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Abstract

Project Code: TRG5680073

Project Title: Analyzing the Effect of Negative Correlation Learning on Estimation of

Distribution Algorithms

Investigator: Miss Sunisa Rimcharoen

Faculty of Informatics, Burapha University

E-mail Address: rsunisa@buu.ac.th, palm.sunisa@gmail.com

Project Period: June 2013 — May 2015

This research proposes a behavior analysis of the univariate estimation of
distribution algorithms including the population-based incremental learning (PBIL) and the
compact genetic algorithm (cGA). We also propose the frequency-based compact genetic
algorithm (fb-cGA) which is a version of the cGA enhanced by the use of a new updating
strategy. The algorithm counts the numbers of probability updates and the continuities of
probability-update directions, and uses them to adaptively update the algorithm’s step
sizes. This method requires fewer function evaluations, and achieves solutions that are
more accurate than the ones of the conventional cGA. It has been shown that the fb-cGA
can reduce the number of function evaluations to only one ninth, as compared with the
one of the cGA on ten copies of a 3-bit trap function using a tournament size of 2. The
behavior of the fb-cGA on various problems is also examined. The results of the analysis
show that information from the algorithm’s past experience (i.e., the numbers of probability
updates and the continuities) can help the fb-cGA update the probability vector towards a

more promising direction, requiring fewer function evaluations.

Keywords: compact genetic algorithm, behavior analysis, probability vector
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Procedure population-based incremental learning
1: Initialize probability vector (p) with 0.5 at each position.
2: Generate M individuals from the vector
3: Select the best individual (best)
4: Update the probability vector p
fori=1to/do
p;=p, X (1.0 -a ) + (best, X a)
5: Mutate probability vector
fori=1to/do
if( random(0, 1] < mutation_probability )
p;= p; X (1.0 — mutation_shift) + random(0.0 or 1.0) X mutation_shift

6: Go to step 2 until a termination criterion is met.
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4: Update the probability vector p
fori=1to/do
if ( best, ;ﬁ worst; ) then

p;=p; X (1.0 -a) + (best; X q)
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fori:=1to/ldo

pli] := 0.5;

2. a%"wﬂixmmuazﬂszmﬂiﬁﬁﬁq@ Tau® Generation ﬁajmaaﬂiz"mm
if (Generation = 1) then

elite := generate(p);

individual := generate(p);

3. WAINTNWIUITZINNTNAA ANV RVITRNNANIN
winner, loser := compete(elite, individual);
if (winner is better than elite)

elite := winner;

4. dsudydenuinazidulesn 1/psize fadldiudanuhaziu
] & = ' . e o
Tuldazass TIen  psize sansafisuidsslanuiwindsemnsly
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fori:=1to/
begin
if winner{i] # loser{i] then
if winner{i] = 1 then
plil := p[i] + 1/psize;
else
plil := p[i] — 1/psize;

end

5. ME1enuTnaann 2 D9 4 awndndaNiasidulwidacifuad

6 1 A aa
ALABIANNINAZL D WAL 0.0 K38 1.0 nnia

& ad A o o A A = AdA '
mu@lammmwugmmLmumwumaaﬂmuﬂiz"ﬁ’mimmq@LLUU"LaJmai 1
& add o AdA @ . ' ' = v < Aad
mu@lamﬁ‘nmﬂs:mﬂim‘ﬂq@uﬂﬂumiﬂmﬂ;dmmmmﬁmﬂu LA LINUTUAAUAD
A o o A A = AA A VA 9 o & A
WuInIINLLLN TR aniiulsETnINangauuuns wddnsasediudsiuinie
’Lﬁumimuqu"Lsﬂﬁﬂizmﬂsﬁﬁﬁq@Lﬁuﬂi:mﬂiﬁﬁﬁq@umumai Taoivuadn N 1w
a‘hmujugeq@lumuﬂuﬁs:mmﬁﬁﬁq@ wazfNualw Control Parameter \Jwe N g
luﬂﬁiﬁumamil,ﬂuﬂi:mmﬁﬁq@
& o & ) A A & '
T UaaUNITRIIUIZTINTING 2RI INT uwazUlzrnsnangaduniating
> Add‘ £ :&1 1 1 ‘3 o v
1 6 T(ﬂUﬂszmmm‘nqm:amwumluﬂs:mm;umﬂmmu uazinnwali  Control
' @ o ' & a ° [y &
Parameter dfviu 0 wasndszmnTiunuInduneuitazviinsainedszsinslivan
LNE LA EILYINTh
< A A Ao . & <& adll vo
T U WNIININ TN TZTININTANNURNIZFUNAN I TUADUAD bOI
Ui:mniﬁ'uﬂixmmﬁﬁﬁq@mﬁﬂmm@hmmmm:amﬁammLﬂ’%ymﬁwmﬂixmmﬁ
A AAa A o & o Aa o
fehanuminzaunandy  wiagaur  Sadwndszminsh@nduduwdruz  uaz  Control
e A 1R o 1 d'dni tﬂlc £ £ 0“; v
Parameter mmmhmmmu;ugaqﬂluﬂfmﬂuﬂs:mmmwq@mmuu@vhLLmuu I
1 AI J Y { { ] 1 v qqll a
Control Parameter 48 WANT 1 meﬂiz"mﬂiﬁﬁﬁq@aQmaumu N %U7 PUADWIDAY
o v { { &/ [ 1 1 =) U 1 [l
mmmi”nms:‘*mmﬁﬁﬁqmum%sﬂ@qumazmlﬂﬂﬂuiﬁnumﬂmmmmfmﬂu 0.5

URTINAUAA Control Parameter nav 1l o

1WA aBNITRINI U DIV A D UITAAITh
1. Mnunadianunazidwsuanluusasdauasneasanuiazidn

) Taadi 1 faanwsnveslaslulay



12

forii=1to/do
pli] := 0.5;
2. ®3UTETINg LLazﬂsmmﬁﬁﬁq@ wWianImnuaSIdua
Control Parameter
if (Generation = 1) then
Control Parameter := 0;
elite ;= generate(p);

individual = generate(p);

3. Ansonmdsznniidaenumanzasianinles N da Nwnin
goqﬂiumﬂﬂuﬂizmmﬁﬁﬁq@

winner, loser := compete(elite, individual);

if (Control Parameter <= N and winner = elite) then
elite := winner;
Control Parameter++;

else
elite = generate(with prob = 0.5);

Control Parameter := 0;

4. Uinlpdranuiazidu Taafi 1/psize AasnflFusuaanusiandy
Tuudazass @9 psize sansaufisuidsslanusmndszmnsly
mgu@lauﬁﬁl,%awyugﬂﬁuasi’mhU (Simple GA)

fori:=1to/
begin
if winneri] # loser{i] then
if winner{i] = 1 then
plil := p[i] + 1/psize;
else
plil = p[i] — 1/psize;

end

5. MEenuTuaaun 2 o9 4 aundidanusnazidulundazifuasg
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WULNIZTUMILANLARE (Moving Average Compact Genetic Algorithm: mcGA) luns
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A
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fori:=1toldo

pli] := 0.5;

2. svdszrng
individual1 := generate(p);

individual2 := generate(p);

3. U URANIANNULANIZEN

winner, loser := compete(individual1, individual2);

4. udpdrenuihazdu
4.1. dwmdannsdivdudanuhanduluudazidvasanaeiana
waztdu (q)
fori:=1to/do
if winner{i] # loser{i] then
if winner{i] = 1 then q[i] := q[i] + 1/n
else q[i] := q[i] — 1/n

4.2. dwndanniadivdydenuinzdulaswisluudazidveaniaad
ANz (p) 1oy movavg Aednanuinanduszay was M Aaaua

U8 Window Size
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fori:=1to/do
form:=1to Mdo
movavg = movavg + q[il[m]
movavg = movavg | M;

pli] := movage;
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ﬂ%’uﬁ’mmL'mma?mmﬂwuﬂﬂﬁm”&gﬂﬁ 4.1

Updating strategy of fb-cGA

1. fori:=1tol

2:  begin

3 if winner[i] # loser[i] then

4 if winner[i] = 1 then

5: Ufreq[i] := Ufreq[i] + 1;

6: Ucon[i] := Ucon[i] + 1;

7 Dcon [i] :=0;

8 if (Ufreq[i] > Dfreq[i] AND Gen > (psize/3)) then
9: p[i] := p[i] + ((1/psize)+(p[i] * (Uconli]/100));
10: else

11: p[i] := p[i] + (1/ psize);

12: else

13: Dfreq[i] := Dfreq[i] + 1;

14: Dcon [i] := Dcon [i] + 1;

15: Uconli] :=0;

16: if (Dfreq[i] > Ufreq[i] AND Gen > (psize/3)) then
17: p[i] := p[i] - ((L/psize) + (p[i]*(Dcon [i] / 100));
18: else

19: p[i] := p[i] - (1/psize);

20: endfor

Parameters:
Ufreq : number of stepping-up updates
Dfreq : number of stepping-down updates
Ucon : number of consecutive stepping-up updates
Dcon : number of consecutive stepping-down updates
Gen : generation number

gﬂﬁ 4.1 Pseudo-code 1a37U4AaWID fo-cGA
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Abstract: A behaviour analysis of frequency-based compact genetic algorithm (fb-cGA)
is proposed. The fb-cGA is a version of compact genetic algorithm (cGA) enhanced by the
use of a new updating strategy. The algorithm counts the number of probability updates
and the continuities of probability-update directions and uses them to adaptively update the
algorithm’s step sizes. This method requires fewer function evaluations and achieves
solutions that are more accurate than those from the conventional cGA. It has been shown
that fb-cGA can reduce the number of function evaluations to only one ninth of the
number obtained from cGA on ten copies of a 3-bit trap function using a tournament size
of 2. We conduct parameter studies and show that the use of one fourth of the population
size (psize/4) as the algorithm’s starting threshold can improve the overall efficiency of fb-
cGA. The behaviour of tb-cGA on various problems is also examined. The results of the
analysis show that information from the algorithm’s past experience (i.e. the numbers of
probability updates and continuities) can help the fb-cGA to update the probability vector
towards a more promising direction, requiring fewer function evaluations.

Keywords: compact genetic algorithm, updating strategy, update frequency, update
continuity

INTRODUCTION

Compact genetic algorithm (cGA) was proposed by Harik et al. [1]. It has been widely
applied to various fields such as pipe network optimisation [2], parameter optimisation [3, 4],
inventory planning [5], image recognition [6], traffic transportation management [7],
communication [8-10], container loading [11], grid computing [12] and biology [13, 14]. The main
contribution of this algorithm is to replace a whole set of candidate solutions (the so-called
population) used by simple genetic algorithm (sGA) with a probability distribution. cGA requires
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much less memory, as it does not need to maintain the population throughout the evolution process.
The concept of cGA can be easily translated to hardware implementation by using the common
very-large-scale integration [15-17]. Therefore, it opens up the application of genetic algorithm to
new fields such as embedded systems. For example, Timmerman [18] used cGA to develop an
insect-sized flapping-wing micro air vehicle.

However, for more difficult problems, cGA does not provide acceptable solutions. There
have been many attempts to modify and improve cGA’s probability updating strategy. Zhou et al.
[19] proposed an improved cGA using mutation and named the algorithm mutated-by-bit-compact
genetic algorithm (MBBCGA). At each generation, MBBCGA generates only one individual and
then mutates this individual bit by bit. Ha et al. [20] proposed the use of more than one probability
vector (PV) to enhance the exploration properties of the algorithm. Rimcharoen et al. [21] improved
the updating strategy of cGA by using a moving average technique (mcGA). Ahn and Ramakrishna
[22] adopted ‘elitism’, i.e. the idea of reserving the best solution in each generation. They proposed
two variants: a persistent elitist compact genetic algorithm (pe-cGA) and a non-persistent elitist
compact genetic algorithm (ne-cGA). The former stores the current best solution until a better
solution is found, while the latter keeps the best solution just for a certain lifetime. In 2008 Lee et
al. [23] introduced a new update strategy using augmented Bayesian networks. A few years later,
they proposed compact genetic algorithm using a belief vector (cGABV) [24]. The new technique
uses a belief vector (BV) instead of a probability vector. The difference between BV and PV is that
each element of the BV stores a probability distribution (represented by associated mean and
variance), whereas each of the PV keeps a probability value.

In our previous work [25], we proposed the usage of a frequency-based updating technique
as the updating strategy of cGA. The technique collects and utilises information from the
algorithm’s past experience. Specifically, for each probability in the PV, the number of probability
updates (in both up and down directions) are counted and used to adjust probability-updating step
sizes, turning the vector towards the promising direction faster. Comparison results show that the
frequency-based compact genetic algorithm (fb-cGA) requires substantially (up to nine times) fewer
function evaluations when compared with traditional cGA. However, in-depth explanation and
analysis of why this algorithm outperforms others remained lacking. Accordingly, in this paper, we
conduct parameter studies and analyse how the algorithm behaves while solving various problems.

FREQUENCY-BASED COMPACT GENETIC ALGORITHM (fb-cGA)

cGA is one of various evolutionary algorithms. Instead of evolving the population for
searching solutions, it employs a probabilistic model, PV, which requires relatively small amount of
memory. Furthermore, the algorithm eliminates genetic operators such as crossover and mutation.

cGA keeps a PV over a chromosome to represent the population. The number of
probabilities in the vector is equal to the chromosome length. Each probability is defined as the
probability with the associated bit being equal to 1. The pseudo-code of ¢cGA is shown in Figure 1.
The two parameters are the chromosome length (/) and the population size (psize), which are used to
further specify an updating step size (i.e. step size defined as 1 / psize). (Note that the relation
between psize and the updating size in the cGA is analogous to the one between population size and
evolving speed in sGA.)
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initialise(p) s := tournament size
while (p does not converge) do initialise(p)

individuall := generate(p) while (p does not converge) do

individual2 := generate(p) create(p, S[], s)

evaluate(individuall, individual?2) evaluate(S[])

winner, loser := compete(individuall, rearrange(S[]) // S[1] is the best individual

individual2) fori:=2tos
for i:=1to / begin
begin winner, loser := compete(S[1], S[i])
if winner{i] # loser[i] then for i:=1to /
if winner{i] = I then begin
pli] = pli] + 1/psize if winner|i] # loser[i] then
else if winner[i] = I then
pli] = pli] — l/psize pli] :=pli] + 1/psize

endfor else

endwhile pli] = pli] — l/psize
endfor
endfor
endwhile
Figure 1. Pseudo-code of cGA Figure 2. Pseudo-code of tournament cGA

First, the cGA initially sets each of the probabilities in the vector to 0.5. According to the
PV, the algorithm randomly generates two candidate solutions, denoted as individuall and
individual?. Next, the solutions are evaluated, i.e. assigned fitness values. The winner, the one with
the greater fitness value, is selected. In step 5, the PV is then updated towards the winner. The value
of each probability changes if the winner’s associated bit is not equal to the loser’s: either
increasing when the winner’s bit is one, or decreasing otherwise. The loop continues to run until the
PV converges, meaning that each probability in the vector is either zero or one.

Harik et al. [1] also modified cGA by adding more candidates, called tournament cGA,
shown in Figure 2. The modified version randomly generates a set of s candidate solutions, denoted
by an array S in the pseudo-code, and uses a tournament selection to choose the winner, which will
be stored in S[1]. The PV is then updated by comparing S[1] with S[i] (for all i not equal to 1) in the
same manner as the original cGA.

Both of the cGAs update each probability in the vector towards either one or zero. Some
probabilities gradually increase while others drop. However, some might fluctuate, reflecting
uncertainty in updating the PV. It is known that the PV fluctuates during the beginning period and
converges to a certain direction at the end. The algorithms seem to work well in the case where
problems have consistent information, leading the algorithms to turn the vector towards only one
direction. However, if the problems are deceptive, they might delude the algorithms into searching
for solutions in the wrong directions. Consequently, the cGAs could not provide the desired solution
quality in spite of spending much of searching time. There has been much research aimed at
modifying and improving the cGAs in such case.

In our previous work [25], we applied a frequency-based technique to update the PV, using the
numbers of updates and the continuities of preceding updates as criteria. (The update continuity is
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defined as the number of consecutive updates moving towards the same direction). We measured
the uncertainty by observing the direction of each probability in the vector: if the direction is the
same for a long time (high continuity), the uncertainty is low. The monitored continuities serve as a
guideline or a promising trend that quickly leads to vector convergence.

Specifically, for each probability in the vector, the frequencies of two types of updates:
stepping-up (increasing the probability towards 1) and stepping-down (decreasing the probability
towards 0), were counted. Likewise, two types of update continuities were collected. The stepping-
up continuity is reset to zero if the current update moves towards O and the stepping-down
continuity is reset to zero if the current update moves towards 1. The fb-cGA technique is shown in

Figure 3.

Updating strategy of fb-cGA

1. fori:=1to!

2: begin

3 if winner|i] # loser[i] then

4 if winner[i] = 1 then

5: Ufreqli] := Ufreq[i] + 1;

6: Uconli] := Ucon[i] + 1;

7 Dcon [i] := 0;

8 if (Ufreq[i] > Dfreq[i] AND Gen > (psize/3)) then
9: pli] = pli] + ((1/psize)+(p[i] * (Ucon[i]/100));
10: else

11: pli]l =pli] + (1/ psize);

12: else

13: Dfreq[i] := Dfreq[i] + 1;

14: Dcon [i] := Dcon [i] + 1;

15: Ucon[i] :=0;

16: if (Dfreq[i] > Ufreq[i] AND Gen > (psize/3)) then
17: pli] :=pli] - (1/psize) + (p[i]*(Dcon [i] / 100));
18: else

19: pli]l = pli] - (1/psize);

20: endfor
Parameters:

Ufreq : number of stepping-up updates
Dfreq : number of stepping-down updates

Ucon : number of consecutive stepping-up updates
Dcon : number of consecutive stepping-down updates
Gen . generation number (incremented in Step 6)

Figure 3. Pseudo-code of fb-cGA
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Figure 3 presents the pseudo-code of the frequency-based updating strategy in fb-cGA.
Ufreq denotes the number of probability updates towards one (i.e. stepping-up updates). Dfreq
denotes the number of probability updates towards zero (i.e. stepping-down updates). Gen denotes
the generation number whose value is increased incrementally in step 6. The proposed updating
strategy is performed when Gen is greater than 1/3 of the population size (psize). For the first third
of the generations, fb-cGA works like the original method to explore solutions and find the right
direction. It waits until the generation number reaches psize/3 because it needs time to gather
sufficient information to see the trend. For the last two-thirds of the generations, the it probability is
updated when the i"™ bit of the winner (winner[i]) and the one of the loser (loser[i]) are not equal. If
winner|i] is 1, the algorithm checks whether, from past experience, this probability is updated
towards 1 most of the time (i.e. Ufreq greater than Dfreq). If so, the probability vector should be
updated according to the majority with a larger step size. The step size can be determined by adding
the term Ucon/100 multiplied by the previous value of it probability, where Ucon denotes the
number of consecutive stepping-up updates. In contrast, when winner|i] is 0, the algorithm performs
in a similar manner but considers Dfreq and Dcon instead. The it probability is updated by
decreasing towards zero.

In this paper, we study the effects of the psize parameter and show that using psize/4 can
improve the efficiency of fb-cGA. Thus, we use psize/4 instead of the previously proposed psize/3
[25] throughout the experiments conducted and presented in this paper.

PARAMETER STUDIES

As mentioned earlier, the proposed method performs the new updating strategy when the
number of generations is greater than psize/4. The reason behind this strategy is that the statistics
obtained during the beginning period are not reliable enough to capture the trend. In this section,
empirical experiments are presented to explain why we set this parameter as psize/4. The algorithm
on 4 benchmark problems, viz. 100-bits One-Max, 100-bits Random Max, 64-bits Royal Road and
ten copies of 3-bits Trap problems, were tested. The characteristics of the four problems are
explained below.

The One-Max problem is quite simple. The objective is to find the solution which is a bit
string whose bits are all one. The fitness value is equal to the number of 1-bits in the bit string. The
Random Max problem is similar to the One-Max problem in finding a bit-string solution whose bit
pattern is exactly the same as the one of the target. However, instead of being all one, the target bit
pattern is selected randomly. Obtained by comparing bit by bit, the fitness value is the number of
bits equal to the associated ones of the target. Notice that this problem is designed to determine
whether an algorithm is biased against one or zero.

The Royal Road is a group of bit patterns built up from sequences of short bit patterns. The
bit pattern is called schema. There are 15 schemas for 64-bits royal road as shown in Figure 4. After
comparing the bit string with each schema, the fitness value is calculated by summing up the
numbers of bits equal to those of s; for all i. For example, a fitness value of a bit string that contains
all one (the optimum solution) is (8 x 8) + (4 x 16) + (2 x 32) + 64 = 256.

The Trap problem is one of many difficult problems used for testing GAs. It is designed to
fool gradient-based optimisers that favour zeroes, but the optimal solution is composed of all 1-bits.
We can create a kxm Trap problem by combining the m groups of a k-bits trap. The fitness value is
calculated by summing up the scores associated with all groups. For instance, a 3-bit Trap problem
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gives a score of 3, 0, 1 and 2 for a group of three, two, one and zero 1-bits respectively. For example,
a candidate solution ‘111 001 110 000 100’ has a fitness value of 3+ 1+0+2+1="7.

SChema 1= 11111111********************************************************’ Sl = 8
Schema2 = ********11111111************************************************’ S2 = 8
SChema 3 = ****************11111111****************************************’ S3 = 8
Schema4 = ************************11111111********************************’ S4 = 8
SChema 5 = ********************************11111111************************’ SS = 8
SChema 6 = ****************************************11111111****************’ S6 = 8
SChema 7 = ************************************************11111111********’ S7 = 8
SChema 8 = ********************************************************11111111, S8 = 8

Schemal3 =11T1T1TTTTTTTITITTTTTTTITTTTTTTT1 1]ttt assdoddordrr®: 613 =32
Schemal4 =##ssdsssdosioor oo T T LI LT T 1111111111 s14 =32
SchemalS=11111111111111 11111111111 1111111111111 1111 1111111 1111111111111; 515=64

Figure 4. Royal Road problem

We ran the proposed algorithm with all benchmark problems described above. For each
tournament size of 2, 4 and 8, the parameter was varied among psize/2, psize/3, psize/4 and psize/5.
The results shown in Table 1 are efficiency ratios [= (solution quality / number of evaluations) X
1000]. The efficiency ratio is used as a quantitative measurement to quantify a quality rate: the
higher the rate, the better the efficiency. When the value of # is varied from 2 to 4, the efficiency
ratio is better when # is large (4 or 5) in the case of solving the easy problems (i.e. One-Max and
Random Max). For the harder but non-deceptive problem (i.e. Royal Road), a small value of n (2 or

Table 1. Efficiency ratio of varying tournament and population sizes in One-Max, Random
Max, Royal Road and Trap problems

Efficiency ratio
Problem Average
One-Max | Random Max | Royal Road Trap

= psize/2 56.63 32.51 4.97 0.37 23.62
:E; < | psizel3 53.14 32.23 5.65 0.42 22.86
E 2 psizel4 56.79 33.68 5.35 0.50 24.08
= psizel5 54.48 34.00 5.35 0.52 23.59
= psize/2 69.08 41.56 10.03 0.80 30.37
:E; T | psizel3 78.88 41.61 10.53 0.95 32.99
E 2 psizel4 89.20 44.76 9.87 0.95 36.20
= psizel5 80.36 49.07 9.65 1.03 35.03
= psize/2 86.95 42.38 17.51 0.69 36.89
:E; % | psizel3 83.52 40.06 14.47 0.91 34.74
E 2 psizel4 87.17 47.69 16.01 1.06 37.99
= psizel5 91.19 47.28 14.03 1.15 38.42
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3) yields a slightly better ratio. This can be interpreted that the proposed algorithm needs more time
to collect more diverse and higher fitness-valued samples before increasing its updating step size.
For the deceptive problem (i.e. Trap), the efficiency ratio tends to be relatively high when # is large.
This is because in the Trap problem the fb-cGA cannot find a good solution no matter what
parameters are —the fitness value might remain similar. Therefore, the efficiency depends on the
number of fitness evaluations more than the fitness value. In terms of tournament size, a larger size
tends to provide a larger efficiency ratio. Overall, almost all of the best quality rates come from
psize/4 and psize/S (highlighted in Table 1). The average rate of psize/4 from all problems and all
sizes of the tournament is 32.76, and that of psize/5 is 32.35. The psize/4 is therefore more desirable
in terms of efficiency.

As shown in Figure 5, the convergence graphs, obtained from the One-Max problem
experiments (psize = 100), reflect the algorithm behaviour. The dash lines are plotted at the
generation numbers equal to psize/n (x = psize/n), showing when the proposed updating strategy is
triggered. If n is larger, the proposed strategy starts sooner. Passing this line, the algorithm updates
the PV with a larger step size when the winner’s bit conforms to the majority direction (i.e. meeting
the condition on line 8 or 16 in Figure 3). As the graphs show, the fitness values gradually improve
in the early generations (generation number < psize/n) but increase abruptly after the trigger. This
behaviour explains why the algorithm’s PV converges to a solution using fewer function
evaluations.

100 T 100 T

90 - f = 90 - J‘;’/v =
I

80 "A = 80
[

70 - g 70 -

1
1
1
;o s

)

60?‘, : — 60}
1
1
, [
1
)
]

Fitness Values
Fitness Values
S, o,
L

50 -

Convergence —+—— Convergence —+——
I I I I

I L 40 I L
0 50 100 150 200 250 300 0 ' 50 100 150 200 250 300

40

Generation Generation
(a) (b)
100 T 100 T p— |
%0 / B 90 | -
f
1
80 [ 1 e 80 |- 4
I

Fitness Values
@ ~
Q (=]
WN\L
L L
Fitness Values
[+)] ~
o [=]
N\% T
e
L L

Convergence —+——
L L Convergence —+—
I I

40

L
40 L I L
0 50 100 150 200 250 300
0 50 100 150 200 250 300

Generation R
Generation

() (d)

Figure 5. Convergence graphs of experiments with parameters: (a) psize/2, (b) psize/3, (¢) psize/4
and (d) psize/5
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PERFORMANCE COMPARISONS

At first, we tested all of the algorithms — sGA, cGA, mcGA, pe-cGA, ne-cGA and fb-cGA —
with the 100-bit One-Max problem. Each graph in Figure 6 shows the results when the parameter
psize (population size) varies between 4-100 with a step value of 8. All algorithms used the
tournament size of 2. Each line shows an average result from 50 runs. In general, when the
population size becomes larger, GAs take more function evaluations but yield better solutions.

Figure 6a shows that the solution quality (the numbers of correct bits) obtained from fb-cGA
is comparable with those obtained from sGA, cGA and mcGA, while pe-cGA and ne-cGA have
lower solution qualities. In terms of the number of function evaluations, Figure 6b shows that fb-
cGA outperforms sGA, cGA and mcGA if the population size is large. When it is small (psize <
40), fb-cGA needs more function evaluations than do others. The example where psize is equal to 4
is used to explain this situation; the algorithm collects the statistics merely from one generation
(psize/4 = 1) as a guide to update the PV with a large step size. The triggering time may be too
early, leading the vector to a wrong direction. Consequently, the algorithm would spend more time
(i.e. a larger number of function evaluations) searching before coming back to the right direction.
Nevertheless, the number of fitness evaluations of fb-cGA does not increase as much as the
population size and is comparable to those of pe-cGA and ne-cGA when the population size is 100.

100 4000
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SGA —+—
GA =¥
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Figure 6. Correct bits and function evaluations (of all the algorithms) in One-Max problem

Figure 7 shows the performance of all the algorithms on the Random Max problem. The fb-
cGA performance is moderate when compared with other techniques. It requires a large number of
function evaluations to find the solution in the case of a small population, but when the population
size increases the numbers of function evaluations tend to be comparable to those in ¢cGA and
mcGA.

Figure 8 shows the performance of all the algorithms on the Royal Road problem using
tournament sizes of 2, 4 and 8. The number of population sizes varies between 4-100 with a step
value of 8. Figures 8a, 8¢ and 8¢ show the solution quality in terms of fitness value. Figures 8b, 8d
and 8f show the numbers of function evaluations. The fb-cGA yields comparable results in terms of
solution quality with those from sGA, cGA and mcGA while requiring a much smaller number of
function evaluations. When compared with ne-cGA in the case of tournament size of 2, fb-cGA has a
higher fitness value than that of ne-cGA but requires more function evaluations. However, for
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tournament sizes of 4 and 8, fb-cGA yields comparable fitness values with those of ne-cGA and
needs fewer fitness evaluations. In this problem, pe-cGA requires the smallest number of function
evaluations but yields lowest fitness values.
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Figure 7. Correct bits and function evaluations (of all the algorithms) in Random Max problem

Figure 9 shows the algorithms’ performance on the 3-Trap problem — the Trap problem with
a group of 3 bits (k~=3) — using tournament sizes of 2, 4 and 8, and population sizes of 8, 500, 1000,
1500, 2000, 2500 and 3000. Figures 9a, 9c and 9¢ show the solution quality in terms of the number
of correct building blocks (the number of 3-bits blocks containing all 1-bits). Figures 9b, 9d and 9f
show the numbers of function evaluations taken to find the solution. Figure 9a shows that the
solution quality of fb-cGA is higher than that of sGA, cGA and mcGA, but lower than that of pe-
cGA and ne-cGA. The fb-cGA requires the smallest number of function evaluations, using them
approximately 14, 9, 12, 3 and 2 times fewer than do sGA, original cGA, mcGA, pe-cGA and ne-
cGA respectively. This cofirms the efficiency of the proposed method in terms of the number of
function evaluations saved.

ANALYSIS OF ALGORITHMS’ CONVERGENCE AND BEHAVIOUR

The convergence analysis was carried out by using plots of the fitness values over time
(generations). The behaviour analysis was performed through the graphic representation of all
probability values in the PV from the first to the last generation to track how the probabilities
change.

Figure 10 shows the fitness values and the probability values of cGA, mcGA, pe-cGA, ne-
cGA and fb-cGA for the One-Max problem with tournament sizes of 2 and psize of 100. The graphs
on the right show probability values in density of greyscale. Bearing in mind that the objective of
the One-Max problem is to find a solution in which all bits are 1, all the shades representing
probability values shown in the graphs on the right should fade to white (probability = 1) in the final
generation.

The cGA, mcGA and fb-cGA can find the optimal solution (fitness value = 100), the ne-
cGA vyields a result very close to the optimal, while the pe-cGA’s PV converges to one far from the
optimal. The convergence graphs of cGA and mcGA are very similar. Their PV converges to the
solution at nearly the same generation. However, the way in which the probabilities change is
slightly different. The shades of mcGA fade quicker and more smoothly than do those of cGA. The
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smooth change in the probability values of mcGA is in accordance with its updating rule in
that the moving average approach waits to see the trend, thus slowing down the increase or decrease
in the probability values.
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Figure 8. Fitness values and function evaluations (of all the algorithms) in Royal Road problem
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Figure 9. Correct building blocks and function evaluations (of all the algorithms) in Trap problem
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(f) 100 probability values of probability vector (pe-cGA)

Convergence of fitness values and change in 100 probability values in the

probability vectors at each generation. Darker shading represents the probability closer to 0
while white represents the probability of 1. All probabilities are initialised to 0.5. All plots

show the average values from 50 runs.
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Figure 10 (continued). The convergence and probability analysis

Both the pe-cGA’s and ne-cGA’s shades turn light grey faster than do the ¢cGA’s and
mcGA’s, as shown in the early generations of Figures 10f and 10h. However, the pe-cGA’s final PV
is unfavourable and the ne-cGA’s approaches, but does not quite reach, the optimum. This is
characteristic of elitism. The elite (the best solution so far) often contains zero bits in the
chromosome, which deceives the algorithm into updating the probability towards zero. In the case
where newly generated candidate solutions are worse than the elite, the PV is updated towards the
elite again and the probability at the associated position may come closer to zero. This situation may
lead the elitism-based algorithms to update the PV towards the wrong direction. Elitism affects the
pe-cGA’s performance more than the ne-cGA’s due to its everlasting elite.

The fb-cGA’s PV converges to the solution faster than the other algorithms (Figure 101).
The shade representing probability values in Figure 10j turns white in a small number of
generations. To efficiently apply our proposed technique to a real-world problem, the chromosome
should have all of its bits uncorrelated with one another. It is important to realise that the fb-cGA
evolves its PV by updating all associated probabilities of all bits. The update is done only one bit at
a time without taking into account the information of the other bits. The results of One-Max
problem shown in Figure 10 serve as an example that supports this claim: fb-cGA can solve the
problem using far fewer number of generations (approximately 400, instead of about 1300
generations required by the traditional cGA). This significant outperformance stems from the new
dynamic updating strategy: the proposed technique decides to update the probabilities with a larger
step size based on the collected statistics. However, if the chromosome bits of the real-world
problem are correlated with one another, the proposed algorithm might not find the best solution, as
shown in the Royal Road and the Trap problem.

For a real-world optimisation problem that has multiple local optima, there is a higher chance
that the tb-cGA may get stuck at a local optimum. For example, in the field of computational vision,
efficient algorithms such as cGA may be used to recognise objects in an image. However, if the input
image is complex, it might introduce various local optima in the search space. Because fb-cGA uses
a trend in early generations to quickly decide to update PV with a larger updating step size, it might
prematurely decide to search towards a seemingly promising direction at a certain time. Once the
proposed algorithm gets stuck, it is hard to escape from the local optimum because it already has a
strong bias in favour of either zero or one. To handle this kind of problem, we should wait longer to
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see a correct trend before using a large step size. In addition, the step size should be incrementally
increased during the evolution.

CONCLUSIONS

This paper presents a behaviour analysis of fb-cGA. To update the PV, the fb-cGA collects
and utilises the update number of each probability in both up and down directions. The numbers of
updates are used to adjust probability-updating step sizes, turning the vector towards the promising
direction faster. When the effect of parameter psize/n on the algorithm performance was investigated,
the results suggested that the newly proposed updating strategy should be used when the generation
number is greater than psize/4. The analysis, through graphic representation of all probabilities from
the first to the last generation, shows that the tb-cGA updates the PVs towards the solution quicker
than the other algorithms and also requires fewer function evaluations.
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