicators for analyzing the patient survival in BUC patients and may serve as potential therapeutic target for cancer in the future.

Keywords: ST7, PRMT5, SMARCA4, TCGA, Co-occurrence, Gene alteration

Executive Summary

ST7 is a not very well studied protein in cancer patients. Previous reports indicated that ST7 is higher expressed in normal tissues than cancer samples [1]. However, very little is known regarding the pattern of ST7 alteration, the association between ST7 and angiogenesis-related genes as well as ST7-regulated genes in human cancer even though the significant correlation among these genes was reported in some cancer cell lines [3]. In the current study, we used The cBioPortal for Cancer Genomics as a tool for exploring, visualizing, and analyzing the biological and clinical features of ST7 alterations in six cancer types from TCGA databases. Our study is the first data mining study to explore the relationship between alterations of ST7 and 5 ST7-related genes and patient prognosis in TCGA dataset. Our findings reveal that ST7 is altered with different patterns in many types of human cancer cells and even types of ST7 genetic alterations in cancer were depend on cell type-specificity and ST7 -mediated cell signaling pathways. Therefore, this gene might have different roles depending on cellular context and can play an important role in cancer. Interestingly, our study found that ST7 and SERPINE1 alterations mostly coexist in BUC, OSC and SC while *MMP13* and *VEGFA* do not show significant relations. neither ST7 nor SERPINE1 were associated with both survival events (overall survival and disease free survival) in our study but alterations in these three genes indicated significant shorter disease-free survival rate in GMB patients. Therefore, alterations in these genes are on independent pathways to GMB. Morover, the association among three genes which are ST7, PRMT5 and SMARCA4 revealed significant shorter overall survival rate and shorter disease-free survival rate in BUC sample while single ST7 alteration did not show significant results. Taken together, this analysis demonstrates that ST7 alteration was not suggested as a proper indicator for observing the cancer patient survival. However, combined analysis between ST7 with other ST7-related genes (PRMT5 and SMARCA4) could be used as indicators for analyzing the patient survival in some cancer cases. Moreover, this study indicated that cBioportal and TCGA database provides a new perspective to simultaneously perform the analysis of genetic alterations and clinical outcomes for searching impact biomarkers for cancer prognosis and treatment in the future.

เนื้อหางานวิจัย

1. บทน้ำ

ตามที่ ดิฉัน นางสาวนุรดีนา จารง ได้รับทุนส่งเสริมนักวิจัยรุ่นใหม่ ประจำปังบประมาณ 2556 โดย เป็นหัวหน้าโครงการวิจัยเรื่อง ฤทธิ์การต้านกระบวนการสร้างหลอดเลือดใหม่ของโปรตีน ST7 ในมะเร็งต่อมลูกหมากเพาะเลี้ยง PC-3 สัญญาเลขที่ TRG 5680035 ตั้งแต่วันที่ 3 มิถุนายน 2556-2 มิถุนายน 2558 แต่เนื่องจากผลการทดสอบที่ได้ดำเนินการในห้องปฏิบัติการไม่เป็นตามสมมุติฐานที่ ได้วางไว้ ทำให้ไม่สามารถสรุปผลการวิจัยได้ กล่าวคือไม่เห็นการเปลี่ยนแปลงของยีน MMP-13 และ VEGF หลังจากได้ทำการใส่ ST7 - expression vector เข้าไปในเซลล์มะเร็งต่อมลูกหมากเพาะเลี้ยง ชนิด PC-3 ดังที่เสนอในแบบเสนอโครงการ อย่างไรก็ตามได้รับคำแนะนำจากนักวิจัยที่ปรึกษา และ Dr. Jean C. Zenklesen อาจารย์ที่ปรึกษาต่างประเทศขณะศึกษาในระดับปริญญาเอก ให้ทำการ ทดสอบเพิ่มเติมโดยใช้กระบวนการทางชีวสารสนเทศ (Bioinformatics) และใช้ข้อมูลจากโครงการ แผนที่จีโนมมะเร็ง (The Cancer Genome Atlas; TCGA) อีกทั้งกรุณาให้ Dr. Ana Robles รับเป็น นักวิจัยที่ปรึกษาในการไปฝึกอบรมระยะสั้น ณ ศูนย์มะเร็งแห่งชาติ (National Institutes of Health) ประเทศสหรัฐอเมริกา โครงการแผนที่จีโนมมะเร็ง นี้เริ่มขึ้นเมื่อปี 2006 โดย National Cancer Institute (NCI) ประเทศสหรัฐอเมริกา ร่วมกับองค์กรทางด้านมะเร็งชั้นนำในหลายประเทศ ทำการศึกษาการกลายพันธ์ที่เกิดขึ้นในมะเร็งชนิดต่าง ๆ และหาความสัมพันธ์ระหว่างยืนที่เกิดการ กลายพันธ์ในมะเร็งแต่ละชนิด กับลักษณะอาการทางคลินิกเพื่อให้สามารถหาข้อสรุปของงานวิจัยได้ โดยมีเนื้อหางานวิจัยดังนี้

2. วัตถุประสงค์

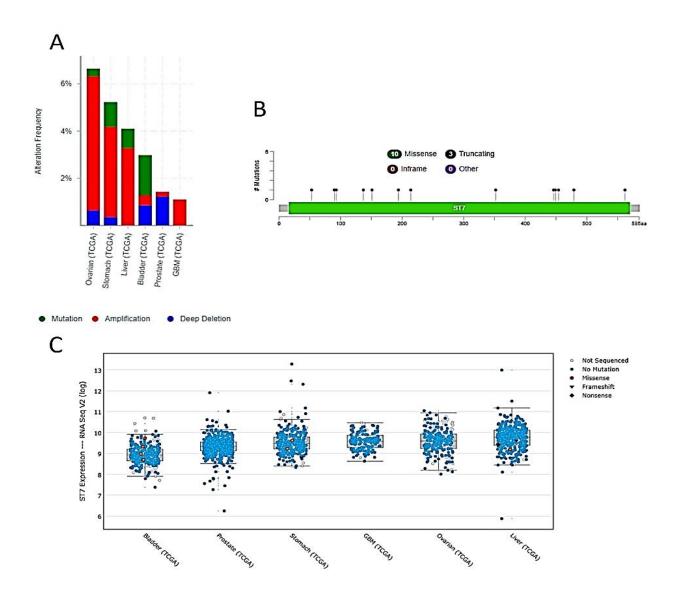
- 2.1 เพื่อศึกษาการเปลี่ยนแปลงทางด้านยืน ของยืน ST7 โดยใช้ข้อมูลจากโครงการจิโนมมะเร็ง (TCGA)
- 2.2 เพื่อศึกษาความสัมพันธ์ของการเปลี่ยนแปลงของยืน ST7 และยืนที่เกี่ยวข้องกับการสร้าง หลอดเลือดใหม่ 3 ยืน ได้แก่ SERPINE1, MMP 13 และ VEGFA และ ยืนที่ควบคุมการถอดรหัสของ ยืน ST7 เช่น PRMT5 และ SMARCA4
- 2.3 เพื่อศึกษาความสัมพันธ์ของการเปลี่ยนแปลงของยืน ST7 และยืนที่เกี่ยวข้องกับอัตราการ รอดชีวิตและอัตราไม่มีโรคย้อนกลับเป็นซ้ำ

3. วิธีทดลอง

ทำการถ่ายโอนข้อมูลที่ต้องใช้ในการวิเคราะห์ ได้แก่ ข้อมูลการกลายพันธ์ (Mutation) ข้อมูล การเปลี่ยนแปลงของจำนวน copy ของยืน การแสดงออกในระดับ mRNA และโปรตีน ของยืน ST7 ในผู้ป่วยมะเร็ง 6 ชนิดได้แก่ มะเร็งสมอง (GBM) มะเร็งรังไข่ (OSC) มะเร็งกระเพาะปัสสาวะ (BUC) มะเร็งต่อมลูกหมาก (PRAD) มะเร็งกระเพาะอาหาร (SC) และมะเร็งตับ (LHC) วิธีการโดยย่อคือ เข้า ไปยังฐานข้อมูลออนไลน์ผ่านทาง URL: http://www.cbioportal.org จากนั้นเลือกชนิดมะเร็งที่สนใจ ศึกษา ชนิดของยีนที่ต้องการศึกษาลักษณะการเปลี่ยนแปลงลงใส่ลงใน input box ในที่นี้เลือกศึกษา ยีน ST7 (รวมถึงยีนชนิดอื่นที่เกี่ยวข้อง ได้แก่ SERPINE1, MMP13, VEGFA, PRMT5 และ SMARCA4) เลือกข้อมูลการเปลี่ยนแปลงที่สนใจ ได้แก่ Mutation, Copy Number Alteration (CNA) และระดับการแสดงออกของ mRNA และโปรตีน ทำการเปรียบเทียบร้อยละการเปลี่ยนแปลงของยีน และชนิดของการเปลี่ยนแปลงในมะเร็งแต่ละชนิดในรูป Oncoprint Tab วิเคราะห์ Co-occurrence Tendency ของการเปลี่ยนแปลงของยีน ST7 ร่วมกับยีนที่เกี่ยวข้องดังกล่าวมาข้างต้นในมะเร็งแต่ละ ชนิด และวิเคราะห์ความสัมพันระหว่างการเปลี่ยนแปลงของยีน ST7 เพียงตัวเดียวและยีน ST7 ร่วมกับยีนที่เกี่ยวข้องดังที่กล่าวมาข้างต้นกับอัตราการรอดชีวิต (Overall survival rate) และอัตรา การไม่มีโรคย้อนกลับเป็นซ้ำ (Disease-free survival rate) โดยพิจารณาจากมัธยฐานของระยะเวลา การรอดชีวิตทั้งหมดและที่รอดชีวิตโดยปราศจากโรค คำนวณโดยวิธี Kaplan-Meier คำนวณความ แตกต่างระหว่าง Kaplan-Meier curve โดยวิธี two-tailed log-rank test ค่า p value < 0.05 ถือว่ามี นัยสำคัญทางสถิติ

4. ผลการทดลอง

4.1 ทำการศึกษาการเปลี่ยนแปลงทางด้านยืน ของยืน ST7 โดยใช้ข้อมูลชนิดของ มะเร็งและจำนวนตัวอย่างจากโครงการ TCGA

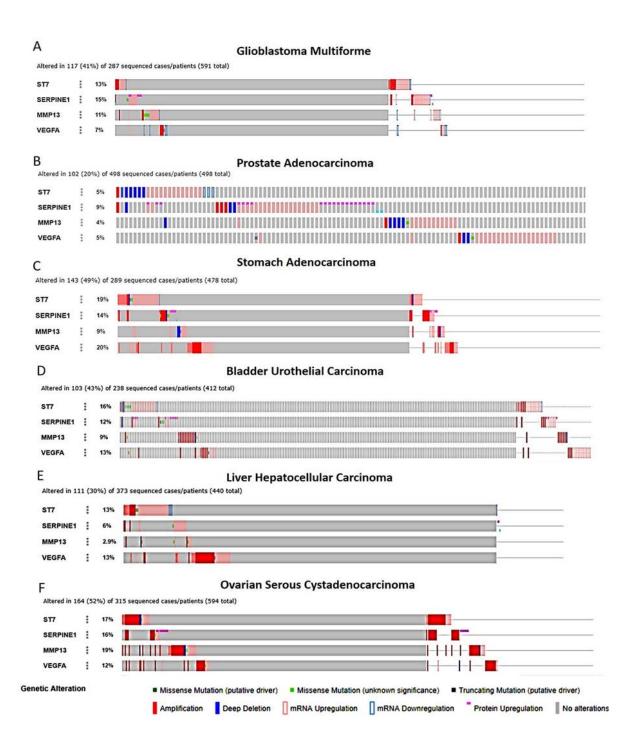

เก็บข้อมูลชนิดของมะเร็ง และจำนวนตัวอย่างจากข้อมูลในฐานข้อมูลออนไลน์ผ่านทาง website http://www.cbioportal.org ซึ่งถือเป็น Open access database เพื่อทำการศึกษา ST7 genetic alteration รายละเอียดดังตารางที่ 1 (ตารางที่ 1)

ตารางที่ 1 Cancer types and number of TCGA samples selected for ST7 genetic alteration characterization

Cancer Type	TCGA cancer Abbreviation	Cancer Sample (n)
Ovarian Serous Cyst adenocarcinoma	OSC	316
Stomach Adenocarcinoma	SC	287
Liver Hepatocellular Carcinoma	LHC	366
Prostate Adenocarcinoma	PRAD	492
Glioblastoma Multiforme	GBM	273
Bladder Urothelial Carcinoma	BUC	235

4.2 ทำการศึกษาการกลายพันธุ์ที่เนื้อยืน ST7 (Genetic alterations of ST7) และยืนที่ เกี่ยวข้องโดยใช้ข้อมูลโครงการแผนที่จีโนมมะเร็ง (TCGA) ของผู้ป่วยมะเร็ง 6 ชนิดที่ได้ ทำการศึกษาและเก็บข้อมูลไว้แล้วในฐานข้อมูลออนไลน์

ทำการรวบรวมข้อมูลผู้ป่วยมะเร็ง 6 ชนิดและกำหนดให้มีการประมวลผลร้อยละการ เปลี่ยนแปลงที่เนื้อยืน วิเคราะห์หาตำแหน่งจำเพาะการกลายพันธ์ (Mutational hotspot) และปริมาณ การแสดงออกในระดับ mRNA ในมะเร็งแต่ละชนิด ผลการวิเคราะห์เมื่อใช้ข้อมูลจากโครงการแผนที่ จีโนมมะเร็ง และ website http://www.cbioportal.org พบว่าความถี่ของการเปลี่ยนแปลงระดับยีนของ ยืน ST7 พบมากที่สุดในมะเร็งรังไข่ (OSC) และพบน้อยที่สุดในมะเร็งสมอง (GBM) โดยพบการ เปลี่ยนแปลงแบบ amplification มากที่สุดและพบ mutation และ deep deletion ร่วมด้วย (ภาพที่ 1A) สำหรับการกลายพันธ์นั้นพบการกลายพันธ์แบบ missense มากที่สุด แต่ไม่พบตำแหน่งจำเพาะ การกลายพันธ์ (Mutational hotspot) บนเนื้อยืน (ภาพที่ 1B) เมื่อพิจารณาระดับการแสดงออกของ ยืน ST7 ในระดับ mRNA พบว่า มีการแสดงออกน้อยที่สุดในมะเร็งกระเพาะปัสสาวะ ซึ่งสอดคล้อง กับความถี่ของการเปลี่ยนแปลงระดับยีนที่พบ กล่าวคือ พบ mutation และ deep deletion มากที่สุด เมื่อเทียบกับมะเร็งชนิดอื่นที่วิเคราะห์ในครั้งนี้ สำหรับมะเร็งต่อมลูกหมากซึ่งได้เลือกใช้เป็น model ในการศึกษาวิจัยนั้นพบว่าในผู้ป่วยมะเร็งต่อมลูกหมากมีการกลายพันธ์ของยีน ST7 ในลำดับที่ 5 จากมะเร็งที่ได้ทำการศึกษาทั้ง 6 ชนิด โดยมีความถี่น้อยกว่า 2% และเป็นชนิดที่มีการแสดงออกของ ยีน ST7 ในระดับ mRNA น้อยเป็นลำดับที่ 2 รองจากมะเร็งกระเพาะปัสสาวะ

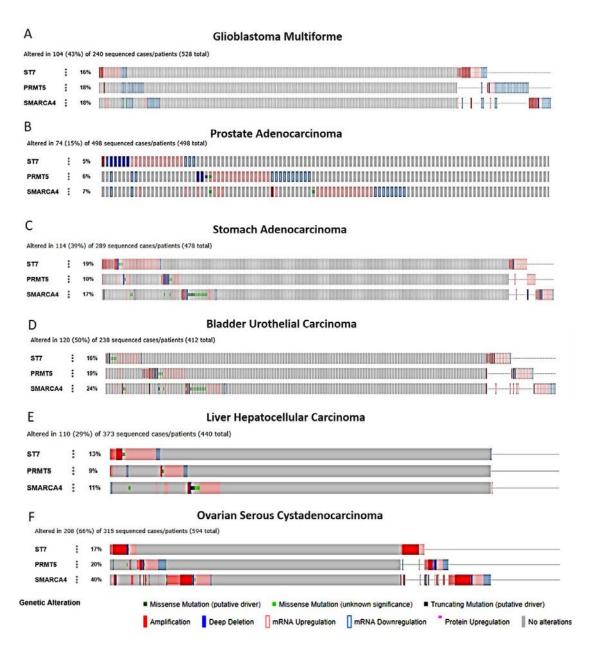

ภาพที่ 1 แสดงกราฟความถี่ของการเปลี่ยนแปลงของเนื้อยืน ST7 ตำแหน่งการกลายพันธ์แต่ละ ชนิดบนเนื้อยืน ST7 และระดับการแสดงออกยืน ST7 ในระดับ mRNA ที่พบได้ในมะเร็งแต่ชนิด

4.3 วิเคราะห์การเปลี่ยนแปลงในระดับยีนของยีน ST7 ร่วมกับ ยีนที่เคยมีรายงานว่ามี ความเกี่ยวข้องกับการแสดงออกของยีน ST7 ในผู้ป่วยมะเร็ง 6 ชนิดโดยใช้ ข้อมูลจาก โครงการแผนที่จีโนมมะเร็ง (TCGA)

จากข้อสันนิษฐานเมื่อได้มีการศึกษาในเซลล์มะเร็งเพาะเลี้ยงว่าโปรตีน ST7 อาจมีส่วน เกี่ยวข้องกับการยับยั้งกระบวนการสร้างเส้นเลือดใหม่ในมะเร็งต่อมลูกหมากโดยผ่านทางกลไกการ ควบคุมการแสดงออกของโปรตีน SERPINE MMP13 และ VEGFA (1) ประกอบกับเมื่อใช้ข้อมูลจาก โครงการแผนที่จีโนมมะเร็ง (TCGA) มาวิเคราะห์แล้วพบการเปลี่ยนแปลงในระดับยืนของยืน ST7

ผู้วิจัยจึงได้ทำการศึกษาหาความสัมพันธ์ระหว่างการเปลี่ยนแปลงบนเนื้อยืนและระดับการแสดงออก ของยืน ST7 ร่วมกับยืนอื่นที่เคยมีรายงานมาก่อนหน้านี้ ได้แก่ กลุ่ม angiogenesis -related genes ประกอบด้วย SERPINE1, MMP13 และ VEGFA และ กลุ่ม ST7- associated genes ประกอบไป ด้วย PRMT5 และ SMARCA4 (2) จากชิ้นเนื้อของผู้ป่วยผู้มะเร็ง 6 ชนิด ทำการศึกษาโดยใช้ข้อมูล CNA (Copy Number Alteration), mutation, ระดับ mRNA และโปรตีนของยืนที่สนใจในมะเร็งแต่ละ ชนิด ผลการวิเคราะห์โดยใช้ website http://www.cbioportal.org พบว่ายืน ST7 นั้นมีความถี่ของ การเปลี่ยนแปลงทั้งในระดับ DNA mRNA และโปรตีน ในมะเร็งกระเพาะอาหารมากที่สุด คือ ร้อยละ 19 โดยลักษณะการเปลี่ยนแปลงหลักๆ คือ ST7 mRNA up-regulation และพบความถี่ของการ เปลี่ยนแปลงน้อยที่สุดในมะเร็งต่อมลูกหมาก คือ ร้อยละ 5 เมื่อพิจารณายืนอื่นๆ ร่วมด้วยพบว่า การ เปลี่ยนแปลงของยืน ST7 นั้นมีความถี่ในระดับเดียวกันกับการเปลี่ยนแปลงของยืน SERPINE1 ใน มะเร็ง 2 ชนิดคือ มะเร็งสมอง (GBM) และ มะเร็งรังไข่ (OSC) (ภาพที่ 2A, 2F) ในขณะมะเร็งต่อม ลูกหมาก (PRAD) มะเร็งกระเพาะอาหาร (SC) และมะเร็งตับ (LHC) นั้นพบว่าความถี่ของการ เปลี่ยนแปลงของยืน ST7 อยู่ในระดับเดียวกับยืน VEGFA (ภาพที่ 2B-C, 2E) อย่างไรก็ตามการ เปลี่ยนแปลงของยีน ST7 และ MMP13 นั้นพบว่ามีความถี่ที่ใกล้เคียงกัน กล่าวคือพบระหว่างร้อยละ 4 ถึง 5 และร้อยละ 9 ถึง 10 ในมะเร็งต่อมลูกหมาก และมะเร็งรังไข่ โดยลักษณะการเปลี่ยนแปลง ความถี่ และความสัมพันธ์ของยืน ST7 กับ angiogenesis -related genes ทั้ง 3 ยืน แสดงใน**ตาราง** ที่ 2 ซึ่งสามารถสรุปได้ว่าการเปลี่ยนแปลงของยืน ST7 จะพบในลักษณะ co-occurrence กับยืน SERPINE1 มี alteration events ที่มีนับสำคัญทางสถิตในมะเร็งกระเพาะปัสสาวะ (BUC) มะเร็งรัง ไข่ (OSC) และมะเร็งกระเพาะอาหาร (SC) (p-0.018, p<0.001 และ p<0.001, ตามลำดับ) สำหรับ การเปลี่ยนแปลงของยืน VEGFA และ ยืน MMP13 ร่วมกับยืน ST7 นั้นไม่มีความสัมพันธ์ทางสถิติ นอกจากนี้ผู้วิจัยยังได้ทำการศึกษาความสัมพันธ์ระหว่างการเปลี่ยนแปลงทางด้านยืนของยืน ST7 กับกลุ่มยืนที่มีการรายงานก่อนหน้าว่าเป็น ST7-related genes ได้แก่ ยืน PRMT5 และยืน SMARCA4 โดยทั้งสองยืนนี้มีความเกี่ยวข้องกับกลไกการกดการแสดงออกของยืน ST7 ผ่านทางการ ควบคุมกระบวนการ transcription ผลการวิเคราะห์โดยใช้ website http://www.cbioportal.org พบว่าในมะเร็งรังไข่ (OSC) พบการเปลี่ยนแปลงของยืนทั้งสามยืนนี้มากที่สุดคือร้อยละ 66 และพบ การเปลี่ยนแปลงน้อยที่สุดในมะเร็งต่อมลูกหมาก (PRAD) **(ภาพที่ 3)** เมื่อพิจารณาความถี่ของการ เปลี่ยนแปลงร่วมกันพบกว่า การเปลี่ยนแปลงของยืน ST7 และ PRMT5 นั้นพบว่ามีความถี่ที่ ใกล้เคียงกัน กล่าวคือพบระหว่างร้อยละ 5 ถึง 6 และร้อยละ 16 ถึง 18 ในมะเร็งต่อมลูกหมาก (PRAD) และมะเร็งสมอง (GBM) **(ภาพที่3A-B)** ในขณะที่การเปลี่ยนแปลงของยืน ST7 นั้นมีความถึ่ ในระดับเดียวกันกับการเปลี่ยนแปลงของยืน SMARCA4 ในมะเร็งสมอง (GBM) มะเร็งต่อมลูกหมาก (PRAD) และมะเร็งตับ **(ภาพที่ 3A-B, 3E)** ลักษณะการเปลี่ยนแปลง ความถี่ และความสัมพันธ์ของ ยืน ST7 กับ ST7 -related genes ทั้ง 3 ยืน แสดงใน**ตารางที่ 3** ซึ่งพบว่าการเปลี่ยนแปลงของยืน ST7 จะพบในลักษณะ co-occurrence กับการเปลี่ยนแปลงยืน PRMT5 โดยมี alteration events ที่ มีนัยสำคัญทางสถิติในมะเร็งกระเพาะอาหาร (SC) (P-0.027) นอกจากนี้ยังพบว่าการเปลี่ยนแปลง

ของยืน ST7 จะพบในลักษณะ co-occurrence กับการเปลี่ยนแปลงยืน SMARCA4 เช่นกัน แต่พบ ในมะเร็งสมอง โดย alteration events มีนัยสำคัญทางสถิต (p<0.001) จากผลการวิเคราะห์ ความสัมพันธ์ระหว่างยืน ST7 กับยืนที่เกี่ยวข้อง โดยพิจารณาการเปลี่ยนแปลงในระดับยืน mRNA และ โปรตีน ในชิ้นเนื้อของผู้ป่วยมะเร็งทั้ง 6 ชนิด พบว่าการเปลี่ยนแปลงของยืน ST7 จะพบใน ลักษณะ co-occurrence กับยืนในกลุ่มที่ควบคุมการสร้างหลอดเลือดใหม่เพียงชนิดเดียวคือ SERPINE1 อย่างไรก็ตามยังไม่ทราบกลไกที่เกี่ยวข้องอย่างชัดเจนในร่างกาย ถึงแม้ว่าก่อนหน้านี้จะ มีรายงานการแสดงออกที่เพิ่มขึ้นของยืนนี้ในตัวอย่างเซลล์มะเร็งต่อมลูกหมากเพาะเลี้ยงที่มีการ transfect ด้วย ST7-expression vector ก็ตาม (3) จึงเป็นไปได้ว่าการเปลี่ยนแปลงของทั้งสองยืนที่ กระตุ้นการพัฒนาการเกิดมะเร็งอาจมาจาก independent pathway การศึกษาครั้งนี้ยังพบว่าการ เปลี่ยนแปลงของยืน PRMT5 และ SMARCA4 นั้นพบในลักษณะ co-existing กับยืน ST7 ในมะเร็ง กระเพาะอาหาร (SC) และ มะเร็งสมอง (GBM) ซึ่งสอดคล้องกับรายงานก่อนหน้าที่ระบุว่า ยืน PRMT5 และยืน SMARCA4 ความเกี่ยวข้องกับกลไกการ transcription ของยืน ST7

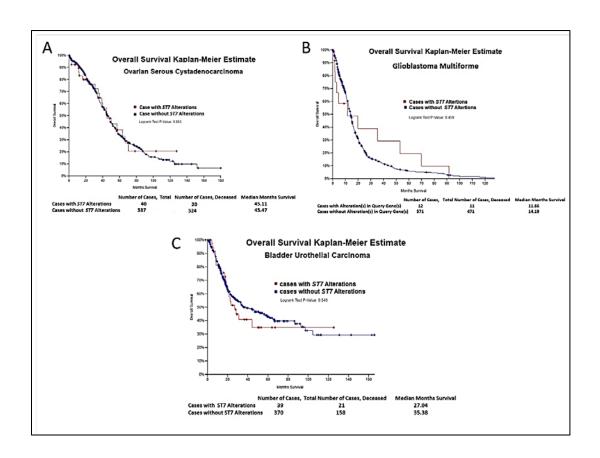


ภาพที่ 2 แสดง The OncoPrint tab ที่ระบุชนิดและความถี่ของการเปลี่ยนแปลงระดับยืน mRNA และ โปรตีน ของยืน ST7, SERPINE1, MMP13 และ VEGFA ในมะเร็ง 6 ชนิดจากฐานข้อมูลโครงการจีโนม มะเร็ง (TCGA)

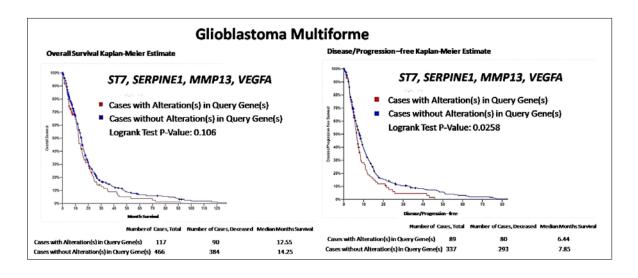
ตารางที่ 2 Tendency for co-occurrence and mutual exclusivity between ST7 alterations and angiogenesis-related genes (SERPINE1, VEGFA and MMP13) in six TCGA cancer groups.

Type of cancer	Gene	Gene B	Neither	A	В	Both	Log	p-Value	Adjusted	Tendency
	A			Not	Not		Odds		p-Value	
				В	A		Ratio			
Bladder Urothelial	ST7	SERPINE1	353	31	21	8	1.467	0.003	0.018	Co-occurrence*
Carcinoma	ST7	VEGFA	348	34	26	5	0.677	0.156	0.936	Co-occurrence
	ST7	MMP13	355	36	19	3	0.443	0.345	1	Co-occurrence
Ovarian Serous	ST7	SERPINE1	514	41	37	14	1.557	< 0.001	< 0.001	Co-occurrence*
Cystadenocarcinoma	ST7	VEGFA	519	48	32	7	0.861	0.053	0.318	Co-occurrence
	ST7	MMP13	498	47	53	8	0.47	0.175	1	Co-occurrence
Liver Hepatocellular	ST7	MMP13	385	46	7	4	1.565	0.026	0.158	Co-occurrence
Carcinoma	ST7	SERPINE1	375	45	17	5	0.896	0.09	0.538	Co-occurrence
	ST7	VEGFA	348	46	44	4	-0.374	0.342	1	Mutual exclusivity
Stomach	ST7	SERPINE1	428	12	30	8	2.252	< 0.001	< 0.001	Co-occurrence*
Adenocarcinoma	ST7	VEGFA	423	19	35	1	-0.452	0.546	1	Mutual exclusivity
	ST7	MMP13	450	19	8	1	1.085	0.322	1	Co-occurrence
Prostate	ST7	SERPINE1	436	17	39	6	1.373	0.012	0.073	Co-occurrence
Adenocarcinoma	ST7	VEGFA	449	23	26	0	<-3	0.283	1	Mutual exclusivity
	ST7	MMP13	457	22	18	1	0.143	0.6	1	Co-occurrence
Glioblastoma	ST7	SERPINE1	528	32	40	4	0.501	0.262	1	Co-occurrence
Multiforme	ST7	VEGFA	550	34	18	2	0.586	0.337	1	Co-occurrence
	ST7	MMP13	538	34	30	2	0.053	0.583	1	Co-occurrence

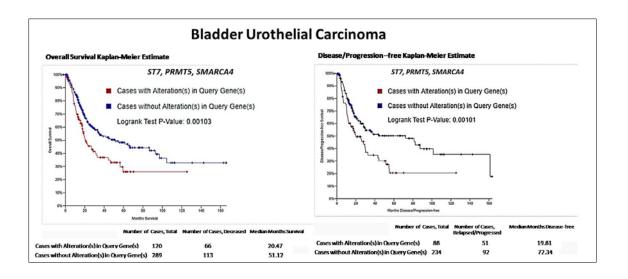
Asterisk (*) indicates statistically significant co-occurrence between two gene pairs


ภาพที่ 3 แสดง The OncoPrint tab ที่ระบุชนิดและความถี่ของการเปลี่ยนแปลงระดับยืน mRNA และ โปรตีนได้แก่ ST7, PRMT5 และ SMARCA4 ในมะเร็ง 6 ชนิดจากฐานข้อมูลโครงการจีโนม มะเร็ง (TCGA)

ตารางที่ 3 Tendency for co-occurrence and mutual exclusivity between ST7 alterations and angiogenesis-related genes (PRMT5 and SMARCA4) in six TCGA cancer groups.


Type of cancer	Gene A	Gene B	Neither	A	В	Both	Log	p-Value	Adjusted	Tendency
				Not	Not		Odds		p-Value	
				В	A		Ratio			
Bladder Urothelial	ST7	SMARCA4	327	30	47	9	0.736	0.064	0.191	Co-occurrence
Carcinoma	ST7	PRMT5	333	34	41	5	0.178	0.444	1	Co-occurrence
Ovarian Serous	ST7	SMARCA4	438	42	113	13	0.182	0.347	1	Co-occurrence
Cystadenocarcinoma	ST7	PRMT5	492	49	59	6	0.021	0.553	1	Co-occurrence
Liver Hepatocellular	ST7	PRMT5	365	43	27	7	0.789	0.074	0.223	Co-occurrence
Carcinoma	ST7	SMARCA4	354	46	38	4	-0.211	0.471	1	Mutual exclusivity
Stomach	ST7	PRMT5	403	47	20	8	1.232	0.009	0.027	Co-occurrence *
Adenocarcinoma	ST7	SMARCA4	380	48	43	7	0.254	0.348	1.000	Co-occurrence
Prostate	ST7	PRMT5	448	20	28	3	0.875	0.165	0.495	Co-occurrence
Adenocarcinoma	ST7	SMARCA4	446	19	30	4	1.141	0.063	0.189	Co-occurrence
	PRMT5	SMARCA4	443	22	25	9	1.981	< 0.001	< 0.001	Co-occurrence *
Glioblastoma	ST7	PRMT5	450	34	39	5	0.529	0.216	0.648	Co-occurrence
Multiforme	ST7	SMARCA4	456	28	33	11	1.692	< 0.001	< 0.001	Co-occurrence *
	PRMT5	SMARCA4	450	34	34	10	1.359	0.002	0.005	Co-occurrence *

4.4 การวิเคราะห์อัตราการอยู่รอดของผู้ป่วย (Survival analysis) จากโครงการ TCGA ที่มี การเปลี่ยนแปลงของยีน ST7 และยืนที่เกี่ยวข้อง


ผู้วิจัยทำการวิเคราะห์ผลกระทบของการเปลี่ยนแปลงของยีน ST7 ต่ออัตราการอยู่รอดของผู้ป่วย มะเร็ง 6 ชนิด โดยทำการวิเคราะห์ตัวอย่างที่มีความผิดปกติของยืน ST7 เพียงอย่างเดียว ตัวอย่างที่มี ความผิดปกติของยืน ST7 กับกลุ่ม Angiogenesis -related genes (SERPINE1, MMP13 และ VEGFA) และ กลุ่ม ST7- associated genes (PRMT5 และ SMARCA5) เปรียบเทียบกับตัวอย่างที่ไม่มีการ เปลี่ยนแปลงของยืนที่สนใจ นำเสนอผลการวิเคราะห์ในรูปแบบ Kaplan-Meier plot พร้อมแสดงผลการ ทดสอบนัยสำคัญทางสถิติด้วยวิธี log rank test ผลการทดสอบพบว่า ไม่พบความสัมพันธ์อย่างมี นัยสำคัญทางสถิติระหว่างการเปลี่ยนแปลงของยืน ST7 และอัตราการอยู่รอดของผู้ป่วย (Overall survival rate) อย่างไรก็ตามพบว่าการเปลี่ยนแปลงของยืน ST7 นั้น มีลักษณะสัมพันธ์กับการลดลงของ อัตราการอยู่รอดของผู้ป่วยมะเร็ง โดยพบว่าอัตราอยู่รอดลดลงในมะเร็งรังไข่ (OSC) มะเร็งสมอง (GBM) และ มะเร็งกระเพาะปัสสาวะ (BUC) จาก 45.47 เดือน เป็น 45.11 เดือน (0.8%), 14.19 เดือน เป็น 11.66 เดือน (18%) และ 35.38 เดือน เป็น 27.04 เดือน (76.42%) ตามลำดับ เมื่อเปรียบเทียบกับ ์ ตัวอย่างที่ไม่มีการเปลี่ยนแปลงของยีนใดๆ **(ภาพที่ 4)** เมื่อพิจารณา Median month's survival พบว่าใน ผู้ป่วยมะเร็งกระเพาะปัสสาวะ (BUC) ลดลงมากที่สุด มะเร็งชนิดนี้มีปริมาณการแสดงออกของ ST7 mRNA น้อยที่สุด (ภาพที่ 1C) สอดคล้องกับชนิดของการเปลี่ยนแปลงของเนื้อยืน ST7 ที่ตรวจพบซึ่งเป็น แบบ mutation และ deep deletion ซึ่งการกลายพันธุ์ดังกล่าวส่งผลกระทบต่อระดับการแสดงออกและ การทำงานของยีน ST7 ในการรักษาโครงสร้างและการเจริญของเซลล์ เมื่อพิจารณาร่วมกับยีนอื่น ๆ ได้แก่ SERPINE1, MMP13 และ VEGFA ไม่พบการลดลงของอัตราการอยู่รอดของผู้ป่วยอย่างมี นัยสำคัญทางสถิติ แต่พบว่าในมะเร็งสมอง (GMB) มีการลดลงของอัตราไม่มีโรคย้อนกลับเป็นซ้ำ (Disease-free survival rate) อย่างมีนัยสำคัญทางสถิติ (p-0.0258) นอกจากนี้ผู้วิจัยยังได้ทำการ วิเคราะห์อย่างที่มีความผิดปกติของยืน ST7 กับกลุ่ม ST7- associated genes (PRMT5 และ SMARCA4) เปรียบเทียบกับตัวอย่างที่ไม่มีการเปลี่ยนแปลงของยืนที่สนใจ พบว่าในกลุ่มตัวอย่างมะเร็ง กระเพาะปัสสาวะ (BUC) เพียงตัวอย่างเดียวที่การเปลี่ยนแปลงของเนื้อยืนทั้งสามยืนนั้นสัมพันธ์กับการ ลดลงของอัตราอยู่รอดและอัตราไม่มีโรคย้อนกลับเป็นซ้ำ อย่างมีนัยสำคัญทางสถิติ (p-0.00103 และ p-0.00101 ตามลำดับ) **(ภาพที่ 6)** เมื่อพิจารณาร่วมกับผลการวิเคราะห์ก่อนหน้าพบว่าการเปลี่ยนแปลงของ ยืน ST7 เพียงตัวเดียวนั้นลดอัตราอยู่รอดของผู้ป่วยมากที่สุดคือร้อยละ 76.42 ในกลุ่มตัวอย่างมะเร็งที่ใช้ ในการทดสอบในครั้งนี้ ถึงแม้ว่าอัตราดังกล่าวไม่มีนัยสำคัญทางสถิติ ดังนั้นทดสอบในครั้งนี้แสดงให้เห็น ว่าการกดการแสดงออกของยืน ST7 ผ่านทางการควบคุมการ transcription โดยยืน PRMT5 และ SMARCA4 เป็นกลไกสำคัญในการควบคุมการระดับแสดงออกของยืน ST7 ซึ่งสัมพันธ์กับการลดลงของ อัตราอยู่รอดของผู้ป่วยมะเร็งบางชนิดได้

ภาพที่ 4 แสดงอัตราการอยู่รอด (Overall survival rate) ในผู้ป่วยมะเร็งรังไข่ (OSC) มะเร็งสมอง (GMB) และมะเร็งกระเพาะปัสสาวะ (BUC) ที่มีการเปลี่ยนแปลงของยืน ST7

ภาพที่ 5 แสดงอัตราการอยู่รอด (Overall survival rate) และอัตราไม่มีโรคย้อนกลับเป็นซ้ำ (Disease/ progression-free survival rate) ในผู้ป่วยมะเร็งสมอง (GBM) ที่มีการเปลี่ยนแปลงของยืน ST7, SERPINE1, MMP13 และ VEGFA

ภาพที่ 6 แสดงอัตราการอยู่รอด (Overall survival rate) และอัตราไม่มีโรคย้อนกลับเป็นซ้ำ (Disease/progression-free survival rate) ในผู้ป่วยมะเร็งกระเพาะปัสสาวะ (BUC) ที่มีการเปลี่ยนแปลงของยืน ST7, PRMT5 และ SMARCA4

5. สรุปงานวิจัย


ยืน ST7 เป็นยืนที่มีการศึกษาไม่มากนักในผู้ป่วยมะเร็ง งานวิจัยที่ผ่านมามีการรายงานว่าในชิ้น เนื้อมะเร็งนั้น ยืน ST7 จะมีการแสดงออกในปริมาณสูงเมื่อเทียบกับชิ้นเนื้อปกติที่ไม่ได้เป็นมะเร็ง ถึงแม้ว่าจะมีรายงานวิจัยเกี่ยวกับความสัมพันธ์ของยืน ST7 กับยืนที่มีความเกี่ยวข้องกับการสร้างหลอด เลือดใหม่ที่ไปเลี้ยงมะเร็ง (Angiogenesis -related genes) โดยใช้เซลล์มะเร็งเพาะเลี้ยงเป็นเซลล์ตันแบบ แต่ลักษณะการเปลี่ยนแปลงของเนื้อยืนที่ส่งผลต่อการแสดงออกในผู้ป่วยมะเร็งชนิดต่างๆนั้นยังไม่มี รายงานออกมามากนัก การศึกษาครั้งนี้ผู้วิจัยได้ใช้ข้อมูลจากโครงการแผนที่จีโนมมะเร็ง (The Cancer Genome Atlas; TCGA dataset) และใช้ Cbioportal for cancer genomics เป็นเครื่องมือในการ วิเคราะห์ความถี่ของการเปลี่ยนแปลงของเนื้อยืน ST7 ในมะเร็ง 6 ชนิด ลักษณะของการกลายพันธ์ ระดับการแสดงออกของยีนดังกล่าว ลักษณะ alteration ของยีน ST7 ร่วมกับยีนอื่นๆ รวมถึง ความสัมพันธ์ระหว่างการเปลี่ยนแปลงนั้น ๆต่ออัตราการอยู่รอดและอัตราไม่มีโรคย้อนกลับเป็นซ้ำใน ผู้ป่วยมะเร็ง ผลการทดสอบพบว่า ยีน ST7 มีการเปลี่ยนแปลงในรูปแบบและความถี่ที่แตกต่างกันในแต่ ละชนิดของกลุ่มตัวอย่างมะเร็งที่นำมาทดสอบ และพบลักษณะการเปลี่ยนแปลงร่วมกับยืน SERPINE1 ในมะเร็งกระเพาะปัสสาวะ มะเร็งรังไข่ และมะเร็งกระเพาะอาหาร อย่างไรก็ตามไม่พบความสัมพันธ์ของ การเปลี่ยนแปลงของยืนทั้งสองชนิดนี้ต่อต่ออัตราการอยู่รอดและอัตราไม่มีโรคย้อนกลับเป็นซ้ำในผู้ป่วย มะเร็ง เมื่อทำการพิจารณาการแปลี่ยนแปลงของยืน ST7 ร่วมกับยืน PRMT5 และ SMARCA4 ซึ่งมีการ รายงานว่าเกี่ยวข้องกับกลไกการกดการแสดงออกของยืน ST7 ผ่านทางการควบคุมกระบวนการ transcription พบว่าการเปลี่ยนแปลงของยืนทั้งสามยืนมีความสัมพันธ์กับการลดลงของอัตราการอยู่รอด และอัตราไม่มีโรคย้อนกลับเป็นซ้ำในผู้ป่วยมะเร็งกระเพาะปัสสาวะ ผลที่ได้สามารถนำผลไปศึกษาต่อเพื่อ พัฒนายืนเป็นตัวบ่งชี้มะเร็งหรือ indicator ที่สำคัญประกอบการรักษาในอนาคต นอกจากนี้ผลการวิจัยใน ครั้งนี้แสดงให้เห็นถึงประโยชน์ของการใช้ข้อมูลจากโครงการแผนที่จีโนมมะเร็งที่ได้จัดทำขึ้นเพื่อทดสอบ ข้อมูล วิเคราะห์ ค้นหา cancer biomarker ที่เป็นไปได้โดยใช้ทางฐานข้อมูลขนาดใหญ่ และเครื่องมือที่ ทันสมัย เพื่อประโยชน์ในการพยากรณ์ และการรักษาโรคมะเร็งในอนาคต

เอกสารอ้างอิง

- 1. Hooi C, Blancher C, Qiu W, Revet I, Williams L, Ciavarella M, et al. ST7 mediated suppression of tumorigenicity of prostate cancer cells is characterized by remodeling of the extracellular matrix. Oncogene. 2006; 25:3924-33.
- 2. Sharmistha P, Vishwanath SN, Erdjument-Bromage H, Tempst P and Sif S. Human SWI/SNF associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes. Mol Cell Biol. 2004; 24:9630-45.
- 3. Zenklusen J, Conti C, Green E. Mutational and functional analyses reveal that ST7 is a highly conserved tumor-suppressor gene on human chromosome 7q31. Nat Genet. 2001; 27:392-8.

Output ที่ได้จากโครงการ

ต้นฉบับงานวิจัย (manuscript) หัวข้อ "Identification of ST7 alteration profile, frequency of alteration and correlation with ST7-related genes using TCGA data" (เอกสารแนบ) ได้ทำการ นำเสนอในงานประชุมวิชาการระดับนานาชาติ The "International Conference on Biomedical Sciences - ICBMS 2018 ในรูปแบบโปสเตอร์ เมื่อวันที่ 22-23 มีนาคม ณ มหาวิทยาลัยวลัยลักษณ์ จ. นครศรีธรรมราช และได้ทำการ submit ในวารสาร Walailak Journal of Science and Technology (WJST) ซึ่งอยู่ในฐานข้อมูล Scopus ระดับ Q3 ซึ่งต้นฉบับงานวิจัยดังกล่าวได้รับการตอบ รับตีพิมพ์ดังเอกสารแสดงในภาคผนวก

Manuscript และจดหมายตอบรับการตีพิมพ์

http://wjst.wu.ac.th Article

Identification of ST7 alteration profile, frequency of alteration and

correlation with ST7-related genes using TCGA data

Nurdina CHARONG^{1*} and Moltira PROMKAN²

¹Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si

Thammarat, 80161

²Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon

Pathom, 73170

(*Corresponding author's email: <u>nurdina.ch@wu.ac.th</u>)

Received: , Revised: , Accepted:

Running title

ST7 alteration profile and correlation with ST7-related genes using TCGA data

Abstract

ST7 (Suppression of Tumorigenicity 7) was reported as a protein playing a role in maintaining cellular

structure. This study aims to investigate the ST7 alteration profiles and frequency of alteration in different

cancers using data from The Cancer Genome Atlas (TCGA). The correlation between alterations of ST7

and angiogenesis-related genes, SERPINE1, MMP13 and VEGFA, was determined and the relation

between ST7 and genes involved in suppression of ST7 transcription, PRMT5 and SMARCA4, were also

analyzed. Data of six cancer groups from The Cancer Genome Atlas (TCGA) including ovarian serous

cyst adenocarcinoma (OSC), liver hepatocellular carcinoma (LHC), bladder urothelial adenocarcinoma

(BUA), stomach adenocarcinoma (SC), prostate adenocarcinoma (PRAD) and glioblastoma multiforme

(GBM) were downloaded for this study. The results indicated that three alteration patterns including

amplification, missense mutation and deletion were observed in six cancer studies. Gene pair between

ST7 and SERPINE1 indicated co-occurrent alteration in BUC, OSC and SC (p < 0.05). However, no

association between alterations of these two genes and survival events in our study was observed. Shorter

overall survival rate and disease-free survival were found in BUC patients with ST7, PRMT5 and

SMARCA4 alterations. These findings suggest that using TCGA data can target the potential genes

involved in carcinogenesis. Combining ST7 with PRMT5 and SMARCA4 could be used as indicators for

analyzing the patient survival in BUC patients and may serve as potential therapeutic target for cancer in

the future.

Keywords: Co-occurrence, Gene alteration, ST7, TCGA

Introduction

ST7 was first identified as a tumor suppressor gene in 2001 [1-2]. Previous studies suggest that

ST7 mediates tumor suppression through the regulation of the genes involved in maintaining the structure

of the cell and involved in oncogenic pathways [3]. ST7 protein differential expression in either normal

tissues throughout the body or in cancer cell lines was identified [1]. Mutations in this gene were rare

observed among series of cell lines and primary cancers studied, implying that direct mutation was not a

target mechanism in affecting ST7 expression and function in cancer cell [4-8]. Aberrant histone

acetylation, epigenetic modulations, has been proposed as a possible mechanism for controlling ST7

expression since significant hypermethylation of the ST7 promoter has not been observed in primary

breast cancer [3]. However, alteration patterns of this gene in primary cancers have remained unclear.

The Cancer Genome Atlas (TCGA) Project, launched by the National Institutes of Health in

2005, is the largest cancer genomics data collections by gathering research data from multi-institutional

innovative research program. The main objective of this database was to facilitate the comprehensive

understanding of the cancer genetics using genomic technologies and analysis tools to catalogue all of

the potential cancer driver genes, identify robust prognostic and predictive biomarkers as well as novel

drug therapeutic targets [9-10]. TCGA datasets include more than eleven thousand patients, representing 33 cancers, and over half a million total files. This information is publicly available and has been used by many researchers. TCGA currently collects and contain many different genome-wide data including expression of coding and non-coding RNA, somatic mutations, copy-number alteration, and epigenomic data such as promoter methylation. In addition to genomic and epigenomic data, it collects proteomic data by using reverse phase protein arrays (RPPA) technology. There were new oncogenes and tumor suppressor genes identified through analysis of TCGA data. Using data from TCGA has gained obvious achievements in prediction of cancer prognosis and found cancer therapeutic biomarker since integrated gene expression data and clinical outcome data have provided the potential to correlate the expression pattern with the survival.

In this study, we identified the alteration patterns of ST7 gene by downloading mutation and CNA (DNA copy-number alterations) data type from 21 TCGA cancer groups and five TCGA cancer groups including ovarian serous cyst adenocarcinoma, liver hepatocellular carcinoma, bladder urothelial adenocarcinoma, stomach adenocarcinoma and glioblastoma multiforme encountered high percentage of ST7 alteration (data not shown) were selected for further analyzing. Moreover, prostate adenocarcinoma group was also included in this study due to PC-3 prostate cancer cell line expresses lowest ST7 mRNA level [3]. ST7 alteration patterns were identified and alteration frequencies were then compared across 6 types of cancer. In addition,we used TCGA datasets on a web-based genomic analysis platform to investigate the correlation between ST7 and other genes including angiogenesis -related genes (SERPINE 1, MMP13 and VEGFA) in those selected cancer groups since ST7 function has been reported playing some role in cellular matrix maintenance [3] and involving in angiogenesis regulation via suppressing in vivo tumor growth in nude mice[2]. SERPINE1, also known as PAI-1, is a gene that its-translated protein plays an important role in the inhibition of extracellular matrix (ECM) degradation [11] while MMP13, a gene in a family of zinc-dependent proteinases, plays a role in promotion of tumor invasion and metastasis by degrading ECM components such as collagens and proteoglycans[12].

A previous study by *Hooi et al.* showed increase in *SERPINE1* expression and decrease in *MMP-13* expression in *ST7*-transfected PC-3 cells when compared to empty vector-transfected cells [3]. *SERPINE1* was also found to be expressed in similar level to ST7 expression, while the opposite pattern was observed with *MMP-13* expressions [3, 13]. We also investigated the correlation between *ST7* and *VEGFA*, a proangiogenic protein secreted by tumor [14], to determine the potential effect of *ST7* expression on gene involved in promoting angiogenesis process. In addition, we also analyzed the relation between *ST7* and *ST7*- associated genes (*PRMT5* and *SMARCA4*) since the association of protein arginine methyltransferase 5 (*PRMT5*) with the *BRG1* (*SMARCA4*) chromatin remodeling protein have been reported to be directly involved in the repression of *ST7* transcription by regulating chromatin accessibility [15]. The results from integrated 6 gene expression was used to identify cancer survival and disease free status comparing with those which no alteration detected. These data suggest a role for *ST7* as a biomarker for cancer progression detection in some cancers.

Materials and methods

Genetic alterations and gene expression databases

Data regarding *ST7*, *SERPINE 1*, *MMP13*, *VEGFA*, *PRMT5* and *SMARCA4* in six cancer typeswere obtained from The Cancer Genome Atlas (TCGA) database, an open access database publicly available at http://www.cbioportal.org [8-9]. The cancers analyzed were: ovarian serous cyst adenocarcinoma (OSC; TCGA provision), liver hepatocellular carcinoma (LHC; TCGA provision), bladder urothelial adenocarcinoma (BUA; TCGA provision), stomach adenocarcinoma (SC; TCGA provision), prostate adenocarcinoma (PRAD; TCGA provision) and glioblastoma multiforme (GBM; TCGA provision). Several options in the web interface of cBioPortal were selected for analyzing and visualizing alterations in *ST7* across all of the selected samples in the TCGA data. Briefly, as mentioned above, we selected 6 cancer studies and data type priority "Mutation and CNA"

(DNA copy-number alterations)". For the gene set of interest, term of "ST7" was entered into the input box. In addition, for visualizing the relationship of ST7 genetic alterations with SERPINE 1, MMP13, VEGFA, PRMT5 and SMARCA4 alteration events in 6 cancer studies, we selected cancer samples with sequencing, CNA and mRNA data (RNA Seq V2) and entered all six queried genes into the input box. Types of alterations and a comparison of the alteration frequencies in given genes across all 6 studies were illustrated in OncoPrint tab. The statements of approval or informed consent were not required for our study as we obtained data from an open access database [16].

Genomic alterations summary

An OncoPrint obtained from genomic alterations analysis step was used to summarize the genomic alterations of *ST7* and its-related genes through cancer samples. On the table, rows represented genes and columns represented samples. Genomic alterations including mutations, CNA (amplifications and homozygous deletions), and changes in gene expression were summarized by graphs and color coding. This was a preliminary way to know about the alteration patterns of *ST7* in different types of cancer. In this section, mutual exclusivity and co-occurrence between ST7 and its-related genes were analyzed. Moreover, only one genetic event existed in each cancer sample were analyzed as mutually exclusive while co-occurrence was the situation that multiple genes are altered in the same cancer sample. This was a preliminary way to gather information about the different alterations and expressions of given genes in each 6 cancer studies.

Survival analysis

From survival analysis, overall survival and disease/progression free survival rate were compared between samples with alteration of *ST7* only as well as *ST7* with 5 given genes and samples without alteration. The results were shown if the survival data in each type of cancer were available.

Statistics

A scatter plot of mRNA expression in each sample was presented. Expression data was log2 transformed and median centered per sample. For correlation analysis, co-occurrence and mutual exclusivity analysis was performed. Odds Ratio and p-values for each pair of significant aberrations was reported. For survival analysis, Kaplan-Meier plots with a logrank test were performed to compare the overall survival and disease/progression free survival rate of each cancer type with at least one alteration or without alteration in query genes. All kind of analyses mentioned above were performed in cBioPortal (http://www.cbioportal.org/).

Results and discussion

Genetic alterations of ST7 in 6 cancer types from TCGA datasets

To investigate if functional activation or inactivation of *ST7* might be an important event in most cancer types, we surveyed the frequency of gene copy number alteration, mutations, and other alteration-related *ST7* function in TCGA datasets. Six cancer types with "Mutation and DNA copy-number alterations" data were selected for characterizing *ST7* genetic alterations (**Table 1**). Analyzed data was indicated in bar graph (**Fig.1A**). Vertical bars represent alterations for single cancer. Alterations of *ST7* were highest in OSC and lowest in GMB. Copy number variations (CNV) in *ST7* were frequent in all selected cancers. *ST7* amplification was found to be a frequent alteration event in OSC (5.7%), SC (3.83%), LHC (3.82%) and GMB(1.1%), respectively. Deep deletion was most frequent in prostate adenocarcinoma (1.22%) while missense mutation could be highly detected in bladder urothelial carcinoma(1.7%) (**Fig. 1A**). Most mutations were missense throughout the entire ST7 protein and no specific hot spots mutation was detected (**Fig. 2B**). Our finding consistent with previous report indicating that direct mutation was not main mechanism affecting *ST7* function [4-8]. The level of ST7 mRNA expression was then investigated and analyzed using the cBioPortal in six types of cancer as indicated in

using TCGA data

table 1. LHC and OSC, compared to other cancers, had a higher level of ST7 mRNA expression (**Fig. 2C**). The expression was found lowest in BUA which percentage of mutation and deep deletion were most frequent in this cancer. Thus, the function of *ST7* is distinct in different cancers and its expression was correlated with present of alteration patterns found in each cancer.

Table 1. Cancer types and number of TCGA samples selected for ST7 genetic alteration characterization

Cancer Type	TCGA cancer Abbreviation	Cancer Sample (n)
Ovarian Serous Cyst adenocarcinoma	OSC	316
Stomach Adenocarcinoma	SC	287
Liver Hepatocellular Carcinoma	LHC	366
Prostate Adenocarcinoma	PRAD	492
Glioblastoma Multiforme	GBM	273
Bladder Urothelial Carcinoma	BUC	235

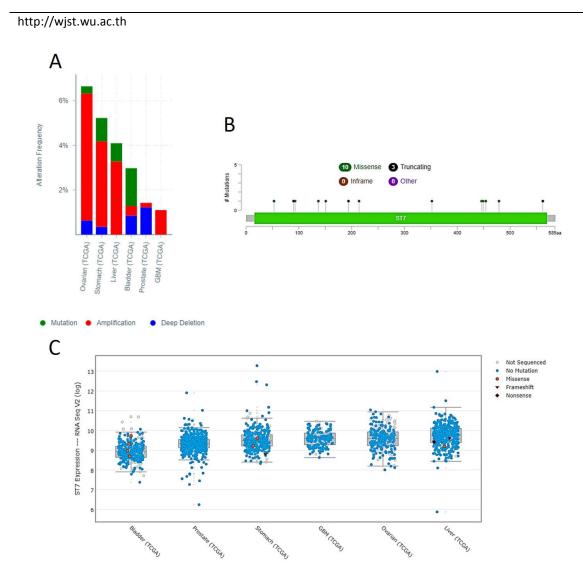


Figure 1. Summary graph of ST7 alterations and analysis of ST7 mRNA expression level data in individual cancers. The data were obtained and analyzed using cBioPortal. (A) The amplifications, mutation and deletions were represented as red, green and blue bars, respectively. The percentage of ST7 alteration frequency is indicated. (B) ST7 mutation detected in TCGA cancer group are shown. (C) Level of ST7 mRNA expression in six types of cancer. The median and inter quartile range are presented. Every spot represents a single study. White spots represent those analyzed without gene sequencing, blue spots represent normal results of gene sequencing and red spots represent missense mutations

Genetic alterations of ST7 and 2 groups of ST7-related genes in 6 cancer types from TCGA datasets

We examined the relationship between ST7 and other ST7-related genes alterations including angiogenesis -related genes (SERPINE 1, MMP13 and VEGFA) and ST7- associated genes (PRMT5 and SMARCA4) in 6 cancers from TCGA dataset. To generate an OncoPrint profile, cancer samples with CNA (Copy Number Alteration), mutation, mRNA, and protein data were downloaded for this study as follow: ovarian serous cyst adenocarcinoma (OSC; TCGA provision), liver hepatocellular carcinoma (LHC; TCGA provision), bladder urothelial adenocarcinoma (BUA; TCGA provision), stomach adenocarcinoma (SC; TCGA provision), prostate adenocarcinoma (PRAD; TCGA provision) and glioblastoma multiforme (GBM; TCGA provision). As shown in the Figure 2 OncoPrint, by downloading three more data types, mRNA up-regulation and down-regulation were also be included in alteration frequency calculation. The results indicated that ST7 alteration frequencies were highest detected in SC (19%) consisting mainly of ST7 mRNA up-regulation and were lowest detected in PRAD (5%). The similar alteration frequency was observed between ST7 and angiogenesis -related gene, SERPINE 1 in OSC, and GBM cases (Fig. 2A, 2F) while the similar alteration frequency between ST7 and VEGFA was observed in PRAD, SC and LHC cases (Fig. 2B-C, 2E). Moreover, ST7 and MMP13 alterations were identified at a similar frequency in 4-5% and 9-10% of PRAD and OSC cases, respectively. The relationship of ST7 genetic alterations and alteration evens in SERPINE1, VEGFA and MMP13 across 6 TCGA cancer samples was analyzed and summarized in table 2. The result indicated that ST7 alterations in BUA, OSC and SC, studies have shown tendency towards co-occurrence with SERPINE1 alteration events with significance of P-0.018, p<0.001 and p<0.001, respectively. ST7 and VEGFA tend to be mutual exclusively (non-significance) in LHC, SC and PRAD cases. Co-occurrence between ST7 and MMP13 alteration was not statistically significant in all cancer studies. Regarding ST7related genes (PRMT5 and SMARCA4), alteration frequency of these three queried genes was highest detected in OSC (66%) and lowest detected in PRAD (15%) (Fig. 3). ST7 and PRMT5 alterations were

identified at a similar frequency in 5–6% and 16-18% of PRAD and GBM studied, respectively (**Fig. 3A-B**) while the similar alteration frequency between *ST7* and *SMARCA4* was observed in GBM, PRAD and LHC cases (**Fig 3A-B**, **3E**). *ST7* alterations have tendency towards co-occurrence with *PRMT5* alteration event in SC studied with significant of P -0.027. Gene pair between *ST7* and *SMARCA4* indicated co-occurrent alteration in GBM cancer group (p < 0.001) while co-occurrence between *PRMT5* and *SMARCA1* alteration was also observed with significance of P -0.005 (**Table 3**). The mechanism of this co-occurrence between the alteration of *ST7* and *SERPINE1* and their pathway events remains unknown eventhough previous study reported that *SERPINE1* was up-regulated in ST7-transfected prostate cancer cell line [3]. Therefore, this finding suggests that *ST7* and *SERPINES* alterations mostly coexist in some cancer, but alterations in these genes are on independent pathways to drive carcinogenesis. However, *PRMT5* and *SMARCA4* was reported to suppress *ST7* transcription in cancers [15] which co-existing between *ST7* and these two genes alteration could be detected in SC and GBM, respectively (**Table 3**).

Table 2. Summary table of P-values and log odd ratio showing tendency for co-occurrence and mutual exclusivity between *ST7* alterations and angiogenesis-related genes (*SERPINE1*, *VEGFA* and *MMP13*) in six TCGA cancer groups.

Type of cancer	Gene	Gene B	Neither	A	В	Both	Log	p-Value	Adjusted	Tendency
	A			Not	Not		Odds		p-Value	
				В	A		Ratio			
Bladder Urothelial	ST7	SERPINE1	353	31	21	8	1.467	0.003	0.018	Co-occurrence*
Carcinoma	ST7	VEGFA	348	34	26	5	0.677	0.156	0.936	Co-occurrence
	ST7	MMP13	355	36	19	3	0.443	0.345	1	Co-occurrence
Ovarian Serous	ST7	SERPINE1	514	41	37	14	1.557	< 0.001	< 0.001	Co-occurrence*
Cystadenocarcinoma	ST7	VEGFA	519	48	32	7	0.861	0.053	0.318	Co-occurrence
	ST7	MMP13	498	47	53	8	0.47	0.175	1	Co-occurrence
Liver Hepatocellular	ST7	MMP13	385	46	7	4	1.565	0.026	0.158	Co-occurrence
Carcinoma	ST7	SERPINE1	375	45	17	5	0.896	0.09	0.538	Co-occurrence
	ST7	VEGFA	348	46	44	4	-0.374	0.342	1	Mutual exclusivity
Stomach	ST7	SERPINE1	428	12	30	8	2.252	< 0.001	< 0.001	Co-occurrence*
Adenocarcinoma	ST7	VEGFA	423	19	35	1	-0.452	0.546	1	Mutual exclusivity
	ST7	MMP13	450	19	8	1	1.085	0.322	1	Co-occurrence
Prostate	ST7	SERPINE1	436	17	39	6	1.373	0.012	0.073	Co-occurrence
Adenocarcinoma	ST7	VEGFA	449	23	26	0	<-3	0.283	1	Mutual exclusivity
	ST7	MMP13	457	22	18	1	0.143	0.6	1	Co-occurrence
Glioblastoma	ST7	SERPINE1	528	32	40	4	0.501	0.262	1	Co-occurrence
Multiforme	ST7	VEGFA	550	34	18	2	0.586	0.337	1	Co-occurrence
	ST7	MMP13	538	34	30	2	0.053	0.583	1	Co-occurrence

Asterisk (*) indicates statistically significant co-occurrence between two gene pairs

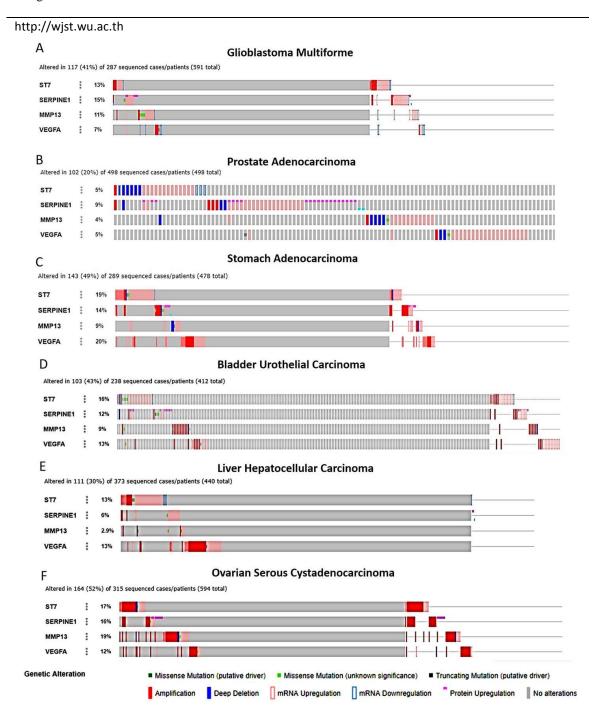


Figure 2 The OncoPrint tab summarizes genomic alterations in 4 queried genes including ST7, SERPINE1, MMP 13 and VEGFA across 6 TCGA cancer samples. Each row represents a gene, and

each column represents cancer sample. Mutations, copy number alterations, mRNA and protein alterations of 6 genes are shown for each cancer of the TCGA dataset. Percentage of each gene alteration was shown in each TCGA cancer sample including glioblastoma multiforme (A), prostate adenocarcinoma (B), stomach adenocarcinoma (C), bladder urothelial carcinoma (D), liver hepatocellular carcinoma (E), and ovarian serous cystadenocarcinoma (F).

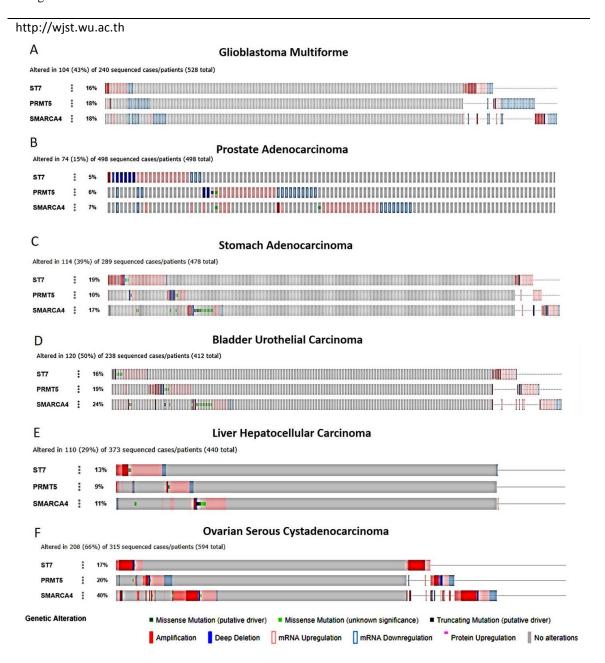
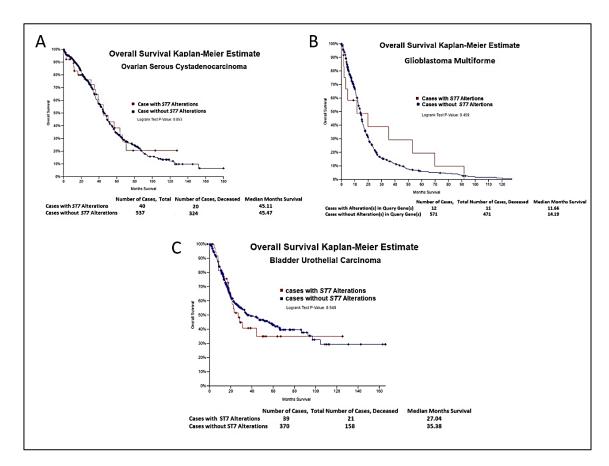


Figure 3.The OncoPrint tab summarizes genomic alterations in three queried genes including ST7, PRMT5 and SMARCA4 across six TCGA cancer samples. Each row represents a gene, and each column represents cancer sample. Mutations, copy number alterations, mRNA and protein alterations of three genes are shown for each tumor of the TCGA dataset. Percentage of each gene alteration was shown

in each TCGA cancer sample including glioblastoma multiforme (A), prostate adenocarcinoma (B), stomach adenocarcinoma (C), bladder urothelial carcinoma (D), liver hepatocellular carcinoma (E), and ovarian serous cystadenocarcinoma (F).

Table 3. Summary table of P-values and log odd ratio showing tendency for co-occurrence and mutual exclusivity among *ST7*, *PRMT5* and *SMARCA4* alterations and in six TCGA cancer groups.


Type of cancer	Gene A	Gene B	Neither	A	В	Both	Log	p-Value	Adjusted	Tendency
				Not B	Not A		Odds Ratio		p-Value	
Bladder Urothelial	ST7	SMARCA4	327	30	47	9	0.736	0.064	0.191	Co-occurrence
Carcinoma	ST7	PRMT5	333	34	41	5	0.178	0.444	1	Co-occurrence
Ovarian Serous	ST7	SMARCA4	438	42	113	13	0.182	0.347	1	Co-occurrence
Cystadenocarcinoma	ST7	PRMT5	492	49	59	6	0.021	0.553	1	Co-occurrence
Liver Hepatocellular	ST7	PRMT5	365	43	27	7	0.789	0.074	0.223	Co-occurrence
Carcinoma	ST7	SMARCA4	354	46	38	4	-0.211	0.471	1	Mutual exclusivity
Stomach	ST7	PRMT5	403	47	20	8	1.232	0.009	0.027	Co-occurrence *
Adenocarcinoma	ST7	SMARCA4	380	48	43	7	0.254	0.348	1.000	Co-occurrence
Prostate	ST7	PRMT5	448	20	28	3	0.875	0.165	0.495	Co-occurrence
Adenocarcinoma	ST7	SMARCA4	446	19	30	4	1.141	0.063	0.189	Co-occurrence
	PRMT5	SMARCA4	443	22	25	9	1.981	< 0.001	< 0.001	Co-occurrence *
Glioblastoma	ST7	PRMT5	450	34	39	5	0.529	0.216	0.648	Co-occurrence
Multiforme	ST7	SMARCA4	456	28	33	11	1.692	< 0.001	< 0.001	Co-occurrence *
	PRMT5	SMARCA4	450	34	34	10	1.359	0.002	0.005	Co-occurrence *

Asterisk (*) indicates statistically significant co-occurrence between two gene pairs

Survival analysis of altered ST7 and four queried genes in 6 types of TCGA cancer cases.

We examined the impact of ST7 alteration clinical outcome in the TCGA data sets from six types of cancer. The differences of overall survival are computed between tumor samples that have at least one alteration in ST7 gene and tumor samples that do not contain any alteration. The results were displayed a kaplan-meier plots with P- values from a log rank test. A query for ST7 alterations in each type of cancer is used to illustrate these results. The analysis showed that all cancer groups with altered ST7 did not show significant shorter overall survival rate. However, alteration of ST7 tend to be associated with decreased survival of patients. Median month's survival of OSC, GBM and BUC cases was reduced from 45.47 to 45.11 months (0.8%), 14.19 to 11.66 months (18%) and 35.38 to 27.04 (76.42%), respectively, when compare with cases without ST7 alteration (Fig.4). When we considered about the ST7 expression level among these three cancers, we found that ST7 mRNA expression was lowest in BUC correlating with mutation and deep deletion which are the majority of ST7 alteration types in this cancer. These types of alteration would affect ST7 function in maintaining cellular structure and regulating proliferation rate since ST7 has been proposed as a tumor suppressor gene and its function is involved in oncogenic pathway [1-2]. We also examined the impact of alterations ST7 together with other 3 genes including SERPINE, VEGFA, and MMP13. We found that all cancer studies did not show significant shorter overall survival rate. However, month survival was reduced in GMB patients (not significance) and shorter disease-free survival rate was significant observed (p -0.0258) when used those three queried gene alteration analysis (Fig. 5). We then examined the impact of alterations of ST7 together with other 2 genes including PRMT5 and SMARCA4 which was reported to be directly involved in the repression of ST7 transcription[15]. Alteration of these three queried genes was significantly associated with decreased survival and shorter disease-free survival rate in bladder urothelial carcinoma with P-0.00103 and P-0.00101, respectively. (Fig. 6) while alteration of ST7 alone did not show significant reduced of survival event in BUC samples. This finding suggests that repressing ST7 transcription by PRMT5 and SMARCA4

through regulating chromatin accessibility was the important mechanism for suppressing ST7 expression which related to the reduction of patient's survival rate.

Figure 4. Kaplan-Meier survival curve for overall survival of three cancer patients with and without altered ST7. Red color plot indicates overall survival for patients with changes in *ST7* while blue color indicates cases without *ST7* alterations. The patients with the altered *ST7* in six studied cancers (TCGA provisional) did not show significant differences in their overall survival. However, the reduced median month's survival was observed in ovarian serous cystadenocarcinoma (A), glioblastoma multiforme (B) and bladder urothelial carcinoma(C) compared with patients without *ST7* alterations.

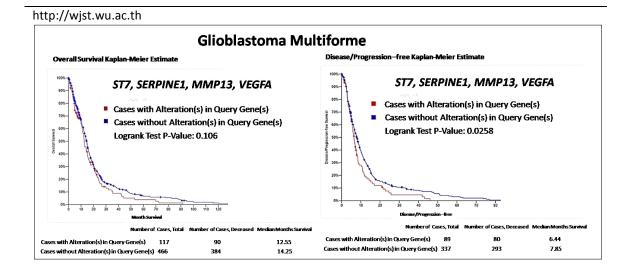


Figure 5. Kaplan-Meier survival curve for glioblastoma multiforme patients with and without ST7 SERPINE1, MMP13, VEGFA alteration. GBM patients with four queried genes alteration did not show significant shorter overall survival rate but revealed significant shorter disease-free survival rate compared to GBM patients without those four queried genes alteration.

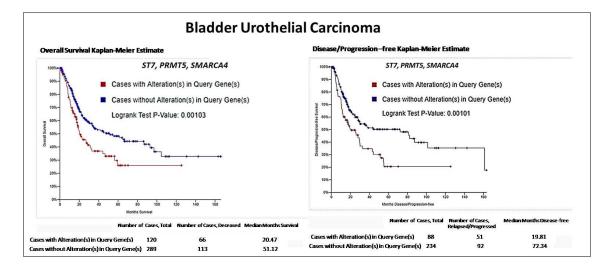


Figure 6 Kaplan-Meier survival curve for bladder urothelial carcinoma patients with and without ST7, PRMT5 and SMARCA4 alteration. Overall survival and disease/progression free survival rate in BUC patients was influenced by ST7, PRMT5 and SMARCA4 status.

Conclusions

ST7 is a not very well studied protein in cancer patients. Previous reports indicated that ST7 is higher expressed in normal tissues than cancer samples [1]. However, very little is known regarding the pattern of ST7 alteration, the association between ST7 and angiogenesis-related genes as well as ST7-regulated genes in human cancer even though the significant correlation among these genes was reported in some cancer cell lines [3]. In the current study, we used The cBioPortal for Cancer Genomics as a tool for exploring, visualizing, and analyzing the biological and clinical features of ST7 alterations in six cancer types from TCGA databases. Our study is the first data mining study to explore the relationship between alterations of ST7 and 5 ST7-related genes and patient prognosis in TCGA dataset. Our findings reveal that ST7 is altered with different patterns in many types of human cancer cells and even types of ST7 genetic alterations in cancer were depend on cell type-specificity and ST7 -mediated cell signaling pathways. Therefore, this gene might have different roles depending on cellular context and can play an important role in cancer. Interestingly, our study found that ST7 and SERPINE1 alterations mostly coexist

in BUC, OSC and SC while MMP13 and VEGFA do not show significant relations. However, neither ST7 nor SERPINE1 were associated with both survival events (overall survival and disease free survival) in our study but alterations in these three genes indicated significant shorter disease-free survival rate in GMB patients. Therefore, alterations in these genes are on independent pathways to GMB. Morover, the association among three genes which are ST7, PRMT5 and SMARCA4 revealed significant shorter overall survival rate and shorter disease-free survival rate in BUC sample while single ST7 alteration did not show significant results. Taken together, this analysis demonstrates that ST7 alterations was not suggested as a proper indicator for observing the cancer patient survival. However, combined analysis between ST7 with other ST7-related genes (PRMT5 and SMARCA4) could be used as indicators for analyzing the patient survival in some cancer cases. Moreover, this study indicated that cBioportal and TCGA database provides a new perspective to simultaneously perform the analysis of genetic alterations and clinical outcomes for searching impact biomarkers for cancer prognosis and treatment in the future.

Acknowledgement

This work was supported by trainingscholarships for WU-staff from Center of International Affairs, Walailak University. We would also like to thank Dr. Ana I. Robles and Dr. Jean C Zenklusenfrom

National Cancer Institute, USA for valuable suggestions regarding cBiportal tool and TCGA data.

Conflicts of interest

We declare that we have no conflict of interest.

References

[1] J Zenklusen and C Conti. Cytogenetic, molecular and functional evidence for novel tumor suppressor genes on the long arm of human chromosome 7. *MolCarcinog*. 1996;**15**:167-75.

- [2] J Zenklusen, C Conti and E Green. Mutational and functional analyses reveal that ST7 isahighly conserved tumor-suppressor gene on human chromosome 7q31. Nat Genet. 2001;27:392-8.
- [3] CS-F Hooi, C Blancher, W Qiu, IM Revet, LH Williams, ML Ciavarella2, RL Anderson, EW Thompson, A Connor, WA Phillips and IG Campbell. ST7 mediated suppression of tumorigenicity of prostate cancer cells is characterized by remodeling of the extracellular matrix. Oncogene. 2006;25:3924-33.
- [4] N Thomas, D Choong, V Jokubaitis, P Neville and I Campbell. Mutation of the *ST7*tumor suppressor gene on 7q31.1 is rare in breast, ovarian and colorectal cancers. *Nat Genet*. 2001;29:379-80.
- [5] K Hughes, A Hurlstone, E Tobias, R McFarlane and D Black. Absence of ST7 mutations in tumor-derived cell lines and tumors. *Nat Genet*. 2001;**29**:380-1.
- [6] V Brown, C Proby, D Barnes and D Kelsell. Lack of mutations within ST7 gene in tumourderived cell lines and primary epithelial tumours. *Br J Cancer*. 2002;**87**:208-11.
- [7] S Dong, D Sidransky. Absence of ST7 Gene Alterations in Human Cancer. ClinCancer Res. 2002;8:2939-41.
- [8] C Lu, HM Xu, Q Ren, Y Ao, ZN Wang, X Ao, L Jiang, Y Luo and X Zhang. Somatic mutation analysis of p53 and ST7 tumor suppressor genes in gastric carcinoma by DHPLC. World J Gastro enterol. 2003;9:2662-5.
- [9] J Gao, BAAksoy, UDogrusoz, G Dresdner, B Gross, S Sumer, Y Sun, A Jacobsen, R Sinha, E Larsson, E Cerami, C Sander and N Schultz. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013; 6(269):11.
- [10] E Cerami, J Gao, Dogrusoz U, Gross B, Sumer S, Aksoy B, Jacobsen A, Byrne C, Heuer M, Larsson E, Antipin Y, Reva B, Goldberg A, Sander C and Schultz N. The cBio cancer

- genomics portal: an open platform for exploring multidimensional cancer genomics data. *Cancer Discov.* 2012; **2**:401–404.
- [11] JD Vassalli, AP Sappino and D Belin. The plasminogen activator/plasmin system. *J Clin Invest.* 1991; **88**:1067-72.
- [12] MF Leeman, S Curran and GI Murray. The structure, regulation, and function of human matrix metalloproteinase-13. *CritRevbBiochembMol Biol.* 2003;**37**:149-66.
- [13] N Charong, P Patmasiriwat, J Zenklusen. J Cancer Res ClinOncol. 2011;137:89-97.
- [14] DR Senger, SJ Galli and AM Dvorak. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science. 1983;**219**:983-5.
- [15] S Pal, S Vishwanath, H Erdjument-Bromage, P Tempst and Sif S. Human SWI/SNFassociated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes. *Mol Cell Biol.* 2004;24:9630-45.
- [16] LeeJS, Exploring cancer genomic data from the cancer genome atlas project. *BMB Rep.* 2016; **49**: 607-611

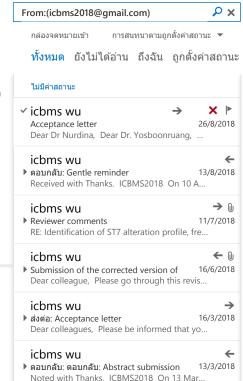
(+) จดหมายใหม่

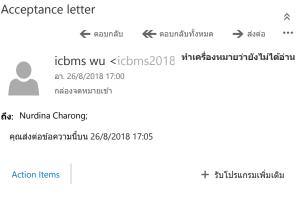
รวมข้อความจาก:

- กล่องจดหมายทั้งหมด
- โฟลเดอร์ปัจจุบัน (กล่องจุดหมาย
- 🔾 โฟลเดอร์และโฟลเดอร์ย่อย ปัจจบัน

แสดงข้อความเหล่านี้:

- ทั้งหมด
- เก่ากว่าหนึ่งสัปดาห์
- 🔾 เก่ากว่าหนึ่งเดือน
- 🔍 เก่ากว่าหนึ่งปี
- ∡ รายการโปรด กล่องจดหมายเข้า 228
 - รายการที่ส่ง แบบร่าง [31]
- ▲ Nurdina Charong


กล่องจดหมายเข้า 228


แบบร่าง [31] รายการที่ส่ง

รายการที่ถูกลบ 592

บันทึกย่อ

อีเมลขยะ [12]

Dear Dr Nurdina,

Dear Dr. Yosboonruang,

We are pleased to inform you that your manuscript entitled of "Identification of ST7 alteration profile, frequency of alteration and correlation with ST7-related genes using

TCGA data " has been officially accepted for publication in Walailak Journal of Science and Technology (WJST) special

You will be informed of the final preparations for publication for your approval by WJST editorial in the near future.

Thank you for your kind support.

Sincerely,

ICBMS2018

icbms2018@g...

กิจกรรมที่เกี่ยวข้องกับการนำผลจากโครงการไปใช้ประโยชน์

จากข้อมูลผลงานวิจัยที่ได้ในครั้งนี้สามารถต่อยอดพัฒนางานวิจัยเพิ่มเติมจากการใช้โครงการ จีโนมมะเร็ง (TCGA) และ การคันพบ potential cancer related-indicator ได้แก่ PRMT5 และ SMARCA4 ดังนี้

- 1. ทำการวิเคราะห์ผลการเปลี่ยนแปลงของยืน PRMT5 และ SMARCA4 ในมะเร็งชนิดต่างๆ และหา ความสัมพันธ์กับอัตราอยู่รอด (Overall survival rate) และ อัตราไม่มีโรคย้อนกลับเป็นซ้ำ (Disease-free survival rate) โดยใช้ข้อมูลจากโครงการจีโนมมะเร็ง (TCGA)
- 2. นำข้อมูลที่ได้มาต่อยอดจัดทำโครงร่างวิจัยที่มีความเกี่ยวข้องกับการใช้ ยีน PRMT5 และ SMARCA4 มาพัฒนาเป็น indicator ที่สามารถใช้ได้จริงในผู้ป่วยมะเร็งเพื่อประเมินความรุนแรง และการดำเนินไปของโรค เตรียมเสนอเพื่อสนับสนุนทุนวิจัยในปี 2562