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It has been proved that the rate of convergence of
Tr(AU), where U is an N X N random unitary matrix and
Ais an N X N complex matrix, is bounded by O(N~2*P),
0<b<1. In this project, we focus on the rate of
convergence of each matrix element of Tr(AU). Our
essential tools are the method of moments, which

requires the computation of moments and cumulants.
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1. Abstract

It has been proved that the rate of convergence of Tr(AU), where U is an
N X N random unitary matrix and A is an N X N complex matrix, is bounded by
O(N_Z”’), 0 < b < 1. In this project, we focus on the rate of convergence of
each matrix element of Tr(AU). Our essential tools are the method of moments,

which requires the computation of moments and cumulants.

2. Executive summary

2.1 Introduction to research

The problem of the value distributions of traces of random unitary matrices
have been studied extensively by many authors. The convergence in distribution
of Tr(U), where U is an N X N random unitary matrix distributed according to
the Haar measure, to a standard normal complex random variable is proved by
Diaconis and Shahshahani [7]. The convergence rate is very fast, either exponential
or even superexponential.

Let A be an N X N complex matrix. The first few terms in the cumulant
expansion of the real part of Tr(AU) (denoted by ReTr(AU) are computed by
Samuel [17] and Bars [1]. This shows the convergence in distribution to a normal
random variable when N — oo, The rate of convergence of ReTr(AU) is
investigated be Meckes [13, 14] by using Stein’s method of exchangeable pairs.
Suppose A is normalized so that Tr(AA*) = N, where A* is the conjugate
transpose of A. Meckes proved that the distance of ReTr(AU) to a normal
random variable with mean zero and variance % in the total variation metric on
probability measures is of order O(N™1). Later, Keating el al [10] improved this
rate by using the method of moments. They obtained the exact moments for
ReTr(AU) and that the rate is of order O(N~2%P), with 0 < b < 1 depending

only on the asymptotic behavior of the singular values of A.
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2.2 Literature review

Let U be an N X N unitary matrix distributed according to Haar measure
on the unitary group U(N). Diaconis and Shahshahani [7] proved that the
moments of the trace of U’ converge in distribution to the moments of a
standard normal complex random variable. This is called the proof of limiting
normality by the method of moment. They also conjecture that both
convergences are very fast, either exponential or even super exponential.

Let ¢p(x) = \/%e_xz/z be the probability density function of a standard

normal random variable and let

O(x) = j $() dy

be the normal distribution. Let F,\gj) (x) be the distribution function of
2 .
- ReTr(U’), ie.
\/; eTr(U/), ie
X
FP(x) = f £t dt
where the integrand fléj)(t) denotes the probability density function of

\/% ReTr(Uj). Johansson [10] gave the rate of convergence to a standard normal

random variable as following:
E(N) = sup |F,V<”(x) - q>(x)| = 0(N~5:)

x€ER
[ 19960 - s ax = o(n-2)

where §;, 8, are positive constants independent on j and N. We can see that the
convergence of Tr(Uj) is very fast. Many authors have continually improved
Diaconis and Shahshahani’s result.

Let A be an N X N complex matrix normalized so that Tr(AA*) = N,
where A" is the conjugate transpose of A. Meckes [13, 14] proved that rate of
convergence of Tr(AU) to a standard normal real random variable in the total is

bounded by %N where ¢y is asymptotic to 2+/2. Moreover, Chatterjee and Meckes

[4] showed that rate of convergence of the multivariate version
Tr(A,U, A,U, ..., A U), where A4, A, ..., A, are N X N complex matrices, to a

K
standard normal real random variable in the total is bounded by % where ¢y is
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asymptotic to 2v/2. In 2011, Keating et al [11] using the method of moments to
prove the convergence to central limit theorem of Tr(AU), and they also derived
the rate of convergence O(N™2%P) with 0 < b <1 from the Berry-Esseen
inequality for the eigenvalues of random unitary matrices. In general, Berry-Esseen
bounds are used to prove central limit theorems for sum of dependent or weakly
dependent random variables. It is strikingly that such a bound exists for sums of

eigenvalues of unitary matrices, which are strongly correlated.

2.3 Objectives
In this research, we aim to compute moments and cumulants of each
matrix element of Tr(AU), where A is an N X N complex matrix and U is an

N X N unitary matrix.

3. Results and discussion

Let A be an N X N complex matrix and U be an N X N random unitary

matrix distributed according to the Haar measure on the unitary group U(N). Let
2 (AAY)qa
0" =——,
2N
where A* is the conjugate transpose of A and (4),; denote the entry in row a

and column B of the matrix A. We define
1 1
XN = ; RB(AU)QB and YN = ; Im(AU)aB
Then
1 .
; (AU)(Zﬁ == XN +1 YN'

The invariance of the Haar measure on U(N) under group action implies
that the distribution of X, and Yy are the same. Therefore, we shall restrict our
attention to only Xy .

The characteristic function of Xy is computed by

1/JN(t)_ Ee't*n

Uy EXP (lt— Re (AU)aﬁ) duy(U)

= Fy @9 (2 (A5 + TADY,) ) ity (V)
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= fyow S50 ()" ((AV)ap + (A0)e) ity (U)

m
= fU(N) anoa(z) m=0(m)(AU)aB ((AU)aB) duy(U).
Since [Py (t)]| < 1, we obtain that
o 1 [it\" [y S—
Yn(6) = 20 (52) Ziheo(2) fy ) AUDEE™ ((AD)ap) it (V).
Since Haar measure is left and right invariant, the integral in this sum is zero

unless n = 2m. Therefore,
v (0= Zao s () () Sy AV (Aap) " i (V)
= Zm=o (53:: [(522:3)733,:!) Sy (A0 ((AU)“ﬂ)m iy (U)]‘

We obtain that all odd moments are zero and even moments are given by

(Zm 0!

where

A = J ) (A ((AU)aﬁ)m dpay (U).

Lemma 1. Let m < N and A = (1"t ...m"™m) denote a partition of m. We have

II(In(A) =m! Yirm gle/l(N) (AA") G- (2)
Proof. Samuel [8] studied averages of the form

f Ui1j1 '"Uimijklll Ukmlm d[,lH(U)
U(N)

= ZO’,TESm MJ,T(N)6i1ka(1) 6imka(m)6jlll—(1) 6jml1-(m)’ (3)
where Sy, is the set of all permutations of the numbers 1, 2, ..., m. The right-hand
side of equation (3) can be rewritten as

Zp,TESm Mp (N)Silkat(l) 6imka‘r(m) 6j11‘c(1) 6jmlr(m)
~1 and used the

. Setting j,, = B forallmand [,,, =

where we have shifted the index in the sum by setting p = 07T
fact that My (N) depends only on o7~!

for all m, we get that

j Uilﬁ UimBUk1B Ukmﬁ d‘llH(U)
U(N)

= Zp,TESm Mp(N)ailka(l) 6imkpr(m) 6,8[3 Sﬁﬁ (@)
m terms

By multiplying equation (4) by Ag;,, -, Aqi,, and Agk,, -, Agk,, and summing

over indices iy, w., im, K1, .., ki, we obtain that
Iy'(A) = Zp,resm Mp (N) Zresm Za,b,c,...,y,zAaaAbaAbcAdc A A zB-
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We can see that

Za,b,c,...,y,z AaaAbaAbcAdc A Azﬁ - (AA )
The sum over T is the number of elements in §,, that is equal to ml. Since 4
depends on cycle structure of p and the number of the same cycle structure is

g Hence we derive formula (1) as required. B

Let us denote the moments of NV'(0,1), the normal random variable with

mean 0 and variance 1, by u$,,, i.e.
us., = (2m— 1)

Theorem 2. We have the following bounds

Hom = tgm (1 +0(m!N)).
Proof. From equations (1) and (2), we have
(Zm !

Ham =~ aym 2arm 9aMa (AA) g
Since (AA*)™, = (20%2)™N™, we get
= 2m = DY GaMAN™. (5)
Denote by A, = (1™) the cycle-type of the identity in S,,. The sum in

equation (5) can be split as follows:

m=@m=DIM; N™ + (2m — DN Y aem g2MN™.
A%,

From Brouwer and Beenakker [2], the large-N expansion of M) is
M, i, = [Ty Mj, + O(NF—2m=2),
1 o 1 (2i-2 .
M; = ZNVH(=)I () + o(NT1),
Then
Tri i T _
Murs, rm = T[] = T [O(N2)]7 = o(wi®-2m)

Therefore,

= (2m— 1! [i + O(N—m—Z)] N™

+(2m -1 2 s —+ 0(N-™- 2)]1vm.

)1¢)1
The sum in the second term can be estimated by the greatest value of [(4)

which is m — 1, and we know that g; < m!. So we have

m = (2m— 1! Nim + O(N‘m‘z)] N™ + (2m — 1)l m! [O(N-™D]N™
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=uS(1+mlo(N™1)).
as required. B

Remark 3. If we take N — oo, we will get Uy, = US,. This demonstrates that Xy

converges in distribution to a standard normal.

Remark 4. When A = I, we get
IN' (1) = m! ¥ m gaMy.

Then
Upm = ((22122)1,31” 2arm 9aMy
- Gt + Zacm 9aMy
= DU OV 2) 4+ mi OV )]
_ Gmit vy

4. Conclusion

In summary, we obtain that all odd moments of% Re(AU)aﬁ are zero and even

moments are given by
2m-1)!
Hom = ——— IN'(A),

(202)Mm! N
where

R =m! ) gaMy(N) (A4

A-m
m<N and A= (1"t..m'm) is a partition of m. Moreover, we derive the

bounds
Ham = Uim(1 + O(MIN™D).
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