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Abstract

Eye movement data collection is very expensive and laborious. Moreover, there are
usually missing values. Assuming that we are collecting eye movement data from a set of
images viewed by different users, there is a possibility that we will not able to collect the
data of every user from every image—one or more views may not be represented in the
image. We assume that the relationships among the views can be learnt from the whole
collection of views (or items). The task is then to reproduce the missing part of the in-
complete items from the relationships derived from the complete items and the known part
of these items. Using certain properties of tensor algebra, we showed that this problem
can be formulated consistently as a regression type learning task. Furthermore, there is a
maximum margin based optimisation framework in which this problem can be solved in a
tractable way. This problem is similar to learning to predict where a person is looking in an
image. Therefore, we proposed an algorithm called “Tensor-based Multi-View Learning”
(TMVL) in this report. Furthermore, we also proposed a technique for improving prediction
by introducing a new feature set obtained from Kronecker decomposition of the image
fused with user's eye movement data. Using this new feature can improve prediction per-
formance markedly. The proposed approach was proven to be more effective than two

well-known saliency detection techniques.

Keyword: multi-view learning; missing data; tensor algebra; maximum margin learning;

eye movements; Kronecker decomposition.
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Chapter 1

Introduction

Many researchers have paid attention to image understanding that allows computer to cap-
ture the meanings of images in the same way as humans do. One of the challenging tasks
in image understanding is saliency prediction. Visual saliency is a property of locations
or object in the visual world, e.g., in images. If an object is salient, it stands out from its
neighbours, with a high probability of being able to draw humans’ attention to it.

It is very important to learn which parts humans tend to look at in scenes or images.
Saliency prediction is useful in many applications—such as graphic design, web design, and
human computer interaction—because it enables designers to evaluate their visual design
quality. Many methods of saliency modelling have been proposed [1, 2]. More methods
can be found in a recent survey paper that covered 256 publications related to saliency
object detection [3]. Saliency models can be divided into two categories: supervised and
unsupervised learning based models.

Itti et al. (1988) and Harel et al. (2006) investigated bottom-up visual saliency (i.e.,
low level image feature that does not involve supervised information) [1, 2]; unfortunately,
human gazes do not usually match the map [4] because they are highly influenced by any
image related tasks. If users are requested to view images without having been given a
particular task, their gazes will be automatically directed by low-level image feature. In the
case that users have been given a clear and specific task, their eye movements will be
controlled by the content of the image. Consequently, top-down visual features are the

features that should be considered [5]. Another approach is supervised learning based



saliency model. It utilises eye movement data which are mapped with image features [6,
7,8, 9]

In order to learn where humans tend to look at in images, an eye tracker is required
to collect eye movement data. In real-world scenarios, eye movement data collection is
tedious, laborious, and expensive. Moreover, data loss is inevitable as (i) an eye tracker
may temporarily lose track of a subject because he or she is moving during the experiment,
and (ii) a subject may fail to respond to all of the tasks. Consequently, we aimed to
estimate missing eye movement data from the available data on the same task. It is
similar to learning to predict where users tend to look at based on their previous eye
movement data on other images and on other available users’ eye movement data on the
considered image. This leads to the learning scenario introduced in this report. It is built
with a general assumption that multiple views of a problem are available. It is not always
possible to observe all of the views in a realistic scenario; therefore, this problem can
be cast as a multi-view learning problem with missing data. In this scenario, we assume
that initially there is a subset of training samples in which a complete set of views can be
observed, but later on probably only some random subsets of views can be collected.

The goal of the learning task is to estimate the values of missing views in each sample.
This scenario can occur in a real experiment. This type of problem is a generalisation
of classical supervised learning problems such as regression. Face recognition is one of
the applications that can be considered under this framework (when some parts or views
of the faces are unknown because of occlusion, for example). In developing the learning
framework, we made two mild assumptions: (i) there is a reasonable large number of
observations (samples) where all of the views are known, therefore, a learning procedure
can be realised; and (ii) from incomplete observations, at least one view is available. We
made no assumption about the distribution of the missing views, but any prior knowledge
about the missing data can be exploited to improve the estimation of their values.

In this report, we introduced a formulation that can be considered as a generalised
regression problem in which missing values are estimated from available views and their
relationships are extracted from training samples. Assuming that the missing views of a
sample are output y and the known parts are input x, then we have y « Wx, where W

is a linear operator that learns from complete data and describes the relationships be-



tween different views. The difficulty of this kind of regression arises from the fact that the
output and input may vary among the sample items. We proposed a “Tensor-based Multi-
view Learning (TMVL)” algorithm to handle the problem of incomplete view. Providing a
tractable learning algorithm, TMVL is based on properties of tensor algebra and maximum
margin-based optimisation framework. Tensor decomposition has already been used in
some missing data problems, e.g., [10, 11], but their settings are different from ours. Liu
et al. (2013) investigated a low-rank tensor technique based on tensor-trace norm minimi-
sation problem in image reconstruction [10], while Chen and Grauman (2014) proposed
a probabilistic tensor model for inferring human appearance from unseen viewpoints [11].
In this report, we show that our proposed method can estimate missing eye movements,
which can be exploited for predicting where humans are likely to look at in images.

We also propose a novel approach for fusing eye movement information with image
features in order to enhance prediction performance. There are many pieces of evidence
suggesting that fusing low-level image features with eye movement improves prediction ac-
curacy [12, 13, 14, 15]. Here, we employed factors derived from Kronecker decomposition
of image fused with eye movement data to represent each view in TMVL.

The outline of the report is as follows: Chapter 2 describes all methods proposed
in this work, including TMVL algorithm, and tensor decomposition. Chapter 3, shows
the performance results of our proposed methods on a real-world dataset. Finally, the

conclusion of our study is presented in Chapter 4.



Chapter 2

Methodology

This section explains the methods proposed in this work: Subsection 2.1 describes the
TMVL algorithm, its algebraic framework, and the corresponding optimisation problem.
Subsection 2.2 explains the procedure for decomposing images as tensors, followed by
an approach for combining images with eye movement data in subsection 2.3. A model-
training process framework, including data processing pipeline for two sets of features, is

visually summarised in Figure 2.1.

2.1 Tensor-based Multi-view Learning Algorithm

As previously mentioned, we had a set of complete views of our samples that we used
as training set, and a test set in which the views were not complete (missing randomly).
We aimed to fill in the missing views for each sample. An example of multi-view learning

problem with missing data is shown in Figure 2.2.

2.1.1  Algebraic Framework

Let us denote R = {1,...,ng} as the set of indices of the views considered. In our model,
each of these views has a corresponding linear vector space Z,, » € R over real num-
bers. The dimensions of these spaces are denoted by Dim(z,) = d,, r € R. The set
Jr = {j1,---,jng} comprises the indices of the samples within each of the spaces cor-

responding to the views, enumerating the components of the vectors chosen from the



1: Eye Movements
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Figure 2.1: Main components and data flow in this work. There are two sets of features

which are eye movement information only and image fused with eye movement information.
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\ 4 \ U
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Figure 2.2: Graphical representation of the multi-view learning framework for a four-view

learning problem.



space corresponding to the views. The range of these indices is equal to the number of
dimensions of the corresponding space.
A sample is chosen out of direct products of these spaces, and each sample item

consists of as many vectors as the number of views,

Views:
Linear vector spaces: 2, ... Z,,
b ...l
Sample: z! ... Z!® i=1,...,m.

The product space of the views is given by the tensor product of the spaces, Z =
&, Z-- This construction forms the algebraic framework of our solution, see [16, 17] and
the references therein for more details.

If we are given two tensor products of vectors then the following contraction operator

[.,.] can be defined over them as

(®yc0U% ®rer V'] =TT conr (U V) ®,coir W ®,crio V' (2.1)

where the inner product is computed for all common indices. When the two index sets are
coincident then the following well known identity can be used to unfold the inner products

of the tensor products as

<®quZ§a®quZ?> = quQ<Z?7Z?>' (22)

This identity states that the inner product of tensor products of vectors is equal to the
product of the inner product of these vectors.

This interpretation of the indices is compatible with the notations commonly used in
tensor algebra, namely, with the so-called “Einstein summation convention”. The symbol
of summation Y is omitted and summation has to be carried out over all indices which are
denoted by the same symbol. Since we use this strategy to denote views and algorithmic
iterations which are not tensor indices, we choose to handle summations with special
care by making them explicit via the contraction operator [.,.]. Furthermore, we assume an
orthogonal representation of the indices, hence in turn, there is no need to make distinction
between covariant and contravariant indices.

In the learning problem, we use a linear operator, a tensor, that is an element of the



dual space of z, the space of linear functionals defined on Z, namely
W E Z*’ W = [WJR] = [lew":jnR]’

where z* denotes the dual space of all possible linear functionals defined on Z.
We can write up Frobenius type inner products between the linear operator W and the

tensor product of vectors of the views as

W, ®,crZ)F =i Wi Trer 2, (2.3)

nR

In similar fashion, we can compute the Frobenius norm of W by

[N

IWlle = (35, e Witun) (2.4)

In the next step, the set of views is partitioned into two arbitrary parts,
Rx CR, Ry :R\RXv

we term the views occurring in Rx as inputs, and the views in Ry can be handled as
outputs. Corresponding to either Rx or Ry, the set of indices belonging to each view has
to be split apart,

Ix CIry Ix ={jr, T € Rx}, Iy =Ir\ Ix.

Fixing a partition, a contraction of W can be defined as

r def r
WJY = WJR\JX = W®re7€x Z; = ZjTejx WJR HreRx Zij,,.v (25)

where the components of W are summed only over the input views.
Consequently, the relationship between the inputs and the outputs can be described by

the following inner product

def
(Qsery ZWR,ery ZDF = 25y [iery 2, 20 Wor I ery 25, - (2.6)

It provides a similarity measure between the outputs and the projection of the inputs by
the linear operator W. If the norm of W is fixed, then this inner product takes a greater
value if the angle between the direction of the outputs and the projection of the inputs is
smaller, thus the correlation between them is greater. If both the inputs and the outputs
are normalised to the same length then this similarity measure implies small distance as
well.

Based on these definitions, we can derive a simple but fundamental Lemma:

7



Lemma 1. For all partitions Rx,Ry of R the inner products

<®seRy Z’W®7‘ERX 1>
have the same value, namely
W, Q,cr Zi)r-

Proof. We need to unfold only the corresponding definitions of the inner products that give

the next chain of equalities

<®se72y 17W®T€Rx 1>F = ZJY HseRy s ZJX Wi HreRx ZszT

; . .
1 yenes Jnp WJl ----- Ing HT‘ER Zz],,.

<W ®r€7€ 7>

Q.E.D.

This Lemma shows that the value of the inner product of the tensor products is invariant

on the partitioning of the views into inputs and outputs.

2.1.2 The Optimisation Problem

To force a high similarity between the projected inputs and the outputs taken out of a fixed
partition of the views, a “Support Vector Machine”-style, maximum-margin-based optimi-
sation problem is formulated for the regression task. Please note the earlier application of

the framework [18, 19]:

min W%+ O &

w.r.t. W tensorc z*, ¢ ¢ R™,

st ( ® z; W ® Z)r > 1-¢, (2.7)
SERYy reERx
SN—— N——
Outputs Inputs

&>0,i=1,...,m,
where C > 0 is penalty constant.
The form is similar to the Support Vector Machine case with two notable exceptions: (i)
the outputs are no longer binary labels, {—1,+1}, but vectors of an arbitrary linear vector
space, and (ii) the normal vector of the separating hyperplane is reinterpreted as a linear

operator projecting the inputs into the space of the outputs.



The regularisation term in the objective function forces the projections of the inputs and
the outputs to be similar with respect to their inner products. When the inputs and the
outputs are normalised, they live on a sphere in both corresponding spaces, hence we
solve the problem by using the structure of Spherical rather than Euclidean geometry.

Based on Lemma 1, we state the next theorem:

Theorem 2. For all partitions, Rx, Ry of R the optimisation problem (2.7) is equivalent to

the following one:

min  3IW[5 +C XL &
w.rt. W tensore Z* ¢ ¢ R™,
(2.8)
St <W7®TGRZ;>F21_£Z" i:l,...,m,
gi 20, i:l,...,m.

This equivalence holds true if the inputs and the outputs are partitioned independently for

every sample item.

Proof. We can reformulate the constraints by following Lemma 1 that proves the statement.

Q.E.D.

This fact guarantees that the linear operator W has a universal property that it is inde-
pendent of the way how the views are grouped into inputs and outputs, thus it consistently
characterises the underlying multi-view learning problem.

The seemingly complex problem represented by (2.8) can be solved via a simple La-

grangian dual:

min  la/(Kie--- oK, )a—Ta
w.rt. acR™ (2.9)
st. O<ac<Ci,
where
Koy =(7.2), reR, i,je{l,...,m} (2.10)

are kernels corresponding to each of the views. In the formulation of the Lagrangian dual,
we exploited the identity given by (2.2).
The o operator expresses the element-wise, Hadamard, product of matrices. This dual

can be solved in a straightforward way for very large scale applications?. After the dual

1The website of the authors provides an open source implementation to this problem.



variables were computed, the optimum solution for the universal linear operator becomes

W=3"0i®,er Z- (2.11)

In the test phase, known and unknown views are considered as inputs and outputs,

respectively. The output can be estimated in the following way:

<®86Ry ZS) ~ W®TE'RX zr = ZZl Q [®7’€'R Z:’ ®TERX ZT]

= 221 Q; HTERX <Z£7 ZT> ®s€72y Zf (212)
=2t Bi Query Zi
where
Bi = aill,er, (Z,27), i=1...,m. (2.13)

Thus, the prediction is a linear combination of the corresponding known outputs.

2.1.3 Computational Complexity of the Proposed Method

For estimation of the computational complexity of the problem presented in (2.9), one
can recognise that (2.9) is equivalent to the dual problem of an unbiased Support Vector
Machine (SVM). Consequently, the problem in (2.9) can be solved by applying the same
type of methods that should have the same complexity depending on the sparsity of the
included kernels, see a discussion about this in [20]. The basic task of the SVM is to
separate two classes of output data by a hyperplane. The settings of the SVM contain a
sample {y;,X;}, vi € {-1,+1}, X; € X(=R") and the separating hyperplane which is defined
by its normal vector w. Furthermore, input vectors might be embedded into a feature
space, Hx, via a function ¢ : X — Hx, where it is assumed that Hx is a Hilbert space.
The corresponding primal optimisation problem of the SVM is formulated as
min  Z|lw|j3 +C1’¢

w.rt. weR" € eR™,

(2.14)
st yWor, >1-¢,
€>0,i=1,...,m,
while the dual problem of the SVM has the form (see for example in [21]),
min  la/(yy eKyx)a— 1'a
w.rt. acR™, (2.15)

s.t. O<a<cC1.

10



After introducing the notation K = (yy’eKy) in the SVM dual, and similarly K = (Kje---eK, )
in the dual of the multi-view learning problem (2.9), we arrive at the same optimisation
problem, thus the computational complexity of the proposed learning problem is the same

as the complexity of the SVM.

2.1.4 Non-linear Relations

Another consequence of the optimisation problem of the proposed learning method being
equivalent to that of the SVM is that the kernel trick can be applied here as well (see [21]
for more details). Since both the dual problem (2.9) and the prediction (2.12) contain all
input feature vectors as components of the corresponding inner products, a knowledge of
the positive semi-definite kernel matrix suffices for carrying out computations in the training
and in the prediction as well. More concretely, let all input features—the representation of
the image parts in this application—be implicitly embedded into a feature space by these
given functions,

b, Z - H,, € Ry, (2.16)

where #,. is a Hilbert space for each r. Then we can write up the elements of the kernels

as,
(Kl‘)ij = <¢T‘(Z;;? ¢r(zj)> , TE€Rx, 1,5 = {]-7 s 7m}' (217)

For example, Gaussian or Polynomial kernels can be chosen on top of the available linear

features.

2.2 Decomposing Images as Tensors

Images expressed by matrices can be represented as a product of the factors computed
by Kronecker decomposition. This Kronecker decomposition, after a reordering of the
elements of the image matrix, can be carried out by singular value decomposition (SVD).
That kind of transformation of images can reveal the structure of the images, e.g., edges,
and corners, and can yield a high level compression of the image matrices. In the case of
colour images, the representing matrices can be replaced with tensors in order to capture

the third dimension of the colours.
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2.2.1  Kronecker decomposition of matrices

Let us consider a real 2-dimensional (2D) image decomposition of which we can expect the
points nearby within continuous 2D blocks to relate stronger to each other than to the points
in the 1-dimensional rows or columns. A question is, “can the SVD decomposition provide
2D blocks instead of vectors?” To achieve this end, a Kronecker product of matrices is
introduced.

The Kronecker product of a matrix X can be expressed as

Al,lB A1,2B e Al,nAB
A B AB - Ay,,B

X-AgB=| . na (2.18)
AmA,lB Am,A,QB e AmA,nAB

where A e Rmaxna B e RMBX"8 myx =my x mpg, and nx =n4 x ng.
In the Kronecker decomposition, the second component, B, might be interpreted as a
2D filter of the image represented by the matrix X. We can try to find a sequence of filters

by using the procedure presented in Algorithm 1.

Algorithm 1 Calculate the Kronecker decomposition of a matrix
Require: matrix X, number of iteration n,

Require: size of A € Rmaxna size of B € Rmsxns
Ensure: (AW BW) ... (A B™)
1: XM =X

2: fork=1ton do

3: A, B® —argmina g [X® —A®@B|%, phenius
4: Xk = Xk — Alk) o Bk) | ## deflation
5. end for

The question can be stated now as, “if X is given, how can we compute the optimum

solution A and B for the problem minag | X®) — A B||%, 1enivs?
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2.2.2 Kronecker Decomposition as SVD

We can make an important observation that the algorithm solving the tensor decomposition
problem does not depend directly on the order of the elements of the matrix, thus a
permutation of the indexes, i.e. reordering of the columns and/or the rows, preserves the
same solution. Based on this observation, the Kronecker decomposition can be computed
via the SVD (see [22] for more details). An example that illuminates how the reordering of
the matrix X can solve the Kronecker decomposition problem is demonstrated here:

The matrices in the Kronecker product

X = AxB
T11 T12 | T13 T14 | T15 T16

To1 T2z | T23 T24 | T25 T26

a1l @iz ais

31 32 | T33 T34 | T35 T36 bin b2 | >
= as1 az asgz | ®

T41 T42 | 43 T44 | T45 T4 bar  boo
a31 a32 a33

Ts1 Ts2 | T3 Ts4 | Ts5  L56

Te1 Te2 | T63 Ted | Les5 L66

can be reordered into

11 %13 L1535 31 L33 T35 Ts1 T3 Tss
T12 Ti14 Tie T32 T34 T36 L52 Ts4 T
T21 T23 T25 T41 T43 T45 Tel Te3  Tes

T22 X24 T26 T42 T44 T4 Te2 Ted Tee ’

= @1 a;1 a2 a1z a1 Az azz asr asx ass

where the blocks of X and the matrices A and B are vectorised in a row-wise order.

We recognise that X = A® B can be interpreted as the first step in the SVD algorithm
where we might apply substitutions \/su = A and /sv = B. The proof that this reordering
provides a correct solution to the Kronecker decomposition can be found in [22].

The main steps of the Kronecker decomposition can be summarised as follows:

13



1. Reorder (reshape) the matrix,

2. Compute the SVD decomposition,

3. Compute the approximation of X by A B
4. Invert the reordering.

This kind of Kronecker decomposition is often referred as the Nearest Orthogonal Kro-
necker Product as well [22].
We can extend this procedure to higher order tensors represented by higher order

arrays (see the review paper of [23]). We can apply this method on the following objects:

« colour images, where three matrices express the RGB layers, a tensor of order 3,

e.g. 1024 x 1024 x 3,
+ video stream of grey-scale images, where the third dimension is time,

+ video stream of colour images, where the third dimension is colour, and the fourth

dimension is time.

The Kronecker decomposition presented above can be extended further to include
more than two factors (more details, alternative approaches and applications can be found
in [23]). The Kronecker decomposition algorithm, as shown in Algorithm 1), implements
a non-linear polynomial approximation of the target matrix or a higher order tensor. The

degree of the applied polynomial is equal to the number of included factors.

2.2.3 A Set Theoretic Approach to Reordering

A matrix representation as an ordered collection of elements can be reinterpreted by using
the language of set theory. Let X be a matrix with size m xn. For the sake of simplicity, we
assume that the elements [X;;] of X are real numbers. The structure of the matrix X can be
described as a set X of the elements {X;;} with cardinality mn on which two equivalence
relations, %, and #., are imposed, one based on the rows and the other based on the
columns, i.e. two elements are equivalent with respect to %, if they are in the same row,

and equivalent with respect to #. if they are in the same column.
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Now, the reordering of the matrix elements x is expressible by imposing another kind of
equivalence relations that classify the elements into different classes. These equivalence
relations have to satisfy the following rules: all of the equivalence classes within the relation
% have to have the same cardinality. The equal cardinality rule implies that the product
of the number of the equivalence classes N5 and the common cardinality of the classes,
cardy, is equal to the cardinality of X, namely to mn. Then, the reordering of the matrix
elements can be carried out by sorting the equivalence classes into columns and rows of
a new matrix.

Note that the equivalence relation R can be decomposed further into a series of equiv-

alence relations (R4,...,Ry). This decomposition can be realised in a recursive way.

1. Let the set of classes of R, be given by C(%)i,...,C(%)n,,, with common cardinality

cardg, .

2. For every class of relations, %, apply the same type of equivalence relations, %;. ;.
Since the cardinality of the classes of %, is the same, this relation can be applied
uniformly. Consequently, the cardinality of the classes and the number of the classes

in %, are the same for all classes of %,.

By reversing the recursive classification of the elements, we can build a tensor T of
order N + 1 by starting on the classes of the #Zy.

Since the internal structure of the matrix X is not directly exploited, only the set of
its elements are classified. The reordering procedure described above can be applied
on any tensor of arbitrary order. Thus, any tensor can be reordered into another tensor
of arbitrary order. An example of order one tensor, vectorisation, can be given by an
equivalence relation where all elements fall into the same equivalent class.

This interpretation of the reordering leads us to the realm of Algebraic Statistics, and
within that realm, to the Combinatorial Design Theory [24, 25]. The Combinatorial Design
Theory addresses the problem of how to build systems of finite sets that satisfy certain
requirements of symmetries as stated in the classical theory of Latin squares. These
theories play a very important role in creating balanced statistical experimental designs,

especially for medical tests.
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2.24 Compression

Furthermore, the tensor decomposition can provide a very high level compression of im-
ages. Some examples are presented here. The compression ratio is computed by dividing
the number of elements of the image matrix with the total number of elements of the com-
ponents in the decomposition.

The original image matrix is given by integers in the range of 0,...,255 for both grey-
scale and RGB colour images. The decomposition happens in the space of real numbers,
but after having been decomposed, the real numbers in the components can be rescaled
and transformed into the original integer interval.

Let the size of a grey-scale image be equal to (1024,1024), then we can have various

patterns of decompositions as shown in Table 2.1.

Component Singular Full Compression
Size Values Size Ratio
(32,32), (32,32) 10 5 =10 % 2 x 322 10242 _ 512

(16,16), (16,16), (4,4) 20 s=20% (2% 162 +42) 10242 — 9999

Table 2.1: Examples of possible patterns of decomposition of a grey-scale image with

1024 x 1024.

The components provide a tightly-compressed signature for the image as illustrated in

Figure 2.3.

Figure 2.3: The right image is a recovered image from the Kronecker decomposition of
the original image on the left. The factors were (48,64, 1), (16, 16,3) with 6 singular values.

The compression ratio was 102.4.
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(b) Image compressed by Kro-

(a) Image without compression necker decomposition (c) Image compressed by SVD

Figure 2.4: An example of image compressed by the proposed and a conventional tech-

nique when the compression ratio was 100.

The Kronecker-decomposition-based features can be compared with those from a con-
ventional compression technique with SVD and the well-known SIFT features [26]. Let
the size of an RGB colour image be (640,960,3) and the sizes of the components in the
tensor decomposition be (10,15,1),(8,8,1),(8,8,3), and let 45 singular values be computed,
then 45 x (10 = 15 + 8% + 3 x 82) 8-bit data items can be obtained with a high compression
ratio of ~ 100. This is equivalent to (i) using image compression with SVD with 4 singular
values which gives ((640  4) + 4 + (940 = 4)) x 3 data items and (ii) ~ 36 SIFT feature vec-
tors with 128 real valued components, where we assume that these real humbers can be
represented by 32 bits. The tensor decomposition can recover a good approximation of
the original image and the colour information while the conventional technique cannot do
so, as shown in Figure 2.4. Although the 36 SIFT points may be able to capture some
particular characteristic points, they cannot recover the main structure of the entire image

at all.

2.2.5 Interpretation of Image Components

The components provided by the tensor decomposition can be endowed with a practical
interpretation. Let us discuss the two-component case where the image matrix X is ex-
pressed as a Kronecker product of two other matrices A and B. Since the second factor B
in the product is forced to be the same for all positions, it has to be equal to a nonlinearly
aggregated matrix. This factor is shifted around within the image and it is only scaled by

elements of the matrix A. Thus, B can be interpreted as an image filter.

17



0 T T T 0 T T T T T T 0 T T T T T T 0 T T T
10 10F . ! 10} 1 10| |
Ve ' L9 oo ” j v Y " .
20 20 1 20 F i | q 20 L) * |
-*— — .‘ —4 - e Il r F -", .
30 [%_—! . ,'ﬂ‘i 30 — ‘__ o - 1 30L . [‘ ,‘_ g jiv o ' 1 30 _* 'y -t s 1
40 1 a0 < 1 aof 4 a0l ° |
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1
0 10 20 30 40 50 60 10 20 30 40 50 60 O 10 20 30 40 50 60 O 10 20 30 40 50 60
0 T T T 0 T T T 0 T T T T T T 0
10} i 10 1 10§ { 10} |
e b . - e WL 1 ¥y v rx'_
2080 |y i ! 20 5k { 20 IEEEL T I By 1
.ty LW A S ot ST pha ok
30 P v o RN 30 by B8 T 30 Eg__hpﬁ Pl 30 70 oo 1
aof 1 a0 1 a0f 1 a0l |
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1
0 10 20 30 40 50 60 O 10 20 30 40 50 60 O 10 20 30 40 50 60 O 10 20 30 40 50 60

Figure 2.5: First level of the Kronecker decomposition in case of the first 8 largest singular

values.

In Figure 2.5, the first level components belonging to the sequence of decreasing sin-
gular values are of the compressed image shown in Figure 2.3. This image is factorised
into two levels and the corresponding low level components are presented in Figure 2.6.
Some characteristic patterns can be recognised from these factors. The factor belonging
to the second singular vector represents a horizontal edge filter and the factor belonging
to the third singular value yields a vertical line filter.

In this way, the image decomposition finds the boundaries of the critical regions, edges,
and corners in which most of the structural information concentrates, and as mentioned
earlier, it also produces a very highly compressed skeleton of the data.

Since in every step the decomposition processes the residue of the previous step, it
predicts those parts that have hardly been approximated earlier, thus in every step a new
layer of the structure is discovered. In images, these layers are first the flat areas, then
edges of different directions—vertical, horizontal, and slant—corners of different kind, and
the higher order singularities of the intensity surface. This kind of incremental approach

resembles a boost in which hardly predictable sample items receive larger weights.
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Figure 2.6: Second level of the Kronecker decomposition in case of the first 8 largest

singular values.

2.2.6 Relation to Known Saliency Detection Approaches

Generally applied saliency detectors are built on estimated derivatives of the intensity
function, 1, of an image (see for example [27]). These derivatives can provide information
about the locations that the intensity changes significantly faster than a given threshold.
The general first order edge and corner detection algorithms consist of two phases: the
first phase uses a Gaussian filter to smooth out the noise caused by non-differentiable
representation of the image, and the second phase estimates the gradients of the image
intensity. The higher order methods also exploit the second derivative, the Hessian, of the
intensity image. Estimation of the derivatives can be performed by applying image filters
on the image intensity, e.g. Laplacian, Sobel and Prewitt.

For example Harris-Laplace detector relies on the first order partial derivatives, I,,1,, of

the intensity measured in the local neighbourhood of a given image point

2
Alx) = 3wy B BAX , R=det(A) - atrace’(A).

LI,(x)  I5(X)

Similarly the Hessian affine region detector exploits the second partial derivatives of the
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Gaussian-filtered intensity, the Laplacian of the Gaussian (LoG) representation,

H(z) = Paal) Ley(X) , L(z) = g(-|0,01) ® I(z), LoG = trace(H),
Lay(X)  Lyy(X)

where L is the Gaussian-filtered intensity, and ¢ is a Gaussian filter with a parameter o;.

Our Kronecker decomposition based algorithm iteratively reproduces the partial deriva-
tives of the intensity function via higher order polynomial approximation of successive
error terms. During this iterative procedure, the algorithm automatically selects, in the
least-square sense, the best fitting filters as the last factor of the Kronecker product. In
this way, it gives an approximation of the multivariate Taylor series of the intensity image
that provides an estimation of the full series of those partial derivatives that are exploited in
well-known saliency detectors. It is also important to mention that the global optimality of
the Kronecker decomposition allows us to select only regions where the derivatives change
the most and eliminate flat, redundant ones. This selective property leads to high level
compression of the information needed to describe the variation of the intensity. For ex-

ample, Harris detector based methods focus only on local features without forcing globally

optimal extraction.

2.3 Combining Images with Eye Movements

The images processed in our eye movement experiments were assumed to be RGB colour
images represented by 3 parallel matrices and indexed by row and column coordinates of
the pixels in the images. Since the sizes of the images varied, all of them were transformed
into the same common size in the learning procedure. That common size was 50 x 50.

The eye movements in all of the experiments were given as a list of coordinate pairs
consisting of the image related row and column indices. When the eyes moved beyond
the image, those eye movement coordinates were represented by invalid, e.g., negative
values. Therefore, the coordinate pairs of the eye movement had to be filtered to extract
only those points that corresponded to valid image pixels. When the sizes of the images
were transformed to the same size, that transformation applied to the eye movement
coordinates as well.

When eye movement coordinates were combined with an image, we needed to deal
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with the uncertainty of eye positions caused by measurement errors and movements of
the eyes and the head that were probably not related to the image. That uncertainty was
handled by applying Gaussian smoothing, a spatial filter, to each point of eye movement.
The Gaussian filter was centred at a point u with a width parameter o assigns to each
image point X,

_lix—uy?

g(X|u,o) =e 2@ . (2.19)

The centres of the Gaussian filters were localised at the observed points of the eye move-
ments. Since all image points could be connected by the filter to all eye movement points,
as many filter values were assigned to each image point as the number of observed eye
movement points. To aggregate the filter values, we applied the following function on all
of the image points x:

ga(X) = muan(X‘U,(T). (2.20)

The function g4 assigned to each point of the image, x, a Gaussian filter value that belonged
to the closest point of the eye movement. That Gaussian filter can well represent foveation
in human vision [28].

In Figure 2.7, the eye movement trajectories on a stimuli image of six contributing users
are presented. We were able to have some impression on the similarity and the variation
of the responds of the users looking at the same image and trying to perform the same
task.

Figure 2.8 shows images that were already merged with eye movements data. These
images would subsequently be decomposed by a Kronecker product. The decomposition
of the Kronecker product on the image and the combined images with eye movement data

are shown in Figure 2.9.
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(d) User 4 (e) User 5 (f) User 6

Figure 2.7: The eye movements of six different users on a sample image.

Figure 2.8: Eye movement data overlaid on the image (left) and images merged with eye

movement data (right) of two users.
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Chapter 3

Performance Evaluations and

Discussions

We evaluated our TMVL algorithm on a publicly available eye tracking dataset [4]. The
dataset contains eye tracking data of 15 different users on 1003 images. Each image
consists of three-second free-view trajectories of different users. In order to encourage
users to pay attention to the task, they were memory-tested at the end of the data collection
of 100 images.

In our experiment, only eight users were randomly selected; hence, there were eight
views in this setting. Each view was represented by a heatmap of each user. Heatmap
quantifies the degree of importance of parts of image; a higher probability of an important
part is implied by a higher density of eye movements on that part. We investigated two

sets of heatmap input features.

1. Heatmap generated from eye movement data alone (Hg): A user's heatmap was

created by convolving a Gaussian kernel with each eye fixation point.

2. Heatmap generated from eye movement data and the image (Hg;): This set of fea-
tures was generated by a Kronecker decomposition of an image combined with
eye movement data as described in section 2.3 with o of 2. We extracted fea-
tures with two components of Kronecker product from a grey scale processed im-

age. The sizes of the high (first) (A) and low (second) (B) level component were
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(10,10), and (5,5), respectively with 20 singular values. The feature vector became

A1®Bl A2®BQ A20®BQQ

All heatmaps were normalised to unit norm. To compare prediction performances, we

used three performance matrices as follows:

1. Area under the receiver operating characteristic (AUROC) is one of commonly used
performance metrics for comparing heatmaps and eye fixations®. It is based on an
ROC curve that can be computed by varying the threshold of the predicted heatmap.
A pixel is predicted as a target when its heatmap value is greater than the threshold,
while it is classified as a background when the value is below the threshold. AUROC

ranges from 0 (complete mismatch) to 1 (perfect match).

. Correlation indicates the degree of linear relationship between two maps. It ranges
from —1 (perfect correlation but in the opposite direction) to +1 (perfect correlation).

Zero indicates no correlation between the two maps.

. Jensen-—Shannon divergence (JSD) was used to identify the dissimilarity between
two distributions. It is based on Kullback-Leibler divergence (KLD) which can capture

a certain kind of non-linear, entropy type and dependency. KLD is defined as,

Dia(PQ) = Y (o) (3.1)

where P,Q are the probability distributions. JSD is symmetric while KLD is not [29].
Square root of JSD has matrix properties. The more similar the two objects are, the

smaller the value of JSD is, and vice versa. JSD is defined as,
1 1
D;s(Pl|Q) = iDKL(PHM) + §DKL(QHM) (3.2)
where M = L(P+ Q).

Here, linear kernel function was used. Model selection was performed with five-fold

cross validation based on AUROC. We examined two scenarios of the test sets: (i) {1-7}

missing views were randomly selected and (ii) one fixed view was missing for each run.

The experiments were run 10 times with different random data splits.

Available for download at http://www.vision.caltech.edu/~harel/share/gbvs.php.
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Although our scenario is of a supervised learning approach, but its setting is different
from those mentioned earlier in the introduction. All previous works used a saliency map
of average locations fixated by all users as a global model. In our scenario, we instead
used individual fixation maps and focused on user models. Our assumption was that there
were some correlations between users’ eye movement behaviours. We aim to predict the
individual maps. There was no available technique designed for this kind of scenario, so
we compared our proposed method with baseline methods in a similar way that we did
in one of our previous works [30]. The baseline methods were two well-known saliency
map models: Conventional Visual Saliency (CVS) [1], and Graph-Based Visual Saliency

(GBVS) [2].

3.1 Randomly Select Missing Views

When the number of missing views increased, AUROC and correlation decreased for all al-
gorithms as shown in Figure 3.1a and 3.1b, respectively. On the other hand, JSD increased
when there was an increase in the number of missing views as shown in Figure 3.1c. When
the number of missing views increased, TMVL-H performance was dramatically reduced
while GBVS and CVS’s performances were slightly decrease. TMVL-Hz only used eye
movement data, therefore, the prediction performances highly depended on number of
available view, while GBVS and CVS used image information. TMVL-Hz’s performances
on AUROC were better than those on GBVS when there were 1-2 missing views and
better than those on CVS when there were 1-3 missing views. Unfortunately, TMVL-Hp
performances on AUROC were worse than those on GBVS and CVS in other cases as
shown in Figure 3.1a. However, TMVL-H; was still able to achieve better average corre-
lation and JSD than GBVS and CVS were in all cases as shown in Figure 3.1b and 3.1c,
respectively.

Figure 3.2 shows an example of prediction by GBVS, CVS, and our proposed algorithm
when two views were missing. It can be seen that GBVS and CVS failed to predict where
users were looking at. Both algorithms put attention on the woman’s arm and the windows
while users actually focused on her face. Clearly, TMVL was more effective than GBVS

and CVS for all three performance matrices as shown in Table 3.1,
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Figure 3.1: A boxplot comparison of all methods when randomly selected {1-7} missing

views were considered.
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Figure 3.2: True and TMVL-predicted heatmaps of an eight-view problem with two views

missing (User 1 and 2) compared to those predicted by baseline methods—GBVS and CVS.
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User Method AUROC Corr JSD

TMVL 0.8065 0.7160 0.3726
1 GBVS 0.6543 0.0783 1.2755
CVS 0.7358 0.0792 1.2454

TMVL  0.7812 0.6900 0.4064
2 GBVS 0.6707 0.0985 1.1863
CVS 0.6983 0.0981 1.1627

Table 3.1: Performance matrices of all of the methods on the image in figure 3.2. Bold

values indicate the best performance achieved in each user.

We improved prediction performance by using Hg; as feature vectors and compared
the prediction results with those from other methods, as shown in Figure 3.3. TMVL-
Hpgr outperformed CVS in all cases but was only better than GBVS in {1-4}-missing-view
cases. TMVL was comparable to GBVS when five views were missing but was worse
than GBVS in the case of {6—7} missing views. It should be noted that we only evaluated
the performances on AUROC as it compared the predicted heatmaps directly with eye
movement data for all of the methods. Correlation and JSD compare between predicted
heatmaps to target heatmaps but target heatmaps for TMVL with Hz and with Hg; were
different. Hence, we were not able to directly compare these matrices. It is clear that using
Hpg; that combined images with eye movement information could dramatically enrich the
performance on AUROC over using Hg as shown in Figure 3.4. AUROC was improved at
2.82% in 1-missing-view case and up to 15.20% in seven-missing-view case.

Figure 3.5 shows an example of predictions by all of the methods when two views
were missing. Again, GBVS and CVS failed to predict that the cat on the table would
be favourably looked at rather than chairs with light shone on them. Both TMVL with Hg
and Hgr were able to detect the cat; however, TMVL-Hg; was able to capture more eye

movements than TMVL-Hy did, especially for User 2.
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Figure 3.5: A comparison of predicted heatmaps by all of the considered methods.

User 1

User 2

Method User Index

1 2 3 4 5 6 7 8
TMVL-Hg; 0.8550 0.8631 0.7939 0.8300 0.9010 0.8468 0.8418 0.7901
TMVL-H; 0.8349 0.8508 0.7690 0.8079 0.8711 0.8246 0.8184 0.7670

GBVS 0.8040 0.7848 0.7638 0.8028 0.8410 0.7888 0.8025 0.7636
CVS 0.7426 0.7164 0.7146 0.7517 0.7708 0.7257 0.7457 0.7171

Table 3.2: A comparison between all of the methods with AUROC when only one fixed

view/user are missing. Bold values indicate the best AUROC achieved in each user.
3.2 Fixing A Missing View

In this scenario, we wanted to predict where a user would be looking at in a (test) set of
images based on where the other seven users were looking at in the same set. According
to Table 3.2-Table 3.4, TMVL was the best contender for all users, followed by GBVS
and CVS in that order. Using Hg; as input features could improve prediction performance
significantly for all cases and on all matrices.

Compared to GBVS and CVS, TMVL-H; showed an improvement with AUROC for all
users at 3.01% and 11.20% on the average, respectively, as shown in Figure 3.6a. TMVL-

Hpg; performance was improved much more, 5.81% against GBVS and 14.22% against
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Feature Method User Index

1 2 3 4 5 6 7 8

Hgp TMVL  0.4147 0.4747 0.3568 0.4046 0.4569 0.4266 0.4154 0.3657
GBVS 0.2310 0.2319 0.2356 0.2736 0.2259 0.2432 0.2660 0.2645
CVS 0.1762 0.1757 0.1829 0.2114 0.1727 0.1829 0.2045 0.2097

Hp TMVL  0.3276 0.4433 0.2951 0.3437 0.4013 0.3874 0.3706 0.2861
GBVS 0.1835 0.1932 0.1856 0.2083 0.1928 0.1981 0.2135 0.1976
CVS 0.1425 0.1465 0.1476 0.1662 0.1501 0.1526 0.1675 0.1604

Table 3.3: A comparison between all of the methods with correlation when only one fixed

view/user are missing.

Feature Method User Index

1 2 3 4 5 6 7 8

Hgr TMVL  0.6324 0.5279 0.5152 0.4866 0.6234 0.5364 0.4998 0.4095
GBVS 0.7442 0.7046 0.5912 0.5893 0.8102 0.6735 0.6193 0.4921
CVS 0.7625 0.7171 0.5927 0.5968 0.8343 0.6844 0.6277 0.4833

Hp TMVL  0.6792 0.5463 0.7011 0.6606 0.6055 0.6083 0.6269 0.7003
GBVS 1.1585 1.1138 1.0224 1.0024 1.1760 1.0451 0.9996 0.9582
CVS 1.2184 1.1753 1.0757 1.0595 1.2376 1.1056 1.0587 1.0103

Table 3.4: A comparison between all of the methods with JSD when only one fixed view/

user are missing.
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Figure 3.6: Relative improvement of TMVL compared to GBVS and CVS when only one

fixed view/user was missing.

CVS on the average, as shown in Figure 3.6b. Our proposed algorithm achieved the

highest improvement compared to both baselines for User 2. This means that other users’

eye movements behaviours were very useful to User 2. However, the least improvement

was found for User 8. This indicates that user adaptation can be useful as the performance

was improved even though not so much for the case of User 8. Using TMVL-H; yielded

better AUROC, at 2.73% on the average than TMVL-Hy did, as shown in Figure 3.7.
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Chapter 4

Conclusion

In this report, we introduced a missing-value prediction schema built upon maximum-
margin-based learning and invariances of tensor algebra. Our proposed algorithm was
tested on an eye movement dataset in order to identify where users were looking at in
images. We also proposed a new technique that decomposes images called “Kronecker
Decomposition”. This technique can be used in image compression applications. We also
proposed an approach to combine image with eye movement data. The processed image
is then decomposed by using Kronecker decomposition. We have demonstrated that our
framework was able to perform better than two well-known saliency detection techniques.
Several initial results show that user adaptation may be useful; thus, user information

should be investigated further in future research.

34



References

[1] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual attention for rapid
scene analysis,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 20, no. 11, pp. 1254—-1259, 1998.

[2] J. Harel, C. Koch, and P. Perona, “Graph-based visual saliency,” in Advances in

Neural Information Processing Systems, pp. 545-552, 2006.

[3] A. Borji, M.-M. Cheng, H. Jiang, and J. Li, “Salient object detection: A survey,” arXiv,
vol. 1411.5878, 2014.

[4] T. Judd, K. Ehinger, F. Durand, and A. Torralba, “Learning to predict where humans
look,” in IEEE 12th International Conference on Computer Vision, pp. 2106-2113,
2009.

[5] J. M. Henderson, J. R. Brockmole, M. S. Castelhano, and M. Mack, “Visual saliency
does not account for eye movements during visual search in real-world scenes,” Eye

Movements: A Window on Mind and Brain, pp. 537-562, 2007.

[6] Q. Zhao and C. Koch, “Learning a saliency map using fixated locations in natural

scenes,” Journal of Vision, vol. 11, no. 3, pp. 1-15, 2011.

[7] M. Liang and X. Hu, “Feature selection in supervised saliency prediction,” IEEE Trans-

actions on Cybernetics, vol. 45, no. 5, pp. 914-926, 2015.

[8] J. Wang, A. Borji, C. J. Kuo, and L. liti, “Learning a combined model of visual
saliency for fixation prediction,” IEEE Transactions on Image Processing, vol. 25,

no. 4, pp. 1566-1579, 2016.

35



[9]

[10]

[11]

[12]

[13]

[14]

[15]

L. Zhang, X. Li, L. Nie, Y. Yang, and Y. Xia, “Weakly supervised human fixations
prediction,” IEEE Transactions on Cybernetics, vol. 46, no. 1, pp. 258-269, 2016.

J. Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor completion for estimating missing
values in visual data,” IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, vol. 35, no. 1, pp. 208-220, 2013.

C.-Y. Chen and K. Grauman, “Inferring unseen views of people,” in IEEE Conference

on Computer Vision and Pattern Recognition, pp. 2011-2018, 2014.

D. R. Hardoon, K. Pasupa, and J. Shawe-Taylor, “Image ranking with implicit feedback
from eye movements,” in Proceeding of the 6th Biennial Symposium on Eye Track-
ing Research & Applications (ETRA 2010), 22-24 March 2010, Austin, USA (C. H.
Morimoto, H. O. Istance, A. Hyrskykari, and Q. Ji, eds.), pp. 291-298, 2010.

P. Auer, Z. Hussain, S. Kaski, A. Klami, J. Kujala, J. Laaksonen, A. P. Leung, K. Pa-
supa, and J. Shawe-Taylor, “Pinview: Implicit feedback in content-based image re-
trieval,” in Proceeding of the Workshop on Applications of Pattern Analysis (WAPA
2010), 1-2 September 2010, Cumberland Lodge, UK (T. Diethe, N. Cristianini, and
J. Shawe-Taylor, eds.), vol. 11 of Journal of Machine Learning Research - Proceed-

ings Track, pp. 51-57, 2010.

Z. Hussain, A. P. Leung, K. Pasupa, D. R. Hardoon, P. Auer, and J. Shawe-
Taylor, “Exploration-exploitation of eye movement enriched multiple feature spaces
for content-based image retrieval,” in Proceeding of the European Conference on
Machine Learning and Principles and Practice of Knowledge Discovery in Databases
(ECML-PKDD 2010), Part I, 20-24 September 2010, Barcelona, Spain (J. L. Balcazar,
F. Bonchi, A. Gionis, and M. Sebag, eds.), vol. 6321 of Lecture Notes in Computer
Science, pp. 554-569, 2010.

K. Pasupa, P. Chatkamjuncharoen, C. Wuttilertdeshar, and M. Sugimoto, “Using im-
age features and eye tracking device to predict human emotions toward abstract
images,” in Proceeding of the 7th Pacific Rim Symposium on Image and Video Tech-

nology (PSIVT 2015), 23-27 Nov 2015, Auckland, New Zealand (T. Braunl, B. Mc-

36



Cane, M. Rivers, and X. Yu, eds.), vol. 9431 of Lecture Notes in Computer Science,

pp. 419—430, 2016.

[16] M. Itskov, Tensor Algebra and Tensor Analysis for Engineers With Applications to
Continuum Mechanics. Springer, 2nd ed., 2009.

[17] J. Synge and A. Schild, Tensor Calculus. Dover, 1978.

[18] K. Astikainen, L. Holm, E. Pitkdnen, S. Szedmak, and J. Rousu, “Towards structured
output prediction of enzyme function,” in BMC Proceedings, vol. 2, Suppl 4, p. S2,
2008.

[19] S. Szedmak, T. De Bie, and D. R. Hardoon, “A metamorphosis of canonical cor-
relation analysis into multivariate maximum margin learning,” in The 15th European

Symposium on Artificial Neural Networks, pp. 211-216, 2007.

[20] T. Joachims, “Training linear SVMs in linear time,” in Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD

2006), 20-23 August 2006, Philadelphia, USA, pp. 217-226, 2006.

[21] N. Cristianini and J. Shawe-Taylor, An introduction to Support Vector Machines and

other kernel-based learning methods. Cambridge University Press, 2000.

[22] C. V. Loan, “The ubiquitous kronecker product,” Journal of Computational and Applied

Mathematics, vol. 123, pp. 85-100, 2000.

[23] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM Re-
view, vol. 51, no. 3, pp. 455-500, 2009.

[24] L. Pachter and B. Sturmfels, Algebraic Statistics for Computational Biology. Cambridge
University Press, 2005.

[25] M. Drton, B. Sturmfels, and S. Sullivant, Lectures on Algebraic Statistics, vol. Ober-
wolfach Seminars, Vol 40. Birkhauser, 2009.

[26] D. G. Lowe, “Object recognition from local scale-invariant features,” in Proceedings
of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150—-

1157, 1999.

37



[27] C. Schmid, R. Mohr, and C. Bauckhage, “Evaluation of interest point detectors,” In-
ternational Journal of Computer Vision, vol. 37, no. 2, pp. 151-172, 2000.

[28] E.-C. Chang, S. Mallat, and C. Yap, “Wavelet foveation,” Applied and Computational
Harmonic Analysis, vol. 9, no. 3, pp. 312-335, 2000.

[29] J. Briét and P. Harremoés, “Properties of classical and quantum Jensen-Shannon

divergence,” Physical Review A, vol. 79, no. 5, p. 052311, 2009.

[30] K. Pasupa and S. Szedmak, “Learning to predict where people look with tensor-based
multiview learning,” in Proceeding of the 22nd International Conference on Neural
Information Processing (ICONIP 2015), 9-12 Nov 2015, Istanbul, Turkey (S. Arik,
T. Huang, W. K. Lai, and Q. Liu, eds.), vol. 9489 of Lecture Notes in Computer
Science, pp. 432—441, 2015.

38



Research Outputs
Project Code: TRG5680090
Project Title: Predicting where Humans Look at in Images by Machine Learning

Technique

International Journal

1. Kitsuchart Pasupa, Sandor Szedmak, “Utilising Kronnecker Decomposition and Tensor-
based Multi-view Learning to Predict Where People are Looking in Images”, Neuro-

computing, accepted. (Scopus, ISI) (5-Year Impact Factor: 2.471)
International Conference Proceeding

1. Kitsuchart Pasupa, Siripen Jungjareantrat, “Water Levels Forecast In Thailand: A
Case Study Of Chao Phraya River”, In Proceeding of the 14th International Confer-
ence on Control, Automation, Robotics and Vision (ICARCV 2016), 13—15 November
2016, Phuket, Thailand, pp. 1-6, 2016. (Scopus, ISI-CPCI-S)

2. Kitsuchart Pasupa, Wisuwat Sunhem, “A Comparison between Shallow and Deep Ar-
chitecture Classifiers on Small Dataset”, In Proceeding of the 8th International Con-
ference on Information Technology and Electrical Engineering (ICITEE 2016), 5-6
October 2016, Yogyakarta, Indonesia, pp. 390-395, 2016. (Scopus, ISI-CPCI-S)

39



Appendices

40



Appendix A

International Journal

1. Kitsuchart Pasupa, Sandor Szedmak, “Utilising Kronnecker Decomposition and Tensor-
based Multi-view Learning to Predict Where People are Looking in Images”, Neuro-

computing, accepted. (Scopus, ISI) (5-Year Impact Factor: 2.471)

41



NEUROCOMPUTING

horne | rnain rmenu | submit paper | guide for authors | register | change details | log out Switch To: [Author ¥ | Go to: My EES Hub

Contact us (=]
Help ?
FLVIER
Username: kitsuchart@it.kmitl.ac.th

Submissions with an Editorial Office Decision for Author Kitsuchart Pasupa, PhD

B Action &

View Submission R1
View Decision Letter
Send E-mail

Manuscript
Number
Ay

NEUCOM-D-16-
02114

Help | Privacy Policy | Terms and Conditions | About Us

Display [ 10 v | results per page.

Page: 1 of 1 (1 total completed submissions)

Initial
Date Status Current Date Final
Title Submitted | Date Status Disposition Set
iy iy iy Fivy

ing Kronecker Decomposition and Tensor-based Multi-view Learning to Predict Where People are 06/27/2016 11/15/2016 Accept

Looking in Images

Display [ 10 v | results per page.

Page: 1 of 1 (1 total completed submissions)

<< Author Main Menu

You should use the free Adobe Acrobat Reader 6 or later for best PDF Viewing results.

n&?@_

Version: EES 2016.7

Final
Disposition

ST

42

Copyright © 2016 Elsevier B.V. All rights reserved.

Cookies are set by this site. To decline them or learn more, visit our Cookies page.



Utilising Kronecker Decomposition and Tensor-based
Multi-view Learning to Predict Where People are
Looking in Images

Kitsuchart Pasupa®* Sandor Szedmak®

% Facully of Information Technology, King Mongkut’s Institute of Technology Ladkrabang,
Bangkok 10520, Thailand
b Department of Computer Science, Aalto University, Aalto FI-00076, Finland

Abstract

Eye movement data collection is very expensive and laborious. Moreover, there
are usually missing values. Assuming that we are collecting eye movement data
from a set of images viewed by different users, there is a possibility that we
will not able to collect the data of every user from every image—one or more
views may not be represented in the image. We assume that the relationships
among the views can be learnt from the whole collection of views (or items).
The task is then to reproduce the missing part of the incomplete items from the
relationships derived from the complete items and the known part of these items.
Using certain properties of tensor algebra, we showed that this problem can be
formulated consistently as a regression type learning task. Furthermore, there is
a maximum margin based optimisation framework in which this problem can be
solved in a tractable way. This problem is similar to learning to predict where
a person is looking in an image. Therefore, we proposed an algorithm called
“Tensor-based Multi-View Learning” (TMVL) in this paper. Furthermore, we
also proposed a technique for improving prediction by introducing a new feature
set obtained from Kronecker decomposition of the image fused with user’s eye
movement data. Using this new feature can improve prediction performance

markedly. The proposed approach was proven to be more effective than two

*Corresponding author
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well-known saliency detection techniques.
Keywords: multi-view learning, missing data, tensor algebra, maximum

margin learning, eye movements, Kronecker decomposition

1. Introduction

Many researchers have paid attention to image understanding that allows
computer to capture the meanings of images in the same way as humans do. One
of the challenging tasks in image understanding is saliency prediction. Visual
saliency is a property of locations or object in the visual world, e.g., in images.
If an object is salient, it stands out from its neighbours, with a high probability
of being able to draw humans’ attention to it.

It is very important to learn which parts humans tend to look at in scenes
or images. Saliency prediction is useful in many applications—such as graphic
design, web design, and human computer interaction—because it enables design-
ers to evaluate their visual design quality. Many methods of saliency modelling
have been proposed [1, 2]. More methods can be found in a recent survey paper
that covered 256 publications related to saliency object detection [3]. Saliency
models can be divided into two categories: supervised and unsupervised learning
based models.

Itti et al. (1988) and Harel et al. (2006) investigated bottom-up visual
saliency (i.e., low level image feature that does not involve supervised infor-
mation) [1, 2]; unfortunately, human gazes do not usually match the map [4]
because they are highly influenced by any image related tasks. If users are re-
quested to view images without having been given a particular task, their gazes
will be automatically directed by low-level image feature. In the case that users
have been given a clear and specific task, their eye movements will be controlled
by the content of the image. Consequently, top-down visual features are the
features that should be considered [5]. Another approach is supervised learning
based saliency model. It utilises eye movement data which are mapped with

image features [6, 7, 8, 9].
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In order to learn where humans tend to look at in images, an eye tracker is
required to collect eye movement data. In real-world scenarios, eye movement
data collection is tedious, laborious, and expensive. Moreover, data loss is
inevitable as (i) an eye tracker may temporarily lose track of a subject because
he or she is moving during the experiment, and (ii) a subject may fail to respond
to all of the tasks. Consequently, we aimed to estimate missing eye movement
data from the available data on the same task. It is similar to learning to predict
where users tend to look at based on their previous eye movement data on other
images and on other available users’ eye movement data on the considered image.
This leads to the learning scenario introduced in this paper. It is built with a
general assumption that multiple views of a problem are available. It is not
always possible to observe all of the views in a realistic scenario; therefore, this
problem can be cast as a multi-view learning problem with missing data. In
this scenario, we assume that initially there is a subset of training samples in
which a complete set of views can be observed, but later on probably only some
random subsets of views can be collected.

The goal of the learning task is to estimate the values of missing views in
each sample. This scenario can occur in a real experiment. This type of problem
is a generalisation of classical supervised learning problems such as regression.
Face recognition is one of the applications that can be considered under this
framework (when some parts or views of the faces are unknown because of oc-
clusion, for example). In developing the learning framework, we made two mild
assumptions: (i) there is a reasonable large number of observations (samples)
where all of the views are known, therefore, a learning procedure can be re-
alised; and (ii) from incomplete observations, at least one view is available. We
made no assumption about the distribution of the missing views, but any prior
knowledge about the missing data can be exploited to improve the estimation
of their values.

In this paper, we introduced a formulation that can be considered as a gener-
alised regression problem in which missing values are estimated from available

views and their relationships are extracted from training samples. Assuming
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that the missing views of a sample are output y and the known parts are in-
put x, then we have y < Wx, where W is a linear operator that learns from
complete data and describes the relationships between different views. The dif-
ficulty of this kind of regression arises from the fact that the output and input
may vary among the sample items. We proposed a “Tensor-based Multi-view
Learning (TMVL)” algorithm to handle the problem of incomplete view. Pro-
viding a tractable learning algorithm, TMVL is based on properties of tensor
algebra and maximum margin-based optimisation framework. Tensor decompo-
sition has already been used in some missing data problems, e.g., [10, 11], but
their settings are different from ours. Liu et al. (2013) investigated a low-rank
tensor technique based on tensor-trace norm minimisation problem in image
reconstruction [10], while Chen and Grauman (2014) proposed a probabilistic
tensor model for inferring human appearance from unseen viewpoints [11]. In
this paper, we show that our proposed method can estimate missing eye move-
ments, which can be exploited for predicting where humans are likely to look at
in images.

We also propose a novel approach for fusing eye movement information with
image features in order to enhance prediction performance. There are many
pieces of evidence suggesting that fusing low-level image features with eye move-
ment improves prediction accuracy [12, 13, 14, 15]. Here, we employed factors
derived from Kronecker decomposition of image fused with eye movement data
to represent each view in TMVL.

The outline of the paper is as follows: Section 2 describes all methods pro-
posed in this work, including TMVL algorithm, and tensor decomposition. Sec-
tion 3, shows the performance results of our proposed methods on a real-world

dataset. Finally, the conclusion of our study is presented in section 4.

2. Methodology

This section explains the methods proposed in this work: Subsection 2.1

describes the TMVL algorithm, its algebraic framework, and the corresponding
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Figure 1: Main components and data flow in this work. There are two sets of features which

are eye movement information only and image fused with eye movement information.

optimisation problem. Subsection 2.2 explains the procedure for decompos-
ing images as tensors, followed by an approach for combining images with eye
movement data in subsection 2.3. A model-training process framework, includ-
ing a data processing pipeline for two sets of features, is visually summarised in

Figure 1.

2.1. Tensor-based Multi-view Learning Algorithm

As previously mentioned, we had a set of complete views of our samples that
we used as training set, and a test set in which the views were not complete
(missing randomly). We aimed to fill in the missing views for each sample. An

example of multi-view learning problem with missing data is shown in Figure 2.

2.1.1. Algebraic Framework

Let us denote R = {1,...,ng} as the set of indices of the views consid-
ered. In our model, each of these views has a corresponding linear vector space
Z,, r € R over real numbers. The dimensions of these spaces are denoted by
Dim(Z,) = d,, 7 € R. The set Jr = {j1,--..Jny} comprises the indices of
the samples within each of the spaces corresponding to the views, enumerat-
ing the components of the vectors chosen from the space corresponding to the
views. The range of these indices is equal to the number of dimensions of the

corresponding space.
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Figure 2: Graphical representation of the multi-view learning framework for a four-view learn-

ing problem.
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A sample is chosen out of direct products of these spaces, and each sample

item consists of as many vectors as the number of views,

Views:
Linear vector spaces: 21 ... Z,,
Sample: zb ...z i=1,...,m.

The product space of the views is given by the tensor product of the spaces,
Z =@, cr Zr- This construction forms the algebraic framework of our solution,
see [16, 17] and the references therein for more details.

If we are given two tensor products of vectors then the following contraction

operator [.,.] can be defined over them as

[®q€Q uq’ ®T€R VT] = qu QﬁR(uq’ Vq> ®qe O\R u? ®TER\Q Vra (1)

where the inner product is computed for all common indices. When the two
index sets are coincident then the following well known identity can be used to

unfold the inner products of the tensor products as

<®qEQZ§7®q€QZ3‘> = qug<zgvzg‘>' (2)

This identity states that the inner product of tensor products of vectors is equal
to the product of the inner product of these vectors.

This interpretation of the indices is compatible with the notations commonly
used in tensor algebra, namely, with the so-called “Einstein summation conven-
tion”. The symbol of summation ) is omitted and summation has to be carried
out over all indices which are denoted by the same symbol. Since we use this
strategy to denote views and algorithmic iterations which are not tensor indices,
we choose to handle summations with special care by making them explicit via
the contraction operator [.,.]. Furthermore, we assume an orthogonal represen-
tation of the indices, hence in turn, there is no need to make distinction between
covariant and contravariant indices.

In the learning problem, we use a linear operator, a tensor, that is an element
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of the dual space of Z, the space of linear functionals defined on Z, namely

WeZ W= [Wg] =W,

-’jnRL

where Z* denotes the dual space of all possible linear functionals defined on Z.
We can write up Frobenius type inner products between the linear operator

‘W and the tensor product of vectors of the views as

<W7 ®reR Z”F = Zjl,...,jnR les---vjnR HreR erjr' (3)

In similar fashion, we can compute the Frobenius norm of W by

IWlE = (S 5o Wh 5 )™ (4)

R

In the next step, the set of views is partitioned into two arbitrary parts,
RX CR, RY :R\RX7

we term the views occurring in Rx as inputs, and the views in Ry can be
handled as outputs. Corresponding to either Rx or Ry, the set of indices

belonging to each view has to be split apart,

JIx CJIg, Ix = {jr, € Rx}, Iy = Ir\ Ix-

Fixing a partition, a contraction of W can be defined as

def
WJY = WJR\JX = W®r€72x Z?i" = erejx WJR HreRx Zgjw (5)

where the components of W are summed only over the input views.
Consequently, the relationship between the inputs and the outputs can be

described by the following inner product

def
<®S€Ry Z’?’W ®T€'Rx ZZ>F = ZJY HSGRY ijs ZJX WJR HTGRX Z’gjr' (6)

It provides a similarity measure between the outputs and the projection of the
inputs by the linear operator W. If the norm of W is fixed, then this inner

product takes a greater value if the angle between the direction of the outputs
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s and the projection of the inputs is smaller, thus the correlation between them is
greater. If both the inputs and the outputs are normalised to the same length
then this similarity measure implies small distance as well.

Based on these definitions, we can derive a simple but fundamental Lemma:

Lemma 1. For all partitions Rx, Ry of R the inner products

<®S€'RY Zfa w ®7’€Rx ZZ>F

have the same value, namely

(W, &, cr 2i) F-

Proof. We need to unfold only the corresponding definitions of the inner prod-

ucts that give the next chain of equalities

<®s€72y Zf’ w ®r€Rx Z2>F = EJY HSGRY ijs ZJX WJR HTERX Z;,;‘jr
= Zjl,...,jnR ley---,jnR HTER szr
= (W, ®,er zi)F-

Q.E.D.

130 This Lemma shows that the value of the inner product of the tensor products

is invariant on the partitioning of the views into inputs and outputs.

2.1.2. The Optimisation Problem

To force a high similarity between the projected inputs and the outputs
taken out of a fixed partition of the views, a “Support Vector Machine”-style,
maximum-margin-based optimisation problem is formulated for the regression

task. Please note the earlier application of the framework [18, 19]:

min  3|[W[E+CXE &
w.r.t. W tensor € Z*, £ € R™,

s.t. <® z? W ® z)r > 1-¢, (7)

SERYy TERx
———
Outputs Inputs

&>0,i=1,....m,

51



135

140

145

150

where C' > 0 is penalty constant.

The form is similar to the Support Vector Machine case with two notable
exceptions: (i) the outputs are no longer binary labels, {—1,41}, but vectors
of an arbitrary linear vector space, and (ii) the normal vector of the separating
hyperplane is reinterpreted as a linear operator projecting the inputs into the
space of the outputs.

The regularisation term in the objective function forces the projections of
the inputs and the outputs to be similar with respect to their inner products.
When the inputs and the outputs are normalised, they live on a sphere in both
corresponding spaces, hence we solve the problem by using the structure of
Spherical rather than Euclidean geometry.

Based on Lemma 1, we state the next theorem:

Theorem 2. For all partitions, Rx,Ry of R the optimisation problem (7) is

equivalent to the following one:

min - WL +CY &

w.r.t. W tensor € Z*, £ € R™,

s.t. (W, Q,crzi)r>1-¢&, i=1,...,m,
&>0,i=1,...,m.

This equivalence holds true if the inputs and the outputs are partitioned inde-

pendently for every sample item.

Proof. We can reformulate the constraints by following Lemma 1 that proves

the statement. Q.E.D.

This fact guarantees that the linear operator W has a universal property
that it is independent of the way how the views are grouped into inputs and
outputs, thus it consistently characterises the underlying multi-view learning
problem.

The seemingly complex problem represented by (8) can be solved via a simple

10

52



155

Lagrangian dual:

min  ia/(Kie oK, Ja—1a
wrt. a€R™ (9)

s.t. 0<a< (1,

where
(Kr)ij =(zi,2]), r€R, i,j€{l,...,m} (10)

are kernels corresponding to each of the views. In the formulation of the La-
grangian dual, we exploited the identity given by (2).

The e operator expresses the element-wise, Hadamard, product of matrices.
This dual can be solved in a straightforward way for very large scale applica-
tions'. After the dual variables were computed, the optimum solution for the

universal linear operator becomes

W= 2211 i Q,cr Zi - (11)

In the test phase, known and unknown views are considered as inputs and

outputs, respectively. The output can be estimated in the following way:

(®s€72y ZS) ~W ®r€Rx z' = 27;1 Q@ [®7‘€R Z;’ ®T€Rx ZT]
= Z:’;l a; HT‘ERX <Z”f7 ZT> ®S€Ry ZZ"S (12)
= Z:il 62 ®36Ry Zf’
where

Bi=aill,er,(2i,2"), i=1...,m. (13)

Thus, the prediction is a linear combination of the corresponding known outputs.

2.1.8. Computational Complexity of the Proposed Method
For estimation of the computational complexity of the problem presented in
(9), one can recognise that (9) is equivalent to the dual problem of an unbiased

Support Vector Machine (SVM). Consequently, the problem in (9) can be solved

IThe website of the authors provides an open source implementation to this problem.

11
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by applying the same type of methods that should have the same complexity
depending on the sparsity of the included kernels, see a discussion about this
in [20]. The basic task of the SVM is to separate two classes of output data
by a hyperplane. The settings of the SVM contain a sample {y;,x;}, y; €
{=1,41}, x; € X(=R™) and the separating hyperplane which is defined by its
normal vector w. Furthermore, input vectors might be embedded into a feature
space, Hx, via a function ¢ : X — Hx, where it is assumed that Hyx is a
Hilbert space.

The corresponding primal optimisation problem of the SVM is formulated

as
min %Hw”%—f—Cl’é’

wrt. weR? £eR™,
st yiw'or; > 1§,
£E>0,i=1,...,m,

(14)

while the dual problem of the SVM has the form (see for example in [21]),

min  id/(yy' e Kx)a—1'a
wrt. o€ R™, (15)
s.t. 0<a<(Cl.

After introducing the notation K = (yy’ e Kx) in the SVM dual, and similarly
K= (K1 °-.-o K,,,R) in the dual of the multi-view learning problem (9), we
arrive at the same optimisation problem, thus the computational complexity of

the proposed learning problem is the same as the complexity of the SVM.

2.1.4. Non-linear Relations

Another consequence of the equivalence of the dual optimisation problems
of the proposed method and the SVM is that the kernel trick can be applied
here as well (see [21] for more details on background of kernel trick). Since both
the dual problem (9) and the prediction (12) contain all input feature vectors as
components of the corresponding inner products knowing only a positive semi-
definite kernel matrix suffices for carrying out computations in the training

and in the prediction as well. More concretely, let all input features — the

12
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representation of the image parts in this application — be implicitly embedded

into a feature space by these functions,
¢, Z = Hr, 7€ Rx, (16)

where H, is a Hilbert space for each r. Then we can write up the elements of

the kernels as,

(Kr)ij = <¢T(Z;v¢r(zg)> , TE€Rx, 4, = {1’ oo ’m}' (17)

For example, Gaussian or Polynomial kernels can be chosen on top of the avail-

able linear features.

2.2. Decomposing Images as Tensors

Images expressed by matrices can be represented as a product of the factors
computed by Kronecker decomposition. This Kronecker decomposition, after a
reordering of the elements of the image matrix, can be carried out by singular
value decomposition (SVD). That kind of transformation of images can reveal
the structure of the images, e.g., edges, and corners, and can yield a high level
compression of the image matrices as well. In case of colour images, tensors can

replace the matrices in order to capture the third dimension of the colours.

2.2.1. Kronecker decomposition of matrices

Let us consider a real 2-dimensional (2D) image decomposition of which
we can expect that the points nearby within continuous 2D blocks can relate
stronger to each other than points in the 1-dimensional rows or columns. A
question is, “can the SVD decomposition provide 2D blocks instead of vectors?”,
achieve this end, a Kronecker decomposition is applied.

The Kronecker product of a matrix X can be expressed as

Al,lB A1_2B AI,TLAB
A271B AZ‘ZB AQynAB
X-AgB-| ; | (18)
Ana1B Ap,2B - Ay, n.B
13
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where A € R™a*X"a B € RMBX"B my =ma X mp, and nx = n4 X ng.

In the Kronecker decomposition, the second component, B, might be in-
terpreted as a 2D filter of the image represented by the matrix X. We can
try to find a sequence of those filters by applying the procedure presented in
Algorithm 1.

Algorithm 1 Calculate the Kronecker decomposition of a matrix

Require: matrix X, number of iteration n,
Require: size of A € R™AX"4 gize of B € RMBX"E
Ensure: (AW, BW), ... (A, BM)
1 XM =X
2: for k=1ton do
3: A(k)? B(k) = arg minA,B ||X(k) —A® B”%‘robenius
4: XF) =Xk — Ak @ BF) | #4 deflation

5: end for

The question is: given X, how can we compute the optimum solution A and
B for the problem,
11{11}%1 Hx(k) -A® BH%‘robenius? (19)

2.2.2. Kronecker Decomposition as SVD

We can make an important observation that the algorithm solving the tensor
decomposition problem does not depend directly on the order of the elements
of the matrix, thus a permutation of the indexes, i.e. reordering of the columns
and/or the rows, preserves the same solution. Based on this observation, the
Kronecker decomposition can be computed via the SVD (see [22] for more de-
tails). An example that illuminates how the reordering of the matrix X can

solve the Kronecker decomposition problem is demonstrated here:
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The matrices in the Kronecker product

X =
T11 T12 | T13 Ti14 | T15 T16
T21 T22 | T23 T24 | T25 T26
ai
31 X32 | £33 T34 | T35 T36 B
= az1
T41 T42 | T43 T44 | Tas  T46
asi
IT51 Ts2 | Ts3 Tsq | Ty Ts6
Te1 T62 | T63 T4 | Tes L66
can be reordered into
X=A®B
11 T13 T15 I31 33 T35 Ts51  T53
T12 Ti14 Ti6 T32 T34 T36 T52 Ts4
T21 X23 X25 41 T43  T45 Tel  Te3
T22 T24 T26 T42 T44 T4e T62 Te4
b1t
b2
= & | ayn a2 a1z a1 a2
bo1
bao

a12
a22

a32

T55
I56
Ze5

T66

az23

A®B
a3 -|

b1 b2
ass &

bor  boo
ass3

azp as2 a3z

where the blocks of X and the matrices A and B are vectorised in a row-wise

order.

We observe that X = A ® B can be interpreted as the first step in the SVD

s algorithm where we might apply the substitutions /su

= A and /sv = B.

The proof that this reordering provides a correct solution to the Kronecker

decomposition can be found in [22].

The main steps of the Kronecker decomposition can be summarised as fol-

lows:

210 1. Reorder (reshape) the matrix,

2. Compute the SVD decomposition,

3. Compute the approximation of X by A @ B

15
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4. Invert the reordering.

This kind of Kronecker decomposition is often referred as the Nearest Orthog-
onal Kronecker Product as well [22].

We can extend this procedure to higher order tensors represented by higher
order arrays (see the review paper of [23]). Then, this method can be applied

on the following objects:

e colour images, where three matrices express the RGB layers, a tensor of

order 3, e.g. 1024 x 1024 x 3,
e video stream of grey-scale images, where the third dimension is time,

e video stream of colour images, where the third dimension is colour, and

the fourth dimension is time.

The Kronecker decomposition presented above can be extended further to
include more than two factors (more details, alternative approaches and ap-
plications can be found in [23]). The Kronecker decomposition algorithm, as
shown in Algorithm 1), implements a non-linear polynomial approximation of
the target matrix or a higher order tensor. The degree of the applied polynomial

is equal to the number of included factors.

2.2.83. A Set Theoretic Approach to Reordering

A matrix representation as an ordered collection of elements can be rein-
terpreted by using the language of set theory. Let X be a matrix with size
m X n. For the sake of simplicity, we assume that the elements [X;;] of X are
real numbers. The structure of the matrix X can be described as a set X" of the
elements {X;;} with cardinality mn on which two equivalence relations, %, and
%, are imposed, one based on the rows and the other based on the columns,
i.e. two elements are equivalent with respect to %, if they are in the same row,
and equivalent with respect to Z, if they are in the same column.

Now, the reordering of the matrix elements X is expressible by imposing

another kind of equivalence relations that classify the elements into different
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classes. These equivalence relations have to satisfy the following rules: all of the
equivalence classes within the relation Z have to have the same cardinality. The
equal cardinality rule implies that the product of the number of the equivalence
classes Ng and the common cardinality of the classes, cardg, is equal to the
cardinality of X', namely to mn. Then, the reordering of the matrix elements
can be carried out by sorting the equivalence classes into columns and rows of
a new matrix.

Note that the equivalence relation R can be decomposed further into a series
of equivalence relations (Rq,...,Rx). This decomposition can be realised in a

recursive way.

1. Let the set of classes of Ry be given by C(%)1, . ..,C(%) Ny, , With common

cardinality cardpg, .

2. For every class of relations, %) apply the same type of equivalence rela-
tions, Zy+1. Since the cardinality of the classes of % is the same, this
relation can be applied uniformly. Consequently, the cardinality of the
classes and the number of the classes in %41 are the same for all classes

Of%k.

By reversing the recursive classification of the elements, we can build a tensor
T of order N + 1 by starting on the classes of the Zx.

Since the internal structure of the matrix X is not directly exploited, only
the set of its elements are classified. The reordering procedure described above
can be applied on any tensor of arbitrary order. Thus, any tensor can be
reordered into another tensor of arbitrary order. An example of order one
tensor, vectorisation, can be given by an equivalence relation where all elements
fall into the same equivalent class.

This interpretation of the reordering leads us to the realm of Algebraic Statis-
tics, and within that realm, to the Combinatorial Design Theory [24, 25]. The
Combinatorial Design Theory addresses the problem of how to build systems

of finite sets that satisfy certain requirements of symmetries as stated in the
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classical theory of Latin squares. These theories play a very important role in

creating balanced statistical experimental designs, especially for medical tests.

2.2.4. Compression

Furthermore, the tensor decomposition can provide a very high level com-
pression of images. Some examples are presented here. The compression ratio
is computed by dividing the number of elements of the image matrix with the
total number of elements of the components in the decomposition.

The original image matrix is given by integers in the range of 0,...,255 for
both grey-scale and RGB colour images. The decomposition happens in the
space of real numbers, but after having been decomposed, the real numbers
in the components can be rescaled and transformed into the original integer
interval.

Let the size of a grey-scale image be equal to (1024,1024), then we can

have various patterns of decompositions as shown in Table 1. The components

Component Singular Full Compression
Size Values Size Ratio
(32,32), (32,32) 10 s=10%2%322 1028 _ 519

(16,16), (16,16),(4,4) 20 s =20 (2% 162+ 4?) M =99.29

Table 1: Examples of possible patterns of decomposition of a grey-scale image with 1024 x 1024.

provide a tightly-compressed signature for the image as illustrated in Figure 3.

The Kronecker-decomposition-based features can be compared with those
from a conventional compression technique with SVD and the well-known SIFT
features [26]. Let the size of an RGB colour image be (640, 960, 3) and the sizes of
the components in the tensor decomposition be (10,15,1),(8,8,1),(8,8,3), and
let 45 singular values be computed, then 45x% (10%15+82+3x82) 8-bit data items
can be obtained with a high compression ratio of ~ 100. This is equivalent to (i)
using image compression with SVD with 4 singular values which gives ((640x4)+

4+4(940%4))*3 data items and (ii) ~ 36 SIFT feature vectors with 128 real valued
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Figure 3: The right image is a recovered image from the Kronecker decomposition of the
original image on the left. The factors were (48,64, 1), (16, 16, 3) with 6 singular values. The

compression ratio was 102.4.

(a) Image without compres- (b) Image compressed by (c¢) Image compressed by

sion Kronecker decomposition SVD

Figure 4: An example of image compressed by the proposed and a conventional technique

when the compression ratio was 100.

components, where we assume that these real numbers can be represented by 32
bits. The tensor decomposition can recover a good approximation of the original
image and the colour information while the conventional technique cannot do
so, as shown in Figure 4. Although the 36 SIFT points may be able to capture
some particular characteristic points, they cannot recover the main structure of

the entire image at all.

2.2.5. Interpretation of Image Components
The components provided by the tensor decomposition can be endowed with

a practical interpretation. Let us discuss the two-component case where the
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image matrix X is expressed as a Kronecker product of two other matrices A
and B. Since the second factor B in the product is forced to be the same for all
positions, it has to be equal to a nonlinearly aggregated matrix. This factor is
shifted around within the image and it is only scaled by elements of the matrix
A. Thus, B can be interpreted as an image filter.

In Figure 5, the first level components belonging to the sequence of decreas-
ing singular values are of the compressed image shown in Figure 3. This image
is factorised into two levels and the corresponding low level components are pre-
sented in Figure 6. Some characteristic patterns can be recognised from these
factors. The factor belonging to the second singular vector represents a hori-
zontal edge filter and the factor belonging to the third singular value yields a
vertical line filter. In this way, the image decomposition finds the boundaries
of the critical regions, edges, and corners in which most of the structural infor-
mation concentrates, and as mentioned earlier, it also produces a very highly
compressed skeleton of the data.

Since in every step the decomposition processes the residue of the previous
step, it predicts those parts that have hardly been approximated earlier, thus
in every step a new layer of the structure is discovered. In images, these layers
are first the flat areas, then edges of different directions—vertical, horizontal, and
slant—corners of different kind, and the higher order singularities of the intensity
surface. This kind of incremental approach resembles a boost in which hardly

predictable sample items receive larger weights.

2.2.6. Relation to Known Saliency Detection Approaches

The generally applied saliency detectors are built on estimated derivatives of
the intensity function, I, of an image (see for example [27]). These derivatives
can provide information about the locations that the intensity changes signif-
icantly faster than a given threshold. The general first order edge and corner
detection algorithms consist of two phases: the first phase uses a Gaussian filter
to smooth out the noise caused by non-differentiable representation of the im-

age, and the second phase estimates the gradients of the image intensity. The
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Figure 5: First level of the Kronecker decomposition in case of the first 8 largest singular

values.
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Figure 6: Second level of the Kronecker decomposition in case of the first 8 largest singular

values.
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higher order methods also exploit the second derivative, the Hessian, of the
intensity image. Estimation of the derivatives can be performed by applying
image filters on the image intensity, e.g. Laplacian, Sobel and Prewitt.

For example Harris-Laplace detector relies on the first order partial deriva-
tives, I, I,, of the intensity measured in the local neighbourhood of a given
image point

A(x) = Z (i [ Le) Llyx) ] , R =det(A) — atrace’(A).
5 | L 2 |
Similarly the Hessian affine region detector exploits the second partial deriva-

tives of the Gaussian-filtered intensity, the Laplacian of the Gaussian (LoQG)

representation,

[ Lo Loy ]
| Loy Lyy() |

where L is the Gaussian-filtered intensity, and ¢ is a Gaussian filter with a

H(z) = , L(z) =g(-|0,01) ® I(z), LoG = trace(H),

parameter oy.

The Kronecker decomposition based algorithm iteratively reproduces the
partial derivatives of the intensity function via higher order polynomial approx-
imation of successive error terms. During this iterative procedure, the algorithm
automatically selects, in the least-square sense, the best fitting filters as the last
factor of the Kronecker product. In this way, it gives an approximation of the
multivariate Taylor series of the intensity image that provides an estimation
of the full series of those partial derivatives that are exploited in well-known
saliency detectors. It is also important to mention that the global optimal-
ity of the Kronecker decomposition allows us to select only regions where the
derivatives change the most and eliminate flat, redundant ones. This selective
property leads to high level compression of the information needed to describe
the variation of the intensity. For example, Harris detector based methods focus

only on local features without forcing globally optimal extraction.
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2.3. Combining Images with Eye Movements

The images processed in our eye movement experiments were assumed to be
RGB colour images represented by 3 parallel matrices and indexed by row and
column coordinates of the pixels in the images. Since the sizes of the images
varied, all of them were transformed into the same common size in the learning
procedure. That common size was 50 x 50.

The eye movements in all of the experiments were given as a list of coordinate
pairs consisting of the image related row and column indices. When the eyes
moved beyond the image, those eye movement coordinates were represented
by invalid, e.g., negative values. Therefore, the coordinate pairs of the eye
movement had to be filtered to extract only those points that corresponded to
valid image pixels. When the sizes of the images were transformed to the same
size, that transformation applied to the eye movement coordinates as well.

When eye movement coordinates were combined with an image, we needed
to deal with the uncertainty of eye positions caused by measurement errors and
movements of the eyes and the head that were probably not related to the image.
That uncertainty was handled by applying Gaussian smoothing, a spatial filter,
to each point of eye movement. The Gaussian filter was centred at a point u
with a width parameter o assigns to each image point x,

g(x|u,0) = efw. (20)
The centres of the Gaussian filters were localised at the observed points of the
eye movements. Since all image points could be connected by the filter to all
eye movement points, as many filter values were assigned to each image point
as the number of observed eye movement points. To aggregate the filter values,

we applied the following function on all of the image points x:
ga(x) :ml?xg(x|u,o). (21)

The function g4 assigned to each point of the image, x, a Gaussian filter value
that belonged to the closest point of the eye movement. That Gaussian filter

can well represent foveation in human vision [28].
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(d) User 4 (e) User 5 (f) User 6

Figure 7: The eye movements of six different users on a sample image.

In Figure 7, the eye movement trajectories on a stimuli image of six con-
tributing users are presented. We were able to have some impression on the
similarity and the variation of the responds of the users looking at the same
image and trying to perform the same task.

Figure 8 shows images that were already merged with eye movements data.
These images would subsequently be decomposed by a Kronecker product. The
decomposition of the Kronecker product on the image and the combined images

with eye movement data are shown in Figure 9.

3. Performance Evaluations and Discussions

We evaluated our TMVL algorithm on a publicly available eye tracking
dataset [4]. The dataset contains eye tracking data of 15 different users on
1003 images. Each image consists of three-second free-view trajectories of dif-
ferent users. In order to encourage users to pay attention to the task, they were
memory-tested at the end of the data collection of 100 images.

In our experiment, only eight users were randomly selected; hence, there
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Figure 8: Eye movement data overlaid on the image (left) and images merged with eye move-

ment data (right) of two users.

were eight views in this setting. Each view was represented by a heatmap of
each user. Heatmap quantifies the degree of importance of parts of image; a
higher probability of an important part is implied by a higher density of eye

movements on that part. We investigated two sets of heatmap input features.

385 1. Heatmap generated from eye movement data alone (Hg): A user’s heatmap

was created by convolving a Gaussian kernel with each eye fixation point.

2. Heatmap generated from eye movement data and the image (Hgr): This
set of features was generated by a Kronecker decomposition of an image
combined with eye movement data as described in subsection 2.3 with o of
390 2. We extracted features with two components of Kronecker product from
a grey scale processed image. The sizes of the high (first) (A) and low (sec-
ond) (B) level component were (10,10), and (5,5), respectively with 20 sin-

gular values. The feature vector became | A; ®@B; As®Bs ... Ay ® By

All heatmaps were normalised to unit norm. To compare prediction perfor-

s mances, we used three performance matrices as follows:

1. Area under the receiver operating characteristic (AUROC) is one of com-
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Figure 9: Kronecker decomposition of the original stimuli image and the corresponding eye

movement data of two users; two Kronecker factors and six singular values were computed
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monly used performance metrics for comparing heatmaps and eye fixa-
tions?. It is based on an ROC curve that can be computed by varying the
threshold of the predicted heatmap. A pixel is predicted as a target when
its heatmap value is greater than the threshold, while it is classified as a
background when the value is below the threshold. AUROC ranges from

0 (complete mismatch) to 1 (perfect match).

2. Correlation indicates the degree of linear relationship between two maps.
It ranges from —1 (perfect correlation but in the opposite direction) to +1

(perfect correlation). Zero indicates no correlation between the two maps.

3. Jensen-Shannon divergence (JSD) was used to identify the dissimilarity
between two distributions. It is based on Kullback-Leibler divergence
(KLD) which can capture a certain kind of non-linear, entropy type and

dependency. KLD is defined as,
P;
Drr(PllQ) = Zln Q. P; (22)
i=1 ¢

where P, () are the probability distributions. JSD is symmetric while KLLD
is not [29]. Square root of JSD has matrix properties. The more similar
the two objects are, the smaller the value of JSD is, and vice versa. JSD

is defined as,

D,5(PIIQ) = 5Dk (PIIM) + 5 Dici (QIIM) (23)

where M = %(P + Q).

Here, linear kernel function was used. Model selection was performed with
five-fold cross validation based on AUROC. We examined two scenarios of the
test sets: (i) {1-7} missing views were randomly selected and (ii) one fixed view
was missing for each run. The experiments were run 10 times with different

random data splits.

2 Available for download at http://www.vision.caltech.edu/~harel/share/gbvs.php.
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Although our scenario is of a supervised learning approach, but its setting is
different from those mentioned earlier in the introduction. All previous works
used a saliency map of average locations fixated by all users as a global model.
In our scenario, we instead used individual fixation maps and focused on user
models. Our assumption was that there were some correlations between users’
eye movement behaviours. We aim to predict the individual maps. To the best
of our knowledge, there was no available technique designed for this kind of sce-
nario, so we compared our proposed method with baseline methods in a similar
way that we did in one of our previous works [30]. The baseline methods were
two well-known saliency map models: Conventional Visual Saliency (CVS) [1],

and Graph-Based Visual Saliency (GBVS) [2].

3.1. Randomly Select Missing Views

When the number of missing views increased, AUROC and correlation de-
creased for all algorithms as shown in Figure 10a and 10b, respectively. On
the other hand, JSD increased when there was an increase in the number of
missing views as shown in Figure 10c. When the number of missing views in-
creased, TMVL-Hp performance was dramatically reduced while GBVS and
CVS’s performances were slightly decrease. TMVL-Hp only used eye move-
ment data, therefore, the prediction performances highly depended on number
of available view, while GBVS and CVS used image information. TMVL-Hg’s
performances on AUROC were better than those on GBVS when there were 1-2
missing views and better than those on CVS when there were 1-3 missing views.
Unfortunately, TMVL-Hg performances on AUROC were worse than those on
GBVS and CVS in other cases as shown in Figure 10a. However, TMVL-Hp
was still able to achieve better average correlation and JSD than GBVS and
CVS were in all cases as shown in Figure 10b and 10c, respectively.

Figure 11 shows an example of prediction by GBVS, CVS, and our proposed
algorithm when two views were missing. It can be seen that GBVS and CVS
failed to predict where users were looking at. Both algorithms put attention

on the woman’s arm and the windows while users actually focused on her face.
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Figure 10: A boxplot comparison of all methods when randomly selected {1-7} missing views

were considered.

User Method AUROC Corr JSD

TMVL 0.8065 0.7160 0.3726

1 GBVS 0.6543 0.0783  1.2755
CVS 0.7358 0.0792  1.2454
TMVL  0.7812 0.6900 0.4064

2 GBVS 0.6707 0.0985  1.1863
CVS 0.6983 0.0981  1.1627

Table 2: Performance matrices of all of the methods on the image in figure 11. Bold values

indicate the best performance achieved in each user.

Clearly, TMVL was more effective than GBVS and CVS for all three perfor-
mance matrices as shown in Table 2,

We improved prediction performance by using Hg; as feature vectors and
compared the prediction results with those from other methods, as shown in
Figure 12. TMVL-HEg; outperformed CVS in all cases but was only better than
GBVS in {1-4}-missing-view cases. TMVL was comparable to GBVS when
five views were missing but was worse than GBVS in the case of {67} missing
views. It should be noted that we only evaluated the performances on AUROC
as it compared the predicted heatmaps directly with eye movement data for
all of the methods. Correlation and JSD compare between predicted heatmaps

to target heatmaps but target heatmaps for TMVL with Hg and with Hpr
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Original Image

GBVS

Eye Movements True Heatmap Predicted Heatmap

User 1

True Heatmap Predicted Heatmap

User 2

Figure 11: True and TMVL-predicted heatmaps of an eight-view problem with two views

missing (User 1 and 2) compared to those predicted by baseline methods-GBVS and CVS.
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Figure 12: A comparison between the proposed method and two existing saliency prediction

methods in the case of randomly selected {1 7} missing views

were different. Hence, we were not able to directly compare these matrices. It
is clear that using Hg; that combined images with eye movement information
could dramatically enrich the performance on AUROC over using Hg as shown
in Figure 13. AUROC was improved at 2.82% in 1-missing-view case and up to
15.20% in seven-missing-view case.

Figure 14 shows an example of predictions by all of the methods when two
views were missing. Again, GBVS and CVS failed to predict that the cat on the
table would be favourably looked at rather than chairs with light shone on them.
Both TMVL with Hrp and Hgr were able to detect the cat; however, TMVL-
Hpgr was able to capture more eye movements than TMVL-Hg did, especially

for User 2.

3.2. Fizing A Missing View

In this scenario, we wanted to predict where a user would be looking at in
a (test) set of images based on where the other seven users were looking at in
the same set. According to Table 3—Table 5, TMVL was the best contender
for all users, followed by GBVS and CVS in that order. Using Hg; as input
features could improve prediction performance significantly for all cases and on

all matrices.
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Method

User Index

1 2 3 4 5 6 7 8
TMVL-Hg; 0.8550 0.8631 0.7939 0.8300 0.9010 0.8468 0.8418 0.7901
TMVL-Hg 0.8349 0.8508 0.7690 0.8079 0.8711 0.8246 0.8184  0.7670
GBVS 0.8040 0.7848 0.7638  0.8028 0.8410 0.7888  0.8025  0.7636
CVS 0.7426  0.7164 0.7146  0.7517 0.7708 0.7257  0.7457  0.7171
Table 3: A comparison between all of the methods with AUROC when only one fixed view/user
are missing. Bold values indicate the best AUROC achieved in each user.
Feature Method User Index
1 2 3 4 5 6 7 8
Hgpr TMVL  0.4147 0.4747 0.3568 0.4046 0.4569 0.4266 0.4154 0.3657
GBVS  0.2310 0.2319 0.2356 0.2736 0.2259 0.2432 0.2660 0.2645
CVS 0.1762 0.1757 0.1829 0.2114 0.1727 0.1829 0.2045 0.2097
Hg TMVL  0.3276 0.4433 0.2951 0.3437 0.4013 0.3874 0.3706 0.2861
GBVS  0.1835 0.1932 0.1856 0.2083 0.1928 0.1981 0.2135 0.1976
CVS 0.1425 0.1465 0.1476 0.1662 0.1501 0.1526 0.1675 0.1604
Table 4: A comparison between all of the methods with correlation when only one fixed
view/user are missing.
Feature Method User Index
1 2 3 4 5 6 7 8
Hg; TMVL  0.6324 0.5279 0.5152 0.4866 0.6234 0.5364 0.4998 0.4095
GBVS  0.7442 0.7046 0.5912 0.5893 0.8102 0.6735 0.6193 0.4921
CVS 0.7625 0.7171 0.5927 0.5968 0.8343 0.6844 0.6277 0.4833
Hg TMVL  0.6792 0.5463 0.7011 0.6606 0.6055 0.6083 0.6269 0.7003
GBVS 1.1585 1.1138 1.0224 1.0024 1.1760 1.0451 0.9996 0.9582
CVS 1.2184 1.1753 1.0757 1.0595 1.2376 1.1056 1.0587 1.0103

Table 5: A comparison between all of the methods with JSD when only one fixed view/user

are missing.
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Figure 13: Relative improvement of AUROC using Hgj compared to using Hg in TMVL

Original Image
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Figure 14: A comparison of predicted heatmaps by all of the considered methods.

Compared to GBVS and CVS, TMVL-Hg showed an improvement with
AUROC for all users at 3.01% and 11.20% on the average, respectively, as

shown in Figure 15a. TMVL-Hg; performance was improved much more, 5.81%
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Figure 15: Relative improvement of TMVL compared to GBVS and CVS when only one fixed

view /user was missing.

against GBVS and 14.22% against CVS on the average, as shown in Figure 15b.
Our proposed algorithm achieved the highest improvement compared to both
baselines for User 2. This means that other users’ eye movements behaviours
were very useful to User 2. However, the least improvement was found for User
8. This indicates that user adaptation can be useful as the performance was
improved even though not so much for the case of User 8. Using TMVL-Hgr
yielded better AUROC, at 2.73% on the average than TMVL-Hpg did, as shown
in Figure 16.

4. Conclusion

In this paper, we introduced a missing-value prediction schema built upon
maximum-margin-based learning and invariances of tensor algebra. Our pro-
posed algorithm was tested on an eye movement dataset in order to identify
where users were looking at in images. We also proposed a new technique that
decomposes images called “Kronecker Decomposition”. This technique can be
used in image compression applications. We also proposed an approach to com-
bine image with eye movement data. The processed image is then decomposed

by using Kronecker decomposition. We have demonstrated that our framework
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Figure 16: Relative improvement of TMVL-H gy compared to TMVL-Hg when only one fixed

view/user was missing.

was able to perform better than two well-known saliency detection techniques.
Several initial results show that user adaptation may be useful; thus, user in-

formation should be investigated further in future research.
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Abstract—It is always desirable to be able to manage level of by mathematical model. Their experiment showed that using
water in river, dam, and reservoir. Models have been constructed  four selected tidal constituents as input variables were the best
for predicting the level of these bodies of water, and good approach for predicting the water level. Ogata er al. (2012)
models can help increase the‘ effectiveness of water managemen.t. simulated river discharge and water level in Chao Phraya
Ir;zes::tﬂrzén:hzfntll(:geil(:h:lt I',Shaeimﬁ;(iyec}h?y :g;cgzdrff:aghli river basin with a distributed hydrological model (DHM) [5];

P Y Y P g M unfortunately, the model overestimated the discharges in some

of water in Chao Phraya river is a harmonic method of tidal . . .
modeling. This model can predict the overall trend well but areas. Alternatively, water level can be predicted by machine

with high individual prediction error. Many machine learning learning algorithms. Machine learning techniques have become
algorithms for making predictions have also been introduced popular in these days. Many researchers have applied machine
in recent years. Therefore, it was attempted in this study to  learning algorithms to predict water level at several areas in
compare the prediction performance of several machine learning Thailand such as Khlong U-Tapao river basin [6], at M.7
models to that of the Royal Thai Navys model. These models  gauge station Mun river in Ubon Ratchathani [7], Chao Phraya
were the following: linear regression, kernel regression, support  rjver [8], [9], [10], and sea level at Gulf of Thailand [11]. These

vector regression, k-nearest neighbors, and random forest. The works can be further developed into an accurate flood warning
data input into these models were water level time series data application

of past 24, 48, and 72 hours measured at the Royal Thai Navy
headquarters station, Phra Chulachomklao Fort, thirteen other In this paper, we focused on forecasting water level at two
stations along the river, and the output were predic?ions for .the locations along Chao Phraya river in Bangkok. Currently, the
:‘:cxht ni24 hours. It bvlvast foml'g thal: ?t“ of tge machmeﬂ:earl:;lngt Hydrographic Department of the Royal Thai Navy makes pre-

ques were able to achieve better periormances than taa diction of water level in Chao Phraya river by using a harmonic

of the harmonic method of tidal modeling. The support vector . . . )
regression model with Radial basis function kernel and 72-hour method of tidal model. This model can predict the overall

past time series data yielded prediction results with the least trend well but with high individual prediction error. Therefore,

errors, at 0.117 m and 0.116 m for the water levels at the Royal we aim to improve the prediction performance of the current

Thai Navy headquarters station and Phra Chulachomklao Fort,  approach by using various machine learning techniques with

respectively. input features from two Royal Thai Navy stations at the Royal

Thai Navy headquarters and Phra Chulachomklao Fort as well

I. INTRODUCTION as thirteen telemetry stations of the Department of Drainage

and Sewerage of Bangkok Metropolitan. We also investigated

the importance of each used feature in terms of how well it
reflected the water level in Chao Phraya river.

Thailand is an agricultural based country with a total
agricultural area of 265,200 square meters [1]. A lifeblood
of agriculture, water is one of the basic needs of living
things. Water is everywhere but freshwater is very limited. This paper is structured as follows: Section II describes
Although 72.0% of the earth is covered with water but 97.5% the methodologies including harmonic analysis and machine
of the water is in the ocean [2]. It is saltwater and not  learning algorithms used in this work; Section III describes
drinkable. The remaining 2.5% is fresh water which is inrivers, ~ the studied area followed by the experimental framework in
lakes, ground, icecaps, glaciers, etc. Therefore, water resource section IV; Experimental result and conclusion are shown in
management for maintaining efficient agricultural production section V and VI, respectively.
is very important to a country.

There are many approaches to water supply management: II.  METHODOLOGY
schedulled 'irrigation can be performed basedA O Crop evap- 4 prononie method of Tidal model
otranspiration [3] and forecast water level in the river or
reservoir. There have been several works that focused on It is known that “tides” are the pattern of rising and falling
predicting water level in Thailand [4], [5], [6], [7], [8], [9], sea level with respect to land. They occur once or twice a
[10]. Chuanpongpanich ef al. (2012) predicted water level at ~ day depending on the location. Tides are mainly created by
Phra Chulachomklao Fort by using Harmonic analysis [4]. gravitational forces of the sun and the moon. Other factors are

This method represents water level at a considered location such as the elliptical shape of earth’s orbit around the sun and

978-1-5090-3549-6/16/$31.00 ©2016 IEEE
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the inclination of the lunar orbit plane. Tide periods do not
happen at the same time in a day because the moon requires
approximately 24 hours and 50 minutes to appear at the same
point on the Earth again [12].

Tidal prediction is made all around the world and available
to public. It is important for individuals who depends on the
ocean for their life. Tide can be predicted by harmonic anal-
ysis which applies superposition principle to various selected
sinusoidal components. Harmonic analysis can be defined as
follows:

N
WL(t) = Z a; cos(wit + ),
i=1

(€]

where WL is water level at time ¢, a; is amplitude of the jth
tidal component, w; and « is angular frequency and phase
of the i*" tidal constituent, and N is number of selected
tidal components. Examples of important tidal components are
principal lunar semidiurnal, principal solar semidiurnal, larger
Lunar elliptic semidiurnal, Luni-solar declinational diurnal,
and Lunar declinational diurnal constituent.

B. Machine Learning Techniques

Our task here is a regression task. It aims at obtaining a
model that can explain the relationship between input variables
and output variables. The output variables are continuous
values. Many machine learning techniques have been intro-
duced and reintroduced for regression task. In this work, we
investigated on five learning algorithms.

1) Linear Regression: Consider a linear function,
(2)

where x is an input data consisting of n features, w,, is a
weight corresponding to each input feature, and wy is a bias
value. We aim to find a model, h(z;), that gives a good
approximation output by minimizing the mean square error
between the predicted and observed output defined as:

1
J

where m is number of samples, y is output, and A is regu-
larization parameter. The above equation can be solved by a
method of gradient descent that produces the following update

h(x) = wo + x1w1 + 2wy + ... + zpwy

m n

= % [Z(h(:pl) — i)+ )\wa

i=1

J(w) (©)

equations:
1 m . .
wo = wo—a [m S (h(i) = yi) -2l | 2l = 1)
i=1
1 m X A
wj = wj—a {Z(h(%‘) —yi) -l + wj:| ©)
m~ m
where j = 1,...,n, and « is a learning rate.

2) Kernel Regression: Because data is non-linear in real
world application; therefore, linear regression model can fail
to generalize. Hence, sometimes it is required to find a non-
linear relationship between a pair of input and output. In order
to accommodate the non-linearity, “kernel trick” is introduced.
It aims to project data from the original feature space to a
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new feature space in which linear function can be used to
generalize. Gram matrix (K), used as a design matrix in linear
regression, is associated with kernel & (-, -), i.e. k;; = k(x;,X;).
In this work, we used (Gaussian) radial basis function kernel

(RBF), )

3) Support Vector Regression: The solution of Kernel re-
gression is not sparse in variables as it uses all features.
This leads to a complex model with high computational cost.
Therefore, support vector regression (SVR) is introduced that
aims to solve the following convex optimization problem:

min - g{lwl[* + 3 (& + &)
w,§y

s.t.

xi - x?
202

k(x;,X;) = exp ( (6)

where o is a kernel parameter.

O]

WX +b—yi <e+&
yi—wix;—b<e+§
6.6 >0/i=1,....m

where C'is SVR hyperparameter, b is a bias value, and ;, &; are
slack variables. SVR can be used to solve quadratic programs
that are convex problems that have a unique optimal solution.
Again, kernel trick is utilized to enable nonlinear mapping.

4) k-Nearest Neighbors (kNN): kNN is a non-parametric
and instance-based learning method. It is one of the simplest
algorithms that compares a test sample to the k-closest training
examples. Therefore, the output will be an average of the
values of its k nearest neighbors.

5) Random Forest (RF): RF is an ensemble method that
combines several decision tree models. Each model is trained
on a subset of features that are randomly selected. A test
sample is tested on all decision tree models. A predicted value
is calculated by aggregating the predictions of these trees. This
can be done by averaging all of the values.

III. STUDY AREA

Chao Phraya River is a major river of Thailand. It begins
in Nakhon Sawan province in Northern Thailand from a
combination of two rivers—the Ping river and the Nan river.
Chao Phraya river flows south for 372 kilometers, passes
through Bangkok, and ends at the Gulf of Thailand.

This study focuses on predicting water levels at two loca-
tions along Chao Phraya river. Data of water level at the two
locations were measured by the Royal Thai Navy. Within the
Royal Thai Navy is a government organization that regularly
makes prediction of expected sea water level and expected river
water level in Chao Phraya river. We collected data from two
Royal Thai Navy stations as well as 14 other stations along the
river that belong to the Department of Drainage and Sewerage
(DDS) of Bangkok Metropolitan. The two Royal Thai Navy
stations are a station at the Hydrographic Department (HD)
of the Royal Thai Navy headquarters and a station at Phra
Chulachomklao Fort (PC). Currently, the Royal Thai Navy
makes prediction of expected water level one year ahead by
using a harmonic method of tidal model (HT). DDS has 77
telemetry stations measuring water level, rainfall, temperature,
and humidity at every canal in Bangkok. However, in this



Fig. 1.

Location of selected telemetry stations in Chao Phraya river.

study, we focused only on water level in Chao Phraya river;
therefore, the data collected were only from stations at the
canals that connect directly Chao Phraya river. Moreover, only
telemetry stations where are located in the East side of Chao
Phraya river were considered. Data from a total of 14 DDS
telemetry stations were considered in this work. It should be
noted that the water levels at the 14 stations are the levels
of water outside the water gate, hence, these levels reflect the
levels of water in Chao Phraya river. The locations of these
stations are shown in Fig. 1.

IV. EXPERIMENTAL FRAMEWORK

Data used in this study were collected in 2010 and 2011.
Description of telemetry stations considered in the study are
shown in Table I. The data was sampled and stored every hour.
This led to 17,520 data points. Missing data always occurred
because of some unexpected and unavoidable problems, e.g.
sensors were broken. We excluded the data collected from
Khlong Bang Sue Station (E10) because there were too many
data points missing, 5,702 in all. Other stations also had some
missing data points but they were comparatively fewer than
those missing in E10. Hence, the total number of features used
in this study was 17. These features were the following: (i) two
water level values at HD and PC (subsequently referred to as
WLup and WLp(, respectively; (ii) two HT-predicted water
levels at HD and PC (subsequently referred to as HTyp and
HTpc, respectively); and (iii) thirteen water levels at 13 of the
14 DDS telemetry stations, excluding the one at E10 station.

86

TABLE L A LIST OF TELEMETRY STATIONS AND THEIR RETURNED

DATA USED IN THIS RESEARCH.

The Royal Thai Navy

Index Name Value (Unit: Metres above mean sea level)

I;CD I;Kg%;zﬁ’:éﬁ;:ﬁ:}";z{ Water level and Expected water level by HT
The Department of Drainage and Sewerage, Bangkok

Index Name Value (Unit: Metres above mean sea level)

EO8 Khlong Bang Khen Mai

E10 Khlong Bang Sue

El3 Khlong Sam Sen

El5 Khlong Thewet

E20 Khlong Krung Kasem

E23 Khlong Sathorn

E29 Khlong Wat Sai

E37 Khlongg Wat Dan Water Level

E35 Khlong Chong Nonsi

E27 Khlong Toei

E28 Khlong Jek

E36 Khlong Bang Chak

E30 Khlong Bang O

E31 Khlong Bang Na

We pre-processed the data by introducing lagged variables (up
to 72 hours lag) for these 17 features as input data matrix,
X; = [ l‘l(t) xi(t—l) xi(t—2) l‘i(t—72) },i
1,...,17. We aimed to make 24-hour ahead predictions; there-
fore, the input data matrix was paired with the output data
matrix of 24-hour ahead water levels at HD and PC. The input
data matrix became 17,520 x 1,241. Again, we eliminated
samples that had missing values. This gave us a new data ma-
trix with 15,483 data points. The data points were normalized
to zero mean and unit standard deviation.

We made predictions using several different well-known
machine learning algorithms mentioned in Section II, namely,
linear regression, kernel regression, SVR with linear and RBF
kernel, kNN, and RF. The dataset was randomly split into
training and test sets with 1/3 and 2/3 of the total number of
samples, respectively. We ran simulation five times with differ-
ent random seeds. The adjustable parameters of each algorithm
were tuned as follows: (i) Linear regression: learning rate range
was {1076,1072,...,10°,10%}; (ii) Kernel regression: RBF
kernel parameter range was {1076,1072,... 10,10} and
learning rate range was {1076,1072,...,10%,105}; (iii) SVR:
C parameter range was from 10~% to 10 for both linear and
kernel cases (for comparison to be fair, RBF function was used
with a range similar to that of the kernel regression); (iv) kNN:
k range was from 1 to 500; and (v) RF: the number of trees
was from 100 to 1000.

To obtain an optimal model for each algorithm and each
realization, five-fold cross-validation was applied on the train-
ing set. After the optimal parameters for each model were
obtained, the model was trained with the whole training set and
tested with the test set. We reported performance as average
root mean squared error (RMSE) in meter (m.) across five runs.
RMSE was calculated by,

(®)

where y; is a true value and y; is a predicted value.



TABLE IV. PERCENTAGE OF SUPPORT VECTOR USED IN SVR WITH
DIFFERENT TYPE OF KERNELS AT HD AND PC STATIONS.

Methods Location %SV Used
SVR-Linear HD 98.07%
SVR-RBF HD 99.08%
SVR-Linear PC 98.03%
SVR-RBF PC 98.07%

V. EXPERIMENTAL RESULTS AND DISCUSSION

We analyzed the following combinations of feature sets:
(i) Using HTyp to predict water level at HD station as
well as using HTpc to predict water level at PC station,
(i1) Using HT with two stations’ previous water level records
(WLnup and WLp(), (iii) Using only the available water level
information from the Royal Thai Navy stations together with
those from the DSS stations (WLgyy), and (iv) Using all of
the information we gathered. The results obtained from using
these combinations were compared with that of the baseline
HT method.

It is clear that all of the combinations of feature sets
proposed here was able to achieve lower RMSE in all cases
as shown in Table II and III for HD and PC, respectively. It
was found that regression with RBF kernel yielded the best
performance on the average and in most of the cases of both
HD and PC stations. kNN was the worse among all. SVR was
slightly worse than regression but SVR model was simpler than
the regression model. Moreover, the regression model used
all of the training samples but SVR used support vectors that
consisted of only some of the training samples as shown in
Table IV. That might be the cause for the drop in performance.

Using more lag data should be able to lower RMSE. It
can been seen that the SVR with RBF function in conjunction
with 72-hour lag data of all features yielded the best prediction
performances for both HD and PC stations as shown in Table IT
and 111, respectively.

Fig. 2 shows 24-hour ahead predictions of water level for
5 days for HD and PC by SVM-RBF with 72-hour lag data.
All of the proposed features performed better than HT-their
predicted values were closer to the true values. According to
Fig. 2, it was observed that tides were periodic rises and falls
of water level with approximately 24-hour period. Clearly, this
is the effect of gravitational attraction of the moon and the sun.

In addition, we investigated the contribution of each feature
to predicting water level with linear regression and SVR with
linear kernel. The contributions of 72-hour lag feature to water
level predictions for HD and PC are shown in Fig. 3 and
Fig. 4, respectively. The contribution of every feature was
averaged across five runs. It should be noted that we reported
the contribution to making accurate prediction for linear cases
only, ignoring the non-linear weights of RBF to the input
features. For HD station, HTyp was the most informative
feature for linear regression followed by WLgo7, WLgso,
WLg13, and WLgss. In the SVR case, the most dominant
feature was WLE27, followed by HTpc, WLE31, WLE37,
WLgs0, and WLp¢. This indicated the following:

1)  water levels in Chao Phraya river were affected by
sea water level as reflected in HTyp, HTpc, and
WLpc;
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Fig. 2. Five-day prediction of water levels in June 2010 at HD (top) and PC
(bottom) using SVM-RBF with different sets of features (72 hours past time
series data).

2)  water levels at the telemetry stations near the Gulf
of Thailand-WLg3p and WLg3;—strongly affected
the water level at HD because of the influence of
sea water level (this included WLgs7, and WLgss
because they were located near Khlong Lat Pho; the
water level at Khlong Lat Pho was not be included in
this study because it is located in the West side of the
Chao Phraya river; Khlong Lat Pho was initiated by
HM King Bhumibol Adulyadej and aimed to drain
flood water into the sea more quickly bypassing 18
kilometers of the river to 600 meters [13]);

water level at Khlong Toei station WLgo7 also
strongly affected the water level in Chao Phraya river
(this is because it was located near Phra Khanong
pumping station, the biggest pumping station for
preventing flood in Bangkok [14]; we did not include
Khlong Phra Khanong station in our models because
it was not located along Chao Phraya river, but the
water level at Klong Toei station which were next to
it was heavily influenced by the pumping action at
Khlong Phra Khanong station);

water level at the upstream of the river also affected
the level at WLg3.

3)

4)

To sum up, it is clear that sea water level strongly affected the
water levels at PC station because HTpg and WLp¢ were the
largest weights among all of the weights, followed by HTyp,
and WLg37. This was because PC was located near the sea
and WLg37 was near Khlong Lat Pho, a bypass canal to the
sed.

We further investigated lag hour that was most important to
accurate prediction. The results are shown in Fig. 5 and Fig. 6
for HD and PC, respectively. Both algorithms gave the highest
weights to the current event o (t). Weights decreased for every
lag hour until 24-hour lag was met, then the algorithms tended
to increase weight again but the increased weights were smaller
than the current events weight. This happening periodically
occurred every 24 hours.

Fig. 7 and Fig. 8 show a comparison of observed water
levels with predicted water levels by all of the methods used
in combination with 72-hour lag feature at HD and PC, respec-



TABLE II.

AVERAGE RMSE ACROSS FIVE RUNS ON DIFFERENT TYPES OF INPUT, LAGGED HOURS, AND MACHINE LEARNING ALGORITHMS AT HD

STATION. BOLD VALUES IN EACH ROW INDICATE THE BEST RMSE OF EACH CASE. * INDICATES THE BEST ACCURACY ACHIEVED AT HD STATION.

Lagged . Regression SVR
Input Features Hii . Baseline Linea% REF Tinear REF RF kNN
24 0.321 0.217 | 0.327 0.233 0.273 | 0.459
HTup 48 0.311 0.184 | 0315 0.236 0.265 | 0.445
72 0.310 0.177 | 0.315 0.218 0.259 | 0.439
24 0.142 0.133 | 0.143 0.133 0.148 | 0.290
HTup + WLup 48 0.138 0.129 | 0.140 0.128 0.144 | 0.267
72 0.892 0.138 0.128 0.139 0.126 0.141 | 0.266
WLuD 24 : 0.158 0.140 | 0.166 0.140 0.148 | 0214
+WLpc 48 0.143 0.129 | 0.160 0.129 0.145 | 0.227
+WLEx 72 0.140 0.123 0.171 0.122 0.142 | 0.243
HTup + WLup 24 0.141 0.127 | 0.143 0.129 0.146 | 0.214
HTpc + WLpc 48 0.135 0.121 0.150 0.121 0.142 | 0.227
+WLEx 72 0.134 0.118 0.161 0.117* | 0.139 | 0.243
Average 0.184 0.144 | 0.194 0.153 0.174 | 0.295

TABLE III. AVERAGE RMSE ACROSS FIVE RUNS ON DIFFERENT TYPES OF INPUT, LAGGED HOURS, AND MACHINE LEARNING ALGORITHMS AT PC
STATION. BOLD VALUES IN EACH ROW INDICATE THE BEST RMSE OF EACH CASE. * INDICATES THE BEST ACCURACY ACHIEVED AT PC STATION.
N Lagged . Regression SVR
Input Features Hour Baseline Tincar RBT Tinear REF RF kNN
24 0.148 0.129 0.149 0.138 0.165 0.351
HTpc 48 0.143 0.126 0.144 0.131 0.153 | 0.348
72 0.140 0.128 0.141 0.130 0.148 0.361
24 0.129 0.121 0.129 0.123 0.152 0.314
HTpc + WLpc 48 0.123 0.119 0.123 0.118 0.141 0.320
72 0.976 0.121 0.117 0.122 0.119 0.136 0.336
WLun 24 ! 0.189 0.155 0.200 0.161 0.172 0.295
+WLpc 48 0.151 0.136 0.169 0.139 0.164 0.323
+WLgx 72 0.144 0.127 0.176 0.129 0.158 0.353
HTup + WLup 24 0.131 0.123 0.135 0.131 0.155 0.284
HTpc + WLpc 48 0.127 0.117 0.140 0.120 0.145 0.315
+WLgx 72 0.128 0.116% 0.151 0.116* 0.139 0.345
Average 0.140 0.126 0.148 0.130 0.152 0.329
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Fig. 3. An illustration of feature importance to every considered telemetry Fig. 4. An illustration of feature importance to every considered telemetry

stations, the absolute value of the linear regression’s (top) and SVR’s (bottom)
weight vectors |w;| average across five runs at HD station.

tively. It is clear that using kernel regression with RBF kernel
and SVR with RBF kernel yielded less scattered estimates
than using linear kernel for both considered stations. The
performance of RF was comparable to Regression-RBF and
SVR-RBFE. Clearly, kNN was the worst algorithm compared to
the other algorithms.

VI. CONCLUSION

This paper proposed approaches to forecast water levels
in the Chao Phraya river by using different machine learning
algorithms, i.e. linear regression, kernel regression, SVR with
linear and RBF kernel, kNN, and RF. It was found that SVR
with RBF kernel function in conjunction with 72-hour lag
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stations, the absolute value of the linear regression’s (top) and SVR’s (bottom)
weight vectors |w;| average across five runs at PC station.

feature was the best contender. All of the proposed approaches
also yielded better prediction performance than the current
approach used by the Royal Thai Navy. We also analyzed the
contributions of every feature used in this study and found
that they reflected the near-the-sea-geography of Chao Phraya
river and the pumping operation of stations in the vicinity—
water levels in Chao Phraya river near Bangkok were strongly
influenced by both nature and human.
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Abstract—Many machine learning algorithms have been in-
troduced to solve different types of problem. Recently, many
of these algorithms have been applied to deep architecture
model and showed very impressive performance. In general,
deep architecture model suffers from over-fitting problem when
there is a small number of training data. In this paper, we
attempted to remedy this problem in deep architecture with
regularization techniques including overlap pooling, flipped-
image augmentation and dropout, and we also compared a
deep structure model (convolutional neural network (CNN)) with
shallow structure models (support vector machine and artificial
neural network with one hidden layer) on a small dataset. It
was statistically confirmed that the shallow models achieved
better performance than the deep model that did not use a
regularization technique. However, a deep model augmented with
a regularization technique-CNN with dropout technique-was
competitive to the shallow models.

Keywords—machine learning; shallow learning; deep learning;
small dataset.

I. INTRODUCTION

Today, machine learning techniques are becoming widely
used in real world applications [1]. They are now integrated
in many modern applications, e.g., hand writing recognition,
image understanding, and video suggestion. They create and
improve models by learning from accumulated data. In the
past, many machine learning techniques, e.g., Support Vec-
tor Machine (SVM), have shown their substantial perfor-
mance and effectiveness in many real world applications [2]—
[4]. However, these algorithms require good extracted hand-
crafted features. Feature extraction is one of challenging
tasks that needs expert knowledge to perform adequately.
Features extracted from each data sample are fed into learning
algorithms. We later refer to these algorithms as “shallow
model” algorithms because they consist of very few layers of
composition. These include Artificial Neural Network (ANN)
with one hidden layer as well. In order to avoid complex
feature extraction process, “deep model” was introduced. It
aims to automatically learn feature hierarchy from low level
to high level. It moves machine learning forward closer to the
ultimate goal of artificial intelligence, that is, a machine that
can think like a human does [5].

Although there are pieces of evidence that deep learning is
able to achieve better performance than shallow learning [6],
[7], it is well known that deep learning has limitations that
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Bangkok 10520, Thailand
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should be considered. Examples of these limitations are the
following:

i) High computational cost in training phase: it has higher
computational complexity comparing to shallow learning
and requires high performance computing unit to train—
using GPU-based implementation can significantly reduce
model training time comparing to using CPU-based im-
plementation [8].

ii) Over-fitting problem when the data set is small: perfor-
mance can drop dramatically due to over-fitting. Shallow
learning techniques can overcome the problems of deep
learning techniques when data is scarce. Many techniques
have been proposed for solving over-fitting problem, such
as overlap pooling, dropout and flipped-image augmen-
tation. Another technique, transfer learning can be used
when there is a small number of training sample. This
can be done by training a model with related domain
dataset that contains large number of samples. As a model
converges, it fine-tunes all of the layers of the network by
using an in-domain small sample data set. An example of
usages of transfer learning technique can be found in a
recent work by [9]. They attempted to use Convolutional
Neural Network (CNN) with transfer learning technique
for emotion recognition of human face on small datasets.
However, it is not always possible to find a related
domain dataset to train on first. CNN was also applied on
ImageNet dataset [7]. This dataset consists of 1.2 million
labeled images under 1000 different categories. Although
the dataset is large, there are only roughly 1000 images in
each of the 1000 categories. This is rather a small sample
size compared to the number of categories. In this case,
the authors applied a dropout technique to solve the over-
fitting problem.

There has been a work that compared the performances of
machine learning with shallow and deep architecture [10]. This
paper concluded that combining them together gave the best
result for text analysis task.

Our study investigated the same small face shape dataset
that we used in one of our previous studies [11]. In that
study, we showed that SVMs in conjunction with Radial Basis
Function (RBF) outperformed other shallow machine learning
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algorithms on this dataset. In this study, we used a deep learn-
ing technique—-CNN-and compared it with two well-known
shallow model learning algorithms—SVM and ANN with one
hidden layer. Because the dataset was very small, CNN model
could be over-fitting, so we employed overlap pooling, flipped-
image augmentation, and dropout regularization techniques to
handle it.

The paper is organized as follows: Section II presents the
methodology used in this paper; we explain our experimental
framework and settings in Section III; The results are discussed
and concluded in Section IV and V, respectively.

1I. METHODOLOGY

Many machine learning algorithms have been introduced
and re-introduced. They can be categorized into two types
according to their model structure: shallow and deep.

A. Shallow model learning

Shallow model learning is a type of machine learning
algorithms can generate good generalized predictive model
with only a few layers of composition. It requires samples
with well-studied discriminative features extracted by experts.
It can perform well even though only a limited number of
samples is available. This work focused on two well-known
shallow machine learning algorithms: ANN with one hidden
layer and SVM.

1) Artificial Neural Network (ANN): ANN was inspired by
human brain operation. Its complexity can be increased by
adding more hidden layers into the model and/or more neurons
into each layer. ANN with one hidden layer is considered
a shallow structure model while ANN with more than one
hidden layers is a deep model. The model can be trained
with different loss functions such as cross entropy error and
classification error functions. A gradient decent algorithm is
usually applied to minimize a selected loss function in order
to obtain optimal variables.

2) Support Vector Machine (SVM): SVM is an instance-
based learning that classifies data into two classes. The model
selects and utilizes proper representative instances from a
training set, so-called “support vector”. SVM tries to generate
a maximum-margin hyper-plane between support vectors of
each class. Basically, it performs linear classification. In order
to enable it to be a nonlinear classifier, a kernel function is
applied. Kernel function maps data from its input space to a
new space that SVM can perform nonlinear classification of
data. SVM can also be extended to solve regression tasks.

Both models can perform nonlinear prediction. SVM usually
performs better than ANN as shown in [12]-[14]. SVM perfor-
mance can drop when applied to noisy data whereas ANN tol-
erates noise better and is more robust in some tasks [15], [16].
These algorithms are powerful machine learning techniques
that can be applied to solve a complex problem; however, they
require discriminative features extracted by human.
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B. Deep model learning

The first deep learning technique so-called “Convolutional
Neural Network” (CNN) was first introduced by Fukushima in
1980 [15]. It was inspired by real biological learning process.
A complex combination of cells in an animal’s visual cortex
is called a receptive field. The field processes small sub-
pictures of an image and combines them to recognize the
context [17]. In deep learning, a region in an input image
covered by a mask is a receptive field for a neuron in hidden
layer. The mask is shifted by one or more pixel throughout
the input image. A sub-image has similar features to the
others if their output values are close to each other. The
number of masks represents the number of neurons in the
hidden layers. Hidden layers are structured hierarchically as
layers in ANN. The weights of each mask can be adjusted
to achieve an optimal performance. This process is called
“feature learning” [18]. It performs automatic feature extrac-
tion prior to the classification phase. Feature learning is an
important ability of deep learning algorithms that can learn to
extract features from raw data without human aid. In this work,
we also investigated CNN. CNN consists of three main layers
which are (i) convolutional layer, (ii) pooling layer, and (iii)
fully connected layer. Convolutional layer operates as a filter—
receptive field—that can be tuned to gain an optimal model
with good feature extraction. Pooling layer performs a data
summarizing operation such as Mean, Max, and Min in order
to reduce the spatial size of the representation in the network
and control over-fitting of the model. The architecture of the
last type of layer, fully connected layer, is similar to that of
a traditional neural network that uses extracted features from
the layers before it. With all of these components, the model
can be trained with any kinds of raw data, especially, image
data. It is known that deep learning algorithms require a high
performance computing unit to generate a model and a large
dataset to obtain a good model [19]. If there is a small number
of training data, the model can be easily over-fitting. The
following special techniques are needed to solve this problem—
overlap pooling, dropout, data flipped-image augmentation [7].

i) Overlap pooling: In a standard pooling layer, the mask
is shifted (stride) so that the next position does not
overlap with the current one. The technique is applied to
collect more input information with the size of the mask
previously mentioned. Hence, it can solve the over-fitting
problem. Moreover, in order to enhance the performance
of the network, the mask can also be overlapped [20].

ii) Flipped-image augmentation: CNN is definitely over-
fitting if the training set is small. To cope with this
problem, a new set of images is created by flipping images
in the dataset horizontally and augmenting them to the
training set. Therefore, the number of samples is now
twice that of the samples in the old training set. It also
increases the diversity of training set.

iii) Dropout: this is a popular technique that handles over-
fitting by randomly removes some neurons in the hidden
layer of the fully-connected architecture in the training
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phase, but in the test phase, all neurons in the hidden layer
are still used. A probability of retain unit, p, is required
for adjustment to get a good model. [21] suggested that
if n is an optimal number of nodes used in a standard
ANN, a good dropout network should have % neurons.

III. EXPERIMENTAL FRAMEWORK
A. Face Shape Dataset

Images of women faces were collected from the Internet in
order to build a hairstyle recommendation system [11]. They
were labeled by volunteers who had passed a qualifying test.
This dataset contained 500 samples of five face shape cat-
egories: heart-shape, oval-shape, oblong-shape, round-shape,
and square-shape. Each class consisted of 100 samples. This
dataset was later used in the developed hairstyle recommenda-
tion system for woman to analyze the face shape of a user and
suggest proper hairstyles for her [22]. The system could also
simulate the hairstyle she was wearing. Nineteen features were
carefully extracted to obtain discriminative features for five
different face shapes. It was found that SVM in conjunction
with RBF was the best contender for this dataset.

B. Data pre-processing

In this work, we investigated three types of data represen-
tation.

1) Hand-crafted features: The 19 features proposed in [11]
were applied to SVM and ANN.

2) Raw image: We simply utilized raw images shown in
Fig. la. All images were resized to 48 x 48 pixels and
converted to gray level scale because color domain is not
necessary for face shape classification. This type of data
representation were used in our deep model.

3) Reconstructed image: Raw images are very complex
and composed of components that may not be necessary for
performing classification and can lead to poor performance.
Therefore, from raw images, we reconstructed new images
that had only the necessary components for classification.
We generated 61 feature points from the Active Appearance
Model (AAM) and face color-based segmentation as described
in [11]. All of these points were connected to represent the
shape of a face as shown in Fig. 1b. The reconstructed images
were used in the CNN.

C. Experimental Setting

We aimed to find a set of optimal parameters for each model.
In order for us to be able to do that, we divided the data
into three sets: 400 samples for training set, 50 samples for
validation set, and 50 samples for test set. The set of optimal
parameters were selected based on the prediction accuracy on
the validation set. Once it was obtained, we again trained the
model on the combined training and validation set. Here, we
compared the prediction accuracy and area under the receiver
operating characteristic (AUROC) on the test set between all
of the contenders. The adjustable parameters of each algorithm
were tuned as follows:
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1) SVM: As SVM is a binary classifier, a one-vs-one
scheme was used to enable SVM to perform multi-class clas-
sification task. RBF kernel was employed. The regularization
and kernel parameter range was {107°,107%, ..., 104, 10°}.

2) ANN with one hidden layer: We varied the number of
neurons in each layer from 1 to 30.

3) CNN: There was a large number of parameters to be
considered for CNN that needs high computational resource.
Hence, we investigated only CNN with one to five convo-
lutional layers to get an optimal model. We considered the
following two structures: (i) CNN with one convolutional
layer: the 32-dimension deep convolutional layer used a mask
of 5 x 5 size that shifted one pixel at a time. We utilized
Max pooling with a 2 x 2 filter in the pooling layer. In this
layer, the filter shifted 2 pixels at a time in order to reduce
the number of variables which was the output volume. This
is shown in Fig. 2. (ii) CNN with two to five convolutional
layers: The structure of this one was similar to the previous
structure but we inserted 1-4 more convolutional layers and
one more pooling layer between the current pooling layer and
the fully-connected layer. In the additional convolutional layer,
its depth dimension was 64 and the size of the mask was 3 x 3
with 1-pixel step shift, set to preserve the context of the image.
The size of the image in the additional convolutional layer was
m x m where m = 22 — 2 x (n — 1) and n was the number
of convolutional layers. Additional pooling layer settings were
set to be the same as those of the previous one in order to
reduce the number of parameters in the classification phase.
This architecture is shown in Fig. 3. In both architectures, a
hidden layer in a fully connected architecture contained 256
neurons with five outputs.

We applied all of the regularization techniques mentioned in
the previous section one-by-one in this experiment as follows:

1) Overlap pooling method: the size of the mask in the first
pooling layer was changed from 2x 2 to 3 x 3 but the shift
was still 2 pixels at a time, so the masks were overlapped.

2) Image augmentation technique: each image were horizon-
tally flipped then augmented to the training set.

3) Dropout technique: We followed a good practice
by [21] explained in the previous section. p range was
{0.1,0.2,...,1.0} while n was set to 256. Therefore, the
number of neurons in the hidden layer became @.

The experiment was run 20 times with different random seeds.

IV. RESULTS AND DISCUSSION

Table I and II show the accuracy and AUROC of each
method for 20 runs, respectively. These results were presented
as violin plots that clearly show their distribution in Fig. 4a
and 4b. We applied one-way analysis of variance (ANOVA) to
analyze the differences between group means, and it was found
that all of the means were different, confirming that there was
a statistically significant difference between at least one pair
of means at p < 0.001 for both accuracy and AUROC. Then,
multiple comparisons were performed. The p-values are shown
in Table III. It should be noted that we only discussed the
accuracy because, overall, AUROC was very much the same
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A

(a) Raw images

(b) Reconstructed images

Fig. 1: Examples of images trained by CNN. There were five-classes of face shapes: oval, round, oblong, square and heart (from left to right).
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Fig. 2: CNN architecture with one convolutional layer.
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Fig. 3: CNN architecture with n convolutional layers (2-5).

as accuracy. According to the results, ANN achieved a better
accuracy than SVM did at 60.2% and 58.7%, respectively,
as shown in Table I, but the conclusion was statistically
inconclusive (p = 0.9863), as shown in Table IIIL.

We compared two types of data representation-raw and

reconstructed images described in Section III-B. It is clear that
using reconstructed images in CNN gave significantly better
performance in accuracy than using raw images, at 53.00%,
and 30.20% respectively (p < 0.001). Therefore, we only
used reconstructed images in CNN with different types of
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TABLE I: The classification accuracy of each algorithm on the test set.
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TABLE II: The area under the ROC curve of each algorithm on the test set.

Shallow Model Deep Model Shallow Model Deep Model
Run 19 Features Raw Reconstructed Image Run 19 Features Raw Reconstructed Image
SVM | ANN CNN CNN SVM | ANN CNN CNN
RBF | 1-hidden | Standard | Standard | Overlap | Aug | Dropout RBF | 1-hidden | Standard | Standard | Overlap | Aug | Dropout
1 56.00 | 54.00 18.00 54.00 54,00 [50.00| 56.00 1 [75.00[| 7250 56.25 68.75 6625 |70.00| 67.50
2 160.00| 60.00 26.00 46.00 52.00 |54.00| 52.00 2 |7250| 71.25 48.75 71.25 71.25 |68.75| 72.50
3 |56.00| 60.00 34.00 44.00 56.00 |46.00| 50.00 3 |75.00| 75.00 53.75 66.25 70.00 |71.25| 70.00
4 |62.00| 56.00 32.00 57.00 57.00 |56.00| 66.00 4 |7250| 75.00 58.75 65.00 72.50 |66.25| 68.75
5 |58.00| 58.00 28.00 54.00 52.00 |56.00| 57.00 5 |76.25| 72.50 57.50 73.75 7375 |72.50| 78.75
6 [62.00| 60.00 36.00 44.00 44.00 |44.00| 50.00 6 |73.75| 73.75 55.00 71.25 70.00 |72.50| 73.75
7 |68.00| 62.00 28.00 60.00 57.00 |60.00| 70.00 7 176.25| 75.00 60.00 65.00 65.00 |65.00| 68.75
8 |56.00| 60.00 22.00 56.00 60.00 |46.00| 46.00 8 |80.00| 76.25 55.00 75.00 73.75 |75.00| 81.25
9 |64.00| 68.00 30.00 52.00 60.00 |54.00| 70.00 9 |7250| 75.00 51.25 72.50 75.00 |66.25| 66.25
10 |58.00| 58.00 38.00 52.00 50.00 |57.00| 57.00 10 |77.50| 80.00 56.25 70.00 75.00 |71.25| 81.25
11 | 66.00| 60.00 30.00 57.00 60.00 |62.00| 60.00 11 |73.75| 73.75 61.25 70.00 68.75 |73.75| 73.75
12 |38.00| 62.00 24.00 48.00 46.00 |52.00| 50.00 12 |7875| 75.00 56.25 73.75 75.00 |76.25| 75.00
13 | 54.00| 60.00 34.00 62.00 57.00 |60.00| 54.00 13 |61.25] 76.25 52.50 67.50 66.25 |70.00| 68.75
14 |56.00| 58.00 34.00 50.00 54.00 |50.00| 56.00 14 |71.25] 75.00 58.75 76.25 7375 |75.00| 71.25
15 |48.00| 62.00 24.00 54.00 64.00 |52.00| 64.00 15 |7250| 73.75 58.75 68.75 7125 |68.75| 72.50
16 | 66.00| 68.00 42.00 56.00 66.00 |66.00 | 70.00 16 |67.50| 76.25 52.50 71.25 77.50 |70.00| 77.50
17 |54.00| 60.00 30.00 56.00 62.00 |57.00| 64.00 17 |78.75| 80.00 63.75 72.50 7875 |78.75| 81.25
18 |62.00| 64.00 34.00 52.00 56.00 |64.00| 66.00 18 |71.25| 75.00 56.25 72.50 76.25 |73.75| 71.50
19 |70.00| 58.00 30.00 56.00 62.00 |57.00| 57.00 19 |76.25| 77.50 58.75 70.00 72.50 |77.50| 78.75
20 [60.00| 56.00 30.00 50.00 46.00 |52.00 | 48.00 20 |81.25| 73.75 56.25 72.50 76.25 |73.75| 73.715
Mean | 58.70 [ 60.20 30.20 53.00 55775 [54.75] 58.15 Mean | 74.19 [ 75.13 56.38 70.69 7244 [71.81 73.94
STD | 7.26 3.55 5.69 491 6.09 [ 596 | 7.73 STD | 4.54 222 3.56 3.13 384 | 377 4.82

regularization and evaluated them.

The accuracy of CNN using overlap pooling, flipped-
image augmentation, and dropout were 55.75%, 54.75%, and
58.15%, respectively. These results were clearly better than
those obtained by conventional CNN on the average. Unfortu-
nately, it was ambiguous to conclude that overlap pooling and
flipped-image augmentation techniques were able to enhance
the performance of CNN in this case, as the comparison
resulted in high 0.7784 and 0.9698 p-value, respectively.
Fortunately, dropout was able to improve the performance of
CNN at p = 0.0976.

It was clear that the shallow models were able to achieve
better performance than the deep models on the average. How-
ever, they were significantly better than only the deep model
that did not use any regularization techniques (p < 0.05).

V. CONCLUSION

We statistically compared deep learning with shallow learn-
ing technique on a small dataset—a face shape dataset. We
showed that SVM and ANN in conjunction with hand-crafted
discriminative features were able to achieve better perfor-
mances than deep learning techniques that used either raw or
reconstructed images but no regularization technique. More-
over, it is ambiguous to say that a shallow model gave a higher
accuracy than a deep model that used regularization techniques
did, especially the case of CNN using dropout. Thus, we can
conclude that using the dropout technique can handle over-
fitting in small dataset. We were able to build a comparable
model of deep learning on a small dataset to a shallow model
by using image transformation and regularization techniques.
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