บทคัดย่อ

รหัสโครงการ: TRG 5680088

ชื่อโครงการ: การศึกษาการใช้เทคโนโลยี Non-thermal Plasma เพื่อช่วยในการรีเจนเนอร์เรทีฟ

ของ Diesel Particulate Filter

ชื่อนักวิจัย: ผู้ช่วยศาสตราจารย์ ดร. กัมปนาท เทียนน้อย

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

Email address: kampanart.t@cit.kmutnb.ac.th

ระยะเวลาโครงการ: 3 มิถุนายน 2556 ถึง 2 มิถุนายน 2558

งานวิจัยนี้ใช้เทคโนโลยี Non-thermal Plasma เพื่อช่วยในการรีเจนอนร์เรทีฟดีเซลพาร์ติคูเรสฟิว เตอร์จากเครื่องยนต์ดีเซลโดยใช้วิธีไดอิเล็กทริกแบริเออร์ระบบนอลเทอร์มอลพลาสม่า โดยใช้พลังงานไฟฟ้า ที่ปฏิกรณ์พลาสม่า 20 วัตต์ ซึ่งพบว่ามีปริมาณที่น้อยกว่าร้อยละ 3 ของกำลังขาออกของเครื่องยนต์ โดย ปัจจัยที่ส่งผลต่อการลดปริมาณฝุ่นละอองจะพิจารณาผลของการเปลี่ยนแปลงพลังงานขาเข้า Space Velocity ระยะใช้งานของปฏิกรณ์ และ การใช้ระบบพลาสม่ารีฟอร์มกับระบบก๊าซไอเสียไหลวนกลับ (REGR) ผลการทดลองแสดงให้เห็นว่าระบบนอลเทอร์มอลพลาสม่า มีประสิทธิภาพในการลดปริมาณฝุ่น ละอองจากเครื่องยนต์ดีเซลได้มากกว่า ร้อยละ 90 โดยมวล โดยขนาดของฝุ่นละอองใน accumulation mode ซึ่งมีปริมาณคาร์บอนเป็นส่วนประกอบหลักลดลงอย่างเห็นได้ชัด รวมถึงสามารถลดปริมาณ NOx ได้ในขณะ ที่ระดับ CO และ HC มีปริมาณเพิ่มขึ้นเล็กน้อยในระดับที่ยอมรับได้ นอกจากนี้ระยะใช้งานของปฏิกรณ์ พบว่ามีผลอย่างมีนัยสำคัญต่อการลดปริมาณฝุ่นละอองและส่วนประกอบก๊าซไอเสียจากเครื่องยนต์ดีเซล

คำสำคัญ: ไดอิเล็กทริกแบริเออร์ดิสชาร์จ, นอนเทอร์มอลพลาสม่า, ฝุ่นละอองจากเครื่องยนต์ดีเซล, ดีเซล พาร์ติคูเลสฟิวเตอร์

Abstract

Project Code: TRG 5680088

Project Title: The Investigation of Non-thermal Plasma Technology Assisted on Diesel

Particulate Filter Regeneration Strategies

Investigator: Assistant Professor Dr. Kampanart Theinnoi

King Mongkut's University of Technology North Bangkok

Email address: kampanart.t@cit.kmutnb.ac.th

Project Period: 3 June 2013 to 2 June 2015

Abstract

The purpose of this study was to investigate diesel particulate matter (DPM) reduction using dielectric barrier discharge (DBD) non-thermal plasma (NTP) system. The energy input requirement for the plasma reactor was 20W which less than 3% of total engine output power. The effects of reactor input power, space velocity, reactor effective length and effects of plasma-reformed exhaust gas recirculation (REGR) were studied. The results shown that DBD NTP system was very effective on DPM reduction as more than 95% (by mass) particles reduction was realised in this study. DBD NTP system for direct treatment mode and REGR mode were both able to reduce NOx emission while CO and HC were slightly increased in acceptable level. Regarding to the results by scanning mobility particle spectrometer (SMPS), DBD NTP system was effective on particles size reduction in accumulation mode. This was due mainly to particles in this mode mainly contained carbon which electrical conductive and attracted plasma. The effective length of reactor was found to significantly affect both diesel exhaust gas compositions and DPM reduction performances of the DBD NTP system. Further investigations will be needed to obtain optimum operating condition to improve overall diesel emission reductions.

Keywords : Dielectric Barrier Discharge, Non-Thermal Plasma, Diesel Particulate Matter, Diesel Particulate filter