A\

41|
=)
mv

TUINUIL ALY awysfﬁ;

Iﬂix‘iﬂ'ﬁ ﬂ’]i’?LﬂiﬁzﬁNﬂﬂiﬁﬂﬂJ% a\'lﬂ’liL%‘U%i

AMANNFTUNBTLTINU LW U TUTE U BN TUIN LD

Loy wiangilan Tuialey

2 ﬁqmﬂu 2558

e TRG5680073

TUINWIYRL awyitﬁ

Iﬂﬁx‘iﬂ’ﬁ mﬁmﬁzﬁwamwwaamsﬁ'muf

AMANMUFNANBTLTIAU I Wa auI TUTNI AN TUIN LA

WIRIFUET ULy

AWSINYINITRIIFULNG UAIINBIRE ‘HTW’]

S50 ag;ui@ JRIBNIIWN amuaﬁfu agumﬁﬁy

LaE ATEINYINIIRITRUING UR1INLN a”syjsww

Qs

(anuARlusnuibiduzedide and. lidududesdudroiaualyl)

naanssulsen@

v
v A

WD slu,éhL%fﬂqmﬂﬂﬁmmﬁaﬁuaguﬁunu’?ﬁ'ﬂm aaﬁwﬁfmmﬂamuaﬁua%u
RrREL fUNIUA mzmsumsmsqmﬁﬂm LAYIINNLARLANIINTEITRULNGA

wﬁﬂméﬁlgiww Q‘?ﬁ‘fﬂmmJaugm%mmm‘ﬁammﬁiﬁ’[amaﬁmﬁ{ym ™ lanaih

6 a 6 o @ A nd. = d' ' A
227009 MIAT19138 03.U5zn 1w waiadiaw WinIdenlinm Neestioimie
TRdmziin lﬁﬁ’lé'ﬂaﬁ'u;ﬁaﬁ'mauam

Ay A

1 dl [l v 1 dldq' dl v = v
vavauqm Nn 9 vhunldlddowaanlunt Adauwnodadunaeioudaya

TITIUTIN TI8E1% Tre IR aLa ULy ATl au;ﬁa‘"ﬂmmmﬁﬂmu%"ﬂ%uﬁvlﬁﬁ'}L%amqma

Abstract

Project Code: TRG5680073

Project Title: Analyzing the Effect of Negative Correlation Learning on Estimation of

Distribution Algorithms

Investigator: Miss Sunisa Rimcharoen

Faculty of Informatics, Burapha University

E-mail Address: rsunisa@buu.ac.th, palm.sunisa@gmail.com

Project Period: June 2013 — May 2015

This research proposes a behavior analysis of the univariate estimation of
distribution algorithms including the population-based incremental learning (PBIL) and the
compact genetic algorithm (cGA). We also propose the frequency-based compact genetic
algorithm (fb-cGA) which is a version of the cGA enhanced by the use of a new updating
strategy. The algorithm counts the numbers of probability updates and the continuities of
probability-update directions, and uses them to adaptively update the algorithm’s step
sizes. This method requires fewer function evaluations, and achieves solutions that are
more accurate than the ones of the conventional cGA. It has been shown that the fb-cGA
can reduce the number of function evaluations to only one ninth, as compared with the
one of the cGA on ten copies of a 3-bit trap function using a tournament size of 2. The
behavior of the fb-cGA on various problems is also examined. The results of the analysis
show that information from the algorithm’s past experience (i.e., the numbers of probability
updates and the continuities) can help the fb-cGA update the probability vector towards a

more promising direction, requiring fewer function evaluations.

Keywords: compact genetic algorithm, behavior analysis, probability vector

mailto:rsunisa@buu.ac.th

UnAAga

swalasan1y: TRG5680073

galasems: mydanzinansznuramasouinnenusunuiidauluiunauis
U3z mnIILangag
Bawknde: ghan Julady

AULANENMTANTEWNG URINNRDYIN
E-mail Address: rsunisa@buu.ac.th, palm.sunisa@gmail.com

Sxﬂ&?ﬁ'ﬂ:ﬂi\‘lﬂﬂi: ﬁq%’]ﬂl% 2556 — N ¥NIAN 2558

¥ 6 a

NWIBRIUIFUININANEANYANTIN 2899 UADUITUTE NI NN TULINUIILULTAG)
w5 lidudarin G'fidsluﬁiftvlﬁﬁﬁmsﬁﬂmmgu@auﬁ%miﬁ'ﬂuqﬁ?ﬁmﬁmmumﬁ'ﬂﬂs:mm (PBIL)
LLawzu@auﬁﬁ%awyugﬂﬁmmumzfu (cGA) uanmnﬁﬂ'&"lﬁﬁwLauamsﬂ%'uﬂgwgu@auﬁ'ﬁ‘
L%aw”uﬁqmiml,uumz‘*ﬁ'uﬁaﬂﬂ'ﬂmmﬁi (fb-cGA) FalumsUsuduinanniuaeudtis
WHNTINLULN T TULAN I@umgu@auﬁﬁﬁﬁﬁLauaﬁazlﬁﬁnﬁﬁfuﬁﬁmuﬂ%maamsﬂ%’uﬂ;a
AUzl LLazfﬁJ@iaLﬁawadmmﬁnﬁ]:Lijuﬁﬁﬁﬂmamsﬂ%’uﬂ;o‘lﬂlumaLﬁmﬁ'u
@hmmﬁlﬁ'ummﬂmiaLﬁa<1ﬁa:gnlulumzmumsﬂ%’ummaanﬂmﬁmmuwuﬂu M
ﬁﬁ’uauaﬁdaNﬂiﬁmgumau?ﬁlﬁfﬁﬂuauﬂ%lunﬁiﬂizLﬁuqmmwﬁmauﬁaﬂm waztIlAng
mmﬁnL%ﬂlummﬁﬂ%ymﬁﬁﬂmwgﬂﬁadmni‘fuﬂdwgumau?ﬁ%aw‘”uqmmqumzﬁ'mﬁu
NANNINARBILFASIALAWIN fb-cGA mmsnamﬁmuﬂ%maom‘sﬂiuﬁuﬂmmwﬁmauaa
s 1 lu o dmsummessstudymiuan mamsianzingdnssumsiiuas
SuAaUIDI LLa@ﬂﬁLﬁudﬂfaQamﬂﬂs:aummiﬁmummaoé’aﬂa?‘ﬁu (ﬂﬁmﬁafﬁﬂmuﬂ%
maam‘sﬂ%‘uﬂgammma:LﬁuLLazmﬂ’nmiaLﬁaa) NIl fb-cGA ﬁ“ﬁayja
Usznaunsaadulaledunndu i ldgnmadsudpdanuihanduluanaeinnuiag

Wl lufanieniinly GRREEH TauN I IBATI LN TU T T UANA I NLAN FUTED IR

AINAN : TUABWITLNWUINTINULUNTETY, MYNATIZANDANTIY, Lneasanuhandu

mailto:rsunisa@buu.ac.th

d13UTY

TUe E]%’J%ﬂ’]iL%ﬂ%ELW&J“U%LLUU DVAHUTETINT oo

YUADWIDLTI w”uqﬂssu UUNITETU v e e

W INAROUNTTIUNTNARD oo

aw A4 o
NIWITUNLANBIVB oo

=
unn 3

ﬂﬂiﬁﬂ‘kﬂ LLa:'ﬂ@aawu@amﬁ'miﬁ'ﬂugm VUUBUULNADUTZTINT ...

Qs ~ o a A
ms“n@aaaﬂuﬂtzymmmuumﬂmmﬂq@ ...

MINARAINUULRINIUAN oo

A
unn 4

MIANHILAENANDITWA AW DLE w”ugﬂﬁmmum:"ﬁ'u

msﬂ%’uﬂgﬁ'ﬁ‘ﬁ%’uﬁﬂmaﬂm ASAVNUIDLLD U oo,

AVTANBVNTTVIERDT e

r=| = a a
ML THUNBUUTERNTANN oo

MIINATIEN ...

A
UNN 5
a 6
agﬂ LRSI
UIIMIRNTN

AANKIN

15
17

27
28
29
32

37

40
41

43

=
unn 1

UNY

YUAaUIDITITIWUWINT (Evolutionary Algorithm) 1dutuaanitnenaufiaain

a v &/ o L a a Cé a {
ﬂﬂ@]ﬂ%ﬂl‘lﬂ@l Ela’]ﬂﬁlLL?GTJ%@]']ﬂl’ﬁ]’ﬂ’?ﬂﬂi:ﬂ’)uﬂ’]‘i’]ﬁ]@luﬁﬂ’]iﬂ’]dﬁiiwﬁ'}@l Fauduldn

Q). D)

AAa ' L Pt o & A [o Y Aa 1 o Aa
WAeee 9 lmﬂsuﬂgamﬂwu@,wamiagsamm:mlvﬁm@gﬂ%mugum 9 lUni
& o o A ' 1Y A X
AMUENTNNNT® ANTUTLAINRNNZFUADINTNLIARONUNEI D NITUINNIT
a o d‘y o o o [l o 6 A Ada ' ¥ o o A,
’Q’JW%’]ﬂﬂiuLﬂ%ﬂﬂiﬂﬁ’]ﬂfgl%ﬂ?i@??ﬂLNWW%'];'?JEN&GSJ‘E’N]@HG § 1 TIUU %Qlﬂ'ﬁaﬂ'ﬂ‘ﬂ’]
Iﬁﬂizﬂ’l%ﬂ’]i?f@ll%ﬂﬂ’liﬂ’ldﬁiiwﬁ’laﬁﬁizﬁﬂﬂ’)’lNﬁ’]L%ﬁ]ﬁﬁﬂ WANNNINARITNITIINTG

. cllq/ = WAI AAda ai v I3 ~ = Qs s v
(Natural Selection) ﬂﬂ@]LﬂBﬂI%ﬁx‘]&l‘ﬁ’)@]ﬂLﬂlﬁJLLﬂld LIIUTY HazdanusuTndIuainnu
a % vl A ' | @ A Ada 4., o @
ﬁdLL’J@]E\]E]lfl(ﬂ(ﬂﬂ']’]&liﬂﬂ']ﬁﬁ]%iﬂ@uﬂz’ﬂEl']ElLN’]‘W%‘I?L@]N’Iﬂﬂ’l’]'ﬁﬂwﬂi’]@l‘ﬂaauua ﬁ\‘iLﬂ@]vL(ﬂ

L= 6 qxni =3 1 =) £ 1 =) % 6 o a U 1
mﬂaml,wmdmmLLioﬂ’swzuIaﬂ’mVLmﬂungjaLLazuIamawawwugﬂmwmmU"L@mﬂm’]

ANRANNIITVAINITIIN WA TN TITNTIANUNDARTTE L2 Thba-d A liiAams

v e ad A

a a { v Y o Ag
AAABNIZUIBNIINIIADUNILG ﬂgﬁIﬁﬂ%ﬁﬂﬂﬁ@]BUI@ DLRUUULLTITNTIGIY TUaawITis

Y

ada a

Aa v { v o d A’ v Q
n@ummmmﬁmsmaﬁﬁu"m@ﬁaﬁaﬂs:"mmmmu%uwum WEANNIZUIUNINARTT

A A A Ada 4 @ L o &
LwaLaaﬂﬁG&m’J@mm&l’]zﬁulﬂmEH&ILN’]WWQ@IQVLH

A a

WA DU DLEITINWINITANITZUIWAIINBLasISUARINNITENAaE1 AL
n&/ o & a 1 1 s a 1
PRUIWIBARY - (138NN Uszng) ﬂiz"mml,mazmazgnﬂs:mummmmm:f;‘m
. @ o A AA Aa A
(Fitness Value) WaH UATTLIMANTAALREN lapUszansnddianumansaunaninezi
4 o ¥ et o U, AI J 1 s
IamagﬂLﬁaﬂLﬁ'am"l,ﬂLﬂu@ul,l,uuslumiﬂiuﬂgoqmmwm@]aulwﬁmmulugumvlﬂ LAY
mzmumsﬁ%gﬂﬁﬁsﬁ’lmﬂﬁ:u;ﬁu (Generation) N3z laF1AaLNL AN
n' é d' %]) %] dl o 9/09.4/ ad a a v o =1 & A
sontwnidwi ldannvildrueewitieitawinrdszauanudnss Ada M
AALRENUIZTNINAAIANMURINETNNG WRIRBUTUSIWNG (Building Block) O
6 o 1 & % o % 9 ' 'V
298132 NavVaIA I UNNYTETINTRATR L mLﬂumw,mummuaswﬂizmﬂﬂugumvlﬂ
& ~ a o o o d d ! . . [\
TandauyAgudayawnit M3ond “building block hypothesis” Goldberg (1989) na1
31 “Short, low order, and highly fit schemata are sampled, recombined, and re-sampled to
form strings of potentially higher fitness.” wanmMIauiklad NuNIedIMlnhaaanuuy
3 ad A A v v Y o a n:i o vV o a
PUADUITETINIAIUINITVDIAED Tnaudraaululuianisnazvinlvdraaudaiaiy

&
mm:augwu

(2
a

Vo = al , A a A 1 o o AdA
LL@QU'NVLiﬂ@ ﬂ’]jLaaﬂ?jua?u‘ﬂuqﬁ]Z@ﬂﬂjqﬂgﬂQlu@n@lau@n‘ﬂuﬂ’]ﬂ?’]ul,ﬂquaw

)Y

gio13az lilldinldgdaaundngaanaly dradnitu dwituvdynindineuiidndga

2 1
o A

d' . Add‘ v A a aq’ 1 [
\anzfl (Local Optimum) Tuaauiingnaanuuuanlfifenniuudiunfanysznaunu
Wudraaulng ma‘ﬁhvl,ﬂg’fﬁﬂ@”ﬂlu@‘hLmuﬁaq@mmzﬁw LRZIWADUITNAANHIANNT
o dQ/G' = 6 @ 1 v d"/ =2 a @ A o 1 & [-%
Mnuuuuifazuiisananamuminidinaldon mwnzngit Sadinidongunilanu
naulaiinmisenuuuduaeniiniasananuinnasuidanumuzauduey
viw ludl o 1994 Baluja ldiauaismisldanuinndiedndaeunddinnunanzay
'Y a ' o A v o Ada a ' a o ' &
wopfigadindmisununazlidmaoundngaissetnades Tunmsdsudpdnaeiana
' . ° o & a v A X o
wiazidu (Probability Vector) & wiiduaeniimusuuiinaduuuuaidudszmng

(Population Based Incremental Learning: PBIL)

Tassny9ui LﬁaLﬁuﬂiziﬂmﬁawnnﬁiﬂﬂﬂuﬁujmaaﬁmauﬁﬁmmmmmmm‘h

d'l a < qzni % g 1 o = =3 o =S 1 % dl aq// ad

LwamLmlmm’nwngl,@mﬂ"ﬁua’;umaaﬂ’mam § M IANTA I@mr‘mmuvl,ﬂmumauw

1 ni =} ni A J 1 >3 o 1 a =

Umainmmiwanuasuuuieigafauuu iifienatudanuluduludazdy lasazinm
& - v X . P o a o .
TuaawItmuTuuiiiuiuuuuardodszns WA TUAUITITINUENTINULLN T
(Compact Genetic Algorithm: cGA) kaz¥inmMTitaNziauaauitinaih lausoaziduavad

ﬂ’]i‘ﬂ@]aadLLﬂzNﬂﬂ’lifJLﬂi’]z‘ﬁ{’ﬂzﬂé’l’ﬂuﬂﬂﬁ 3 unz 4

P
unn 2

a ao A A [y
NNBHUASITWIVSNLINYIVDY

2.1 YBADWIDUITNIWNITHINLY

v

TuaanIdUITNIMNITUANLIY (Estimation of Distribution Algorithms: EDAs) %38
TuA I T TINUTNTINUUUATENILDLTIRB9AWINzIU (Probabilistic Model Building
Genetic Algorithms: PMBGAs) Waualag Mihlenbein Las Paal (1996), Pelikan, Goldberg
Waz Lobo (1999) luzuaauithudazainds (@avaafisvlanvudazdalutiuanauidigs
WHINTTULLLLAN) azfiananuinasidulunmndudiaey TunIaNNFUWRIALUAILU AU
wazazldnadivdranauhanduiedsudynneansdivesdaevlildlufianing
. X
wagazdidnanurnsaugIin
3 a] v 1 Q Q ; 1
TuaauIlzananuanuasaanInudlaidu 3 ngunan 9 auansmen1Iude
> [= Qq: aa ni s |A/ 1 s . .
Au209a2uUT Ao TuaanddUszurmnisuanuaduuuneludslidudany (Univarate
P - o X o
Estimation of Distribution Algorithm) T%aa%3 U3 MNITUINUIILLLNGLL T UGN
\{lug (Bivariate Estimation of Distribution Algorithm) WasiaawidilszanmnIuanuaduuy
- Y S . . o . 4
MuUInaua1udans (Multivariate Estimation of Distribution Algorithm) mma:nquﬁﬁ
094’ ad 3 ni o ni [l Ag a 1 094’ ad
Tuaawisudazuuungniiawalunaodndun lunfzendrediuaeuwitszunmns
\ A A A > o \ > ' & Aad a v A X
wanuasuuusngefe ldianuiudenuludiudsudezdd 1w JuaawiinsiTouiinain

a

wuvatdadszoing (Population Based Incremental Learning: PBIL) L8 g PTUADWIDLE

o

a 5 . . £ X
WHINITWULUUNILTL (Compact Genetic Algorithm: cGA) F4d510az1ua0 3%

211 ﬁ'%ma%%%'m‘sf%auiﬂﬁNﬁmmnmﬁ'ﬂﬂszmns

o Bfa Ao . 8 a a @ & '

sanadnuiiaualas Baluja (1994) G3duwirfalunsltianiaasainusiiazidu
(Probability Vector) unufin1slingudszmnsuuuidy inmasanuinanduianduda
wuulunsminiInszanedliesfiaeud 9 lasudazdi@ (Dimension) vadianiaasidudn
aNuaztdunuaaziaazidn 1 m‘sﬂ%’uﬂ@a@imamﬂmzLﬂuﬁﬁﬁvL@”I@ﬂﬁﬁmiqua%’w
@TmahoLLéﬁﬂ%’UmmWmim]zl,ﬂulﬁvﬁﬂﬂﬁm”aamaﬁﬁﬁq@ m”u@laumw‘mmmaamiﬁuuj
nl 131 L dl A o aa) a A 1 1
wammumﬂmﬂi:"mﬂma@ﬂugﬂﬂ 1 e dudwindd @wande) p, Aa dranuiiag

1 aa a Q/A 1 1 1 1
Wuluusazdfuaainiaas, a As amﬁmiﬁﬂugmﬁmagizmw (0, 1] uaz best, Aa Alu
wiazda (1 1 ®38 0) maa@‘i’maméﬁﬁﬁﬁq@ &6 mutation_shilf \JuavanyIunainae

nan Uw‘"uﬂﬂmﬂﬁamﬁ eala

o QI v v v 1 J { 9/0 v 1 a A
MU UAILNTFTINNLA DTN T ulwan TuAdinualvidas i@
1] 1 Qs Q/I v L= o A =)
PDIINLADTAAIAMNUIALLTULYINNY 0.5 BudAa bRNIINIZNLAIVDIRAaUTILTw 10 0
a &/ v 1 Q 09/’ 1 v L= 1 { Qs o ‘&’
n3a 1 dlamaiiadulainn 9 ni nniwazguaiadndudunusesdinaud uan
ININLABTANNUIALT W M @28879 FiITN1TU L WA ULANITRUVBIAIDENILAAN T
v = o dlddl Q v o dl = qu‘v v = 1
uiLanfnaunangaun 1 6 LLmﬁ]:m@mU@amLaaﬂm"l@mflu@]mmﬂumsﬂsuﬂ‘gam
ﬂ'nmim]:LﬂuluLLGia:ﬁ&ﬁ’alﬁmim:mmT’maaﬁ’mauluiuﬁ'ﬂvlﬂmmﬂﬁéhaah 3% N9
ﬂ‘?uﬂ;ammmmrmﬂulunﬂL@a§ﬁwmwug@ilum°u@auﬁ 4 AT 5 maogﬂﬁ 2.1

Procedure population-based incremental learning
1: Initialize probability vector (p) with 0.5 at each position.
2: Generate M individuals from the vector
3: Select the best individual (best)
4: Update the probability vector p
fori=1to/do
p;=p, X (1.0 -a) + (best, X a)
5: Mutate probability vector
fori=1to/do
if(random(0, 1] < mutation_probability)
p;= p; X (1.0 — mutation_shift) + random(0.0 or 1.0) X mutation_shift

6: Go to step 2 until a termination criterion is met.

a & ad a v A X o
Ell‘ﬂ 2.1 ?]u@]@u’l'ﬁ"ﬂa\‘]ﬂqiLiﬂuELWNﬂuLLUUa’]ﬁﬁlﬂszﬁqﬂi

Tuaaunslivdanniaeianuhanduinedu uwiuaeuwitnlianuiannedaedne
Aad AaA @ @
NANFALNEIAILALD (luduaaud 3 Imﬂ'ﬂ 2.1 ¥fnmudendatunangaunlfiduduuuy
Iuﬂﬁﬂsuﬂgom*’naaL’mmaimmmauﬂu

FmILLwINNIUTUU e uiItaina Baluja (1994) d9ldiauaiindnnans

A, o & ada A A ak = < A o @ a \ o Aa
wuuiNari iduaauiBiidszintnwddn widlutufe nsldanuiandietdadineund
. o A . Y a v o Aad a | a A aa
danuminzauiosfigaudisunuiizlidaeuidngaiissatndsn laswdouitnig

ﬂ%’uﬂ;sﬁﬁLammm‘mwmﬁmﬂu MNURGAWN 4 lugﬂﬁ 2.1 Lﬂmﬁgﬂﬁ 2.2

4: Update the probability vector p
fori=1to/do
if (best, ;ﬁ worst;) then

p;=p; X (1.0 -a) + (best; X q)

dl et 1 6 1 Y o 1 1 ¥
E‘IJ‘Y] 2.2 MIYTLAINLG aiﬂ'l’lll%'lﬁlzLﬁ%I@ Ulﬁﬂ’]@]ﬂ‘utwiﬂ@l‘nl}@n]

2.1.2 ﬁ'umau%%t%aﬁ'uﬁqn‘s‘mLmunsx%'u

& =Y =Y > =3 d Qq: a a a @] {

mu@au’s’ﬁ'mowugﬂﬁml,uunsmu Wik luawaawisiBsIawInuuulng N9
wwanuAalunisldaauuuaiuinazidu (Probabilistic Model) unwnsldngudszans
wuuLaN NI wENdIaa L LLuaﬂawuﬁ@ﬁﬁwlﬁm”umauﬁ%l%aw”ugmmi%%mUmmzﬁﬂu

= o A A o a ' A & o Vv @
N AUYIzIINIRaead thasan lidnisituszrintanda’ld annegsladasandanis

o 6 o

AN TTINUTNTIN LT vt asn w3a n1snauwus vinlwnisdszunananinle

9

= AI ; { s 1 Rt G‘-‘: a a Qs 1 1 4 v 1
IIALIILIVUL I@]ﬂﬁﬂﬂﬂdﬂ’]’]&lﬁﬁ&l’]iﬂ LﬁﬂﬂL‘Y]’]ﬂ‘]J"ll%(ﬂE]u’)%L‘ﬁdW%‘qﬂ?iﬁJaﬂﬁ\N’] yﬁi“ﬁag

W SetaRgutilnglunuidoves Hark et al. (1999)

msl,muﬁ'mamJaamﬁmau’iﬁ%aﬁuﬁqmmLmumzﬁ'u azaglugdunuesianiaad
anwinazdu (Probability Vector) @vazlfifusaunulunswinisnizassvesdaoy
lasudazdé (Dimension) yosnaasiiudanuinenduiindazdaasdn 1 aregn9Tmu
amﬁd’]ﬂszmﬂimawﬁumauﬁ%‘l,%ow‘“uﬁqmmLLUUL@&JﬁIﬂﬂ&JIwma 6 ﬁ@l@”ﬁgﬂﬁ 2.3 (n)
@889 TadNLABTANNINL T maamgu@]au’i%l%aw”utgnﬁmmumzﬁ'um’«aLﬂu@”\‘igﬂﬁ
2.3 (2) Byvzdswandane 6 @nwmmmwaﬂﬂﬂﬂeﬁﬂufumau?ﬁ%aw”ugﬂiwaahadw
ﬁnﬂgﬂﬁ' 23 amduldimsunudesulagldiineesainuienduil sansoae
wihganuiilssafudszanniaslyidagnaann LT Mneotsinuiiazld
nihoaNnNI lumaAuyszmng 4 61 MzmRaisaniaaiiwInaSaReaInNaasiaen
Toglwaniaasanuinazduil udssdfasdudnanuiiesduwsasmsfedadide 1 1w

@ 0.75 unuanuaziduwnlastulouiausnazidn 1 nUszmnINInue 1Owen

110100

001110

0.75 | 0.25 | 0.25 | 1.0 0.5 0.5
100101

100111

M) (2)
A & Ad A o ~ o 6 '
E‘]J‘Yl 2.3 ﬂ’]iLL‘ﬂuﬂizﬁ’]ﬂiﬂlaGTu@Ia%'ﬁﬁl"ﬁ\‘lwugﬂiiw LNEUUNULINLA ﬂiﬂ'ﬂ’]“%qﬁlzl’ﬂ%

msﬂ%’uﬂ;aﬁmawaw”u@au‘iﬁ%aw”uqmsmmumzﬁ‘u uTavi lalasnslsy
dranuinazidnluudazdfuasniaasanuinaziduwaudiaaunanin laglunsvinen
> a ¥ 1 v Q 1 = &/ 1
vasdaneIfntaziimiguaiadiadn 2 @ Juinnnneeianuiand Tay
s 1 cll 1 &/ 2" 1 a =} é’ Qs 1 ' 1
‘[m‘[w‘[ﬁﬁmaamaqumumﬂmmawmzLﬂu 0 %38 1 JunuaIANInAzLTwl ks
Jevadnaasanuiiazidn 1w aneataNnztduidn 0.5 lunﬂﬁa A0

A o X P a a \) Y & \
ﬂiz"mﬂi“na&lﬁi’]d"nu&l’] ﬁ]z&JIaﬂ’]ﬁLﬂuU@ 1 %38 0 LN G] nw LL@]ﬂqL’]ﬂLWQSﬂ’]f]Nuq"ﬂzLﬂu

9

aa

A @ ' A o A A &
fieh 1.0 nA@ mammqwaaﬂm"l,m:LﬁuIﬂﬂuIﬁnmLflum 1 NIRNQ
4 U v L 1 J v ~ =) 1 o = 1 1
daguaidiadluuuirfinzRansmihdasudilafdranuminzgauainni
1 neasaunazdulundazia a:gnﬂ%’umuﬁmaaﬁmauéﬁﬁaﬂdw O

o
AA v &

W 1 anusnaziduludanunazdsuanlng 1 waondu o denuiazidnluidfuwnay

AAAR Iamaﬁﬁ@ﬁfm:gﬂaﬁ”ﬂmlﬂu 0 lwsaunalufasiRueudiy adtuianIn
Aa o & 1 =3 s

NLUIUNITIIAUINT LU T2 B2 WTh nﬂmas{mmmauﬂumuﬂugﬂLmumsmm’mmmaa

fMAaUNG launIIvnNIuYaITUe auﬁﬁ%aw"’uﬁqmimmum:ﬁb Fiuwaanle ﬂﬂ;ﬂ@"’aﬁ

1. Mwuadiudusasdudslunnieesanuiandulunn g G@ldsdndu 0.5
1 U 0’] o 1 J 0’
2. qmﬂamamam@aummaﬂmai‘mmmauﬂumum 2 9
3. ﬁﬁmmmmmmm:amamﬁaamﬁqmmvlﬁ LLﬁTaw“msmwdm”ﬂmﬁugmuz
RSN
U
4. ﬂ%’umnﬂL@laﬁ?mmuwuflumugﬁu: I(ﬂﬂﬂmimﬂLa,m:ﬁmﬁ;gfmma:@ﬁ
laimdauni
Y A o A . v et 1 [4 1 A
o iadunkif i voIrTU Wi 1 azdsudminieasanuinasdnn
Gk 7 lastindnauaztdw@uuINnY 1/n 18 n Aasiwiwlszrng

ﬁgﬂﬁmmlﬁlmyum auﬁﬁ%aw"‘ugﬂﬁuamadm

o lunenaunu miadIunian imaag«?ﬁuz W 0 azdsudIneaIaNm

Wt dundunid i lagsindnanuiiasiduw@uauaiy 1/n

5. mwaamwLaﬂL@a%awmﬁmﬂugLiﬂg&@‘imauuﬁm%vlaj TagNaNININAN
anNinaziduaasuaazd@inidn 0.0 %38 1.0 ATULAIWIA L DFANYNAE
Jugidhg 0.0 Wi 1.0 nuauE? TWaunivinan Lwiﬁwﬂ'agviwvlaimu Wﬁiy

a ' & . & e o o & A =)
@'Jail']\ﬁnﬂnﬂL@ﬂjﬂ?quuqﬁlzLﬂuTuNWI%NLLﬂ?quﬁqT%@auﬂ 2045 @av[,ﬂ

2.2 Tawmagaui 15 lunnsmaaas
2.2.1 T3 1w Inlanibanga (OneMax)

daymidudymdredmivtuanewifiFanugnia uazinazgnldidudynn
nagaunnAnIINvdaanasNuWallTauauanuaansalumaunndaniding e

%

& ' ° A A ' P oA A &
wanzaNaziuadnudwiudandu 1 LLa:mgaq@wLﬂuvl,ﬂvl,@ﬂanﬂumﬂu 1 NIRNA b

aX A A @
NIHHAININLHA mmmmﬂﬂqm:m'}nummm’m@ﬂ@ﬂmhm

Arnuald X=04, X,.. Xy} tJulaslalouaarusnn N lasiudazda

X €{0,} mamdranumanzauvsdlasialoudsansadiwimlaanaunisn 2.1

F(X) :in (2.1)

@208 W TNANNaUVaIaaNaNNLT® 111011 FANURNIZFUNRIWITALE Aa 5

(esnnddwndanidu 1 ag 5 da)

2.2.2 Tymrwindanasenuiuansuuugauinga (RandomMax)

v g o o o a o a9 oo v o ' a o =
ﬂtyﬁ']uﬂa']Uﬂﬂﬂ@ﬁqﬂqujuﬂﬁﬁuﬂNqﬂﬁi@ﬂvL@ﬂﬂ']'JvLﬂ?n{i@u LLAAINNIUAIIN

d' v o a d' o a & 094/ =3 v o a d' o v
LL‘Y]%‘Y]"ﬂ$ﬂu'ﬂ'1ﬂ"l(§laﬂﬂﬁ@ﬂﬂqmaULﬂuU@ﬁudﬂﬂﬁw(ﬂ ﬂﬁ]zﬂuﬂqﬂaﬂqﬂluﬂﬂﬂqdﬂﬂqlﬁ

q

o Qs bt { 1 ‘3’ ‘é a 1 o
ﬂ’]@]ElU@]Sx’lﬂiJLﬂ’]%ﬁﬂﬂﬁq&l“ﬂ%ﬁﬂuﬂ% FININNTWIAIANULANZFUVDIFI A UA N

ﬁ’]@]aUﬁ’ULUWWN’IElﬁii?JEULL‘szJ’WIVGLLGiﬁ% lasnsudiaauiadaida trdadeaule
. e o o 4 X 4 . de o, Feod v ¥
AU LAATIN WAL AL LILNUT WA I LA 3l m‘sm}aammuuﬂLuaomﬂﬂtymugﬂ

d.i >3 a s " v va d}’ a 6 A A
2ONLULN Lwamaauaaﬂa‘maﬂ@zlvlamaamﬂmmnaa"lﬂ‘lummwaagjuwsa%m
VNEANWLAED LT awﬁi'u,ﬂmmﬂgmfjwvlﬁl,ﬂu 011011 wazdraauanaanasnalaiu

110011 dranunInzaNndwIsla e 4 (Danasanuithwane fe 901 2, 4, 5 uaz 6)

2.2.3 lyywnuan (Trap)

Uryn1nuan (Goldberg, 1987) iludaynisndriwivduaawidifenungnysy
dl ~ 6 o 1 v Qs dl v a 1 a
asannwWsngurisanunanzaNazlisnulaslalounlsznaudiada o nninda 1

' Y & o o A o A &
LL@]ﬂ’]E;’JNEI@I‘IJENW(]ﬂ‘IiuﬂaUVL@laJ’lﬁ]’mIﬂﬂ&lI‘mmﬂizﬂEIU@’JmJG] 1 9RNQ

dgyninuaniazlsznauaiunibiag3ny (Building Block) gay ¢ #nnidznauee
Qs Q Q/ { g 1 v =3 1 ¥ a 1
NWIWNUANNEIYH AIBRINEN 9 AR k D0 LaZRIUITORIAIANULANIZES

YDIULARZRUNI YT LAONFNNNTN 2.2

frigh ; ifu=KkK

Fe(bg.-by ;)= (2.2)

, otherwise

\Wa b, € {0, 1}, u = S, s UAE figh > fow lagUn@usa fog, azlawiny k uaz
1=l

@

fiow NANYINAY k-1

4 o] v ¥ 1 ot v J 1 o ke
Warhwiheskindsnaudennldendn - Aenumancauaandwola
INMITNAIANUAVZRNTDILARZAIIDETNEDY 9 Wwannk WanTwmaaaa

AN RUVAINITINRINLETIVUIG k A16aN% m %18 Leadlwaun1In 2.3

B
- (BO"'Bm—l): Fk(Bi)’ B € {Ovl}k (2.3)

3

Il
o

A8 TH DA BARIBETNTIWIG 3 (k=3) UasiudasnibIgRIINNGant
Y3940 5 79 (3 x 5 trap problem) waziiddaeIfIqauAe 111 001 110 000 100 AIANA

IAUIERNNAIWIALAAD 3+ 1+ 0+ 2+ 1=7

2.2.4 ifvnsasdalan (Royal Road)

ﬂzymﬁﬂumsﬁmsmmﬁjmaagmmuﬁ@ﬁﬂi:ﬂauﬁ'ul,ﬂuﬁmau I@mﬁgmmuﬁ@l
X ' & o o ¥ o A H g
maBhaziiondn &fun (Schema) Gvdmnsudamisadaliauuy 64 Sanldlunmanasis az

ﬁgﬂl,wuaﬁmﬁmu@agﬁmm 15 3uluu @”mam‘lugﬂﬁ 2.4

Schema 1 = 111111 11*F* kb ko ko kokkodokodok ootk ok ook ook b KRR KRR XXXk, o] = 8
SChema 2 = ###kkx]]]]]]]] *F*FRERERE RS AA R AR KK KA K KA RARAR AR SR RIRE,) = 8
Schema 3 = #*kkkkkkaktrkik®]]]]]]*F*RFRF Rk Rkt Rd Rk dAAR R KR AR KRR ARERAR, 3 = g
Schema 4 = #*k&kkkkakbhskhkthkhkahnk] 111711]F*FFRFRkdhdrbrkshtkfhk sk dhdhkxh®, o1 = g
SChema § = *# ks ks kb kdokdokdkbok bk ok] 1]]] F*HF*F KR RAR SRR SR KA KR, 0 = g
SChema 6 = **H kb kkkkkdokdokdk bk bk ok ko ko kAR KR %] 1]]] FF*HHA Rk KKK RERR, o6 = @
SChema 7 = #*k&kkkkskbksk ok ok ko bk ko ok ok ok Rk kR Kok kKK] 1111]][RR H*H %K%, ¢7 =8
SChema 8 = F*k#kkkkakbkskkok stk dko bk ok ko ook ko ok kR KRR Rk Rk XK %% 11111111, s8 =8
Schema 9 = 1111111111111 111 F* 3k sk ks kokkodok ok bbbk ok ko ko kKKK KA KR, 5Q = 16
SchemalQ =***#*kskkkrkrk 1111111111111 111*F*H*F Rk kkkdrdhthth stk sk xkxkkd*, o]0 = 16
SChemall s*** sk skkkkkkkkkkkkdhdhahnhnknkx]111111111111111F*FF*Hkxkrkxkrkrsx, o1 = 16
SChemal2 s****kkksktkkhkkkotkbokkhokahdohkhhbhdohdohkahkkkkk£5%%1111111111111111; s12 = 16
Schemal3=111111111111111111111111121121 1 1%*¥*¥k¥sk3xk3k 33k ks kskkskoxsdorkxokrd*. s13 =32
Schemal4 =#x#kskdonsonkrkackokiortosionoiook ol $%11111111211121121111121121211121111111; s14 =32
Schemal5=111111111111111111111112121121112121121111121211211121211111112111111111; s15=64

3U7 2.4 duvusdunludynisedalia 64 da

ABndwimdianumanzanveslynisedalia 64 da azvihmafisugduuy

o a oo % as o a a a v o = a
vaidaaui ldnndanasiunuluuurasafundiazadnn ddaeuiizduuuvesanss
a = @ A a & \ v a a ai = Y
auafnnlanegldnzuunaunzyluadumiu g dizduuudaansfing 1 Aazld
v v o = et a dl =3 v v dl qldq,
Azuun 8 uey uazddneudduunasnuaduni 9 fezldazuun 16 udu (Azuuunlad

o ° Ad A ° o A a A & = ad

WUINFLFNTINAY) Aeaunangadwiudgmitaann 9 daidunimmue Sansming

FuIAIANURNNERUN LA lay (8 X 8) + (4 X 16) + (2 X 32) + 64 = 256

ao A A [y
2.3 J1WUNLNYIVDY

Harik uasame (1999) shuawaduaawddlndlunsvianuvesiuaauifige
WHINITUEININTUAaWIBEIWUENTINUDLNIZTY (Compact Genetic Algorithm)lag
dawansiEaLuUaINnazidn (Probability Vector) Lmumgwﬂi:mﬂﬂumimﬁmau

& o v v] o g = 1 v 4 =) kg o
mml%mmma@mﬂwmﬂmmmmﬂﬂm@munquﬂs:mmvl,@ L1Ha9NNA T HAYINNNT

kg
adda @ o

o = a @ , Lo oA < o o
AALALINEIMILUUANUI LT WULAGILA LY wazdThasvinlwnstszulanatdwllle
agITIan LﬁaamﬂvlsjﬁhLﬂmz@i”aamﬁ'ﬂmsﬁﬁLﬁumm%m‘"uﬁqmm [NTTUA s

o & o A o o v A o & Aad
LREMINANNUT e laaNgInINNNRINITO MENIITHIFNA AU LAl N S UL YINN LT Wa a3 D

LULLAN

s I‘B a a s v o v a v o & {
waanfiTuaawIBBiwuInTINuDUnTEFugniaue ddnuidsduwauniien
U301397%aauideana1n 1% Ahn uaz Ramakrishna (2003) WiauatuaaulBiis
o o A A = Aad . .
WunIINLULNETUanAudsznINangauuuns (Persistent Elitist Compact
Genetic Algorithm: pe-cGA) LazduaaWIBLIIWBINITULULNI: TN AL 323N INa

‘ﬁq@l wuvlaionns (Nonpersistent Elitist Compact Genetic Algorithm: ne-cGA)

10

& Aad A @ o A A & aad Yo
Tu@]au')ﬁl;ﬁ\‘]wugﬂiiuLL‘UUﬂizTUﬂLﬂaﬂLﬂUﬂizmqﬂ?ﬂ@ﬂa@LLUUﬂqjj VL@'H)’]

q
9 v

> H { L= 1] & e a V
ﬂizmmmﬁﬁﬁq@mlﬂumsﬂmﬂgammﬁumauﬂu mamumam%ﬁﬁmiﬁiuﬂgams
ﬁﬁmmjaaﬂ'u@auﬁﬁ%aw"’uqﬂﬁuLmuns:ﬁﬂu 2 UUAUAILNY LOLA IUAAWNITFIN

U329 IO UNITAINTIHIUTZTININAAIANVRNIFNNG NN
o <& ad a o o A A = AAA
Mgl nIrasiuaewIBTIWuINTINLILNIzTUARa AL szTIN A ige

=)

& ~a o Ad A ' A
LUDUDNITHY UNIRIIYUIzmNg LLa:ﬂimmqu@amaa: 1 dszmnavinnulay
AaA v X ' o . & Aad
ﬂizmmqummmwumL%W’]:’Luﬂsxmmgumﬂ momﬂﬂizmmgumnmumamﬁfﬂ:
o v J Q 1 QQ//
HNNNIFTIU TN T RN NN IAA LTI
AMINANITUNAIUITLINNINAAURINZRUN AN m”umau’i%l%aw”uqmmuuu
o A A = Ada @0 o Ad A ° '
mzfmmLaanmuﬂs:mmqu@Lmum’;s VL@u’]ﬂsw'msnuﬂsz"mmmwq@mmmm,m

A o = = aa Aa A o
AMULRNIERULN DTN LU THULNE LAY TN INAAIA M ULANIZRUNANTN HINTAIN

Aad

ﬂi:mﬂiﬁﬁ’mmummmuﬁmﬂﬂ’hﬂsz"mﬂm@mq@ ﬂi:"}j’miﬁﬁa:nmmﬂuﬂiz"mmg

o ni nidai a 1
Ty LazIMNUNUTET ﬂi‘ﬂ@'ﬂq@ fLN"

PYUADWNNITANINUY DIV A BUITUAIN
1. MuuadranuiaznduSuduluudazifvasniaasainuiinezidu(p)
A A
lagf Maanus1nvaslatiulay

fori:=1to/ldo

pli] := 0.5;

2. a%"wﬂixmmuazﬂszmﬂiﬁﬁﬁq@ Tau® Generation ﬁajmaaﬂiz"mm
if (Generation = 1) then

elite := generate(p);

individual := generate(p);

3. WAINTNWIUITZINNTNAA ANV RVITRNNANIN
winner, loser := compete(elite, individual);
if (winner is better than elite)

elite := winner;

4. dsudydenuinazidulesn 1/psize fadldiudanuhaziu
] & = ' . e o
Tuldazass TIen psize sansafisuidsslanuiwindsemnsly

TUAaUIBLTINUEINTINEENINY (Simple GA)

11

fori:=1to/
begin
if winner{i] # loser{i] then
if winner{i] = 1 then
plil := p[i] + 1/psize;
else
plil := p[i] — 1/psize;

end

5. ME1enuTnaann 2 D9 4 awndndaNiasidulwidacifuad

6 1 A aa
ALABIANNINAZL D WAL 0.0 K38 1.0 nnia

& ad A o o A A = AdA '
mu@lammmwugmmLmumwumaaﬂmuﬂiz"ﬁ’mimmq@LLUU"LaJmai 1
& add o AdA @ . ' ' = v < Aad
mu@lamﬁ‘nmﬂs:mﬂim‘ﬂq@uﬂﬂumiﬂmﬂ;dmmmmﬁmﬂu LA LINUTUAAUAD
A o o A A = AA A VA 9 o & A
WuInIINLLLN TR aniiulsETnINangauuuns wddnsasediudsiuinie
’Lﬁumimuqu"Lsﬂﬁﬂizmﬂsﬁﬁﬁq@Lﬁuﬂi:mﬂiﬁﬁﬁq@umumai Taoivuadn N 1w
a‘hmujugeq@lumuﬂuﬁs:mmﬁﬁﬁq@ wazfNualw Control Parameter \Jwe N g
luﬂﬁiﬁumamil,ﬂuﬂi:mmﬁﬁq@
& o &) A A & '
T UaaUNITRIIUIZTINTING 2RI INT uwazUlzrnsnangaduniating
> Add‘ £ :&1 1 1 ‘3 o v
1 6 T(ﬂUﬂszmmm‘nqm:amwumluﬂs:mm;umﬂmmu uazinnwali Control
' @ o ' & a ° [y &
Parameter dfviu 0 wasndszmnTiunuInduneuitazviinsainedszsinslivan
LNE LA EILYINTh
< A A Ao . & <& adll vo
T U WNIININ TN TZTININTANNURNIZFUNAN I TUADUAD bOI
Ui:mniﬁ'uﬂixmmﬁﬁﬁq@mﬁﬂmm@hmmmm:amﬁammLﬂ’%ymﬁwmﬂixmmﬁ
A AAa A o & o Aa o
fehanuminzaunandy wiagaur Sadwndszminsh@nduduwdruz uaz Control
e A 1R o 1 d'dni tﬂlc £ £ 0“; v
Parameter mmmhmmmu;ugaqﬂluﬂfmﬂuﬂs:mmmwq@mmuu@vhLLmuu I
1 AI J Y { {] 1 v qqll a
Control Parameter 48 WANT 1 meﬂiz"mﬂiﬁﬁﬁq@aQmaumu N %U7 PUADWIDAY
o v { { &/ [1 1 =) U 1 [l
mmmi”nms:‘*mmﬁﬁﬁqmum%sﬂ@qumazmlﬂﬂﬂuiﬁnumﬂmmmmfmﬂu 0.5

URTINAUAA Control Parameter nav 1l o

1WA aBNITRINI U DIV A D UITAAITh
1. Mnunadianunazidwsuanluusasdauasneasanuiazidn

) Taadi 1 faanwsnveslaslulay

12

forii=1to/do
pli] := 0.5;
2. ®3UTETINg LLazﬂsmmﬁﬁﬁq@ wWianImnuaSIdua
Control Parameter
if (Generation = 1) then
Control Parameter := 0;
elite ;= generate(p);

individual = generate(p);

3. Ansonmdsznniidaenumanzasianinles N da Nwnin
goqﬂiumﬂﬂuﬂizmmﬁﬁﬁq@

winner, loser := compete(elite, individual);

if (Control Parameter <= N and winner = elite) then
elite := winner;
Control Parameter++;

else
elite = generate(with prob = 0.5);

Control Parameter := 0;

4. Uinlpdranuiazidu Taafi 1/psize AasnflFusuaanusiandy
Tuudazass @9 psize sansaufisuidsslanusmndszmnsly
mgu@lauﬁﬁl,%awyugﬂﬁuasi’mhU (Simple GA)

fori:=1to/
begin
if winneri] # loser{i] then
if winner{i] = 1 then
plil := p[i] + 1/psize;
else
plil = p[i] — 1/psize;

end

5. MEenuTuaaun 2 o9 4 aundidanusnazidulundazifuasg

6 ' = aa
neataNNzidwazidn 0.0 W3a 1.0 ‘Y!ﬂ&l@l

13

wazlud @.@. 2006 Sunisa Rimcharoen LazAMAE "L@Tﬁ%aum]"u@auiﬁ%aw‘“uﬁqmiu
WULNIZTUMILANLARE (Moving Average Compact Genetic Algorithm: mcGA) luns
ﬂ‘?uﬂ‘gw”u@au?ﬁ%aw”ugmimmumzfu TaglFanasavasdianuinazidulunisasis

1 et & 1 dl c?(v o 1 1 A:i a é’ 1
Uizmmgumvlﬂ FIaLaa % LAU1NNMTEIAIANNII AT WAL A WINUTE TN ITUARY
' (% ° ' A & AaaA ° ° |l
§uumunmmzmmmﬂummaﬂaaﬂm I@wu@amﬁwm‘sm%mmmuguwlﬁumi
o ! ' Y ' . . s & A v [&
AALAUAIANIIATIT WA 1758n31 Window Size Gﬁwumam%"l,@mmsﬂmﬂ?wmau

o <& ad a o & o ' ' = o

msmmwmawumammmwugﬂsmlumumaumiﬂiuﬂgammmmauﬂu Fauenlatdn
RINIV9N% belA ﬁwmmé"mwmiﬂ%'uﬂgammmmauﬂu LATAIWIHAATINIT

o

ﬂ%’uﬂgdmmwmauﬁﬂ@ﬂmﬁﬂ 1A UUADUNININY DITUA D WITAAI T

1. mnuesanuiasdusuanluudazdfvasneatanuinazndu (p) laod /
A
Aannugivadlasiulsy

fori:=1toldo

pli] := 0.5;

2. svdszrng
individual1 := generate(p);

individual2 := generate(p);

3. U URANIANNULANIZEN

winner, loser := compete(individual1, individual2);

4. udpdrenuihazdu
4.1. dwmdannsdivdudanuhanduluudazidvasanaeiana
waztdu (q)
fori:=1to/do
if winner{i] # loser{i] then
if winner{i] = 1 then q[i] := q[i] + 1/n
else q[i] := q[i] — 1/n

4.2. dwndanniadivdydenuinzdulaswisluudazidveaniaad
ANz (p) 1oy movavg Aednanuinanduszay was M Aaaua

U8 Window Size

14

fori:=1to/do
form:=1to Mdo
movavg = movavg + q[il[m]
movavg = movavg | M;

pli] := movage;

5. MEIaINTRAARA 2 B9 4 aundanuiduluudardfvasiniaasain
ynazidwazin 0.0 %38 1.0 nniid

P
unn 3

msﬁnmuazﬂmaaaﬁummﬁ%m‘n’%fsmfl,ﬁuﬁmmnmﬁﬂﬂ‘s:mns

o =) ¥ v U, Qq: =Y v Q‘ ‘&‘
ANIFE AU DI "l@?im:nu,azmaaamaaumu@am%mil,%mugl,wmmmu

Y % ~ o a P (% ~] ~ o o o
odulszrnsnudymdwindenibiannge (unudgwidiie) uasdgwinuan (@unu
dywienn) assnawgdnssulundudiaausesiuaawitainay lunydinldisns
ﬂ%’ummmma:lﬂuhUmﬁ'ﬂﬁmauﬁq@Lﬁm@ﬁlﬁm LLa:m{lﬂ?ﬁmauﬁuziﬁqm’am'f’m

LA VY o o II o J 1 1 o
TumInaaas gpﬁ]y"l,@mﬁu@mmuﬂizmmﬁqmm@]aumum‘lmmaz;u fa 50, MU

e = v =] Vo va e 6 1 o

ganmuioud (@) Ao 0.1 laglummasasldlamwualiimanaonug sudwiusey
gdq@maamiﬁwmﬁmu@"ﬁﬁ 5000 J8U (LL@iﬁlz‘ﬁq@ﬁauﬁwﬁﬂunﬂLmafmmmﬁlzl,ﬁuﬁ

' a o o . &
Audu 1.0 38 0.0 LWRQ) Namiﬂ@aamammmavl,ﬂu

n1INAaaInuTnIIWIBLARKININER (OneMax)

lunInasad lainuwasiwIndaly Aa 100 96 NANIINARAINLIMNINITITAIGaL

Aad a ' a o . & , L o o A
V]@‘ﬂq@ LNENBENNER El’ﬂuﬂ’ﬁﬂillﬂﬁ;\‘]ﬂ’]nﬂm aiﬂ’)’]&luﬂﬁlmﬂu LLazﬂqst?jﬂ'](ﬂal](ﬂj‘ﬂLLﬂ

=

A : o o Aad & , vo ad = ' a o !
NFATINIYNUAIADUNANFANIE meﬂmmmaumﬂqmwmamaL@mlumiﬂiuﬂgam
nawasanuizduaziradaey ldiindn gﬂﬁ 3.1 uax 3.2 LLaqu@mmmi@;m‘Tﬁj
o ﬂqz ad ni = 2 Y o d'dni [1
ANGaLYDINIFAINTD I@mgﬂ‘n 3.1 A8 gﬂmigm’maamﬂﬂim@aum‘nq@lumsﬂmﬂ;am

& 1 ' a A v A A %o |] @
L?ﬂL@]aiﬂQ’]Nu’]’ﬂzLﬂu ﬁ'ﬂugl]‘ﬂ 3.2 a1 Eﬂﬂ'\ﬁ@LTqLNaNﬂqilmﬂ’]@ﬂULLU'&?@?’JN@]QU

100 — e

a0
a0
70

60

Fitress Yalue

30

40 -— min
! max
avyg

30 1 1 1
a 20 40 60 a0 100 120

Generation

a Vv %o A o ! & \
31]7] 3.1 ﬂ']i@L°]J']°]Ja\‘]ﬂ']{[fﬁﬂ']@laUﬂ@Wg@Iuﬂ']iUiUﬂE\‘]ﬂqL'Jﬂla@lﬂiﬂ')']wu']?ﬂzl.ﬁu

16

. ——
e ey g g v

Fitness Yalue

min
max
avg ——

0 500 1000 1500 2000 2500

Generation

lﬂl ' v Y o ' U kg ot ' 6 1
31]“/] 3.2 ﬂ’ﬁ@L“lﬂ“ﬂﬂGﬂ’ﬁl“Hﬂﬁ@laU LLEJEZ(@TJ&J@’] Ell%ﬂ’ﬁ‘].]iﬂﬂ?dﬂ’]lﬂﬂm 23NNz

anNa TN TRy nLl asnasaIa Nzt T nidazd L n I nLaaTAY

IRETARILN a:wudwmﬂ%ﬁmauﬁﬁﬁamﬁ'mazmLﬁmlumiﬂ{uﬂgomnﬂL@asgm'mmﬁ):

!
v '«Jzﬁﬂﬁ’nm@a*fmmmlwuﬂu;jﬁwg’dw 1.0 AaWINII lummzﬁﬁﬂiﬁmauﬁuﬂq@

a o d ! ' PR 4 ' . {
ANNTMING28 MIdReuudadssasainnuiaziduwazinmiivudwanada gmuﬂauﬁa:

v U

Audngen 1.0 3UN 3.3 uaz 3.4 usasliiruisdmaisuudaimasnnaatanuiandu
Tuudazdunsadadnarhowimwldluudreg Gdunudr 0.0 uazfzmazunudl 1.0
] 1 " Y 1 I‘é’ 1 v]
lasnaasananhazdurasiuusnizagdudige laduananiugarioaguuga laog
A A ! & ' Yo = o
71 33 wasmuddsuulasdnmeianuinzdusainislddiaendigalunisylsoen

LLﬂzEﬂﬁ 3.4 lwmslgane auusiquamhm

gﬂﬁ 3.3 msmﬁwuﬂmmnﬂmaéfmﬂmim]:l,ﬁumaamﬂ%ﬁ'}muﬁqﬂlumsﬂ{um

17

gﬂﬁ 3.4 muﬂﬁmuuﬂadmLaﬂL@la{mmﬂwuﬂﬂ@mlﬁﬁmaqu@iamﬁsl

nmanaaasnuilyninuan (Trap)

o

lumnasas s ldimuaswmudali fe eo o aymiiuanswe 3 Swau

[y | e : %o Aad a \ a o
YNRW 20 ?@@aﬂu) Nﬂﬂq?ﬂ@aaﬂwu’lqﬂqiiﬂjﬂhl(ﬂQUV]@Y]%@ILWUﬂaﬂqu@831uﬂqiﬂ§Uﬂ§G
Aad v

e asanuinaziulilaadiaaunanaa Lwﬁﬁmiﬁl"ﬁﬁmaué’qﬁl,l,aiqm'w 2%

q
]]
aAada

° Aa A o & o A o v o
aqmqﬁﬂWUﬂ’W]ﬂU‘ﬂ@ﬂq@l @]\‘lﬁlzl’%uvl,@ﬁnﬂzﬂ‘ﬂ 3.5 ﬂqiaL°ll’]°l|E]\‘]ﬂ’]il?jﬂ']@lﬂﬂ‘ﬂ@ﬂﬁ@luﬂqi

|
ﬂ%’uﬂ;m”]nnmﬁmmﬂwuﬂu ﬁ]zg\]'L°1T’1L%’Jﬂ’.hLLﬁlu@auﬁﬁﬂTadﬂﬁiﬁuﬁﬂﬁﬁﬁE]‘lJﬁVL@T
ANNUNVANIAINNLRNIZRNLENTN mugﬂﬁ 3.6 Lﬁuwaé’wﬁﬁnﬂmﬂ%ﬁmauLinqm"smTasl
o, o |) A ' A &) v & A g &
w1zl wInwnin Lmlu‘nq@ﬂaumam@aimwmwﬂuﬁmanggmslma%mm%m

& Al o aa a
°1Iu(ﬂau’aﬁﬂWUﬂﬁ@laU‘ﬂ&lQMﬂ’]W(ﬂﬂT}

18

33 T T T T T
g -
]
-
. il
=]
(1
min
max N
5 | | | | | aug
0 20 40 60 80 100 120
Generation
3UN 3.5 mi@;Liﬂmnmﬂ"ﬁﬁmauﬁﬁﬁqalunwﬂ%’um
i) T T v 7 y T
a0 l ' . -
40 L -
3
m
=
@ 30 -
a
&
(1
20 -
10 min 7
max
D | | | | | | avq
0 200 400 G600 800 1000 1200 1400 1600 1800 2000

Generation

l-ﬂl 1 v Y o l-ﬂl ltﬂl 1 v Qs 1
3'1_]1’] 3.6 ﬂ’]i@L°1]’1"i]’]ﬂﬂ’]§1°ﬁﬂ'1(§]QUV]LLEIVIQG]'E’JN@’JUl%ﬂ’]i‘ﬂi'ﬂﬂ’]

anNa TN Tl AsnLdasnasaa NNz dnidazdLns Ik nIaasaY
nasin ﬁ]:wudﬂmﬂ"ﬁﬁmaudﬁﬁq@Lﬁmashmﬁmal,umiﬂ{uﬂ@amnmma{mmmﬁ):
Wil ﬁ]xﬁﬂﬁnnL@lafm’mmﬁmﬁu@;Lﬁﬁg&@h 1.0 32 0.0 Aautu5 Twwnenonlddaay

{ 1 a 1 v { 1] QI A/ 1
ﬁLL&lii(@]W"ﬂ’]iM’]‘i’nJﬂ’Jﬂ mMadfswudady aamm']uuwuﬂm:ﬁmuwmu/aﬂaaagmu

19

ﬁauﬁﬁ]z@]’mﬁ %ﬂﬁﬁvl,ﬂgimsﬁuﬁmamtauﬁu@ﬁazmﬁhmumﬂ"fu Fldwudaauii
qmmwﬁﬂdﬂm‘ﬂ‘fﬁma‘uﬁq@Lﬂ'mash\‘lLﬁﬂﬂ%ﬂﬁiﬂ?yﬂ;n‘ﬁﬂmdmsﬁuﬁmau gﬂﬁ' 3.7
uae 3.8 ugaslwifuisrinmsasnulssosinaaianuineziu Wadnsvheusiwly
Im;mm 9 (ﬁﬁmmﬁa 1.9W) RAWUNUAT 0.0 LAZFVIITUNUAT 1.0 laslIN@BIAINY
mﬁ]uﬂmaﬁq’ulﬁm:agﬁmﬁmqﬂ "ldi‘fuuwug’uq@ﬁ’maguuq@ gﬂ'ﬁ' 3.7 duns
Lﬂﬁsmmmmnnma%mqmim]:l,ﬂumaomﬂ%ﬁ’]mauﬁqﬂlumiﬂ{um LLﬂ:Eﬂ‘Vd}I 3.8 1Ju
milddneuutgaiineiy ﬁnﬂgﬂa:l,ﬁuvléf'hLmuﬁLﬂuﬁ@i’] fa mjwﬁmﬁlﬂu 000 (Qn
naan) gﬂﬁ' 3.7 ﬁl,ﬂumﬂ%ﬁmauﬁq@lumsﬂfuﬁﬁmﬂumiﬁum azgnwaan lddend
é’aﬁlzLﬁumﬂgﬂ"l,@ﬁﬂﬁﬁi’ﬂuauﬂajuﬁ@ﬁaﬂﬁ‘umyﬂﬁd 9 70 Iummz‘ﬁ'gﬂﬁ 3.8 fidumsld

daauudgaiinein wudaeunidnge (lidanuanian)

o

gﬂﬁ 3.7 m‘smﬁwuﬂao@hnﬂL@]a‘§mmmirmzl,ﬁmlaamﬂfﬁﬂ@muﬁq@lumsﬂ{um

20

gﬂﬁ 3.8 mnﬂﬁmuuﬂaamLanLmas‘mmmﬁmﬂmﬁaqfﬁﬁwmJLinqm"m@T'Jﬂl%ﬂﬁﬂ%’ﬂ@h

d'l o a 6 ni 1 (% J] 1 =3 1 o 1
4] amﬂmLmﬁwﬂs:mm‘ngnqumwmumlmma:gu LAWINNIUTUAN
6 1 YV o = = 1 = o 7 1 1
L’mLmaimmmauﬂﬂ@uiﬂﬁﬂﬂ@aumq@Lw N NIGHR Mlrananunazidwlulaas

o [} 1 v o A o v 1 g] 1
dunigiinaudinaudge (G1a1agnwaan) ml%ﬂs:mm;uma 9 memma:&;ﬂﬂg
s a ai ni 1 s 1 6] Y o 1
AUAN el,wum:“nﬂs:mmﬂglﬂqumﬂmﬁﬂsumnﬂmmmmmanﬁﬂ@Ul“ﬁmmaqu@
1 v Q] [l l&‘ A v v 1 1 v 1 0 1 0
a7y TnsUsuaIaN AT T wWIWa smLmmwﬂmammumwzgngm@au wevin
Py ~ & o A da ° o o ° A o o o =
Tilananaziiudinaudunanii wazvilvnszuinnmsawrndieaulufanuan asazii
U § {] = { 1 v A/ 1
"l@mngﬂﬁ 39 uar 3.0 MuaaslsETINIudazdINgnduaIln (LL@azLLnalugﬂLqu

Uszrnsudazan) lasduwniknidudddedandu o uazianfedanidn 1

21

Generation 0 Generation 10 Generation 20 Generation 30

Generation 70

Generation 80 Generation 90 Generation 100

; - e X 4 e, .
gﬂﬁ 3.9 mnﬂﬁwuﬂawaaﬂiz"mmﬁquaﬂwmﬁaﬂiumL’mmas”‘mmmauﬂﬂ@Ums

lfdaaudgaiissadnadoalullym TRAP 3 x 20

22

Generation 0

Generation 100

Generation 600 Generation 700
T L) T T L)
A] [. " . ." l-. . ol
1 n n
[N o |] o " "]
[B | . []]
. 1 [] []]
| I [| []
L] L] ' ' II L] '
o i] . ' . '
L] lI . L]
n lI L]
L] . L] L]
LI | " ' . n
. [] []
= [L3
- []]
[]
1, "
[]
]
[. "
» L]
Generation 800 Generation 1000 Generation 1100
] - . Ty ¥
L] L] M ' . n ¥ L] 1
I L] " L]
] []]
[] [] . J []
[]]
&]]
' .
[]]
1
Generation 1200 Generation 1300 Generation 1400 Generation 1500
¥ . — T L E—
L] L] n
ll L]

{ { II v J 4 L] 1
gﬂﬁ 3.10 mmJﬁﬂuu,ﬂawaaﬂi:mﬂsﬁquaﬂwmﬁaﬂmmL’mL@las’m’mmmuﬂﬂm

nmildfneugaiiniudaauutgaludynt TRAP 3 x 20

23

v v Y & 1 4 g =) v AI &/ >

NNANIINARIT I ULEAI LA LRI Lﬁawmam%’miﬁ'wgmwmmummj
ﬂizmﬂﬂfﬂ’nmfﬁnﬂﬁmauﬁﬁ@hmwmm:am‘hﬁuﬁamzﬁﬂﬁmmmwuﬁmawm

Ugmenle @awiazldiamannndy) lusaefidldanuiindasuidainnumanzas

a . a \ o Aad
fﬂ\ﬁ LNEIBENLA HQQZVLNWUQW@]QUW@Y]EE@]

N”?ﬁ‘fsjvl,ﬁmaa\‘lm@hm’mLL@m@m’LuLLdga@iwaoﬁagamﬂumiﬁ'@ﬁﬂ% YA INIT

u

& aa a v a & o Aa Y o o . ° aa
Tu@]auaﬁﬂqiLiﬂ%Equm%LLUUa’]ﬂUﬂsyﬁ’]ﬂ?ﬂNﬂ’]islﬂjﬂ']qllgﬁlﬁlﬂ@nﬂEn(]fn@]al]ﬂl]ﬂ’]

a ' a A v aa Aa @ o o | ° Aa
ﬂ']']lll,ﬁinzallfﬁdl,w HNRF NG LqﬂUllﬂlnﬁﬂ’]iqﬂNﬂ’]il%ﬂ?']llg"ﬂqﬂ@]']aﬂ’mﬂ'](ﬂallﬂl]ﬂ']

ANMNRINZFNAITINGY L@ pyad1vaItayaRIwIAINNTIN AN ldannIIaaaulaNg

]
=)

ASa o A A AL vo ~ o o LA v
nga (lunidemidadulalasnauydiidaeuresdymagud) audn dfldanns
o A <& ad Al o o ° a = ' a v o A
maulwawu@]amwlmmmgmmmmam 9 WedaEnaden uazmslddiaaunien

ANMNULANIZRUGITINA L

v

yadnzastayalunfiduyadivainnuuandszasdinanis (Expected Value)

U

Aad a (]

ANNIIAARUANANFALNIUNLAIAIARIIIINNITINA T IAVDITUAAUAD gﬂﬁ' 311 WAy

q

v °

3.12 ugesyad1vesTayafwILUYm OneMax uaz Uaymn Trap aWdal unuuawad
NNAB generation FIBULNUAINDAIAIANRIIVDIAIANULANIZTN LEUNTIWNFEUIU (LFWN
Vv | A v A A) o A AaA o & A a)
aenudy) Aeyaddeyailafisuiunisdaiulandngavaimslidunauitnaiou;
a £) Yo AaA a ' a ! v Aw
WWaduunuandodznslaslddaeunfdanuminzaugafesainis samauddy

edunTduuu) idunsdinldanuiindszmnsiddnanuminzaudiiudase

24

Onemax Problem
30

25

20

15

10

1 36 71 106 141 176 211 246 281 316 351 386 421 456 491 526 561 596 631 666 701 736 771 806 841

e PB||. === PBIL_NEG

U7 3.11 yad1vasdayalunmanssnulymn OneMax

Trap Problem

40
35
30
25
20
15
10
5 \

1 36 71 106 141 176 211 246 281 316 351 386 421 456 491 526 561 596 631 666 701 736 771 806 841

e PB||L === PBIL_NEG

U7 3.12 yadvastayaluninaassnuiyn Trap

25

mﬂmwﬂugﬂﬁ 3.11 uar 3.12 196% zEwlaqn ﬁﬁmﬁmmj’hﬁ’maw%a
aa o A Aa A \ . | Y AN o & Al Al o
aﬁﬂﬁse\@aulﬁlw@wqﬂluLLma: generation tuatndly Hammagaﬂ%mﬂmumamﬁwh
° a a ' A o v A w ' A ~ o & AadAda o
daeud 9 Wesadaudn dayannuiiaziidnesndt Wafisunuiuaawisninisls

ﬂ'nufﬁnﬂﬂizmmﬁﬁmﬂ'smmm:am‘h

Lﬁé‘lﬁﬁ]’]ifﬂ"lﬁ\‘lﬂﬁ’lwLL@]ﬂGi’]GﬂJ?JGH@@i’]fQH& P IRARANULANAIITERININT LT

& add) o a ~ ' a) o Aa o 1 Y
T%@]@%’Jﬁ‘l’ﬂ“ﬁﬂ’]@lﬂﬂ@) L‘Wﬂ\‘]ainx‘]L(ﬂE]')ﬂl]ﬂﬁl{lam’ﬂizﬂﬂﬂ?ﬂl]ﬂ’]ﬂ?’]&lL‘V\quau(ﬂ’]?}u(ﬂ?E]

v

nanfes dnitdgnidie WUgn OneMax) waddayaanmisldszmniniddinia
wianzaud dehdasuaaaanisdumdiaay (nn generation) a9zt laaniERNTINE

=) { U U v { ~ ~ & v U
Auluzud 3.13 suyaddeyalunsdinidudgwisin Joyni Trap) Susasdiodunam

' v Aa

fdw awiilutisduvasnszuiunma¥iawinis lu generation win 9 yadToyaszdaay

U
2

widariunszuaunsdTawmsllszosnils Ha@hmmj’ﬁm%’uﬂ”@mmﬂﬁanﬂummﬂ
ffuﬁmyﬁdiﬁmﬂ‘*ﬁm’]ufmﬂﬂizmmﬁﬁ@hmwmmmzam"hs"smhﬂ ﬁlz‘*ﬁwlﬁmmfﬁu
n3zuauMIaum laglanzodneds Tusrdasvesmysuwmaslagsinuinudrszanng
AAAMURAINRANLRD YA miﬁmgu@auﬁ%ﬁamwf&nnﬁmauﬁ 5 LNENBENILALD 81NN
laanasiunainig wiadanuenle Iumm:ﬁmmjﬁnﬂﬁmauﬁﬁ@hmmmmzamﬁwz

AR UNUIN BN TRNANURANNRANE LLE\]Z‘W’WVL‘L]ijﬂ’]ﬁﬁ%%?ﬁ’]@lBUl%Lﬁ%ﬂ?dguﬁaﬁﬁ]

Aa s A=

ﬁﬁvl,ﬂgjﬁmaumﬂdﬂ @”oﬁfummjmﬂﬁmauﬁ'ﬁ@hmmmm:am‘hmaﬁmmmﬂﬂdw

U

fMaaud 9 lutrevhesesmsdunidiaey

Value of Information

10

O =4 O =< W «+- VW «H VU «=H VW «H W «H W &0 - O —«= O
_5'\”"\83’322?\35‘»@%?@%‘%“’ 8 8 R R 8 I
-10
-15
-20
-25
-30
-35

e Onemax Trap

31N 3.13 yadvestays 1NMIMaaedInULlywi OneMax uaz Uaywi Trap

26

MINARAIHLEAI AL mﬂfmmfmné’msho@‘h@auﬁﬁ@hm’mmmmm‘h

azfyadunnnianuianndiedneg 9 ludrdaszesmidumdneudwivdgwisn

4 o ¥ a v a '\ o o { '
ﬁmNamsmaaamﬂmaﬁmﬁ]ﬁmﬁuﬁ;@LiummaammLm”nzﬁmmvl,mmmauﬁgmﬁamwz

1y [} & ad A A @ o ' dy: a v ' o
vL&l@]l%“lT’JGLLiﬂ"'] (LLa:mu@amm’mlmymaﬂmm@mmaummum) ﬂﬂﬂl%ﬁﬂﬂﬁﬂ’)’mg“ﬂ

' 4 o Qs & v v a { o v 13 {
iﬁdﬂ']%ﬁ@“ﬂ’]d’]%iﬂﬁﬂiz<%%d LLazﬂ']Li’]ﬁ’]&I’]iﬂﬂHWU’J%ﬂ’ﬁﬁ%t%’Wﬂ’l’mEﬁnﬂﬂﬁ(ﬂ auﬁ@

wlanuera eanun bt LA IuATIIGUVINTZLIRATIIAUWINNT 13192 lean 1]“%1% LAY

v

& ad . v o A o = A P o Aad
Tu@a%')ﬁl%uluﬂqiﬂ%ﬂq@aﬂﬂlﬂaﬂ']@]ﬂﬂLi'lﬂ')’]L@]N LL@zNIaﬂqﬁWUﬂq(ﬂauﬂ@ﬂq@ Y

P
unn 4

msﬁnmu,az'nmaaﬂ'%mau%%ﬁmﬁ'uqnswLmunszfi’u

A

NwIeiiaue m”u@lau‘?%msﬂ%’uﬂganﬂmas’mmuwnﬂumaw”umu?%mq
w”ugmsmmumz%’uﬁasm"]m'mﬁ (fb-cGA) I@Uluﬂﬁﬂ%'uﬂga@hﬂ’nwmﬁ]:LﬂuluLL@ia:ﬁﬁ

v

1 qq’/ 1 1 a g 1 Q AQQ‘
fagnaasanuinazdwiindanyliniwawiaduiandienwld UNIETIM 1.0
astndfaLihad U19URIIINMT 0.0 aLNIGaLad WAUNINAN ”aﬁwnw"l&iuﬂuauayj’w'mﬁfuvl&i

~ o A v Aa ' ° <& Aad a
NN aaawl e dnandldnmela Tuszriiemaiawsasauwaaudd azinng
[=3 U 1 d' (>3 1 '] aal 6 1
Jaintoyadianud lumsdsudpdanunhanduwesudazddlunniaesanuindu
L‘ﬁaﬁwﬂﬁﬂuﬁaﬂaﬂi:ﬂaumm"’@ﬁusl,ﬁfl,umiﬂ%'uﬂga@hmwuﬂwnﬁulmwiazﬁ@ Tay
] d' s] 1 &’ d' YR A %% 1
danuilunsdiudpdanuhenduls. sansanazuenldfisfianisvesnisyiulyee
anusnazidulufidne 9 Nddemaldlunslasinninns szrdnemsdsudianuinag
1w%1 1.0 way 0.0 ﬁ'rmnlumsﬂ%’uﬂgm'm’nmmzLﬂusluﬂ%'aﬁfuﬁﬁﬂmaﬁmaﬁ'uﬁ'u
dranuivesnsUiudssdanusihanduudy ﬁﬁm’mLﬁu"l,ﬂvl,ﬁ’jﬂumiﬂ%'uﬂga@hm’m

ihaziinassiidunldluianisvasdragnedinaud 9 saulng

nana N ﬂ'amua’?%mﬂ"ﬁmiﬁ'@Lﬁuﬁaga@hmm@ial,ﬁaﬂunﬁﬂ%'uﬂ@q@hmm
wazdwradndaz i lwniaasauinazidn Lﬁ'aﬁﬂml"ﬁ’l,umiﬂ%'uﬂgammﬁmirmzl,flu
] Aaa 6 1 1 1 d'l s 1 1 .f(
luudazfidvasaniaaianaihanidu lasdanudaiiiaslunmanivdpdanuinadui
A weR % U A a J [] 1 1 aa A (%
sanInflazuanlaisanudaudiniieiulunisdsvdydianuihanduluudesla doh
mnluﬁm@ﬁ@hmm@iaLﬁaoluﬂﬁﬂ{uﬂgammmmauﬂuﬁay LRAIIN WA AT AT A

) LLsTasl,umsﬂ%'uﬂgd@hmﬁNmﬁ]:lﬁuaﬂﬂ LLa:ﬁ]zﬁwmiﬂ%'ummm@imﬁaalﬁﬂuquﬁ

v 1

(Reset) ladinydsudysllufianeassiudin wddminludidladdanudaiiiaslunis

v
A v &4 L

U%’uﬂ‘g&@hmmﬂnuﬁumn LLam*jﬂumuuﬂummwLL&T@MﬂﬁU%’UU‘gdmmmmﬁ]:

v
o

v Q/I 1 F!I tﬁl Y Rt U] aa =
WDuitas WBHANI Ummmmmmsnm:ma"l,@’nmiﬂmﬂgammmmauﬁﬁlumuum

msﬂ%‘uﬂgﬂﬂluﬁﬁmaﬁgﬂﬁad

28

%) a Y [1 [~
4.1 msﬂsuﬂya%‘ﬂsum‘lunnma%awmauﬂu

av Ao aa o ' & ' o =
nwitsiihiaueiinsliudpdvesanaeianuinandy lastudianuiuss
. 4 o . . & . & o ' &
anudathaslunirdsudianuinazidn nesiwinasslunisdsuaianuiinazidudn iyl
a dl v v a dl Q Y 1 v v é v Q
Aanemanlng 1 wazlufanisnusulveanuiasdudnlng o Gsantasanaluniy
HUFIWINATI IMIUTUAIa MUz T wluueazdd vinlwaunsnasnuuuinaawisluniy

ﬂ%’uﬁ’mmL'mma?mmﬂwuﬂﬂﬁm”&gﬂﬁ 4.1

Updating strategy of fb-cGA

1. fori:=1tol

2: begin

3 if winner[i] # loser[i] then

4 if winner[i] = 1 then

5: Ufreq[i] := Ufreq[i] + 1;

6: Ucon[i] := Ucon[i] + 1;

7 Dcon [i] :=0;

8 if (Ufreq[i] > Dfreq[i] AND Gen > (psize/3)) then
9: p[i] := p[i] + ((1/psize)+(p[i] * (Uconli]/100));
10: else

11: p[i] := p[i] + (1/ psize);

12: else

13: Dfreq[i] := Dfreq[i] + 1;

14: Dcon [i] := Dcon [i] + 1;

15: Uconli] :=0;

16: if (Dfreq[i] > Ufreq[i] AND Gen > (psize/3)) then
17: p[i] := p[i] - ((L/psize) + (p[i]*(Dcon [i] / 100));
18: else

19: p[i] := p[i] - (1/psize);

20: endfor

Parameters:
Ufreq : number of stepping-up updates
Dfreq : number of stepping-down updates
Ucon : number of consecutive stepping-up updates
Dcon : number of consecutive stepping-down updates
Gen : generation number

gﬂﬁ 4.1 Pseudo-code 1a37U4AaWID fo-cGA

29

AaAAa v a1 G
nIaknucaaalyg g%%:umtﬂu 1

Ao A o ' A o ' ' A
luﬂsmmm:m’nﬂu 1 mmﬂmm’lun’Lunwﬂmﬂgommnuu’ml,ﬂuluwﬂma
v v 1 [dl Qs 1 1 a v v o
i lng 1 mﬂﬂ’nmﬂﬂunlumiﬂiuﬂ‘gommmma:LﬁuluwﬂmoLmﬂﬂa 0 LATITWI
a e 1 & £ 1 ot 1
AMITAUWINITUINATIAI LRI UV IVWIAUTZTINTUED winoANNIMILIUlRA1am
ﬂﬂazLﬂquﬁﬁﬁﬁﬂawuu’]L%aﬁaﬁﬁﬂﬁ%aﬁﬂﬁﬁLﬂﬂﬂhﬁﬂﬂﬁ@ﬁg}ﬂﬁ@d WAL DTN
a 1 1 A £ eq/' a ¥ o
MIIWWINIHIR YNNI I s a8 AU TZ TN TLAD JunanIshazyinnis
ﬂ%’uﬂgammmmauﬁu@hmhmmdaﬁaalumsﬂ%’uﬂga@hmmﬁaﬁ LADIRINANAINND
ot 1 1 g v 1 1 dl Qs 1 1
luﬂﬁiﬂiuﬂgamﬂ’nuu’muﬂumuuaalm’]mm’]umiumsﬂmﬂgammmmamﬂuaa G
o a w v 1 é 09: ~ g o
FUWINVAINITIIAIWINTNAL NI L s N aIWIALTZTINT PUAaWITRATYINNT

ﬂ%’uﬂgammmmanﬂuﬁ’;Ué’@ﬁﬂ’ﬁﬂ%’ﬂﬂgaﬂﬂﬁ

A AaAa (Y] a1 [~
nsmnnmmaagﬁmummu 0

Adw A @ ' A)) \ a
Iuﬂim‘ﬂw%uzumlﬂu 0 m‘mﬂmﬂ’s’mﬂuﬂ’ﬁﬂiuﬂg‘dmﬂ’J’]%JWH]foJ%1W/]?I

U

malng o mﬂmfﬂ@hmwwﬁ‘lumsﬂ%’uﬂ;ammﬁmi,’m:l,ﬁu’LuﬁﬁmaL°1T11ﬂé" 1 UAz

° a v ' = v 1 o
ﬁnmumsnwmmimﬂm’mmlumm RNUVWAUTETINTURY B Elﬂ'lqll’)’]ﬂ’ﬁllﬁlllha\‘l

ﬂ"]mﬂmm:l,ﬂuluﬁaﬁﬁmmmL%aﬁaﬁ'ﬁﬂﬁ%aﬁaiﬁd%ﬂu"[ﬂluﬁﬂmaﬁgﬂﬁm LR

[[
Cad adaAa o

{5 Ao . \ A o
LT IIBIITIIANWIN TR LU N T TR N a9 Uz TN TUED TuaawIThazyin
msﬂ%’uﬂga@hﬂfnwmﬁmﬂuﬁ’amhmm@iaLﬁaalun'ﬁﬂ{uﬂ;mwaqﬁﬁﬁ LADIHIN
\ A) , , o] A) . .
mmﬂmlumsﬂsuﬂgommmmauﬂumuammﬂmmmnlumsﬂiuﬂgammmm%
é/ o a @ v 1 A qq; =) ¥
Wit LAz WIRTAINITIIAWININE SN TN IWRIUTAITWIAUTZTINT AT

ﬁ’m’mﬂ%’uﬂ;ammwumauﬁuﬁaﬂé'mwmsﬂ%'uﬂ;aﬂﬂﬁ

4.2 m‘sﬁnmm‘nﬁma?

@
[£

A = ! ad o A A a & .
fﬂ’mgﬂ“n 4.1 "ﬂzL%uvL@'J'] Tu@]au’lﬁiuﬂii‘ﬂ(ﬂ'ﬂ 8 LN 16 ZHATNIINULABT pSlZE/g
° ' A wao & =2 " A e o ' =
E}ﬂﬂ']%u@a% 1%71']5% E‘Piﬂm]\‘i“(nﬂﬁ‘mn‘]:r’]’nquﬁuL(v’]aiuﬂ’a‘ifﬂ:m%u(ﬂLﬂuL“vaim%
A= @ o A
FANIZRA NIINARDIBNINORDUAILATIATN € NRIIAD ps:ze/2, pSIZG/3, ,DSIZG/4 LS pSIze/S
I@Uﬂ@ﬁaUﬁUﬂﬁyﬂqﬂﬂﬁaUﬁ’\‘] 4 ﬂq.’l%']ﬁvl,ﬁﬂf‘i']'liqUazLSU@vL'ﬂuU‘ﬂﬁ 2 NANIINONDILLEAY

AINIIN 4.1

30

A ' L. i o A & '
17NN 4.1 Ef‘flClency ratio 'ﬂ’]ﬂﬂ’]?ﬂ@ﬂa\‘]lJT]Jﬂ’]W'Ti'ﬁJL@]aigﬂLL‘UU@n\‘i 9

Efficiency ratio
Problem Average
One-Max | Random Max | Royal Road Trap

o psize/2 56.63 32.51 4.97 0.37 23.62
"E psize/3 53.14 32.23 5.65 0.42 22.86
% psize/4 56.79 33.68 5.35 0.50 24.08
E psize/5 54.48 34.00 5.35 0.52 23.59
> psize/2 69.08 41.56 10.03 0.80 30.37
"E psize/3 78.88 41.61 10.53 0.95 32.99
% psize/4 89.20 44.76 9.87 0.95 36.20
E psize/5 80.36 49.07 9.65 1.03 35.03
ﬁ psize/2 86.95 42.38 17.51 0.69 36.89
§ psize/3 83.52 40.06 14.47 0.91 34.74
% psize/4 87.17 47.69 16.01 1.06 37.99
E psize/5 91.19 47.28 14.03 1.15 38.42

% a

{ . { ' .. . A wm o @ o
ayadaulTIngadluasen 4.1 Aa ¢ Efficiency Ratio ar39e ldlidudn

[Aa A d'l a = [(ni 3 094‘ ad d'l o a 6 1
JadszEninwiawSouifisunasninlaantueauid Waivuewinfeasidudn

@199 lawdn Efficiency Ratio AfwamauEIMIn 4.1
Efficiency Ratio = (solution quality / number of evaluations) x 1000 (4.1)

PnuamInanadluaTefl 4.1 auﬁu‘lﬁdwﬁm%’uﬂu@mdmafhdLﬁuﬂytym
OneMax Haz ﬂ@%ﬁ RandomMax @1 Efficiency Ratio adauinsdLdarmrua psizel4 Wag
psizel5 Lwﬂuﬂyrymﬁmﬂi‘irum LT Uytym'iaﬁai‘m MIMAUAAT psize/2 Uas psizel3 T
@1 Efficiency Ratio fiann uadhansanlunsdiads asduldinen psize/d lduasnina

ﬁq@ﬁnﬂmsmaaoﬁ

31

az

o A A a X . =2 a = A , i a > \
founisnifaduluszniimsfineiaenfa a1 psizeln Sanudagadidls
uazddNadamIYhiusastuaeuwiItniausatwlithe fisnveeaiunsanudmanyves
a 6 o dy A 1 1 A & ad
windieaiailasusasnmwnalfsuedsasdanumanzanluszninenTuaawis

MUAILNTHRBAAINITALAINAINY @T&Eﬂﬁ 4.2

100 .f/,_ 100
90 B 20 |- ;}/- B
f /
f #
80 - f* B 80 |- 1 e
w 1 o
= 1 =
] 1 =
ﬁ 70 - g \ b 5 70 |- | =
5 ! = !
ic f | o 1
60 3l | — 60 1 -
S 1 > 1
1 1
1 1
50 \ B 50 - | -
1 1
‘I Convergence —+—— : Convergence ——+—
40 L ! ! I 40 ! ! ! L h
0 #O 100 150 200 250 300 0 ' 5o 100 150 200 250

Generation Generation

(a) psize/2 (b) psize/3

300

100 T 100

90 - /' 7 90 -

80 -

‘*’—H-wt.h_
1
®
=]
T

MA,L_#_#

70 70

Fitness Values

‘N‘}I
Il 1
Fitress Values

60 60

Ty

1
1
1
sor 7 50
1
1

Convergence —+— ~
L L Convergence —+—
L h

40

L L L
40 L L L
0 50 100 150 200 250 300 0 s0 100 150 200 250

Generation N
Generation

(c) psize/a (d) psize/5

A oA o a 6 1
3‘]_]1’] 4.2 ﬂi’W\lﬂ’]iQLﬂlﬂL&lBﬂ’]ﬁu@W’]ﬁﬁ@JL@]ﬂi@]’N 9

(7

ﬁnﬂgﬂﬁ 4.2 TRFINANAAUILEBUTE b FILRUITL AD AURUIISNGUNTUA

oJ)

A o o A @ o ' ' & ' A o
ﬁﬁ]:‘mmm@au‘lﬂﬁmsﬂsuﬂ‘gammmmauﬂu‘tunﬂL@] 23ANINLL T AN A UD

B

' o ' = A v

Tsanuadn n Wdes msSuduaadwlanezt (Ldnddadluiinauaauitaziin
o ' ° = o ! v a Aaf Y o] v a =
dadidwuan S ldgndaaulandau) uddiwuadl n wan midadulaiaz
a . o é v 1 o o uqa’
\ialu Generation U3N ¢ VaINIAIFIAEY TIAT0A lldvaInTUT=REATIUIBATILUANT
dazifiudnanuminzay udnanaldgnisdadulanfianain iesinannszdaiulai

A luaztarueatnidiaan lduiniin

300

Correct bits

32

= = ~a a
4.3 mavdsgumaudszansnn

fRIUNINARINDIAUTZRNTANNNTA UG AL °uaw”umauﬁﬁl,%aw”uﬁqmimwu
ﬂszﬁ'uéhstmwuﬁﬁsuﬁu?%‘nwﬂ%’uﬂgwﬁmauﬁﬁ%aw”ugmwLLme:fmrmmuﬁﬁTm
fauntin laglavinniinasanudynl OneMax, RandomMax, Royal Road waziayw Trap

uazianasnTluudvasgunndiaey (Anugndesvainaans) Auluudzasdununis

%

o a a b o & a 1 A = c?f
mmmmaﬂvlﬂ (%Uﬁ]']ﬂﬁ]']%’)%ﬂidluﬂﬂil]izL&l%ﬂ']ﬂ'J’]&lL%&I']Zﬁ&l) PINANIINORDINAIU

4.3.1 N1INAaBINULT QYR OneMax

nql‘ o A a U %] ai
TunInaaadh fuuaanusvadlatiulay Aa 100 Oa wazlanaaaslsulaan

AWl IznINIIAEN 9 HANMINANBILEAINIFUN 4.3

~ = v, & ad A aa o ° Ad A
nnIUn 43 mRuldihtuaewitifeunniTaanindumdaaunidngany
v & A o AV vo Ad A Vo @ | ° &
ANTUTUABUIT pe-cGA NU ne-cGA N 1 lFAaUNANRS LATIRILNG MLV ITIWINATI

9
(7

Tunstsstduaanautnanzaw ANUINFDIIIRTI 1 WInATI I TU T T UA1A W

add

VERECHIG I T e NTUaauITNINLEWD A fb-cGA MF1WIWATI IWNITU L TN
S K

anunzavagnay 9 udilladilsfivihduneuithmunindunudnaunanga ldn

' A Aa
uq"i]ZL‘]‘ju‘ﬂ’NLﬂaﬂ‘ﬂ@

100

T —y 4000 .

- ' . SGA —+—
y 3500
80F /¥

f
:!-Z'; P
ol ¥ |

3000

2500

2000

40 F .

Function Evaluations

1500

SGA —+— 1000
20 CGA - M-
mcGA —-B-—
pe-cGA 500
ne-cGA = @ =
FlochA

O 1 Il Il
0 20 40 60 80 100

Population size Population size

(n) solution quality () the number of function evaluations

3UN 4.3 namMInaaesdsWILUgYn1 OneMax

33

4.3.2 MINAaaInUlyn1 RandomMax

d"/ Y o A a 1 = Q *~
lumineaass lafruaanuenveslesialon da 100 da wwdsnudyn
OneMax T196% Naﬂﬂiw@aadlugﬂﬁ 4.4 LLa@oNaﬁwﬂuLqummwﬁmauﬁ"L@T WBUNY

FWIBATILUNNTUIZL T UAIN VA NIZRY

el Snsblyrh dueewitniuaueinmslriwiwasslunsyszdnen

X A a o
ﬂ’J’]SJL%SJ’]Z&NSJ’]ﬂ"IJuLNaLY]F;l‘]JﬂfolJEyW] OneMax

100 —'—"_FWM 4000 T T T
A N - . SGA ——
’ P AN CGA -
3 AN 3500 - mcGA —-B-— -
[] pe-cGA
90 -] ne-cGA = @ =
3000 |- fb-cGA
@
] 5 2500 -
n 80)‘_,- — %
4 { %
3 & 2000 -
= H [
8 / 5
Oy b g 1500
w
SGA —+— 1000
60 @ CGA M- |
mcGA —-B-—
pe-cGA 500
ne-cGA = @ =
fb-cGA
50 ! ! ! i 0
0 20 40 60 80 100 0 20 40 60 80
Population size Population size
(n) solution quality () the number of function evaluations

3UN 4.4 namInaaeIdnILUgYn1 RandomMax

4.3.3 N1INAadINUIYR1 Royal Road

lunmnasasis lanaseuduaauddens 9 nudgwisadalsevwia 64 da laavh
MIUTUANTIWIRLTETINTAA69 6 WIDNNUTINLA tournament size IWIA 2, 4 AT 8

ANEL Namiﬂ@aamamlugﬂﬁ 4.5

mﬂgﬂﬁ 4.5 WIHABIEIT TUAawID fo-cGA NILAUD 1ﬁmmwgnﬁaaaglu
TAUNANY UGELTANAINTIMINTINNIDIN 22w fb-cGA TFauwuatalnIlsztinen

ANUNANZENRDENITNANY 9 TUAIUID

100

60

50

40

30

Fitness Value

20

10

(a) solution quality (tournament size 2)

60

50

40

30

Fitness Values

20

10

(c) solution quality (tournament size 4)

60

50

40

30

Fitness Value

20

10

(e) solution quality (tournament size 8)

Population size

0 20 40 60
Population size

100

T

SGA —+—

CGA ===

mcGA —-B8-—
L pe-cGA

ne-cGA - @ -

fb-cGA

Population size

100

34

50000 T T
SGA —+—
CGA -=-3---
mcGA —H-—
pe-cGA S
40000 [-ne-cGA - @ -
fb-cGA
n
=
92
£ 30000
=}
2
w
C
9
©T 20000 -
C
ul
[
10000 - N
--®--g--9
- - &
0 e -a--e--e - ;
0 20 40 60 80 100

Population size

(b) the number of function evaluations (tournament size 2)

40000 T T
SGA ———
CGA - ¥
35000 - MCGA —-B-— B
pe-cGA
ne-cGA - @ -
30000 - fb-cGA
£
S 25000 -
o
=}
®
& 20000
C
S
£ 15000
i
10000 —
5000 -

Population size

(d) the number of function evaluations (tournament size 4)

40000 T T
SGA —+—
CGA -
35000 - MCGA —-H-— 4
pe-cGA
ne-cGA - @ -
30000 |- fb-cGA i
a
S 25000 - 4
o
=2
o
@i 20000 B
C
il
5
5 15000 E
10000 E
5000 -
—
0—= -"!Y-:.:’.‘*.:-rﬁ?‘saa“”.
0 20 40 60 80 100

Population size

(f) the number of function evaluations (tournament size 8)

gﬂﬁ 4.5 NANNINANBIEIAIUL YK Royal Road

35

4.3.4 MInaaaInUlyn Trap

AV o & ad o o o
lumneassd lanasautuaawitas g nudynn Trap 3wa 3 x 10 (NUANTWA
3 Ja vhandanu 10 ga) Yinmsdsuwfeudrdwindszansawia 8, 500, 1000, 1500,
2000 LA 3000 MNAIAL JINNIVNNNITURIUAN tournament size VWA 2, 4 WAL 8 LND

=2 v e v A A) a & o a
?Iﬂ']:ﬂNE‘]E\]W‘E'Y]VL@LN@NT\"I??JT]JW’]T]NL@Q? Nﬂﬂ’]iﬂ@ﬂa\‘]LLﬁ@N@Ngﬂﬂ 4.6

nngUN 4.6 nrinwdutie lugmawdaeufldanduaeuitdng 9 lae
wianaidudwiu Building Block Ngndad siuAfe wudimunguianasnudmasun
v dldq,d 1 1 v 3 U Q:':
dasns (luntideudaznguazdoandn 111) Mnawswveana v andulain duaeau fb-

cGA ﬁﬁnLaua"l,@i”waﬁ'wﬁﬂmmwﬁmauﬁau%aﬁ I@]slmwwuﬁaﬂﬁmmLﬁﬂuﬁ'uﬁunums

' 2
ad A o =1

il (M) duasuitnduauat T winasilunsdszidudining

o A A a a o & aad
m&l’]::ﬁ&luatmi;m LNEILﬂSLIULYIEI‘]JﬂTU“U%@]aWJ’ﬁE]u

ADENILTY LUBRNAUA tournament size WINNL 2 sUnMduuuga AUADWIDN
inaualinaantaniduaewififawugnisnatnidiie (sGA) uazfindiduaauinias
WHINTIWULLNIETY (cGA) athiiulata uazfidrayida fb-cGA dildfuiuasslunis
AU AT NLRUZFUED NIRRT Tt fo-cGA TRANaauanI1 sGA uaz 1wt
AT N TUIZL A WA VR NIERNERENINUTENN I 14 1110 BAWIUNIHAAUNLIWA 0%
ad A L et v o A 1 1 o o Qq: ai
ADBINUINTTNULLNTZTY fo-cGA IRENAaUANTI0L1NTALAN LA IWINATIN LTINS

UL UAIAMURNIZRN 89T IWINATINALNIN cGA D4 9 LY

ANNANIINAFAIAINGNY LIWNUIFWIATINITHLANUD AT LN TUTLEAN

anNinaztdnluwniaasanuiaziie mmm"ﬁaUlﬁm“u@auﬁﬁl,%aw”ugmmLmum:"ﬁ'u

o
a u.zq./FL‘»

Yo Aak il aAa o o, ¥ A o &
vL@ﬂq@]aUﬂ@Tuluﬂﬁyﬁqﬂ’]ﬂ‘ﬂwﬂqi‘ﬁﬂaﬂ @]\TLTuﬂﬁyﬁq Trap NWININARDUW ONNILIED

FIUWINATI INTU T A UAI M ULR I FUNAINTIT A DD

10 T T T

Correct BBs

1500

Population size

2000

(a) solution quality (tournament size 2)

10

Correct BBs

1000 1500

Population size

500 2000

(c) solution quality (tournament size 4)

10

Correct BBs

0 L I L I
500 1000 1500 2000

Population size

(e) solution quality (tournament size 8)

140000

120000

100000

80000

60000

Function Evaluations

40000

20000

36

1500

Population size

2000 3000

(b) the number of function evaluations (tournament size 2)

140000

120000

100000

80000

60000

Function Evaluations

40000

20000

T T T
SGA —+—

CGA -3~
mcGA —-HB-— |
pe-cGA
ne-cGA - @ -
fb-cGA

1500

Population size

2000 2500 3000

(d) the number of function evaluations (tournament size 4)

140000

120000

100000

80000

60000

Function Evaluations

40000

20000

T
SGA —+—

CGA ===
[mcGA —-B-—
pe-cGA
ne-cGA - @ -
fb-cGA
0 500 1000 1500 2000 2500 3000

Population size

(f) the number of function evaluations (tournament size 8)

3UN 4.6 NaMINaaaITMILUYn Trap

37

4.4 MINAIZH

PNNANINARBINNENIT AW ﬁaTUVL@TﬁﬁmﬁmﬂzﬁLﬁa@wq@ﬂssmmiﬁu

U

add o, =

daauveastunawIiitiaue ounuiueauwitene 9 lwnwidoneunth U7 4.7 uaas
WO ANTTNVRITUABWI BN NN UIABUENY 9 lasanaiasIngAnIIuATINuaIAIL
1rym1 OneMax nWMIdudouaaInIgitn lasunn x Aa generation uazunts y fia ¢
AnumNnzay nWeuLgasatanNnastduluifde 9 vesnieasanuede
A ° . A & | AXa ¥
wnw x fAa dunipasdady 9 lwaneasanuiaziie (lunfifadam OneMax anu
A A . pr] o v & A ' '
8717 100 1U@) WA y A generation mﬂgﬂum'ﬂﬂ'ﬂmun’mﬂauuuﬂawaammmma:
o & Ad Aad A AAdy o \ . AA o
\duaaeamaausestuneudd Fuaasluslfednliuaasdranuhandu lasnfd

LNWAMNUIALLT WAL 0 LASFUNILNWAIANNINILLT WA 1

L '
£ ada

mﬂgﬂﬁ 4.7 WRWIAINTUAIWIT cGA, mcGA Az fb-cGA RINIIDAURIAIAaLN
A) ° a AX A A & < A ' '
@ﬂq@"l,@ (m@au@q@luwuﬂannumﬂu 1 e dufagdusaddianuhazsidums
MuzMazdudr i luaauring) tRTanHITIwIBATI AU T RAIA N URINTENA
AR LATIIUAWIT cGA NU mcGA Tanlnatfssny uaTuaauds fo-cGA NINLaWa e

° Aad = ! Yo < A . a o !
12817 ﬂﬂﬂ@ﬂq@l L33NIN Iﬁﬂquauﬂiﬁluﬂqﬁﬂizquﬂqﬂjqul,%w'wﬁwﬂuﬂ g

MINWNANTINTEY fo-cGA ilwdutuiiiiesan Juaewitilgnaanuuuinli
) A oA o) \ & . &
dranuiuszanudaiiiaszainisdivdudianuhanduluineesanuiaadu nelu
a { Qs &/ v £ a { Qs v v v 1 ¥ o v
fenendivdn 1 dlnd 1.0) wszfiamanidsuse (dvlnd 0.0) myldoyasuis vily
ﬂq// ad LA n‘i’ o v A v & g et 1] dl
Tuaauwitamannlidayaiinmidadulaldiigu uwazdivaanuhandulyluinig

. . . X
ﬁma:vl,ﬂgmmauvlmmﬂmu

! & adda & o 4 A @ ' , & ad

a'ﬂumu@]ﬂu'ﬁﬁﬂwﬂqil’ﬂﬂ@]jlﬂdﬂq@Lﬁnvb DUNNLTUIUANDUIT pe-cGA LAz ne-cGA
~ A Al Aad o . A A & a v & b \
Junedafaunanitisuaranuiasdullfiafans v g Adanimesauidulynidine

%

‘ﬂl 1 dl o qqu: nd:!l v Y L= 1 a] v o d‘
99 am@mmaulammlmu@ammlmagamﬂmmeﬂLﬂu"lﬂvlua’lmmﬂuwummuw
A A o A & ad & Y ° Aa ' o
ﬂmgﬂ"l,@ onadlasinnUue eI hinainadunaadaauniifiianuminzando ulnig
= A 4 o X a ~ o & ' A & '
Aazi@adndiaauna uazweignunazlsuaniaasauinazdwlllufanions el

& o o AN o a o ' ° A v A A ° A A =
YHATITFIaauUN ladnduNgdaatnIdnaundanta mmﬂum@aumgmawnﬂ f
pnavhlidanaifiunainisld dau maheanuianndesundan 9 auduuwanslu
nMIfuAIaaua1e bdLaya bl UNATINI AN UINAa LN AIfauNTA1AY
mmzaﬂ&igomnﬁfﬂm"ﬁaﬂ‘ﬁmsmﬂ mmhﬂlﬁﬂn”u@lauﬁﬁﬂgmmmﬁ?ﬁ@ﬁq@ﬁq@mww:ﬁ

o 1 o { &, v
waztin b gi1nauf A e

Fitness Values

Fitness Convergence —+—
1 Il 1

50 L ! ! ! !
800 1000

Generation

(a) Convergence (the cGA)

1200 1400 1600

1800

100 T

Fitness Values

Fitnelss Convgrgence I—'f

1800

50 1 | | | |
0 200 400 600 800 1000 1200 1400 1600
Generation
(c) Convergence (the mcGA)
100 T T T
90 ‘w
4] 80 - -
=
m
=
n
]
c ot .
60 =
Fitness Convergence —+—
50 1 | | | | 1 | 1
0 200 400 600 800 1000 1200 1400 1600
Generation

(e) Convergence (the pe-cGA)

1800

1800

38

1600

1400

1200

1000

800

600

400

200

(b) Probability (the cGA)

100

1800

1600

1400

1200

1000

800

600

400

200

0

0 20 40 60 80

(d) Probability (the mcGA)

100

1800 I I ! II I
1600
1400
1200
1000

800

600

400

200

0
0 20 40 60 80

(f) Probability (the pe-cGA)

P v a 6 6 '
3'1.]“/] 4.7 ﬂi’]Wﬂ’]SQL?lﬁLLﬂZﬂ’lS’JLﬂﬁ’]%L’)ﬂL@laiﬂ’J’]&l%’]ﬁlzLﬁ%

100

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

100

90

80

Fitness Values
~J
(=]

60

50

Fitness Convergence —+—
1 Il Il 1

40 Il Il Il 1 Il
0 200 400 600 800 1000 1200 1400 1600 1800
Generation
(g) Convergence (the ne-cGA)
100 T ¥ 7
90 -
4] 80 -
=]
m
=
n
]
2 0 .
60 =
Fitness Convergence —+—
50 1 | | | | 1 | 1
0 200 400 600 800 1000 1200 1400 1600 1800
Generation

(i) Convergence (the fb-cGA)

39

1800]

1600

1400

1200

1000

800

600

400

200

(h) Probability (the ne-cGA)

1800 —

1600

1400

1200

1000

800

600

400

200

0

0 20 40 60 80 100

(j) Probability (the fb-cGA)

A] Y a 6 6 '
3‘1.]7] 4.7 (919) ﬂi’W\lfﬂiaL°ll'1LLaZﬂ']T)Lﬂi’]ZﬁL?ﬂL@]'fJiﬂ?W&l%’ﬁ]zLﬂ%

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

P
unns

a 6
aqﬂuammsm

Tassnmyai "L@TﬁwmiﬁnmLLa:’ime:ﬁﬂﬁﬁﬂujﬁnné‘aasmﬁmauﬁﬁmmm

1
' o

L%&l’]zﬁ“fﬂd LLﬂ;ﬂ’]sL‘%ﬂuiﬁ]qﬂ@Tﬁaf;hxﬁﬁq@]aUﬁﬁﬂqﬂquLﬁuqzaN@’]iawﬁjE] I@m\jdLﬁu
= o & aa " A o Y T & asdy] v
ﬂﬂH’mU"llu@]E]%’J‘n’ﬂiml’]ﬂm’]immLIA]GaEJ'IN’]?_IY]@I’JLLIHVL&I?I%@IQTW% Tu@auﬁl'ﬁ“ﬂvl,@
o = a & v 4 & ad a v a & o & ad
NINIIFANEILATINEW vL@LLﬂ ’11‘%6]E]u’l‘ﬁﬂ’]iL‘Jﬂ%ELWNﬂluLLUUE]WﬂEJUiz‘Ii’mi LWae UYWAWUID

LD w“'uqmm LUUNTETU

v o weR a & aa a v A J ol A9 o
N’]ﬁ]EIVL@ﬂﬂTI:I"TWI](5]ﬂiill"ll80“1]%(9'1au’]ﬁﬂ"liﬁilRELW&ITuLLUUGWﬂﬂﬂiz"ﬁ’Wﬂi LLTLJ‘LIY]I"H

U

ﬂ'nujmﬂﬁ'mauﬁﬁﬁqwlumsﬂ%’uﬂganﬂma{mmmanﬂu Wisusunumsle
é’aasmﬁmauﬁl,l,siﬁq@iwﬁw ﬁnﬂmimaawzLﬁuvl,ﬁdﬁmﬂ“ﬁﬁmauusiqm’*mﬁazfl,u
mynTandsuaanuiazidulunneesanuinandn dawa‘lﬁﬁmauﬁvlﬁﬁqmmwﬁ
i Bsfmaandasiunuisuiounin

Qﬁﬁ‘i’ﬂﬁﬁﬂm LLazﬁwmsﬂfuﬂgw"%auﬁﬁ%aw"’ugﬂsimmumz%’u Afnsle
FragemaauiTue LazaragIfmaaumRuRITRNsanINaITzlsualunaasay
azdulyluiennla mu%"’mﬁ"lﬁmaadLLazﬁwLauamgu@]auﬁﬁ%aw"’uﬁqﬂﬁmmum:ﬁu
FUAIANNA (fo-cBA) WIDUNIINLERANANTIATIEHAINOANTTUNTHNIN Auaasl
Lﬁmf’]msﬁnmmfmnmsﬁfuﬁﬁmuﬂ%LLazmm@iaLﬁadlumsﬂ%'ummmuwuﬂumlif

¥ 1 o { 9/5'&/

Thih fsiawalﬁm”u@auﬁﬁmmmm‘"@ﬁulaf,jLmﬁammauﬁa AS1n

U

NI mﬁmLﬂuLmealﬁgﬁaﬂwzﬁ']mmj?llawﬁazmﬁmauﬁﬁ@hmm
mmzaﬂ&igaﬁfﬂ ml*’ﬁﬂsﬂmﬁlﬁaLﬁmﬁummfﬁ"lﬁmﬂ@ﬁaamﬁﬁmmmmmzauga
Q/dy [l 91024/ ad v) a d' £ }
LLaxmwgumﬁ]mylﬂmumauaﬁawwwnﬂumﬂﬂ@au"hﬂummwgnmaomnmu SaFRRIS
%Qmaaﬂmnﬁmauﬁq@mwwzﬁ LAZRINITDAATIWIWATI INITU T A UAIN I NIANZFUAS

v 4 o 9 9 o ~ = = A a a X
VL@ Glix‘l“nﬂ‘ﬁﬂﬂiﬂ’m’lmaJﬂ’J’]&li’mLi’)LLﬂ:ﬂJﬂ‘S:ﬁﬂﬁﬂ’]W&J’mﬂ\‘l"ﬂu

UIFIWINNIN

B. V. Ha, R. E. Zich, M. Mussetta, P. Pirinoli and C. N. Dao, “Improved compact genetic
algorithm for EM complex system design”, Proceedings of the International
Conference on Communications and Electronics, 2012, Vietnam.

C. Aporntewan and P. Chongstitvatana, “A hardware implementation of the compact
genetic algorithm”, Proceedings of the IEEE Congress on Evolutionary
Computation, 2001, Seoul, Korea, pp. 624-629.

C. W. Ahn and R. S. Ramakrishna, “Elitism-based compact genetic algorithms”, IEEE
Trans. Evol. Comp., 2003, 367-385.

C. Zhou, K. Meng and Z. Qiu, “Compact genetic algorithm mutated by bit", Proceedings
of 4th World Congress on Intelligent Control and Automation, 2002, Shanghai,
China, pp. 1836-1839.

G. R. Harik, F. G. Lobo and D. E. Goldberg, “The compact genetic algorithm”, IEEE Trans.
Evol. Comp., 1999, 3, 287-297.

H. Muihlenbein and G. Paal}, “From recombination of genes to the estimation of

distributions |. Binary parameters”, Parallel Problem Solving from Nature,
LNCS 1141, Berlin: Springer, 1996.

J. Gallagher and S. Vigraham, “A modified compact genetic algorithm for the intrinsic
evolution of continuous time recurrent neural networks”, Proceedings of the
Genetic and Evolutionary Computation Conference, 2002, USA, pp. 163-170.

J. Gallagher, S. Vigraham and G. Kramer, “A family of compact genetic algorithms for
intrinsic evolvable hardware”, IEEE Trans. Evol. Comp., 2004, 8, 111-126.

J. Y. Lee, M. S. Kim and J. J. Lee, “Compact genetic algorithms using belief vectors”,
APPL SOFT COMPUT, 2011, 11, 3385-3401.

J. Y. Lee, S. M. Im and J. J. Lee, “Bayesian network-based non-parametric compact
genetic algorithm”, Proceedings of IEEE International Conference on Industrial
Informatics, 2008, Daejeon, Korea, pp. 359-364.

K. M. Timmerman, “A hardware compact genetic algorithm for hover improvement in an
insect-scale flapping-wing micro air vehicle”, Master Thesis, 2010, Wright State

University.

42

M. Pelikan, D. E. Goldberg and F. G. Lobo, “A survey of optimization by building and using
probabilistic models”, Urbana, IL: University of lllinois Genetic Algorithms
Laboratory (llliGAL Report No. 99018), 1999.

S. Baluja, “Population-based incremental learning: A method for integrating genetic search
based function optimization and competitive learning”, Technical Report CMU-
CS-95-163, Carnegie Mellon University, 1994.

S. Phiromlap and S. Rimcharoen, “A frequency-based updating strategy in compact
genetic algorithm”, Proceedings of the International Computer Science and
Engineering Conference, 2013, Bangkok, Thailand, pp. 212-216.

S. Rimcharoen, D. Sutivong and P. Chongstitvatana, “Updating strategy in compact
genetic algorithm using moving average approach”, Proceedings of the IEEE
International Conferences on Cybernetics and Intelligent Systems, 2006,
Bangkok, Thailand.

S. Rimcharoen, S. Phiromlap, and N. Leelathakul, “Analysis of frequency-based compact
genetic algorithm (fb-cGA)”, Maejo International Journal of Science and

Technology, 2015, 9(1), pp. 121-135.

NMAHRRKRIN

(HRIWANNN 11H21TF1TITINIIHIRIBA)

Maejo Int. J. Sci. Technol. 2015, 9(01), 121-135; do1: 10.14456/mijst.2015.10
Maejo International
Journal of Science and Technology

ISSN 1905-7873
Available online at www.mijst.mju.ac.th
Full Paper

Analysis of frequency-based compact genetic algorithm (fb-
cGA)

Sunisa Rimcharoen, Srichol Phiromlap and Nutthanon Leelathakul *

Faculty of Informatics, Burapha University, Chon Buri, 20131, Thailand
* Corresponding author, e-mail: nutthanon@buu.ac.th

Received: 19 June 2014 / Accepted: 30 March 2015 / Published: 9 April 2015

Abstract: A behaviour analysis of frequency-based compact genetic algorithm (fb-cGA)
is proposed. The fb-cGA is a version of compact genetic algorithm (cGA) enhanced by the
use of a new updating strategy. The algorithm counts the number of probability updates
and the continuities of probability-update directions and uses them to adaptively update the
algorithm’s step sizes. This method requires fewer function evaluations and achieves
solutions that are more accurate than those from the conventional cGA. It has been shown
that fb-cGA can reduce the number of function evaluations to only one ninth of the
number obtained from cGA on ten copies of a 3-bit trap function using a tournament size
of 2. We conduct parameter studies and show that the use of one fourth of the population
size (psize/4) as the algorithm’s starting threshold can improve the overall efficiency of fb-
cGA. The behaviour of tb-cGA on various problems is also examined. The results of the
analysis show that information from the algorithm’s past experience (i.e. the numbers of
probability updates and continuities) can help the fb-cGA to update the probability vector
towards a more promising direction, requiring fewer function evaluations.

Keywords: compact genetic algorithm, updating strategy, update frequency, update
continuity

INTRODUCTION

Compact genetic algorithm (cGA) was proposed by Harik et al. [1]. It has been widely
applied to various fields such as pipe network optimisation [2], parameter optimisation [3, 4],
inventory planning [5], image recognition [6], traffic transportation management [7],
communication [8-10], container loading [11], grid computing [12] and biology [13, 14]. The main
contribution of this algorithm is to replace a whole set of candidate solutions (the so-called
population) used by simple genetic algorithm (sGA) with a probability distribution. cGA requires

122
Maejo Int. J. Sci. Technol. 2015, 9(01), 121-135; doi: 10.14456/mijst.2015.10

much less memory, as it does not need to maintain the population throughout the evolution process.
The concept of cGA can be easily translated to hardware implementation by using the common
very-large-scale integration [15-17]. Therefore, it opens up the application of genetic algorithm to
new fields such as embedded systems. For example, Timmerman [18] used cGA to develop an
insect-sized flapping-wing micro air vehicle.

However, for more difficult problems, cGA does not provide acceptable solutions. There
have been many attempts to modify and improve cGA’s probability updating strategy. Zhou et al.
[19] proposed an improved cGA using mutation and named the algorithm mutated-by-bit-compact
genetic algorithm (MBBCGA). At each generation, MBBCGA generates only one individual and
then mutates this individual bit by bit. Ha et al. [20] proposed the use of more than one probability
vector (PV) to enhance the exploration properties of the algorithm. Rimcharoen et al. [21] improved
the updating strategy of cGA by using a moving average technique (mcGA). Ahn and Ramakrishna
[22] adopted ‘elitism’, i.e. the idea of reserving the best solution in each generation. They proposed
two variants: a persistent elitist compact genetic algorithm (pe-cGA) and a non-persistent elitist
compact genetic algorithm (ne-cGA). The former stores the current best solution until a better
solution is found, while the latter keeps the best solution just for a certain lifetime. In 2008 Lee et
al. [23] introduced a new update strategy using augmented Bayesian networks. A few years later,
they proposed compact genetic algorithm using a belief vector (cGABV) [24]. The new technique
uses a belief vector (BV) instead of a probability vector. The difference between BV and PV is that
each element of the BV stores a probability distribution (represented by associated mean and
variance), whereas each of the PV keeps a probability value.

In our previous work [25], we proposed the usage of a frequency-based updating technique
as the updating strategy of cGA. The technique collects and utilises information from the
algorithm’s past experience. Specifically, for each probability in the PV, the number of probability
updates (in both up and down directions) are counted and used to adjust probability-updating step
sizes, turning the vector towards the promising direction faster. Comparison results show that the
frequency-based compact genetic algorithm (fb-cGA) requires substantially (up to nine times) fewer
function evaluations when compared with traditional cGA. However, in-depth explanation and
analysis of why this algorithm outperforms others remained lacking. Accordingly, in this paper, we
conduct parameter studies and analyse how the algorithm behaves while solving various problems.

FREQUENCY-BASED COMPACT GENETIC ALGORITHM (fb-cGA)

cGA is one of various evolutionary algorithms. Instead of evolving the population for
searching solutions, it employs a probabilistic model, PV, which requires relatively small amount of
memory. Furthermore, the algorithm eliminates genetic operators such as crossover and mutation.

cGA keeps a PV over a chromosome to represent the population. The number of
probabilities in the vector is equal to the chromosome length. Each probability is defined as the
probability with the associated bit being equal to 1. The pseudo-code of ¢cGA is shown in Figure 1.
The two parameters are the chromosome length (/) and the population size (psize), which are used to
further specify an updating step size (i.e. step size defined as 1 / psize). (Note that the relation
between psize and the updating size in the cGA is analogous to the one between population size and
evolving speed in sGA.)

123
Maejo Int. J. Sci. Technol. 2015, 9(01), 121-135; doi: 10.14456/mijst.2015.10

initialise(p) s := tournament size
while (p does not converge) do initialise(p)

individuall := generate(p) while (p does not converge) do

individual2 := generate(p) create(p, S[], s)

evaluate(individuall, individual?2) evaluate(S[])

winner, loser := compete(individuall, rearrange(S[]) // S[1] is the best individual

individual2) fori:=2tos
for i:=1to / begin
begin winner, loser := compete(S[1], S[i])
if winner{i] # loser[i] then for i:=1to /
if winner{i] = I then begin
pli] = pli] + 1/psize if winner|i] # loser[i] then
else if winner[i] = I then
pli] = pli] — l/psize pli] :=pli] + 1/psize

endfor else

endwhile pli] = pli] — l/psize
endfor
endfor
endwhile
Figure 1. Pseudo-code of cGA Figure 2. Pseudo-code of tournament cGA

First, the cGA initially sets each of the probabilities in the vector to 0.5. According to the
PV, the algorithm randomly generates two candidate solutions, denoted as individuall and
individual?. Next, the solutions are evaluated, i.e. assigned fitness values. The winner, the one with
the greater fitness value, is selected. In step 5, the PV is then updated towards the winner. The value
of each probability changes if the winner’s associated bit is not equal to the loser’s: either
increasing when the winner’s bit is one, or decreasing otherwise. The loop continues to run until the
PV converges, meaning that each probability in the vector is either zero or one.

Harik et al. [1] also modified cGA by adding more candidates, called tournament cGA,
shown in Figure 2. The modified version randomly generates a set of s candidate solutions, denoted
by an array S in the pseudo-code, and uses a tournament selection to choose the winner, which will
be stored in S[1]. The PV is then updated by comparing S[1] with S[i] (for all i not equal to 1) in the
same manner as the original cGA.

Both of the cGAs update each probability in the vector towards either one or zero. Some
probabilities gradually increase while others drop. However, some might fluctuate, reflecting
uncertainty in updating the PV. It is known that the PV fluctuates during the beginning period and
converges to a certain direction at the end. The algorithms seem to work well in the case where
problems have consistent information, leading the algorithms to turn the vector towards only one
direction. However, if the problems are deceptive, they might delude the algorithms into searching
for solutions in the wrong directions. Consequently, the cGAs could not provide the desired solution
quality in spite of spending much of searching time. There has been much research aimed at
modifying and improving the cGAs in such case.

In our previous work [25], we applied a frequency-based technique to update the PV, using the
numbers of updates and the continuities of preceding updates as criteria. (The update continuity is

124
Maejo Int. J. Sci. Technol. 2015, 9(01), 121-135; doi: 10.14456/mijst.2015.10

defined as the number of consecutive updates moving towards the same direction). We measured
the uncertainty by observing the direction of each probability in the vector: if the direction is the
same for a long time (high continuity), the uncertainty is low. The monitored continuities serve as a
guideline or a promising trend that quickly leads to vector convergence.

Specifically, for each probability in the vector, the frequencies of two types of updates:
stepping-up (increasing the probability towards 1) and stepping-down (decreasing the probability
towards 0), were counted. Likewise, two types of update continuities were collected. The stepping-
up continuity is reset to zero if the current update moves towards O and the stepping-down
continuity is reset to zero if the current update moves towards 1. The fb-cGA technique is shown in

Figure 3.

Updating strategy of fb-cGA

1. fori:=1to!

2: begin

3 if winner|i] # loser[i] then

4 if winner[i] = 1 then

5: Ufreqli] := Ufreq[i] + 1;

6: Uconli] := Ucon[i] + 1;

7 Dcon [i] := 0;

8 if (Ufreq[i] > Dfreq[i] AND Gen > (psize/3)) then
9: pli] = pli] + ((1/psize)+(p[i] * (Ucon[i]/100));
10: else

11: pli]l =pli] + (1/ psize);

12: else

13: Dfreq[i] := Dfreq[i] + 1;

14: Dcon [i] := Dcon [i] + 1;

15: Ucon[i] :=0;

16: if (Dfreq[i] > Ufreq[i] AND Gen > (psize/3)) then
17: pli] :=pli] - (1/psize) + (p[i]*(Dcon [i] / 100));
18: else

19: pli]l = pli] - (1/psize);

20: endfor
Parameters:

Ufreq : number of stepping-up updates
Dfreq : number of stepping-down updates

Ucon : number of consecutive stepping-up updates
Dcon : number of consecutive stepping-down updates
Gen . generation number (incremented in Step 6)

Figure 3. Pseudo-code of fb-cGA

125
Maejo Int. J. Sci. Technol. 2015, 9(01), 121-135; doi: 10.14456/mijst.2015.10

Figure 3 presents the pseudo-code of the frequency-based updating strategy in fb-cGA.
Ufreq denotes the number of probability updates towards one (i.e. stepping-up updates). Dfreq
denotes the number of probability updates towards zero (i.e. stepping-down updates). Gen denotes
the generation number whose value is increased incrementally in step 6. The proposed updating
strategy is performed when Gen is greater than 1/3 of the population size (psize). For the first third
of the generations, fb-cGA works like the original method to explore solutions and find the right
direction. It waits until the generation number reaches psize/3 because it needs time to gather
sufficient information to see the trend. For the last two-thirds of the generations, the it probability is
updated when the i"™ bit of the winner (winner[i]) and the one of the loser (loser[i]) are not equal. If
winner|i] is 1, the algorithm checks whether, from past experience, this probability is updated
towards 1 most of the time (i.e. Ufreq greater than Dfreq). If so, the probability vector should be
updated according to the majority with a larger step size. The step size can be determined by adding
the term Ucon/100 multiplied by the previous value of it probability, where Ucon denotes the
number of consecutive stepping-up updates. In contrast, when winner|i] is 0, the algorithm performs
in a similar manner but considers Dfreq and Dcon instead. The it probability is updated by
decreasing towards zero.

In this paper, we study the effects of the psize parameter and show that using psize/4 can
improve the efficiency of fb-cGA. Thus, we use psize/4 instead of the previously proposed psize/3
[25] throughout the experiments conducted and presented in this paper.

PARAMETER STUDIES

As mentioned earlier, the proposed method performs the new updating strategy when the
number of generations is greater than psize/4. The reason behind this strategy is that the statistics
obtained during the beginning period are not reliable enough to capture the trend. In this section,
empirical experiments are presented to explain why we set this parameter as psize/4. The algorithm
on 4 benchmark problems, viz. 100-bits One-Max, 100-bits Random Max, 64-bits Royal Road and
ten copies of 3-bits Trap problems, were tested. The characteristics of the four problems are
explained below.

The One-Max problem is quite simple. The objective is to find the solution which is a bit
string whose bits are all one. The fitness value is equal to the number of 1-bits in the bit string. The
Random Max problem is similar to the One-Max problem in finding a bit-string solution whose bit
pattern is exactly the same as the one of the target. However, instead of being all one, the target bit
pattern is selected randomly. Obtained by comparing bit by bit, the fitness value is the number of
bits equal to the associated ones of the target. Notice that this problem is designed to determine
whether an algorithm is biased against one or zero.

The Royal Road is a group of bit patterns built up from sequences of short bit patterns. The
bit pattern is called schema. There are 15 schemas for 64-bits royal road as shown in Figure 4. After
comparing the bit string with each schema, the fitness value is calculated by summing up the
numbers of bits equal to those of s; for all i. For example, a fitness value of a bit string that contains
all one (the optimum solution) is (8 x 8) + (4 x 16) + (2 x 32) + 64 = 256.

The Trap problem is one of many difficult problems used for testing GAs. It is designed to
fool gradient-based optimisers that favour zeroes, but the optimal solution is composed of all 1-bits.
We can create a kxm Trap problem by combining the m groups of a k-bits trap. The fitness value is
calculated by summing up the scores associated with all groups. For instance, a 3-bit Trap problem

126
Maejo Int. J. Sci. Technol. 2015, 9(01), 121-135; doi: 10.14456/mijst.2015.10

gives a score of 3, 0, 1 and 2 for a group of three, two, one and zero 1-bits respectively. For example,
a candidate solution ‘111 001 110 000 100’ has a fitness value of 3+ 1+0+2+1="7.

SChema 1= 11111111**’ Sl = 8
Schema2 = ********11111111**’ S2 = 8
SChema 3 = ****************11111111**’ S3 = 8
Schema4 = ************************11111111********************************’ S4 = 8
SChema 5 = ********************************11111111************************’ SS = 8
SChema 6 = **11111111****************’ S6 = 8
SChema 7 = **11111111********’ S7 = 8
SChema 8 = **11111111, S8 = 8

Schemal3 =11T1T1TTTTTTTITITTTTTTTITTTTTTTT1 1]ttt assdoddordrr®: 613 =32
Schemal4 =##ssdsssdosioor oo T T LI LT T 1111111111 s14 =32
SchemalS=11111111111111 11111111111 1111111111111 1111 1111111 1111111111111; 515=64

Figure 4. Royal Road problem

We ran the proposed algorithm with all benchmark problems described above. For each
tournament size of 2, 4 and 8, the parameter was varied among psize/2, psize/3, psize/4 and psize/5.
The results shown in Table 1 are efficiency ratios [= (solution quality / number of evaluations) X
1000]. The efficiency ratio is used as a quantitative measurement to quantify a quality rate: the
higher the rate, the better the efficiency. When the value of # is varied from 2 to 4, the efficiency
ratio is better when # is large (4 or 5) in the case of solving the easy problems (i.e. One-Max and
Random Max). For the harder but non-deceptive problem (i.e. Royal Road), a small value of n (2 or

Table 1. Efficiency ratio of varying tournament and population sizes in One-Max, Random
Max, Royal Road and Trap problems

Efficiency ratio
Problem Average
One-Max | Random Max | Royal Road Trap

= psize/2 56.63 32.51 4.97 0.37 23.62
:E; < | psizel3 53.14 32.23 5.65 0.42 22.86
E 2 psizel4 56.79 33.68 5.35 0.50 24.08
= psizel5 54.48 34.00 5.35 0.52 23.59
= psize/2 69.08 41.56 10.03 0.80 30.37
:E; T | psizel3 78.88 41.61 10.53 0.95 32.99
E 2 psizel4 89.20 44.76 9.87 0.95 36.20
= psizel5 80.36 49.07 9.65 1.03 35.03
= psize/2 86.95 42.38 17.51 0.69 36.89
:E; % | psizel3 83.52 40.06 14.47 0.91 34.74
E 2 psizel4 87.17 47.69 16.01 1.06 37.99
= psizel5 91.19 47.28 14.03 1.15 38.42

127
Maejo Int. J. Sci. Technol. 2015, 9(01), 121-135; doi: 10.14456/mijst.2015.10

3) yields a slightly better ratio. This can be interpreted that the proposed algorithm needs more time
to collect more diverse and higher fitness-valued samples before increasing its updating step size.
For the deceptive problem (i.e. Trap), the efficiency ratio tends to be relatively high when # is large.
This is because in the Trap problem the fb-cGA cannot find a good solution no matter what
parameters are —the fitness value might remain similar. Therefore, the efficiency depends on the
number of fitness evaluations more than the fitness value. In terms of tournament size, a larger size
tends to provide a larger efficiency ratio. Overall, almost all of the best quality rates come from
psize/4 and psize/S (highlighted in Table 1). The average rate of psize/4 from all problems and all
sizes of the tournament is 32.76, and that of psize/5 is 32.35. The psize/4 is therefore more desirable
in terms of efficiency.

As shown in Figure 5, the convergence graphs, obtained from the One-Max problem
experiments (psize = 100), reflect the algorithm behaviour. The dash lines are plotted at the
generation numbers equal to psize/n (x = psize/n), showing when the proposed updating strategy is
triggered. If n is larger, the proposed strategy starts sooner. Passing this line, the algorithm updates
the PV with a larger step size when the winner’s bit conforms to the majority direction (i.e. meeting
the condition on line 8 or 16 in Figure 3). As the graphs show, the fitness values gradually improve
in the early generations (generation number < psize/n) but increase abruptly after the trigger. This
behaviour explains why the algorithm’s PV converges to a solution using fewer function
evaluations.

100 T 100 T

90 - f = 90 - J‘;’/v =
I

80 "A = 80
[

70 - g 70 -

1
1
1
;o s

)

60?‘, : — 60}
1
1
, [
1
)
]

Fitness Values
Fitness Values
S, o,
L

50 -

Convergence —+—— Convergence —+——
I I I I

I L 40 I L
0 50 100 150 200 250 300 0 ' 50 100 150 200 250 300

40

Generation Generation
(a) (b)
100 T 100 T p— |
%0 / B 90 | -
f
1
80 [1 e 80 |- 4
I

Fitness Values
@ ~
Q (=]
WN\L
L L
Fitness Values
[+)] ~
o [=]
N\% T
e
L L

Convergence —+——
L L Convergence —+—
I I

40

L
40 L I L
0 50 100 150 200 250 300
0 50 100 150 200 250 300

Generation R
Generation

() (d)

Figure 5. Convergence graphs of experiments with parameters: (a) psize/2, (b) psize/3, (¢) psize/4
and (d) psize/5

128
Maejo Int. J. Sci. Technol. 2015, 9(01), 121-135; doi: 10.14456/mijst.2015.10

PERFORMANCE COMPARISONS

At first, we tested all of the algorithms — sGA, cGA, mcGA, pe-cGA, ne-cGA and fb-cGA —
with the 100-bit One-Max problem. Each graph in Figure 6 shows the results when the parameter
psize (population size) varies between 4-100 with a step value of 8. All algorithms used the
tournament size of 2. Each line shows an average result from 50 runs. In general, when the
population size becomes larger, GAs take more function evaluations but yield better solutions.

Figure 6a shows that the solution quality (the numbers of correct bits) obtained from fb-cGA
is comparable with those obtained from sGA, cGA and mcGA, while pe-cGA and ne-cGA have
lower solution qualities. In terms of the number of function evaluations, Figure 6b shows that fb-
cGA outperforms sGA, cGA and mcGA if the population size is large. When it is small (psize <
40), fb-cGA needs more function evaluations than do others. The example where psize is equal to 4
is used to explain this situation; the algorithm collects the statistics merely from one generation
(psize/4 = 1) as a guide to update the PV with a large step size. The triggering time may be too
early, leading the vector to a wrong direction. Consequently, the algorithm would spend more time
(i.e. a larger number of function evaluations) searching before coming back to the right direction.
Nevertheless, the number of fitness evaluations of fb-cGA does not increase as much as the
population size and is comparable to those of pe-cGA and ne-cGA when the population size is 100.

100 4000

T
SGA —+—
GA =¥
3500 - mcGA —-B--
pe-cGA
ne-cGA - @ -
3000 - fb-cGA

gof /% 4

v
ol & |

2500

2000 ~

Correct bits

a0 4

Function Evaluations

1500

SGA —+— 1000 -
20 - CGA - o
mcGA —-B-—
pe-cGA 500
ne-cGA - @ -
F‘uchA

0 1 Il 1 0
0 20 40 60 80 100 0 100

Population size Population size

(a) Solution quality (b) Number of function evaluations

Figure 6. Correct bits and function evaluations (of all the algorithms) in One-Max problem

Figure 7 shows the performance of all the algorithms on the Random Max problem. The fb-
cGA performance is moderate when compared with other techniques. It requires a large number of
function evaluations to find the solution in the case of a small population, but when the population
size increases the numbers of function evaluations tend to be comparable to those in ¢cGA and
mcGA.

Figure 8 shows the performance of all the algorithms on the Royal Road problem using
tournament sizes of 2, 4 and 8. The number of population sizes varies between 4-100 with a step
value of 8. Figures 8a, 8¢ and 8¢ show the solution quality in terms of fitness value. Figures 8b, 8d
and 8f show the numbers of function evaluations. The fb-cGA yields comparable results in terms of
solution quality with those from sGA, cGA and mcGA while requiring a much smaller number of
function evaluations. When compared with ne-cGA in the case of tournament size of 2, fb-cGA has a
higher fitness value than that of ne-cGA but requires more function evaluations. However, for

129
Maejo Int. J. Sci. Technol. 2015, 9(01), 121-135; doi: 10.14456/mijst.2015.10

tournament sizes of 4 and 8, fb-cGA yields comparable fitness values with those of ne-cGA and
needs fewer fitness evaluations. In this problem, pe-cGA requires the smallest number of function
evaluations but yields lowest fitness values.

100 T g 4000
P
-~ ~ &" ”,l\
o e .
7 P g - "W 3500
%0 |-
3000
2
& & 2500
n B0 7 . §
E ' &
8 @ 2000
§ o /) :
L i 5
O E 1500
Z
i 1000
60 - GA Ko
mcGA —-H-—
pe-cGA 500
ne-cGA - @ - A
50 1 1 1 fb-cGA = 1 |
0 20 40 60 80 100 0 20 40 60 80 100
Population size Population size
(a) Solution quality (b) Number of function evaluations

Figure 7. Correct bits and function evaluations (of all the algorithms) in Random Max problem

Figure 9 shows the algorithms’ performance on the 3-Trap problem — the Trap problem with
a group of 3 bits (k~=3) — using tournament sizes of 2, 4 and 8, and population sizes of 8, 500, 1000,
1500, 2000, 2500 and 3000. Figures 9a, 9c and 9¢ show the solution quality in terms of the number
of correct building blocks (the number of 3-bits blocks containing all 1-bits). Figures 9b, 9d and 9f
show the numbers of function evaluations taken to find the solution. Figure 9a shows that the
solution quality of fb-cGA is higher than that of sGA, cGA and mcGA, but lower than that of pe-
cGA and ne-cGA. The fb-cGA requires the smallest number of function evaluations, using them
approximately 14, 9, 12, 3 and 2 times fewer than do sGA, original cGA, mcGA, pe-cGA and ne-
cGA respectively. This cofirms the efficiency of the proposed method in terms of the number of
function evaluations saved.

ANALYSIS OF ALGORITHMS’ CONVERGENCE AND BEHAVIOUR

The convergence analysis was carried out by using plots of the fitness values over time
(generations). The behaviour analysis was performed through the graphic representation of all
probability values in the PV from the first to the last generation to track how the probabilities
change.

Figure 10 shows the fitness values and the probability values of cGA, mcGA, pe-cGA, ne-
cGA and fb-cGA for the One-Max problem with tournament sizes of 2 and psize of 100. The graphs
on the right show probability values in density of greyscale. Bearing in mind that the objective of
the One-Max problem is to find a solution in which all bits are 1, all the shades representing
probability values shown in the graphs on the right should fade to white (probability = 1) in the final
generation.

The cGA, mcGA and fb-cGA can find the optimal solution (fitness value = 100), the ne-
cGA vyields a result very close to the optimal, while the pe-cGA’s PV converges to one far from the
optimal. The convergence graphs of cGA and mcGA are very similar. Their PV converges to the
solution at nearly the same generation. However, the way in which the probabilities change is
slightly different. The shades of mcGA fade quicker and more smoothly than do those of cGA. The

130
Maejo Int. J. Sci. Technol. 2015, 9(01), 121-135; doi: 10.14456/mijst.2015.10

smooth change in the probability values of mcGA is in accordance with its updating rule in
that the moving average approach waits to see the trend, thus slowing down the increase or decrease
in the probability values.

60 T 50000 T
SGA ——t— SGA —+—
CGA. == Hen CGA W=
mcGA —-B-— mcGA —-B-—
50 pe-cGA 3 pe-cGA
ne-cGA = @ - g 40000 ~ne-cGA - @ -
fb-cGA fb-cGA
40 o
2 £ 30000 |-
= =
=)
w 30 F i
i 5
ic o 20000 -
; ot
20 - 2
A 10000 -
10 | 2
¥
;,f'(,/’ --®--9--9
8 CLe--®---"
0 ==-* . . . i s -e-o---90
0 20 40 60 80 100 0 20 40 60 80 100
Population size Population size
(a) Solution quality (tournament size 2) (b) Number of function evaluations (tournament size 2)
40000 T T
SGA —+— L
CGA -~
35000 - MCcGA —-H-—
pe-cGA
ne-cGA - @ -
30000 [fb-cGA B
5 25000 |- .
g 5
= 2
= @ 20000 - i
7 c
@ o
p =
= 5 15000 - /E
,«:—ﬂ'
10000 |- g -
&5/‘E
5000 |- g R P
g p--0=-=-8-:-F"
p %8 ‘
0 20 40 60 80 100
Population size
Population size
(c) Solution quality (tournament size 4) (d) Number of function evaluations (tournament size 4)
40000 . .
35000
30000 -
” S5 25000
E 3
> o)
@ i 20000
i 6
5 k3]
g 15000
10000
5000
0
Population size Population size
(e) Solution quality (tournament size 8) (f) Number of function evaluations (tournament size 8)

Figure 8. Fitness values and function evaluations (of all the algorithms) in Royal Road problem

131

Maejo Int. J. Sci. Technol. 2015, 9(01), 121-135; doi: 10.14456/mijst.2015.10

10 T
L
El
o
g
O
a
2
]
sGA —+—
2 3 CGA =+
R% mcGA —-B-—
W pe-cGA
___________ -CGA - @ -
" ‘ M " o5
0 500 1000 1500 2000 2500 3000
Population size
(a) Solution quality (tournament size 2)
&
ES
o
g
s
3
¥
5
O L 1 L 1 2 L
0 500 1000 1500 2000 2500 3000
Population size
(¢) Solution quality (tournament size 4)
£
e
o
=3
ae)
S
g
s
. ‘ i ; ; {
0 500 1000 1500 2000 2500 3000

Population size

(e) Solution quality (tournament size 8)

140000

120000

100000

80000

60000

Function Evaluations

40000

20000

d 500 1000 1500 2000 2500 3000
Population size

(b) Number of function evaluations (tournament size 2)

140000 T T T
SGA —+—
CGA --re-
mcGA —B-—
120000 -~ pe-cGA q
ne-cGA - @ -
fb-cGA
100000 =
&
2
S 80000 - |
]
il o
5 f
S 60000 A
=1
o
2
40000
_,;;;‘E:"
= &
20000 e~ ---""
= T
s il 1 I Il
0 500 1000 1500 2000 2500 3000

Population size

(d) Number of function evaluations (tournament size 4)

140000 T T T
SGA —+—
mcGA —B-—
120000 -~ pe-cGA q
ne-cGA - @ -
-cGA
100000 =
&
=]
S 80000 - B
o
fir}
i)
S 60000 - L
=1
o o
2

40000

20000

d 500 1000 1500 2000 2500 3000
Population size

(f) Number of function evaluations (tournament size 8)

Figure 9. Correct building blocks and function evaluations (of all the algorithms) in Trap problem

Maejo Int. J. Sci.

100

90

80

Fitness Values

70

60

50

Fitness Values

50

100

90

80

70

Fitness Values

60

50

Technol. 2015, 9(01), 121-135; doi:

Fitne§5 Convelrgence ‘4,7

200

400

600

800

1000

Generation

1200 1400 1600 1800

(a) Convergence of fitness values (cGA)

Fitne§5 Convelrgence ‘4,7

200

400

600

800

1000

Generation

1200 1400 1600 1800

(c) Convergence of fitness values (mcGA)

-

“ﬁ.a-"]t_-

Fitne§5 Convelrgence ‘4,7

200

400

600

800

1000

1200 1400 1600 1800

10.14456/mijst.2015.10

132

1800 — 1
1600
1400 r 08
1200
- L 06
& 1000
m
z
S 800
© 0.4
600
400 02
200
0 0

0

40
Probability number

80

100

(b) 100 probability values of probability vector (cGA)

1800 — 1
1600
1400 r 08
1200
- L 06
& 1000
m
z
S 800
© 0.4
600
400 02
200
0 0
0 40 80 100

Probability number

(d) 100 probability values of probability vector (mcGA)

1800

1

| [T T 1l
1600
1400 r 08
1200
- L 06
& 1000
iy
2
§ 80 o
600
400 02
200
0 0
0 40 80 100

Generation

(e) Convergence of fitness values (pe-cGA)

Figure 10.

Probability number

(f) 100 probability values of probability vector (pe-cGA)

Convergence of fitness values and change in 100 probability values in the

probability vectors at each generation. Darker shading represents the probability closer to 0
while white represents the probability of 1. All probabilities are initialised to 0.5. All plots

show the average values from 50 runs.

133
Maejo Int. J. Sci. Technol. 2015, 9(01), 121-135; doi: 10.14456/mijst.2015.10

100 T 1800 — 1

1600

90 1400

1200

80
1000

Generation

800

Fitness Values

70
600

400
60 0.2

200

. Fitne‘ss Convelrgence ‘4,7 0 0
0 20 40 60 80 100
Probability number

1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800
Generation

50

(i) Convergence (fb-cGA) (j) Probability (fb-cGA)

Figure 10 (continued). The convergence and probability analysis

Both the pe-cGA’s and ne-cGA’s shades turn light grey faster than do the ¢cGA’s and
mcGA’s, as shown in the early generations of Figures 10f and 10h. However, the pe-cGA’s final PV
is unfavourable and the ne-cGA’s approaches, but does not quite reach, the optimum. This is
characteristic of elitism. The elite (the best solution so far) often contains zero bits in the
chromosome, which deceives the algorithm into updating the probability towards zero. In the case
where newly generated candidate solutions are worse than the elite, the PV is updated towards the
elite again and the probability at the associated position may come closer to zero. This situation may
lead the elitism-based algorithms to update the PV towards the wrong direction. Elitism affects the
pe-cGA’s performance more than the ne-cGA’s due to its everlasting elite.

The fb-cGA’s PV converges to the solution faster than the other algorithms (Figure 101).
The shade representing probability values in Figure 10j turns white in a small number of
generations. To efficiently apply our proposed technique to a real-world problem, the chromosome
should have all of its bits uncorrelated with one another. It is important to realise that the fb-cGA
evolves its PV by updating all associated probabilities of all bits. The update is done only one bit at
a time without taking into account the information of the other bits. The results of One-Max
problem shown in Figure 10 serve as an example that supports this claim: fb-cGA can solve the
problem using far fewer number of generations (approximately 400, instead of about 1300
generations required by the traditional cGA). This significant outperformance stems from the new
dynamic updating strategy: the proposed technique decides to update the probabilities with a larger
step size based on the collected statistics. However, if the chromosome bits of the real-world
problem are correlated with one another, the proposed algorithm might not find the best solution, as
shown in the Royal Road and the Trap problem.

For a real-world optimisation problem that has multiple local optima, there is a higher chance
that the tb-cGA may get stuck at a local optimum. For example, in the field of computational vision,
efficient algorithms such as cGA may be used to recognise objects in an image. However, if the input
image is complex, it might introduce various local optima in the search space. Because fb-cGA uses
a trend in early generations to quickly decide to update PV with a larger updating step size, it might
prematurely decide to search towards a seemingly promising direction at a certain time. Once the
proposed algorithm gets stuck, it is hard to escape from the local optimum because it already has a
strong bias in favour of either zero or one. To handle this kind of problem, we should wait longer to

134
Maejo Int. J. Sci. Technol. 2015, 9(01), 121-135; doi: 10.14456/mijst.2015.10

see a correct trend before using a large step size. In addition, the step size should be incrementally
increased during the evolution.

CONCLUSIONS

This paper presents a behaviour analysis of fb-cGA. To update the PV, the fb-cGA collects
and utilises the update number of each probability in both up and down directions. The numbers of
updates are used to adjust probability-updating step sizes, turning the vector towards the promising
direction faster. When the effect of parameter psize/n on the algorithm performance was investigated,
the results suggested that the newly proposed updating strategy should be used when the generation
number is greater than psize/4. The analysis, through graphic representation of all probabilities from
the first to the last generation, shows that the tb-cGA updates the PVs towards the solution quicker
than the other algorithms and also requires fewer function evaluations.

ACKNOWLEDGEMENTS

This work was funded by Thailand Research Fund, the Office of Higher Education
Commission and the Faculty of Informatics, Burapha University (Grant No. TRG5680073). We also
thank our mentor, Prof. Prabhas Chongstitvatana, for his guidance, support and encouragement.

REFERENCES

I. G. R. Harik, F. G. Lobo and D. E. Goldberg, “The compact genetic algorithm”, /IEEE Trans.
Evol. Comput., 1999, 3, 287-297.

2. M. H. Afshar, “Application of a compact genetic algorithm to pipe network optimization
problems”, Transact. A: Civil Eng., 2009, 16, 264-271.

3. R. D. Al-Dabbagh, M. S. Baba, S. Mekhilef and A. Kinsheel, “The compact genetic algorithm
for likelihood estimator of first order moving average model”, Proceedings of 2" International
Conference on Digital Information and Communication Technology and Its Applications, 2012,
Bangkok, Thailand, pp.474-481.

4. R. D. Al-Dabbagh, A. Kinsheel, M. S. Baba and S. Mekhilef, “An integration of compact
genetic algorithm and local search method for optimizing ARMA (1, 1) model of likelihood
estimator”, Proceedings of 2™ International Conference on Computer Science and
Computational Mathematics, 2013, Kuala Lumpur, Malaysia, pp.60-67.

5. C. F. M. Toledo, M. S. Arantes, R. R. R. Oliveira and A. C. B. Delbem, “A hybrid compact
genetic algorithm applied to the multi-level capacitated lot sizing problem”, Proceedings of
28th Annual ACM Symposium on Applied Computing, 2013, Coimbra, Portugal, pp.200-205.

6. R. R. Silva, H. S. Lopes and C. R. E. Lima, “A compact genetic algorithm with elitism and
mutation applied to image recognition”, Lect. Notes Comput. Sci., 2008, 5227, 1109-1116.

7. P. Olarthichachart, S. Kaitwanidvilai and S. Karnprachar, “Trip frequency scheduling for traffic
transportation management based on compact genetic algorithm”, Proceedings of International
MultiConference of Engineers and Computer Scientists, 2010, Hong Kong, pp.1072-1074.

8. R. D. H. Al-Dabbagh, “Compact genetic algorithm for cryptanalysis trapdoor 0-1 knapsack
cipher”, J. Al-Nahrain Univ., 2009, 12, 137-145.

9. A. Azouaoui, A. Berkani and M. Belkasmi, “An efficient soft decoder of block codes based on
compact genetic algorithm”, Int. J. Comput. Sci. Iss., 2012, 9, 431-438.

10. H. Xing and R. Qu, “A compact genetic algorithm for the network coding based resource
minimization problem”, Appl. Intell., 2012, 36, 809-823.

135

Maejo Int. J. Sci. Technol. 2015, 9(01), 121-135; doi: 10.14456/mijst.2015.10

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

P. Gupta and R. Tiwari, “Solving three dimensional bin packing problem using elitism based
genetic algorithm”, Int. J. Adv. Res. Comput. Eng. Technol., 2012, 1, 471-475.

P. K. Singh and N. Sahu, “Task scheduling in grid computing environment using compact
genetic algorithm”, Int. J. Sci. Eng. Technol. Res., 2014, 3, 107-110.

Y. C. Huang, C. F. Chang, C. H. Chan, T. J. Yeh, Y. C. Chang, C. C. Chen and C. Y. Kao,
“Integrated minimum-set primers and unique probe design algorithms for differential detection
on symptom-related pathogens”, Bioinformatics, 2005, 21, 4330-4337.

A. Bade, I. M. Aref, B. M. Hussien and Y. Eman, “Solving protein folding problem using
elitism-based compact genetic algorithm”, J. Comput. Sci., 2008, 4, 525-529.

C. Aporntewan and P. Chongstitvatana, “A hardware implementation of the compact genetic
algorithm”, Proceedings of IEEE Congress on Evolutionary Computation, 2001, Seoul, Korea,
pp.624-629.

J. C. Gallagher and S. Vigraham, “A modified compact genetic algorithm for the intrinsic
evolution of continuous time recurrent neural networks”, Proceedings of Genetic and
Evolutionary Computation Conference, 2002, New York, USA, pp.163-170.

J. C. Gallagher, S. Vigraham and G. Kramer, “A family of compact genetic algorithms for
intrinsic evolvable hardware”, IEEE Trans. Evol. Comput., 2004, 8, 111-126.

K. M. Timmerman, “A hardware compact genetic algorithm for hover improvement in an
insect-scale flapping-wing micro air vehicle”, Master Thesis, 2012, Wright State University,
USA.

C. Zhou, K. Meng and Z. Qiu, “Compact genetic algorithm mutated by bit”, Proceedings of 4t
World Congress on Intelligent Control and Automation, 2002, Shanghai, China, pp.1836-1839.
B. V. Ha, R. E. Zich, M. Mussetta, P. Pirinoli and C. N. Dao, “Improved compact genetic
algorithm for EM complex system design”, Proceedings of 4™ International Conference on
Communications and Electronics, 2012, Hue, Vietnam, pp.381-392.

S. Rimcharoen, D. Sutivong and P. Chongstitvatana, “Updating strategy in compact genetic
algorithm using moving average approach”, Proceedings of IEEE Conference on Cybernetics
and Intelligent Systems, 2006, Bangkok, Thailand, pp.690-695.

C. W. Ahn and R. S. Ramakrishna, “Elitism-based compact genetic algorithms”, IEEE Trans.
Evol. Comput., 2003, 7, 367-385.

J. Y. Lee, S. M. Im and J. J. Lee, “Bayesian network-based non-parametric compact genetic
algorithm”, Proceedings of 6™ IEEE International Conference on Industrial Informatics, 2008,
Daejeon, Korea, pp.359-364.

J. Y. Lee, M. S. Kim and J. J. Lee, “Compact genetic algorithms using belief vectors”, Appl.
Soft Comput., 2011, 11, 3385-3401.

S. Phiromlap and S. Rimcharoen, “A frequency-based updating strategy in compact genetic
algorithm”, Proceedings of International Computer Science and Engineering Conference, 2013,
Nakorn Pathom, Thailand, pp.207-211.

© 2015 by Maejo University, San Sai, Chiang Mai, 50290 Thailand. Reproduction is permitted for

noncommercial purposes.

	1
	2

