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Effect of Defects on Mechanical Behavior and Failure of Reinforced Concrete Beams
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NANIZNUVAITOUNWTBIGaNOANTINNHNALAZNIITIUAVAIA WA D WNIALRINARNT

lasunsiasunnage ﬂfﬁ@;ﬂauiwﬁma%mﬁusls

lay 8.07. INIWWS LHande

N8I 2559



fuaufl TRG5680053

ol ﬂmufiﬁ‘i'mu”uauymi
Tas9ns

Effect of Defects on Mechanical Behavior and Failure of Reinforced Concrete Beams

Strengthened with Fiber Reinforced Polymer Composites

NANTZNUVAITOLNNIDIAONANTINNINALEZNIIIUAVBINTUADWNIALFEIULNANT

lasuniTsSuniase Ui’ﬁ@gﬂauiwﬁml,a%ulﬁulﬂ

10y 2.607. INTWUT L7iande

MAITIEINTINLY T WAIINYILNBATANRGST

R agmiw FININWN amuaﬁfu a‘gmmﬁﬁ]”ﬂ

WaZ UWIINLRULNWATAN ﬁ(ﬂ§

@nuARlusnuibiduseide ani.lidududasiudaualyl)



Project Code : TRG5680053

Project Title : Effect of Defects on Mechanical Behavior and Failure of Reinforced Concrete
Beams Strengthened with Fiber Reinforced Polymer Composites

Investigator : Dr. Chakrapan Tuakta, Department of Civil Engineering, Kasetsart University

E-mail Address : ctuakta@gmail.com, fengcptu@ku.ac.th

Project Period : 2013-2015 (2 years)

FRP (fiber reinforced polymer) strengthening systems for concrete structural members,
such as beams, columns, and slabs, have become increasingly popular as a result of extensive
studies on short-term mechanical behavior. However, the effects of defect in the form of
disbond area at FRP/concrete interface on the behavior and failure of FRP-strengthened RC
beams are still largely unknown. Limited numbers of studies have shown that the presence of
defects can have detrimental effects on FRP-concrete systems. Therefore, the objective of this
research is to investigate the effects of interfacial defect in FRP-strengthened RC beam on its
mechanical behavior and failure through a series of experimentation on FRP-strengthened RC
beam specimens and finite element simulation. The methodology and knowledge from this
proposed research could help civil engineers plan proper maintenance and repair of FRP-
strengthened RC structural member to ensure public safety.

The results of this study have shown that defects of different sizes and locations had
small effects on the flexural capacity and ductility of RC beams strengthened with FRP. The
flexural capacity calculated from design equations, together with additional strength reduction
factors as recommended by the design code, is smaller than that obtained from the experiment,
implying that designed capacity of FRP-strengthened RC beams is safe with the presence of
disbond defects of the positions and sizes within the scope of this study. In addition, defect in
the form of disband area at the interface between FRP and concrete can affect the distribution
of interfacial shear stress within the interface. The presence of large defect can increase the
overall interfacial shear stress due to reduced total bond length. Furthermore, bond strength
(P,) and softening load (P,) depend on the size and location of the defect in the bond line. For
defects at the same location, larger defect results in larger reduction in P, and P.. In case of
defects of equal lengths, defect in the region of high interfacial shear transfer, such as location
of flexural cracks, will cause larger reductions in P, and P. These result in reduced

performance of FRP-concrete bond joint.
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d1%5U Bi-linear Bond-slip Relationship Tu%13 Elastic Avsmheusudouiisessrovsifinty
Judunse (0 < s <s;) muiinansluaunisi (1) Tugaed NOANTINVDI508MDILUAN WY
Elastic 9unsziunheusadeufisossefiaviifumiousdamisiiasgn (t,) wazludising
anaaduldunss #5029 Softening wAnsIuvoITRERoaziiAUIdsNIe (Damaged  Interface)
dewninsuanduuadnlureunsa Ansideussiivinniu luvasimbousadoudamieey

- = ] i = a A
anasmuLansluannsi (2) MINFNABNITNINIDYADUDY FRP LLagAdUNI® ELNALUD s > Sf

AN UUNULELIWAoUd AL TeziAINAU 0 Fanunede sae6e (Interface) AURLAD @analiibal
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ANUNIN0N8LIITENINABUNTALAY FRP 16 Ko et al. [12] lawaiuuwuudiass Bond-Slip dmsuldlu
nseanuuulagnsiUseuiiisulagligiudeyaveanansnaaauwuy Single-lap Shear wag Double-

lap Shear (5U# 5) fudsdwiuwuudnaesiuy Bi-linear ansnsarmwinlanuaunisi (3) i (5)

Tzfm(si)forOSsSsT (1)
Tm(s—S7)
T=Tm—szf0TSTSSSSf (2)
Tm = 0.165f, (3)
s; = —0.001f, +0.122 (4)
Sf = —0.002f, +0.302 (5)

2.3 NNSUYBULIUTTUULEIUN1AY FRP Tunsainiidaunnsas

[

YDUNNIDIVDITLUU FRP T8 iunanskuy @anN1nwasyiavuadtaunngaauadseuulasuniad

Y

=

FRP 1ok (1) A15LRRYe9Inansansel1eaInIAseninanIAauUns ALastuUTaIly 53U sadandn

9

=2

Uszanu wsedvesinglussuu FRP (2) MIngaaauaddiszuy FRP (3) nisausduuudulelivian
wagldlainane vilistuunliminzan waz (3) se8317 9aunnses Mlifunisunluneunisinas

YIONTNRARDUYBIATHATOUR?

[y [y a

N3YeNNYNTEUY FRP Yusgiuseiuaudsis Tuusuaidemeliuin nd1ke ssuu FPR
-dld 1 ¥/ 1 4 1 1 = a o ¥ 1 1 1
VIUYAUNNIDIVUIAFUNIUAUENANDYTERIN 32 09 150 U3, LAZHINWIUUBYNIT 5 WRIRBYINAIY
g1IMTBANUNTIN 3 ASTLESUITUU FPR dauuzulaeindngaunnseamaiimennuseinseiuay
Aununseutvesnluluvinalasseulidesndt 25 wu. wislmAanisaeusdluseuy FRP 1nsaldl
FPRyaN8 % Iiangilazduoanaudatuniianudsnie wagiinsineds FPRIaztulaauwdsl FPR

Auunseutrseenluluuinalagseulddesnit 25 uu. uay FPR Mldvouugunisinuaudan

WAL ULAL 19l L5 09URIALVUN Niannavaddulalukiaz Ty SIUNITRATDLITUY

dmiuluvsnanianudenerualuguin na1Ife seuu FPR - AISgaunnsoavuiaduniy

Audna1lngndn 150 1. MIUNNTBVUIAMELAAILTLALINAANITNGATOUBENTULITITENINTL
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iaydenisBamileniuaeunin desiinisseesen waglviunuiiseutradnlulddesnii 25 uy.
niuias FPR Tudnvasiduaunsuyndu uasfedassyuu FRP Wiindudndu (Additional Layer) T

a I~ Q‘I k4 v [ 1 ¥ v 1 i a d‘d 1 1
Autiunsevtrwd lulidesndn 150 uy. ‘O’]‘Vﬂﬂ‘W‘UGUEJ‘UﬂWi@WJu’]ﬂIWZIﬂUUiL’JQJVINNﬁ@ﬁﬂflll’]ﬂ(ﬂ@

< v o X & ) a & |
AULTILTIVDIIATIESIE AISVINNTSIDILUU FRP MISRUALAIINNSARATINY [13]

12



L%

= = ada
UNN 3 3SLUYUITIY

4

lasamideiiuseneumenisfinulagnismaaeddurieslfiinisuasnsfinyilaensiea e
A B INluABAILURA (Finite Element Analysis e FEA) dmsuatuada. Mlesunaseie FRP way

I (%
Y Y v v

S9UADTLNINIADUNIALAY FRP MITUITUADUNITIFUAIN

3.1 MMAFaUAI8E19AUATA.LEINAARY FRP Tuviaeufjianis

[

ﬁmanmamwwm%unwiaﬂugﬂLLUU%Qﬁuﬁwqm'ﬁ'auizmwﬂauﬂ%muaz FRP fiflsiorinds
LagngAnssumsitAlagyanimageuiiogua aga Ald3unsiaiuidsie FRP anelduse
NFENILUU 4-point bending Fausesnsviuuuiesmiioutunsldnuese sualisserauiidieniy
Tuddn  (Pure  Bending) wazszasiifinisnaunausewinslumuAdaLazusdou deely
AsAnwUnUTssTUIRduTSTeduuidwazusadeulunsinnsivRidledidounnses st

LY =

1n1591AN19UAULUATDINTITLANLIIVDIAULATEALAZ MBI IINALAUIFIAYA19LT099INN"T

nansoulaeld Strain Gauge lnEANBUEINNIZVRITOUNNIWILANIAD 1. VWIAVBINUNVGATOU

2. fUUINUNanseu
3.1.2 A998 1NAIUAAA.LE5UA1AINIE FRP

M9 1 wanssen1siegailinaaey wieusieaziduavesteunnsodlunsazinetng Ay
fhogsamuadiarmemans 2 1. widaiinnuntie 150 s &n 200w, feuEnUssaning (d)
170 1y, F79819AUNNFNETUAEMANETNANNETY DB12 (Furugudnand 12 uy.) 31w 2 i
Fafuuuazduaiie funsdauarussianuddy Tnegaaudtmauviniaiuiuusidnagis
MnfneounInduuduszey 20 uu. uaniduidsunusssdeudinfiudemangndsivhan
wdn RBY (AuRuguEnans 9 am.) fiszesi3es (Spacing) 80 uu. titedasfunsfitRuuidousening
MInadoU (UM 6) Aeundniilindndieguauiiidsinumunsssail 28 Su () winfu 27.26 MPa
uazdniadundnifidagansnivinfu 300 MPa (Furmam SD 30) Mnduandesiuiedisay
Aliifinsiaduidsng CFRP ansasfimsfitRuuuneunIndaunnmdaninnisasinueuvdniaia

(Concrete Crushing after Steel Yielding)
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A a o | a Ay vee
AN 1 iqﬂagLE]U@W?@quQWUQQUﬂiﬁmﬁﬁﬁﬂwq

Useinmnau i vaiufivansou | suvdsesiiufinga ORIV
A98719 (MF1axen7 mm”) 39U (mm)*
. NF - - AU AEA.
NGNAIUAY "
CF - - AU AFA. LASUAE FRP
DF-50-0 50 x 50 At midspan AU AGA. LE@SUAY FRP
DF-50-180 50 x 50 180 mm AT AR, LESUAE FRP
DF-50-270 50 x 50 270 mm AT AFA. LasuAE FRP
, DF-50-560 50 x 50 560 mm AU AAA. LESNAE FRP
NANNAREY "
DF-100-0 50 x 100 At midspan AU AR, LdIUAY FRP
DF-100-180 50 x 100 180 mm AU AEE. LEdSUAE FRP
DF-100-270 50 x 100 270 mm AU AEA. LESUAY FRP
DF-100-560 50 x 100 560 mm AU AR, LESUAY FRP

*SyEEnTEnINAINaIAIuLasNANIuIianTeu

fregneu CF uaz DF-##-## finsfinds CFRP udsainaeunindongasy 28 Su Tagldns
Ansauuuiden (Wet Layup) CFRP fildlushogneyniaiidnu 2 $u uasdiarmem 1.5 4. auth
ynanaves CFRP siawuuiidudulouis (Ory Fibers) waziuy Laminate fildainguan wandluaisa
7l 2 BefidelavinseaouiiiemmasinumunssfaazAuegdadianguues CFRP  uazdiiend
Fanfulisne ansvaaeusiegsiagluosfifnisaznanliluuni 4) Tneduneulunsings

CFRP HU15191nNN59 0L wIUwaL S guRIABUNIA AL YLAT D8 SHAZNTE A ENITBTALND NI ANDTAN

' v
a a =

filiudausioon uargagnguilinduszninenisiniiegisau MnduieuazerafinnounIeli
Unannasiulagasuanaifivasvdonnduneunouning udl¥sRenduuvassdiunay (-
part Epoxy) ﬁmammu%’jumauﬁLLuzﬁﬂmag’{mammuuﬁaﬂaun%dauﬁamwLLcjuLé’uKLstﬁuauLLw
88U (Carbon Fiber Sheet) wé3dl#aondmausuluvuuiudulomiveudiufudegnnis nieu
funslavlesenmaiioanaundessuinenisiiads Taglilarumuies Laminate  #ldvinfy uas
seinseelailvifiduloanseseninsnsiing adldeunnsasiioglusuuuuvessesmansoussning
pounImuaz FRP lughoehs DF-##-## 1ty Téannmsthudumvlaeuiifinunanadeunnsosiidesns
lUnnssewineihneunauassudwendludunounsfiods FRP uonanmsiines CFRP muuuae
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Wiy Gediaste CFRP TusUuuuveanisiusey (Complete Wrapping) fiszez 250 uay 350 UL.97N

Uanga1umunilenie iediansRusLuy FRP Debonding THlAaamzlusmunileussieg1enu

[
Y

n5293nA69°) Tutunourealy

[
U

neilaegliszuuiaunas CFRP lusegnsnuunilunategnetes 48 u. neuvinnisindgunsal

—— 2DB12 ,—— RB9 @ 80mm

bl i s Bl s S e e B B '|"‘I"'é"']-"l'"'|' ==|===r==a- T
R T T T R 1 -5 :IiiIP/III 170
::I:::::Il T T T T 200mm | mm
} 1500mm | o f— 150
| 1600 mm | mm
I — 2000 mm ks ']I |"_“|
S0mm
/ 1 | 1 1
| I: I: e I
250 mm 350 mm Strain gauges 180 mm 190 mm 190 mm
U7 6 TNEazIBEAfBL 19 ULATAUMLINSARGY Strain Gauge
AN57371 2 audAvnenaves CFRP uagdiendild@nw
Tain) audAniena Aflsngnan
Tensile Strength 3,790 MPa
wdulawsis (Dry fibers) Tensile Modulus 231 GPa
Ultimate Elongation 1.6%
Tensile Strength 1,062 MPa
Tensile Modulus 102 GPa
CFRP Laminate
Ultimate Elongation 1.05%
Laminate Thickness 0.23 mm
Tensile Strength 3.18 GPa
diand Tensile Modulus 72.4 MPa
Elongation Percent 5%
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3.1.2 gunsalinmuazasnisnaaeu

NAADUAIUMBE1ITINE1INIT1AUNETALTINTZYIILUU 4-point bending tWeliTlszezd19a1Y
A (5 A [l A (Y a A 2 1 ! o
MlUAfRAT karszerdrmunilumuddndeuluas (5N 7a) laeillssezrineseninegnsesiu

K%
[ IS

WU 1.6 m uagilszeerinaseninmemihninussynnseyiwiiu 400 mm #nas LVDT 31u3unile
O P Y P oA a & ' a & . o "o

AannanamuiieInsruelieiintusenintammaaey #aRs Strain - Gauge  MIAUMUeA9 UL
CFRP snufiuanslugud 6 lneagfinge Strain Gauge 3 Mluusnaiilutounnsasdiuantluguil 7b
Tihwiinussnnseyiuusiialagld Hydraulic Jack wagld Load Cell w38 Dial Gage WiuA1®s

Umtinussnnserinmmaaey JuiinAnnialavianunlagld Datalogger

Rigid
/-’Frame
Hydraulic jack 11 | I
&Load cell N(f— Debond Defect
. i) , CFRP
[ H \
(O] I E— (0]

Strain gauges

b
L4

! 1600 mm !
(a) (b)
JUN 7 M3nn@eumagemuikuy 4-point Bending (a) Wagduniaifings Strain Gauge USLiad

YBUNNITDIALUUTOENAATOU (D)
3.2 N1SNAEBUAIBENN50ABIENINIABUNTAKAY FRP Nildaunnday

Anwnginssunazusidamienlnensaaeusietnisessoseninaneunnuas FRP LUULSS
LROULUILAYY %38 Single-Lap Shear é’ﬂwmzﬁaaej'mLLazmimmaaULLamﬂugﬂﬁ 8 Hailunsanw
dnuilléld crrRP wuusuudeifiarunie 50 wu. uazaIMun 1.2 13, (6 = 165 GPa uas fy, =
2,400 MPa) Lﬂu’?a@Lﬁ%ﬂﬁﬂﬁﬂi%ﬂ’liaﬂﬁgﬂLLUU%UEULLﬁG (Dry Lay-up) Llesandeanisandeunnses

Y o o w v A

ludslaniinseninamsinnawuuduguilon raunInfildlinndssuusedni 28 Judssuia 35 MPa
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) | ag v Y a o | Ay a a A a v a v
W’Ja‘&ﬂ\ﬁ/ﬂsﬁ‘ﬂﬂﬁ@ﬂlﬂsﬂqﬂﬂ'ﬁ@]ﬂ@]ﬂLLNu CFRP $1U9UIANADINTITUUNIADUNINNLR IYLULLAT LLa%ﬂJﬂq{Lsﬁ

1 a

weuWanulunN15as 197 UN NI 09918097 UTNTOHADTEWINNADUNT ALAZTUBND NG LYULABIN1TAS

v ' o ' a ! A v
m'ETUﬂWi@\ﬂumjaquﬁqu@aa.Wﬂaqul}ﬂuaquwLLa’J

Epoxy f |

_9.[
100 mm I Concrete

100 mm 50
mm P
N
o FRP

le
I

300 mm :
(a) (b)

JUT 8 vunvaeiiegeseefaTEnIemaunInLay FRP (a) wazaunsalnldlunisvesaeu (b)

'
o

lun1smeaauluy Single-lap Shear twagldussRenseiiuateuwiy CFRP waziinsau)isen
JosiuldlvinounsunInnfeunaegui 8a anwusvesiiogsudazngunaaoutanslunisei 3
foganguaruay (Lifivaunnses) danusnsesnassniteraunsalag FRP winiu 140, 150, 160,
1 Y} 1 1 Y = 1 [ | v ] Id Y

180 uag 200 1y, @wfiog1enguiksiiniuenITesne MuntauazvuInvestaunnioadud

WUSTAN YUIAVBITDUANTBIWIIAU 20, 40 1Ay 60 @IUALNLNYDITOUNNTBWINAY 20 way 40

=

130, 1PNV UVRINUNTRumlUNvaUTRINaUARUNIAUSTY SUT 8b  WAMINISNAEDUAIBENT

U

YR 41' Ql

SOURDAELATOIMAGDULOUNYIEaIA (UTM) Tasd LVDT viuidinAin1sieaouiivoduku CFRP 4
USLIUVDUVDINDUABUNIAUITL (AIN15I80UNTD Slip  U99T98RR) wazln19TAAIUIAULASYAT
Watulu FRP fmMen19itaszia wAanea (Digital Image Correlation) saudulusunsuy NCorr uag

Matlab TuinAIN1980ULAZIUINVDILTIRIAIY Datalogger
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d' .Y ¥ 1 Y 1 . d‘ Ve
A15199 3 ANWAEUDITBUNNTDII UMDY 1NAFDULUY Single-Lap Shear nlafne

nax ANNYITOLGD | YUINTDUNNTDN ANUIVD UIUAIBENS
Ls (mm) Ly (mm) YoUNNIBd x* (mm)
200 0 - 3
, 180 0 - 3
NAUAIUAL
o 160 0 - 3
(Lifidounnseq)
150 0 - 3
140 0 - 3
20 3
20
40 3
20 3
200 40
D 40 3
NQNEILYT
" . 20 3
(HUpUNNIDY) 60
40 3
20 20 3
150
40 20 3
60 20 3

*HWNUIYITBUNNI D ININVBUMUINAYaINiLAvaUNNTalUdUaten o uABUNIAUST LA UATLS

A2
3.3 N15ANYIA8KUUIIA N INTUADALIUA (FEM)

3.3.1 NM5UATISHNGANTIUATUAAA.LASUAI1AI6 98 FRP NdTaUnwsadiae FEM

ANWIHANTENUVRINTNGATBUTENINABUNTALAE FRP Nillagudilusesse Nilnademduay

Y
a A wa v ° faa ¢ ¢ ) o o o °
ngAnssunIsAUAlaensldLuuTIaemlnluddduud FmdnnisdrAgildlunisdiasinisvan
SaUNT0YRBIEMING FRP LazAaunsm Aa Cohesive Zone Model (CZM) Tag@n®In1I5hantkadue
AMULAULAZAULATEA AINFUTUTTENIUIMTNUTINNRALNITLAIAIVBIAIU KATNTEUIUNTT

LY

fRvesmuledvaunnsoninduagudy Nalluuuinassauaaa Mldlasunsiasumduasnlasy
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ASLESUANSAIASUNITHAIUNITY 52UAUITN19IATIEIAAE Finite Element (FEM) A15199 4 Wan

NYALLDUALUUIADIANUAFA. WAL AN ULV UNNI DI MULAASLUUINADIN LUANEN

AN 4 S18ATLDUALUUINEDIATUAZA.

Useianau SV yupiuingaseu | suntsesiuiivgn ORI
FIBEN ("$19x612 mm”) 38U (mm)*
. NF - - AUAFS.
NENAIUAL —
CF - - AUAFA LAY FRP
DF-50-0 50 x 50 At midspan
DF-50-200 50 x 50 200 mm
DF-50-400 50 x 50 400 mm
. DF-50-600 50 x 50 600 mm AUAHA LATUAY FRP
NANNAADY s o,
DF-100-0 50 x 100 At midspan wardlTaUNNIBINIToYME
DF-100-200 50 x 100 200 mm
DF-100-400 50 x 100 400 mm
DF-100-600 50 x 100 600 mm

*HWNUIYDITDUNNI DS MUK UV LTl URUN I LU IBg19AUTINAZDU WieanALTULaulunng

LUIDALLIUA

JUT 9 wanssitegauuuinaesiildesuienginssuvesdanluiuudiaes FE lngngAnssuves

Aaun3naziduuuu  Nonlinear neldinsesdn [14] wazdl Tension Stiffening [15] d1wsuaSune

NOANIIUNTARTIAWMAINAANITLANTIINED InedlannisildeSurennuduius Stress-strain A9

A

LAnasad
2¢€

fo= 1=

Ot

% _ 1+(

|

&o

£c\2
<—> , 0< . < ¢ (6)
&o
0.15
(EC - 50)]' €o < Ec < &y (7)
u — €o
w3 o We  ow
¢ —t) le Pwer — —— (14 ¢f)e (8)
cr cr

19




G
We = 5.14— 9)
t

£ -8 2/3
c
10 >

f, = 1.4( (10)

/N 0.7
Gr; = (0.0469d2 — 0.5d, + 26) (f—%) (11)

N , A o o v Y a
e?l . A9 ASWIUNIULIIDATDIADUNTA
d, A s uAUgNavRnaTINIUIA Y galunounTe
Gg A NANIUNITUANS1IVIABUNTA (Fracture Energy)
=) o [ = =

£, A9 ASIRIUNIULTIAIUDIADUNTA
W, AB ANNNINNTIgRvesseesItuAaunss (Final Crack Width)
C; WAy ¢, ABANFUUSEANSNLAINNNSNAABU AAINAU 3 LAY 6.93 AUAIRU

dmsumaniasundnuazmangnasiu laldlumauuy  BiLinear WisaSulengAnssuiuy
Sanafnuazlidanadin ndwiniAinnsnsnuas @i CFRP duazldngAnssunuudanainidaiduauia

yURAvesian YiingAnTsun1vigaseuves FRP 91nEiAeunintiy esunelagauduiusnista

wilenniFe Bond-Slip Model 493 Ko et al. [12] WUU Bi-linear (3071 10) Fsilmsfimesddnyiiso

Lo

o

T9fe AMSITULTIRT 28 Tuveraunn () way Local Bond Slip (sp) 7 Tree B9kAINNITIATIE
NANISNAABINAEATEIVDITEMADILNING FRP wavmounsm N5iusiulilusieanuees Ko et al.

[12] wisniwaswanideuialamuaunisi 12 89 16

S
T=Tm(s—> for0<s<s, (12)
0
Tn(s—s
T=Tm—MfOTSOSSSSf (13)
Sf _SO
T, = 0.165f; (14)
so = —0.001f/ + 0.122 (15)
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s; = —0.002f; + 0.302 (16)

Tneuuusasanaidluldlulusunsy FEM @idedn Abaqus sauifu 88wusuuy d-node dmsu
AaUNIM FRP Salusuuuniheussinmiosluszuiu (2D d-node Cohesive Element) dmsusossio
WAZBAIUAKUY 2-node Truss ﬁ’m%‘umgﬂLﬁ%MLEﬂ%L‘ViﬁﬂQﬂﬁzﬂ (U1 11) 5197l 5 uanssviawesdd
wudlulsunsy Abaqus  fhuvusiassausuduiisseimidwemuied i filinaaeutsaiioan
n1sAuan Tnenisivuaeuadeulafidiurinvesuudiasdimadeudileanizluuinnu v

iensiadeunluiuibny X uaznisvyu nieunsliusanseriuiiuuitassaiulagnsimuanis

NIEANNIBUIMUNUTTNNNIATULSS (FUN 12)

(S O 4
o . Compressive Behavior /9 S
/ ! L7 _—
« . : . : .
Tension " \/ | &y &,
stiffening v Crack failure
Concrete stress-strain behavior CFRP Steel reinforcement

JUT 9 naRinssuvesnaun3n CFRP uavwianasulunuudiaosanu

G

\ 4
W

So Sf

Bond-slip model for FRP-Concrete Interface (Ko et al. 2014)

JUN 10 AnuduiusseninasBamiletuaznisiaeu (Bond-slip Relationship) wuu Bi-linear
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M1517 5 stavesdamusnldluluuTassnunga. laz sialulusunsy Abaqus [16]

el viinvaedaud salulusunsu Abaqus
ABUNTA mieussluszuIu (Plane Stress) Wuu 4 30 CPS4
eRlLD) wiheussdamiealuszuuiuy 4 90 COH2D4
CFRP mieussluszuIu (Plane Stress) Wuu 4 30 CPsS4
\WanLEsY lpsedn 2 9m T2D2
Concrete Stirrups

, N v \

L.: Steel plate CFRP Longitudinal reinforcement

(a)

l_Y_}

i_,, Defect

(b)

JUN 11 fegrauuuinassmunas. Masuiganie FRP (a) uazguveneiiumristiaunnsas (b)
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Applied load/displacement

Roller: u, = 0

, Roller: u, = 0
JUN 12 dnvazvaulwaReulvluwuuinaesmunaa. Measuidwae FRP

lunmsdesigvisuudnassnianuli@aduieninnginssuvesdan (Aouninuaning uas

FRP vigaseu) ddudasdmatianisuiteym (Solution Technique) NfiUssansnmwazinsgidng

fmau (Convergence) Tnglufilds Newton-Raphson $2ufu Line Search wievldundasmeuly
annazauga eilunsdidtymnisgidginey envaglénszurunisud Yymmemanians
(Implicit Dynamic Analysis) 11978 faeignsuAtemiendn Hiler-Hughes-Taylor a Method
vio HHT- a Tulusunsy Abaqus [17] Taelde a = -0.1 Fadudinsudtamiwuy Implicit Time
Integration  wianils n1sudtlymilazdaeliausammwginssuilidudadulununaa. s

fdasie FRP MAnTUSEHINNISUANS1IT8IADUNIA N1TATINVDLAANETULAZNITNAAADNUBILHL

FRP laognsdiuss@nsninninnistaisunaymiiuuads 1wu 38 Newton-Raphson [18]

3.3.2 M5 UATISHNAYDTOUANTDNTIAIN NG AN TsUTITERaTeNTNABUNTAKAS FRP

Y s A

nsfnwludnilifnguszasdiodlanalnuas e deiifnanonninssuuas msivhvessenso
sewinsmoundauaz FRP dvsuilundnnisfiugilunisiinsey uazdsafuligmnisiae
Jaunnsadlunisasumadlassasaounineeg FRP Iaglduuuiiasmislnludddmuduuy 2 16
vaaegslunInaaeuidisessonuy Single-lap Shear Test fis1891ulae Yao et al. [9] Audi

wanaluguil 13
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Bonded plate

—>

Concrete

<«

Near-end supported single-shear test

gﬂ‘ﬁ 13 UMUUNINAGBULLUU Single-lap Shear 1ag Yao et al. [9]

n1sasawvudtasamitbilluddduudusznaulumenisaiiuuudiassvesnounin Tulan

Uszaunsesessio wag FRP lagldniudunusserinaussdamienazn1sidou (Bond-slip Model

Relationship) vadseesiaszninmeunInuas FRP auslae Ko et al. [12] muaunisd 7 8 11 Tu

N1391889NOANTIUVRITOADTENINN FRP LazABUNTA  T3uAUNGRNTIULUL Linear Elastic &Sy

FRP wazpaunsn lnedaudinisnavesianauantlunisned 6 wuudiasaduwuy 2 Gfluszuiu XY

F9UsLNOUMETUAVDIDDUUAMUNWAAIIUANTIN 7

1517 6 audinnanavesianluwuuinassiieg1an1segaeu Single-lap Shear

. Massuusedn | Maeluuseis | BaraRnuends Masiuusaen | ansidwuia
e (MPa) (MPa) (MPa) (MPa) YD
ABUNS® | 23 hay 27.1 - 22,684 Lay 24,623 - 0.2
eREL - - 1,500 38.33 wag 47.12 -
CFRP - 4,114 25,600 - 0.2
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A13199 7 vllavesdamuanldlunaysialulusuns Abaqus [16]

. o, satulUswnTY
&in VUAUDIDALHURA N8R
Abaqus
L | wheussluszuu (Plane CPS4: A d4-node bilinear plane
ABUNTA CPs4
Stress) WUU 4 9A stress quadrilateral.
. . 4 COH2D4: A 4-node two-
| mhewssawmfianlussuiy
T9UAD COH2D4 dimensional cohesive
(Cohesive) kuu 4 39
element.
nuleussluszuu (Plane CPS4: A d4-node bilinear plane
CFRP CPs4
Stress) WUU 4 90 stress quadrilateral.

muuaveuluneuly (Boundary Conditions) TilnalAssiuanmlunisvaaewes Yao et

al. [9] lawnisiivungasesiu (Support) assUaneiedisneuniniiuiiinssia FRP 10y Roller

A b4 A d' ¥ 1! 1 a Ay v 1
Wieliausardouinuuuiinu X o ualdaisnsandounlaniuuuinny Y LL@%I@JE‘H@J']?E‘MQ;IUG]'\@J

WWIKNY Z duusanseyi1 (Loading) Ninsevindiu FRP aznsevilubuiinu X dwuanslugud 14

Bt T doghm srwst nsos = be
artaretn nbseart fan

| .

JUT 14 voulneulyvensesiulasLsansenseyini FRP
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[
v av v a o U

Mailldasuuuiiaesfiidnuasunnsnaiuly Lﬁaﬁﬂmmaﬂiwwaqsﬁamwéaﬂugﬂmeaq
MsvigRTeuTeLKy FRP 91nfaneunin AfiderdsdamiluivesssuuiaiufidarRP uazngdngsu
UDIT08ABIENINNFRP LazABUNTA AN A18ISULIIDAYBIABUNSA () BRT1@IUANNATIUDY FRP
ADAUNTNVDIADUNTH ANYIVDY FRP (MT9AILE1IT0IT08ADTZIIN FRP LLazABUNTA) UG
yaeeIin fauvadu dovineaunn 10 mm 20 mm waz 40 mm STsusesdesindusesse
Tafmualil L unuaue1seesessning FRP uavasunsn udsiunisvesdounnsaaladu
Y89I0EATINATRUSEIRLAR (L/2) Yasinseguaeiiuseseena (0 Uay L) Lavyesinegiuiusy
0860 (L/4 Wag 3L/4) 1574l AIumﬂwmﬂLLawﬁauﬂaﬁwL‘wwmmLmazl,l,um‘hamﬁi%ﬁﬂm gﬂﬁ
15 f¢ 19 wansdnwaizvosuuuiiaesiifidounnsosundiieg Ay lnei Lf = AHEN
U89 FRP, Ly = YUIAVDIYOIIN, b, = ANUATNVBIADUNTA, by = ANUNTINVBY FRP, A, = AN
yosapunIATTilaifiusanszyh, wag a = Aumisgafnanswestounnses (Faainvane FRP fifluss
3w geridusesdeluusasiuusiansiu asdulnensuldauudvessossoludedis was

UTPEEMNININVRITBUNNTBINABINTT (UN 20 way 21) Wuheduwuudrasaliluddfuudves

ANUAEE. TUAIUTILAR

150mm

350mm

JUT 15 dnwaizveawuudnaesnildfnuinsaliniivounnsesiiseey 0 1wy wuudtaed £ 40 R
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DT—’
I:f/f%‘ 3Lf/4
Load «—pem—

h.
150mm

350mm

2 v

JUN 16 anwarveawuuInaemldfnunsalniiveunnsenisvey L/4 Wi wuudnaes E 40 Ly/4

oL

L/2 _Lg/2

150mm

350mm

d' o ° ey vee Ada Yy ] | °
E‘U‘Vl 17 aﬂwmwﬂaﬂLL‘UUQ']ﬁ@\TVlIGUﬂﬂUﬁﬂﬁmWNmaUﬂWi@Qﬁiﬂﬂaqﬂ YU LLUUIADN E_40_C

ols
3Li/4  Lp/4

Load «—

he

150mm

350mm

} %4

JUN 18 dnwaizvenuudnaesnldfnuinsiiniivounnsesiiseuy 3L/4 WU wuudnaes E_40 3Ly/4
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150mm

350mm

¥

JUT 19 dnwaizveswuudnaeanlddnuinsaiiiivounniomssey Ly U wuudnaed E 40 L

FRP —
Interface —"

Concrete —~

JUN 20 Mpgranuuaadnludddwuiuuuliiiveunnses

«—— FRP
TSy Interface
Concrete

v

JUN 21 segawuuaedlnluddiuudniideunnsouuutorinuuin 10 mm aAsinaesesss
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unfl 4 Nan15398
4.1 NANSENUVBITaUNNIDINARDNHANTTULAZAISNURYDIATUAFE.
4.1.1 HANISNAFTOUA 108 NAIUATA. LFTUNIEIA Y FRP

MNMINAFBUABLNIAFUNTINTEUBNTIDNY 28 Fu nuitidsinuussdniadenie £ agi
27.46 MPa Ul 22 uanamansnageuUfieginu aaa. w@iuidsine FRP Tnouansanuduius
'iwiwﬁwﬂﬂmmﬂLLaziwzmﬂfiqﬁaﬁ?ﬁﬂawmu (Load vs Displacement Relationship) %1374
il 6 agurvasdsnunuusiiauarsrerlneigafitfveshetnurazd Medmdsiumuusin
yosmumuanilillaiuids (Fegsau NF) wayaumuauiiaiufidsng FRP (fogrsanu CF) 1
fuallagldaunisdl (17) uay (18) TAwviniu 36.21 kN wag 46.73 kN euddu AU NF 2ziin
nsfivAiesanasuningndaunn (Concrete Crushing) ndsannmsasinveandniasy Tuvueiiniy
CF azdunsAdRuuu FRP Debonding neudinisasinvesndniasy dsasiuldinmdsinumiu
wssndldanmaneaeuuasdildannisiuntulndifesiulussdunds  Tnsmneasdeieen

&4 (Strength Reduction Factor, ¢) sufiwugtlusnsgiunisesniuy aun1snlgaglviaindasi

NINANITNAADILALDDINUABAN A NS UNISEDNWUU

a !
My o rrp = 0.85f,ab (d — E) + ALf,(d —d') (17)
a a
Muere = Asf (d = 5) + ¥rArfre (h—3) (18)

v vV

Wil £, = MAIIULITIDAVBIABUNTA

f, = MANYPATINVOINRANLETUNEN
f. = miheussashuaniasunyafivfves FRP

fe = M8usIPeUsEAVEHATY FRP 7igaUAluy FRP Rupture %3 FRP Debonding

A, = NUNATNFASINUBINAANLATUS UL IR

v
| v o <

A’ = NUNNEIAATINYBLNANETUSULT IO
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A = flufinthdamas FRP

b = AMUNINVDINLIGA

h = AMUANVBINUIAA

d = szagmuanUszavsna

d’ = SrurANNANYRLMANESUSULSITR

a = AMUANVBIVRINITNTLANYVUIBWTID AT UL UABUNSA

P, = fnamamaafiaiy (viiu 0.85)

60

—0—CF

—=— DF-50-0

—o— DF-50-180

—— DF-50-270
DF-50-560

- -& - DF-100-0

Load (kN)

- -& - DF-100-180
- ==~ DF-100-270

-~ DF-100-560

0 2 4 6 8 10 12 14 16
Displacement (mm)

JUN 22 anuduiussevninsdmlinussnnuasseeglisiinmnan sy

JUT 23 §11 25 uaneseiniuardnuuzn1sNUATIAUAT0E19 10 fog1e A1NKANTT
NAABINUIN Arvgaudlugiinn1siv@lay FRP Debonding smusae Steel Yielding e FRP
Debonding tuagiSuiniisumiani Flexural Crack wan Favgegluyissses 40 w3, 3INANANAIY

[

& d{l oA o 1 a ] vo &
AnUuazdounluAvatenu Iﬂﬂﬁ?ﬂ?ﬁﬁﬁ?ﬂ@?LL‘Vi‘LN‘U’eNﬂ?ﬁLﬂ@lﬂ'ﬁMQﬂﬁmﬂﬂmﬂu
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Y
o

Meogemu CF 5ufinseeiiiilesannusann (Flexural Cracks) #idmtinussyn

13.05 kN uaziinn1svianseuves CFRP 1SuduilsseeUsednas 35 cm  9nA9NaN

Y

Yo o A a v = Y o o
A Inafudurdsiiinsess1iiiosnusaiausn Mmiwinussyn 45.87 kN
M08139AU DF-50-0 1331ns885131899nU596n (Flexural Cracks) Mininussvn

14.95 kN uazhinn1sugasauead CFRP  luAuaInuiianinatsmulnafiudiwmi

1Y

YITRUNNTBY NUMLNUTINN 47.78 kN

f79819A1U DF-50-180 13utAns983512109971nu599m (Flexural Cracks) Tnanu

1%

NeNa1eAIL NUWTNUTINN 14.55 kN wastinn1svansauved CFRP  Suduilsvey
Uszanad 40 cm A1nfanaeay Admiinussyn 51.12 kN
M8819A DF-50-270 L5ufinseus1iiilesannusedin (Flexural Cracks) fidmtin

USINN 12.36 kN wagiinn1sugnseuves CFRP SuduilseugUseann 40 cm 970

Y

NananeAu AdmENUTINN 48.74 kN

$79819A U DF-50-560 3ULANS0851410991nw5909 (Flexural Cracks) #Auniin

U59)N 18.84 kN uaziinn1svansoued CFRP  ISuAufszesUseanal 35 cm 970

(%

Nananemy Ndmtnussnn 45.17 kN

#78879A7U DF-100-0 13ULRT08516U0991n5900 (Flexural Cracks) 71614919

1Y

TaUNNTDY MMENUTINN 10.46 kN Lazinn1svansauves CFRP LSudufnemang

AU MnTnUsIVN 47.30 kN

#19819A1U DF-100-180 Buinsesdaiiedannusesin (Flexural Cracks) fimiin
UIINN 16.64 kN ULagiinn1sngnseuves CFRP Sudufifenansany ﬁﬁmﬁfﬂusinﬂ
45.29 kN

#e819A1u DF-100-270 Sufinsesdidiosannusein (Flexural Cracks) fivmiin
U3INN 11.53 kN waztinnsvgaseuvas CFRP SudfuilszogUseann 40 cm AN

(%

AananeAu NAUmENUTINN 43.00 kN
$79819A1U DF-100-560 153bnA598511U0991nu599m (Flexural Cracks) 71119un
U339)N 13.25 kN Uaziinnsvanseuves CFRP 3uduiissuzUszana 40 cm 971

NenaneAu A mitinussnn 44.2 kN
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JUN 23a uanaiieg1950831uagn1TIURLUAII DF-50-0 digaunnsedagfinenanaiy lng

g Flexural Crack Bufnfiveuisassduvesgaunnies ilesnifuuinaiiluwudid
wnfian dwiuAives Strain AAl#aIn Strain Gauge 71 4 shuvmistiu wudrAiildazanndigad
Strain Gauge ﬁaﬂ&gaagﬂﬂé’ﬁ’w‘hLLmiqmsMTLmﬂizﬁflmauaﬂ agslsAfAves Strain Aisumiadu
p1duduegrnildlunsdiiiasosinnssfuiundsiuned Fuildnnsagunansenues

YDUNNIDITUT UG DUTITU

FRP Debonding
(b) mu CF

] ' [

JUN 23 seefnazdnuarnisidiniiadulunuiiegns NF uwag CF
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(a) MU DF-50-0

(b) MY DF-50-180

(¢) MU DF-50-270

(d) A1 DF-50-560

¥

JUN 24 seeiuazdnuarnsioRniiatuluauiiegns CF-50-##

'
a
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(a) AU DF-100-0

(b) AU DF-100-180

(c) Mu DF-100-270

1

JUN 25 seefnazdnuarnisidRniadulunudiegns CF-100-##

lngilaiUIguliguruavesimtinusInUseaenugun 26 wad nudnguIalagA1uves

TaunuiesiuillafinadendwesniusiiogwedeiitediAy Mellenalinannnsndnvagn19IUAN
a :’{ Y 1 LY a [y = . a Yo
Lﬂ@]%ﬂUﬂ’lUW?%NVJﬂW%L‘tJ‘uLL‘UULfﬂ&J’m‘u‘mu@ A9 FRP Debonding # Flexural Crack Tnafufsnans
1 2l a a v ' Y v ' aa ! v
AL Be9lINAMINIUTBUTIBUIUIAURITOUNNIDILAT Tounwsosfidauin 100x50 3. agaINali

MAUBIAUAINIITOUNNTBIVLIA 50x50 Uy, wazlilaUSeuiiguauduiussenianinussyn

' 1o ' v ] a P~ v = v U o= v v A
LLagiSEJ%IﬂQ WU LRUIUDIVDUNWIDIN 180 U, umaiwmmmummmmua@m ARUUWYINBDIN

(%
= 1

n1sAnwsialy lagenvagaessuliaaudieglvidanumangauiunismaaeuninninid sauu
nsfnwlagni1sdnaeameadaeansiuu  Finite  Element Walvia@1unsnniuausIumiaes

Jaunnsanieunusaesluay
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a wa [ a

M50 8 AMTNUTINNGER Seelniananiidn wazdnwarnsidRveiIeg19u

Useianau SV dmiinusn | sserliadige anyENIRUR*
AIBENS gean (kN) WUA (mm)
. NF 39.98 13.14 SY-CC
NANATUAN
CF 45.55 10.74 SY-FD
DF-50-0 47.60 12.48 SY-FD
DF-50-180 50.88 8.60 SY-FD
DF-50-270 48.75 7.59 SY-FD
. DF-50-560 46.36 11.57 SY-FD
NANNAADY
DF-100-0 47.31 9.15 SY-FD
DF-100-180 50.77 8.39 SY-FD
DF-100-270 47.45 9.94 SY-FD
DF-100-560 45.90 11.04 SY-FD

*SY-CC = ADUNIMDALANMAIINANTATINVOUUANESH (Concrete Crushing after Steel Yielding)
waz SY-FD = N13511gA50uved FRP #8391nN13AsINUDIWanasu (FRP Debonding after Steel

Yielding)

60

50

= 40 -

=

2 30 -

=

£ 20 -

o ES50mm x 50 mm

® 10 -

] 0100 mm x 50 mm
ol | | .

0 180 270 560
Location of Defect from Midspan (mm)

JUN 26 msiSguiiguilmiinussynesanvesiieg aauaas.a3uaIe FRP NliTeunnsasain

N1INAEU

184 Strain T CFRP #1ldi91n Strain gage #UMUasN wansdsgui 27 §135 laed
“Approach Defect” uwag “Away from Defect” #1884 Strain Gauge NARFINTIVOUVDY
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TOUNNTBINUTINATUAINA M UKAZUAIEAMUANEIAY A4 Strain FegAIziinNNaIIIuLaL

Peunis 180 wy. \Wudlng Feaenndesiuudnanialumudinnian snviulunsdifedis DF-

[y 1

50-270 7idlen Strain @aaANFUILNYRITBUNNTDS

Load (kN)

30

20

10

=560 mm

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

Strain

SUN 27 N13wanuasasen Strain Tu FRP vesieg e CF

Load (kN)

60

50

40

30

20

10

- e _,_ P
f"‘".m'--—"f\-'if",l.fch:' - k ;:
(Y | :
| L TR G
--------------------------------------------------- - - = Approach defect
-weeeeeee Midspan

""""""""""""""""""""""""" — — Away from defect

"

L.
o

""""""""""""""""""""""""""" - = =270mm
— 560 mm

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

Strain

U7l 28 M3UANUASTBSAN Strain Tu FRP Y83feesA DF-50-0
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— — Away from defect

L - — =270mm
560 mm
0 1 1 1 1 1 L L J
0 0.001 0002 0.003 0.004 0.005 0006 0.007 0.008
Strain
g‘dﬁ 29 NM5LANLIIVDIAT Strain Ty FRP v89/79¢13A1U DF-50-180
45 [essemmsesessieueiiiies s tetas s stesesas s eTa s s s e s e s S e e e s s s s e s e S et et e s
40 AR T
35 ,,}; ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
= i O SN i SO e Midspan
o T TS T T meem-- 180 mm
}'g 513 1 S, — - = Approach defect
- 15 b = = =270 mm
o | S T P — — Away from defect
G fremmmm e — 560 mm
0 1 1 1 1 ]
0 0.001 0.002 0.003 0.004 0.005
Strain

U 30 M3UINUAIYAT Strain Tu FRP veaiiee19AU DF-50-270
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Load (kN)

1 | AR — 560 mm

0 = 1 1 1 1 1 —_— J

0 0.001  0.002 0.003 0.004 0.005 0.006 0.007 0.008
Strain

U7 31 NM5UANKAsBSAN Strain Tu FRP Y83fieg1sa DF-50-560

Load (kN)

60

10

— - = Approach defect
......... Midspan

— — Away from defect

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009
Strain

U7 32 M3UANUASTBSAN Strain Tu FRP Y8afieg1say DF-100-0
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Load (kN)

60

10

N .-.-,‘..‘ __________________
A
] -
\,
......... Midspan
- - = Approach defect
----- 180 mm

- — Away from defect
- - =270 mm
— 560 mm

1 1 1 1

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009
Strain

gﬂﬁ' 33 NN5LANBAIVDIAN Strain b4 FRP U89619819A11U DF-100-180

Load (kN)

50
45
40
35
30
25
20
15
10

— + = Approach defect

''''''''''''''''''''''''''''''''''''''''''' = = =270 mm
---------------------------------------------------------------- - — Away from defect
S EEEEE ——— 560 mm

0 0.001 0.002 0.003 0.004 0.005 0.006

Strain

gﬂﬁ' 34 AN5HANBAIVDIAT Strain b4 FRP U89619819A1U DF-100-270
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a5 T s S
40 = =
35
;z: 30 Midspan
E >} R S 180 mm
320 - = =270 mm
15 — - — Approach defect
10 =560 mm
— = Away from defect

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
Strain

U7 35 MIUINUASYBIAN Strain T FRP Y83@81:A 1 DF-100-560
4.1.2 aan153A51ein 19 IW Ui AIUANg AN TSUATY AFA.LASNA1AINIE FRP

Tutunoull laasawuuinasiniu Aga.Lasui1aewie FRP NlTaunnsesiuuiufivansou

=

81919 FRP  waghianaun3m kazyinn1siesiginiedsnialnludddiudanunesuisluuny 3 i
ANYINANTTNUVDIVUIALALATUAUIVOITOUNNIBINTADNOANTTU AMAIRIUNIULTIAA Lazn1TAUR
a v o & ' H o | P ' Aoy | &
JUT 36 wansmnuduiussenindmtdnussnuassyezlneain FEA Fanudimuniidounniostuay
AAundange (Stiffness)  dnnaunliidaunnsaadniiay  sniuAu DF-50-200  7idA77

uganIIiININAUI UL TIUl AL

60

DF-50-200
- - = DF-50-400
— — DF-50-600
- - - = DF-100-0

DF-100-200
-~ - DF-100-400
— — - DF-100-600

Load (kN)

0 2 4 6 8 10
Displacement (mm)

JUN 36 AnuduiusTeIdminussnnuayseerlneain FEA
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1997 9 wanautinussnn-szegldsiigaesin (P, uar 4) waziwdnusmn-szeslisdige
FUR (P, waz 4, Aléan FEA ﬁaﬁmumuqmﬁlﬂﬁmaLﬂ%uﬁné’qé’w FRP aztAnn1siumlaenis
ATINUBAMENLASULEINNIERBUNTASALAN (Concrete Crushing after Steel Yielding) Tuwaued
Auidinsiesuidsneg FRP azifinnsiidRlasnisvanseuves FRP wdsainnisnsinveamaniasa

(FRP Debondong after Steel Yielding) mmﬁuamﬂugﬂﬁ 37

JUN 37 f108199 NWULNISNURYDIANUAAR. MLESUAE9938 FRP (AU DF-50-400)

INNANMTAATIBINUI Au CF Felsididaunnsesiiu 1AnfidFlag FRP vanseu Susuiiusim
Tasunilsvenimdnussynnsessesdseunn 20 wu.31nANaeAU tnesudwiadmtnussynil
YWY 49.95 kKN 2 ntunufinIsugasewszvetsvuinlunivaleaiu Weiiansundnynsves

Yy da & A o o P Aa Yy oa LY A o ! P
5985 1IMARTULTBININUIIN NUTWUMUINSUAWUAR FRP anseutiy Aosuviavessasiani

o

fywalngfluviesnu (5UN 38) Fdaladnau CF - dn1sidRKkUY Intermediate-Crack  Induced

Debonding @ uSumuiiiteunnsestuilianuaurnsiuRwuieriuaiu CF iisaumayitmin

t:i ) Y a | 1 [ < ¥ d' (v % ci

ussynviliiinnisvgaseues FRP wanssduliidntdey Wesandnuaesesiniuasvuinag

LANAAUTENINATUN UL TDUNNT DILALAUNLTDUNNT DY TIFILITOFWNAANITHINLIIVDINAUIE
Yal o % 1

wsspalu FRP dauansluguil 39 21n3uUN 40 munddeunnsesdiladmdunnsisainaiuiaiuay

wntin Feadvayunanaguliannisveaeg
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(@) AU NF

(b) AU CF

JUT 38 Wigumeusesimiiadulumuainwuudiaes NF uag CF

AN51991 9 WANTSILATITIALAY FEM

Usenm i dwiin | seeslnedl | il dwiin | szedldedl | Snuaenis

AU USSR | 9eATIN | UsINTign uTImNn AN oA
PRERR ATIN (kN) | (mm) | vigaseu (kN) | gagn (kN) | (mm)

nau NF 44.21 3.28 - 41.47 6.24 SY-CC
AIUAY CF 47.18 4.04 49.95 51.02 8.19 SY-FD
DF-50-0 a71.12 4.07 49.95 51.00 8.27 SY-FD
DF-50-200 46.92 3.42 47.04 49.08 6.71 SY-FD
DF-50-400 46.78 3.38 50.00 50.90 9.08 SY-FD
ﬂEle DF-50-600 47.04 3.35 49.86 50.92 9.11 SY-FD
NAADY DF-100-0 46.84 392 49.74 50.95 9.36 SY-FD
DF-100-200 46.76 3.33 ar7.1 48.83 7.67 SY-FD
DF-100-400 46.78 3.40 49.94 50.57 8.57 SY-FD
DF-100-600 47.06 3.37 50.56 50.93 9.12 SY-FD

a2




*SY-CC = ABUNIADALANYEIIINNITATINYBUMANLESH (Concrete Crushing after Steel Yielding)

waz SY-FD = N13511gA30uved FRP #8391nN13AsINURImanasu (FRP Debonding after Steel

Yielding)
0[O
n N
600 4+ === CFat13kN IIQJ’:_“\J\__’ ________
< \*2
CF at 30 kN EREN AT
/ [\
500 + 0 emmeemeeeoo o byp----- \-7 ----------
o ===-CFat50kN [ . \
\

%— 400 + — — - CF-50-400at 13 kN ------------~ ) Ii ---------------------
3 Q. I/
5300 + CF-50-400at30kN y 1’ ______________________
& — — — CF-50-400 at 50 kN 7/
[T -

200 --——————————————————————————————/’— —————————————————————————

e
100 - A e~ AN LR LT ST -
/"
0 ..--’/ : --________.._.._;--.r-n-—_-=-—_.——-l_—.=-—__—_: |
0 200 400 600 800

Location from Plate-end (mm)

JUN 39 fogran1suankasvemiieussisly FRP aeldiminussynuunnsingeg

Load at Failure (kN)

Location of Defect from Midspan (mm)

1Y

U 40 W3guiigunansenuvestounnsesfiildeinaevesauaga. fiasuidane FRP 910 FEM

' @ a a ' A PN 1 1 =
i’]EJ'NI?ﬂﬂVi’WﬂWQTﬁﬂJ']ﬂ']iLLQﬂLL@N“UEN‘VI‘L!’JEJLLi\‘iLQ@‘HVIi@EJG]’E]ﬁ%WT]\‘1 FRP agAaunse

(Interfacial Shear Stress) lugasuntinussyniiliann (nd1dfe dsliifnseesusednlunaunin)
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I 1 1 = 5 a0 a 174 ! a P d’lj P ! 35 IS
NUINAIVBINUIGLUINRDUUUITUAEIUNNVDULYAYBIVBUNNIDY (E‘U‘V] 41) IﬂEJLlI@WUVIM@@ﬁ@UUUN

a 1

= = 9 Yo =1 a oo = I3 & =
yuanilrguaredlndiuuatgaiusindu (Ushnaundusudeunin) Nagdadiaranuaugauludn
v o U o o a £ A wa . | a a _a v ]
Aetumndlufisesi1rifndu nsidfkvuy  FRP Debonding  413gi3uiinviveuvestounnses
agelsAfnisuanuasvemheusidauiazdsunlategmninielisessusininulu
ABUNIA NMENSIINUIMUNUTINLANTY LTTB99INN15ITANI19VBI50851INUINVUTUDY dawaliinis

wa

A | & Aa ax a a a w ay v
WUW@']QI&ILUU‘LUW‘IQJW']LﬂﬁqgvﬂﬂﬁaﬁﬂqﬂaaqamﬂfﬁﬂLau@nﬂﬂlﬂﬂaqjuq

0
800
0.01 CF
—a— DF-50-0
-~ -0.02
o —+— DF-50-200
2 .
£ 003 —+— DF-50-400
w
§ 0.04 DF-50-600
% 005 - -0 - DF-100-0
‘g 006 - -0 - DF-100-200
= -U.
E - - - DF-100-400
-0.07 DF-100-600
0.08

Distance from plate-end (mm)

JUT 41 MsuanuasveIiieusaounisesrasyning FRP LazAaunin (Interfacial Shear Stress)

Turrsnmeunssgedidianisuandin

SUM 42 wansdneuzsassnimluineduluniudisgriloumiinussmaiiuuindu Ingagiiiu

Y 9

Iadnsesi1wuy Flexural Crack d@dlnggiintuudiinifialuuudangs (WanslaanAinuasen

WaNaRNNaNNIe Principal Plastic Strain lupaunsn) Fsseuiniiinounialmrailesiviilinule

[
ISP

P J ! a = 1 <@ P N Y 1
wsaReulusesnasenitsnaunInLay FRP umawuamqmulmm E‘U‘Vl 43 LAAINIDYINITINLLDY

Y

YD9NUIYLIIADUNTDURDTEMINABUNIALAY FRP (Interfacial Shear Stress) TunkuudnandvenIu
CF yisilazuiiulainnelduminussnniisn (10 kN) Aweamthewsudoussiiates wadeuimin

usniiudwduassviiasiinseed1iwuy  Flexural Crack 39 Intermediate  Shear-Flexural

N v 1Y

Crack a7 azvinliAUssmiLs@ounalsdurudaiuTusg Nl dedAy  Fs1mnAmUIBns

A s ' o = ~ 1 (3 o 4 ! N 1 a =3 14 & A
LU ﬂ’]iﬁ\‘iﬂ’ﬂﬂ? JUALARULIUVDITRYRD ﬂ%wﬂwqumaumaammimuﬁuulm UBNITNULUD

44



[%
| |

WIsuiigugun 44 wazguin 45 ziuITessnlunsunsatudidmanontisusinsly  FRP ¢ae
namfe WellsesiruindulurounInamuisuseisly FRP Aidundsiugfagiiuduedaiulade
= I A o | ) | a ' ' a ¥
FeoralumgvinliliiainnsaianansenuredgnuN NI sesreaINAIveIAUATEALY FRP L6
v3epnaMlavasufe Nsiinsees1iiuy Flexural Crack 38 Intermediate Shear-Flexural
Crack TuABUNIA LNAINITIATILINANTENUVBITDUNNIBIUAIUY AZA.MLESUAY  FRP TA31Y
Fudouninau iesnuduiusssninssesiilunouninnassossouisourasening - FRP Las

Aaun3n Aelwielidilafimannisuaznalnilemdinsiids lusuiandeiesusugeitageau

w@suM&sag FRP anunsaniuaunsiinsesdile Inganatinislasesuinsusudly

Y 1 [ 2/

JUN 42 fregsinwarsesinimiiadulukuudiaes FEM

10 kN
--=--20kN

" 800

Interfacial Stress (MPa)

o
)

\

|

!

|

)

1]

'

Distance from plate-end (mm)

JUN 43 miheusudounseudasyning FRP warAaunsn (Interfacial Shear Stress) lukuudnaes CF

a5



25 e -

e CF
20 —— DF-50-0

s —— DF-50-200
% 15 ——— DF-50-400
A
o DF-50-600
‘é 10 - - -~ DF-100-0
w - - - - DF-100-200

> - - - - DF-100-400

DF-100-600
0 200 400 600 800

Distance from plate-end (mm)

JUN 44 nsuanuasvasmlesedsiy FRP Tutefineunindeliinnisuaniag

120
100 CF
_ — DF-50-0
& 80
S — DF-50-200
ﬁ 60 —— DF-50-400
& DF-50-600
& 40
o - - - - DF-100-0
20 - - - - DF-100-200
- - - - DF-100-400
0 200 400 600 800 DF-100-600

Distance from plate-end (mm)

JUN 45 Nsuanuasrasmilesefsiy FRP Tutsfineuninfianisuaninauas
4.2 NaNIMAFBUAIBE9TREARTENINABUNTALAL FRP NliTaunnias

NAINAFBUATIDE1IABUNTATUNTINTEUBNTILYlufIeg19saeraTendneAauNIALay FRP
WUV Single-lap Shear lAAAAITULTISARABYINAY 39.27 MPa NaN1TYAEaUAIDI19T08RDTENIN

[

AOUNSAKAY FRP aguwiannungusiaag1lasall

46



4.2.1 A2961959809521I1N9ABUNTALAS FRP nGUAIUAI

PNNTNAFOULUU Single-Lap Shear Wadlusensyyinnusesnslunsainlufiveunnsesiazd

ANNE1ITR8MDTENING CFRP  wazmaunssLdy 140, 150, 160, 180, 200 1. MUaSU THAILTIER

[
o v

witlen (P) szazlanu (Maximum  slip, Simay) HATATUAMUTYMAAIAINITIN 10 ddvEaL
willgnUszanalaanniiunlinsmsenihamheusadeundslusesdeuaysveid ouingnluy i

e

=) ! = a va
Anudemelusessolutiagaiids

1317 10 Hansaaauitegsessangumuay (Lifivaunnses)

NaNFIDY* uwssBawilen P, ﬁﬂﬂﬂsLﬁauqﬂqm Smox | AURAM LT
(kN) (mm) (MPa-mm)
C14-0-0 18.44 1.00 1.54
C15-0-0 18.77 2.01 1.84
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ANSYNAFDUNANTENUVBITBUNNTBIIUIBEADTENIN CFRP  LazAUNIAN LABLSIOATeIU0q
SEUULESUANSY FRP Tusiegnaiifiniue1iseess 150 Ui, §998dsihriiauosaudaunnsadninain
N9euUaev0e CFRP anunidiuwsadady 20 ui. wazdvuinueataunnsaadu 20, 40 way 60 Uy,

ANUANNU LANANISNARBUAIANTIT 11

a v | Aay | \
M99 11 NANITNAFDUNQYUAIDYNNUVBUNNIDY (AUYNITREND 150 U4.)

Q5HPLERN Pui* P2 Smax putAMUATle?
(kN) (kN) (mm) (MPa-mm)
C15-0-0 - 18.77 2.01 1.84
D15-20-20 7.79 19.17 1.54 1.76
D15-20-40 9.79 18.88 1.60 0.91
D15-20-60 8.95 18.36 3.03 1.61
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YOUANTOY 20 L. ANAUNLLTIAINTZH192UAY P, LazANLATEIRABAINIFILUTLITDY

YDUNNTDY 40 U3, INAIUNTLTIAINTEVIND 95T

o

dAgy

M5 12 HANSNAFRUNGNAIRENNIToUNNTEY (A1 WENITBYE 200 L3l.)

nauMaE1 Pui P, Smox futAUATY?
(kN) (kN) (mm) (MPa-mm)
C20-0-0 - 20.08 1.86 1.75
D20-20-20 5.31 21.37 1.27 1.13
D20-20-40 6.33 22.10 1.30 1.11
D20-20-60 4.33 21.63 1.22 1.20
D20-40-20 16.54 21.21 2.38 1.49
D20-40-40 10.69 16.37 2.07 1.53
D20-40-60 16.17 20.94 1.10 1.25
25.00
20.00 21.37 21 21.63 21.21 20.04
20.08
15.00
g Pu,2
%’ Pu,1
~ 10,00
500 - 633 .......
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lufiiafesnin vueR1alinsPRUNaNIZUNIUVRIRE1YIN kA 115 AT12AlaeAT DIC laaeng

gneies szashinmilainisindeusiivesiiegeneuninlunngmlsurasnisduinnm

'g'dﬁ?i 61 n1slae1u Digital Image Correlation (DIC) Mglusunsy NCorr

Exx Green-Lagrangian
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d‘ a ¥ U d' 1 ¥ ! Y a 1
Futou 1HsNNTAnTeu51IMTIRR (Flexural Cracks) #lianunsamiaaly dawaliifnniienss
\Rounsesdenvatgdunudluau asduwislmdlanalan1siiv@uuy FRP Debonding u1ndu 39
v o = a = a . ) ' A Ay ' 1%
ARIiNIsANYINGANTIUNISBAMe Bond  Behavior)  luszdusesse Welldaunnsodun

veTasluaIul
4.3.1 n15AnwuvIIaaalwluddaiuusinegunuaan1sunaadvad Yao et al. [9]

Tumu‘i%’aﬁﬁﬂmmamwwm%’aunw'ﬁ'aﬂ,ugﬂLLuusumqumaaﬂmmLLcJu FRP  21AR7
AeunIndiiserdBamieivesssuniaduiids FRP uasngAnssuvedsososeninarRP wazaaunin
1n8N153LATIEMMUUT a0 W UADALLUAYDITE UULEBNAAIFRP  SzAunand (Meso-scale FRP-
Concrete System) wuu 2 fiatulusunsu Abaqus Inglusuneuusnimantsnageulunudfeves
Yao et al [9] undSsuifisuiunaiildainnisiinssiuuuiiaemsliluddamudiiiefnuwaiy

wivdvosuuIasaznszUnTIwn sz aduiugiulunisinwiduneunald
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Bond Strength from Test (kN)

Bond Strength from FEA (kN)

JUN 63 nMswSeuiiisunasgawmiien (Bond Strength, P,) MlaRn FEA Uaga1nn15MAaeswas Yao

et al. [9]

PNMTIATeieglnludddiuud (FEA) waifiguiunanimmaaesluauideves Yao et al. [9]
WUIASIBALUTYY (Bond Strength, P,) ldannisitasizviiu TnalAssiunanimaaes aslansly
JUT 63 wagnnsnil 13 Na19AD LiaANE1IV0ITREABTENING FRP LAgADUNTA Y308RT1dUAIY

A319U99 FRP #19A110UNA19U99A0UNT ALANTL 929N lAm&adanileianfiuiindu f9tuaiuInig
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AATIZANGANTIUVDIRIDENNAGBUWUUY Direct Shear Ineslnluddamus dalduuudiasamgfingsu
PaLtleseninesousio FRP wazAaunin (Bond-slip Model) ¥8¢ Ko et al[12] diadnuaiugn

a o U = ¥ 1 1 a
LWEJQW@@’]V?UIGiﬂuﬂﬂiﬁﬂH']NaﬂiSVlU‘UENGUEJ‘Uﬂ‘Wi@QIUE‘ULL‘UU“UENﬂWi‘MQﬂa@ﬂ“UENLLN‘LA FRP  91AK7

[

ABUNINNIFDNOFNTIUVDITOUADTENIN FRP  WAZABUNTA LAaSAaIdnmteIuIssuuLEsunIEas

FRP 911015797 13 wansliliiuinanuniiewes CFRP (by) Suasaiaanisdnmnieininninniiueid

a

03 CFRP (Lp \lesannanumrugUsyaninavessessionie Effective Bond Length (L) T

[ v v [ Y]

Piauazuegiuanvazyes FRP Nlduarmasiuusidavesnaunin ()

A15199 13 Waa1n FEA va3s10819naaauluiuidevse Yao et al. [9]

Fel b | 6 | L | A | | oA
AEH | WUUTAO | ooy | (mem) | (mm) | (mm) | (mm) | (k) | i) g
1 A 0O 23 150 25 75 5 4.75 4.693 1.012
2 BOO 23 150 25 95 5 5.76 4.833 1.192
3 cCo0o0 23 150 25 115 5 5.96 4.984 1.196
4 DOO 23 150 25 145 5 5.95 5.027 1.184
5 EO0O 23 150 25 190 5 6.35 5.044 1.259
6 FOO 27.1 150 25 100 120 5.94 5.381 1.104
7 GO0O 27.1 150 50 100 120 | 11.66 | 10.776 1.082
8 HOO 27.1 150 75 100 120 | 14.63 | 16.202 0.903
9 100 27.1 150 100 100 120 | 19.07 | 21.281 0.896
10 J OO 27.1 100 | 25.3 100 120 4.78 5.199 0.919
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4.3.2 WgANsIuYaIsagsaseydN FRP uasnaunsanluidaunnsa

SPUULESNANAY FRP 52AUNa1 (Meso-scale FRP-Concrete System) #386198 19MAdULUY
Direct Pull-off TugUiuuves Single-lap Shear dlofusenseviriu FRP é’maﬂﬂugﬂﬁ 13 9zdinng
WANUIVBIMNBUTIADUVBITRYADTENIN FRP UazAUNIA (Interfacial Shear Stress) Aauandly
U 64 Tafunu y e missusadeulusessiossning FRP uavaeunds uaz unu x fe szerly
seusie dainangaidussdansein (x = 0) 9nnsluanddiifiuin dviheusadouiigailndiv
Munaifiusefansziin aelangs wazazdenanas iWlo x  Jandlnd L, (A1meTende) n3dii
seuRetusIinme (NanAediAannnii L) Avthousadeuszanawvindu 0 siadluusinmia

§ RPN N LV PR R eV

Tunsdfussmafiadosnimianihtuafdmeunisunnilusessasening FRP uazaounss
(Softening Load, Py) WeAN3suAINAUNUSIZNINNUIBLIURIUTDITOEADILIIN FRP LazADUNTH
warszezvaInUane FRP fufifiusinseyi asduuuudanafin (W Elastio) Juilefinvunnueuss
nspviilinnnd P, axdwaliAnanudemelusesselusunuuvessesunninludweniviesos
wndlutuneundaiilndfiusesse Fomhousudouvesseusosswing FRP uazaounam asisuilen
anasusagiaelndusiie FRP (29 Softening) waziilofiusenszyhunnnd P, Windudoss i
sesumndlusesioty warAusudeulusessofilndiu FRP duiiilusenssiin (x = 0) Heanas
Wiy 0 (Wsansgyiwindu P,) ayEuAnnisvigaaenuaduky FRP 99nfanaunin (Debonding) Lay
nMsngaaenazisuINUanefuiiusangzyiiu FRP uazaziadeuslumuaiiuen FRP lunisinu

Uaenluiinsanseyi
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AV —. Load =3.0kN

25 A
/Elastic- '\ —Load =4.5kN
Softening ™ _.__[oad =6.0kN

S

Shear Stress (MPa)

1 .I":ll > i \\\\\
' S
! i Seal
0-5 '! / - ~ N~ o m~eeaa,
/ | Elastic
0 b L S e —
0 20 40 60 80 100 120 140 160

Distance from loaded End (mm)

a | a ! ! a ° av o
E‘U‘V] 64 ﬂ'ﬁLLQﬂLLQQ%@QVU?SLL?QLQ@UIU?@EJW@?%‘W'J'N FRP LLaSﬂ@‘Hﬂﬁmsﬂaﬂ\LL‘U‘UQ']ﬁ@Q'V]IﬂJlI

YOUNNIDY
4.3.3 WoAnssuYadsaeiasend N FRP uazaaunialuluydiaasiddaunnsad

gﬂﬁ 65 WanInUELTLSSENIsIRsTivans FRP uazszeznisiedsuiivesians FRP lunsdl
fifitounnsedlusossioszning FRP uavasunin (Wuusians E_10 O szdiulddnnsmauduiusi
annsauustadu 3 dw Teun vsnad 1 asenuduiusasdudunse Elastic) fe wsenssii
wUsiunsetusEaEnsIAaeuRves FRP Tnausansyyi dintuauminduussnounnudennelusesse
5¥WINe FRP  uagAaun3m (Softening Load, P) nmwlamuduiusazisuinnislés (Softening) &

a

uaasluvina? 2 nsluuinad 2 uanstiesounaszning FRP LagAounInsuinn1suang1g
(Cracking) waztilowinusdluaudanidelszdy (Ultimate Load, P,) nsmAuduiusazisuasil ¢
wanalaluusoni 3 Favaneds Suin1sManaonveeTeunasEning FRP kasAaunIn annUagaudn

fusenszii auusanszyinaneliugud e FRP wananinnsunsmlagauysal
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Pu=[A1Y]kN

Ps = [A1 Y] kN

s I

Zone 2: Softening Zone 3: Debond

Load (kN)

‘\ Zone 1: Elastic

0 0.1 02 0.3 04 0.5 06 07 08
Displacement (mm)

JUT 65 AnuduiusseninusIngeying FRP uayseezn1siniouivas FRP o 9anilusenseyin 1o

wWUUd@aea E 10 C Fafien P, = 5.008 kN uazan P, = 3.310 kN

NTULANLIVDINUIBUTUROUVDITOYFADILNIN FRP LazABUNIA LLamqiu'gUﬁ 66 2NN
Wane Astnesudeuilnafusmumisifiussienseii wiANE uazazilAanad dlo x faudnlng
L (uemisense) nsdifisessetiuenaifissmenmhousadouaszanamniviiiu 0 Madluuiimid
FoaisAmhsusadoutuasiawiiy 0 Weswndedlifinsdousisning FRP wazmeuninly
vinaiiduraefidussdaieeniutewintu p, (Coonimiowiniu 3.31 kN Tunsdiuvusiaswes
E 10_O) vdiliinmnuidemelusessie (Softening) wazidleflusmsziniivuntudony seedesy
SuAnnnudons TnoBuanUaeduiitused FRP  wasusnafidanudonioiadundias

WHRDUNIUAINAINETIVDY FRP  UagsuniailAmuiglssdoungegnazindounluniuninuend

FRP TUma x = L; fauanslugudl 66

—Load = 3.0 kN

—Load =331 kN
----Load =45kN
—--Load =5.0kN

Defect Size: —Load =5.1kN
10 mm

Interfacial Shear Stress (MPa)

0 50 100 150 200
Distance from Loaded End (mm)

.:4' 1 & i ' = ° °
E‘U‘V] 66 ﬂ'ﬁLLsﬂﬂLL%QGU@\TVT‘H'JEJLL?QLQ'&JUIU?@EJW@ﬁ%‘Vi'NQ FRP LLagAmaunInuauudNaodbuuangasy

E 10 C nmeldusanszsiindu 3.31 (P), 4.5, 5.0 uay 5.1 kN
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1HLTINTEVNUBENTN P, AUEUNUSHUI8WSURaUlUTa8MADI1ING FRP LAasADUNIA AILERS
Tuguil 67 Awnheusudeulusesdoaniindu Tedenndesty mnduiusszninaussdildis FRP way
s¥EEMTIAABUTIYEY FRP o 9a7ilinnsis FRP TuuSiiaidl 1 (¥ Elastic) ilewiaunssila FRP quflauss
AsER AU P, nsaAuduRusUSnailnaussmasuinnisldsesusnatislaislnduseis FRP
nanfesuiinsieanudsmslusesssludnvazvessesilunsundauazdnend Jazdonndes
FuAudUSsEM ISR FRP uazsEeznsiadouiiues FRP o 9adiiin1sis FRP TuuSiiaid 2

(429 Softening)

Iy
2 3
23
g 25 weaeeees LOAM = 3.000 kN
w
5 2 Load = 3.310 kN
2
%15
®
Qo
(] 1
b . Defect Size: 10 mm
05 e
0 M-—-_-_*_“.—
0 50 100 150 200

Distance from loaded End (mm)

JUN 67 NMsuanuasvesihisusuoulusessiasening FRP uazAaunin Yasuuinass E_10_C

MElALTINTERUNAINU 3.0 wag 3.31 kN

A o ] R A = ] ] = Y
Wadlusanseyiunndi P, ANUANTLEMIINELITURDUTDITRYARTEVIN FRP LazABUNIA Ad
wandlugui 68 fie fAnudemeiindulusesss Amilsusudeusuliaianas (Softening) laed

ANULASMNYALSULAATUTUAUNTKTINTZYIN FRP hazazmaausiumuaA11ue11999 FRP
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4 Maximum Shear Stress

....... Load = 5.000 kN
Zone 1:

Elastic

\*

Load = 5.100 kN

Zone 2: Defect Size: 10 mm ‘

Softening \k—-p|

Interfacial Shear Stress (MPa)
(3% ]

0 50 100 150 200
Distance from loaded End (mm)

JUN 68 Mswanuasveahensudeulusedasening FRP uazAsunsn vadkuuinaas E 10 C

Melawsanseyineiniu 5.0, wag 5.1 kN

Wetusansevinunnan P, nTuser insesuaninlusesnaty wazausssulusesson
Inariu FRP snunilusanssin (x=0) dManasviiugud (usanssiwiniu ) dzisuiinimaaaen
a d’{ QI a 1 a a . QI
ANTU 9TUAANITUQAARNUBIKY FRP 91nHIABUNTA (Debonding) kagn1sManaanagisuain
Uaneauiilinssnsgyindu FRP wazaziadeudiliauniue1 FRP Tuneaudaieiliddusensein

Aananaluzui 69

Zone 3: Debond

Interfacial Shear Stress (MPa)

0 50 100 150 200
Distance from loaded End (mm)

JUT 69 NMsuanuaszeieusuReulusesfaszdng FRP WAZASUNTRA 289UULAI1a29 E_10_C

¥ [ 1 o ! A [
nMelfusansgninAuNINNdNuIamnGu P,
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4.3.4 AV MAUIYDITDUNWITDINAAONGANTIUVDITIEFD

[

TuruiATeiinsUS UL e U IWALITRITO UNNIDINEH BN AN TINVDIADUNTATILATUAIAY

[y

e FRP Gernunisvastosinsdanandlugud 70 lnswdadunsdinivesinafisvezminfiu 0 Right, R)

[y -2

aaa A | aNaa ! | aaa I a
ATUNUTDITNNTLHLININY L4 ﬂimﬂﬂﬂjaﬂjqﬂagmﬁﬂﬂaqﬂ (O) NIUNUYDINNINTZYLINNU 3L/4

|
1 I

wazNIUNLYeINaisraLinnu L (Left, L)

1NUUUT1a9 B 10 R, B 10 L/2 wuae B_10 L wlefusanszyiiidu 3.0, 3.3, 3.8 uay 4.7
kN Wo@nssuvedsossosening FRP wazmeunin sauanslugufl 71-74 mudndu anguil 71-74
wansliifuinfusanseiusindu nofinssusessioves B_10 R uag B_10 L azadefuiilesainainy
813U09508A0ANSVUIAYINAY d91 B 10 C 98dlA1muieusdouu1nndn B 10 R uwag B_10 L
Lﬁaamﬂﬁﬁﬁaa'jwﬁagjmmaNﬂ/‘fﬂﬁﬁ'ﬁ:ﬁﬂ%mwmaaiaEwiaamaa ai'aug“dﬁ?i 71 wandlifiuindiuse

nIzYivinaU woRAnsINTeemeves B 10 R uaz B 10 L aglndiAesiu B 0 0

ole
Li/4 3Lg/4

Load +—
¢

he

150mm v 150mm
v v
350mm ols 350mm
L/2  Lg/2
L0ad +— p—
- -
h,
v 150mm
)
350mm L
0
3L/4  Ly/4 0
Load ‘_1 - -
. . .
he
' 150mm 150mm

350mm 350mm

JUN 70 fuvisvastaunnses
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4 - - =Right (R)

Center (C)

e Left (L)

= = =Without Defect

Interfacial Shear Stress (MPa)
g% ]

0 20 40 60 80 100

Distance from loaded End (mm)

SUN 71 Mskanuasvesithensuleulusessasening FRP WazABUNIA YadLLuuTaee B 0 0,

B 10 R, B 10 Cuay B 10 L aelsusenszviwvingu 3.0 kN

5
T4
% - = =Right (R)
@
g 3 Center (C)
%]
S NG N e Left (L)
@
I —
w0 2
)
o
@
‘E -~
21 .

0 20 40 60 80 100
Distance from loaded End (mm)

SUN 72 Mswanuasveaithensuleulusessasyning FRP WazABUNIA YadLuUTIaee B 0 0,

B 10 R, B 10 Cuay B 10 L aelsusenszviwvingu 3.3 kN
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- = =Right (R)

W

Center (C)

......... Left (L)

s

Interfacial Shear Stress (MPa)
(]

0 20 40 60 80 100
Distance from loaded End (mm)

SUN 73 Msuanuasvaathensuleulusessasening FRP WazABUNIM U8LuUTaes B 0 0,

B 10 R, B_10 Cuaz B 10 L nelsiusenszvimingu 3.8 kN

- = =Right (R)
Center (C)

,,,,,,,,, Left (L)

Interfacial Shear Stress (MPa)
M

0 20 40 60 80 100
Distance from loaded End (mm)

SUN 74 Msuanuasvesithensuleulusessasening FRP WazABUNIA YadLLuuTIaee B 0 0,

B 10 R, B 10 Cuaz B 10 L aelsusenszviwvingu 4.7 kN

NUULIE09 D 10 L /4, D 10 C uaz D 10 3 L, /4 Wofusenseyiwiniu 3.0, 3.5, 4.5

WAz 4.8 kN WfinIsuvedsesresynine FRP LazAaunIn Alandluzuil 75-78 audau angua

75-78 wandliiuInLssnseviindy tagsuvtsnnuenivessesaewieaiu D 10 Ly /4 qudl
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AILTAROUNINNTT D 10 C waz D_10 3L /4 Woa1n D 10 L /4 Uudld1inidaresesinglndiv

wsaNINTEYAU FRP wagiinnisuaaaennew D 10 D uaz D 10 3L,/4

Interfacial Shear Stress (MPa)
- ra

0 20 40 60 80 100 120 140 160
Distance from loaded End (mm)

JUN 75 mswanuasveaheusadeulusegasening FRP uazAuNIm vekuuinass D_10_ L /4,

D 10 Cuaz D_10 3L /4 nulausanszyinmi 3.0 kN

Interfacial Shear Stress (MPa)
- N

0 20 40 60 80 100 120 140 160
Distance from loaded End (mm)

JUN 76 nsuanuasvesiiensuleulusessiesening FRP uazAaunIn Yaswuudnass D_10_ L /4,

D 10 C waz D_10 3L /4 aelansanszyinmi 3.5 kN
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- = =Lf4

Center (C)
cersanees 3LF-4

Interfacial Shear Stress (MPa)
[\%]

0 20 40 60 80 100 120 140 160
Distance from loaded End (mm)

JUN 77 Mswanuasveamhousadeulusesdasenite FRP uagAaunInvewuudnae D_10 L /4,

D 10 C waz D_10 3L /4 nelalsanszyiumi 4.5 kN

(]

’ N Center (C)

Interfacial Shear Stress (MPa)
r

0 20 40 60 80 100 120 140 160
Distance from loaded End (mm)

JUT 78 mMswanuasvaamheusadeuluseudasenine FRP uazAunInvewuudnaes D_10_ L /4,

D 10 Cuaz D_10 3L /4 aelausanszyinmi 4.8 kN

4.3.5 uavasvuInvastaunwsasidaanginssuvadsagsa

[ o v v

TuauAdelin19US UL UAIUIN V09D 1119 SO NG ANTIUVOIADUNIATLETUNNEIAE
FRP  ¥1NU1n9093 199 U10A 9 Uz daNansznuag 9l song AnTsuue9s0enaseninnaunsnLas

FRP @99U109899893 9N@NILUUAWNAU 10, 20 wag 40 mm
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WUUT1899 D 0 0, D 10 Ly/4, D 20 Ly/4 uway D 40 L¢/4 Hedlusanszyiniidu 3.5 kN
WOANTTUVBITOLABIENIN FRP  azAaunIn Auansluuf 79 uwazuuudaea D 0.0, D 10 C,
D 20 C uaz D 40 C Liailusanszyiyinnu 4.5 kN weAnTsuved3eesasenine FRP LazAoun3n f

wandlusui 80

Load = 3.500 kN

(Defect @ L-4)
* — ™ Defect 10 mm
"-\\'f ‘\
oy = . = Defect 20 mm
vy
3 3 Ni—y Defect 40 mm
© YN
o
b= \\‘-._ = = = Without Defect
%
o L
o 2 v
» \
[ . ~ l
E \\<.,_". .
n 1 ~ . . ~ .
- e ~
- h‘“ ~ .
0 —L
0 20 40 60 80 100 120 140 160

Distance from loaded End (mm)

JUN 79 nsuanuasveiigusaloulusessiaseving FRP uazAaunInuadkuudnaes D 0 0,

D 10 L¢/4,D 20 L¢/4 waz D 40 Ly/4 aelausanseyinii 3.5 kN
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Load = 4.500 kN
4 (Center)

weenenens Defect 10 mm
- . = Defect 20 mm

Defect 40 mm

- = = Without Defect

Shear Stress (MPa)
[}8]

-t ey
i TP R
e iy TR

0 20 40 60 80 100 120 140 160
Distance from loaded End (mm)

JUT 80 Msuanuasvaahensudeulusossasenitg FRP uazeaUNInvekuUdNged D 0 0,

D 10 Ly/4,D 20 L¢/4 uaz D 40 L/4 awlausenseyvinmi 4.5 kN

NFUN 79 uag 80 ULV DIINNTINANTLNUADNISTLINLAIVDIMUIEL T E o uTY

[

J0UF0TENIN FRP  LazABUNTA NaIADILETUIAYIToUNNTDITUUIA TN AnUlsLsaaauly

'
= v a1 a

segseTmuiuReINulALRNIINTY Lazaziian1vianasn (Debonding) fau Lil8RINAILETT

¥

Yaas0usogVSITlAanaulavuInvetaunnioslvun g vy

4.3.6 uavastaunwsasiidaaniasinisuaniralusegss (Softening Load, P,) Uasi1addn

mﬁ'm (Bond Strength, P,)

[y

ANAISINDUAITANS 1 UTOURDTEWING FRP LagAounin (Softening Load, P.) An A8

I I

nspannflaniinszviudnsessednsinginssuduluudanadin Elastic) Jaderfinvuinvosuss
nsgilviual P, azdaaliinanudsmelusessalusluuuressasunnstiiduny (Hair-line
Crack) luswendwiesesunndrilutuneundniilndfiusessotiiosainusadou A1ves P, wldannis
Aneinisuanuawemiiousudouressossosing FRP wazasundn fuanslusud 81 Taod

WA y Ae MiBULsudauTDITERBTYINg FRP kavAaunsn (Awseinseyiiu FRP T iluaivinle
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a a a 1 . a ° | | 2 o oa Yy  aa
LbIIRBDULINLNAYIN Softenlng) LLag LAY X AB G]']LLVUQIU?@EJW@‘?NU‘Ulelﬂ']ﬂﬂ‘a']EJ FRP A uUNuLLSe

AT (x = 0) mugﬂﬁ 82

=
o
=
w
3 3
&
- Load = 3.450 kN
3
£
a2 ' Defect Size : 10 mm
s
: fe—s|
@
=4 \

0  Beldeteteiebrl

0 20 40 60 80 100 120

Dictance from Loaded End (mm)

JUT 81 nsuanuasvesmiieusaeulusessiasening FRP uazAounInvaluudtgaes F_10_C gl

AN P, = 3.45 kN

ASSRRNRNN

« > 350 mm
350 mm

(@) (b)

JUN 82 shagnaiuuinaaildfny (a) yaaeainudng (b) yuuesmuuy Wnei Ly = AUe1370s
FRP, Ly = UAVBIYRIIN, b, = ANUNTINVBIABUNTA, by = ANIUNINGVEY FRP, he = ATINEIUD4
S 1Ay A o o 1 = 1% ] Y o
AOUNINY T LTUTINTEIN, bar a = Aurtannaavestaunnses (InanUaty FRP Nuse
n3gyin)
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U7 81 wansnisuanuasmiheusudeulusesdessning FRP  uazaAsunInvosluUians
F 10 C aeldusefs 3.45 kN fisumisiteainuats FRP fisses 100 mm Abeusadounes
s9usEMiNg FRP LavAsun3n (nterfacial Shear Stress) lalwinfugud 1iesanaueivassesse
fosninaueUsyavsuavessesrese Effective Bond Length (L) waglusdumisiifivosinae
MBusIdouredTosresEning FRP UagAsundn azinfiu 0 913U 81 awwiuldinneldussis
YUIA 3.45 kN %Lﬁﬂ@ifmm&mLaauqqqﬂiuiaaﬁiaﬁﬁmmm X = 0 (T=1m) ety P, d@su

LUUIADIUALWINAY 3.45 kN

A1 P, MbanAUENTLSTEnIusINERe FRP uavsyeen1sinaouiived FRP o 9afilinish

'
P

FRP dlanansluzuil 83 lne P, szwinduusadanniigaiszuuiaiuidsiuldnewinnismgaaon
284 FRP (Debonding) A1 P, gﬂﬁ 83 wansAduTUSsEILTINSEYivany FRP (Why y) waz
syeymIiAdeUTvuas FRP a1 9afiilusanszyin FRP (wnu x) vesuuusians B_10_C Tasfinsinldiuusn
Dudunsaazazisududulss (Non-linear) loussnseviwvindu P, AUIIFIEIEn flo P, = 4.543

kN

4000
3000

2000

Load (MPa)

1000

0 0.01 0.02 0.03 0.04
Displacement (mm)
JUN 83 nvAnudiusseninausansyiiiuate FRP Uayszugnsiafouiues FRP ol 9niiluss

n5¥91 FRP v09uuus1a09 B_10 C 3961 P, = 4.543 kN

A1SLNATUVDIVOUNNI DI UFIDE19ABUNIANANITLESUANSIN LAY FRP 11 dnaliinsinseyin

nouANIEsulUTEIRTENINe FRP uazAaunsn (Softening Load, P,)  wagiaidalnilen
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(Ultimate Load, P,) Suuiliufianas sauanslumisneil A Tunmewuan denanslidiuindeoia
9MI1EIUAIUNINVBY FRP famaunIn (by/b,) WagAueIsosrasening FRP wazAaunin (L) ag
dawaldidn P, waz P, SAfusntu uelien P, wa P, fenansuilefideunnseaiatulusesse
sywiusin FRP waviinnounin TnewloreriedivuelngTu (@esiswunn 10 mm, 20 mm way 40

mm) A1 P, Way P, xiAIaN8IRINAIAU LHUBIIINAIINE1ITREAE FRP LasAaunInlagsidanas

o

wenANUUmrisvestounnseiinadon P, uag P, lngNivesiniiegniinanivatsossiodgdnali

A1 Py uaz P, anadlpannnindesinafieglnaiuveuniauiiagn1adngvedsosne 1y wuudNaes
C 40 _C #iA1 P, Wifiu 3.927 kN @silmitiosndn C_40 R waz C 40 L &sflAn P, Wiy 4.435 kN

wag 4.595 kN anuddiu ilesannduntstounnsesfiegnsinans dnalvidnvesmilsusaiouly

[ [

seusainulidellins Fesaudenglusuiiiidiviisusideugnazdianadavieranas 39

(%
U

danalvien P, Uuanas duresineiegmsuvvsesudeiu Nllan P, 1INNTUNTIETOURRTENIN

WN FRP aziimaunandaliey Wuhedfua1wes P, wuudiaod C 40 C dA1 P, iy 3.0 kN @il

1Y 1

Atfesndn C 40 R war C_40_L Tafidn P, windu 3.18 kN wag 3.20 kN a”;umLmeaqdwﬁagﬂﬂﬁ
udislussnsgyiniu FRP agilen P, toedige 1w E 40 Lya e P, windu 285 kN @ D 40 R,
E 40 C, E_40 3L/4 uag D_40 L TA1 Ps winfu 3.3, 3.25, uag 3.3 kN aud du (iesandnuas

ANSIURAVDITRYFDTLIING FRP LazABUNINDLLIUANNAUNILTINTETN

Bond Strength (kN)

5.5

No
defect

Right

L/4 L/2  3L/4

Defect Locations

Left

—e—Ld =10 mm,
—a—Ld=10mm,
—a—Ld =10 mm,
—s—Ld =10 mm,
—e—Ld =10 mm,
--#- Ld =20 mm,
--m- Ld =20 mm,
- k- Ld =20 mm,
-=%=-Ld =20 mm,
--o-Ld=20mm,
i L = 40 mm,
i LA = 40 mm,
et LA = 40 mm,
i L = 40 mm,

g Ld = 40 mm,

JUN 84 anuduiusseniniasgamiel AnueveIsegsislarIuIntaunnies
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Lf =75 mm
Lf =95 mm
Lf=115mm
Lf= 145 mm
Lf = 190 mm
Lf=75mm
Lf =95 mm
Lf=115mm
Lf = 145 mm
Lf = 190 mm
Lf =75 mm
Lf =95 mm
Lf=115mm
Lf = 145 mm

Lf = 190 mm



22

—a—Ld =10 mm, bf = 25 mm
20 —a—Ld = 10 mm, bf = 50 mm
’é""‘ 18 —a—Ld =10 mm, bf = 75 mm
e_ﬁ’ 16 ——Ld =10 mm, bf = 100 mm
- —a—Ld = 10 mm, bf = 25.3 mm
"6‘,) 14 e
o2 - ¢ =Ld =20 mm, bf = 25 mm
8 e A - m -Ld =20 mm, bf = 50 mm
5 10 - & =Ld =20 mm, bf = 75 mm
'g 8 - % =Ld =20 mm, bf = 100 mm
O - @ -Ld =20 mm, bf = 25.3 mm
m 6 *
weepees L = 40 mm, bf = 25 mm
4 vl LA = 40 mm, bf = 50 mm
2 No iah ceredgees L =40 mm, bf = 75 mm
dEfECI‘ Rig t LI/Z .‘.eft weespiens L = 40 mm, bf = 100 mm
Defect Locations e Ld = 40 mm, bf = 25.3 mm
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AARNUIN N wamnmsai’ﬂamwqanssusaﬂﬁiaswdwﬂauﬂ%mu,az FRP

A519% 1 MAeEawllen (P,) LarusInTeyinnausasunns1luseusnosening FRP wagAaunsn (P,

\ ° fc bc bf Lf hc Ps Pu
ﬂqu LUUNA DN
(MPa) | (mm) | (mm) | (mm) | (mm) (kN) (kN)
AO0O 3.200 | 4.693
A 10 R 3,100 | 4.455
A 23 150 25 75 5
A 10 C 3.050 | 4.158
A 10 L 3150 | 4.442
BOO 3.300 | 4.833
B 10 R 3.250 | 4.830
B 23 150 25 95 5
B 10 C 3100 | 4.543
B 10 L 3.250 | 4.705
C00 3350 | 4.984
C10R 3.300 | 4.979
C 23 150 25 115 5
c10C 3.200 | 4.689
ciloL 3.300 | 4.933
DOO 3.380 | 5.027
D 10 R 3.300 | 5.029
D 10 Ly4d 3.200 | 4.970
D 23 150 25 145 5
D 10 C 3.300 | 4.889
D 10 3Ly4 3.300 | 5.016
D 10 L 3320 | 5.027
EO0O 3.400 | 5.044
E 10 R 3.330 | 5.039
E 10 Ly/4 3.280 | 4.972
E 23 150 25 190 5
E 10 C 3310 | 5.008
E 10 3Ly/4 3330 | 5.041
E 10 L 3.330 | 5.043
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A13197 N (A8) MasEaWte (P,) Larusinszyinneuseslaniniluseunasening FRP LagAauns

(Py)

. . " b, by Ly he P, P,
ﬂijlI NSAVRIIAN
(MPa) | (mm) | (mm) | (mm) | (mm) (kN) (kN)
F 00 3.600 | 5.381
F 10 R 3550 | 5.316
F 27.1 150 25 100 120
F 10 C 3450 | 4.963
F10 L 3550 | 5.332
G 0O 7.200 | 10.776
G 10 R 7.100 | 10.613
G 27.1 150 50 100 120
G 10 C 6.950 | 9.095
G 10 L 7.150 | 10.626
H 00 11.200 | 16.202
H 10 R 10.900 | 16.014
H 27.1 150 75 100 120
H 10 C 10.650 | 15.054
H 10 L 11.000 | 15.916
100 14.700 | 21.281
| 10 R 14.500 | 21.073
27.1 150 100 100 120
| 10 C 14.500 | 20.776
110 L 14.600 | 21.542
J00 3.700 | 5.199
J 10 R 3.600 | 5.171
J 27.1 100 25.3 100 120
110 C 3.600 | 5.169
J 10 L 3.600 | 5.338
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(Py)

. . " b, by Ly he P, P,
ﬂqu NSAVRIIAN
(MPa) | (mm) | (mm) | (mm) | (mm) (kN) (kN)
A 00 3.200 | 4.693
A 20 R 3.050 | 4.108
A 23 150 25 75 5
A 20 C 2.880 | 3.542
A 20 L 3.050 | 4.102
B 0O 3300 | 4.833
B 20 R 3200 | 4.663
B 23 150 25 95 5
B 20 C 3.080 | 4.224
B 20 L 3250 | 4.693
C00 3350 | 4.984
C_20 R 3.250 | 4.799
C 23 150 25 115 5
C 20 C 3180 | 4.534
C 20 L 3.260 | 4.833
D00 3380 | 5.027
D 20 R 3.250 | 4.979
D 20 Ly/4 2960 | 4.945
D 23 150 25 145 5
D 20 C 3250 | 4.711
D 20 3L/4 3.280 | 4.987
D 20 L 3300 | 5.012
E00 3.400 | 5.044
E 20 R 3.280 | 5.039
E 20 Ly/4 3.150 | 4.962
E 23 150 25 190 5
E 20 C 3.280 | 4.958
E 20 3Ly/4 3310 | 5.038
E 20 L 3320 | 5.042
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A13197 N (A8) MasEaWte (P,) Larusinszyinneuseslaniniluseunasening FRP LagAauns

(Py)

. . " b, by Ly he P, P,
ﬂijlI NSAVRIIAN
(MPa) | (mm) | (mm) | (mm) | (mm) (kN) (kN)
F 00 3.600 | 5.381
F 20 R 3490 | 5.179
F 27.1 150 25 100 120
F 20 C 3400 | 4.235
F 20 L 3510 | 5.224
G 0O 7.200 | 10.776
G 20 R 7.080 | 10.297
G 27.1 150 50 100 120
G 20 C 6.900 | 8310
G 20 L 7.100 | 10.176
H 00 11.200 | 16.202
H 20 R 10.450 | 15.517
H 27.1 150 75 100 120
H 20 C 10.500 | 14.551
H 20 L 10.800 | 15.875
100 14.700 | 21.281
| 20 R 14.100 | 20.954
27.1 150 100 100 120
| 20 C 14.000 | 19.519
1 20 L 14.450 | 21.073
J00 3.700 | 5.199
J 20 R 3550 | 5.144
J 27.1 100 25.3 100 120
120 C 3460 | 4.769
J 20 L 3570 | 5.250
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(Py)

. . " b, by Ly he P, P,
ﬂqu NSAVRIIAN
(MPa) | (mm) | (mm) | (mm) | (mm) (kN) (kN)
A0O 3.200 4.693
A 40 R 2550 | 2.499
A 23 150 25 75 5
A 40 C 2.250 | 2.489
A 40 L 2560 | 2.962
B 0O 3300 | 4.833
B 40 R 3.050 | 3.860
B 23 150 25 95 5
B 40 C 2.480 | 2.861
B 40 L 3.050 | 4.102
C00 3350 | 4.984
C_40 R 3.180 | 4.435
C 23 150 25 115 5
C 40 C 3.000 | 3.927
C 40 L 3.200 | 4.595
D00 3380 | 5.027
D 40 R 3250 | 4.978
D 40 Ly4 2.450 | 4.873
D 23 150 25 145 5
D 40 C 3180 | 4.507
D_40 3L/4 3.280 | 4.881
D 40 L 3.280 | 4.933
EOO 3.400 | 5.044
E 40 R 3300 | 5.037
E 40 Ly/4 2.850 | 4.956
E 23 150 25 190 5
E 40 C 3250 | 4.772
E_40 3L/4 3300 | 5.027
E 40 L 3300 | 5.037
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(Py)

. . " b, by Ly he P, P,
ﬂqu NSAVRIIAN
(MPa) | (mm) | (mm) | (mm) | (mm) (kN) (kN)
F 00 3.600 | 5.381
F 40 R 3.400 | 4.723
F 27.1 150 25 100 120
F 40 C 3.150 | 3.931
F 40 L 3420 | 4.833
G 0O 7.200 | 10.776
G 40 R 6.800 | 9.054
G 27.1 150 50 100 120
G 40 C 6.300 | 7.892
G 40 L 6.900 | 9.599
H 00 11.200 | 16.202
H 40 R 10.250 | 14.055
H 27.1 150 75 100 120
H 40 C 9.600 | 11.736
H 40 L 10.500 | 13.615
100 14.700 | 21.281
| 40 R 14.000 | 18.042
27.1 150 100 100 120
| 40 C 12.850 | 14.477
| 40 L 14.200 | 19.574
J00 3.700 | 5.199
J a0 R 3.450 4.862
J — 27.1 100 25.3 100 120
140 C 3200 | 3.337
J 40 L 3500 | 4.782

189 Ly = AME139049 FRP, L, = YUIAUBIT09IN9, b, = AIUNINTDIABUNTA, by = AINNTINVDS
FRP, h. = AMUEU8IABUNINYINNLITRTINTEIN, WA a = Muniagannalswesdaunnses (Inn

Uane FRP M3w59n5ey1n)
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DEFECT CRITICALITY IN FRP/CONCRETE BOND JOINT — A FINITE ELEMENT
STUDY

C. Tuakta and C. Yoopom
Department of Civil Engineering, Kasetsart University,
Thailand, Email: fengcptu@ku.ac.th

ABSTRACT

Defects, such as debonded region at FRP/concrete interface, can occur over time in fiber-reinforced polymer (FRP)
strengthening system in concrete structures. Limited numbers of researches have showed that the overall
performance of reinforced concrete members strengthened with FRP can deteriorate due to the presence of defects.
This can result in reduction of load capacity, stiffness, and durability, potentially causing premature failure, if not
treated properly. This study investigated the effects of defect (or defect criticality) at bond level, using finite
element analysis of specimens used in single-lap shear test. The defect was in the form of debonded region at
FRP/concrete interface. The parameters included bond width and bond length, size and location of defect, and the
compressive strength of concrete (f°c). The results have showed that, in most cases, the distribution of interfacial
shear stress and bond strength were affected by the presence of defects. Bond strength reduction was more
pronounced in FRP/concrete bond joint with bond length smaller than the effective value or with higher FRP
stiffness.

KEYWORDS
Defect criticality, bond strength, bond-slip relationship, FRP/concrete interface.
INTRODUCTION

Fiber reinforced polymer (FRP) composites have been increasingly used to enhance load capacity and improve
serviceability of existing reinforced concrete (RC) members and structures in the last two decades. This is due to
their advantages over other conventional strengthening materials, such as higher strength-to-weight ratio, corrosion
resistance, and ease of installation. For flexural strengthening of RC beams, FRP material is externally bonded to
the tension face of the RC member using adhesive, or embedded in concrete in case of near-surface mounted FRP
rods. In spite of ample research on short-term mechanical behavior, this strengthening technique still cannot
realize its full potential due to limited knowledge on its long-term durability and criticality of potential defect.
Due to its composite nature, the effectiveness of the FRP strengthening system for flexure and shear depends on
the performance of the FRP/concrete interface. However, defect in the form of debonded regions can exist at the
FRP/concrete interface in flexurally and shear strengthened members as a result of poor construction, or
subsequent physical damage and environmental degradation during its intended service life after rehabilitation.
Limited numbers of studies have showed that the presence of defects can have detrimental effects on FRP-concrete
systems (Seim et al. 2001, Karbhari and Navada 2008, Kalayci et al. 2009, Guo et al. 2012). This paper is aimed
at gaining more understanding on the effect of defect on the FRP/concrete system at bond joint level using finite
element analysis (FEA). The parameters included bond width and bond length, size and location of defect, and
the compressive strength of concrete (f7).

METHODOLOGY
Bond-Slip Relationship for FRP/Concrete Interface

In simulating debonding failure of FRP/concrete bond joint in FEA, the relationship between shear stress () and
slip (s) in the FRP/Concrete interface can be described by a bond-slip model. Several forms of bond-slip model
have been proposed in the past 10 years based on analysis of experimental results from fracture tests (Nakaba et
al. 2001, Lu et al. 2005). The simplest form is a bi-linear bond-slip curve consisting of linear ascending and
descending branches, which can be described by three parameters: maximum interfacial shear stress (zm), slip at
maximum interfacial shear stress (So), and maximum slip (sf) (Figure 1a). The linear ascending branch describes
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the stress-slip relationship in elastic regime when 0 < s < sp, which is expressed by Eq. 1. In this regime, the bond
joint will behave elastically until the interfacial shear stress and slip reach =z, and s, respectively. The linear
descending branch or softening branch describes the behavior of damaged interface (due to micro-cracking and
crazing in the adhesive) after shear slip exceeds so. As the value of slip increases beyond sy, the interfacial shear
stress decreases linearly according to Eg. 2. Debonding of the FRP/concrete bond joint takes place when s > s,
after which the interfacial stress becomes zero, signifying the inability of the interface in the debonded region to
transfer load between FRP and concrete.

s
T=rm(s—)forO$sSso D
0
Tm(s—s
r=rm—ufor50Ss£sf (2)
Sf — Sy
P
<~
P
150
o Ib, b,
s I: L
= 350 mm 4 ) 350mm '
(a) ()

Figure 1 A typical bi-linear bond-slip relationship (a) and single-lap shear specimen (b)

Ko et al. (2014) have recently developed a bond-slip relationship for practical design purpose by calibrating the
afore-mentioned model parameters using database of various single-lap shear and double-lap shear test results.
According to Ko et al. (2014), the parameters for the bi-linear bond-slip model may be calculated from Eqs 3
through 5.

T = 0.165f, 3)
so = —0.001f/ + 0.122 4)
sp = —0.002f + 0.302 5)

where /¢ is the compressive strength of concrete (MPa). The maximum interfacial shear stress and slip parameters
are given in MPa and mm units. This study used the bond-slip relationship proposed by Ko et al. (2014) to simulate
the debonding behavior of the CFRP/concrete interface.

FRP —
Concrete — -

— <«— FRP
Interface
Concrete

Load

Supports Supports

(a) ®)

Figure 2 FE models without defect (a) and with defect of size 10 mm at midpoint in bond (b)
Finite Element Model of Single-lap Shear Test Specimen

In this study, 2-dimensional FE models of FRP/concrete bond joint were constructed based on the specimens in
single-lap shear test conducted by Yao et al. (2005). Figure 1b shows the schematic representation of single-lap
shear test, and Figure 2 shows the FE models with and without defect. The models consisted of 4-node plane-
stress elements (CPS4) for concrete block and FRP plate, and 4-node cohesive elements for interface layer
(COH2D4). Note that various tests have shown that failure in FRP/concrete bond joint is mainly in the form of
separation at concrete/adhesive interface with thin concrete layer remaining on adhesive surface. Therefore, the
interface layer in the FE models with bond behavior governed by the specified bond-slip relationship will represent
this failure zone in real specimens. The 4-node cohesive elements used in this study are capable of describing both
normal (mode 1) and shear (mode 1) deformations as shown in Figure 3. The relationship between normal
deformation (n) and normal stress (o) can be specified by bi-linear relationship similar to the bond-slip relationship
for shear behavior in Figure 1a (Eqs 1 and 2). However, since the interface in single-lap shear test mainly deforms
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in shear, debonding by mode I fracture was prevented in the FE models by specifying a value of maximum normal
stress om significantly higher than the maximum interfacial shear strength =, (e.g. 2 orders of magnitude higher).

o

1 r

I Normal deformation Shear deformation

Figure 3 Possible deformations of 2-dimensional cohesive element

Both concrete and FRP used linear elastic material behavior, with compressive strengths of concrete equal to 23
and 27.1 MPa, and Young’s modulus of FRP equal to 256 GPa. The Young’s moduli of concrete (E) at the two
strength levels were calculated according to the ACI Guideline (2008) to be 22.68 and 24.62 GPa, respectively.
According to Eqgs 3 and 4, the initial stiffness of the interface layer are 38.33 and 47.12 MPa/mm, and the maximum
interfacial shear stress (zm) are 3.80 and 4.47 MPa, for the two concrete strength levels. Figure 4 compares bond
strengths obtained from FEA (without defect) and from the experiment reported in Yao et al. (2005). It suggests
that the proposed FE model could adequately simulate the strength and behavior of FRP/concrete interface in
single-lap shear test.
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Figure 4 Comparison of FEA results and experimental results of perfect specimens reported in Yao et al. (2005)
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Figure 5 Schematic representation showing locations and sizes of defect in various models

In order to investigate the effect of defect, debonded region was inserted into the interface by omitting cohesive
elements in the corresponding region for a specified length. Without cohesive elements, there is no shear transfer
between FRP and concrete in defect area. Figure 5 shows the characteristics of defect, including length (L4) and
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location along the bond line. The size of concrete block, free concrete height (he), bond length (L¢), and FRP
thickness were based on the single-lap shear specimens without defect in the study by Yao et al. (2005). Table 1
shows model groups with corresponding geometries. Lq and a in the model codes are defect size and location,
respectively, with Ly = 0 and a = 0 meaning no defect in the interface. Locations of defect are denoted by LE for
defect located close to the loaded end, L«/4 for defect located at quarter length closer to the loaded end, C for defect
located at the center of bond joint, 3L«/4 for defect located at quarter length closer to the free end, and FE for defect
located close to the free end. The sizes of defect Ly in this study were 10, 20, 40 mm.

Table 1 Model groups and their geometries

Model e be by L+ he Model fc be bs Ly he

(MPa) | (mm) | (mm) | (mm) | (mm) (MPa) | (mm) | (mm) | (mm) | (mm)
A-Lg-a 23 150 25 75 F-Lga | 27.1 150 25 100 | 120
B- Lgs-a 23 150 25 95 G-Lga | 271 150 50 100 | 120
C- L¢a 23 150 25 115 H-Lga | 27.1 150 75 100 | 120
D- Lg-a 23 150 25 145 I-Lg-a | 27.1 150 | 100 | 100 | 120
E- Ls-a 23 150 25 190 J-Lga | 27.1 100 | 235 | 100 | 120

o1 o1 o1 o1 ol

RESULTS AND DISCUSSION
Behavior of FRP/concrete Bond Joint with and without Defect

In both models with and without defect, the interfacial shear stress (z) distribution can be categorized into three
regimes — Elastic, Elastic-softening, and Elastic-Softening-Debonding. These three behaviors depend on the
magnitude of the applied load. At low load level, behavior of the interface is Elastic. Elastic-softening behavior
starts just after the applied load exceeds the softening load (Ps). As the load increases beyond Ps, local debonding
will take place (slip > so) and the behavior becomes Elastic-Softening-Debonding. The ultimate load or bond
strength P, corresponds to when shear stress in the entire interface becomes zero. Figure 6 shows samples of
interfacial shear stress distributions from models E-0-0 and E-10-C. Note that by examining the stress distribution
in perfect models of various bond lengths, the effective bond length for this particular FRP/concrete system was
approximately 190 mm. When comparing stress distribution between bond joints with and without defect, it has
been observed that defect can cause slightly increase in stress magnitude, depending on size and location. Figure
7 shows the effect of defect of various locations and sizes on the shear stress distribution for the models based on
D-0-0. The increase in shear stress is more pronounced in the vicinity of defect (see Figure 7). This can be
attributed to the reduction in the true bond length. Larger defects (Ly =40 mm) resulted in generally higher increase
in overall shear stress. In addition, defects at locations of high stress normally in perfect bond (e.g. L#/4 and C)
resulted in higher increase in shear stress. This may be because there is high shear transfer between FRP and
concrete in these locations. Therefore, removing a portion of the interface in this zone will result in higher shear
transfer in the proximity.
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Figure 6 Sample of interfacial shear stress distribution under varying applied load: (a) Model without defect
(Model E-0-0 with with ¢ = 23 MPa, b, = 150 mm, b; = 25 mm, Ls = 190 mm, and h, =5 mm) and (b) Model
with defect (Model E-10-C with Lq = 10 mm and defect at the center of bond line)
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Figure 7 Sample of interfacial shear stress distribution as affected by: (a) Defect sizes (Models D-0-0, D-10-C,
D-20-C, and D-40-C) and (b) Defect locations (Models D-0-0, D-10-LE, D-10- L¢ /4, D-10-C, D-10-3L¢ /4 and
D-10-FE)

Effect of Defect on Bond Strength

Figure 8 shows the bond strength as affected by defect size and location in the FRP/concrete bond joint with
varying Ls. Larger defect resulted in higher reduction in bond strength, which is consistent with the increase in
interfacial shear stress. For the defect of the same size, defects at the center and at Li#/4 seemed to reduce bond
strength the most. The effect of defect was also more pronounced when the bond length (Ls) was much smaller
than the effective bond length. In addition, for defects of the same size at location LE and FE, the bond strength
reductions were not much different in most cases because the resulting bond areas were still similar.
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Figure 8 Effect of defect on bond strength in models with varying Lt (models with f/’c = 23 MPa, b, = 150 mm,
bt = 25 mm, and he =5 mm)
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Figure 9 Effect of defect on bond strength in models with varying br (models with f”c = 27.1 MPa, L; = 100 mm,
be = 150 mm, and he = 120 mm)
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Figure 9 shows the bond strength as affected by defect when the FRP width was varied, and the bond length was
kept constant at 100 mm. Similar trends were observed, in which larger defects and defects at the center of bond
joint resulted in higher bond strength reduction. In addition, higher percentage of bond strength reduction was
observed in the models with wider FRP. This implied that the influence of defect was more pronounced in
FRP/concrete bond joint with higher FRP stiffness.

CONCLUSIONS

This paper presents the derivation of stress distribution and bond strength in FRP/concrete bond joint with a defect
by using finite element analysis. The FEA results have showed that characteristics of the defect, namely the
location and size, influenced the interfacial shear stress distribution, the debonding behavior, and the bond strength.
The effects of defect may be concluded as follows:

e Behavior of FRP/concrete bond joints with and without defect are similar in that they both consisted of
three stages — elastic, elastic-softening, and elastic-softening-debonding, which depend on load level.

e Interfacial shear stress in FRP/concrete bond joint with defect was higher than that in FRP/concrete bond
joint without defect under the same load due to lower true bond length.

e Larger defects resulted in higher interfacial shear stress, while defects in the zone of high shear stress (i.e.
locations closer to the loaded end) could increase shear stress further.

e Bond strength of FRP/concrete bond joint was affected by the presence of defect. Larger defects resulted
in higher reduction in bond strength, while defects in the zone of high shear stress (i.e. locations closer to
the loaded end) can reduce bond strength further. The reduction in bond strength was more pronounced
when the original bond length is much smaller than the effective bond length (Le).

e FRP/concrete bond joint with higher FRP stiffness seemed to be affected more by the presence of defect.
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ABSTRACT: Infrastructures can be deteriorated over time, resulting in reduced performance in terms of load capacity or serviceability.
To strengthen aging concrete structures, carbon fiber-reinforced polymer (CFRP) has been widely installed. In RC members flexurally
strengthened with CFRP, failure usually occurs by debonding of CFRP from concrete substrate. In this study, 2D finite element analysis
with cohesive zone modeling was used to investigate failure behavior, especially debonding failure, of CFRP-strengthened RC beams.
The constitutive model for the cohesive elements was derived from bond-slip relationship of the interface between CFRP and concrete.
The parameters affecting the behavior include CFRP configurations (i.e. width, number of layers, length), concrete compressive strength (1),
and loading configuration. It has been found that, in addition to the stifthess of CFRP strengthening system and f°, the length of CFRP plate also
affects the failure behavior and flexural capacity of FRP-strengthened beams. An equation incorporating the effect of CFRP length has

been proposed to calculate the debonding strain in FRP when failure occurs by FRP debonding (E,,).

KEYWORDS: Cohesive zone model, FRP strengthening, Bond-slip relationship.
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Experimental and Numerical Studies of Defect Criticality in FRP-Strengthened RC Beams
Tuakta, C.

Lecturer, Department of Civil Engineering, Kasetsart University, Bangkok, Thailand

Abstract

Defects, such as debonded region at FRP/concrete interface, can occur over time in fiber-reinforced
polymer (FRP) strengthening system in concrete structures. Limited number of researches has
showed that the overall performance of reinforced concrete (RC) members strengthened with FRP can
be deteriorated due to the presence of defects. This can result in reduction of load capacity, stiffness,
and durability, and can cause premature failure, if not treated properly. This study presents
experimental and numerical studies on the effects of defect in the form of debonded region at
FRP/concrete interface in FRP-strengthened RC beams. The parameters in thisstudyinclude the size
and location of defects in the bond line. The results of this study have.shown that defects of different
sizes and locations had small effects on the flexural capacity and ductility of RC beams' strengthened
with FRP. The flexural capacity calculated from design equations, together with additional strength
reduction factors as recommended by the design code, is smaller than that obtained from the
experiment, implying that designed capacity of FRP-strengthened RC'beams is safe with the presence
of disbond defects of the positions and sizes within the scopeof this study.

Keywords: Defect-criticality, FRP-strengthening, Bond-slip Relationship
1. Introduction

Fiber reinforced polymer (FRP) composites, havesbeen increasingly used to enhance load
capacity and improve serviceability of exXisting reinforced concrete (RC) members and structures in
the last two decades. This is due to their advantages over other conventional strengthening materials,
such as higher strength-to-weight/ratio, corrosion resistance, and ease of application. For flexural
strengthening of RC beams, FRP material is)externally adhesively bonded to the tension face of the
RC member. In spite of-ample research on short-term mechanical behavior, this strengthening
technique still cannot realize its full potential due to limited knowledge on its long-term durability and
criticality of potential defect:

Due to its ‘composite ‘nature, the effectiveness of the FRP strengthening system for flexure
depends on the performance of the FRP/concrete interface. However, defect in the form of debonded
regions (Fig. 1)rean exist at the FRP/concrete interface as a result of poor construction, or subsequent
physical damage and environmental degradation during its intended service life. Limited numbers of
studies have ‘shown that the presence of defects can have detrimental effects on FRP-concrete
systems. Non-destructive testing (NDT) techniques, such as ultrasonics, acoustic sounding, airborne
radar, and thermography, can be used to detect such defects in FRP-strengthened RC flexural
members. Nonetheless, there is still no general agreement based on engineering considerations as to
the characteristics of a good FRP strengthening system and the acceptable thresholds for critical
defects [1]. Hence, this study investigated the effects of debond-type defect in FRP-strengthened RC
beams on mechanical behavior and failure mode through the use of experimentation and finite
element analysis (FEA).
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Fig. 1: Potential debonded regions in an FRP-strengthened RC beam
2. Defect Criticality in FRP-strengthened RC Member

Several strengthening techniques, including FRP plate bonding and column wrapping, have been
widely applied as a result of extensive study on the mechanical behaviors of the systems [2-6] and
continuous development of the recent design guidelines [1, 7-9]. For flexural strengthening of RC
members such as beams and slabs, FRP in the forms of rigid plates or flexible sheets are externally
bonded to the tension faces of the members using adhesive. (Note thatanother strengthening scheme
is near-surface mounted FRP rod. But it is not within the scope of this study.) It is now known that
failure of these FRP-strengthened flexural members can_take place through several mechanisms,
depending on the material properties, the geometry of cross-section and rebar, and anchorage
provision. Fig. 2 shows failure modes that have been identified in laboratory: 1) steel yielding; 2)
concrete crushing; 3) FRP rupture; 4) shear failure'in.concrete; 5) concrete cover delamination; and 6)
intermediate crack-induced or IC debonding [10-12].> For safety purpose, it is recommended that
debonding failure and concrete coyér delamination‘are to be avoided in designing FRP strengthening
of flexural members due to theigbrittle nature.
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Fig. 2: Possible failure modes in an FRP-strengthened RC beam

Unlike FRP-confined RC column, FRP-strengthening of flexural member is a contact-critical
application [13]. This means that the effectiveness of an FRP-strengthened RC beam depends on the
bond performance, which in turn, depends on the qualities of the interface between the three
constituent materials, namely concrete, adhesive, and FRP [14]. Potential defects in FRP-



strengthened RC beam include fiber misalignment, out-of-plane variation of concrete surface, existing
damaged concrete, and debonded region [15]. Defects at the FRP/concrete interface in the forms of
debonded region or delamination between FRP layers may occur during installation of the
strengthening system or after a period of being in service. Furthermore, since FRP strengthening is
generally performed on existing structural members, FRP is essentially applied on cracked concrete.
If not treated properly, this concrete damage may be considered pre-existing defects as well. Existing
cracks in a concrete beam can be categorized as flexural cracks, which are mainly in the vicinity of
the midspan, and intermediate shear-flexural cracks, which are located further away from the
midspan. These concrete cracks can cause local debonding of the FRP, which may lead to global
failure of the FRP-strengthened RC beam [4, 16-18].

Limited number of studies have been conducted to investigate the effects of defect in FRP-
concrete system, or termed “defect criticality” in this study. Early studies on the effects of debonded
region involved the use of specialized specimens, which usually investigate only one aspect.of this
subject. Kaiser [19] used a mixed-mode peel fracture test to show that.defect.in the forms of incorrect
mixing of adhesive, inadequate primer, concrete cavities, and prolonger primer cur¢ can lead to
reduced fracture toughness of the FRP/concrete interface. Experimental study by Seim et al. [20] has
demonstrated that incomplete bonding between FRP and concrete €an reduce both load capacity and
the deflection at failure of slabs strengthened by FRP. Kalayci et al. [21] investigated the effects of
defects in the forms of debonded regions and pre-existing conerete cracks on the performance of FRP-
plated T-beams. In their experimental study, debonded region and pre-existing concrete cracks were
simulated by uniformly distributed small circular air veids and lateral.surface cuts in concrete surface,
respectively. It was reported that the defects with/size andsspacing smaller than tolerance threshold
specified in design guideline do not substantially affect global behavior of FRP-retrofitted structures.
Nonetheless, the authors recommended that more stringent tolerance threshold be specified when
environmental exposure is considered. This combined environmental effect and defect criticality was
also confirmed in [22], where fracture mechanics was used to quantify the FRP/concrete bond
performance. However, the authors used special mixed-mode peel fracture specimens, which may not
accurately represent loading conditions on FRP-concrete systems in real strengthening application. It
is not only experimental studies, butialso numerical studies, such as FEA, that have been conducted.
Guo et al. [23] performed a finite element study on the effects of hollow imperfections in adhesive
bond layer. Abilinear bond-slip relationship was used in their study to describe the bond behavior in
non-prestressed and prestressed FRP-plated beams containing uniformly distributed unbonded region
along the span. It'was found that the presence of such imperfections has a significant effect on stress
distribution,near the impetfections and has a tendency to cause concrete cracking due to increase in
shear stress.

The design,of FRP flexural strengthening assumes that the bond between FRP and concrete is
perfectly intact at all time, such that load transfer between FRP and RC beam is possible. However,
defect in the form of debonded region can exist at the FRP/concrete interface as a result of poor
construction, subsequent physical damage, and environmental degradation, as stated earlier. The
presence of defects can have detrimental effects on FRP-concrete systems as shown by the limited
numbers of studies. Therefore, further investigation on defect criticality and development of a robust
methodology to evaluate such effect are needed to ensure long-term safety of FRP flexural
strengthening system in civil structures. The development of a suitable numerical model to predict
the effects of such defect will help civil engineers during structural assessment and maintenance
planning.



3. Experimental Study
3.1 Specimens Configurations

In order to investigate the effects of defect on the mechanical behavior and failure of FRP-
strengthened RC beams, ten laboratory-sized beam specimens with section dimensions of 150 mm x
200 mm were casted. Each specimen was reinforced with DB12 rebars — two at the top and two at the
bottom, with an effective depth of 170 mm as shown in Fig. 3. To prevent shear failure in concrete,
stirrups made from RB9 rebars were placed 80 mm apart within the shear spans. Two layers of a
1500 mm long CFRP was installed on the soffit of the FRP-strengthened beams specimens. The
width and total thickness of the CFRP layer were 50 mm and approximately 0.46 mm, respectively.
Note that additional FRP in the form of complete wrapping were provided near bothsplate-ends to
prevent failure by concrete cover delamination. Table 1 summarizes the configurations,of the beam
specimens used in this experimental study.

3.2 Specimen Preparation

Special attention was given to surface preparation of concrete before the installation of CFRP.
These include sandblasting and rounding sharp edges at the locations of 3-side,wrap installation. A
solvent recommended by FRP manufacturer was applied to concrete surface to clean of any grease.
For the specimens DF-xxx-xxx, defect in the form of debond/region was created by inserting a strip of
Teflon tape between concrete surface and carbon fiber sheet as the adhesive was applied to form
CFRP by wet lay-up technique. The width of Teflon tape was, controlled according to the size of
debond defect in each specimen. Fiber orientation was carefully inspected to make sure that there was
no any other type of defect. All specimens were left to cure at room temperature in laboratory for at
least 72 hours before taking further steps.
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Fig. 3: Specimens configurations



Table 1: Summary of specimen configurations

Defect Size Location of
Specimen Details
(mm X mm) Defect*
NF - - RC beam
CF - - Controlled FRP-plated RC beam
DF-50-0 50x 50 Midspan
DF-50-180 50 x 50 180 mm
DF-50-270 50 x 50 270 mm
DF-50-560 50 x 50 560 mm
FRP-plated RC beam with debonded arca
DF-100-0 100 x 100 Midspan
DF-100-180 100 x 100 180 mm
DF-100-270 100 x 100 270 mm
DF-100-560 100 x 100 560 mm

*Location of a defect is measured from the midspan to its center point.
3.3 Test Setup

All beam specimens were tested under a 4-point bending configuration using a rigid steel frame
as shown in Fig. 4a. The span length was 1,600 mm, andsthe distance between the two loading points
at the top was 400 mm. In general, four strain gauges weresinstalled on the surface of FRP on one
side of the specimens as shown in Fig. 3 to.measure strain distribution during load test. In the
specimens with defect, additional strain gauges were placed at the center and on the edges of defect,
as shown in Fig. 4b. This is to measurethe strain and stress variations in the FRP above the debond
region. An LVDT was located under the specimen midspan to measure deflection. Force was applied
by a 50-tonn hydraulic jack and measured\by a load cell.

Hydraulic jack
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Fig. 4: Schematic representation of test setup



4. Numerical Study
4.1 Material Constitutive Models
Concrete, Steel, and FRP

In the case of FRP flexural strengthening of RC beams, concrete is under a fairly low confining
pressure. As a result, it behaves in a brittle manner and fails by cracking in tension and crushing in
compression. A damage plasticity model is applicable in this case to capture irreversible damage
associated with these failure modes [24]. This model describes the behavior of concrete or other
quasi-brittle materials in both compression and tension regimes as shown in Fig. 5. In the case of
concrete under compression, stress-strain relationship by Hognestad was used [25]. For the ascending
branch, stress-strain relationship is assumed to be a parabola curve according. to. Eq.(1) until
compressive stress (f;) reaches f°.. For the descending branch, the stress varies linearly after the yield
strength is reached with a plateau at the ultimate concrete strength (f°. = 27.46 MPa) according to Eq.
(2). g&and ¢, are the strain corresponding to f°. and the ultimate strain (€.g. 0.003), respectively.
According to this model, the stiffness of concrete elements decreases to zero,when the crack is
determined to have occurred due to crushing at the integration points.

280 rec\?
=== ()| o<e<a M
0 €o
, 0.15
fe=f¢ [1_ (gc—go)], g <& < g (2)
Eu— &

Tension stiffening and shear retention models were implemented to describe the behavior of
reinforced concrete after cracking under tension. They were used to account for the reduction in the
tensile and shear moduli of the concrete after tensile and shear crack initiations. In these models, the
stress in concrete decreases linearly‘or non-linearly(i.e. softening behavior) as the crack opening (w;)
increased to simulate load tramsfer across, cracks through the reinforcement. For this study, a
nonlinear softening behavior proposed by Hordijk [26], which relates tensile stress and crack opening
displacement according to'Eq.(3), was used:
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where f°. is the compressive strength of concrete. d, is the diameter of the largest aggregate used in
concrete. The coefficients ¢; and ¢, were obtained from experimentation and reported to be 3 and
6.93, respectively [27]. The area under this softening curve was controlled by the mode I fracture
energy of concrete or Gy (Fig. 5). Final crack width in concrete (w,,) is related to both the mode |
fracture energy and tensile strength (f;) according to Eq. (6). Since no data on the post-cracking shear



behavior of the concrete was available, shear retention behavior was assumed to be similar to the
tension stiffening behavior.

For steel reinforcement, a bi-linear elastic-plastic behavior was assumed (Fig. 5). Its plastic
behaviors after yielding were described by the yield stress and the plastic strains. The elastic behavior
of steel was described by Young’s modulus (£;) of 200 GPa and a Poisson’s ratio (v) of 0.3. Yielding
of steel was governed by von Mises yield criterion with yield strength of 300 MPa. Isotropic
hardening was assumed for the plastic behavior with an ultimate strain of 20 times the yield strain and
strain hardening modulus of 200 MPa. On the other hand, CFRP was assumed to be linear elastic,
followed by abrupt rupture when the ultimate strength (f;) was reached. The Young’s modulus and
tensile strength of CFRP as reported by the manufacturer were 165 GPa and 2700 MPa, respectively.
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Fig. 5: Constitutive models for concrete, steel, and CFRP
Bond-slip Relationship for FRP/Concretednterface

The relationship between sheat stress (7).and slip (s) in the FRP/Concrete interface can be
described by a bond-slip model., Several forms of bond-slip model have been proposed in the past 10
years based on analysis of experimental results from fracture tests [28, 29]. The simplest form is a bi-
linear bond-slip curve consisting of)linear ascending and descending branches, which can be
described by three parameters: maximum interfacial shear stress (z,), slip at maximum interfacial
shear stress (sy), and maximum slip (sy) (Fig. 6). The linear ascending branch describes the stress-slip
relationship in elastic regime when 0 < s < sy, which is expressed by Eq. (7). In this regime, the bond
joint willbehave elastically until the interfacial shear stress and slip reach 7, and sy, respectively. The
linear descending branch or softening branch describes the behavior of damaged interface (due to
micro-cracking and crazing in the adhesive) when shear slip exceeds sy. As the value of slip increases
beyond sy, the interfacial shear stress decreases linearly according to Eq. (8). Debonding of the
FRP/concrete bond joint takes place when s > s;; after which the interfacial stress becomes zero,
signifying the inability of the interface in the debonded region to transfer load between FRP and
concrete.
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Fig. 6. Bi-linear bond-slip relationship

Ko et al. [30] have recently developed a bond-slip relationship for practical designipurpose by
calibrating the afore-mentioned model parameters using database of various<Single-lap shear and
double-lap shear test results. According to [30], the parameters for the bi-linear bond-slip model may
be calculated from Eq. (9) through (11).

Tm = 0.165f) 9)
so = —0.001f) + 0.122 (10)
sy = —0.002f; +0.302 (11)

where f is the compressive strength of concrete. This study-used the bond-slip relationship proposed
by Ko et al. [30] to simulate the debonding behavior of the CFRP/concrete interface.

4.2 Finite Element Model
Boundary Conditions

In order to reduce computational requirement, only one-half of each beam was modeled in 2-
dimensional plane. At the midspan, nodes were fixed in the x-direction, while allowed to move freely
in the y-direction to create symmetry. ‘On the other hand, the support was fixed in the y-direction,
while allowed to'move freely in the x-direction to simulate a roller support. A displacement boundary
condition was applied at the loading point, 200 mm from the midspan.

Concrete, Steel, and FRP

Both concreterand CFRP were modeled by 4-node plane-stress elements (CPS4). Perfect
bonding between concrete and steel reinforcement was assumed. To achieve this, the steel
reinforcement was modeled by 2D truss elements (T2D2), which were embedded along the edges of
concrete elements at specified depths, causing the 2D plane elements and truss elements to share
nodes (Fig. 7).

Cohesive Zone Modeling for Concrete/FRP Interface

In FRP-strengthened RC beam, external load is transferred from concrete to FRP by shear stress
in the adhesive layer. To correctly simulate the composite behavior in FE, cohesive elements
(COH2DA4) capable of describing both normal (mode I) and shear (mode 1) deformations as shown in
Fig. 8 were used. The relationship between normal deformation (n) and normal stress (¢) can be
specified by bi-linear relationship similar to the bond-slip relationship for shear behavior in Fig. 6



(Egs. 7 and 8).

However, since the interface in single-lap shear test mainly deforms in shear,

debonding by mode I fracture was prevented in the FE models by specifying a value of maximum

normal stress o, significantly higher than the maximum interfacial shear strength 7, (e.g. 2 orders of
magnitude higher).
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Fig. 7: 2D FE model of FRP-strengthened RC beam with.debend defect: (a) elements in beam model

and (b) magnification of defect in the model
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Fig. 8: Possible deformations of 2-dimensioanl cohesive element

4.3 Solution Technique

Due to non-linearity of concrete after cracking and of the FRP/concrete interface during
softening, it is difficult to obtain the solution to the FE model of FRP-strengthened RC beam using a
typical static analysis. In order to improve convergence, a solution technique for dynamic analysis

called “Hiler-Hughes-Taylor oo Method” or HHT- o was instead employed in Abaqus. This implicit

time integration method assumes that load or displacement are applied slowly enough that the non-

linear system behaves quasi-statically, and density has to be assigned to all constituents in the model.
Additional energy dissipation was implemented through the viscosity parameters for the FRP/concrete
interface. Its value ranged between 1x10™ and 1x107 for this study, depending on the severity of the

specified softening behavior for the cohesive elements.



5. Results and Discussion
5.1 Experimental Results

From compressive test, the compressive strength of concrete at 28 days was 27.46 MPa. Fig. 9
shows the relationship between load and midspan deflection obtained for all beam specimens. Table
2 summarizes flexural strength, maximum deflection, and failure mode of each beam specimen. The
flexural capacity of unstrengthened RC beam (beam NF) and strengthened RC beam (beam CF) were
calculated by theoretical equations to be 36.21 kN and 46.73 kN, respectively. Beam NF was
predicted to fail by concrete crushing after steel yielding, while beam CF by FRP debonding after
steel yielding, which were also observed from the experiment. Fig. 10 shows the cracking patterns in
the beam specimens after testing. It was found that all beams failed by FRP debonding after steel
yielding. FRP debonding mostly initiated at the location of existing flexural cracks,»which were
located within the 40 cm distance between loading points, and propagated to the-end of FRP plate.
Fig. 10c shows the cracking pattern and failure mode of beam DF-50-0, which has defect at the
midpan. It was observed that flexural cracks formed at both ends of'the defect due to high bending
moment in that region. From analysis of strain values obtained from the four strain gauge locations,
highest strain occurred at the location under the applied loads. However, the, strainyvalues at other
locations could increase significantly, if crack formed at the locations, making strain analysis more
complicated.

When comparing flexural capacities as shown in Fig. 11,.it was found that the size and location
of defect did not significantly affect the capacitiesd This may»be attributed to similar debonding
failure in all FRP-plated specimens, in which FRP. debending\initiated at the flexural crack near the
midspan. Nonetheless, 100 x 50 mm defect slightly decreased the load capacity compared to 50 x 50
mm defect. From the load-deflection relationship, it was found that the beam specimen with defect at
180 mm had smaller ductility compared to other beam specimens.

60 af

—0—CF

—=— DF-50-0

—<o— DF-50-180

—— DF-50-270
DF-50-560

- - - DF-100-0

Load (kN})

- -o - DF-100-180

DF-100-270

DF-100-560

0 2 4 6 8 10 12 14 16
Displacement (mm)

Fig. 9: Load vs midspan deflection relationship



Table 2: Summary of experimental results

Specimen Specimen Ultimate Load Maximum Failure
Type (kN) Deflection Mode*
(mm)

NF 39.98 13.14 SY-CC

Controlled
CF 45.55 10.74 SY-FD
DF-50-0 47.60 12.48 SY-FD
DF-50-180 50.88 8.60 SY-FD
DF-50-270 48.75 7.59 SY-FD
DF-50-560 46.36 11.57 SY-FD

Defected

DF-100-0 47.31 9.15 SY-FD
DF-100-180 50.77 8.39 SY-FD
DF-100-270 47.45 9.94 SY-ED
DF-100-560 45.90 11.04 SY-FD

*SY-CC = failure by concrete crushing after steel yielding and SY-FD_= failure by FRP debonding
after steel yielding
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Fig. 10: Crack patterns and failure modes in tested beam specimens
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Fig. 11: Comparison of load capacities from experiment

5.2 Numerical Results

Table 3 summarizes the simulation results, namely load and deflection at first yield of steel
reinforcement, load at first debonding of FRP, ultimate load, maximum deflection, and failure mode
obtained from FEA. Load vs deflection relationships of all medels are shown in Fig. 12. It was found
that most of the beams with defect had slightly smaller stiffness than their controlled counterpart,
except for model DF-50-200, which had apparently smaller ‘stiffness than the others. Model NF (no
FRP) failed by concrete crushing after steel yielding; while all FRP=-plate beam models failed by FRP

debonding after steel yielding as shown in Fig. 13.

Table 3: Summary of numerical results

Specimen Load at Deflection - Load at % Ultimate Maximum Failure
1" Yield at 1¥Yield . Debonding Load Deflection Mode*

(kN) (mm) (kN) (kN) (mm)
NF 4421 3.28 - 41.47 6.24 SY-CC
CF 47.18 4.04 49.95 51.02 8.19 SY-FD
DF-50-0 47.12 4.07 49.95 51.00 8.27 SY-FD
DE-50-200 46.92 3.42 47.04 49.08 6.71 SY-FD
DF-50-400 46.78 3.38 50.00 50.90 9.08 SY-FD
DF-50-600 47.04 3.35 49.86 50.92 9.11 SY-FD
DF-100-0 46.84 3.92 49.74 50.95 9.36 SY-FD
DF-100-200 46.76 3.33 47.1 48.83 7.67 SY-FD
DF-100-400 46.78 3.40 49.94 50.57 8.57 SY-FD
DF-100-600 47.06 3.37 50.56 50.93 9.12 SY-FD

*SY-CC = failure by concrete crushing after steel yielding and SY-FD = failure by FRP debonding

after steel yielding
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Fig. 13: Failure by FRP debonding in FRP-plated RC beam (model DF-50-400)

(a) NF

(b) CF

Fig. 14: Crack patterns of models NF and CF from FEA

Further investigation suggested that model CF failed by FRP debonding that initiated at the
location under the applied load (approximately 20 cm from the midspan) under the load of 49.95 kN.
Debonding then propagated to the end of FRP. When looking at the plot of principal plastic strain, it
was found that debonding initiated at a large flexural crack. Therefore, failure mode can be assigned
as intermediate flexural-shear crack debonding (IC debonding). The other beams with defect also had
similar debonding behavior, but at slightly different loads when debonding initiated, due to difference
in crack size and crack pattern. This can be observed from the tensile stress distribution in FRP in
Fig. 15. Fig. 16 compares the flexural capacities of FRP-plated RC beam with and without defect.



No apparent effect of defect was observed from the figure, which is in agreement with the
experimental results.
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Fig. 15: Sample of tensile stress distribution in FRP under various load levels
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Fig{ 16: Effect of debond defect on load capacity from FEA
6. Conclusion

The results of this study have shown that defects of different sizes and locations had small
effects on the flexural capacity and ductility of RC beams strengthened with FRP. The flexural
capacity calculated, from design equations, together with additional strength reduction factors as
recommended by the design code, is smaller than that obtained from the experiment, implying that
designed capacity of FRP-strengthened RC beams is safe with the presence of disbond defects of the
positions and sizes within the scope of this study.
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