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FRP (fiber reinforced polymer) strengthening systems for concrete structural members, 

such as beams, columns, and slabs, have become increasingly popular as a result of extensive 
studies on short-term mechanical behavior.  However, the effects of defect in the form of 
disbond area at FRP/concrete interface on the behavior and failure of FRP-strengthened RC 
beams are still largely unknown.  Limited numbers of studies have shown that the presence of 
defects can have detrimental effects on FRP-concrete systems.  Therefore, the objective of this 
research is to investigate the effects of interfacial defect in FRP-strengthened RC beam on its 
mechanical behavior and failure through a series of experimentation on FRP-strengthened RC 
beam specimens and finite element simulation.  The methodology and knowledge from this 
proposed research could help civil engineers plan proper maintenance and repair of FRP-
strengthened RC structural member to ensure public safety. 

The results of this study have shown that defects of different sizes and locations had 
small effects on the flexural capacity and ductility of RC beams strengthened with FRP.  The 
flexural capacity calculated from design equations, together with additional strength reduction 
factors as recommended by the design code, is smaller than that obtained from the experiment, 
implying that designed capacity of FRP-strengthened RC beams is safe with the presence of 
disbond defects of the positions and sizes within the scope of this study.  In addition, defect in 
the form of disband area at the interface between FRP and concrete can affect the distribution 
of interfacial shear stress within the interface.  The presence of large defect can increase the 
overall interfacial shear stress due to reduced total bond length.  Furthermore, bond strength 
(Pu) and softening load (Ps) depend on the size and location of the defect in the bond line.  For 
defects at the same location, larger defect results in larger reduction in Pu and Ps.  In case of 
defects of equal lengths, defect in the region of high interfacial shear transfer, such as location 
of flexural cracks, will cause larger reductions in Pu and Ps.  These result in reduced 
performance of FRP-concrete bond joint. 
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ในปจัจุบนั การเสรมิกาํลงัโครงสรา้งคอนกรตี เชน่ คาน เสา และแผน่พืน้ ดว้ยวสัดุคอมโพสนิเสรมิ

เสน้ (Fiber-reinforced Polymer Composite, FRP) กําลงัเป็นทีนิ่ยมกนัอย่างแพร่หลาย เพื่อเพิม่
สมรรถนะในการรบัน้ําหนักบรรทุกในกรณีที่โครงสรา้งมกีารเปลี่ยนแปลงการใช้งาน รวมถึงเป็นการ
ปรบัปรุงหรอืซ่อมแซมโครงสรา้งใหม้คีวามพรอ้มต่อการเกดิแผ่นดนิไหวในอนาคต ซึง่เหล่าน้ีเป็นผลมา
จากการศกึษาเกีย่วกบัพฤตกิรรมทางกลทีม่อียู่อยา่งมากมาย  อยา่งไรกด็ ีผลกระทบของขอ้บกพรอ่งใน
ระบบเสรมิกําลงั เช่น พืน้ทีห่ลุดรอ่นระหว่าง FRP และคอนกรตี และระหว่างชัน้ FRP เอง  การบ่มหรอื
ผสมอิพอ็กซี่ไม่เป็นไปตามมาตรฐาน  และการเตรยีมผวิคอนกรตีที่ไม่เหมาะสม เป็นต้น ยงัไม่มผีล
การศึกษาที่แน่ชดั  ดงันัน้งานวจิยัน้ีจึงวตัถุประสงค์เพื่อศึกษาผลกระทบของขอ้บกพร่องที่อาจมต่ีอ
พฤตกิรรมทางกล และการพบิตัขิองคาน คสล. ทีเ่สรมิกําลงัดว้ย FRP เพื่อเป็นพืน้ฐานในการตดัสนิใจ
ซ่อมแซม หรอืวางแผนบาํรงุรกัษาในอนาคต  โดยใชก้ารทดลองในหอ้งปฏบิตักิาร และการวเิคราะหค์าน 
คสล.เสรมิกาํลงัดว้ย FRP และการวเิคราะหพ์ฤตกิรรมของรอยต่อดว้ยวธิไีฟไนตอ์ลิเิมนต ์

จากการศกึษาพบว่า ขอ้บกพรอ่งขนาดต่างๆในคาน คสล. ทีเ่สรมิกําลงัดว้ย FRP นัน้ มผีลเพยีง
เลก็น้อยต่อกําลงัตา้นทานแรงดดัและความเหนียวของคาน คสล. ทีเ่สรมิกําลงัดว้ย FRP โดยกําลงัทีไ่ด้
จากสมการคาํนวณออกแบบจะอยูใ่นเกณฑป์ลอดภยัเมือ่พจิารณาผลกระทบของขอ้บกพรอ่งทีม่ตีําแหน่ง
และขนาดในขนาดของงานวจิยัน้ี และการเกดิขอ้บกพรอ่งแบบพืน้ทีห่ลุดรอ่นระหว่าง FRP และคอนกรตี
มผีลต่อการแจกแจงของหน่วยแรงเฉือนในรอยต่อระหว่าง FRP และคอนกรตี ขอ้บกพรอ่งทีม่ขีนาดใหญ่
จะส่งผลใหห้น่วยแรงเฉือนโดยรวมในรอยต่อมคี่าเพิม่ขึน้ เน่ืองจากความยาวสุทธขิองรอยต่อลดลง และ
กําลงัยดึเหน่ียว (Pu) และแรงกระทําก่อนความเสยีหาย (Ps) ของรอยต่อระหว่าง FRP และคอนกรตี
ขึน้อยู่กบัขนาด และตําแหน่งของขอ้บกพร่องในรอยต่อ โดยในกรณีที่ขอ้บกพร่องมตีําแหน่งเดยีวกนั 
เมือ่ขนาดของขอ้บกพรอ่งใหญ่ขึน้ คา่ของ Pu และ Ps จะมคีา่ลดลง สง่ผลใหร้อยต่อมปีระสทิธภิาพในการ
รบัแรงเฉือนลดลง  และในกรณีทีข่อ้บกพร่องมขีนาดเท่ากนั ขอ้บกพร่องทีอ่ยู่ในช่วงทีม่กีารถ่ายเทแรง
เฉือนระหว่าง FRP และคอนกรตีมากในรอยต่อ เช่น ใกลก้บัตําแหน่งของ FRP ทีม่แีรงดงึกระทาํ หรอื
ตําแหน่งทีเ่กดิรอยรา้วแรงดดัในคาน จะสง่ผลใหค้า่ของ Pu และ Ps ของรอยต่อมคีา่ลดลง 
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บทท่ี 1 บทนํา 

1.1 ความสําคญัและที่มาของปัญหา 

โครงสร้างสาธารณูปโภคที่เป็นคอนกรีตเสริมเหล็ก (คสล.) เช่น อาคารและสะพาน อาจมีการ

เสื่อมสภาพหรือความเสียหายเกิดขึ้นหลังจากการใช้งานเป็นเวลานานเน่ืองจากสาเหตุหลายประการ 

ยกตัวอย่างเช่น อุบัติเหตุ ภัยธรรมชาติ หรือการเสื่อมสภาพจากสภาพแวดล้อมที่รุนแรง ซึ่งอาจส่งผลให้

สมรรถนะของโครงสร้าง คสล.ในการรับแรง (Load capacity) หรือการใช้งานได้ (Serviceability) ลดลงได้ 

นอกจากน้ีการเปลี่ยนแปลงของชนิดและขนาดของแรงกระทําระหว่างอายุการใช้งานก็อาจทําให้มีความจําเป็น

ที่จะต้องทําการเสริมกําลังเพ่ือเพ่ิมสมรรถนะ  ซึ่งวิธีการเสริมกําลังน่ันมีอยู่ด้วยกันหลากหลายวิธี เช่น การเพ่ิม

ขนาดหน้าตัด การใช้แรงดึงจากภายนอก (External Post-tensioning) การใช้วัสดุคอมโพสิตเสริมเส้นใย เป็น

ต้น ซึ่งแต่ละวิธีก็มีข้อดีและข้อเสียที่แตกต่างกันไปท้ังน้ีในระยะเวลา 20 ปีที่ผ่านมามีการเริ่มใช้วัสดุคอมโพสิต

เสริมเส้นใยหรือ FRP (Fiber Reinforced Polymer Composite) มากย่ิงขึ้นเน่ืองจากข้อดีหลายประการคือ 

อัตราส่วนระหว่างกําลังและน้ําหนัก (Strength-to-weight Ratio) ที่สูง อัตราส่วนระหว่างสติฟเนสและ

นํ้าหนัก (Stiffness-to-weight Ratio) ที่สูง ความคงทนต่อการกัดกร่อนและความล้า และการติดต้ังที่สะดวก

รวดเร็ว  ซึ่งวิธีการเสริมกําลังด้วย FRP จะแตกต่างกันไปขึ้นอยู่กับชนิดขององค์อาคาร ในกรณีการเสริงกําลัง

รับแรงดัดในคาน คสล. วัสดุ FRP ในรูปแบบของแผ่น (Laminate) หรือสิ่งทอ (Fabric) จะถูกติดต้ังบนพ้ืนผิว

คอนกรีตที่อยู่ภายใต้หน่วยแรงดึง (Tension Face) เช่นเดียวกับการเสริมแรงด้วยเหล็กเสริมแบบปกติ 

ประสิทธิภาพของการเสริมกําลังคาน คสล. ด้วย FRP น้ันจะขึ้นอยู่กับคุณภาพของการยึดเหน่ียว

ระหว่าง คอนกรีตและ FRP เน่ืองจากพฤติกรรมที่เปรียบเสมือนวัสดุประกอบ  ข้อบกพร่องในรูปแบบของการ

หลุดร่อนที่รอยต่อระหว่าง FRP และคอนกรีตอาจเกิดขึ้นได้เน่ืองจากคุณภาพการติดต้ังที่ไม่ดีพอหรือเป็นผล

จากความเสียหายเชิงกายภาพ อีกทั้งการสัมผัสกับสภาพแวดล้อมที่รุนแรงในระหว่างอายุการใช้งาน เช่น 

สภาพเปียกสลับแห้งซึ่งพบมากในประเทศไทย อาจมีผลต่อคุณภาพของแรงยึดเหน่ียวระหว่างคอนกรีตและ 

FRP ได้  ส่งผลกระทบต่อกําลังของคานที่ได้รับการเสริมกําลังแล้วได้  ซึ่งในปัจจุบันงานวิจัยเก่ียวกับผลกระทบ

ของข้อบกพร่องในคาน คสล. ที่เสริมกําลังด้วย FRP น้ันยังมีไม่มาก อีกทั้งยังไม่มีข้อสรุปที่แน่ชัดเก่ียวกับขนาด

และลักษณะของข้อบกพร่องที่ยอมรับได้  โครงสร้างที่ได้รับการเสริมกําลังแล้วน้ันจะต้องได้รับการตรวจสอบ

อยู่สม่ําเสมอเช่นเดียวกับโครงสร้างทั่วไป  เมื่อพบว่ามีปัญหาข้อบกพร่องจะได้ดําเนินการแก้ไขซ่อมแซมได้

ทันท่วงที  ความรู้ในเชิงลึกที่จะได้จากโครงการน้ีเก่ียวกับผลกระทบของข้อบกพร่องต่อกําลังและการวิบัติ
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บทท่ี 2 เอกสารและงานวิจัยท่ีเก่ียวข้อง 

2.1 ผลกระทบของข้อบกพร่องที่มีต่อองคอ์าคารคอนกรตีที่เสริมกําลังด้วย FRP 

ในปัจจุบันวัสดุคอมโพสิตพอลิเมอร์เสริมเส้นใย (Fiber Reinforced Polymer Composite หรือ FRP) 

กําลังถูกใช้อย่างแพร่หลายในงานซ่อมแซมและฟื้นฟูโครงสร้างทางวิศวกรรมโยธาทั้งในประเทศและ

ต่างประเทศ  เน่ืองจากคุณสมบัติเด่นหลายประการ เช่น นํ้าหนักที่เบาเมื่อเทียบกับกําลังและสติฟเนสที่สูง 

ความสามารถในการต้านทานการกัดกร่อน และรูปแบบที่ใช้ได้หลากหลายตามลักษณะงาน เป็นต้น  ในการ

เสริมกําลังรับแรงดัดของโครงสร้างคอนกรีตเสริมเหล็ก เช่น คานและแผ่นพ้ืนน้ัน วัสดุ FRP ในแบบแผ่น 

(Plate) หรือสิ่งทอ (Sheet) จะได้รับการติดต้ังบนผิวคอนกรีตที่ต้องรับแรงดึง โดยการใช้กาวอิพอกซี่  ซึ่ง

ลักษณะการพิบัติบัติที่อาจเกิดขึ้นได้ในโครงสร้างที่เสริมกําลังแล้ว คือ 1) การครากของเหล็กเสริมตามด้วยการ

วิบัติของคอนกรีตภายใต้แรงอัด 2) การครากของเหล็กเสริมตามด้วยการวิบัติของ FRP 3) การวิบัติของ

คอนกรีตภายใต้แรงอัดก่อนการครากของเหล็กเสริม 4) การวิบัติของคอนกรีตภายใต้แรงเฉือน 5) การหลุดร่อน

ของผิวคอนกรีต (Concrete Cover Delamination) และ 6) การหลุดร่อนของ FRP (FRP Debonding) [1-

3] 

ประสิทธิภาพของการเสริมกําลังรับแรงดัดดังที่กล่าวมาน้ันขึ้นอยู่กับสมรรถนะของรอยต่อระหว่าง FRP 

และคอนกรีต ซึ่งก็ขึ้นอยู่กับคุณสมบัติและคุณภาพของคอนกรีต อิพอกซี่ และ FRP เอง  ทั้งน้ีข้อบกพร่องใน

ระบบเสริมกําลังน้ีอาจเกิดขึ้นได้ในขั้นตอนการติดต้ังหรือระหว่างการใช้งาน ยกตัวอย่างเช่น การวางตัวของเส้น

ใยที่ไม่เป็นแนวระหว่างการติดต้ัง ความเสียหายที่ผิวคอนกรีตที่ไม่ได้รับการซ่อมแซมอย่างถูกวิธี หรือการหลุด

ร่อนของ FRP ในบางบริเวณ เป็นต้น [4]  ซึ่งข้อบกพร่องทั้งสองแบบหลังอาจทําให้เกิดการวิบัติของโครงสร้าง

ที่เสริมกําลังที่แรงกระทําตํ่ากว่าที่ออกแบบไว้ได้  ทั้งน้ีงานวิจัยที่ศึกษาเก่ียวกับผลของข้อบกพร่องในระบบ

เสริมกําลังด้วย FRP ยังมีอยู่น้อยมาก  ซึ่งงานวิจัยแรกๆจะใช้ช้ินตัวอย่างที่ออกแบบมาเจาะจงกับแต่ละกรณี 

ทําให้ไม่สามารถใช้กับโครงสร้างทั่วไปได้  Kaiser [5] ใช้การทดสอบการแตกร้าวของช้ินตัวอย่างแบบ Peel 

Fracture Test ซึ่งแผ่น FRP น้ันรับแรงในทิศทางต้ังฉากกับผิวคอนกรีต ซึ่งพบว่าข้อบกพร่องที่เกิดจากการ

ผสมอิพอกซี่ที่ไม่ถูกต้องตามมาตรฐาน การใช้ Primer และการบ่มที่ไม่ได้มาตรฐาน และช่องว่างในผิวคอนกรีต 

ส่งผลให้กําลังของรอยต่อระหว่าง FRP และ คอนกรีตที่อยู่ในแบบของ Fracture Toughness มีค่าลดลง  

Seim et al. [6] ทําการทดลองกับแผ่นพ้ืนที่เสริมกําลังด้วย FRP แล้วพบว่าข้อบกพร่องที่เกิดจากรอยร่อน

ระหว่าง FRP และคอนกรีตส่งผลให้กําลังรับแรงดัดและความเหนียวของแผ่นพ้ืนลดลงได้   Kalayci et al. [7] 
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ทําการทดลองกับคานคอนกรีตหน้าตัดรูปทีที่มีข้อบกพร่องแบบรอยร่อนและรอยร้าวในคอนกรีตแล้วพบว่า 

ขนาดของรอยร่อนและระยะห่างที่ตํ่ากว่าที่แนะนําไว้ในคู่มือการเสริมกําลังไม่มีผลต่อกําลังของคาน  อย่างไรก็

ดีทีมนักวิจัยยังได้แนะนําให้มีการศึกษาเพ่ิมเติมโดยเฉพาะในกรณีที่มีสภาพแวดล้อมที่รุนแรงเข้ามาเก่ียวข้อง  

นอกจากผลการทดลองที่กล่าวมาแล้ว  Guo et al. [8] ได้ศึกษาผลกระทบของรอยร่อน FRP ในคานคอนกรีต 

โดยใช้วิธีไฟไนต์อิลิเมนต์ร่วมกับแบบจําลองแบบ Bi-linear เพ่ืออธิบายพฤติกรรมของรอยต่อระหว่าง FRP 

และคอนกรีต  ทั้งน้ีลักษณะของรอยลอกเป็นแบบแผ่กระจายบนผิวคอนกรีต ซึ่งนักวิจัยพบว่ารอยร่อนมีผลต่อ

การแจกแจงของหน่วยแรงในรอยต่อ และทําให้เกิด Stress Concentration ที่อาจทําให้คอนกรีตแตกร้าวได้  

ในการออกแบบระบบเสริมกําลังโดย FRP น้ัน จะมีการสมมุติว่ารอยต่อระหว่าง FRP และคอนกรีตเป็นแบบ

สมบูรณ์และสามารถถ่ายแรงได้อย่างมีประสิทธิภาพ  อย่างไรก็ตาม จากงานวิจัยในอดีตพบว่ารอยหลุดร่อนที่

รอยต่อสามารถทําให้กําลังรับแรงดัดและความเหนียวขององค์อาคารลดลงได้  ดังน้ันการศึกษาในเชิงลึก

เก่ียวกับกลไกและผลกระทบของข้อบกพร่องลักษณะน้ีในองค์อาคารที่เสริมกําลังด้วย FRP จึงมีความสําคัญ 

เพ่ือให้สามารถใช้เทคนิคการซ่อมแซมบํารุงรักษาโครงสร้างแบบน้ีได้อย่างปลอดภัย 

2.2 พฤติกรรมการยึดเหนี่ยวระหว่างคอนกรีตและ FRP 

วัสดุพอลิเมอร์เสริมเส้นใย (Fiber-reinforced Polymer, FRP) ถูกนํามาใช้กันอย่างแพร่หลายในการ

เสริมกําลังช้ินส่วนของโครงสร้างคอนกรีต เพ่ือเพ่ิมสมรรถนะในด้านการรับนํ้าหนักบรรทุก (Load Capacity) 

และการใช้งานได้ (Serviceability)  ในการเสริมกําลังรับแรงดัด (Flexural Strengthening) และแรงเฉือน 

(Shear Strengthening) ในโครงสร้างคานและโครงสร้างแผ่นพ้ืนคอนกรีตเสริมเหล็กด้วย FRP เมื่อมีแรงมา

กระทํากับโครงสร้างดังกล่าว แรงที่มากระทําน้ันจะถูกถ่ายโอนจากคอนกรีตไปยัง FRP โดยผ่านหน่วยแรงเฉือน 

(Shear Stress) ที่รอยต่อ (Interface) ระหว่าง FRP และคอนกรีต ดังน้ันประสิทธิภาพของโครงสร้างที่เสริม

กําลังด้วย FRP จะขึ้นอยู่กับคุณภาพรอยต่อ  ที่ผ่านมามีงานวิจัยมากมายท่ีรายงานการทดสอบหาค่ากําลังยึด

เหน่ียว (Bond Strength) และพฤติกรรมยึดเหน่ียวของระบบเสริมกําลัง FRP เช่น การทดสอบแบบ Single-

lap Shear  การทดสอบแบบ Double-lap Shear การทดสอบแบบ Direct Tension และการทดสอบคาน 

(Small Beam Test) ดังแสดงในรูปที่ 2 สําหรับการทดสอบแบบ Single-lap Shear และ Double-lap 

Shear น้ัน ค่าที่ได้จากการทดลองจะเก่ียวข้องกับพฤติกรรมของพันธะ (Bond Behavior) เช่น ค่ากําลังยึด

เหน่ียว (Bond Strength) ค่าพลังงานแตกหัก (Fracture Energy) และความสัมพันธ์ระหว่างแรงยึดเหน่ียวกับ

การเลื่อน (Bond-slip Relationship) ซึ่งส่วนใหญ่การพิบัติที่พบบริเวณรอยต่อ (Interface) จะแบ่งเป็น 2 
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พฤติกรรมการรับแรงเฉือนของรอยต่อระหว่าง FRP และคอนกรีตสามารถอธิบายได้โดยความสัมพันธ์

ระหว่างหน่วยแรงเฉือนและการเลื่อนระหว่าง FRP และคอนกรีต  ดังน้ันความสัมพันธ์ระหว่างหน่วยแรงเฉือน

ยึดเหน่ียวกับการเลื่อน (Bond-Slip Model) ของรอยต่อ จึงเป็นส่วนประกอบสําคัญในการสร้างแบบจําลอง

โครงสร้างคอนกรีตที่เสริมกําลังหรือซ่อมแซมด้วย FRP สําหรับต้านทานแรงดัดและแรงเฉือน เพ่ือให้สามารถ

อธิบายการพิบัติแบบการหลุดร่อนของ FRP จากคอนกรีตแบบต่างๆได้  ความสัมพันธ์ของ Bond-slip จากการ

ทดสอบแบบ Pull Test โดยทั่วไปสามารถกําหนดได้ 2 รูปแบบ คือ (1) จากกราฟความเครียดตามแนวแกน 

(Axial Strain) ของแผ่น FRP ซึ่งวัดมาจาก Strain Gauge เช่น การทดลองของ Nakaba et al. [10] และ (2) 

จากกราฟหน่วยแรงและการเคลื่อนตัว (Load-Displacement) เช่น การทดลองของ Dai et al. [11] เป็นต้น  

โดยทั่วไปความสัมพันธ์ของ Bond-slip จะขึ้นอยู่กับความแข็งแกร่ง (Stiffness) ที่ลดลงอย่างต่อเน่ืองจากค่า

หน่วยแรงของแรงยึดเหน่ียวสูงสุด (Bond Stress) และการลดลงดังกล่าวทําให้กราฟของ Bond-slip เป็นเส้น

โค้งหรือเป็นเส้นตรงลดลงเข้าใกล้ 0 ที่มีค่าการเล่ือนที่แท้จริง ความแม่นยําของแบบจําลอง Bond-slip จะ

ขึ้นอยู่กับลักษณะของเส้นโค้งที่ลดลง (Softening) หรือรูปแบบเส้นตรง 2 เส้น (Bi-linear) เป็นต้น 

Ko et al. [12] กล่าวว่าการเข้าใจพฤติกรรมของการยึดเหน่ียวที่รอยต่อ มีความสําคัญต่อพฤติกรรมของ

Bond-Slip ที่บ่งบอกถึงประสิทธิภาพของรอยต่อระหว่าง FRP และคอนกรีต ความสามารถในการรับแรงของ

รอยต่อหรือกําลังยึดเหนี่ยว (Bond Strength) สามารถหาได้จากความสัมพันธ์ของ Bond-Slip จาก

แบบจําลองของความสัมพันธ์ของ Bond-Slip ที่เคยได้มีการนําเสนอสามารถแบ่งได้เป็น 3 แบบ ดังแสดงในรูป

ที่ 4 แบ่งได้เป็น (1) Cut-off Type (2) Elasto-plastic Type และ (3) Tensile- softening Type (เช่น Bi-

linear และ Popovics) ซึ่งแบบจําลองแบบ Cut-off Type และ Elasto-plastic Type ไม่สมจริง  

แบบจําลองแบบ Bi-linear จะแบ่งเป็นช่วง Elastic และช่วง Plastic ซึ่งมาจากผลการทดสอบ โดยมีค่า Bond 

Stress สูงสุดในช่วง Elastic ሺ߬௠ሻ ที่มีค่าเคลื่อนตัวหรือ Slip แทนด้วย ݏఛ และช่วง Plastic จุดสุดท้ายมีค่า 

Bond Stress เท่ากับ 0 และค่าเคลื่อนตัว แทนด้วย ݏ௙ ส่วนแบบจําลองแบบ Popovics มาจากแบบจําลอง

ทางคณิตศาสตร์ Popovics (Popovics Numerical Approach) สําหรับความสัมพันธ์ของหน่วยแรงและ

ความเครียดของคอนกรีต (Stress-strain Relationship) ซึ่งความสัมพันธ์ของ Bond-slip เก่ียวข้องกับ

พลังงานแตกหัก (Fracture Energy, Gf) 
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สามารถถ่ายแรงระหว่างคอนกรีตและ FRP ได้ Ko et al. [12] ได้พัฒนาแบบจําลอง Bond-Slip สําหรับใช้ใน

การออกแบบโดยการเปรียบเทียบโดยใช้ฐานข้อมูลของผลการทดสอบแบบ Single-lap Shear และ Double-

lap Shear (รูปที่ 5) ตัวแปรสําหรับแบบจําลองแบบ Bi-linear สามารถคํานวณได้ตามสมการที่ (3) ถึง (5) 

߬ ൌ ߬௠ ቀ
௦

௦ഓ
ቁ 0	ݎ݋݂	 ൑ ݏ ൑  ఛ   (1)ݏ

߬ ൌ ߬௠ െ ఛ೘ሺ௦ି௦ഓሻ

௦೑ି௦ഓ
ఛݏ	ݎ݋݂	 ൑ ݏ ൑  ௙  (2)ݏ

߬௠ ൌ 0.165 ௖݂     (3) 

ఛݏ ൌ െ0.001 ௖݂ 		൅ 0.122																  (4) 

௙ݏ ൌ െ0.002 ௖݂ 		൅ 0.302																		  (5) 

2.3 การซ่อมแซมระบบเสริมกําลัง FRP ในกรณีที่มีข้อบกพร่อง 

ข้อบกพร่องของระบบ FRP มีอยู่ด้วยกันหลายแบบ สภาพและชนิดของข้อบกพร่องของระบบเสริมกําลัง 

FRP ได้แก่ (1) การเกิดช่องว่างหรือกระเปาะอากาศระหว่างผิวคอนกรีตและช้ันรองพ้ืน เรซิน หรือวัสดุยึด

ประสาน หรือมีช่องว่างในระบบ FRP (2) การหลุดล่อนของตัวระบบ FRP (3) การลงเรซินบนเส้นใยไม่ทั่วถึง

และไม่สม่ําเสมอ ทําให้เรซินบ่มไม่เหมาะสม และ (3) รอยร้าว จุดบกพร่อง ที่ไม่รับการแก้ไขก่อนการติดต้ัง 

หรือการหลุดล่อนของสารเคลือบผิว 

การซ่อมแซมระบบ FRP ขึ้นอยู่กับระดับความเสียหาย ในบริเวณที่เสียหายไม่มาก กล่าวคือ ระบบ FPR

ที่มีจุดบกพร่องขนาดเส้นผ่านศูนย์กลางอยู่ระหว่าง 32 ถึง 150 มม. และมีจํานวนน้อยกว่า 5 แห่งต่อทุกความ

ยาวหรือความกว้าง 3 เมตรที่เสริมระบบ FPR ซ่อมแซมโดยกําจัดจุดบกพร่องเหล่าน้ีด้วยความระมัดระวังและ

กินพ้ืนที่รอบข้างออกไปในบริเวณโดยรอบไม่น้อยกว่า 25 มม. เพ่ือให้เกิดการถ่ายแรงในระบบ FRP ถ้ากรณีมี 

FPRหลายช้ัน ให้เลาะที่ละช้ันออกจนถึงช้ันที่มีความเสียหาย และทําการติดต้ัง FPRทีละช้ันโดยแปะให้ FPR 

กินพ้ืนที่รอบข้างออกไปในบริเวณโดยรอบไม่น้อยกว่า 25 มม. และ FPR ที่ใช้ซ่อมแซมควรมีคุณสมบัติที่

เหมือนเดิม ทั้งในเรื่องของความหนา ทิศทางของเส้นใยในแต่ละช้ัน รวมท้ังชนิดของเรซิน  

สําหรับในบริเวณที่มีความเสียหายขนาดใหญ่มาก กล่าวคือ ระบบ FPR ที่มีจุดบกพร่องขนาดเส้นผ่าน

ศูนย์กลางใหญ่กว่า 150 มม. การบกพร่องขนาดใหญ่แสดงให้เห็นว่าเกิดการหลุดร่อนอย่างรุนแรงระหว่างช้ัน
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ทําให้สูญเสียการยึดเหน่ียวกับคอนกรีต ต้องทําการร้ืออออก และให้กินพ้ืนที่รอบข้างเข้าไปไม่น้อยกว่า 25 มม. 

จากน้ันก็ลง FPR ในลักษณะเดิมจนครบทุกช้ัน และต้องลงระบบ FRP เพ่ิมขึ้นอีกช้ัน (Additional Layer) ให้

กินพ้ืนที่รอบข้างเข้าไปไม่น้อยกว่า 150 มม. ถ้าหากพบข้อบกพร่องขนาดใหญ่ในบริเวณที่มีผลอย่างมากต่อ

ความแข็งแรงของโครงสร้าง ควรทําการรื้อระบบ FRP ทั้งหมดแล้วทําการติดต้ังใหม่ [13] 
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บทท่ี 3 ระเบียบวิธีวิจัย 

โครงการวิจัยน้ีประกอบด้วยการศึกษาโดยการทดลองในห้องปฏิบัติการและการศึกษาโดยการวิเคราะห์

ด้วยวิธีไฟไนต์อิลิเมนต์ (Finite Element Analysis หรือ FEA) สําหรับคานคสล.ที่เสริมกําลังด้วย FRP และ

รอยต่อระหว่างคอนกรีตและ FRP ทั้งน้ีมีขั้นตอนการวิจัยดังน้ี 

3.1 การทดสอบตัวอย่างคานคสล.เสริมกําลังด้วย FRP ในห้องปฏิบัติการ 

ศึกษาผลกระทบของข้อบกพร่องในรูปแบบของพ้ืนที่หลุดร่อนระหว่างคอนกรีตและ FRP ที่มีต่อกําลัง

และพฤติกรรมการพิบัติโดยชุดการทดสอบตัวอย่างคาน คสล.ที่ได้รับการเสริมกําลังด้วย FRP ภายใต้แรง

กระทําแบบ 4-point bending  ซึ่งแรงกระทําแบบน้ีจะเหมือนกับการใช้งานจริง รวมทั้งมีระยะคานที่มีเฉพาะ

โมเมนต์ดัด (Pure Bending) และระยะที่มีการผสมผสานระหว่างโมเมนต์ดัดและแรงเฉือน ซึ่งช่วยใน

การศึกษาบทบาทของขนาดสัมพัทธ์ของโมเมนต์ดัดและแรงเฉือนในการเกิดการพิบัติเมื่อมีข้อบกพร่อง  รวมทั้ง

มีการวัดการเปลี่ยนแปลงของการแจกแจงของความเครียดและหน่วยแรงที่ตําแหน่งสําคัญต่างๆเน่ืองจากการ

หลุดร่อนโดยใช้ Strain Gauge  โดยลักษณะจําเพาะของข้อบกพร่องที่จะศึกษาคือ 1. ขนาดของพ้ืนที่หลุดร่อน 

2. ตําแหน่งพ้ืนที่หลุดร่อน   

3.1.2 ตัวอย่างคานคสล.เสริมกําลังด้วย FRP 

ตารางที่ 1 แสดงรายการตัวอย่างที่ใช้ทดสอบ พร้อมรายละเอียดของข้อบกพร่องในแต่ละตัวอย่าง คาน  

ตัวอย่างทั้งหมดมีความยาวสุทธิ 2 ม. หน้าตัดมีความกว้าง 150 มม. ลึก 200 มม. มีความลึกประสิทธิผล (d) 

170 มม.  ตัวอย่างคานทุกตัวเสริมด้วยเหล็กเสริมตามยาว DB12 (เส้นผ่านศูนย์กลาง 12 มม.) จํานวน 2 เส้น

ทั้งด้านบนและด้านล่างเพื่อรับแรงอัดและแรงดึงตามลําดับ โดยจุดศูนย์ถ่วงของเหล็กเสริมรับแรงอัดอยู่ห่าง

จากผิวคอนกรีตด้านบนเป็นระยะ 20 มม. และเสริมกําลังต้านทานแรงเฉือนเพ่ิมเติมด้วยเหล็กลูกต้ังที่ทําจาก

เหล็ก RB9 (เส้นผ่านศูนย์กลาง 9 มม.) ที่ระยะเรียง (Spacing) 80 มม. เพ่ือป้องกันการพิบัติแบบเฉือนระหว่าง

การทดสอบ (รูปที่ 6) คอนกรีตที่ใช้ผลิตตัวอย่างคานมีกําลังต้านทานแรงอัดที่ 28 วัน (f’c) เท่ากับ 27.26 MPa 

และเหล็กเสริมหลักมีกําลังจุดครากเท่ากับ 300 MPa (ช้ันคุณภาพ SD 30)  จากคํานวณเบ้ืองต้นตัวอย่างคาน

ที่ไม่มีการเสริมกําลังด้วย CFRP ควรจะมีการพิบัติแบบคอนกรีตอัดแตกหลังจากการครากของเหล็กเสริม 

(Concrete Crushing after Steel Yielding) 
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ตารางที่ 1 รายละเอียดตัวอย่างคานคอนกรีตที่ใช้ศึกษา 

ประเภทคาน
ตัวอย่าง 

รหัส ขนาดพ้ืนที่หลุดร่อน 
(กว้างxยาว mm2) 

ตําแหน่งของพ้ืนที่หลุด
ร่อน (mm)* 

หมายเหตุ 

กลุ่มควบคุม 
NF - - คาน คสล. 
CF - - คาน คสล. เสรมิด้วย FRP

กลุ่มทดลอง 

DF-50-0 50 x 50 At midspan คาน คสล. เสรมิด้วย FRP
DF-50-180 50 x 50 180 mm คาน คสล. เสรมิด้วย FRP
DF-50-270 50 x 50 270 mm คาน คสล. เสรมิด้วย FRP
DF-50-560 50 x 50 560 mm คาน คสล. เสรมิด้วย FRP
DF-100-0 50 x 100 At midspan คาน คสล. เสรมิด้วย FRP

DF-100-180 50 x 100 180 mm คาน คสล. เสรมิด้วย FRP
DF-100-270 50 x 100 270 mm คาน คสล. เสรมิด้วย FRP
DF-100-560 50 x 100 560 mm คาน คสล. เสรมิด้วย FRP

*ระยะห่างระหว่างก่ึงกลางคานและกึ่งกลางพ้ืนที่หลุดร่อน 

ตัวอย่างคาน CF และ DF-##-## มีการติดต้ัง CFRP หลังจากคอนกรีตมีอายุครบ 28 วัน โดยใช้การ

ติดต้ังแบบเปียก (Wet Layup)  CFRP ที่ใช้ในตัวอย่างทุกตัวมีจํานวน 2 ช้ัน และมีความยาว 1.5 ม. สมบัติ

ทางกลของ CFRP ทั้งแบบที่เป็นเส้นใยแห้ง (Dry Fibers) และแบบ Laminate ที่ได้จากผู้ผลิต แสดงในตาราง

ที่ 2 ซึ่งผู้วิจัยได้ทําการทดสอบเพ่ือหากําลังต้านทานแรงดึงและค่ามอดูลัสยืดหยุ่นของ CFRP และอิพ็อกซี่

เพ่ิมเติมไว้ด้วย (ผลการทดสอบตัวอย่างวัสดุในห้องปฏิบัติการจะกล่าวไว้ในบทที่ 4) โดยข้ันตอนในการติดต้ัง 

CFRP น้ันเริ่มจากการซ่อมแซมและเตรียมผิวคอนกรีตโดยใช้เครื่องเจียรและกระดาษทรายขัดเพ่ือกําจัดมอร์ต้า

ที่ไม่แข็งแรงออก และอุดรูพรุนที่เกิดขึ้นระหว่างการเทตัวอย่างคาน จากนั้นทําความสะอาดผิวคอนกรีตให้

ปราศจากเศษฝุ่นและคราบสารเคมีที่หลงเหลือจากขั้นตอนก่อนหน้าน้ี แล้วใช้อิพ็อกซี่แบบสองส่วนผสม (2-

part Epoxy) ที่ผสมตามขั้นตอนที่แนะนําโดยผู้ผลิตทาบนผิวคอนกรีตก่อนที่จะวางแผ่นเส้นใยคาร์บอนแบบ 

อ่อน (Carbon Fiber Sheet) แล้วจึงใช้อิพ็อกซี่ทาซึมซาบไปบนแผ่นเส้นใยคาร์บอนเพ่ิมเติมด้วยลูกกลิ้ง พร้อม

กับการไล่ฟองอากาศที่อาจหลงเหลือระหว่างการติดต้ัง  โดยให้มีความหนาของ Laminate ที่ได้เท่ากัน และ

ระมัดระวังไม่ให้มีเส้นใยคดงอระหว่างการติดต้ัง ทั้งน้ีข้อบกพร่องที่อยู่ในรูปแบบของรอยหลุดร่อนระหว่าง

คอนกรีตและ FRP ในตัวอย่าง DF-##-## น้ัน ได้จากการนําแผ่นเทฟลอนที่มีขนาดตามข้อบกพร่องที่ต้องการ 

ไปวางระหว่างผิวคอนกรีตและช้ันอิพอกซี่ในขั้นตอนการติดต้ัง FRP  นอกจากการติดต้ัง CFRP ตามแนวยาว
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ตารางที่ 3 ลักษณะของข้อบกพร่องในตัวอย่างทดสอบแบบ Single-Lap Shear ที่ใช้ศึกษา 

กลุ่ม ความยาวรอยต่อ 
Lf (mm) 

ขนาดข้อบกพร่อง 
Ld (mm) 

ตําแหน่งของ
ข้อบกพร่อง x* (mm) 

จํานวนตัวอย่าง

กลุ่มควบคุม 
(ไม่มีข้อบกพร่อง) 

200 0 - 3 
180 0 - 3 
160 0 - 3 
150 0 - 3 
140 0 - 3 

กลุ่มตัวแปร 
(มีข้อบกพร่อง) 

200 

20 
20 3 
40 3 

40 
20 3 
40 3 

60 
20 3 
40 3 

150 
 

20 20 3 
40 20 3 
60 20 3 

*ตําแหน่งของข้อบกพร่องวัดจากขอบด้านใกล้ของพ้ืนที่ข้อบกพร่องไปถึงปลายก้อนคอนกรีตปริซึมด้านที่มีแรง

กระทํา  

3.3 การศึกษาด้วยแบบจําลองทางไฟไนต์อิลิเมนต์ (FEM) 

3.3.1 การวิเคราะห์พฤติกรรมคานคสล.เสริมกําลังด้วย FRP ที่มีข้อบกพร่องด้วย FEM 

ศึกษาผลกระทบของการหลุดร่อนระหว่างคอนกรีตและ FRP ที่มีอยู่แล้วในรอยต่อ ที่มีผลต่อกําลังและ

พฤติกรรมการพิบัติโดยการใช้แบบจําลองทางไฟไนต์อิลิเมนต์  ซึ่งหลักการสําคัญที่ใช้ในการจําลองการหลุด

ร่อนที่รอยต่อระหว่าง FRP และคอนกรีต คือ Cohesive Zone Model (CZM)  โดยศึกษาการแจกแจงของ

ความเค้นและความเครียด  ความสัมพันธ์ระหว่างนํ้าหนักบรรทุกและการโก่งตัวของคาน และกระบวนการ

พิบัติของคานเม่ือมีข้อบกพร่องเกิดขึ้นอยู่แล้ว  ทั้งน้ีแบบจําลองคานคสล.ที่ไม่ได้รับการเสริมกําลังและที่ได้รับ
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การเสริมกําลังแล้วได้รับการพัฒนาขึ้น ร่วมกับวิธีการวิเคราะห์โดย Finite Element (FEM)  ตารางที่ 4 แสดง

รายละเอียดแบบจําลองคานคสล.และลักษณะของข้อบกพร่องในแต่ละแบบจําลองที่ใช้ศึกษา 

ตารางที่ 4 รายละเอียดแบบจําลองคานคสล. 

ประเภทคาน
ตัวอย่าง 

รหัส ขนาดพ้ืนที่หลุดร่อน 
(กว้างxยาว mm2) 

ตําแหน่งของพ้ืนที่หลุด
ร่อน (mm)* 

หมายเหตุ 

กลุ่มควบคุม 
NF - - คานคสล. 
CF - - คานคสล.เสรมิด้วย FRP

กลุ่มทดลอง 

DF-50-0 50 x 50 At midspan

คานคสล.เสรมิด้วย FRP 
และมีข้อบกพร่องที่รอยต่อ 

DF-50-200 50 x 50 200 mm
DF-50-400 50 x 50 400 mm
DF-50-600 50 x 50 600 mm
DF-100-0 50 x 100 At midspan

DF-100-200 50 x 100 200 mm
DF-100-400 50 x 100 400 mm
DF-100-600 50 x 100 600 mm

*ตําแหน่งของข้อบกพร่องในแบบจําลองไม่เหมือนกับที่ใช้ในตัวอย่างคานท่ีทดสอบ เพ่ือลดความซับซ้อนในการ

แบ่งอิลิเมนต์ 

รูปที่ 9 แสดงตัวอย่างแบบจําลองที่ใช้อธิบายพฤติกรรมของวัสดุในแบบจําลอง FE โดยพฤติกรรมของ

คอนกรีตจะเป็นแบบ Nonlinear ภายใต้แรงอัด [14] และมี Tension Stiffening [15] สําหรับอธิบาย

พฤติกรรมภายใต้แรงดึงหลังจากเกิดการแตกร้าวแล้ว โดยมีสมการที่ใช้อธิบายความสัมพันธ์ Stress-strain ดัง

แสดงดังน้ี 
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โดยที่ f’c คือ กําลังต้านทานแรงอัดของคอนกรีต 

 da คือ เส้นผ่านศูนย์กลางของมวลรวมขนาดใหญ่สุดในคอนกรีต 

 GFI คือ พลังงานการแตกร้าวของคอนกรีต (Fracture Energy) 

 ft คือ กําลังต้านทานแรงดึงของคอนกรีต 

 wcr คือ ความกว้างมากที่สุดของรอยร้าวในคอนกรีต (Final Crack Width) 

 c1 และ c2 คือค่าสัมประสิทธ์ิที่ได้จากการทดสอบ มีค่าเท่ากับ 3 และ 6.93 ตามลําดับ 

สําหรับเหล็กเสริมหลักและเหล็กลูกต้ังน้ัน ได้ใช้โมเดลแบบ Bi-Linear เพ่ืออธิบายพฤติกรรมแบบ       

อิลาสติกและไม่อิลาสติก หลังจากเกิดการครากแล้ว ส่วน CFRP น้ันจะใช้พฤติกรรมแบบอิลาสติกเชิงเส้นจนถึง

จุดวิบัติของวัสดุ  ทั้งน้ีพฤติกรรมการหลุดร่อนของ FRP จากผิวคอนกรีตน้ัน อธิบายโดยความสัมพันธ์การยึด

เหน่ียวหรือ Bond-Slip Model ของ Ko et al. [12] แบบ Bi-linear (รูปที่ 10) ซึ่งมีพารามิเตอร์สําคัญที่ต้อง

ใช้คือ กําลังรับแรงอัดที่ 28 วันของคอนกรีต (f’c) และ Local Bond Slip (s0) ที่ τmax ซึ่งได้จากการวิเคราะห์

ผลการทดลองกําลังยึดเหน่ียวของรอยต่อระหว่าง FRP และคอนกรีต ที่รวบรวมไว้ในรายงานของ Ko et al. 

[12]  พารามิเตอร์เหล่าน้ีคํานวณได้ตามสมการที่ 12 ถึง 16 
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บทท่ี 4 ผลการวิจัย 

4.1 ผลกระทบของข้อบกพร่องที่มีต่อพฤติกรรมและการพิบัติของคานคสล. 

4.1.1 ผลการทดสอบตัวอย่างคานคสล.เสริมกําลังด้วย FRP 

จากการทดสอบคอนกรีตรูปทรงกระบอกที่อายุ 28 วัน พบว่ากําลังต้านแรงอัดเฉลี่ยหรือ f’c อยู่ที่ 

27.46 MPa  รูปที่ 22 แสดงผลการทดสอบตัวอย่างคาน คสล. เสริมกําลังด้วย FRP โดยแสดงความสัมพันธ์

ระหว่างนํ้าหนักบรรทุกและระยะการโก่งตัวที่ก่ึงกลางคาน (Load vs Displacement Relationship)  ตาราง

ที่ 6 สรุปค่าของกําลังต้านทานแรงดัดและระยะโก่งที่จุดพิบัติของตัวอย่างแต่ละตัว  ทั้งน้ีกําลังต้านทานแรงดัด

ของคานควบคุมที่ไม่เสริมกําลัง (ตัวอย่างคาน NF) และคานควบคุมที่เสริมกําลังด้วย FRP (ตัวอย่างคาน CF) ที่

คํานวณโดยใช้สมการที่ (17) และ (18) มีค่าเท่ากับ 36.21 kN และ 46.73 kN ตามลําดับ  คาน NF จะเกิด

การพิบัติเน่ืองจากคอนกรีตถูกอัดแตก (Concrete Crushing) หลังจากการครากของเหล็กเสริม ในขณะที่คาน 

CF จะเป็นการพิบัติแบบ FRP Debonding ภายหลังการครากของเหล็กเสริม ซึ่งจะเห็นได้ว่ากําลังต้านทาน

แรงดัดที่ได้จากการทดสอบและที่ได้จากการคํานวณน้ันใกล้เคียงกันในระดับหน่ึง โดยหากคูณด้วยตัวคูณลด

กําลัง (Strength Reduction Factor, φ) ตามท่ีแนะนําในมาตรฐานการออกแบบ สมการที่ใช้จะให้ค่ากําลังตํ่า

กว่าผลการทดลองและถือว่าปลอดภัยสําหรับการออกแบบ 

ிோ௉	௡,௡௢ܯ ൌ 0.85 ௖݂
ᇱܾܽ ቀ݀ െ

ܽ
2
ቁ ൅ ௦ᇱܣ ௬݂ሺ݀ െ ݀′ሻ																															ሺ17ሻ 

௡,ிோ௉ܯ ൌ ௦ܣ ௦݂ ቀ݀ െ
ܽ
2
ቁ ൅ ߰௙ܣ௙ ௙݂௘ ቀ݄ െ

ܽ
2
ቁ																																					ሺ18ሻ 

โดยที่ f’c = กําลังต้านแรงอัดของคอนกรีต 

 fy = กําลังที่จุดครากของเหล็กเสริมหลัก 

 fs = หน่วยแรงดึงในเหล็กเสริมที่จุดพิบัติของ FRP 

 ffe = หน่วยแรงดึงประสิทธิผลใน FRP ที่จุดพิบัติแบบ FRP Rupture หรือ FRP Debonding 

 As = พ้ืนที่หน้าตัดรวมของเหล็กเสริมรับแรงดึง 

 A’s = พ้ืนที่หน้าตัดรวมของเหล็กเสริมรับแรงอัด 
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- ตัวอย่างคาน CF เริ่มเกิดรอยร้าวเน่ืองจากแรงดัด (Flexural Cracks) ที่นํ้าหนักบรรทุก 

13.05 kN และเกิดการหลุดร่อนของ CFRP เริ่มต้นที่ระยะประมาณ 35 cm จากก่ึงกลาง

คาน ใกล้กับตําแหน่งที่เกิดรอยร้าวเน่ืองจากแรงดัดแรก ที่นํ้าหนักบรรทุก 45.87 kN 

- ตัวอย่างคาน DF-50-0 เริ่มเกิดรอยร้าวเน่ืองจากแรงดัด (Flexural Cracks) ที่นํ้าหนักบรรทุก 

14.95 kN และเกิดการหลุดร่อนของ CFRP เริ่มต้นจากบริเวณกึ่งกลางคานใกล้กับตําแหน่ง

ของข้อบกพร่อง ที่นํ้าหนักบรรทุก 47.78 kN 

- ตัวอย่างคาน DF-50-180 เริ่มเกิดรอยร้าวเน่ืองจากแรงดัด (Flexural Cracks) ใกล้กับ

ก่ึงกลางคาน ที่นํ้าหนักบรรทุก 14.55 kN และเกิดการหลุดร่อนของ CFRP เริ่มต้นที่ระยะ

ประมาณ 40 cm จากก่ึงกลางคาน ที่นํ้าหนักบรรทุก 51.12 kN 

- ตัวอย่างคาน DF-50-270 เริ่มเกิดรอยร้าวเน่ืองจากแรงดัด (Flexural Cracks) ที่นํ้าหนัก

บรรทุก 12.36 kN และเกิดการหลุดร่อนของ CFRP เริ่มต้นที่ระยะประมาณ 40 cm จาก

ก่ึงกลางคาน ที่นํ้าหนักบรรทุก 48.74 kN 

- ตัวอย่างคาน DF-50-560 เริ่มเกิดรอยร้าวเน่ืองจากแรงดัด (Flexural Cracks) ที่นํ้าหนัก

บรรทุก 18.84 kN และเกิดการหลุดร่อนของ CFRP เริ่มต้นที่ระยะประมาณ 35 cm จาก

ก่ึงกลางคาน ที่นํ้าหนักบรรทุก 45.17 kN 

- ตัวอย่างคาน DF-100-0 เริ่มเกิดรอยร้าวเน่ืองจากแรงดัด (Flexural Cracks) ที่ตําแหน่ง

ข้อบกพร่อง ที่นํ้าหนักบรรทุก 10.46 kN และเกิดการหลุดร่อนของ CFRP เริ่มต้นที่ก่ึงกลาง

คาน ที่นํ้าหนักบรรทุก 47.30 kN 

- ตัวอย่างคาน DF-100-180 เริ่มเกิดรอยร้าวเน่ืองจากแรงดัด (Flexural Cracks) ที่นํ้าหนัก

บรรทุก 16.64 kN และเกิดการหลุดร่อนของ CFRP เริ่มต้นที่ก่ึงกลางคาน ที่นํ้าหนักบรรทุก 

45.29 kN 

- ตัวอย่างคาน DF-100-270 เริ่มเกิดรอยร้าวเน่ืองจากแรงดัด (Flexural Cracks) ที่นํ้าหนัก

บรรทุก 11.53 kN และเกิดการหลุดร่อนของ CFRP เริ่มต้นที่ระยะประมาณ 40 cm จาก

ก่ึงกลางคาน ที่นํ้าหนักบรรทุก 43.00 kN 

- ตัวอย่างคาน DF-100-560 เริ่มเกิดรอยร้าวเน่ืองจากแรงดัด (Flexural Cracks) ที่นํ้าหนัก

บรรทุก 13.25 kN และเกิดการหลุดร่อนของ CFRP เริ่มต้นที่ระยะประมาณ 40 cm จาก

ก่ึงกลางคาน ที่นํ้าหนักบรรทุก 44.2 kN 
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ปคือ การเกิดร

มีผลให้การวิ

จากปฏิสัมพัน

ให้เข้าใจถึงหลั

ห้สามารถควบ

รูปที่ 42 ตัว

ฉือนที่รอยต่อร

5 จะเห็นว่ารอ

อนกรีตค่าหน่ว

วัดผลกระทบ

รอยร้าวแบบ

เคราะห์ผลกร

นธ์ระหว่างรอ

ลักการและกล

บคุมการเกิดร

วอย่างลักษณ

ระหว่าง FRP

45

อยร้าวในคอน

วยแรงดึงใน

บของจุดบกพร

Flexural 

ระทบของข้อบ

อยร้าวในคอน

ลไกเบื้องหลัง

รอยร้าวได้ โดย

ณะรอยร้าวที่เกิ

และคอนกรีต

นกรีตน้ันยังส่ง

FRP ที่ตําแห

ร่องที่รอยต่อ

Crack หรือ

บกพร่องในค

นกรีตและรอย

การพิบัติ ในอ

ยอาจมีการใส่

กิดขึ้นในแบบจ

ต (Interfacial

งผลต่อหน่วย

หน่งน้ันๆก็จะ

จากค่าของค

Intermedi

าน คสล.ที่เสริ

ยร่อนที่รอยต่อ

อนาคตจึงต้อง

สรอยบากเริ่มต้

จําลอง FEM 

l Shear Stre

ยแรงดึงใน 

ะเพ่ิมขึ้นอย่าง

วามเครียดใน

iate Shear-

ริมด้วย FR

อระหว่าง 

งปรับปรุงตัวอ

ต้นเข้าไป 

 

ess) ในแบบจํา

FRP ด้วย 

เห็นได้ชัด 

น FRP ได้  

-Flexural 

P มีความ

FRP และ

อย่างคาน

 

าลอง CF 



 
 

 

4.

จา

แบบ Sin

คอนกรีต

 

รูปที่ 4

รูปที่ 4

.2 ผลการทด

ากการทดสอ

ngle-lap She

ตและ FRP สรุ

44 การแจกแจ

45 การแจกแ

ดสอบตัวอย่าง

อบตัวอย่างคอ

ear ได้ค่ากําลั

รุปแบ่งตามกลุ

จงของหน่วยแ

จงของหน่วยแ

งรอยต่อระหว

อนกรีตรูปทร

ังรับแรงอัดเฉ

ลุ่มตัวอย่างได้ด

46

แรงดึงใน FRP

แรงดึงใน FRP

ว่างคอนกรีตแ

รงกระบอกที่ใ

ลี่ยเท่ากับ 39

ดังน้ี 

P ในช่วงที่คอน

P ในช่วงที่คอน

และ FRP ทีมี่

ใช้ในตัวอย่าง

9.27 MPa ผล

นกรีตยังไม่เกิด

นกรีตเกิดการ

ข้อบกพร่อง 

รอยต่อระหว

ลการทดสอบตั

ดการแตกร้าว

รแตกร้าวแลว้

ว่างคอนกรีต

ตัวอย่างรอยต่

 

ว 

 

ว  

และ FRP 

อระหว่าง



 
 

 

4.

จา

ความยาว

เหน่ียว (P
เหนียวปร

ความเสีย

*ตั

ข้อบกพรอ่

กับด้านท่ีมี

.2.1 ตัวอย่าง

ากการทดสอบ

วรอยต่อระหว

Pu) ระยะเลื่อ

ระมาณได้จาก

ยหายในรอยต่

ตาร

กลุ่มตัวอย่าง

C14-0-0 
C15-0-0 
C16-0-0 
C18-0-0 
C20-0-0 

ตัวอย่าง ab-c-d

อง b คือขนาดข

มีแรงดึงกระทํา 

งรอยต่อระหว

บแบบ Single

ว่าง CFRP แ

อน (Maximum

กพ้ืนที่ใต้กราฟ

ต่อไปถึงจุดพิบั

รางที่ 10 ผลก

ง* แรงยึ

d โดยที่ a คือ

ของความยาวรอ

(มม.) และ d คื

รูปที่ 4

ว่างคอนกรีตแ

e-Lap Shea

และคอนกรีต

m slip, sm

ฟระหว่างหน่ว

บัติ 

การทดสอบตัว

ยึดเหน่ียว Pu

(kN) 
18.44 
18.77 
18.30 
20.66 
20.08 

อกลุ่มของแบบจ

อยต่อระหว่าง C

คือขนาดของข้อ

46 ตัวอย่างลกั

47

และ FRP กลุ่ม

ar เมื่อมีแรง

เป็น 140, 15

max) และดัชนี

วยแรงเฉือนเฉ

วอย่างรอยต่อ

ค่าการเลื่อ
(m
1
2
1
1
1

จําลองซ่ึงมี C 

CFRP กับคอนก

บกพร่อง 

กษณะการพิบั

่มควบคุม 

กระทํากับรอ

50, 160, 180

ความเหนียวแ

ฉลี่ยในรอยต่อ

กลุ่มควบคุม

อนสูงสุด smax

mm) 
1.00
2.01
1.63
1.81
1.86
เป็นกลุ่มตัวอย่า

รีต (ซม.) c คือ

บัติที่เกิดขึ้นใน

ยต่อในกรณีที

0, 200 มม. ต

แสดงดังตารา

อและระยะเลื่

(ไม่มีข้อบกพร

x ดัชนีควา
(MPa-

1.5
1.8
1.6
1.9
1.7

างควบคุม และ 

ระยะห่างของข

รอยต่อ 

ที่ไม่มีข้อบกพร

ตามลําดับ ได้

างที่ 10 ทั้งน้ีดั

อนมากสุดใน

ร่อง) 

มเหนียว 
-mm) 
54 
84 
69 
95 
75 
 D เป็นกลุ่มต

ขอบข้อบกพร่อง

ร่องและมี

ค่าแรงยึด

ดัชนีความ

ช่วงที่เกิด

ตัวอย่างท่ีมี

งท่ีใกล้ท่ีสุด



 
 

 

 

วัสดุเช่ือม

ออกมาเล็

ทุกความ

ค่าน้อยก

เกินกว่าค

 

ความเครี

CFRP ด้า

ของตัวอ

เมื่อพิจาร

ปลายขอ

ความเครี

ค่อยๆมีลั

คอนกรีต

รูปที่ 4

จากการทดส

มประสาน (D

ลก็น้อย เป็นลั

ยาวรอยต่อ ซึ

กว่าความยาวร

ความยาวประ

การทดสอบใ

รียดที่ตําแหน

านหน่ึงและผวิ

ย่างที่มีความ

รณาลักษณะข

อง CFRP ที่มีแ

รียดค่อยๆลด

ลักษณะคงที่ใน

ต 

7 การแจกแจ

สอบลักษณะก

Debonding 

ลกัษณะเดียวกั

ซึ่งอาจเป็นผล

รอยต่อที่ใช้ใน

สิทธิผลก็ไม่ส่

ในกรณีที่ไม่มีข

น่งต่างๆ หากส

วของอิพ็อกซีด่

ยาวรอยต่อที

ของการแจกแ

แรงกระทําจะ

ลง เมื่อแรงก

นตําแหน่งด้าน

จงของความเค

แ

การวิบัติที่พบ

at the Adh

กันในทุกๆตัวอ

จากความยาว

นตัวอย่างทดส

งผลให้มีค่าแร

ข้อบกพร่อง มี

สมมติว่าให้ผิว

ด้านที่ติดกับ C

ที่ 140, 150, 

แจงความเครีย

ะมีค่าความเค

ระทํามีค่าเพ่ิม

นปลายใกล้แร

ครียดในรอยต่

แรงกระทําเท่า

48

บเป็นลักษณะ

hesive-conc

อย่างดังรูปที่ 4

วประสิทธิผลข

สอบหรือที่ 14

รงยึดเหน่ียวข

มีการติดต้ัง S

วคอนกรีตไม่

CFRP มีการเ

160, 180 แ

ยดในรอยต่อร

ครียดที่สูงกว่า

มมากขึ้นจะท

รงกระทํา แส

อระหว่าง CF

ากับ Pu, Pu/4

แบบการหลุด

rete Interfa

46 พบว่าค่าแ

ของรอยต่อหรื

40 มม. จึงส่ง

องรอยต่อเพ่ิม

train Gaug

เคลื่อนที่ระห

คลื่อนที่ตาม 

ละ 200 มม.

ะหว่าง CFRP

าตําแหน่งที่มีร

ทําให้ค่าความ

สดงถึงสภาวะที

FRP และคอน

4, Pu/2, 3Pu/

ดร่อนที่รอยต่

ace) โดยจะมี

แรงยึดเหน่ียวที

รือ Effective 

ผลให้แม้จะเพิ

มขึ้นแต่อย่างใ

ge ที่ผิวนอก

ว่างการเพ่ิมแ

CFRP ซึ่งมีกา

ดังแสดงในรู

P และคอนกรตี

ระยะห่างจาก

เครียดสูงขึ้นจ

ที่ CFRP เริ่ม

กรีตของตัวอย

/4 

อระหว่างคอ

มีคอนกรีตติดก

ที่ได้มีค่าใกล้เคี

Bond Leng

พ่ิมความยาวร

ใด 

กของ CFRP 

แรงดึงที่ด้านป

ารแจกแจงคว

รูปที่ 47-51 ต

ต จะเห็นได้ว่

กปลายแรงดึง

จนถึงระดับสู

มมีการหลุดลอ

 

ย่าง C14-0-0

นกรีตกับ

กับ CFRP 

คียงกันใน

th (Le) มี

รอยต่อให้

เพ่ือวัดค่า

ปลายของ 

ามเครียด

ตามลําดับ  

าทางด้าน

ง โดยมีค่า

งสุด แล้ว

อกจากผิว

0 ภายใต้



 
 

 

รูปที่ 4

รูปที่ 4

8 การแจกแจ

9 การแจกแจ

จงของความเค

แ

จงของความเค

แ

ครียดในรอยต่

แรงกระทําเท่า

ครียดในรอยต่

แรงกระทําเท่า

49

อระหว่าง CF

ากับ Pu, Pu/4

อระหว่าง CF

ากับ Pu, Pu/4

FRP และคอน

4, Pu/2, 3Pu/

FRP และคอน

4, Pu/2, 3Pu/

กรีตของตัวอย

/4 

กรีตของตัวอย

/4 

 

ย่าง C15-0-0

 

ย่าง C16-0-0

0 ภายใต้

0 ภายใต้



 
 

 

รูปที่ 5

รูปที่ 5

߬௜ ൌ
௙ܧ

0 การแจกแจ

1 การแจกแจ

ค่าของหน่วย

௙ݐ௙ሺߝ௜ െ ௜ିߝ
ݔ∆

จงของความเค

แ

จงของความเค

แ

แรงเฉือนในร

ଵሻ																

ครียดในรอยต่

แรงกระทําเท่า

ครียดในรอยต่

แรงกระทําเท่า

อยต่อระหว่าง

																				

50

อระหว่าง CF

ากับ Pu, Pu/4

อระหว่าง CF

ากับ Pu, Pu/4

งคอนกรีตและ

					ሺ19ሻ					

FRP และคอน

4, Pu/2, 3Pu/

FRP และคอน

4, Pu/2, 3Pu/

ะ CFRP สาม

					 

กรีตของตัวอย

/4 

กรีตของตัวอย

/4 

ารถคํานวณได

 

ย่าง C18-0-0

 

ย่าง C20-0-0

ด้ดังสมการที่ 

0 ภายใต้

0 ภายใต้

19 



 
 

 

ซึ่งค่าหน่

ตามลําดั

อาจจะเป็

ได้เป็นดัง

ความเครี

ทางผู้จัด

แตกต่างข

รูปที่ 52 

รูปที่ 53 

น่วยแรงเฉือน

ับ ค่าการแจ

ป็นเพราะว่าใน

งรูป  รูปที่ 57

รียดที่หาได้ ซึ

ทําคาดว่าถ้า

ของค่าแรงยึด

 การแจกแจง

การแจกแจง

ที่ได้แสดงดังร

จกแจงที่ได้ในต

นตําแหน่งที่แ

7 แสดงการหา

ซึ่งค่าความยา

มีการทดสอบ

ดเหน่ียวที่ชัดเจ

หน่วยแรงเฉอื

หน่วยแรงเฉอื

กร

รูปที่ 52-56

ตําแหน่งที่แรง

รงกระทําสูงสุ

าความยาวปร

าวประสิทธิผล

บตัวอย่างในร

จนขึ้น 

อนในรอยต่อร

กระทําเท่ากั

อนในรอยต่อร

ระทําเท่ากับ P

51

ที่ความยาวร

งกระทําเป็นค

สุดเริ่มมีการพิ

ระสิทธิผลหรือ

ลที่ได้จากการ

รอยต่อที่มีขน

ระหว่าง CFRP

กับ Pu, Pu/4, 

ระหว่าง CFRP

Pu, Pu/4, Pu/

อยต่อ 140, 

ค่าสูงสุดจะมีลั

ิบัติของรอยต่

อ Effective 

รทดสอบพบว

นาดความยาว

P และคอนกรี

Pu/2, 3Pu/4

P และคอนกรี

/2, 3Pu/4 

150, 160, 1

ลักษณะกราฟ

อบ้างแล้วบา

Bond Leng

ว่ามีค่าอยู่ในช่

วน้อยกว่า 10

รีตของตัวอย่าง

รีตของตัวอย่าง

 

180 และ 20

ฟที่มีค่าค่อนข้า

งตําแหน่งจึงท

gth (Le) โดย

ช่วงประมาณ 

00 มม.จะเห็น

 

ง C14-0-0 ภ

 

ง C15-0-0 ภ

0 มม. 

างผิดปกติ 

ทําให้ค่าที่

ใช้ค่าจาก

100 มม. 

นค่าความ

ภายใต้แรง

ภายใต้แรง



 
 

 

รูปที่ 54 

รูปที่ 55 

 การแจกแจง

 การแจกแจง

หน่วยแรงเฉอื

หน่วยแรงเฉอื

อนในรอยต่อร

กระทําเท่ากั

อนในรอยต่อร

กระทําเท่ากั

52

ระหว่าง CFRP

กับ Pu, Pu/4, 

ระหว่าง CFRP

กับ Pu, Pu/4, 

P และคอนกรี

Pu/2, 3Pu/4

P และคอนกรี

Pu/2, 3Pu/4

รีตของตัวอย่าง

 

รีตของตัวอย่าง

 

 

ง C16-0-0 ภ

 

ง C18-0-0 ภ

ภายใต้แรง

ภายใต้แรง



 
 

 

รูปที่ 56 

รูปที่ 57

4.

โด

ออกเป็น 

ตัว

 การแจกแจง

7 การแจกแจง

.2.2 ตัวอย่าง

ดยในการทดส

2 ความยาวร

ัวอย่างรอยต่อ

หน่วยแรงเฉอื

งหน่วยแรงเฉือ

ความย

งรอยต่อระหว

สอบตัวอย่างใ

รอยต่อด้วยกัน

อที่มีความยา

อนในรอยต่อร

กระทําเท่ากั

อนในรอยต่อร

ยาวประสิทธิผ

ว่างคอนกรีตแ

ในกรณีที่มีข้อ

น คือ 150 แล

าวรอยต่อขนา

Le

53

ระหว่าง CFRP

กับ Pu, Pu/4, 

ระหว่าง CFR

ผล (Le) ของร

และ FRP ทีมี่

บกพร่อง จะ

ละ 200 มม.

าด 150 มม.

= 100 mm

P และคอนกรี

Pu/2, 3Pu/4

P และคอนกรี

ะบบเสริมกําลั

มีข้อบกพร่อง

แบ่งความยาว

รีตของตัวอย่าง

รีตของตัวอย่า

ลงั FRP 

วรอยต่อของ 

 

ง C20-0-0 ภ

  

าง C20-0-0 เพ

CFRP และ

ภายใต้แรง

พ่ือหาค่า

ะคอนกรีต



 
 

 

กา

ระบบเสริ

ทางด้านป

ตามลําดับ

*Pu,1 หม

หมายถึงค

 

ข้อบกพร

ความยาว

ปลายด้า

ารทดสอบผล

ริมกําลัง FRP

ปลายของ CF

ับ ได้ผลการท

ตารางที่ 

กลุ่มตัวอย

C15-0-
D15-20-
D15-20-
D15-20-

มายถึงค่าแรงยึ

ค่าแรงยึดเหนี

รูปที่ 58 ตัว

 จากตารางที่

ร่อง อาจมีผลจ

วรอยต่อที่ทด

นที่มีแรงกระ

กระทบของข้

 ในตัวอย่างที

FRP ด้านที่มี

ทดสอบดังตาร

11 ผลการทด

ย่าง P

-0 
-20 7
-40 9
-60 8
ยึดเหน่ียวที่เกิ

น่ียวที่เกิดขึ้นกั

วอย่างลักษณะ

ี่ 11 พบว่าค่า

จากความยาว
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วิเคราะห์พฤติกรรมของตัวอย่างทดสอบแบบ Direct Shear โดยวิธีไฟไนต์อิลิเมนต์ ซึ่งใช้แบบจําลองพฤติกรรม

ยึดเหน่ียวระหว่างรอยต่อ FRP และคอนกรีต (Bond-slip Model) ของ Ko et al.[12]  มีความแม่นยํา

เพียงพอสําหรับใช้ในการศึกษาผลกระทบของข้อบกพร่องในรูปแบบของการหลุดลอกของแผ่น FRP จากผิว

คอนกรีตที่มีต่อพฤติกรรมของรอยต่อระหว่าง FRP และคอนกรีต และกําลังยึดเหน่ียวของระบบเสริมกําลัง 

FRP จากตารางที่ 13 แสดงให้เห็นว่าความกว้างของ CFRP (bf) มีผลต่อกําลังการยึดเหน่ียวมากกว่าความยาว

ของ CFRP (Lf) เน่ืองจากความความยาวประสิทธิผลของรอยต่อหรือ Effective Bond Length (Le) มีค่า

จํากัดและขึ้นอยู่กับลักษณะของ FRP ที่ใช้และกําลังรับแรงอัดของคอนกรีต (f’c) 

ตารางที่ 13 ผลจาก FEA ของตัวอย่างทดสอบในงานวิจัยของ Yao et al. [9] 

กลุ่ม แบบจําลอง 
f’c bc bf Lf hc Ps Pu 

กลุ่ม (MPa) (mm) (mm) (mm) (mm) (kN) (kN) 

1 A_0_0 23 150 25 75 5 4.75 4.693 1.012

2 B_0_0 23 150 25 95 5 5.76 4.833 1.192

3 C_0_0 23 150 25 115 5 5.96 4.984 1.196

4 D_0_0 23 150 25 145 5 5.95 5.027 1.184

5 E_0_0 23 150 25 190 5 6.35 5.044 1.259

6 F_0_0 27.1 150 25 100 120 5.94 5.381 1.104

7 G_0_0 27.1 150 50 100 120 11.66 10.776 1.082

8 H_0_0 27.1 150 75 100 120 14.63 16.202 0.903

9 I_0_0 27.1 150 100 100 120 19.07 21.281 0.896

10 J_0_0 27.1 100 25.3 100 120 4.78 5.199 0.919
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4.3.2 พฤติกรรมของรอยต่อระหว่าง FRP และคอนกรีตที่ไม่มีข้อบกพร่อง 

ระบบเสริมกําลัง FRP ระดับกลาง (Meso-scale FRP-Concrete System) หรือตัวอย่างทดสอบแบบ 

Direct Pull-off ในรูปแบบของ Single-lap Shear  เมื่อมีแรงกระทํากับ FRP ดังแสดงในรูปที่ 13 จะมีการ

แจกแจงของหน่วยแรงเฉือนของรอยต่อระหว่าง FRP และคอนกรีต (Interfacial Shear Stress) ดังแสดงใน

รูปที่ 64 โดยที่แกน y คือ หน่วยแรงเฉือนในรอยต่อระหว่าง FRP และคอนกรีต และ แกน x คือ ระยะใน

รอยต่อ ซึ่งวัดจากจุดที่มีแรงดึงกระทํา (x = 0) จากกราฟแสดงให้เห็นว่า ค่าหน่วยแรงเฉือนที่จุดที่ใกล้กับ

ตําแหน่งที่มีแรงดึงกระทํา จะมีค่าสูง และจะมีค่าลดลง เมื่อ x มีค่าเข้าใกล้ Lf (ความยาวรอยต่อ) กรณีที่

รอยต่อน้ันยาวเพียงพอ (กล่าวคือมีค่ามากกว่า Le) ค่าหน่วยแรงเฉือนจะลดลงมาเท่ากับ 0  ทั้งน้ีในบริเวณที่มี
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และระยะห่างจากปลาย FRP ด้านที่มีแรงกระทํา จะเป็นแบบอิลาสติก (ช่วง Elastic) ซึ่งเมื่อเพ่ิมขนาดของแรง

กระทําให้มากกว่า Ps จะส่งผลให้เกิดความเสียหายในรอยต่อในรูปแบบของรอยแตกร้าวในอีพอกซี่หรือรอย

แตกร้าวในช้ันคอนกรีตที่ใกล้กับรอยต่อ ซึ่งหน่วยแรงเฉือนของรอยต่อระหว่าง FRP และคอนกรีต จะเริ่มมีค่า

ลดลงบริเวณช่วงปลายใกล้แรงดึง FRP (ช่วง Softening) และเมื่อมีแรงกระทํามากกว่า Ps เพ่ิมขึ้นเรื่อยๆ เกิด

รอยแตกร้าวในรอยต่อน้ัน และค่าแรงเฉือนในรอยต่อที่ใกล้กับ FRP ด้านที่มีแรงกระทํา (x = 0) มีค่าลดลง

เท่ากับ 0 (แรงกระทําเท่ากับ Pu) จะเริ่มเกิดการหลุดลอกของแผ่น FRP จากผิวคอนกรีต (Debonding) และ

การหลุดลอกจะเริ่มจากปลายด้านที่มีแรงกระทํากับ FRP และจะเคลื่อนตัวไปตามความยาว FRP ไปทางด้าน

ปลายที่ไม่มีแรงกระทํา 
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B_10_R , B_

แจงของหน่วย

B_10_R , B_

ง D_10_ Lf 

รรมของรอยต่

าที่แรงกระทํา

แรงเฉือนในร

_10_C และ B

แรงเฉือนในร

_10_C และ B

/4, D_10_C

อระหว่าง FR

าเท่ากัน และต
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รอยต่อระหว่า

B_10_L ภายใ

รอยต่อระหว่า

B_10_L ภายใ

C และ D_10_

RP และคอนก

ตําแหน่งความ

ง FRP และค

ใต้แรงกระทําเ

ง FRP และค

ใต้แรงกระทําเ

_3 Lf /4 เมื่อ

กรีต ดังแสดงใ

มยาวของรอย

อนกรีต ของแ

เท่ากับ 3.8 kN

อนกรีต ของแ

เท่ากับ 4.7 kN

อมีแรงกระทํา

ในรูปที่ 75-78

ยต่อเดียวกัน 

 

แบบจําลอง B

N 

 

แบบจําลอง B

N 

าเท่ากับ 3.0, 

8 ตามลําดับ 

D_10_ Lf 

_0_0, 

_0_0, 

3.5, 4.5 

จากรูปที่ 

/4 จะมี



 
 

 

ค่าแรงเฉื

แรงที่กระ

รูปที่ 75 

รูปที่ 76 

ฉือนมากกว่า D

ะทํากับ FRP 

การแจกแจง

การแจกแจง

D_10_C และ

และเกิดการห

ของหน่วยแรง

D_10_C 

ของหน่วยแรง

D_10_C 

ะ D_10_3Lf

หลุดลอกก่อน 

งเฉือนในรอย

และ D_10_3

งเฉือนในรอย

และ D_10_3
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/4 เน่ืองจาก

D_10_D แล

ต่อระหว่าง F

3Lf /4 ภายใต้

ต่อระหว่าง F

3Lf /4 ภายใต้

 D_10_ Lf /

ละ D_10_3Lf

FRP และคอน

ต้แรงกระทําเท

FRP และคอน

ต้แรงกระทําเท

/4 น้ันมีตําแห

f /4  

กรีต ของแบบ

ท่า 3.0 kN 

กรีต ของแบบ

ท่า 3.5 kN 

หน่งของช่องว่

 

บจําลอง D_1

 

บจําลอง D_1

างใกล้กับ

0_ Lf /4, 

0_ Lf /4, 



 
 

 

รูปที่ 77

รูปที่ 78

4.

ใน

FRP ห

FRP ซึ่งข

7 การแจกแจง

8 การแจกแจง

.3.5 ผลของข

นงานวิจัยน้ีมี

หากขนาดช่อง

ขนาดของช่อง

งของหน่วยแร

D_10_C 

งของหน่วยแร

D_10_C 

ขนาดของข้อ

การเปรียบเที

ว่างขนาดต่าง

ว่างที่ศึกษามี

รงเฉือนในรอย

และ D_10_3

รงเฉือนในรอย

และ D_10_3

บกพร่องที่มีต

ทียบถึงขนาดข

งกันจะส่งผลก

ขนาดเท่ากับ 
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ยต่อระหว่าง F

3Lf /4 ภายใต้

ยต่อระหว่าง F

3Lf /4 ภายใต้

ต่อพฤติกรรม

ของช่องว่างที

กระทบอย่างไ

10, 20 และ 

FRP และคอน

ต้แรงกระทําเท

FRP และคอน

ต้แรงกระทําเท

มของรอยต่อ

ที่ส่งต่อพฤติก

ไรต่อพฤติกรร

40 mm 

นกรีตของแบบ

ท่า 4.5 kN 

นกรีตของแบบ

ท่า 4.8 kN 

กรรมของคอน

รมของรอยต่อ

 

บจําลอง D_10

 

บจําลอง D_10

นกรีตที่เสริมก

อระหว่างคอน

0_ Lf /4, 

0_ Lf /4, 

กําลังด้วย 

นกรีตและ 



 
 

 

แบ

พฤติกรร

D_20_C

แสดงในรู

รูปที่ 

บบจําลอง D 

รมของรอยต่อ

C และ D_40_

รูปที่ 80  

79 การแจกแ

D_1

_0_0, D_1

อระหว่าง FRP

_C เมื่อมีแรงก

แจงของหน่วย

10_Lf/4, D_2

0_Lf/4, D_2

P และคอนก

กระทําเท่ากับ 

ยแรงเฉือนในร

20_Lf/4 และ
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20_Lf/4 แล

รีต ดังแสดงใ

 4.5 kN พฤติ

รอยต่อระหว่า

 D_40_Lf/4 

ะ D_40_Lf/4

ในรูปที่ 79 แ

ติกรรมของรอ

าง FRP และค

 ภายใต้แรงก

4 เมื่อมีแรงก

และแบบจําลอ

ยต่อระหว่าง 

อนกรีตของแ

ระทําเท่า 3.5

กระทําเท่ากับ

อง D_0_0, 
FRP และคอ

 

แบบจําลอง D_

5 kN 

บ 3.5 kN 

D_10_C, 

นกรีต ดัง

_0_0, 



 
 

 

รูปที่ 

จา

รอยต่อร

รอยต่อที

ของรอยต

4.
เหนี่ยว (

ค่า

กระทําม

กระทําให

Crack) ใ

วิเคราะห์

แกน y คื

80 การแจกแ

D_1

ากรูปที่ 79 แ

ะหว่าง FRP 

ที่ตําแหน่งเดีย

ต่อสุทธิจะมีค่

.3.6 ผลของข
(Bond Stren

ากําลังก่อนกา

ากที่สุดที่กระ

ห้เกินค่า Ps จ

ในอีพอกซี่หรอื

ห์การแจกแจง

คือ หน่วยแรงเ

แจงของหน่วย

10_Lf/4, D_2

และ 80 จะเห็

และคอนกรี

วกันมีค่าเพ่ิม

าลดลงเมื่อขน

ข้อบกพร่องที
ngth, Pu) 

ารแตกร้าวใน

ะทําแล้วรอยต

จะส่งผลให้เกิ

อรอยแตกร้าว

ของหน่วยแร

เฉือนของรอย

ยแรงเฉือนในร

20_Lf/4 และ

ห็นได้ว่าขนาดข

รีต กล่าวคือเมื

มากขึ้น และจ

นาดของข้อบก

ที่มีต่อกําลังทีก่

รอยต่อระหว่า

ต่อยังคงมีพฤติ

กิดความเสียห

วในช้ันคอนกรี

งเฉือนของรอ

ยต่อระหว่าง F
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รอยต่อระหว่า

 D_40_Lf/4 

ของช่องว่างมี

มื่อขนาดของข

จะเกิดการหล

กพร่องมีขนาด

การแตกร้าวใ

าง FRP  และ

ติกรรมเป็นแบ

หายในรอยต่

รีตที่ใกล้กับรอ

อยต่อระหว่าง

FRP และคอน

าง FRP และค

 ภายใต้แรงก

มีผลกระทบต่อ

ข้อบกพร่องมี

ลุดลอก (Deb

ดใหญ่ขึ้น  

ในรอยต่อ (So

ะคอนกรีต (So

บบอิลาสติก (

อในรูปแบบข

อยต่อเน่ืองจาก

 FRP และคอ

นกรีต (ค่าแรงท

อนกรีตของแ

ระทําเท่า 4.5

อการแจกแจง

ขนาดใหญ่ขึ้น

onding) ก่อ

oftening Lo

oftening Loa

Elastic) ซึ่ง

ของรอยแตกร

กแรงเฉือน ค่

อนกรีต ดังแส

ที่กระทํากับ F

 

แบบจําลอง D_

5 kN 

งของหน่วยแร

น ค่าหน่วยแร

อน เน่ืองจาก

oad, Ps) และ

ad, Ps) คือ ค

งเมื่อเพ่ิมขนา

ร้าวเส้นผม (

าของ Ps หาไ

สดงในรูปที่ 8

FRP น้ัน เป็นค

_0_0, 

รงเฉือนใน

รงเฉือนใน

ความยาว

ะกําลังยึด

ค่าของแรง

ดของแรง

Hair-line 

ด้จากการ

1  โดยที่

ค่าที่ทําให้



 
 

 

แรงเฉือน

กระทํา (x

รูปที่ 81

รูปที่ 8

FRP, L
คอนก

นเริ่มเกิดช่วง 

x = 0) ตามรู

1 การแจกแจง

82 ตัวอย่างแบ

d = ขนาดขอ

กรีตช่วงที่ไม่มี

Softening) 

ปที่ 82 

งของหน่วยแร

(a)         

บบจําลองที่ใช้

งช่องว่าง, bc 

แรงกระทาํ, แ

และ แกน x 

รงเฉือนในรอย

ค่า

               

ช้ศึกษา (a) มุม

= ความกว้าง

และ a = ตําแ
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คือ ตําแหน่ง

ยต่อระหว่าง F

า Ps = 3.45 

                

มมองด้านข้าง

งของคอนกรีต

แหน่งจุดก่ึงกล

กระทํา) 

งในรอยต่อซึ่ง

FRP และคอน

kN 

               

ง (b) มุมมองด

ต, bf = ความ

างของข้อบกพ

นับเริ่มจากปล

นกรีตของแบบ

         (b) 

ด้านบน โดยที

กว้างของ FR

พร่อง (วัดจาก

ลาย FRP ด้า

 

บจําลอง F_10

ที่ Lf = ความย

RP, hc = ความ

กปลาย FRP ท

านที่มีแรง

0_C ซึ่งมี

ยาวของ 

มสูงของ

ทีม่ีแรง



 
 

 

รูป

F_10_C 

รอยต่อระ

น้อยกว่า

หน่วยแร

ขนาด 3.

แบบจําล

ค่า

FRP ดัง

ของ FRP

ระยะการ

เป็นเส้นต

kN 

รูปที่ 8

กา

ก่อนควา

ปที่ 81 แส

ภายใต้แรงดึ

ะหว่าง FRP แ

ความยาวประ

รงเฉือนของรอ

.45 kN จะเกิ

ลองน้ีจะเท่ากบั

า Pu หาได้จา

งแสดงในรูปที

P (Debondin

รเคลื่อนที่ของ

ตรงและจะเร่ิม

3 กราฟความ

ารเกิดขึ้นของ

มเสียหายในร

ดงการแจกแจ

ดึง 3.45 kN

และคอนกรีต 

ะสิทธิผลของร

อยต่อระหว่าง

กิดค่าหน่วยแร

บ 3.45 kN 

กความสัมพัน

ที่ 83 โดย Pu 

ng) ค่า Pu  รู

ง FRP ณ จุดที

มเป็นเส้นโค้ง 

มสัมพันธ์ระหว

กระทํา FR

งข้อบกพร่องใน

รอยต่อระหว่า

จงหน่วยแรงเ

N ที่ตําแหน่งห่

(Interfacial 

รอยต่อหรือ E

 FRP และค

รงเฉือนสูงสุด

นธ์ระหว่างแรง

จะเท่ากับค่า

รูปที่ 83 แสด

ที่มีแรงกระทาํ

(Non-linear

ว่างแรงกระทาํ

RP ของแบบจํา

นตัวอย่างคอน

าง FRP  แล

73

เฉือนในรอยต

ห่างจากปลาย 

Shear Stres

Effective Bo

อนกรีต จะเท

ดในรอยต่อที่ตํ

งที่ใช้ดึง FRP 

แรงดึงมากที่ส

ดงความสัมพัน

า FRP (แกน x

r) เมื่อแรงกร

าที่ปลาย FRP

าลอง B_10_

นกรีตที่มีการ

ละคอนกรีต (S

ต่อระหว่าง FR

FRP ที่ระยะ

ss) ไม่เท่ากับศ

ond Length

ท่ากับ 0 จาก

ตําแหน่ง x =

และระยะการ

สุดที่ระบบเส ิ

นธ์ระหว่างแรง

x) ของแบบจํา

ระทําเท่ากับ P

P และระยะกา

_C ซึ่งค่า Pu =

เสริมกําลังด้ว

Softening 

RP และคอ

ะ 100 mm 

ศูนย์ เน่ืองจา

(Le) และใน

รูปที่ 81 จะ

 0 ሺ࣎ ൌ ࢓࣎

รเคลื่อนที่ของ

ริมกําลังรับได้

งกระทําที่ปลา

าลอง B_10_

Ps ค่าแรงดึงสู

ารเคลื่อนที่ขอ

= 4.543 kN 

ยแผ่น FRP นั

Load, Ps) 

อนกรีตของแบ

ค่าหน่วยแรง

กความยาวขอ

ตําแหน่งที่มีช

เห็นได้ว่าภาย

ሻ ดังน้ัน Ps࢓

ง FRP ณ จุดท

ด้ก่อนเกิดการ

าย FRP (แกน

_C โดยที่กราฟ

สูงสุด คือ Pu 

 

อง FRP ณ จุด

น้ัน ส่งผลให้แ

  และกําลังยึ

บบจําลอง 

เฉือนของ

องรอยต่อ 

ช่องว่างค่า

ยใต้แรงดึง

s สําหรับ

ที่มีการดึง 

รหลุดลอก

น y) และ

ฟส่วนแรก

= 4.543 

ดที่มแีรง

แรงกระทํา

ยึดเหน่ียว 



 
 

 

(Ultimat

อัตราส่วน

ส่งผลให้ค

ระหว่างแ

mm)  ค

นอกจาก

ค่า  Ps 

C_40_C

และ 4.5

รอยต่อมี

ส่งผลให้ค

แผ่น FRP

ค่าน้อยก

ด้านที่มีแ

E_40_C,

การวิบัติข

te Load, P
นความกว้างข

ค่า  Ps และ

แผ่น FRP และ

ค่า Ps และ 

กน้ีตําแหน่งขอ

และ Pu ลด

C มีค่า Pu เท่า

95 kN  ต

ความไม่ต่อเนื

ค่า Pu น้ันลด

P และผิวคอน

กว่า C_40_R 

แรงกระทํากับ

, E_40_3Lf/4

ของรอยต่อระ

รูปที่ 84 คว

Pu) มีแนวโน้

ของ FRP ต่อค

ะ Pu  มีค่าเพ่ิ

ะผิวคอนกรีต 

Pu จะมีค่าลด

องข้อบกพร่อง

ลงได้มากกว่า

ากับ 3.927 k

ตามลําดับ เน่ือ

น่ือง ซึ่งรอยต่อ

ลง ส่วนช่องว

นกรีตต่อเน่ือง

และ C_40_L

 FRP จะมีค่า

4 และ D_40

ะหว่าง FRP แ

วามสัมพันธ์ระ

น้มที่ลดลง ดั

คอนกรีต (bf/

มมากขึ้น แต่น

โดยเมื่อช่องว

ดลงตามลําดับ

งมีผลต่อค่า  P
าช่องว่างที่อยู่ใ

kN ซึ่งมีค่าน้อ

องจากตําแหน

ออยู่ในตําแหน

ว่างที่อยู่ทางริม

เช่นเดียวกับค

L ซึ่งมีค่า Ps เ

า Ps น้อยที่สุ

0_L มีค่า Ps เ

และคอนกรีตจ

ะหว่างกําลังยึด
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ังแสดงในตาร

/bc) และควา

น้ีค่า Ps และ

ว่างมีขนาดให

บ เน่ืองจากคว

Ps และ Pu โด

ใกล้กับขอบท

อยกว่า C_40_

น่งข้อบกพร่อ

น่งที่มีค่าหน่วย

มขวาหรือริมซ

ค่าของ  Ps แ

เท่ากับ 3.18

สด เช่น E_40_

เท่ากับ 3.3, 3

จะเริ่มจากด้าน

ดเหน่ียว ความ

รางที่ A ในภ

มยาวรอยต่อร

ะ Pu มีค่าลดล

หญ่ขึ้น (ช่องว่า

วามยาวรอยต่

ดยที่ช่องว่างที

ทางขวาและท

_R และ C_4

องที่อยู่ตรงกล

ยแรงเฉือนสูง

ซ้ายน้ัน ที่มีค่า

บบจําลอง C_

kN และ 3.20

_Lf/4 มีค่า P
3.25, และ 3

นที่มีแรงกระท

มยาวของรอย

าคผนวก ซึ่งแ

ระหว่าง FRP 

งเมื่อมีข้อบก

างขนาด 10 m

อ FRP และค

ที่อยู่ตรงกลาง

างซ้ายของรอ

40_L ซึ่งมีค่า 

าง มีผลให้ค่า

ก็จะย่ิงมีค่ากํา

า Pu มากกว่า

_40_C มีค่า P
0 kN ส่วนตํา

Ps เท่ากับ 2.8

.3 kN ตามลํา

ทํา 

ยต่อและขนาด

แสดงให้เห็นว

 และคอนกรี

พร่องเกิดขึ้นใ

mm, 20 mm

คอนกรีตโดยร

ของรอยต่อจ

อยต่อ เช่น แบ

Pu เท่ากับ 4

าของหน่วยแร

าลังยึดเหน่ียว

าเพราะรอยต่

Ps เท่ากับ 3.0

าแหน่งช่องว่าง

85 kN ส่วน 

าดับ เน่ืองจา

ดข้อบกพร่อง 

ว่าเมื่อเพ่ิม

รต (Lf) จะ

ในรอยต่อ

m และ 40 

รวมลดลง  

ะส่งผลให้

บบจําลอง 

4.435 kN 

รงเฉือนใน

วลดลง จึง

อระหว่าง

0 kN ซึ่งมี

งที่อยู่ใกล้

D_40_R, 

กลักษณะ

 



 
 

 

รูป

ของข้อบ

กําลังยึดเ

สอดคล้อ

เสริมกําล

นอกจาก

ความยาว

ยึดเหน่ีย

เหน่ียวที่

(f’c = 2

คล้ายกับ

รอยต่อ น

กล่าวได้ว

 

 

รูปที่ 85 ควา

ปที่ 84 เปรียบ

กพร่องในรอย

เหน่ียวลดลงม

องกับลักษณะ

ลังจะลดลงเมื

กน้ีสังเกตได้ว่า

วประสิทธิผลม

ยวต่างกันมาก

ได้จากการวิเ

7.1 MPa, bc

บรูปที่ 85 คือ 

นอกจากน้ีร้อย

ว่าผลกระทบข

ามสัมพันธ์ระห

บเทียบกําลังยึ

ยต่อต่างๆกัน 

มากที่สุดในกร

การแจกแจงข

มื่อข้อบกพร่อ

าผลกระทบขอ

มาก ส่วนข้อบ

กนัก เน่ืองจา

เคราะห์แบบจ

c = 150 มม

กําลังยึดเหน่ี

ยละของกําลัง

ของข้อบกพรอ่

หว่างกําลังยึด

ยึดเหนี่ยวที่ได

(f’c = 23 M

รณีที่ข้อบกพร่

ของหน่วยแรง

องมีขนาดให

องข้อบกพร่อ

บกพร่องที่มีตํา

กพ้ืนที่รอยต่

จําลองที่มีควา

. Lf = 100

ยวจะลดลงม

งยึดเหน่ียวที่ล

องจะมากขึ้นใ
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ดเหน่ียว ความ

ด้จากการวิเค

MPa, bc = 15

ร่องมีขนาด 40

งในรอยต่อที่มี

ญ่และอยู่ในบ

องจะชัดเจนกว

าแหน่งอยู่ที่ป

อโดยรวมน้ัน

ามกว้างรอยต

มม. และ hc

ากในกรณีที่ข้

ลดลงจะเพ่ิมขึ้

ในรอยต่อที่ใช้

มกว้างของรอย

ราะห์แบบจํา

0 มม. bf = 2
0 มม. และมีต

มีข้อบกพร่อง 

บริเวณท่ีหน่ว

ว่าในกรณีที่ค

ปลายสุดทั้งสอ

นยังมีค่าเท่ากั

ต่อและขนาด

= 120 มม.)

ข้อบกพร่องขน

ขึ้นเมื่อความก

้ FRP ที่มีควา

ยต่อและขนาด

าลองที่มีความ

25 มม. และ h
ตําแหน่งอยู่ที่กึ

กล่าวคือ กําล

วยแรงเฉือนมี

วามยาวรอยต

งด้านของรอย

กัน  รูปที่ 85 

ของข้อบกพร

) เห็นได้ว่ากําล

นาดใหญ่และ

ว้างของ FRP 

มแข็งแกร่ง (S

ดข้อบกพร่อง

มยาวรอยต่อแ

hc = 5 มม.) 

ก่ึงกลางของร

ลังยึดเหน่ียวข

มีแนวโน้มที่จ

ต่อ (Lf) มีค่า

ยต่อจะไม่มีผล

เปรียบเทียบ

ร่องในรอยต่อ

ลังยึดเหน่ียวมี

อยู่บริเวณก่ึง

 ที่ใช้มากขึ้น

Stiffness) มา

 

และขนาด

เห็นได้ว่า 

อยต่อ ซึ่ง

ของระบบ

จะมีค่าสูง 

าน้อยกว่า

ลต่อกําลัง

บกําลังยึด

อต่างๆกัน 

มีแนวโน้ม

กลางของ

 หรืออาจ

ากกว่า 
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บทท่ี 5 สรุป วิจารณ์ และข้อเสนอแนะ 

5.1 สรุปและวิจารณ ์

โครงการวิจัยน้ีมีวัตถุประสงค์เพ่ือศึกษาผลกระทบของข้อบกพร่อง ในรูปแบบของพ้ืนที่หลุดร่อนระหว่าง 

FRP และคอนกรีต ที่มีต่อพฤติกรรมทางกลและการวิบัติของคาน คสล. เสริมกําลังด้วย FRP  จากผลการ

ทดลองและผลการวิเคราะห์ด้วยวิธีทางไฟไนต์อิลิเมนต์ของคาน คสล. เสริมกําลังด้วย FRP และของรอยต่อ

ระหว่าง FRP และคอนกรีตในตัวอย่างสําหรับ Single-lap Direct Shear Test สามารถสรุปผลได้ดังน้ี 

- ข้อบกพร่องขนาดต่างๆในคาน คสล. ที่เสริมกําลังด้วย FRP น้ัน มีผลเพียงเล็กน้อยต่อกําลัง

ต้านทานแรงดัดและความเหนียวของคาน คสล. ที่เสริมกําลังด้วย FRP โดยกําลังที่ได้จาก

สมการคํานวณออกแบบจะอยู่ในเกณฑ์ปลอดภัยเมื่อพิจารณาผลกระทบของข้อบกพร่องที่มี

ขนาดที่ได้ศึกษาในงานวิจัยน้ี  

- การเกิดข้อบกพร่องแบบพื้นที่หลุดร่อนระหว่าง FRP และคอนกรีตมีผลต่อการแจกแจงของ

หน่วยแรงเฉือนในรอยต่อระหว่าง FRP และคอนกรีต ข้อบกพร่องที่มีขนาดใหญ่จะส่งผลให้

หน่วยแรงเฉือนโดยรวมในรอยต่อมีค่าเพ่ิมขึ้น เน่ืองจากความยาวสุทธิของรอยต่อลดลง และ

ข้อบกพร่องน้ันจะมีผลอย่างมีนัยสําคัญในกรณีที่รอยต่อมีความยาวสั้นกว่าความยาว

ประสิทธิผล 

- ผลกระทบของข้อบกพร่องต่อกําลังยึดเหน่ียวของรอยต่อขึ้นอยู่กับความแข็งแกร่งของ FRP ที่

ใช้ ย่ิงความแข็งแกร่งมาก ก็จะส่งให้กําลังยึดเหน่ียวของรอยต่อระหว่างคอนกรีตและ FRP 

ลดลง    

- กําลังยึดเหน่ียว (Pu) และแรงกระทําก่อนความเสียหาย (Ps) ของรอยต่อระหว่าง FRP และ

คอนกรีตขึ้นอยู่กับขนาด และตําแหน่งของข้อบกพร่องในรอยต่อ โดยในกรณีที่ข้อบกพร่องมี

ตําแหน่งเดียวกัน เมื่อขนาดของข้อบกพร่องใหญ่ขึ้น ค่าของ Pu และ Ps จะมีค่าลดลง ส่งผลให้

รอยต่อมีประสิทธิภาพในการรับแรงเฉือนลดลง  และในกรณีที่ข้อบกพร่องมีขนาดเท่ากัน 

ข้อบกพร่องที่อยู่ในช่วงที่มีการถ่ายเทแรงเฉือนระหว่าง FRP และคอนกรีตมากในรอยต่อ เช่น 

ใกล้กับตําแหน่งของ FRP ที่มีแรงดึงกระทํา หรือตําแหน่งที่เกิดรอยร้าวแรงดัดในคาน จะส่งผล

ให้ค่าของ Pu และ Ps จะมีค่าลดลง 
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- ดังน้ันในการออกแบบระบบเสริมกําลัง FRP ที่ต้องพิจารณากําลังต้านทานแรงเฉือนของ

รอยต่อ เช่น การเสริมกําลังต้านทานแรงดัดและการเสริมกําลังต้านทานแรงเฉือนในคาน 

จะต้องพิจารณาความเป็นไปได้ของการเกิดข้อบกพร่องระหว่างการใช้งานระบบเสริมกําลัง 

5.2 ข้อเสนอแนะ 

จากการวิเคราะห์ทางไฟไนต์อิลิเมนต์แบบเชิงเส้นและไม่เชิงเส้นของคาน คสล. เสริมกําลังด้วย FRP  

พบว่าการหลุดร่อนของ FRP น้ันจะเริ่มที่รอยร้าวที่เปิดกว้างในคอนกรีต แต่อย่างไรก็ดี การควบคุมหรือ

คาดการณ์ตําแหน่งและขนาดการเปิดกว้างของรอยร้าวเหล่าน้ีมีความซับซ้อนในตัวเอง และอาจมีผลต่อการ

วิเคราะห์ผลกระทบของข้อบกพร่องที่มีต่อการพิบัติแบบการหลุดร่อนของ FRP ด้วย ดังน้ันในอนาคตจึงควร

ออกแบบตัวอย่างทดสอบให้สามารถควบคุมจํานวนและตําแหน่งการเกิดรอยร้าวได้ เช่นการใส่รอยบากไปใน

ตัวอย่างที่ตําแหน่งต่างๆ ซึ่งจะทําหน้าที่เหมือนเป็นรอยร้าวเน่ืองจากแรงดัดในคาน แล้วให้ตําแหน่งของ

ข้อบกพร่องเทียบกับรอยบากเหล่าน้ี  นอกจากน้ี การวิเคราะห์ตัวอย่างแบบ Single-lap Shear ที่มี

ข้อบกพร่องน้ันควรจะต้องมีผลการทดลองรอยต่อระหว่าง FRP และคอนกรีตที่มีข้อบกพร่องมาเปรียบเทียบ

ด้วย ค่ากําลังยึดเหน่ียว (Bond Strength) ที่ได้จากการวิเคราะห์ทางไฟไนต์อิลิเมนต์ และที่ได้จากการทดลอง

อาจนําไปเป็นพ้ืนฐานในการสร้างสมการสําหรับคํานวณหรือประมาณค่าของกําลังยึดเหน่ียวเมื่อมีข้อบกพร่องที่

มีขนาดหรือตําแหน่งต่างๆกัน 
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ภาคผนวก ก ผลจากการจําลองพฤตกิรรมรอยต่อระหว่างคอนกรีตและ FRP 

ตารางที่ ก กําลังยึดเหน่ียว (Pu) และแรงกระทําก่อนรอยแตกร้าวในรอยต่อระหว่าง FRP และคอนกรีต (Ps) 

กลุ่ม แบบจําลอง 
f'c bc bf Lf hc Ps Pu 

(MPa) (mm) (mm) (mm) (mm) (kN) (kN) 

A 

A_0_0 

23 150 25 75 5 

3.200 4.693 

A_10_R 3.100 4.455 

A_10_C 3.050 4.158 

A_10_L 3.150 4.442 

B 

B_0_0 

23 150 25 95 5 

3.300 4.833 

B_10_R 3.250 4.830 

B_10_C 3.100 4.543 

B_10_L 3.250 4.705 

C 

C_0_0 

23 150 25 115 5 

3.350 4.984 

C_10_R 3.300 4.979 

C_10_C 3.200 4.689 

C_10_L 3.300 4.933 

D 

D_0_0 

23 150 25 145 5 

3.380 5.027 

D_10_R 3.300 5.029 

D_10_Lf/4 3.200 4.970 

D_10_C 3.300 4.889 

D_10_3Lf/4 3.300 5.016 

D_10_L 3.320 5.027 

E 

E_0_0 

23 150 25 190 5 

3.400 5.044 

E_10_R 3.330 5.039 

E_10_Lf/4 3.280 4.972 

E_10_C 3.310 5.008 

E_10_3Lf/4 3.330 5.041 

E_10_L 3.330 5.043 
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ตารางที่ ก (ต่อ) กําลังยึดเหน่ียว (Pu) และแรงกระทําก่อนรอยแตกร้าวในรอยต่อระหว่าง FRP และคอนกรีต 

(Ps) 

กลุ่ม แบบจําลอง 
f’c bc bf Lf hc Ps Pu 

(MPa) (mm) (mm) (mm) (mm) (kN) (kN) 

F 

F_0_0 

27.1 150 25 100 120 

3.600 5.381 

F_10_R 3.550 5.316 

F_10_C 3.450 4.963 

F_10_L 3.550 5.332 

G 

G_0_0 

27.1 150 50 100 120 

7.200 10.776

G_10_R 7.100 10.613

G_10_C 6.950 9.095 

G_10_L 7.150 10.626

H 

H_0_0 

27.1 150 75 100 120 

11.200 16.202

H_10_R 10.900 16.014

H_10_C 10.650 15.054

H_10_L 11.000 15.916

I 

I_0_0 

27.1 150 100 100 120 

14.700 21.281

I_10_R 14.500 21.073

I_10_C 14.500 20.776

I_10_L 14.600 21.542

J 

J_0_0 

27.1 100 25.3 100 120 

3.700 5.199 

J_10_R 3.600 5.171 

J_10_C 3.600 5.169 

J_10_L 3.600 5.338 
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ตารางที่ ก (ต่อ) กําลังยึดเหน่ียว (Pu) และแรงกระทําก่อนรอยแตกร้าวในรอยต่อระหว่าง FRP และคอนกรีต 

(Ps) 

กลุ่ม แบบจําลอง 
f’c bc bf Lf hc Ps Pu 

(MPa) (mm) (mm) (mm) (mm) (kN) (kN) 

A 

A_0_0 

23 150 25 75 5 

3.200 4.693 

A_20_R 3.050 4.108 

A_20_C 2.880 3.542 

A_20_L 3.050 4.102 

B 

B_0_0 

23 150 25 95 5 

3.300 4.833 

B_20_R 3.200 4.663 

B_20_C 3.080 4.224 

B_20_L 3.250 4.693 

C 

C_0_0 

23 150 25 115 5 

3.350 4.984 

C_20_R 3.250 4.799 

C_20_C 3.180 4.534 

C_20_L 3.260 4.833 

D 

D_0_0 

23 150 25 145 5 

3.380 5.027 

D_20_R 3.250 4.979 

D_20_Lf/4 2.960 4.945 

D_20_C 3.250 4.711 

D_20_3Lf/4 3.280 4.987 

D_20_L 3.300 5.012 

E 

E_0_0 

23 150 25 190 5 

3.400 5.044 

E_20_R 3.280 5.039 

E_20_Lf/4 3.150 4.962 

E_20_C 3.280 4.958 

E_20_3Lf/4 3.310 5.038 

E_20_L 3.320 5.042 
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ตารางที่ ก (ต่อ) กําลังยึดเหน่ียว (Pu) และแรงกระทําก่อนรอยแตกร้าวในรอยต่อระหว่าง FRP และคอนกรีต 

(Ps) 

กลุ่ม แบบจําลอง 
f’c bc bf Lf hc Ps Pu 

(MPa) (mm) (mm) (mm) (mm) (kN) (kN) 

F 

F_0_0 

27.1 150 25 100 120 

3.600 5.381 

F_20_R 3.490 5.179 

F_20_C 3.400 4.235 

F_20_L 3.510 5.224 

G 

G_0_0 

27.1 150 50 100 120 

7.200 10.776

G_20_R 7.080 10.297

G_20_C 6.900 8.310 

G_20_L 7.100 10.176

H 

H_0_0 

27.1 150 75 100 120 

11.200 16.202

H_20_R 10.450 15.517

H_20_C 10.500 14.551

H_20_L 10.800 15.875

I 

I_0_0 

27.1 150 100 100 120 

14.700 21.281

I_20_R 14.100 20.954

I_20_C 14.000 19.519

I_20_L 14.450 21.073

J 

J_0_0 

27.1 100 25.3 100 120 

3.700 5.199 

J_20_R 3.550 5.144 

J_20_C 3.460 4.769 

J_20_L 3.570 5.250 
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ตารางที่ ก (ต่อ) กําลังยึดเหน่ียว (Pu) และแรงกระทําก่อนรอยแตกร้าวในรอยต่อระหว่าง FRP และคอนกรีต 

(Ps) 

กลุ่ม แบบจําลอง 
f’c bc bf Lf hc Ps Pu 

(MPa) (mm) (mm) (mm) (mm) (kN) (kN) 

A 

A_0_0 

23 150 25 75 5 

3.200 4.693 

A_40_R 2.550 2.499 

A_40_C 2.250 2.489 

A_40_L 2.560 2.962 

B 

B_0_0 

23 150 25 95 5 

3.300 4.833 

B_40_R 3.050 3.860 

B_40_C 2.480 2.861 

B_40_L 3.050 4.102 

C 

C_0_0 

23 150 25 115 5 

3.350 4.984 

C_40_R 3.180 4.435 

C_40_C 3.000 3.927 

C_40_L 3.200 4.595 

D 

D_0_0 

23 150 25 145 5 

3.380 5.027 

D_40_R 3.250 4.978 

D_40_Lf/4 2.450 4.873 

D_40_C 3.180 4.507 

D_40_3Lf/4 3.280 4.881 

D_40_L 3.280 4.933 

E 

E_0_0 

23 150 25 190 5 

3.400 5.044 

E_40_R 3.300 5.037 

E_40_Lf/4 2.850 4.956 

E_40_C 3.250 4.772 

E_40_3Lf/4 3.300 5.027 

E_40_L 3.300 5.037 
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ตารางที่ ก (ต่อ) กําลังยึดเหน่ียว (Pu) และแรงกระทําก่อนรอยแตกร้าวในรอยต่อระหว่าง FRP และคอนกรีต 

(Ps) 

กลุ่ม แบบจําลอง 
f’c bc bf Lf hc Ps Pu 

(MPa) (mm) (mm) (mm) (mm) (kN) (kN) 

F 

F_0_0 

27.1 150 25 100 120 

3.600 5.381 

F_40_R 3.400 4.723 

F_40_C 3.150 3.931 

F_40_L 3.420 4.833 

G 

G_0_0 

27.1 150 50 100 120 

7.200 10.776

G_40_R 6.800 9.054 

G_40_C 6.300 7.892 

G_40_L 6.900 9.599 

H 

H_0_0 

27.1 150 75 100 120 

11.200 16.202

H_40_R 10.250 14.055

H_40_C 9.600 11.736

H_40_L 10.500 13.615

I 

I_0_0 

27.1 150 100 100 120 

14.700 21.281

I_40_R 14.000 18.042

I_40_C 12.850 14.477

I_40_L 14.200 19.574

J 

J_0_0 

27.1 100 25.3 100 120 

3.700 5.199 

J_40_R 3.450 4.862 

J_40_C 3.200 3.337 

J_40_L 3.500 4.782 
โดยที่ Lf = ความยาวของ FRP, Ld = ขนาดของช่องว่าง, bc = ความกว้างของคอนกรีต, bf = ความกว้างของ 

FRP, hc = ความสูงของคอนกรีตช่วงที่ไม่มีแรงกระทํา, และ a = ตําแหน่งจุดก่ึงกลางของข้อบกพร่อง (วัดจาก

ปลาย FRP ทีม่ีแรงกระทํา) 
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ABSTRACT 

 

Defects, such as debonded region at FRP/concrete interface, can occur over time in fiber-reinforced polymer (FRP) 

strengthening system in concrete structures.  Limited numbers of researches have showed that the overall 

performance of reinforced concrete members strengthened with FRP can deteriorate due to the presence of defects.  

This can result in reduction of load capacity, stiffness, and durability, potentially causing premature failure, if not 

treated properly.  This study investigated the effects of defect (or defect criticality) at bond level, using finite 

element analysis of specimens used in single-lap shear test.  The defect was in the form of debonded region at 

FRP/concrete interface.  The parameters included bond width and bond length, size and location of defect, and the 

compressive strength of concrete (f’c).  The results have showed that, in most cases, the distribution of interfacial 

shear stress and bond strength were affected by the presence of defects.  Bond strength reduction was more 

pronounced in FRP/concrete bond joint with bond length smaller than the effective value or with higher FRP 

stiffness.   

 

KEYWORDS 

 

Defect criticality, bond strength, bond-slip relationship, FRP/concrete interface. 

 

INTRODUCTION 

 

Fiber reinforced polymer (FRP) composites have been increasingly used to enhance load capacity and improve 

serviceability of existing reinforced concrete (RC) members and structures in the last two decades.  This is due to 

their advantages over other conventional strengthening materials, such as higher strength-to-weight ratio, corrosion 

resistance, and ease of installation.  For flexural strengthening of RC beams, FRP material is externally bonded to 

the tension face of the RC member using adhesive, or embedded in concrete in case of near-surface mounted FRP 

rods.  In spite of ample research on short-term mechanical behavior, this strengthening technique still cannot 

realize its full potential due to limited knowledge on its long-term durability and criticality of potential defect.  

Due to its composite nature, the effectiveness of the FRP strengthening system for flexure and shear depends on 

the performance of the FRP/concrete interface.  However, defect in the form of debonded regions can exist at the 

FRP/concrete interface in flexurally and shear strengthened members as a result of poor construction, or 

subsequent physical damage and environmental degradation during its intended service life after rehabilitation.  

Limited numbers of studies have showed that the presence of defects can have detrimental effects on FRP-concrete 

systems (Seim et al. 2001, Karbhari and Navada 2008, Kalayci et al. 2009, Guo et al. 2012).  This paper is aimed 

at gaining more understanding on the effect of defect on the FRP/concrete system at bond joint level using finite 

element analysis (FEA).  The parameters included bond width and bond length, size and location of defect, and 

the compressive strength of concrete (f’c). 

 

METHODOLOGY 

 

Bond-Slip Relationship for FRP/Concrete Interface 

 

In simulating debonding failure of FRP/concrete bond joint in FEA, the relationship between shear stress () and 

slip (s) in the FRP/Concrete interface can be described by a bond-slip model.  Several forms of bond-slip model 

have been proposed in the past 10 years based on analysis of experimental results from fracture tests (Nakaba et 

al. 2001, Lu et al. 2005).  The simplest form is a bi-linear bond-slip curve consisting of linear ascending and 

descending branches, which can be described by three parameters: maximum interfacial shear stress (m), slip at 

maximum interfacial shear stress (s0), and maximum slip (sf) (Figure 1a).  The linear ascending branch describes 
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the stress-slip relationship in elastic regime when 0 ≤ s ≤ s0, which is expressed by Eq. 1.  In this regime, the bond 

joint will behave elastically until the interfacial shear stress and slip reach m and s0, respectively.  The linear 

descending branch or softening branch describes the behavior of damaged interface (due to micro-cracking and 

crazing in the adhesive) after shear slip exceeds s0.  As the value of slip increases beyond s0, the interfacial shear 

stress decreases linearly according to Eq. 2.  Debonding of the FRP/concrete bond joint takes place when s > sf, 

after which the interfacial stress becomes zero, signifying the inability of the interface in the debonded region to 

transfer load between FRP and concrete.               

𝜏 = 𝜏𝑚 (
𝑠

𝑠0

)  𝑓𝑜𝑟 0 ≤ 𝑠 ≤ 𝑠0                                                                        (1) 

𝜏 = 𝜏𝑚 −
𝜏𝑚(𝑠 − 𝑠0)

𝑠𝑓 − 𝑠0
 𝑓𝑜𝑟 𝑠0 ≤ 𝑠 ≤ 𝑠𝑓                                                     (2) 

 
Figure 1 A typical bi-linear bond-slip relationship (a) and single-lap shear specimen (b) 

 

Ko et al. (2014) have recently developed a bond-slip relationship for practical design purpose by calibrating the 

afore-mentioned model parameters using database of various single-lap shear and double-lap shear test results.  

According to Ko et al. (2014), the parameters for the bi-linear bond-slip model may be calculated from Eqs 3 

through 5. 

𝜏𝑚 = 0.165𝑓𝑐
′                                                                                                  (3) 

𝑠0 = −0.001𝑓𝑐
′ + 0.122                                                                              (4) 

𝑠𝑓 = −0.002𝑓𝑐
′ + 0.302                                                                              (5) 

where f’c is the compressive strength of concrete (MPa).  The maximum interfacial shear stress and slip parameters 

are given in MPa and mm units.  This study used the bond-slip relationship proposed by Ko et al. (2014) to simulate 

the debonding behavior of the CFRP/concrete interface. 

 
Figure 2 FE models without defect (a) and with defect of size 10 mm at midpoint in bond (b) 

 

Finite Element Model of Single-lap Shear Test Specimen 

 

In this study, 2-dimensional FE models of FRP/concrete bond joint were constructed based on the specimens in 

single-lap shear test conducted by Yao et al. (2005).  Figure 1b shows the schematic representation of single-lap 

shear test, and Figure 2 shows the FE models with and without defect.  The models consisted of 4-node plane-

stress elements (CPS4) for concrete block and FRP plate, and 4-node cohesive elements for interface layer 

(COH2D4).  Note that various tests have shown that failure in FRP/concrete bond joint is mainly in the form of 

separation at concrete/adhesive interface with thin concrete layer remaining on adhesive surface.  Therefore, the 

interface layer in the FE models with bond behavior governed by the specified bond-slip relationship will represent 

this failure zone in real specimens.  The 4-node cohesive elements used in this study are capable of describing both 

normal (mode I) and shear (mode II) deformations as shown in Figure 3.  The relationship between normal 

deformation (n) and normal stress (σ) can be specified by bi-linear relationship similar to the bond-slip relationship 

for shear behavior in Figure 1a (Eqs 1 and 2).  However, since the interface in single-lap shear test mainly deforms 



75 

 

in shear, debonding by mode I fracture was prevented in the FE models by specifying a value of maximum normal 

stress σm significantly higher than the maximum interfacial shear strength m (e.g. 2 orders of magnitude higher).   

 
Figure 3 Possible deformations of 2-dimensional cohesive element 

 

Both concrete and FRP used linear elastic material behavior, with compressive strengths of concrete equal to 23 

and 27.1 MPa, and Young’s modulus of FRP equal to 256 GPa.  The Young’s moduli of concrete (Ec) at the two 

strength levels were calculated according to the ACI Guideline (2008) to be 22.68 and 24.62 GPa, respectively.  

According to Eqs 3 and 4, the initial stiffness of the interface layer are 38.33 and 47.12 MPa/mm, and the maximum 

interfacial shear stress (m) are 3.80 and 4.47 MPa, for the two concrete strength levels.  Figure 4 compares bond 

strengths obtained from FEA (without defect) and from the experiment reported in Yao et al. (2005).  It suggests 

that the proposed FE model could adequately simulate the strength and behavior of FRP/concrete interface in 

single-lap shear test.   

 

 
Figure 4 Comparison of FEA results and experimental results of perfect specimens reported in Yao et al. (2005) 

 

 
Figure 5 Schematic representation showing locations and sizes of defect in various models 

 

In order to investigate the effect of defect, debonded region was inserted into the interface by omitting cohesive 

elements in the corresponding region for a specified length.  Without cohesive elements, there is no shear transfer 

between FRP and concrete in defect area.  Figure 5 shows the characteristics of defect, including length (Ld) and 
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location along the bond line.  The size of concrete block, free concrete height (hc), bond length (Lf), and FRP 

thickness were based on the single-lap shear specimens without defect in the study by Yao et al. (2005).  Table 1 

shows model groups with corresponding geometries.  Ld and a in the model codes are defect size and location, 

respectively, with Ld = 0 and a = 0 meaning no defect in the interface.  Locations of defect are denoted by LE for 

defect located close to the loaded end, Lf/4 for defect located at quarter length closer to the loaded end, C for defect 

located at the center of bond joint, 3Lf/4 for defect located at quarter length closer to the free end, and FE for defect 

located close to the free end.  The sizes of defect Ld in this study were 10, 20, 40 mm. 

 

Table 1 Model groups and their geometries 

 

Model f’c 

(MPa) 

bc 

(mm) 

bf 

(mm) 

Lf 

(mm) 

hc 

(mm) 

Model f’c 

(MPa) 

bc 

(mm) 

bf 

(mm) 

Lf 

(mm) 

hc 

(mm) 

A-Ld-a 23 150 25 75 5 F- Ld-a 27.1 150 25 100 120 

B- Ld-a 23 150 25 95 5 G- Ld-a 27.1 150 50 100 120 

C- Ld-a 23 150 25 115 5 H- Ld-a 27.1 150 75 100 120 

D- Ld-a 23 150 25 145 5 I- Ld-a 27.1 150 100 100 120 

E- Ld-a 23 150 25 190 5 J- Ld-a 27.1 100 23.5 100 120 

 

RESULTS AND DISCUSSION 

 

Behavior of FRP/concrete Bond Joint with and without Defect 

 

In both models with and without defect, the interfacial shear stress () distribution can be categorized into three 

regimes – Elastic, Elastic-softening, and Elastic-Softening-Debonding.  These three behaviors depend on the 

magnitude of the applied load.  At low load level, behavior of the interface is Elastic.  Elastic-softening behavior 

starts just after the applied load exceeds the softening load (Ps).  As the load increases beyond Ps, local debonding 

will take place (slip > s0) and the behavior becomes Elastic-Softening-Debonding.  The ultimate load or bond 

strength Pu corresponds to when shear stress in the entire interface becomes zero.  Figure 6 shows samples of 

interfacial shear stress distributions from models E-0-0 and E-10-C.  Note that by examining the stress distribution 

in perfect models of various bond lengths, the effective bond length for this particular FRP/concrete system was 

approximately 190 mm.  When comparing stress distribution between bond joints with and without defect, it has 

been observed that defect can cause slightly increase in stress magnitude, depending on size and location.  Figure 

7 shows the effect of defect of various locations and sizes on the shear stress distribution for the models based on 

D-0-0.  The increase in shear stress is more pronounced in the vicinity of defect (see Figure 7).  This can be 

attributed to the reduction in the true bond length.  Larger defects (Ld = 40 mm) resulted in generally higher increase 

in overall shear stress.  In addition, defects at locations of high stress normally in perfect bond (e.g. Lf/4 and C) 

resulted in higher increase in shear stress.  This may be because there is high shear transfer between FRP and 

concrete in these locations.  Therefore, removing a portion of the interface in this zone will result in higher shear 

transfer in the proximity. 

   

 
Figure 6 Sample of interfacial shear stress distribution under varying applied load: (a) Model without defect 

(Model E-0-0 with with f’c = 23 MPa, bc = 150 mm, bf = 25 mm, Lf = 190 mm, and hc = 5 mm) and (b) Model 

with defect (Model E-10-C with Ld = 10 mm and defect at the center of bond line) 
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Figure 7 Sample of interfacial shear stress distribution as affected by: (a) Defect sizes (Models D-0-0, D-10-C, 

D-20-C, and D-40-C) and (b) Defect locations (Models D-0-0, D-10-LE, D-10- Lf /4, D-10-C, D-10-3Lf /4 and 
D-10-FE)  

 

Effect of Defect on Bond Strength 

 

Figure 8 shows the bond strength as affected by defect size and location in the FRP/concrete bond joint with 

varying Lf.  Larger defect resulted in higher reduction in bond strength, which is consistent with the increase in 

interfacial shear stress.  For the defect of the same size, defects at the center and at Lf/4 seemed to reduce bond 

strength the most.  The effect of defect was also more pronounced when the bond length (Lf) was much smaller 

than the effective bond length.  In addition, for defects of the same size at location LE and FE, the bond strength 

reductions were not much different in most cases because the resulting bond areas were still similar. 

   

 
Figure 8 Effect of defect on bond strength in models with varying Lf (models with f’c = 23 MPa, bc = 150 mm,  

bf = 25 mm, and hc = 5 mm) 

 
Figure 9 Effect of defect on bond strength in models with varying bf (models with f’c = 27.1 MPa, Lf = 100 mm,  

bc = 150 mm, and hc = 120 mm) 
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Figure 9 shows the bond strength as affected by defect when the FRP width was varied, and the bond length was 

kept constant at 100 mm.  Similar trends were observed, in which larger defects and defects at the center of bond 

joint resulted in higher bond strength reduction.  In addition, higher percentage of bond strength reduction was 

observed in the models with wider FRP.  This implied that the influence of defect was more pronounced in 

FRP/concrete bond joint with higher FRP stiffness.  

CONCLUSIONS 

This paper presents the derivation of stress distribution and bond strength in FRP/concrete bond joint with a defect 

by using finite element analysis.  The FEA results have showed that characteristics of the defect, namely the 

location and size, influenced the interfacial shear stress distribution, the debonding behavior, and the bond strength.  

The effects of defect may be concluded as follows: 

 Behavior of FRP/concrete bond joints with and without defect are similar in that they both consisted of

three stages – elastic, elastic-softening, and elastic-softening-debonding, which depend  on load level.

 Interfacial shear stress in FRP/concrete bond joint with defect was higher than that in FRP/concrete bond

joint without defect under the same load due to lower true bond length.

 Larger defects resulted in higher interfacial shear stress, while defects in the zone of high shear stress (i.e.

locations closer to the loaded end) could increase shear stress further.

 Bond strength of FRP/concrete bond joint was affected by the presence of defect.  Larger defects resulted

in higher reduction in bond strength, while defects in the zone of high shear stress (i.e. locations closer to

the loaded end) can reduce bond strength further.  The reduction in bond strength was more pronounced

when the original bond length is much smaller than the effective bond length (Le).

 FRP/concrete bond joint with higher FRP stiffness seemed to be affected more by the presence of defect.
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บทคัดย่อ: โครงสร้างพื้นฐานเม่ือใช้งานมาเป็นเวลานาน จะเกิดการเส่ือมสภาพและมีสมรรถนะลดลง จึงจ าเป็นต้องมีการเสริมก าลัง  
โดยปัจจุบันนิยมใช้ CFRP (Carbon Fiber-Reinforced Polymer) การวิบัติในองค์อาคารท่ีเสริมก าลังต้านทานแรงดัด มักเกิดจากการหลุดลอก
ของ CFRP (Debonding)  ในบทความนีจึ้งได้ท าการศึกษาพฤติกรรมการหลุดลอกในคานคอนกรีตเสริมเหล็กท่ีเสริมก าลังด้วย CFRP  
โดย Cohesive Zone Model ท้ังนีใ้ช้แบบจ าลองไฟไนต์อิลิเมนต์ แบบ 2 มิติ ส าหรับการท านายพฤติกรรมการวิบัติและได้ศึกษาปัจจัยท่ีมผีลกระทบ
ได้แก่ ลักษณะการติดตั้ง CFRP ก าลังรับแรงอัดของคอนกรีต (f’c) และลักษณะของแรงกระท า จากการวิเคราะห์พบว่า นอกเหนือจากค่าความ
แขง็แกร่ง (Stiffness) ของระบบเสริมก าลัง และ f’c แล้ว ความยาวของแผ่น CFRP  กม็ีผลต่อพฤติกรรมการหลุดลอกและก าลังรับแรงดัดของคาน จึง
ได้ท าการเสนอสมการส าหรับค านวณค่าความเครียดใน FRP  ท่ีจุดการหลุดลอก (εfd ) โดยเพ่ิมตัวแปรเกี่ยวกับความยาวของแผ่น CFRP เข้ามา 
 
ABSTRACT: Infrastructures can be deteriorated over time, resulting in reduced performance in terms of load capacity or serviceability.   
To strengthen aging concrete structures, carbon fiber-reinforced polymer (CFRP) has been widely installed.  In RC members flexurally 
strengthened with CFRP, failure usually occurs by debonding of CFRP from concrete substrate.  In this study, 2D finite element analysis 
with cohesive zone modeling was used to investigate failure behavior, especially debonding failure, of CFRP-strengthened RC beams.   
The constitutive model for the cohesive elements was derived from bond-slip relationship of the interface between CFRP and concrete.  
The parameters affecting the behavior include CFRP configurations (i.e. width, number of layers, length), concrete compressive strength (f’c), 
and loading configuration.  It has been found that, in addition to the stiffness of CFRP strengthening system and f’c, the length of CFRP plate also 
affects the failure behavior and flexural capacity of FRP-strengthened beams.  An equation incorporating the effect of CFRP length has 
been proposed to calculate the debonding strain in FRP when failure occurs by FRP debonding (εfd). 
 
KEYWORDS: Cohesive zone model, FRP strengthening, Bond-slip relationship. 
 
1. บทน า 

คานคอนกรีตเสริมเหล็ก (คสล.) ท่ีเสริมก าลงัรับแรงดดัด้วย 
CFRP มีพฤติกรรมเสมือนคานประกอบ ประสิทธิภาพในการรับแรง 
(Load Capacity) และการใช้งาน (Serviceability) จึงข้ึนอยู่กบัคุณภาพ
และลักษณะของรอยต่อระหว่างคอนกรีตและ CFRP การวิบัติท่ี
เกิดข้ึนในคานคสล.เสริมก าลังรับแรงดัดด้วย CFRP อาจเกิดจาก 

การแตกหักของ FRP (FRP Rupture) การวิบติัของคอนกรีตภายใต้
แรงอัด (Concrete Crushing) การแยกออกของคอนกรีตหุ้ม (Cover 
Separation) หรือการหลุดลอกท่ีรอยต่อระหว่างคอนกรีตและ CFRP 
(Interfacial Debonding) เป็นตน้ [1] ทั้งน้ีการวิบติัในรูปแบบของการ
หลุดลอกท่ีรอยต่อนั้น อาจส่งผลให้การใช้งานเป็นไปอย่างไม่มี
ประสิทธิภาพ เน่ืองจากไดใ้ช้ประโยชน์ของสมบติัทางกลของวสัดุ
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เสริมก าลังไม่เต็มท่ี ซ่ึงพฤติกรรมการวิบัติลักษณะน้ีจะข้ึนกับ 
ตวัแปรหลายอย่าง เช่น สมบติัของวสัดุเช่ือมประสาน (Adhesive) 
ลกัษณะการติดตั้ง CFRP (ความยาว ความกวา้ง ความหนาและจ านวน
ชั้ นของ CFRP) และก าลังรับแรงอัดของคอนกรีต (f’c) เป็นต้น 
บทความน้ีจึงได้ศึกษาพฤติกรรมการวิบัติโดยการหลุดลอกใน 
คาน คสล.เสริมก าลงัดว้ย CFRP ท่ีเป็นผลจากตวัแปรขา้งตน้โดยใช้
ระเบียบวธีิไฟไนตอิ์ลิเมนต ์2 มิติร่วมกบั Cohesive Zone Modeling  

 
2.  การศึกษาพฤติกรรมการหลุดลอกในคานทีเ่สริมก าลงัด้วย 

CFRP โดยวธีิไฟไนต์อลิเิมนต์ 
2.1 พฤติกรรมของรอยต่อระหว่างคอนกรีตและ FRP โดย Bond – Slip Model 

พฤติกรรมของรอยต่อระหวา่ง CFRP และคอนกรีตในคานคสล.
จ าลองโดยความสัมพันธ์ระหว่างหน่วยแรงเฉือนท่ีรอยต่อ 
(Interfacial Shear Stress) และการเล่ือน (Slip) หรือเรียกว่า Bond-Slip 
Relationship Lu และคณะ [2] เสนอความสัมพันธ์Bond-Slip 
ท่ีมีลักษณะเป็น Bilinear อธิบายโดยสมการท่ี (1) - (3)โดยท่ี 𝜏 คือ
หน่วยแรงเฉือนในรอยต่อ (MPa), 𝜏𝑚𝑎𝑥คือหน่วยแรงเฉือนใน
รอยต่อสูงสุด (MPa), 𝑠คือระยะเล่ือน (mm), 𝑠0คือระยะเล่ือนท่ีหน่วย
แรงเฉือนสูงสุด (mm) และ 𝑠𝑓คือการเล่ือนสูงสุด (mm)ท่ีค่าหน่วย
แรงเฉือนเป็นศูนยซ่ึ์งค านวณค่า 𝜏𝑚𝑎𝑥, 𝑠0 และ𝑠𝑓 ไดจ้ากสมการท่ี (4) 
– (6) โดยท่ี𝐺𝑓 คือพลงังานแตกหกัของรอยต่อ (N/mm), 𝛽𝑤  คือค่าคงท่ี, 
𝑓𝑡 คือก าลงัรับแรงดึงคอนกรีต (MPa),  𝑏𝑓คือความกวา้งของแผน่ 
FRP (mm) และ 𝑏𝑐คือความกวา้งของคอนกรีต (mm) 
𝜏 = 𝜏𝑚𝑎𝑥 (

𝑠

𝑠0
)             𝑖𝑓𝑠 ≤ 𝑠0 (1) 

𝜏 = 𝜏𝑚𝑎𝑥 (
𝑠𝑓−𝑠

𝑠𝑓−𝑠0
)       𝑖𝑓 𝑠0 < 𝑠 ≤ 𝑠𝑓 (2) 

𝜏 = 0                            𝑖𝑓 𝑠 > 𝑠𝑓 (3) 

𝜏𝑚𝑎𝑥 = 𝛼1𝛽𝑤𝑓𝑡    ;  𝛼1 = 1.5;𝛽𝑤 = √
2.25−

𝑏𝑓

𝑏𝑐

1.25+
𝑏𝑓

𝑏𝑐

 (4) 

𝑠0  = 0.0195𝛽𝑤𝑓𝑡 (5) 
𝑠𝑓 =

2𝐺𝑓

𝜏𝑚𝑎𝑥
 ; 𝐺𝑓  = 0.308𝛽𝑤

2 √𝑓𝑡 (6) 
 

2.2 แบบจ าลองไฟไนต์อิลิเมนต์ 
2.2.1 แบบจ าลองพฤติกรรมของวสัดุท่ีเกี่ยวข้อง  

เพื่อใหท้  านายพฤติกรรมไดอ้ยา่งแม่นย  า จึงไดก้ าหนดคุณสมบติั
ทางกลของวสัดุท่ีใช้ในการจ าลอง แสดงไวใ้นตารางท่ี 1 คอนกรีต
เป็นวสัดุท่ีมีพฤติกรรมการวิบติัแบบเปราะ (Brittle Failure) ภายใต้
แรงดันทางขวางท่ีต ่ า การศึกษาน้ีจึงใช้แบบจ าลอง Damage 

Plasticity [3] เพื่อก าหนดพฤติกรรมทางกลของคอนกรีตทั้งภายใต้
แรงอดัและแรงดึง โดยให้ค่าของมุมการขยายตวั (Dilation Angle) 
เท่ากบั 38 องศา และค่าของ Flow Potential Eccentricity เท่ากบั 0.1 
ส าหรับคอนกรีตภายใตแ้รงอดัแกนเดียว (Uniaxial Compression) 
หน่วยแรงอดัค านวณตามสมการท่ี (7) และ (8) ของ Hognestad [4] 
ส่วนพฤติกรรมภายใต้แรงดึงของคอนกรีตในช่วง Softening
ค านวณตามสมการท่ี (9) ของ Hordijk [5] โดยเป็นความสัมพนัธ์
ระหวา่งหน่วยแรงดึงในคอนกรีตและความกวา้งของรอยแตกร้าว 
(Crack Width Displacement) 

ตารางที่ 1 สมบัติทางกลของวสัดุท่ีเกี่ยวข้อง [6] 
สมบัติวัสดุ คอนกรีต เหลก็เสริม เหลก็ปลอก CFRP 

ก าลงัรับแรงอดั (MPa) 28 หรือ 34 - - - 
ก าลงัคราก(MPa) - 479 473 - 
ก าลงัรับแรงดึง(MPa) 2.7 หรือ 3.22 625 634 3,286.7 
มอดุลสัยดืหยุน่ (MPa) - 214,400 210,400 194,200 
อตัราส่วนปัวซอง 0.27 0.3 0.3 0.35 

 = 𝑓𝑐
′ [

2𝑐

0
− (

𝑐

0
)

2
] โดยท่ี 0 c0 (7) 

 = 𝑓𝑐
′ [1 −

0.15

𝑐𝑢−0
(𝑐 − 0)] โดยท่ี 0ccu (8) 

โดยท่ี  และ f’c คือหน่วยแรงอดัและก าลงัรับแรงอดัประลยัของ
คอนกรีต (MPa) ตามล าดับ c, 0 และcu คือความเครียดใน
คอนกรีต, ความเครียดท่ีหน่วยแรงอดัสูงสุด และความเครียดท่ี
หน่วยแรงอดัประลยัในคอนกรีต ซ่ึงเท่ากบั 0.003 

𝜎𝑡

𝑓𝑡
= [1 + (𝑐1

𝑤𝑡

𝑤𝑐𝑟
)

3
] 𝑒

(−𝑐2
𝑤𝑡

𝑤𝑐𝑟
)

−
𝑤𝑡

𝑤𝑐𝑟
(1 + 𝑐1

3)𝑒(−𝑐2) (9) 

 ;𝑤𝑐𝑟 = 5.14
𝐺𝐹

𝑓𝑡
 

โดยท่ี 𝜎𝑡 คือหน่วยแรงดึงในคอนกรีต (MPa), 𝑓𝑡 คือก าลงัรับแรง
ดึงในคอนกรีต (MPa), 𝑤𝑡 คือความกวา้งของรอยแตกร้าว (mm), 
𝑤𝑐𝑟 คือความกวา้งของรอยแตกร้าวท่ีจุดแตกหัก (mm), 𝑐1และ 
𝑐2 คือค่าคงท่ี ท่ีไดจ้ากการทดสอบตา้นทานแรงดึงของคอนกรีต
มีค่าเท่ากบั 3.00 และ 6.93 ตามล าดบั 𝐺𝐹 คือพลงังานแตกร้าว 
(N/mm) และ 𝑑𝑎 คือเส้นผา่นศูนยก์ลางของมวลรวมท่ีใหญ่ท่ีสุด
ในคอนกรีต (mm)  ซ่ึงค่า 𝑓𝑡และ 𝐺𝐹 หาไดจ้ากการทดลอง หรือ
ประมาณค่าตาม CEB-FIP [7] ในสมการท่ี (10) 

𝑓𝑡 = 1.4 (
𝑓𝑐

′−8

10
)

2

3; 𝐺𝐹 = (0.0496𝑑𝑎
2 − 0.5𝑑𝑎 + 26) (

𝑓𝑐
′

10
)

0.7

(10) 

พฤติกรรมระหว่างหน่วยแรงและความเครียดของเหล็ก
เสริมตามยาวและเหล็กปลอกเป็นแบบ Elastic-Perfectly-
Plastic โดยใชค้่าสมบติัทางกลตามตารางท่ี 1 ส่วน CFRP เป็น
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แบบวสัดุเปราะ จึงก าหนดแบบจ าลองความสัมพนัธ์ระหว่าง
หน่วยแรงและความเครียดเป็นแบบ Elastic จนถึงจุดวบิติั 

 
2.2.2  ชนิดของอิลิเมนต์ 

การวิบติัโดยการหลุดลอกของ FRP เกิดจากการแตกร้าวของ
คอนกรีตท่ีอยู่ใกล้เคียงกับวสัดุเช่ือมประสาน ส่งผลให้มีชั้ น
คอนกรีตผิวบางติดกบัผิวของ FRP หลงัการวิบติั จึงจ าเป็นตอ้งมี
การจ าลองรอยต่อระหวา่ง FRP และคอนกรีตโดยการใช ้Cohesive 
Element และท าการแบ่งอิลิเมนต์ของรอยต่อเป็นแบบส่ีเหล่ียม 
ในระนาบ 2 มิติ (4-node Plane Stress Element) นอกจากน้ีอิลิเมนต์
ของ CFRP และคอนกรีต จะใช้ Tie Constraint ยึด เพื่อให้ Node 
ของอิ ลิ เมนต์ ท่ีอยู่ ใกล้ เคียงกันเคล่ือนท่ีไปพร้อมกัน ซ่ึ ง
ความสัมพนัธ์ระหว่างหน่วยแรงเฉือน (Traction)และ Slip ของอิลิ
เมนตจ์ะเป็นไปตาม Bond-Slip Model ท่ีเสนอโดย Lu และคณะ [2] 
ส าหรับอิลิเมนตข์องคอนกรีต CFRP และจุดรองรับแผน่เหล็ก ใช ้
4-node Plane-stress Element และส าหรับเหล็กเสริม และเหล็ก
ปลอก ใช้ 2D Truss Element โดยใช้ Embedded Region ท าการฝัง
กับช้ินส่วนคอนกรีต เพื่อให้อิลิเมนต์ของเหล็กเสริมตรงกับ
คอนกรีต อยูท่ี่ต  าแหน่งร่วมกนัและสามารถเคล่ือนท่ีไปพร้อมกนั
ได้ เพื่อให้มีการยึดเหน่ียวท่ีสมบูรณ์ระหว่างเหล็กเสริมและ
คอนกรีต 

 
2.2.3 กระบวนการแก้สมการ (Solution Technique) 

ในการแก้ปัญหาแบบสถิตไม่ เชิ งเส้น (Non-linear Static 
Problem) ด้วยกระบวนการแก้ปัญหาทางพลศาสตร์นั้ น จะใช้
วิธีการแก้ปัญหาท่ีเรียกว่า Hilber-Hughes-Taylor α Method หรือ
HHT- α [8] ซ่ึงเป็นวิธีการแกปั้ญหาแบบ Implicit Time Integration
ชนิดหน่ึง วิธีการแกปั้ญหาน้ีจะช่วยให้สามารถหาพฤติกรรมท่ีไม่
เป็นเชิงเส้นในคานคสล. เสริมก าลงัดว้ย FRP ท่ีเกิดข้ึนระหวา่งการ
แตกร้าวของคอนกรีต การครากของเหล็กเสริมและการหลุดลอก
ของแผน่ FRPไดอ้ยา่งมีประสิทธิภาพกวา่การใชว้ธีิแกปั้ญหาแบบ
สถิต เช่น วธีิ Newton-Raphson [9] 

 
2.2.4 การตรวจสอบแบบจ าลองกับผลการทดลอง 

ในการศึกษาน้ีไดใ้ชแ้บบจ าลองทางไฟไนตอิ์ลิเมนตท่ี์สร้างข้ึน
ท านายพฤติกรรมการวบิติัของแบบจ าลองคาน คสล. (คานควบคุม) 
และคานท่ีเสริมก าลงัด้วย CFRP1 ชั้น ท่ีความยาว 1900 มม. โดย
เปรียบเทียบกบัผลการทดลองท่ีมีรายงานในงานวิจยัท่ีเคยมีมา [6] 

เพื่อตรวจสอบความแม่นย  าของแบบจ าลองทางไฟไนต์อิลิเมนต์
และแบบจ าลองพฤติกรรมของแต่ละวสัดุ ร่วมกับวิธีแก้ปัญหา
แบบพลศาสตร์ตามท่ีกล่าวไว้ในข้างต้นจากการวิ เคราะห์ 
การท านายพฤติกรรมการวิบติัของแบบจ าลองเปรียบเทียบกับ
งานวิจยัท่ีผา่นมา [6] พบวา่พฤติกรรมการรับแรงดดั ระยะการโก่ง
ตวั และการวิบติัของคานมีความแม่นย  าในระดับหน่ึงดงัแสดง 
ในรูปท่ี 1 ดงันั้นจึงเห็นว่าแบบจ าลองทางไฟไนต์อิลิเมนต์และ
แบบจ าลองพฤติกรรมของแต่ละวัสดุ สามารถน าไปใช้ใน 
การท านายพฤติกรรมการวิบติัของคานคสล.ท่ีเสริม ด้วย CFRP  
ในลกัษณะต่าง  ๆต่อไป 

 
 
 
 
 
 
 
 
 
 
 
 
 
ภาพที่ 1 ความสัมพันธ์ระหว่างน า้หนักบรรทุก และระยะการโก่งตัวท่ีจุดก่ึงกลางคาน 
 
3.  ผลและวจิารณ์การวิเคราะห์ด้วยวิธีไฟไนต์อลิเิมนต์ 

ปัจจยัท่ีศึกษา คือ จ านวนชั้น CFRP ความยาว CFRP และก าลงั
รับแรงอัดของคอนกรีต โดยได้สร้างแบบจ าลองคานคสล. 
ท่ีเสริมดว้ยแผน่ CFRP ในลกัษณะต่าง  ๆไดแ้ก่ เสริมดว้ย CFRP 1 
และ 2 ชั้น ท่ีมีความกวา้งเท่ากบั 50 และ 25 มม. ตามล าดบั เพื่อให้
มีพื้นท่ีหน้าตดัของ CFRP เท่ากนั รูปท่ี 2 (ก) แสดงคานภายใต ้
แรงกระท าแบบ 4-Point Bending (4-PB) ท่ีมีความยาวของ CFRP 
เท่ากบั 1900, 1700, 1500, 950 และ 500 มม. และรูปท่ี 2 (ข) แสดง 
แรงกระท าแบบ 3-Point Bending (3-PB) ท่ีมีความยาวของ CFRP 
เท่ากับ 1900, 1700, 1500, 1350, 950 และ 500 มม. ซ่ึงก าลงัรับ
แรงอดัของคอนกรีตท่ีใช้ในแบบจ าลองเท่ากบั 28 และ 34 MPa 
ผลจากการวเิคราะห์พฤติกรรมภายใตแ้รงดดัโดยใชว้ธีิไฟไนต์อิลิ
เมนตต์ามท่ีกล่าวมา แสดงในตารางภาคผนวกท่ี 1 พบวา่ปัจจยัท่ีมี
ผลต่อพฤติกรรมการหลุดลอกของแผ่น FRP ได้แก่ จ  านวนชั้น
และความกวา้งของแผ่น FRP ความยาวของแผ่น FRP ก าลงัรับ
แรงอดัของคอนกรีต และลกัษณะของน ้าหนกักระท า  
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ภาพที่ 2 แบบจ าลองคานคอนกรีตเสริมเหลก็ท่ีเสริมก าลังด้วย CFRP ในลักษณะท่ี
แตกต่างกัน โดยมนี า้หนักกระท าแบบ(ก) 4-Point Bending และ (ข) 3-Point Bending 
 
3.1 ผลของจ านวนช้ันและความกว้างของแผ่น CFRP 

การวิบติัของคานท่ีเสริมก าลงัดว้ย CFRP 1 ชั้น และ 2 ชั้น จะมี
ลกัษณะคลา้ยกนั รูปท่ี 3  เปรียบเทียบความสัมพนัธ์ระหวา่งน ้าหนกั
บรรทุกและระยะการโก่งตวัท่ีจุดก่ึงกลางคาน พบว่าคานท่ีเสริม
ก าลงัดว้ยแผน่ CFRP 1 ชั้น จะรับน ้ าหนกับรรทุกไดม้ากกวา่คานท่ี
เสริมก าลงัดว้ยแผน่ CFRP 2 ชั้น เล็กนอ้ย ในขณะท่ีมีพื้นท่ีหนา้ตดั
ของ CFRP เท่ากนั เน่ืองจากความกวา้งของ CFRP มีผลต่อหน่วยแรง
ยึดเหน่ียวท่ีรอยต่อระหว่างคอนกรีตกับ CFRP ถ้า CFRP มีความ
กวา้งน้อยจะท าให้เกิดหน่วยแรงเฉือนท่ีรอยต่อสูงกว่าดงัแสดงใน
รูปท่ี 4  เป็นผลท าให้คานเกิดการวิบติัและมีก าลงัรับแรงดดัน้อย
กว่า เม่ือพิจารณาระยะการโก่งตวัท่ีก่ึงกลางคาน คานท่ีเสริมก าลงั
ดว้ย CFRP 2 ชั้น จะมีระยะการโก่งตวัมากกวา่ CFRP 1 ชั้น เน่ืองจาก 
CFRP หน้าตดักวา้งจะช่วยควบคุมการแตกร้าวเน่ืองจากแรงดดัได้
ดีกวา่ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
ภาพที่ 3 ความสัมพันธ์ระหว่างน า้หนักบรรทุกและระยะการโก่งตัวท่ีจุดก่ึงกลาง
คาน ท่ีติด CFRP 1 ช้ันเปรียบเทียบกับ 2ช้ัน  

        
 
 
 
 
 
 
 
 
 
 
ภาพที่ 4 การแจกแจงของหน่วยแรงเฉือนท่ีรอยต่อระหว่างคอนกรีตและCFRP ขณะท่ี
น า้หนักกระท าเท่ากัน 
 
3.2 ผลของความยาวของแผ่น FRP 

รูปท่ี 5 พบว่าคานท่ีเสริม CFRP ท่ีความยาว 950 และ 500 มม.  
มีประสิทธิภาพในการเสริมก าลังต ่ ากว่าคานท่ีเสริมด้วย CFRP  
ความยาวอ่ืนๆเพราะมีค่าความแข็งแกร่งคานลดลงเน่ืองจากแผ่น 
CFRP สั้น ท าให้ค่าความแข็งแกร่งโดยรวมของคานลดลง สังเกตได้
จากค่าความชันของกราฟน้อยกว่าท่ีความยาวอ่ืนๆ แต่มีค่าความ
เหนียวสูงและการวิบติัเป็นลักษณะคอนกรีตหลุดร่อน (Concrete 
Crushing) หลงัการครากของเหล็กเสริมเหมือนกบัคานควบคุมต่าง
จากคานท่ีเสริม CFRP ท่ีความยาว 1900, 1700 และ 1500 มม. จะ
สามารถรับน ้ าหนกับรรทุกไดเ้พิ่มข้ึน เม่ือพิจารณาระยะการโก่งตวั
ท่ีจุดก่ึงกลางคาน จะเห็นวา่คานท่ีเสริม CFRP สั้นจะมีระยะการโก่ง
ตวัสูงกวา่คานท่ีเสริมแผน่ CFRP ยาว เม่ือรับแรงกระท าเท่ากนัเพราะ
มีค่าความแข็งแกร่งโดยรวมของคานน้อยกวา่ และการวิบติัของคาน
ท่ีเสริมก าลงัดว้ย CFRP จะวิบติัแบบแผ่น CFRP หลุดบริเวณท่ีเกิด 
รอยแตกร้าว (IC Debonding)  เน่ืองจากมีค่าหน่วยแรงเฉือนท่ีต าแหน่ง
รอยแตกร้าวมากกว่าก าลงัยึดเหน่ียวของรอยต่อ ส่งผลให้คอนกรีต
และ CFRP เกิดการหลุดออกจากกนั ดงันั้นการเสริมก าลงัคานด้วย
แผ่นCFRP ควรมีความยาวมากกว่าช่วงโมเมนต์แตกร้าว (Mcr) คือ 
1500 มม. ส าหรับ 4-PB และ 1350 มม. ส าหรับ 4-PB และ ก าลงัรับแรง
ดดัของคานจะข้ึนกบัความยาวของแผน่ CFRP 
 

 

 

 

 

 
 
 
 
ภาพที่ 5  ความสัมพันธ์ระหว่าง น า้หนักบรรทุก และระยะการโก่งตัวท่ีจุดก่ึงกลางคาน 
ของคานท่ีเสริมก าลังด้วยแผ่น CFRP 1 และ 2 ช้ัน 
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3.3 ผลของก าลังรับแรงอัดของคอนกรีต 
เม่ือเปรียบเทียบก าลงัรับแรงดดัของคานท่ีมี f’c = 28 และ 34 MPa

ตามรูปท่ี 6 พบวา่ส่วนใหญ่ท่ี f’c= 34 MPa คานจะสามารถรับน ้ าหนกั
ได้มากกว่า และเม่ือพิจารณาระยะการโก่งตวัท่ีจุดก่ึงกลางคานจะ
เห็นว่าคานท่ี มี f’c= 28 MPa จะมีระยะการโก่งตัวท่ี จุดรับ 
แรงกระท าเท่ากนัแต่มีความเหนียวมากกวา่ 34 MPa 

 
 

 

 

 
 
 

ภาพที่ 6 ความสัมพันธ์ระหว่างน า้หนักบรรทุกและความยาวแผ่น CFRP 1 และ 2 ช้ัน 
ท่ี f’c = 34 และ 28 MPa 

 
3.4 ผลของลักษณะของน า้หนักกระท า 

รูปท่ี 7 พบว่าคานท่ีมีน ้ าหนักกระท าแบบ 4-PB จะรับ
น ้ าหนักบรรทุกได้มากกว่าคานมีน ้ าหนักกระท าแบบ 3-PB 
เพราะการรับน ้ าหนักแบบ 4-PB มีการกระจายแรงมากกว่า  
ท าให้ความกว้างของรอยแตกร้าวน้อยกว่า จึงท าให้คานมี 
ค่าความแข็งแกร่งสูง แต่มีค่าดชันีความเหนียวน้อยกว่า 3-PB 
ส่วนการวิบติัของคานเป็นแบบแผ่น CFRP หลุดบริเวณท่ีมีรอย
แตกร้าวเหมือนกนัทั้งคู่ ซ่ึงพฤติกรรมการแตกร้าวและความกวา้ง
ของรอยร้าว ข้ึนอยูก่บัลกัษณะของแรงกระท าซ่ึงส่งผลให้หน่วย
แรงเฉือนในรอยต่อระหวา่งคอนกรีตและ CFRP แตกต่างกนัไป 
 
 
 
 
 
 
 
 
 
 
 
         
ภาพที่ 7 ความสัมพันธ์ระหว่างน า้หนักบรรทุกและระยะการโก่งตัวท่ีจุดก่ึงกลาง
คานท่ีเสริมก าลังด้วยแผ่น CFRP 1ช้ัน ภายใต้แรงกระท าแบบ 3-PB และ 4-PB 

 

3.5 เปรียบเทียบกับข้อก าหนดในมาตรฐาน ACI 
การออกแบบคานท่ีเสริมก าลังด้วยแผ่น FRP ของ ACI 

440.2R-08 [10] ไดแ้นะน าว่าความยาวของ FRP ควรมากกว่าความ
ยาวฝังลึกของแผ่น FRP  (𝑙𝑑𝑓) เพื่อป้องกันการวิบัติแบบ Plate-end 
Debonding และค่าความเครียดท่ีเกิดใน FRP ควรจะนอ้ยกวา่ความเครียด
ท่ีท าให้เกิด Debonding (𝜀𝑓𝑑) เพื่อป้องกันการเกิดการวิบัติแบบ IC 
Debonding เม่ือดูผลจากการวิเคราะห์พบวา่คานท่ีติดตั้ง CFRP  ยาวกวา่
ต าแหน่งท่ีเกิดโมเมนต์แตกร้าว (𝑀𝑐𝑟) จะไม่เกิดการวิบติัแบบ Plate-
end Debonding นอกจากน้ี เม่ือดูผลจากการวิเคราะห์พบว่าความยาว 
CFRP ท่ีมากกวา่จุดโมเมนตแ์ตกร้าว จะเกิดการวบิติัแบบ IC Debonding 
โดยมีค่าความเครียดใน FRP (𝜀𝑓𝑑) ท่ีจุดวิบติัน้อยกว่าค่า 𝜀𝑓𝑑 ค  านวณ
ตามขอ้ก าหนดของ ACI แต่ทั้งน้ีการออกแบบของ ACI ได้มีค่า Safety 
Factor ป้องกนัอยู่หลายตวั ท าให้ก าลงัรับแรงดดัของ ACI จะน้อยกว่า
ค่าท่ีไดจ้ากการวิเคราะห์แบบจ าลอง ดงัแสดงในรูปท่ี 8 ทั้งน้ีไดท้  าการ
ปรับปรุงสมการส าหรับค านวณค่าความเครียดของ FRP  (𝜀𝑓𝑑) ของ ACI 
โดยเพิ่มตวัแปรความยาวของแผน่ FRP (𝐿𝑓) และความยาวท่ีเกิดโมเมนต์
แตกร้าว  (𝐿𝑀𝑐𝑟

) ซ่ึงไดใ้นสมการท่ี (11) จะมีค่าก าลงัรับแรงดดัสูงสุด
น้อยกว่าค่าของแบบจ าลอง ดงันั้น ในการออกแบบค่าก าลงัรับแรงดดั
สูงสุดโดยใชส้มการปรับปรุง ค านวณค่าความเครียดของ FRP (𝜀𝑓𝑑) นั้น
มีความปลอดภยั และสามารถน าไปใชใ้นการออกแบบได ้
𝜀𝑓𝑑 = [0.0004(𝐿𝑓 − 𝐿𝑀𝑐𝑟

) + 0.1356]√
𝑓𝑐

′

𝑛𝐸𝑓𝑡𝑓
 (11) 

 
 
 
 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
ภาพที่ 8 ก าลังรับแรงดัดของแบบจ าลองเปรียบเทียบกับ ACI และ Modify ท่ีความยาวต่างๆ   
 
4.  สรุป 

จากการศึกษาพฤติกรรมการหลุดลอกในคานคสล.ท่ีเสริม
ก าลงัดว้ย CFRP โดยใชว้ธีิไฟไนตร่์วมกบั Cohesive Zone Model  
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สามารถสรุปผลของตวัแปรต่างๆท่ีเก่ียวขอ้งไดด้งัน้ี 
 คานท่ีเสริมก าลงัด้วย CFRP จะรับแรงดดัได้สูงข้ึน ระยะ

การโก่งตวัและความเหนียวจะลดลง ทั้งน้ีข้ึนอยู่กบัลกัษณะของ
การเสริมแผน่ CFRPไดแ้ก่ 1) จ  านวนชั้นของแผน่ CFRP (กรณีท่ี
พื้นท่ี CFRP เท่ากัน) ยิ่งน้อยชั้ นจะรับก าลังรับแรงดัดได้สูง  
2) ความยาวของแผ่น CFRP ควรยาวมากกว่าช่วงโมเมนต์แตกร้าว 
(𝑀𝑐𝑟) 3) ก าลงัรับแรงอดัคอนกรีต (f’c)ท่ี 34 MPa จะรับก าลงั
รับแรงดดัไดม้ากกวา่ 
 จาก ACI 440.2R-08 [9] การออกแบบสามารถป้องกันการ

วิบติัแบบ Plate-end Debonding และ IC Debonding ได ้และจากผล
การวิเคราะห์ การหลุดลอกแบบ IC Debonding นั้นข้ึนอยูก่บัความ
ยาวของ FRP ท่ีใช ้ 

ทั้ งน้ีได้น าเสนอสมการเพิ่มเติมเพื่อใช้ในการค านวณ
ความเครียดใน FRP เม่ือเกิดการหลุดลอก 
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ภาคผนวก 
 
ตารางภาคผนวกที่ 1 ผลการวิเคราะห์ด้วยแบบจ าลองไฟไนต์อิลิเมนต์ 

แบบจ าลอง Py  
(kN) 

Pmax  
(kN) 

∆y   

(mm) 
∆max   

(mm) 
εf 

ดชันีความ
เหนียว* 

ลักษณะการ
วิบัต ิ

AH0L-0 78.29 92.87 6.57 77.78 - 11.85 SYFCC 
AH1L-1900 103.92 115.42 8.13 11.10 0.003385 1.37 IC 
AH1L-1700 92.53 111.65 5.94 11.88 0.002894 2.00 IC 
AH1L-1500 92.04 101.59 6.07 8.13 0.000858 1.34 IC 
AH1L-950 85.69 97.50 5.90 16.10 0.000216 2.73 SYFCC&FD 
AH1L-500 78.56 95.06 5.43 14.42 0.000629 2.65 SYFCC&FD 
AH2L-1900 88.15 109.52 5.63 12.48 0.002565 2.22 IC 
AH2L-1700 85.76 101.46 5.58 10.11 0.001837 1.81 IC 
AH2L-1500 83.19 93.25 5.57 8.28 0.001194 1.49 IC 
AH2L-950 78.21 94.48 5.46 14.04 0.000540 2.57 SYFCC&FD 
AH2L-500 78.50 93.41 5.61 13.82 0.000438 2.46 SYFCC&FD 
AN1L-1900 94.00 116.42 6.41 15.64 0.003936 2.44 IC 
AN1L-1700 88.96 107.22 6.08 10.50 0.002605 1.73 IC 
AN1L-1500 89.67 97.22 6.48 9.02 0.000678 1.39 IC 
AN2L-1900 79.88 91.80 5.61 8.02 0.000953 1.43 IC 
AN2L-1700 85.09 100.14 5.87 10.53 0.002033 1.79 IC 
AN2L-1500 83.08 98.38 5.86 10.57 0.000406 1.80 IC 
BH1L-1900 76.09 110.93 5.13 20.69 0.005145 4.04 IC 
BH1L-1700 76.04 102.54 5.19 16.55 0.004064 3.19 IC 
BH1L-1500 75.38 83.50 5.20 6.94 0.002386 1.33 IC 
BH1L-1350 74.42 82.94 5.23 7.69 0.001988 1.47 IC 
BN1L-1900 74.13 103.62 5.14 18.32 0.004552 3.57 IC 
BN1L-1700 73.35 94.48 5.17 11.50 0.002358 2.22 IC 
BN1L-1500 72.67 87.09 5.22 9.26 0.002050 1.78 IC 
BN1L-1350 70.96 87.31 5.38 10.48 0.002509 1.95 IC 
หมายเหตุ  A, B = น า้หนักกระท าแบบ 4-Point Bending และ

3-Point Bending 
 H, N = ก าลังรับแรงอัดคอนกรีตเท่ากับ 34 MPa 

และ28 MPa 
 0L,…,  = จ านวนช้ันของแผ่น CFRP 
 -1900,…,  = ความยาวของแผ่น CFRP 
 SYFCC = เหลก็เสริมเกิดการคลากแล้วตามด้วยการวิบัติ

ของคอนกรีตภายใต้แรงอัด (Steel Yielding 
Followed by Concrete Crushing) 

 FD = แผ่น CFRPหลุดลอกท่ีปลายแผ่น (Plate-
end Debonding) 

 IC = แผ่น CFRP หลุดลอกท่ีรอยแตกร้าวในช่วงคาน
(Intermediate-Crack Debonding) 

ดัชนีความเหนียว*= อัตราส่วนของระยะการโก่งตัวท่ีจุดก่ึงกลาง
คานสูงสุดต่อระยะการโก่งตัวท่ีจุดก่ึงกลาง

คานช่วงจุดคลาก (∆𝑚𝑎𝑥

∆𝑦
) 
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Experimental and Numerical Studies of Defect Criticality in FRP-Strengthened RC Beams 

Tuakta, C. 

Lecturer, Department of Civil Engineering, Kasetsart University, Bangkok, Thailand 

Abstract  

Defects, such as debonded region at FRP/concrete interface, can occur over time in fiber-reinforced 
polymer (FRP) strengthening system in concrete structures.  Limited number of researches has 
showed that the overall performance of reinforced concrete (RC) members strengthened with FRP can 
be deteriorated due to the presence of defects.  This can result in reduction of load capacity, stiffness, 
and durability, and can cause premature failure, if not treated properly.  This study presents 
experimental and numerical studies on the effects of defect in the form of debonded region at 
FRP/concrete interface in FRP-strengthened RC beams.  The parameters in this study include the size 
and location of defects in the bond line.  The results of this study have shown that defects of different 
sizes and locations had small effects on the flexural capacity and ductility of RC beams strengthened 
with FRP.  The flexural capacity calculated from design equations, together with additional strength 
reduction factors as recommended by the design code, is smaller than that obtained from the 
experiment, implying that designed capacity of FRP-strengthened RC beams is safe with the presence 
of disbond defects of the positions and sizes within the scope of this study. 

Keywords: Defect-criticality, FRP-strengthening, Bond-slip Relationship  

1. Introduction 

Fiber reinforced polymer (FRP) composites have been increasingly used to enhance load 
capacity and improve serviceability of existing reinforced concrete (RC) members and structures in 
the last two decades.  This is due to their advantages over other conventional strengthening materials, 
such as higher strength-to-weight ratio, corrosion resistance, and ease of application.  For flexural 
strengthening of RC beams, FRP material is externally adhesively bonded to the tension face of the 
RC member.  In spite of ample research on short-term mechanical behavior, this strengthening 
technique still cannot realize its full potential due to limited knowledge on its long-term durability and 
criticality of potential defect.   

Due to its composite nature, the effectiveness of the FRP strengthening system for flexure 
depends on the performance of the FRP/concrete interface.  However, defect in the form of debonded 
regions (Fig. 1) can exist at the FRP/concrete interface as a result of poor construction, or subsequent 
physical damage and environmental degradation during its intended service life.  Limited numbers of 
studies have shown that the presence of defects can have detrimental effects on FRP-concrete 
systems.  Non-destructive testing (NDT) techniques, such as ultrasonics, acoustic sounding, airborne 
radar, and thermography, can be used to detect such defects in FRP-strengthened RC flexural 
members.  Nonetheless, there is still no general agreement based on engineering considerations as to 
the characteristics of a good FRP strengthening system and the acceptable thresholds for critical 
defects [1].  Hence, this study investigated the effects of debond-type defect in FRP-strengthened RC 
beams on mechanical behavior and failure mode through the use of experimentation and finite 
element analysis (FEA). 

M
an

us
cr

ip
t



2. Defec

Sev
widely a
continuo
member
bonded 
is near-s
failure o
dependin
provisio
concrete
intermed
debondin
of flexur

Unl
applicati
bond pe
constitue

Fig

ct Criticality

veral strength
applied as a 
ous developm
rs such as be
to the tensio
surface moun
of these FR
ng on the m

on.  Fig. 2 sh
e crushing; 3
diate crack-i
ng failure an
ral members 

F

like FRP-co
ion [13].  Th
erformance, 
ent material

. 1: Potential

y in FRP-str

hening techn
result of ex

ment of the 
eams and sla
on faces of th
nted FRP rod

RP-strengthen
material pro
hows failure
) FRP ruptur
induced or I
nd concrete c
due to their 

Fig. 2: Possib

nfined RC c
his means tha

which in tu
ls, namely 

l debonded r

rengthened R

niques, includ
xtensive stud
recent desig

abs, FRP in t
he members u
d.  But it is n
ned flexural 
operties, the
e modes that 
re; 4) shear f
IC debondin
cover delami
brittle nature

ble failure mo

column, FRP
at the effecti
urn, depend
concrete, a

regions in an

RC Member

ding FRP pla
dy on the me
gn guidelines
the forms of
using adhesi
not within th
members c

e geometry 
t have been 
failure in con
ng [10-12].  
ination are to
e. 

odes in an FR

P-strengthen
iveness of an
ds on the q
adhesive, an

 FRP-strengt

r 

ate bonding 
echanical beh
s [1, 7-9].  F
f rigid plates
ive.  (Note th
he scope of t
an take plac
of cross-sec
identified in

ncrete; 5) con
For safety p
o be avoided

RP-strengthe

ning of flexu
n FRP-streng
ualities of t

nd FRP [14

thened RC b

and column 
haviors of th
For flexural 
s or flexible 
hat another s
this study.)  
ce through s
ction and re
n laboratory: 
ncrete cover 
purpose, it i
d in designin

ened RC beam

ural member
gthened RC b
the interface
4].  Potenti

 

beam 

wrapping, h
he systems [
strengthenin
sheets are e

strengthening
It is now kn
several mec
ebar, and an
1) steel yie
delaminatio

is recommen
ng FRP stren

 

am 

r is a contac
beam depend
e between t
ial defects 

have been 
[2-6] and 
ng of RC 
externally 
g scheme 
nown that 
chanisms, 
nchorage 

elding; 2) 
n; and 6) 

nded that 
ngthening 

ct-critical 
ds on the 
the three 
in FRP-

M
an

us
cr

ip
t



strengthened RC beam include fiber misalignment, out-of-plane variation of concrete surface, existing 
damaged concrete, and debonded region [15].  Defects at the FRP/concrete interface in the forms of 
debonded region or delamination between FRP layers may occur during installation of the 
strengthening system or after a period of being in service.  Furthermore, since FRP strengthening is 
generally performed on existing structural members, FRP is essentially applied on cracked concrete.  
If not treated properly, this concrete damage may be considered pre-existing defects as well.  Existing 
cracks in a concrete beam can be categorized as flexural cracks, which are mainly in the vicinity of 
the midspan, and intermediate shear-flexural cracks, which are located further away from the 
midspan.  These concrete cracks can cause local debonding of the FRP, which may lead to global 
failure of the FRP-strengthened RC beam [4, 16-18].  

Limited number of studies have been conducted to investigate the effects of defect in FRP-
concrete system, or termed “defect criticality” in this study.  Early studies on the effects of debonded 
region involved the use of specialized specimens, which usually investigate only one aspect of this 
subject.  Kaiser [19] used a mixed-mode peel fracture test to show that defect in the forms of incorrect 
mixing of adhesive, inadequate primer, concrete cavities, and prolonger primer cure can lead to 
reduced fracture toughness of the FRP/concrete interface.  Experimental study by Seim et al. [20] has 
demonstrated that incomplete bonding between FRP and concrete can reduce both load capacity and 
the deflection at failure of slabs strengthened by FRP.  Kalayci et al. [21] investigated the effects of 
defects in the forms of debonded regions and pre-existing concrete cracks on the performance of FRP-
plated T-beams.  In their experimental study, debonded region and pre-existing concrete cracks were 
simulated by uniformly distributed small circular air voids and lateral surface cuts in concrete surface, 
respectively.  It was reported that the defects with size and spacing smaller than tolerance threshold 
specified in design guideline do not substantially affect global behavior of FRP-retrofitted structures.  
Nonetheless, the authors recommended that more stringent tolerance threshold be specified when 
environmental exposure is considered.  This combined environmental effect and defect criticality was 
also confirmed in [22], where fracture mechanics was used to quantify the FRP/concrete bond 
performance.  However, the authors used special mixed-mode peel fracture specimens, which may not 
accurately represent loading conditions on FRP-concrete systems in real strengthening application.  It 
is not only experimental studies, but also numerical studies, such as FEA, that have been conducted.  
Guo et al. [23] performed a finite element study on the effects of hollow imperfections in adhesive 
bond layer.  A bilinear bond-slip relationship was used in their study to describe the bond behavior in 
non-prestressed and prestressed FRP-plated beams containing uniformly distributed unbonded region 
along the span.  It was found that the presence of such imperfections has a significant effect on stress 
distribution near the imperfections and has a tendency to cause concrete cracking due to increase in 
shear stress. 

The design of FRP flexural strengthening assumes that the bond between FRP and concrete is 
perfectly intact at all time, such that load transfer between FRP and RC beam is possible.  However, 
defect in the form of debonded region can exist at the FRP/concrete interface as a result of poor 
construction, subsequent physical damage, and environmental degradation, as stated earlier.  The 
presence of defects can have detrimental effects on FRP-concrete systems as shown by the limited 
numbers of studies.  Therefore, further investigation on defect criticality and development of a robust 
methodology to evaluate such effect are needed to ensure long-term safety of FRP flexural 
strengthening system in civil structures.  The development of a suitable numerical model to predict 
the effects of such defect will help civil engineers during structural assessment and maintenance 
planning. 
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4. Numerical Study 

4.1 Material Constitutive Models 

Concrete, Steel, and FRP 

In the case of FRP flexural strengthening of RC beams, concrete is under a fairly low confining 
pressure.  As a result, it behaves in a brittle manner and fails by cracking in tension and crushing in 
compression.  A damage plasticity model is applicable in this case to capture irreversible damage 
associated with these failure modes [24].  This model describes the behavior of concrete or other 
quasi-brittle materials in both compression and tension regimes as shown in Fig. 5.  In the case of 
concrete under compression, stress-strain relationship by Hognestad was used [25].  For the ascending 
branch, stress-strain relationship is assumed to be a parabola curve according to Eq.(1) until 
compressive stress (fc) reaches f’c.  For the descending branch, the stress varies linearly after the yield 
strength is reached with a plateau at the ultimate concrete strength (f’c = 27.46 MPa) according to Eq. 

(2).  0and u are the strain corresponding to f’c and the ultimate strain (e.g. 0.003), respectively.  
According to this model, the stiffness of concrete elements decreases to zero when the crack is 
determined to have occurred due to crushing at the integration points. 

௖݂ ൌ ௖݂
ᇱ ቈ
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൰
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Tension stiffening and shear retention models were implemented to describe the behavior of 
reinforced concrete after cracking under tension.  They were used to account for the reduction in the 
tensile and shear moduli of the concrete after tensile and shear crack initiations.  In these models, the 
stress in concrete decreases linearly or non-linearly (i.e. softening behavior) as the crack opening (wt) 
increased to simulate load transfer across cracks through the reinforcement.  For this study, a 
nonlinear softening behavior proposed by Hordijk [26], which relates tensile stress and crack opening 
displacement according to Eq.(3), was used:     
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where f’c is the compressive strength of concrete.  da is the diameter of the largest aggregate used in 
concrete.  The coefficients c1 and c2 were obtained from experimentation and reported to be 3 and 
6.93, respectively [27].  The area under this softening curve was controlled by the mode I fracture 
energy of concrete or GFI (Fig. 5).  Final crack width in concrete (wcr) is related to both the mode I 
fracture energy and tensile strength (ft) according to Eq. (6).  Since no data on the post-cracking shear 
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