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A metric d on a set X is said to be an ultrametric if d satisfies the inequality d(x,y) <
max{d(x,z), d(z,y)} for all x, y, z € X. A function f:[0,00)- [0,) is said to be metric-preserving if
fod is a metric on X for all metric spaces (X,d). In this project, we investigate a variation of the
concept of metric-preserving functions where metrics are replaced by ultrametrics. We also

show some applications of metric-preserving functions in fixed point theory.
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1 Introduction

Under what conditions on a function f : [0,00) — [0,00) is it the case that
for every metric space (X, d), fod is still a metric? It is well-known that for
any metric d, %l and min{1, d} are bounded metrics topologically equivalent
to d, while ﬁ need not be a metric.

We call f : [0,00) — [0,00) metric-preserving if for all metric spaces
(X,d), fodis a metric. Therefore the functions f and g given by f(z) =
11 and g(z) = min{l,z} are metric-preserving but h(z) = % is not.
The concept of metric-preserving functions first appears in Wilson’s arti-
cle [35] and is thoroughly investigated by many authors, see for example,
1,2, 6,7, 10, 11, 12, 13, 14, 15, 18, 22, 23, 24, 28, 33, 34] and references
therein.

However, other important types of distances such as ultrametrics, pseudo-
metrics, pseudodistances [36, 37], w-distances, and 7-distances have not yet
been developed in the connection with metric-preserving functions. These
distances have many applications in mathematics, see for example, applica-
tions of w-distances and 7-distances in [17, 19, 20, 29, 30, 31, 32]. We will
particularly concern with the ultrametrics which arise naturally in the study
of p-adic numbers and non-archimedean analysis [3, 8], topology and dynam-
ical system [4, 16, 21, 38], topological algebra [5], and theoretical computer
science [27].

In connection with ultrametrics and metric-preserving functions, the prob-
lem arises to investigate the properties of the following functions and compare

them with those of metric-preserving functions.
Definition 1. Let f:[0,00) — [0,00). We say that

(i) f is ultrametric-preserving if for all ultrametric spaces (X,d), fod is
an ultrametric,

(i1) f is metric-ultrametric-preserving if for all metric spaces (X,d), fod
18 an ultrametric, and

(iii) f is ultrametric-metric-preserving if for all ultrametric spaces (X, d),
fod is a metric.

In this project, we obtain characterizations of the functions defined in
Definition 1. We also obtain some applications of metric-preserving functions
in fixed point theory. Some of our results are given in the next section.



2 Main Results

In this section, the results we obtain in this project are given. We refer the
reader to our publications [25, 26] for more details.

Theorem 2. Let f : [0,00) — [0,00). Then f is ultrametric-preserving if
and only if f is amenable and increasing.

Proof. Assume that f is ultrametric-preserving. It suffices to show that f
is increasing. Let a,b € [0,00) and a < b. Let dy be the Euclidean metric
on R? and let X = {A, B,C} C R? where A = (—%,0) B = ( 70), and

C = (0 M). Let d = dy |x be the restriction of dy on X. Then

d(A,B) = a, d(A,C) = d(B,C) = b. Therefore (X,d) is an ultrametric
space. Since f is ultrametric-preserving, f o d is an ultrametric. Therefore

fla) = fod(A,B) <max{fod(A,C),fodB,C)}= f(b),

as required. Next assume that f is increasing and amenable. Let (X, d
ultrametric space, and let z,y,z € X. Since f is amenable, f o d(z,y
and only if z = y. Since d is an ultrametric, d(z, z) < max{d(z,y),d(y, 2)
Sod(x,z) <d(x,y)ord(x,z) <d(y,=z).If d(x z) < d(z,y), then f(d(x, z)
fd(z,y)) < max{fod(z,y), fod(y, 2)}. If d(x, 2) < d(y, z), then f(d(z, 2))
fld(y,2)) <max{fod(x,y), fod(y,z)}. In any case fod(z,z) < max{f o
d(z,y), f o d(y,2)}. Therefore f o d is an ultrametric. This completes the
proof. O]

The proof of the following results are omitted because we already pub-
lished it in mathematics journal [25, 26].

Corollary 3. Let f :[0,00) — [0,00). Then the following statements hold:
(i) If f is ultrametric-preserving and subadditive, then f is metric-preserving.

(i) If f is metric-preserving and increasing on [0, 00), then f is ultrametric-
preserving.

Theorem 4. Let f :[0,00) — [0,00). If f is amenable and concave, then f
1S ultrametric-preserving.

Theorem 5. Let f : [0,00) — [0,00). Then f is metric-ultrametric-preserving
if and only if f is amenable and f is a constant on (0,00).



Theorem 6. Let f : [0,00) — [0,00) be amenable. Then the following state-
ments are equivalent:

(i) f is ultrametric-metric-preserving,
(i1) for each (a,b,c) € A, (f(a), f(b), f(c)) € A,
(i1i) for each 0 < a <b, f(a) < 2f(b).

Theorem 7. Let f : [0,00) — [0,00) be metric-preserving. The the following
statements are equivalent:

1) f is continuous at [0,00),
2) f is continuous at 0,
3) For every e > 0, there exists and x > 0 such that f(x) <e,
4) [ is strongly metric-preserving,
5) [ is uniformly continuous on [0,00),
6) [ is weakly continuous on [0, 00),
7) [ is weakly continuous at 0,
8) [ is quasi continuous on [0,00),
9) [ is quasi continuous at 0,
10) f is a.c.S on [0, 00),
11) fis a.c.S at 0,
12) f is a.c.H on [0, 00),
13) f is a.c.H at 0.

Theorem 8. Let f be ultrametric-metric-preserving. Then the following state-
ments are equivalent:

(i) f is continuous at 0,

(i1) f is weakly continuous at 0,



(iii) for every e >0, there exists an x > 0 such that f(z) < ¢,
(iv) f is quasi continuous at 0,

(v) fis a.c.S. at 0,

(vi) f is a.c.H. at 0.

Theorem 9. Let (X,d) be a metric space and let g : X — X. Assume
that there exists k € (0,1) and a metric-preserving function f satisfying the
following conditions:

(a) for each x € X, there exists € > 0 such that for every u € X

dlz,u) <e = (fod)(9(x),g9(u)) <kd(z,u), and

(b) f(0) > k.
Then g is a local radial contraction.

Theorem 10. Suppose, in addition to the assumptions in Theorem 9, X 1is
complete and rectifiably pathwise connected. Then g has a unique fixed point
xg, and lim,_,, ¢"(x) = o for each z € X.

Comments

There are many other types of distances that have not been investigated
in connection with metric-preserving functions. So there are a lot of open
problems that we can work on. We refer the reader to the encyclopedia of
distances collected by Michel Marie Deza and Elena Deza [9] for a lot more
information. For example, we may consider the relation between w-distances
and metric-preserving functions in a similar way to what we did with ultra-
metrics [25]. In addition, differentiability of the functions given in [25] has
not been studied. We believe that properties of these functions should be ex-
plored and this may lead to interesting and important mathematical research
topics in the future.
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Functions whose composition with every metric is a metric are said to be metric-preserving. In this paper, we investigate a variation
of the concept of metric-preserving functions where metrics are replaced by ultrametrics.

1. Introduction

Under what conditions on a function f : [0,00) — [0, 00)
is it the case that for every metric space (X,d), f o d isstill a
metric? It is well known that for any metric d, d/(1 + d) and
min{1, d} are bounded metrics topologically equivalent to d,
while d/(1 + d*) need not be a metric.

We call f: [0,00) — [0, 00) metric-preserving if for all
metric spaces (X, d), fod is ametric. Therefore, the functions
f and g given by f(x) = x/(1 + x) and g(x) = min{l, x} are
metric-preserving but h(x) = x/(1 +x7) is not. The concept of
metric-preserving functions first appears in Wilson’s article
[1] and is thoroughly investigated by many authors; see for
example, [2-18] and references therein.

However, other important types of distances such as
ultrametrics, pseudometrics, pseudodistances [19, 20], w-
distances, and 7-distances have not yet been developed
in the connection with metric-preserving functions. These
distances have many applications in mathematics; see, for
example, applications of w-distances and 7-distances in [21-
27]. We will particularly be concerned with the ultrametrics
which arise naturally in the study of p-adic numbers and
nonarchimedean analysis [28, 29], topology and dynamical
system [30-33], topological algebra [34], and theoretical
computer science [35].

In connection with ultrametrics and metric-preserving
functions, the problem arises to investigate the properties
of the following functions and compare them with those of
metric-preserving functions.

Definition 1. Let f: [0,00) — [0, 00). We say that

(i) f is ultrametric-preserving if for all ultrametric
spaces (X,d), f o d is an ultrametric;

(ii) f is metric-ultrametric-preserving if for all metric
spaces (X,d), f o d is an ultrametric;

(iii) f is ultrametric-metric-preserving if for all ultramet-
ric spaces (X, d), f o d is a metric.

For convenience, we also let .# be the set of all metric-
preserving functions, % the set of all ultrametric-preserving
functions, Z/ the set of all ultrametric-metric-preserving
functions, and #% the set of all metric-ultrametric-
preserving functions.

We will give some basic definitions and useful results that
will be used throughout this paper in the next section. We
then give properties and characterizations of those functions
in Sections 3, 4, and 5. We discuss and give some results on
the continuity aspect of those functions in Section 6.

2. Preliminaries and Lemmas

In this section, we give some basic definitions and results for
the convenience of the reader. First, we recall the definition
of a metric space and an ultrametric space.

A metric space is a set X together with a function d : X x
X — [0, 00) satistying the following three conditions:

(M1) Forallx, y € X,d(x,y) =0ifand only if x = y,
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(M2) forall x, y € X,d(x, y) = d(y, x), and
(M3) forall x, y,z € X, d(x, y) <d(x,z) +d(z, y).

An ultrametric space is a metric space (X, d) satisfying the
stronger inequality (called the ultrametric inequality):

(U3) forallx, y,z € X, d(x, y) < max{d(x, z),d(z, y)}.

A metric space (X, d) is said to be topologically discrete if for
every x € X thereis an ¢ > 0 such that B,(x,¢) = {x},
where B;(x, €) denote the open ball center at x and radius
e. In addition, (X, d) is said to be uniformly discrete if there
exists an € > 0 such that B;(x, ) = {x} for every x € X.

Next we recall the definitions concerning certain behav-
iors of functions. Throughout, we let f : [0,00) — [0, 00)
and let I < [0,00). Then f is said to be increasing on I <
[0,00) if f(x) < f(y) forall x, y € I satisfying x < y,and f
is said to be strictly increasing on I € [0,00) if f(x) < f(y)
for all x, y € I satisfying x < y. The notion of decreasing or
strictly decreasing functions is defined similarly.

The function f is said to be amenable if f"l({O}) = {0},
and f is said to be tightly bounded on (0, c0) if there is v >
0 such that f(x) € [v,2v] for all x > 0. We say that f is
subadditive if f(a +b) < f(a) + f(b) foralla,b € [0,00), f
is convexif f((1 —t)x, +tx;) < (1 —1t)f(x,) + tf(x,) for all
X1, %, € [0,00)and t € [0,1], and f is concaveif f((1-t)x, +
tx,) = (1 —t)f(x;) + tf(x,) for all x;,x, € [0,00) and t €
[0, 1]. As mentioned earlier, we say that f is metric-preserving
if for all metric spaces (X, d), f o d is a metric. Furthermore,
f is strongly metric-preserving if f o d is a metric equivalent
to d for every metric d.

Now we are ready to state the results which will be applied
in the proof of our theorems.

Lemma 2. Let f : [0,00) — [0,00). If f is amenable,
subadditive, and increasing on [0,00), then f is metric-
preserving.

Proof. The proof can be found, for example, in [4, 6]. O

Lemma 3. If f : [0,00) — [0,00) is amenable and tightly
bounded, then f is metric-preserving.

Proof. The proof can be found, for example, in [3, 4]. OJ

The next lemma might be less well known, so we give a
proof here for completeness.

Lemma 4. If f: [0,00) — [0, 00) is amenable and concave,
then the function x — f(x)/x is decreasing on (0, c0).

Proof. Let a,b € (0,00) and a < b. Since f is concave, we

obtain
ra=s((-2)o (o)

a a
2(1—g>f(0)+5f(b) (1)

a
= Ef b).
Therefore, f(a)/a > f(b)/b, as desired. ]
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Lemma 5. Let (X, d) be an ultrametric space. Then for every
X15X55 005X, €X,

d(x;,x,) < max{d (x;,x,),d(x3,%3),....d (x,_1,%,)} .
()

Proof. We have
d (x1, x,) < max {d (x,, x;) ,d (x5, x,)}

IN

max {d (x,, x,) , max {d (x,, x;) ,d (x3, x,,)}}

max {d (x,,x,),d (x5, %3),d (x5, %,)} .

(©)
A repeated application of the ultrametric inequality as above
gives the desired result. O

Next we give basic relations and properties of the func-
tions in M, U, MU, and UM .

(S1)
Proposition 6. The following relations hold MU < U N

($2) ($3) (s9)
M UM UVM S UM.

Proof. Since an ultrametric is a metric, 4% € % and MU <
M. So (S1) follows. Similarly, € UM and M < UM, so
(54) holds. (S2) and (S3) are true in general. O

We will obtain characterization of the functions in %,
MU, and UM in later section. Then we will show that the
relation C in Proposition 6 is in fact a proper subset. It is easy
to see that if f € ./, then f is amenable. We extend this to
the case of any function f € MU MU VUM U U.

Proposition 7. If f € UM, then f is amenable.

Proof. Assume that f € % .. To show that f is amenable, we
let x € [0, 00) be such that f(x) =0.Let X ={A,B,C} ¢ R?,
where A = (=x/2,0), B = (x/2,0), and C = (0, V3x/2). Let
d, be the Euclidean metric on R* and let d = d,| be the
restriction of d, on X. Then d(A, B) = d(A,C) = d(B,C) = x.
Therefore, (X, d) is an ultrametric space. So f o d is a metric
on X. Now f(0) = f(d(A,A)) = (f o d)(A,A) = 0, and
(f o d)(A,B) = f(d(A, B)) = f(x) = 0, which implies A = B.
That is, (-x/2,0) = (x/2,0). Hence x = 0. This shows that f
is amenable as desired. [

Corollary 8. If f : [0,00) — [0,00) is in M, MU, U, or
UM, then f is amenable.

Proof. By Proposition 6, /LU MU VU VUM = UM . So the
result follows from Proposition 7. O
3. Ultrametric-Preserving Functions

In this section, we obtain characterizations of ultrametric-
preserving functions. Then we compare their properties with
those of metric-preserving functions.

Theorem 9. Let f: [0,00) — [0,00). Then f is ultrametric-
preserving if and only if f is amenable and increasing.
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Proof. Assume that f is ultrametric-preserving. By
Corollary 8, it suffices to show that f is increasing. Let
a,b € [0,00) and a < b. Let d, be the Euclidean metric
on R? and let X = {A,B,C} ¢ R? where A = (-a/2,0),
B = (a/2,0), and C = (0,/(4b* —a?)/4). Let d = d,|
be the restriction of d, on X. Then d(A,B) = a,
d(A,C) = d(B,C) = b. Therefore, (X,d) is an ultrametric
space. Since f is ultrametric-preserving, f o d is an
ultrametric. Therefore,

f(a)=fod(AB)
<max{f-d(A,C), fod(BC)} (4)
= f ),

as required. Next assume that f is increasing and amenable.
Let (X, d) be an ultrametric space, and let x, y,z € X. Since
f is amenable, f o d(x,y) = 0 if and only if x = y.
Since d is an ultrametric, d(x, z) < max{d(x, y),d(y,z)}. So
d(x,z) < d(x,y) ord(x,z) < d(y,2). If d(x,z) < d(x, y),
then f(d(x,z)) < f(d(x, y)) < max{f od(x, y), f o d(y,2)}.
If d(x,z) < d(y,z), then f(d(x,z)) < f(d(y,z)) < max{f o
d(x,y), f o d(y,2z)}. In any case f o d(x,z) < max{f o
d(x, y), f o d(y,z)}. Therefore, f o d is an ultrametric. This
completes the proof. O

Corollary 10. Let f : [0,00) — [0,00). Then the following
statements hold:

(i) if f is ultrametric-preserving and subadditive, then f
is metric-preserving;

(ii) if f is metric-preserving and increasing on [0, 0o), then
f is ultrametric-preserving.

Proof. We obtain that (i) follows from Theorem 9 and
Lemma 2, and (ii) follows from Corollary 8 and Theorem 9.

O
The next example shows that # ¢ % and % ¢ M.
Example 11. Let f, g : [0,00) — [0, 00) be given by
0, ifx=0;
f=x, gx=11 ifxe@-{0}; ()
2, if x € Q°.

By Theorem 9, f is ultrametric-preserving and g is not
ultrametric-preserving. If d is the usual metric on R, we see
that

fod(1,3)=f(2)=4>2=fod(1,2)+ fod(23). (6)

So f o d is not a metric and therefore f is not metric-
preserving. Since g(x) € [1,2] for all x > 0, g is tightly
bounded, and therefore, by Lemma 3, g is metric-preserving.
In conclusion, f € %, f ¢ M,g € M,and g ¢ %. This shows
that % ¢ M and A ¢ 2. This example also shows that the
relations (S2) and (S3) in Proposition 6 are proper subsets.

Next we give some results concerning concavity of the
functions in % U /.

Theorem 12. Let f : [0,00) — [0,00). If f is amenable and
concave, then f is ultrametric-preserving.

Proof. Assume that f is amenable and concave. We will show
that f is increasing. First observe that if y > 0, then f(y) >
f(0) because f is amenable. Next let y > x > 0 and suppose
for a contradiction that f(y) < f(x).Lett = f(y)/f(x), %, =
(yf(x) = xf(¥)/(f(x) = f(y)), and x, = x. Then t € (0,1),

and x,, x, € (0,00). Since f is concave, we obtain

F)=f(A-t)x +tx,)
> (1-1) f (x;) +tf (x,) (7)
=(1-t) f(x)+ f(y).

This implies that f(x;) = 0 which contradicts the fact that
x; > 0 and f is amenable. Hence f is increasing on [0, c0).
By Theorem 9, f is ultrametric-preserving. O

Corollary 13. If f : [0,00) — [0,00) is amenable and
concave, then f is both ultrametric-preserving and metric-
preserving.

Proof. The first part comes from Theorem 12. The other part
has appeared in the literature but we will give an alternative
proof here. We know that f is increasing by Theorems 12 and
9. So by Lemma 2, it suffices to show that f is subadditive.
Leta,b € (0,00). By Lemma 4, we have f(a + b)/(a +b) <
min{ f(a)/a, f(b)/b}. Therefore,

f(a+b)=a<@)+b<m>

+b a+b

(8)
b
SaM+bm =f(a)+ f(b),
a b
as required. This completes the proof. O

The next example shows that there exists a function which
is both metric-preserving and ultrametric-preserving but not
concave.

Example 14. Let f: [0,00) — [0, 00) be defined by

X, x €[0,1];
1, x € [1,10];
= 9
f ) x—-9, x¢€(10,11); ©)
2, x> 11.

It is easy to see that f is amenable and increasing. So, by
Theorem 9, f is ultrametric-preserving. Next we will show
that f is metric-preserving. By Lemma 2, it suffices to show
that f is subadditive. Observe that f(x) < x and f(x) < 2 for
every x € [0, 00). We consider a, b € [0, 00) in several cases.

Ifa,b € [0,1], then f(a)+ f(b) =a+b = f(a+Db).
Ifa,b € [1,10], then f(a) + f(b) =2 = f(a+Db).
Similarly, ifa, b > 10, then f(a)+ f(b) > 2 > f(a+b).



Ifa €[0,1],b € [1,10], then

f@+f)=a+1>max{l,a+b-9}> f(a+b).
(10)

Ifa € [0,1],b € [10, 11], then f(a)+ f(b) = a+b—9 >
fla+b).

Ifa € [0,1],b € [11,00), then f(a) + f(b) =a+2 >
2= f(a+Db).

Ifa € [1,10], b € [10,00), then f(a) + f(b) =b—-8 >
2= f(a+b).

The other cases can be obtained similarly. Therefore, f
is subadditive. Hence, f is metric-preserving. But f((9 +
11)/2) < (f(9) + f(11))/2, so f is not concave. That is, f €
% N A but f is not concave. In addition, f is not a constant
on (0,00). So this example also shows that # N .4 ¢ AU
and the relation (S1) in Proposition 6 is a proper subset.

4. Metric-Ultrametric-Preserving Functions

In this section, we characterize the functions in #%. We will
see that this notion is so strong that it forces the functions
to be a constant on (0, 00). More precisely, we obtain the
following theorem.

Theorem 15. Let f : [0,00) — [0,00). Then f is metric-
ultrametric-preserving if and only if f is amenable and f is a
constant on (0, 00).

Proof. First assume that f is amenable and is a constant on
(0, 00). That is there exists a constant ¢ > 0 such that

0, ifx=0;

f(x)= { )

¢, ifx>0.

To show that f is metric-ultrametric-preserving, let (X, d) be
ametric space and let x, y,z € X. If x = yorx =zor y = z,
then it is easy to see that f o d(x, y) < max{f o d(x,2), f »
d(z, y)}. If x, y,z are all distinct, then fod(x,y) =c = fo
d(x,z) = f o d(y,z) and therefore

fod(x,y) <max{fod(x,z), fod(z y)}. (12)

This shows that f od is an ultrametric. In the other direction,
we assume that f € /% .By Corollary 8, it is enough to show
that f is a constant on (0, 00). Throughout the proof, we let d
be the usual metric on R and d, the Euclidean metric on R*.
We will apply Lemma 5 repeatedly. First we will show that

f(l)zf(%) :f<%) for every m,n € N. (13)
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So we let m,n € N be arbitrary. Since f € MU, f o d isan
ultrametric on R. By Lemma 5, we have

F)= fod(1)
< max {fod(O,%),fod(l,%),...,

n n
a()

ol (3 (2 ()} =12

Next let A = (-1/2n,0), B = (1/2n,0), C =

(0, V(4 - (1/n)%)/4) be points in R2. Since fedU, fod,is

. 2
an ultrametric on R“. Therefore,

f<%) = fody(4,B) <max{f ed, (A,C), f +d, (C, B)}

(14)

=max{f (1), f (D} = f(1).
(15)

Therefore, f(1) = f(1/n). By a similar method, we obtain

m m
7(5)=rea(e)
< max {f 0 d(
1
-1(;)
In addition, we let A = (-1/2n,0), B = (1/2n,0), C =
(0, \/(4(m/n)? - (1/n)*)/4) be points in R? o that

% ]f) | ke {1,2,...,m}} (16)

>
n

f<1>:fod2(A,B)gmax{fodz(A,C),fodz(C,B)}

-+(2)
17)

Therefore, f(m/n) = f(1/n). Hence f(m/n) = f(1/n) = f(1)

for every m,n € N, as asserted. We conclude that

fl@=rfO

Next let a € Q° N (0,00). We will show that f(a) = f(1).
Let q;,9, € Q N (0,00) be such that q; < a < g,. Let

A1 = (_ql/z)o)) Bl = (ql/z)o)’ C1 = (0) \[(4512—11%)/4),
A, = (-a/2,0), B, = (a/2,0), C, = (0,/(4q5 —a*)/4) be

points in R. By (18) and the fact that f o d, is an ultrametric
on R?, we obtain

F=f(q)=f-dy(A,B)
<max{f od,(A},C,), fod, (Cp, By)}
=f(a)=fod, (A, By) (19)
<max{f od, (A,,C,), f o d,(Cy, By)}
=f(a)=f1).

for every x € Q N (0, 00). (18)
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This shows that
fa)=f)

From (18) and (20), we see that f(x) = f(1) forall x € (0, co).
This completes the proof. O

Va € Q° N (0,00). (20)

Let f be a metric-preserving function and let d be a
metric. Then either fod is a metric equivalenttod or fedisa
uniformly discrete metric [3, 6]. In addition, f is continuous
on [0, 00) if and only if it is continuous at 0 [3, 4, 6]. But by
Theorem 15, every metric-ultrametric-preserving function f
is always discontinuous at 0 and f o d is always a uniformly
discrete metric for all metric d. We record this in the next
corollary.

Corollary 16. Let f [0,00) —
ultrametric-preserving. Then

[0,00) be metric-

(i) f o d is a uniformly discrete metric for every metric d,

(ii) f is discontinuous at 0 and is continuous on (0, 00).
Proof. By Theorem 15, there exists ¢ > 0 such that

fx) = {O’ ifx=0 (1)

¢, ifx>0.
So (ii) follows immediately. If (X, d) is a metric space, then

0, ifx=y;

22
¢, ifx#y. (22)

fed(a) -

So if we let ¢ = ¢/2, then Bfod(x,s) = {x} for every x € X.
This proves (i). ]

5. Ultrametric-Metric-Preserving Functions

In this section, we give a characterization of the functions in
UM in terms of special type of triangle triplets. Recall that
a triple (a, b, ¢) of nonnegative real numbers is called triangle
tripletifa <b+c¢,b <c+a,andc < a+b. We denote by A
the set of all triangle triplets. We introduce a special type of
triangle triplets that will be used to characterize ultrametric-
metric-preserving functions in the next definition.

Definition 17. A triple (a, b, c) of nonnegative real numbers
will be called ultra-triangle triplet if a < max{b,c}, b <
max{c, a}, and ¢ < max{a, b}. We denote by A the set of
all ultra-triangle triplets.

Since we will compare the functions f in % .# with those
in J, we first state a characterization of metric-preserving
functions in terms of triangle triplets.

Theorem 18. Let f: [0,00) — [0, 00) be amenable. Then the
following statements are equivalent:

(i) f is metric-preserving,
(ii) for each (a,b,c) € A, (f(a), f(b), f(c)) € A,
(iii) for each (a,b,c) € A, f(a) < f(b) + f(c).

Proof. The proof can be found, for example, in [3, 4, 6]. [

Similar to Theorem 18, we obtain a characterization of the
functions in % ./ in terms of ultra-triangle triplets as follows.

Theorem 19. Let f: [0,00) — [0, 00) be amenable. Then the
following statements are equivalent:

(i) f is ultrametric-metric-preserving,

(ii) for each (a,b,c) € A, (f(a), f(b), f(c)) € A,
(iil) foreach0 < a < b, f(a) <2f(b).

To prove Theorem 19, the following lemmas are useful.

Lemma 20. If (X, d) is an ultrametric space and x, y,z € X,
then the triple (d(x, y),d(x,z),d(z, y)) is an ultra-triangle
triplet. Conversely, if (a,b,c) is an ultra-triangle triplet, then
there exist an ultrametric space (X,d) and x, y,z € X such
that (a,b,c) = (d(x, y),d(x,z),d(z, y)).

Lemma 21. If(a,b,c) € A, then

(i) asb=c or (iii) c<a=b.

(23)

(@) b<sc=a or

We will prove Lemmas 21 and 20, and then Theorem 19,
respectively.

Proof of Lemma 21. Let (a,b,c) € A . Suppose thata, b, c are
all distinct. Without loss of generality, we can assume thata <
b < c. Then ¢ > max{a, b} which contradicts the fact that
(a,b,c) € A,.So a,b,c are not all distinct. If a = b, then
¢ < max{a, b} = a and (iii) holds. Similarly, if a = ¢, then (ii)
holds and if b = ¢, then (i) holds. O

Proof of Lemma 20. The first part follows immediately from
the ultrametric inequality of d. For the converse, we let
(a,b,c) € A_,. By Lemma2l, we can assume that a <
b = c (the other cases can be proved similarly). Let X =
{A,B,C} ¢ R? where A = (-a/2,0), B = (a/2,0), and

(4b* — a?)/4). Let d, be the Euclidean metric on
R?and d = d,|y. Then (X,d) is an ultrametric space and
(a,b,c) = (d,(A, B),d,(A,C),d,(C, B)). O

Proof of Theorem 19. (i) — (ii) Let f € %/ and let (a,b,c) €
A . Then by Lemma 20, there exist an ultrametric space
(X,d) and x, y,z € X such that

(@b,0) = (d(x,5),d (x,2),d (2. 5)). (24)

Since f € UM, (X, f o d) is a metric space. It follows from
the triangle inequality of f od that (fod(x, y), fod(x,2), fe
d(z, y)) is a triangle triplet. That is, (f(a), f(b), f(c)) € A.

(ii) — (iii) Assume that (ii) holds. Let 0 < a < b. Then,
(a,b,b) € A,.So (f(a), f(b), f(b)) € A by (ii). Therefore,
f(a) < f(b) + f(b) =2f(b), as required.

(iii) —» (i) Assume that (iii) holds. Let (X,d) be an
ultrametric space. Since f is amenable, f o d(x,y) = 0 if
and only if x = y. So it remains to show that the triangle
inequality holds for f od. Let x, y,z € X. Then by Lemma 20,
(d(x, y),d(x,2),d(z, ¥)) € A Then by Lemma 21, we can



assume that d(x, y) < d(x,z) = d(z, y) (the other cases can
be proved similarly). Then by (iii), we obtain

fed(x,y)=f(d(xy)) <2f(d(x2))
= fd(x2)+ f(d(zy))

=fod(x,2)+ fod(z,y), asrequired.

(25)
Hence, the proof is complete. 0

Next we give an example to show that the relation (54) in
Proposition 6 is a proper subset.

Example 22. Let f: [0,00) — [0, 00) be given by

if x<1;

X,
f=7q1 (26)
>

if x> 1.
Let d be the usual metric on R. Then

fed(1,2)=f(1)=1>

-rea(s2)a(2).

So f o d is not a metric and therefore f ¢ .. Since f is
not increasing, f ¢ %. Next we will show that f € %,
by applying Theorem19. Let 0 < a < b. If b > 1/2, then
f(b) > 1/2 and therefore 2 f(b) > 1 > f(x) forall x € [0, c0).
In particular, 2f(b) > f(a). If b < 1/2, thena < 1/2 and
thus f(a) = a < b = f(b) < 2f(b). In any case, we have
f(a) <2f(b).Hence f € UM but f ¢ M and f ¢ %. This
example shows that # . # ¢ % U . and the relation (§4) in
Proposition 6 is in fact a proper subset.

+

W | =
N | =

(27)

Remark 23. (1) From Examples 11, 14, and 22, we now see that
the relations (S1), (S2), (S3), and (S4) in Proposition 6 are in
fact proper subsets.

(2) If we replace 1/2 in the definition of f in Example 22
by a constant ¢ (that is, f(x) = xif x < 1 and f(x) = cif
x > 1),then f € % if and only if ¢ > 1/2.

6. Continuity

In this section, we investigate the continuity aspect of the
tunctions in M, %, U M, and M 2. By Corollary 16, the con-
tinuity of metric-ultrametric-preserving functions is trivial:
they are always discontinuous at 0 and continuous elsewhere.
The continuity of metric-preserving functions has also been
investigated by many authors [1-4, 6, 8, 18], but we can still
extend it further in the next theorem.

Before we state the theorem, let us recall some definitions
concerning generalized continuities. Let f : [0,00) —
[0,00). Then f is said to be weakly continuous at a+0 if
and only if there are sequences (x,) and (y,) such that
(x,,) is strictly increasing and converges to a, (y,,) is strictly
decreasing and converges to a, and f(x,) and f(y,) converge
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to f(a). If a = 0, then f is said to be weakly continuous at a
if and only if there exists a strictly decreasing sequence (y,,)
converging to a such that f(y,) converges to f(a). We refer
the reader to [36] for weak continuity of functions defined on
a more general domain.

Unlike weak continuity, quasi continuity and almost
continuity seem to be first given in a more general domain
than a subset of R. So we let X and Y be topological spaces
andlet g : X — Y. Then g is said to be quasi continuous
at a € X if for all open sets U of X and V of Y such that
a € U and f(a) € V, there is a nonempty open sets G of X
such that G € U and f(G) < V. The function g is said to be
almost continuous at x in the sense of Singal (briefly a.c.S. at
x) if for each open set V of Y containing f(x), there exists
an open set U containing x such that f(U) < Int(V) and
g is said to be almost continuous at x in the sense of Husain
(briefly a.c.H. at x) if for each open set V of Y containing f(x),
f71(V) is a neighborhood of x. The function g is said to be
quasi continuouson A € X (ora.c.S.on A, ora.c.H.on A) if it
is quasi continuous at every a € A (a.c.S. ata for everya € A,
a.c.H. ata foreverya € A).

Remark 24. (1) The concepts of a.c.S. functions and a.c.H.
functions are not equivalent as shown by Long and Carnahan
[37].

(2) There are several other types of continuities in the
literature. Some of them have the same name but different
definition, see [38] for instance, a different definition of weak
continuity. We refer the reader to [39-43] and the other
references for additional details and information.

Now we are ready to state our theorem. We will see that
there is a similarity and dissimilarity between continuity of
the functions in A and % M.

Theorem 25. Let f: [0,00) — [0,00) be metric-preserving.
The following statements are equivalent:

(1) f is continuous at [0, 00),
(2) f is continuous at 0,

(3) Foreverye > 0, there exists and x > 0 such that f(x) <
A

(4) f is strongly metric-preserving,

(5) f is uniformly continuous on [0, c0),
(6) f is weakly continuous on [0, c0),
(7) f is weakly continuous at 0,

(8) f is quasi continuous on [0, 00),

(9) f is quasi continuous at 0,
(10) f is a.c.S on [0, 00),

(11) fisa.c.Sat0,

(12) fisa.c.H on [0, 00),

(13) fisa.c.HatO.
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Proof. The equivalence of (1), (2), (3), and (4) is proved in
[4, 6]. With a bit more observation, we can prove that (1) to
(11) are all equivalent. First we notice that

|f@)—-f®)]<fla-b])
To prove (28), we let a,b € [0,00). Then (a,b,|a — b|) is a

triangle triplet. So by Theorem 18, (f(a), f(b), f(la—"b])) isa
triangle triplet. Therefore,

fla)< f )+ f(la-bl),

Va,b € [0, 00). (28)

fW) < fa)+f(la-bl).
(29)

Thus, | f(a)- f(b)| < f(la—bl), as asserted. Now we will prove
that (2), (5), (6), (7), and (3) are equivalent.
(2)— (5) Assume that f is continuous at 0. Lete > 0. Then
there exists a § > 0 such that
ifae[0,8), then f(a)<e. (30)
Now if x, y € [0,00) and |x — y| < §, then by (28) and (30),
we obtain

lf )= fO)l < flx-y)<e (31)

This shows that f is uniformly continuous on [0, c0).
It is easy to see that (5) implies (6) and (6) implies (7).
(7) — (3) We assume that (7) holds. Let (x,) be the
sequence in (0, 00) such that (x,,) is strictly decreasing and
converges to 0, and (f(x,,)) converges to f(0) = 0. Therefore,
if e > 0 is given, there exists N € N such that

fxn) = flxn)-f0) <& (32)

This proves (3). Since (3) and (2) are equivalent, we see that
(2), (5), (6), (7), and (3) are equivalent, as asserted.

Itis true in general that every continuous function is quasi
continuous. So it is easy to see that (1) implies (8) and (8)
implies (9). Next assume that (9) holds. To show (3),lete > 0
be given. Let V. = U = [0,¢). Then V and U are open set
in [0, 00) containing f(0) = 0 and 0, respectively. Since f is
quasi continuous at 0, there exists a nonempty openset G € U
such that f(G) < V. Now we can choose x € G — {0} so that
x > 0and f(x) < e This gives (3). Since (1) and (3) are
equivalent, we obtain that (1), (8), (9), and (3) are equivalent.
Similarly, it is easy to see that (1) implies (10), (10) implies
(11), (1) implies (12), and (12) implies (13). Since (1) and (3)
are equivalent, it now suffices to show that each of (11) and
(13) implies (3). First assume that (11) holds. Let ¢ > 0 and
let V' = [0,¢). Then V is open in [0, 00) and contains f(0).
Since f is a.c.S. at 0, there exists an open set U containing 0
such that

f(U) cInt(V) = Int[0,€] = [0, ). (33)

Now we can choose x € U — {0} so that x > 0 and f(x) < .
Similarly if (13) holds, then f~1(V) is a neighborhood of 0, so
f_l(V) # {0}, and therefore we can choose x € f_l(V) - {0}
so that f(x) < e and x > 0. This completes the proof. O

The function f in Example 22 shows that in the case of
ultrametric-metric-preserving functions, the global continu-
ity on [0, 0o) and the local continuity at 0 are not equivalent.
In addition, the uniform continuity on [0, co) and continuity
on [0, 0o0) are not equivalent as can be seen from the function
f in Example 11. However, we still have the following result
for the continuity at 0.

Theorem 26. Let f be ultrametric-metric-preserving. Then the
following statements are equivalent:

(i) f is continuous at 0,
(ii) f is weakly continuous at 0,
(iii) foreverye > 0, there exists an x > 0 such that f(x) < ¢,
(iv) f is quasi continuous at 0,
(v) fisa.c.S. at0,
(vi) fisa.c.H. at0.

Proof. We have that (i) implies (ii) is true in general. By the
same argument that (7) implies (3) in Theorem 25, we see that
(ii) implies (iii). Next assume that (iii) holds. To show that f
is continuous at 0, let € > 0 be given. Then by (iii), there exists
X, > 0 such that f(x;) < /2. Let § = x; and let x € [0, ).
Since 0 < x < § and f € M, we obtain by Corollary 8 and
Theorem 19 that

|f )= fO)] = f(x)<2f (&) =2f (x) <& (34)

This gives (i). Therefore, (i), (ii), and (iii) are equivalent. Since
(i) implies (iv), (v), and (vi), it suffices to show that each of
(iv), (v), and (vi) implies (iii). Since f € %, it is amenable
and we can use the same argument of the proof of Theorem 25
to show that (iv) implies (iii) (the same as (9) implies (3)), (v)
implies (iii) (the same as (11) implies (3)), and (vi) implies
(iii) (the same as (13) implies (3)). This completes the proof.

O

Corollary 27. Let f € U M. If f is discontinuous at 0, then
there exists an € > 0 such that f(x) > € for all x > 0.

Proof. This follows from (i) and (iii) in Theorem 26. O

Example 28. Let f, g : [0,00) — [0, 00) be given by

x, x<1;
fx)=41 x>1, xeQ;
2) x>1) x¢@) (35)
x, x<I1
x:
9x) 12, x =L

First we will show that f € % ./ by applying Theorem 19.
Sowelet0 <a <b.Ifb > 1,then2f(b) > 2 > f(x) for
every x € [0,00). In particular, 2f(b) > f(a). If b < 1, then
fla) =a <b<2b=2fb).Sof e UM.1ltis easy to
see that f is weakly continuous at 1 but is not continuous at
1. In fact f is weakly continuous at every x > 0 and is not
continuous at any x > 1. This shows that we cannot replace



continuity at 0 in Theorem 26 by continuity at any other point
x #0. Similarly, g € % and is quasi continuous on [0, c0)
but g is not continuous at 1.
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Abstract

Kirk and Shahzad have recently given, in this journal, fixed point theorems concerning
local radial contractions and metric transforms. In this article, we replace the metric
transforms by metric-preserving functions. This in turn gives several extensions of the
main results given by Kirk and Shahzad. Several examples are given. The fixed point
sets of metric transforms and metric-preserving functions are also investigated.

Keywords: metric-preserving function; metric transform; local radial contraction;
rectifiably pathwise connected space; uniform local multivalued contraction

1 Introduction

The concept of metric transforms is introduced by Blumenthal [1, 2] in 1936 while the
concept of metric-preserving functions seems to be introduced by Wilson [3] in 1935 and
is investigated in detail by many authors [4—20]. Recently, Petrusel et al. [14] have shown
the role of equivalent metrics and metric-preserving functions in fixed point theory. In
addition, Kirk and Shahzad [21] have given results concerning metric transforms and fixed

point theorems. Their main results are as follows:

Theorem 1 (Kirk and Shahzad [21, Theorem 2.2]) Let (X,d) be a metric space and
g: X — X. Suppose there exist a metric transform ¢ on X and a number k € (0,1) such
that the following conditions hold:

(a) Foreach x € X there exists &, > 0 such that for every u € X

dxu)<e = (¢pod)(gx),gw) < kd(x,u).
(b) There exists c € (0,1) such that for all t > 0 sufficiently small
kt < ¢(ct).
Then g is a local radial contraction on (X, d).

Theorem 2 (Kirk and Shahzad [21, Theorem 2.3]) Suppose, in addition to the assumptions
in Theorem 1, X is complete and rectifiably pathwise connected. Then g has a unique fixed
point xg, and lim,,_, o, g"(x) = xo for each x € X.

©2014 Pongsriiam and Termwuttipong; licensee Springer. This is an Open Access article distributed under the terms of the Creative

Commons Attribution License (http:/creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and re-
production in any medium, provided the original work is properly cited.
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Our purpose is to show that the metric transform ¢ in Theorem 1 can be replaced by
a metric-preserving function. This in turn gives extensions to the main results given by
Kirk and Shahzad in [21, Theorem 2.2, Theorem 2.3, Theorem 2.8, Theorem 3.4, and The-

orem 3.6]. Now let us recall some basic definitions that will be used throughout this article.

Definition 3 Let f: [0,00) — [0, 00). Then
(i) f is said to be a metric transform if f(0) = 0, f is strictly increasing on [0, 00), and f

is concave on [0, 00),

(ii) f is said to be a metric-preserving function if for all metric spaces (X,d), f od is a
metric on X,

(iii) f is said to be amenable if f1({0}) = {0},

(iv) f is said to be tightly bounded if there exists u > 0 such that f(x) € [u, 2u] for all
x>0,

(v) f is said to be subadditive if f(a + b) < f(a) + f(b) for all a, b € [0, 00).

Definition 4 Let (X, d) be a metric space and g : X — X. Then g is said to be a local radial
contraction if there exists k € (0,1) such that for each x € X, there exists ¢ > 0 such that for
everyu € X,

dx,u)<e = d(g),gw) < kd(x,u).

Definition 5 Let (X, d) be a metric space and y be a path in X, that is, a continuous map
y :la,b] — X. A partition Y of [a, D] is a finite collection of points Y = {yy,...,yn} such

thata=yy <y <y, <--- <yn = b. The supremum of the sums

N
Z Y = Zd(y(yi_l), vy (1))
i=1

over all the partitions Y of [a, b] is called the length of y. A path is said to be rectifiable if
its length is finite. A metric space is said to be rectifiably pathwise connected if each two

points of X can be joined by a rectifiable path.

We will give some auxiliary results in Section 2. Then we will give the results concerning
metric-preserving functions, local radial contractions, and uniform local multivalued con-
tractions in Section 3 and Section 4. Finally, we investigate the fixed point sets of metric

transforms and metric-preserving functions in Section 5.

2 Lemmas
We need to use some properties of metric-preserving functions and some fixed point the-
orems. We give them in this section for the convenience of the reader. For more details of

the metric-preserving functions, we refer the reader to [6, 8, 10].

Lemma 6 Let f :[0,00) — [0,00). Then
(i) iff is metric preserving, then f is amenable,

(ii) iff is amenable and concave, then f is metric preserving.
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Proof The proof of (i) is easily obtained; see for example, in [5, Lemma 2.3]. The proof of
(i) is given in [5, Proposition 1.2] and [8, p.13]. See also [4, Proposition 2] and [6, p.311].
O

Lemma 7 Letf :[0,00) — [0,00). Iff is amenable, subadditive, and increasing, then f is
metric preserving.

Proof The proof can be found in [5, Proposition 1.1], [6, Proposition 2.3], and [8, p.9].
d

Lemma8 Iff :[0,00) — [0,00) is amenable and tightly bounded, then f is metric preserv-
ing.

Proof The proofis given in [5, Proposition 1.3], [6, Proposition 2.8], and [8, p.17]. O
Lemma 9 Iff is metric preserving and 0 < a <2b, then f(a) < 2f(b).
Proof The proofis given in [5, Lemma 2.5], and [8, p.16]. O

For a metric-preserving function f, let Ky denote the set
Ky = {k> 0] f(x) <kx for all x > 0},

Recall also that we define inf @ = +00. Then we have the following result.

Lemma 10 Letf:[0,00) — [0, 00) be metric preserving. Then f'(0) = inf K. In particular,
f'(0) always exists in R U {+00} and

(i) f(0) < +o0 if and only if Ky # 9, and

(ii) f'(0) = +oc if and only if Ky = 0

Proof The proof can be found in [4, Theorem 2], [6, Theorem 4.4], and [8, pp.37-39].
d

The next lemma is probably well known but we give a proof here for completeness.

Lemma 11 Iff: [0,00) — [0,00) is amenable and concave, then the function x — 1) (x is

decreasing on (0, 00)

Proof Leta,b € (0,00) and a < b. Since f is concave, we obtain

f@ f((l— —) 0)+ (g)(m) > (1— Z)J(O) e = L)

Therefore £ z %, as desired. O
Lemma 12 (Pokorny [16]) Let f : [0,00) — [0,00). Assume that f is amenable and there
is a periodic function g such that f (x) = x + g(x) for all x > 0. Then f is metric preserving if
and only if f is increasing and subadditive.
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Proof The proof can be found in [8, p.32] and [16, Theorem 1]. O

Lemma 13 (Hu and Kirk [22]) Let (X, d) be a complete metric space for which each two
points can be joined by a rectifiable path, and suppose g : X — X is a local radial contrac-
tion. Then g has a unique fixed point xg, and lim,,_, o, g"(x) = xo for each x € X.

As noted by Kirk and Shahzad [21], an assertion in the proof of Lemma 13 given in [22]
was based on a false proposition of Holmes [23]. But Jungck [24] proved that the assertion
itself is true. Hence the proof given in [22] with minor changes is true. Kirk and Shahzad
[21] apply Tan’s result [25] to extend some of their theorems. We will also apply Tan’s result

as well.

Lemma 14 (Tan [25]) Let X be a topological space, let xo € X, and let g : X — X be a
mapping for which f := gN satisfies lim,,_, o f"(x) = xo for each x € X. Then lim,,_, o, g"(x) =
xo for each x € X. (Also if xo is the unique fixed point of f, it is also the unique fixed point
ofg.)

We will use Nadler’s result concerning set-valued mappings. So let us recall some more
definitions. If ¢ > 0 is given, a metric space (X, d) is said to be e-chainable if given a,b € X
there exist x1,%9,...,%, € X such thata = x, b = x,,, and d(x;,x;,1) < s foralli € {1,2,...,n -
1}. The result of Nadler that we need is the following.

Lemma 15 (Nadler [26]) Let (X,d) be a complete e-chainable metric space. If T : X —
CB(X) is an (&, k)-uniform local multivalued contraction, then T has a fixed point.

3 Local radial contractions and metric-preserving functions

In this section, we will give a generalization of Theorem 1 where the metric transform ¢
is replaced by a metric-preserving function. In fact, we obtain a more general result as
follows.

Theorem 16 Let (X, d) be a metric space and let g : X — X. Assume that there exist k €
(0,1) and a metric-preserving function f satisfying the following conditions:
(a) foreach x € X, there exists & > 0 such that for every u € X

dix,u)<e = (fo d)(g(x),g(u)) <kd(x,u), and

(b) £(0) > k.

Then g is a local radial contraction.

We know from Lemma 10 that f’(0) always exists in R U {+oc0c}. So condition (b) in The-
orem 16 makes sense. To prove this theorem, we will first show that g is continuous in the
following lemma.

Lemma 17 Suppose that the assumptions in Theorem 16 hold. Then the function g is con-
tinuous.

As a consequence of Theorem 16, we can replace the metric transform ¢ in Theorem 1
by a metric-preserving function and obtain an extension of Theorem 1.
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Theorem 18 With the same assumptions in Theorem 16 except that condition (b) is re-
placed by (b'): there exists ¢ € (0,1) such that f(ct) > kt for all t > 0 sufficiently small. Then
g is a local radial contraction.

Remark 19 As noted by Kirk and Shahzad [21, Remark 2.5], [21, Proposition 2.6], metric
transforms satisfying condition (b) in Theorem 1 are numerous. Proposition 20, Exam-
ple 22, and Example 23 (to be given after the proof of Theorem 18) show that the class of
metric-preserving functions satisfying condition (b) in Theorem 1 is larger than the class
of metric transforms satisfying the same condition. Hence the class of such functions is
even more numerous and Theorem 18 is indeed an extension of Theorem 1.

Now let us give the proof of Lemma 17, Theorem 16, and Theorem 18 as follows.

Proof of Lemma 17 Letx € X and let & > 0. Since k < f(0) = lim,_, o+ f(yy) J(; =lim,_, ¢+ f(y

there exists §; > 0 such that

0<y<é = '¥>k. 1)

By condition (a), there exists &, > 0 such that for every u € X,
dxu)<s, = (fod)(gl),gw) <kd(x,u). 2)

Let §3 = min{dy, 83, ¢}. Then by (1), we obtain

f(83)
83

> k. (3)

Since f is metric preserving, we obtain by Lemma 9, and (3) that for every b € [0, 00)

83 f(53) ko3

b>§ = f(b)>=—— > (4)

Now let § = 573 and u € X be such that d(x, u) < §. Then by (2), we obtain

Sf(d(gx),gw))) < kd(x,u) < k8 = %

Then by (4), d(g(x),g(u)) < %3 5 < &. This shows that g is continuous, as required. ~ [J

Proof of Theorem 16 Let ¢ = l(f,k +1) where if f/(0) = +00, we define to be zero and

f’(O
c= 1(0+1)— 1 Then0<f < ¢ < 1. Consider
—f(0
£'(0) = lim SO -/ )= lim@.
y—>0*  y-0 y—=>0* y
Since f'(0) > k. there exists & > 0 such that
k
O0<y<d = @>—. (5)

y C
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To show that g is a local radial contraction with the contraction constant ¢, let x € X. By
Lemma 17, g is continuous at x. So there exists §, > 0 such that for every u € X,

dxuw)<s = d(gl),gw)<b. ©)
By condition (a), there exists §3 > 0 such that for every u € X,
du)<ss = (fod)(gl),gw) < kd(x,u). @)

Now let ¢ = min{8y,8,,83} and let u € X be such that d(x, u) < ¢. We need to show that
d(g(x),g(m)) < cd(x,u). If d(g(x),g(u)) = 0, then we are done. So assume that d(g(x), g()) >
0. Then 0 < d(x, u) < € and we obtain by (7) that

(f o d)(g(x),g(u))

dew oK ®

The left hand side of (8) is

(fod)(g(x).gw) _fldgx).gw)) dgx)gx)

d(x, u) d(g(x), g(u)) d(x, u)
kd , 8
tace
where the above inequality is obtained from (6) and (5). From (8) and (9), we obtain
kdg()g)
¢ dxu)
which implies the desired result. This completes the proof. d

Proof of Theorem 18 By Lemma 10, we know that f'(0) exists in R U {+oo} and by Theo-
rem 16, it suffices to show that f'(0) > k. So we can assume further that f/(0) exists in R.
Now f"(0) = lim,_, o+ % =lim,_, o+ % Since the limits involved in the following cal-
culation exist, we obtain

f) f(ct)>, kt  k

lim — = lim —~ > lim — = - > k.
y—=0+ Y t—0* ¢t t=0t ¢t ¢
Therefore f7(0) > k, as desired. |

As noted earlier, we will show that the class of metric-preserving functions and the class
of metric-preserving functions satisfying condition (b) in Theorem 1 are, respectively,
larger than the class of metric transforms and the class of metric transforms satisfying
condition (b) in Theorem 1.

Proposition 20 Every metric transform is metric preserving.

Proof Letf be a metric transform. Since f(0) = 0 and f is strictly increasing, f is amenable.
Since f is amenable and concave, we obtain by Lemma 6(ii) that f is metric preserving.
O
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Corollary 21 Kirk and Shahzad’s result (Theorem 1) holds.
Proof This follows immediately from Proposition 20 and Theorem 18. O

Example 22 Let f,g,/h: [0,00) — [0,00) be given by

0, ifx=0;
x, ifxe[0,1];
fx) =11, ifx>0andxeQ; glx) =
1, ifx>1,
2, ifxeQs,
X, x € [0,1];
1, x € [1,10];
h(x) =
x-9, xe€(10,11);
2, x> 11.

Since f(x) € [1,2] for all x > 0, f is tightly bounded. Therefore by Lemma 8, f is metric
preserving. It is easy to see that f is not increasing (and is not concave either). So f is
not a metric transform. It is easy to see that g is amenable and concave, so it is metric
preserving, by Lemma 6(ii). In addition, if c = k = % €(0,1), then g(ct) > kt for all t € [0,1].
So g satisfies condition (b) in Theorem 1. But g is not a metric transform because it is
not strictly increasing. For /1, we proved in [27, Example 14] that / is metric preserving.
Similar to g, the function / satisfies the condition (b) in Theorem 1. It is easy to see that /

is neither strictly increasing nor concave. Therefore / is not a metric transform.
We can generate more functions similar to g given in Example 22 as follows.

Example 23 Leta >1and b > 0. Define f;, : [0, 00) — [0, 00) by

ax, ifxel0,b];
Jap(x) =
ab, ifx>b.

Then f,; is amenable and concave. So by Lemma 6(ii), f,;, is metric preserving. We also
have jZ'b(O) =a > 1. So it satisfies condition (b) in Theorem 16. However, f,, ;, is not a metric
transform because it is not strictly increasing. In particular, if we let X = [0, 00), k = %, f.g:
X — X given by g(x) = %x and f = f, then f satisfies all the assumptions in Theorem 16.

Remark 24 Some natural questions concerning the relation of metric transforms, metric-
preserving functions, and condition (b) can be answered by Example 22 and Example 23:
Q1: Is there a continuous metric-preserving function which is not a metric transform?
Al: Yes, g and /& given in Example 22 and f;, given in Example 23 are such functions.
Q2: Is there any nowhere continuous metric-preserving function which is not a metric
transform?
A2: Yes, f given in Example 22 is such a function.
Q3: Is there a nowhere monotone metric-preserving function which is not a metric
transform?

A3: Yes, f given in Example 22 is such a function.
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Q4: Is there a metric-preserving function which is concave and satisfies condition (b) in
Theorem 1 but it is not a metric transform?
A4: Yes, g given in Example 22 and f;; given in Example 23 are such functions.

Now that we have obtained two extensions of Theorem 1, we give two generalizations
of Theorem 2 as follows.

Theorem 25 The following statements hold.:

(a) Suppose, in addition to the assumptions in Theorem 16, X is complete and rectifiably
pathwise connected. Then g has a unique fixed point xy, and lim,,_, o, g" (x) = xo for
eachx € X.

(b) Suppose, in addition to the assumptions in Theorem 18, X is complete and rectifiably
pathwise connected. Then g has a unique fixed point xo, and lim,,_, . g" (x) = xo for
eachx € X.

Proof Part (a) follows immediately from Theorem 16 and Lemma 13. Part (b) follows im-
mediately from Theorem 18 and Lemma 13. d

Finally, we remark that Kirk and Shahzad use Tan’s result (Lemma 14) to extend Theo-
rem 2 further [21, Theorem 2.3 and Theorem 2.8]. We similarly apply their argument to
obtain the following.

Theorem 26 Let X be a metric space which is complete and rectifiably pathwise connected,
and suppose g : X — X is a mapping for which

(a) gN satisfies the assumptions in Theorem 16 for some N € N, or

(b) gM satisfies the assumptions in Theorem 18 for some M € N.
Then g has a unique fixed point xy, and lim,_, ~ g" (x) = x¢ for each x € X.

Proof This follows immediately from Theorem 16, Theorem 18, Lemma 13, and Lem-
ma 14. g

Conclusion We have obtained extensions of the main results given by Kirk and Shahzad
in [21, Theorem 2.2, Theorem 2.3, and Theorem 2.8]. We will obtain more results in the

next section.

4 Set-valued contractions
Kirk and Shahzad [21] also give an analog of Theorem 1 and Theorem 2 for set-valued
mappings. Our purpose in this section is to obtain an analog of Theorem 16 and The-
orem 18 for set-valued mappings as well. First let us recall some definitions and results
concerning set-valued mappings.

Let (X,d) be a metric space and let CB(X) be the family of nonempty, closed, and
bounded subsets of X. The usual Hausdorff distance on CB(X) is defined as

H(A,B) = max{p(A,B),p(B,A)},
where A,B € CB(X), p(A,B) = sup,.4 d(x,B), p(B,A) = sup, .z d(x,A).

Definition 27 Let T : X — CB(X). Then
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(i) T is called a multivalued contraction mapping if there exists a constant k € (0,1)
such that H(Tx, Ty) < kd(x,y) for all x,y € X.
(ii) Fore >0 and k € (0,1), T is called an (g, k)-uniform local multivalued contraction if

for every x,y € X
dx,y)<e = H(Ix, Ty) < kd(x,y).
(ili) A pointx € X is said to be a fixed point of T if x € Tx.
Kirk and Shahzad’s results on set-valued mappings which will be extended are as follows.

Theorem 28 (Kirk and Shahzad [21, Theorem 3.4]) Let (X,d) be a metric space and T :
X — CB(X). Suppose there exist a metric transform ¢ and k € (0,1) such that the following
conditions hold:

(a) Foreachx,ye X, p(H(Tx, Ty)) < kd(x,y).

(b) There exists c € (0,1) such that for t > 0 sufficiently small, kt < ¢(ct).
Then for ¢ > 0 sufficiently small, T is an (g, c)-uniform local multivalued contraction on
(X, d).

Theorem 29 (Kirk and Shahzad [21, Theorem 3.6]) If, in addition to the assumptions of
Theorem 28, X is complete and connected, then T has a fixed point.

Our aim is to replace the metric transform ¢ in Theorem 28 by a metric-preserving

function. We obtain the following theorem.

Theorem 30 Let (X,d) be a metricspaceand T : X — CB(X). Suppose there exist a metric-
preserving function f and k € (0,1) such that the following conditions hold:

(a) Foreachx,y € X, f(H(Tx, Ty)) < kd(x,y).

(b) £1(0) > k.
Then for € > 0 sufficiently small, T is an (g, c)-uniform local multivalued contraction on
(X, d).

Corollary 31 With the same assumptions in Theorem 30 except that condition (b) is re-
placed by (b'): there exists ¢ € (0,1) such that for t > 0 sufficiently small, kt < f(ct). Then
for & > 0 sufficiently small, T is an (g, ¢)-uniform local multivalued contraction on (X, d).

Theorem 32 If, in addition to the assumptions of Theorem 30 or Corollary 31, X is com-
plete and e-chainable, then T has a fixed point. In particular, if X is complete and con-
nected, then T has a fixed point.

The proof of these results are similar to those in Section 3.

Proof of Theorem 30 We define ¢ = %(J% + 1) as in the proof of Theorem 16. Then 0 <

f,(LO) < ¢ <1 and there exists §; > 0 such that for every z € [0, 00)

J
0<z<s = 12K (10)
z C
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To show that T is an (g, c)-uniform local multivalued contraction for ¢ > 0 sufficiently
small, we let 0 < ¢ < %1 and let x,y € X be such that d(x,y) < ¢. By Lemma 9 and (10), we
have for every b € [0, c0)

1) ) 1)
_21 (b)zM>E>k—8>k£.

11
2 2c c an

By condition (a), we have f(H(Tx, Ty)) < kd(x,y) < ke. Therefore we obtain by (11) that
5
H(Tx, Ty) < ox (12)

If d(x,y) = 0 or H(Tx, Ty) = 0, then it is obvious that H(Tx, Ty) < cd(x,y) and we are done.
So assume that H(Tx, Ty) > 0 and d(x, y) > 0. Then

k H(Tx, Ty) <f(H(Tx, Ty) H(IxTy) [fHTxT)) _
¢ dxy) H(Tx, Ty)  d(x,y) dxy) ~

where the first inequality is obtained by applying (12) and (10) and the last inequality is
merely the condition (a). This implies H(Tx, Ty) < cd(x,y), as desired. O

Proofof Corollary 31 We can imitate the proof of Theorem 18 to obtain f’(0) > k. So Corol-
lary 31 follows immediately from Theorem 30. O

Proof of Theorem 32 This follows from Theorem 30, Corollary 31, and Lemma 15. The
other part follows from the fact that a connected metric space is e-chainable for every
e>0. g

Conclusion We replace the metric transform ¢ by a metric-preserving function. There-
fore we obtain theorems more general than those of Kirk and Shahzad [21, Theorem 2.2,
Theorem 2.3, Theorem 2.8, Theorem 3.4, and Theorem 3.6].

5 Fixed point set of metric transforms and metric-preserving functions
Recall that for a function f : X — X, we denote by Fix f the set of all fixed points of f. We
begin this section with the following lemma.

Lemma 33 Let f : [0,00) — [0,00) be a metric transform. If0 <a < b, f(a) = a, and f(b) =
b, then [a, b] C Fixf.

Proof Since f is amenable and concave, the function x — f(Tx) is decreasing on (0, 00) by

Lemmall.Soifa <x <b,thenl = J@ > @ > % = 1, which implies f(x) = x. This shows
that [a, b] C Fixf. O

Lemma 34 Iff : [0,00) — [0,00) is a metric transform, then Fixf is a closed subset of
[0, 00).

Proof Let (a,) be a sequence in Fixf and a, — a.If a = 0 or a = a,, for some n € N, then
a € Fixf and we are done. So assume that 2 > 0 and 4 # a,, for any # € N. Since a > 0 and
a, — a, a, > 0 for all large n. By passing to the subsequence, we can assume that a, > 0
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for every n € N. It is well known that every sequence of real numbers has a monotone
subsequence (see e.g. [28, p.62]). By passing to the subsequence again, we can assume that
(a,) is monotone. Now suppose that (a,) is increasing. Then by Lemma 33,

lai,a,] C [a1,a2] U [ag,a3] U ---Ula,_1,a,] CFixf foreveryneN.

Since (a,) is increasing and a,, — a, if a; < x < a, then there exists N € N such that a; <
x < ayn, which implies that x € Fix f, by Lemma 33. This shows that [a;,a) C Fixf. Since f
is increasing and a,, < a, a, = f(a,) < f(a) for every n € N. Since a,, < f(a) for every n € N

and a, — a, we have
a <f(a). 13)

In addition, we obtain by Lemma 11 and the fact that a > a; that

f@ _fla) _

— <
a ai

1. (14)

From (13) and (14), we obtain f(a) = a, as required. The case where (a,) is decreasing can

be proved similarly. This completes the proof. d

Lemma 35 Let f : [0,00) — [0,00) be a metric transform. Then Fix f = [0, 00) if and only
if supFix f = +oo.

Proof It is enough to show that supFixf = +oo implies (0,00) C Fixf. So suppose that
sup Fix f = +00 but there exists x € (0,00) such that f(x) # x. Since supFix f = +00, there
exists a4 > x such that f(a) = a. Similarly, there exists b > a such that f(b) = b. Since f is
amenable and concave, we obtain by Lemma 11
/o _f@
x ~ a
Since f(x) # x, f(x) > x. Since x < a < b, there exists ¢ € (0,1) such that a = (1 - t)x + th. By

the concavity of f, we obtain
a=f(a) :f((l—t)x+tb) >A-0)f(x)+tf(b)>A-t)x+th=a,
a contradiction. This completes the proof. (]

Theorem 36 Ifa > 0, then each set of the form {0}, {0,a}, [0,a], and [0, 00) is a fixed point
set of a metric transform. Conversely, if f is a metric transform, then Fix f = {0},{0,a}, [0, 4],

or [0, 00) for some a € (0,00).

Proof Define fi,f2,f3,fa : [0,00) — [0,00) by

) 0,al;
fl(x)=§, A =vax,  fx)=x  filx)= x x €[0,a]
= X>a.
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It is easy to verify that the functions fi, f3, f3, fa are metric transforms and Fixf; = {0},
Fix f, = {0,a}, Fixf3 = [0, 00), and Fix f3 = [0, a]. This proves the first part.

Next let f be a metric transform such that Fixf # {0} and Fixf # [0,00). We let a =
supFixf and assert that Fixf = {0,a} or [0,a]. Note that since Fixf # {0}, a > 0. It is
obtained by Lemma 35 that a < +00. Now apply Lemma 34 to get a € Fixf. Therefore
{0,a} C Fixf. By the definition of a, we see that x ¢ Fixf for every x > a. Now if x ¢ Fix f
for every 0 < x < a, then Fix f = {0,a} and we are done. So assume that there exists 0 <x < a
such that x € Fixf. We will show that Fixf = [0, 4]. Since a = sup Fixf, it is obvious that
Fixf € [0,a]. Suppose for a contradiction that there exists 0 < y < a such that f(y) # y.
Since 0 < x < a and x,a € Fixf, we obtain by Lemma 33 that y ¢ [x,a]. So y < x. By
Lemma 11 we have

o) f@ _
y T ox

1.

Since f(y) #y, f(y) > y. Since y < x < a, there exists t € (0,1) such that x = (1 — £)y + ta. By
the concavity of f, we obtain

x=f@x) =f(A-t)y+ta) = A -t)f ) + tf (@) > (A - )y + ta = x,
a contradiction. This completes the proof. |

Since every metric transform is metric preserving, we immediately obtain the result that
each set of the form {0}, {0,4}, [0,4], and [0, 00) is a fixed point set of a metric-preserving
function. However, there is a metric-preserving function f where Fix f is not of this form.
Let us show this more precisely.

Corollary 37 Ifa > 0, then each set of the form {0}, {0, a}, [0, a], and [0, 00) is a fixed point
of a metric-preserving function.

Proof This follows immediately from Theorem 36 and Proposition 20. O

Example 38 Letf,g,/:[0,00) — [0,00) be given by

0, x=0;
Sfx) = [x], gx)=11, xeQ-{0}
V2, xeQ
0, x=0;
1, O<x<l1;

h(x) =
x xeQnNI[L2];

2, x€(Q°NIL2])U(2,00).

(Recall that [x] is the smallest integer which is larger than or equal to x.) It is easy to verify
that f is amenable, increasing, and subadditive. So by Lemma 7, f is metric preserving.
Since g and / are amenable and tightly bounded, we obtain by Lemma 8 that g and 4
are metric-preserving. It is easy to see that Fixf = NU {0}, Fixg = {0,1, ﬁ}, and Fixh =
{oyu@niL2).
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By generating a function similar to # we obtain a more general result as follows.

Proposition39 Let A C [u,2u] for some u > 0. Then AU{0} is a fixed point set of a metric-
preserving function.

Proof We define f : [0,00) — [0, 00) by

0, ifx=0;
fx)=1x ifxeA;
u, ifx¢AAxé¢{0,u},

and if u ¢ A, then define f(u) = 2u. Then f is amenable and tightly bounded. Therefore, by
Lemma 8, f is metric preserving. It is easy to see that Fixf = A U {0}. This completes the
proof. (]

From Example 38 and Proposition 39, we see that the fixed point set of a metric-
preserving function may not be of the form {0}, {0,a}, [0,4], and [0, c0). Other natural
questions and answers are the following:
Q1: Is there a metric-preserving function which does not satisfy the result in
Lemma 33?

Al: Every function given in Example 38 is such a function.

Q2: Is there a metric-preserving function which does not satisfy the result in
Lemma 347

A2: The function / given in Example 38 and the function f given in Proposition 39
(with a suitable set A) are such functions.

Q3: Is there a metric-preserving function which does not satisfy the result in
Lemma 35?

A3: The function f given in Example 38 is such a function.

We see that the fixed point sets of metric-preserving functions are quite difficult to be
completely characterized. We leave this problem to the interested reader. Now we end this
article by giving continuous metric-preserving functions which do not satisfy the results
in Lemma 33 and Lemma 35.

Example 40 Let f,g: [0,00) — [0,00) be given by f(x) = [x]| + +/* — [x] and g(x) = x +
| sinx|. (Recall that |x] is the largest integer which is less than or equal to x.) We will use
Lemma 12 to show that f and g are metric-preserving. First, the function x - |sinx]| is
periodic with period 7.

|sin(x +y)| =|sinxcosy + cosxsiny| < |sinx| + | siny|.

So the function x — |sinx| is also subadditive. From this, we easily see that g satisfies
the condition in Lemma 12. So g is metric preserving. It is not difficult to verify that f
is also satisfies the assumption in Lemma 12 and we will leave the details to the reader.
It is also easy to see that Fixf = NU {0} and Fixg = {nw | n € NU {0}}. So f and g are
continuous metric preserving functions of which fixed point sets do not satisfy the results
in Lemma 33 and Lemma 35.
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