Project Code: TGR5680039

Project Title: Role of oxidative/nitrative DNA lesions in relation to DNA methylation, stemness

property and tumorigenesis in cholangiocarcinoma

Investigator: Raynoo Thanan, Department of Biochemistry, Faculty of Medicine, KKU

E-mail Address: rothanan@yahoo.com and raynoo@kku.ac.th

Project Period: 2 years (June 2013-June 2015)

Introduction: DNA methylation is one of epigenetic regulators that changes gene activity. Oxidative stress induced by chronic inflammation is a major cause of several cancers including cholangiocarcinoma (CCA). Under cellular bombarding by oxidative stress most of cells die, whereas some can adapt to survive which is called "oxidative stress-resistant cells". We hypothesize that the oxidative stress-resistant cells should have stem cell property leading to the accumulation of cellular damage as well as epigenetic changes resulting in CCA carcinogenesis.

Objective: To identify DNA methylation targets of oxidative stress and to induce oxidative stress-resistant cell lines.

Methods: We conducted methyl-binding domain capture sequencing (MBD Cap-seq) analysis on 12 clinical specimens and an analysis with an oxidative stress marker and prognosis. The selected region was then verified by methylation specific PCR (MSP) and oxidative stress marker (8-oxodG) was measured using immunohistochemistry. The oxidative stress-resistant cell lines (ox-MMNK1-L) were induced from an immortal cholangiocyte cell line (MMNK1).

Results: Hypomethylation of insulin receptor substrate 1 (IRS1) and hypermethylation of early B cell factor 1 (EBF1) were identified as DNA methylation targets in related with oxidative stress and poor prognosis, respectively. Both IRS1 and EBF1 play roles in several types of stem cell differentiations. Moreover, high expression of IRS1 was significantly correlated with poor prognosis and high 8-oxodG formation. Interestingly, low expression of EBF1 and DNA hypermethylation of EBF1 promoter region were also significantly correlated with poor prognosis and trended to correlate with oxidative stress. Moreover, ox-MMNK1-L is oxidative stress-resistant cells which were induced from MMNK1 cell by long term exposed with H₂O₂.

Conclusions: IRS1 and EBF1 may be epigenetic targets of oxidative stress which play roles in CCA development. In addition, ox-MMNK-L cell line can be used as a model of oxidative stress-related CCA.

Further works: Functional analysis of IRS1 and EBF1 in CCA development should be further studied.

Keywords: DNA methylation, oxidative stress, cholangiocarcinoma, stem cells, IRS1, EBF1

รหัสโครงการ: TGR5680039

ชื่อโครงการ: บทบาทของภาวะ oxidative/nitrativestress ต่อการควบคุมการแสดงออกของยีนที่ เกี่ยวข้องกับลักษณะของเซลล์ตันกำเนิดและคุณสมบัติของมะเร็งโดย DNA Methylation ในมะเร็งท่อน้ำดี ชื่อนักวิจัย: เรณู ทานันท์ ภาควิชาชีวเคมี คณะแพทยศาสตร์ มหาวิทยาลัยขอนแก่น

E-mail Address: rothanan@yahoo.com and raynoo@kku.ac.th

ระยะเวลาโครงการ: 2 ปี (มิถุนายน 2556-มิถุนายน 2558)

บทน้ำ: DNA methylation เป็นกระบวนการควบคุมการแสดงออกของยืนเรียกว่า การควบคุมเหนือ พันธุกรรม (epigenetics) oxidative stress เป็นสาเหตุหลักในการเกิดมะเร็งหลายชนิดรวมถึงมะเร็งท่อ น้ำดี โดยปกติแล้วเซลล์ส่วนใหญ่เมื่ออยู่ในภาวะ oxidative stress จะถูกทำลายและทำให้เกิดการตาย แต่ มีเซลล์บางเซลล์ที่สามารถปรับตัวและมีชีวิตอยู่ได้เรียกเซลล์เหล่านั้นว่า "เซลล์ที่ดื้อต่อภาวะ oxidative stress" คณะวิจัยมีสมมุติฐานว่าเซลล์ที่ดื้อต่อภาวะ oxidative stress นั้นจะต้องมีคุณสมบัติของเซลล์ตัน กำเนิดเพื่อให้เกิดการสะสมความผิดปกติต่างๆ รวมถึงการเปลี่ยนแปลงการควบคุมเหนือพันธุกรรมเป็น ระยะเวลานานและทำให้เกิดมะเร็งท่อน้ำดีในที่สุด

วัตถุประสงค์: เพื่อคันหาและบ่งซี้ชนิดของยีนที่เป็นเป้าหมายของการเปลี่ยนแปลงกระบวนการ DNA methylation จากภาวะ oxidative stress และกระตุ้นให้เกิดเซลล์ที่ดื้อต่อภาวะ oxidative stress วิธีทดลอง: คณะผู้วิจัยได้ทำการทดลองโดยวิธี MBD Cap-seq analysis จากชิ้นเนื้อผู้ป่วยมะเร็งท่อน้ำดี จำนวน 12 ราย แล้วจากนั้นได้คัดเลือกยีนที่สนใจและศึกษา methylation specific PCR (MSP) และ immunohistochemistry ในกลุ่มประชากรที่ใหญ่ขึ้น ตัวบ่งชี้ภาวะ oxidative stress ที่ใช้คือ 8-oxodG ผลการทดลอง: การเกิด DNA hypomethylation ที่ insulin receptor substrate 1 (IRS1) และ hypermethylation ที่ early B cell factor 1 (EBF1) มีความสัมพันธ์กับภาวะ oxidative stress และอัตรา การรอดชีพที่ต่ำตามลำดับ โดยที่ทั้ง IRS1 และ EBF1 ต่างเป็นโปรตีนที่ทำหน้าที่เกี่ยวข้องกับ กระบวนการพัฒนาของเซลล์ตันกำเนิดหลายชนิด ทั้งนี้ในชิ้นเนื้อมะเร็งท่อน้ำดีที่มีการแสดงออกของ IRS1 ที่สูง และ EBF1 ที่ต่ำนั้นทำให้อัตราการรอดชีพของผู้ป่วยต่ำลงอย่างมีนัยสำคัญ เป็นที่น่าสนใจว่าการเกิด DNA hypermethylation ของ EBF1 นั้นก็ยังสัมพันธ์กับอัตราการรอดชีพที่ต่ำอย่างมีนัยสำคัญรวมถึงมี แนวโน้มที่เกี่ยวข้องกับภาวะ oxidative stress ด้วย นอกจากนี้แล้วคณะวิจัยได้ประสบความสำเร็จในการ กระตุ้นให้เกิดเซลล์ที่ดื้อต่อภาวะ oxidative stress จากเซลล์ท่อน้ำดี (MMNK1) โดยกระตุ้นด้วย H₂O₂ เป็นเวลานาน และได้ตั้งชื่อเซลล์นั้นว่า ox-MMNK1-L

สรุปและวิจารณ์ผลการทดลอง: IRS1 และ EBF1 น่าจะเป็นเป้าหมายในการเปลี่ยนการควบคุมเหนือ พันธุกรรมจากภาวะ oxidative stress ที่มีบทบาทในการพัฒนาของมะเร็งท่อน้ำดี นอกจากนี้แล้ว ox-MMNK1-L สามารถนำไปใช้ในการศึกษาผลของภาวะ oxidative stress กับการเกิดมะเร็งท่อน้ำดีได้ ข้อเสนอแนะสำหรับงานวิจัยในอนาคต: ควรศึกษาบทบาทหน้าที่ของ IRS1 และ EBF1 ในการเกิด มะเร็งท่อน้ำดี

คำหลัก: DNA methylation, ภาวะเครียดอ๊อกซิเดชั่น, มะเร็งท่อน้ำดี, เซลล์ตันกำเนิด, IRS1, EBF1