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Abstract :  It has been proved that the rate of convergence of 
Tr(𝐴𝑈), where 𝑈 is an 𝑁 ×𝑁 random unitary matrix and 
𝐴 is an 𝑁 × 𝑁 complex matrix, is bounded by 𝑂(𝑁−2+𝑏), 
0 ≤ 𝑏 < 1. In this project, we focus on the rate of 
convergence of each matrix element of Tr(𝐴𝑈). Our 
essential tools are the method of moments, which 
requires the computation of moments and cumulants. 

 

บทคัดย่อ :  ได้มีการพิสูจน์แล้วว่าอัตราการลู่เข้าของ Tr(𝐴𝑈) เมื่อ 𝑈 เป็นเมทริกซ์
ยูนิแทรีสุ่มขนาด 𝑁 ×𝑁 และ 𝐴 เป็นเมทริกซ์เชิงซ้อนขนาด 𝑁 × 𝑁 มี
ค่าไม่เกิน 𝑂(𝑁−2+𝑏), 0 ≤ 𝑏 < 1  ในโครงการนี้ เราได้ศึกษาอัตรา
การลู่เข้าของแต่ละสมาชิกของเมทริกซ์ Tr(𝐴𝑈) เครื่องมือจ าเป็นที่เรา
ใช้ก็คือกระบวนการของโมเมนต์ ซึ่งต้องใช้การค านวณโมเมนต์และคิวมู
แลนต์ 
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1. Abstract 
 

It has been proved that the rate of convergence of Tr(𝐴𝑈), where 𝑈 is an 
𝑁 ×𝑁 random unitary matrix and 𝐴 is an 𝑁 ×𝑁 complex matrix, is bounded by 
𝑂(𝑁−2+𝑏), 0 ≤ 𝑏 < 1. In this project, we focus on the rate of convergence of 
each matrix element of Tr(𝐴𝑈). Our essential tools are the method of moments, 
which requires the computation of moments and cumulants. 

 
 
 

2. Executive summary 
 

2.1 Introduction to research 
The problem of the value distributions of traces of random unitary matrices 

have been studied extensively by many authors. The convergence in distribution 
of Tr(𝑈), where 𝑈 is an 𝑁 ×𝑁 random unitary matrix distributed according to 
the Haar measure, to a standard normal complex random variable is proved by 
Diaconis and Shahshahani [7]. The convergence rate is very fast, either exponential 
or even superexponential. 

Let 𝐴 be an 𝑁 ×𝑁 complex matrix. The first few terms in the cumulant 
expansion of the real part of Tr(𝐴𝑈) (denoted by 𝑅𝑒Tr(𝐴𝑈) are computed by 
Samuel [17] and Bars [1]. This shows the convergence in distribution to a normal 
random variable when 𝑁 → ∞. The rate of convergence of 𝑅𝑒Tr(𝐴𝑈) is 
investigated be Meckes [13, 14] by using Stein’s method of exchangeable pairs. 
Suppose 𝐴 is normalized so that Tr(𝐴𝐴∗) = 𝑁, where 𝐴∗ is the conjugate 
transpose of 𝐴. Meckes proved that the distance of 𝑅𝑒Tr(𝐴𝑈) to a normal 
random variable with mean zero and variance 1

2
 in the total variation metric on 

probability measures is of order 𝑂(𝑁−1). Later, Keating el al [10] improved this 
rate by using the method of moments. They obtained the exact moments for 
𝑅𝑒Tr(𝐴𝑈) and that the rate is of order 𝑂(𝑁−2+𝑏), with 0 ≤ 𝑏 < 1 depending 
only on the asymptotic behavior of the singular values of 𝐴. 
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2.2 Literature review 
Let 𝑈  be an 𝑁 ×𝑁 unitary matrix distributed according to Haar measure 

on the unitary group 𝑈(𝑁). Diaconis and Shahshahani [7] proved that the 
moments of the trace of 𝑈𝑗 converge in distribution to the moments of a 
standard normal complex random variable. This is called the proof of limiting 
normality by the method of moment. They also conjecture that both 
convergences are very fast, either exponential or even super exponential.  

Let 𝜙(𝑥) = 1

√2𝜋
𝑒−𝑥

2/2 be the probability density function of a standard 
normal random variable and let 

Φ(𝑥) = ∫ 𝜙(𝑦) 𝑑𝑦
𝑥

−∞

 

be the normal distribution. Let 𝐹𝑁
(𝑗)(𝑥) be the distribution function of 

√
2

𝑗
 𝑅𝑒Tr(𝑈𝑗), i.e.  

𝐹𝑁
(𝑗)(𝑥) = ∫𝑓𝑁

(𝑗)(𝑡)  𝑑𝑡

𝑥

−∞

 

where the integrand 𝑓𝑁
(𝑗)(𝑡) denotes the probability density function of  

√
2

𝑗
 𝑅𝑒Tr(𝑈𝑗). Johansson [10] gave the rate of convergence to a standard normal 

random variable as following: 
𝐸(𝑁) ≔ sup

𝑥∈ℝ
|𝐹𝑁
(𝑗)(𝑥) − Φ(𝑥)| = 𝑂(𝑁−𝛿1𝑁) 

∫ |𝑓𝑁
(𝑗)(𝑥) − 𝜙(𝑥)| 𝑑𝑥

∞

−∞

= 𝑂(𝑁−𝛿2𝑁) 

where 𝛿1, 𝛿2 are positive constants independent on 𝑗 and 𝑁. We can see that the 
convergence of Tr(𝑈𝑗) is very fast. Many authors have continually improved 
Diaconis and Shahshahani’s result. 

Let 𝐴 be an 𝑁 ×𝑁 complex matrix normalized so that Tr(𝐴𝐴∗) = 𝑁, 
where 𝐴∗ is the conjugate transpose of 𝐴. Meckes [13, 14] proved that rate of 
convergence of Tr(𝐴𝑈)  to a standard normal real random variable in the total is 
bounded by 𝑐𝑁

𝑁
, where 𝑐𝑁 is asymptotic to 2√2. Moreover, Chatterjee and Meckes 

[4] showed that rate of convergence of the multivariate version 
Tr(𝐴1𝑈, 𝐴2𝑈,… , 𝐴𝑘𝑈), where 𝐴1, 𝐴2, … , 𝐴𝑘 are 𝑁 ×𝑁 complex matrices, to a 
standard normal real random variable in the total is bounded by 𝑐𝑁𝑘

𝑁
, where 𝑐𝑁 is 
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asymptotic to 2√2. In 2011, Keating et al [11] using the method of moments to 
prove the convergence to central limit theorem of Tr(𝐴𝑈), and they also derived 
the rate of convergence 𝑂(𝑁−2+𝑏) with 0 ≤ 𝑏 < 1 from the Berry-Esseen 
inequality for the eigenvalues of random unitary matrices. In general, Berry-Esseen 
bounds are used to prove central limit theorems for sum of dependent or weakly 
dependent random variables. It is strikingly that such a bound exists for sums of 
eigenvalues of unitary matrices, which are strongly correlated.   
 
2.3 Objectives 

In this research, we aim to compute moments and cumulants of each 
matrix element of Tr(𝐴𝑈), where 𝐴 is an 𝑁 ×𝑁 complex matrix and 𝑈 is an 
𝑁 ×𝑁 unitary matrix.  
 
 
 

3. Results and discussion 
 

Let 𝐴 be an 𝑁 ×𝑁 complex matrix and 𝑈 be an 𝑁 × 𝑁 random unitary 
matrix distributed according to the Haar measure on the unitary group 𝑈(𝑁). Let  

𝜎2 =
(𝐴𝐴∗)𝛼𝛼

2𝑁
, 

where 𝐴∗ is the conjugate transpose of 𝐴 and (𝐴)𝛼𝛽 denote the entry in row 𝛼 
and column 𝛽 of the matrix 𝐴. We define 

𝑋𝑁 ≔
1

𝜎
 𝑅𝑒(𝐴𝑈)𝛼𝛽    and    𝑌𝑁 ≔

1

𝜎
 𝐼𝑚(𝐴𝑈)𝛼𝛽. 

Then 
1

𝜎
 (𝐴𝑈)𝛼𝛽 = 𝑋𝑁 + 𝑖 𝑌𝑁. 

The invariance of the Haar measure on 𝑈(𝑁) under group action implies 
that the distribution of 𝑋𝑁 and 𝑌𝑁 are the same. Therefore, we shall restrict our 
attention to only 𝑋𝑁. 

The characteristic function of 𝑋𝑁 is computed by 
𝜓𝑁(𝑡) = 𝔼𝑒𝑖𝑡𝑋𝑁 

  = ∫ exp (𝑖𝑡
1

𝜎
 𝑅𝑒 (𝐴𝑈)𝛼𝛽)  𝑑𝜇𝐻(𝑈)𝑈(𝑁)

 

  = ∫ exp (
𝑖𝑡

2𝜎
 ((𝐴𝑈)𝛼𝛽 + (𝐴𝑈)𝛼𝛽))  𝑑𝜇𝐻(𝑈)𝑈(𝑁)
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  = ∫ ∑
1

𝑛!
(
𝑖𝑡

2𝜎
)
𝑛

((𝐴𝑈)𝛼𝛽 + (𝐴𝑈)𝛼𝛽)
𝑛
 ∞

𝑛=0 𝑑𝜇𝐻(𝑈)𝑈(𝑁)
 

  = ∫ ∑
1

𝑛!
(
𝑖𝑡

2𝜎
)
𝑛
∑ (𝑛

𝑚
)(𝐴𝑈)𝛼𝛽

𝑛−𝑚 ((𝐴𝑈)𝛼𝛽)
𝑚

𝑛
𝑚=0  ∞

𝑛=0 𝑑𝜇𝐻(𝑈)𝑈(𝑁)
.  

Since |𝜓𝑁(𝑡)| < 1, we obtain that 
𝜓𝑁(𝑡) = ∑

1

𝑛!
(
𝑖𝑡

2𝜎
)
𝑛
∑ (𝑛

𝑚
) ∫ (𝐴𝑈)𝛼𝛽

𝑛−𝑚 ((𝐴𝑈)𝛼𝛽)
𝑚
 𝑑𝜇𝐻(𝑈)𝑈(𝑁)

𝑛
𝑚=0

∞
𝑛=0 . 

Since Haar measure is left and right invariant, the integral in this sum is zero 
unless 𝑛 = 2𝑚. Therefore, 

𝜓𝑁(𝑡) = ∑
1

(2𝑚)!
(
𝑖𝑡

2𝜎
)
2𝑚

(2𝑚
𝑚
) ∫ (𝐴𝑈)𝛼𝛽

𝑚 ((𝐴𝑈)𝛼𝛽)
𝑚
 𝑑𝜇𝐻(𝑈)𝑈(𝑁)

∞
𝑚=0  

 = ∑
(𝑖𝑡)2𝑚

(2𝑚)!
∞
𝑚=0 [(

(2𝑚−1)‼

(2𝜎2)𝑚𝑚!
)∫ (𝐴𝑈)𝛼𝛽

𝑚 ((𝐴𝑈)𝛼𝛽)
𝑚
 𝑑𝜇𝐻(𝑈)𝑈(𝑁)

]. 
We obtain that all odd moments are zero and even moments are given by 

𝜇2𝑚 =
(2𝑚−1)‼

(2𝜎2)𝑚𝑚!
 𝐼𝑁
𝑚(𝐴),     (1) 

where 
𝐼𝑁
𝑚(𝐴) = ∫ (𝐴𝑈)𝛼𝛽

𝑚 ((𝐴𝑈)𝛼𝛽)
𝑚
 𝑑𝜇𝐻(𝑈)𝑈(𝑁)

. 
 
Lemma 1. Let 𝑚 ≤ 𝑁 and 𝜆 = (1𝑟1…𝑚𝑟𝑚) denote a partition of 𝑚. We have 

𝐼𝑁
𝑚(𝐴) = 𝑚! ∑ 𝑔𝜆𝑀𝜆(𝑁) (𝐴𝐴

∗)𝛼𝛼
𝑚

𝜆⊢𝑚 .   (2) 
Proof. Samuel [8] studied averages of the form 

∫ 𝑈𝑖1𝑗1…𝑈𝑖𝑚𝑗𝑚𝑈𝑘1𝑙1 … 𝑈𝑘𝑚𝑙𝑚  𝑑𝜇𝐻(𝑈)
𝑈(𝑁)

 

  = ∑ 𝑀𝜎,𝜏(𝑁)𝛿𝑖1𝑘𝜎(1) … 𝛿𝑖𝑚𝑘𝜎(𝑚)𝛿𝑗1𝑙𝜏(1) … 𝛿𝑗𝑚𝑙𝜏(𝑚)𝜎,𝜏∈𝑆𝑚 ,   (3) 
where 𝑆𝑚 is the set of all permutations of the numbers 1, 2,… ,𝑚. The right-hand 
side of equation (3) can be rewritten as 

∑ 𝑀𝜌(𝑁)𝛿𝑖1𝑘𝜎𝜏(1)… 𝛿𝑖𝑚𝑘𝜎𝜏(𝑚)𝛿𝑗1𝑙𝜏(1) … 𝛿𝑗𝑚𝑙𝜏(𝑚)𝜌,𝜏∈𝑆𝑚   
where we have shifted the index in the sum by setting 𝜌 = 𝜎𝜏−1 and used the 
fact that 𝑀𝜎,𝜏(𝑁) depends only on 𝜎𝜏−1 . Setting 𝑗𝑚 = 𝛽 for all 𝑚 and 𝑙𝑚 = 𝛽 
for all 𝑚, we get that 

∫ 𝑈𝑖1𝛽…𝑈𝑖𝑚𝛽𝑈𝑘1𝛽 … 𝑈𝑘𝑚𝛽  𝑑𝜇𝐻(𝑈)
𝑈(𝑁)

 

  = ∑ 𝑀𝜌(𝑁)𝛿𝑖1𝑘𝜌𝜏(1)… 𝛿𝑖𝑚𝑘𝜌𝜏(𝑚) 𝛿𝛽𝛽 … 𝛿𝛽𝛽⏟      
𝑚 terms

𝜌,𝜏∈𝑆𝑚 .                      (4) 

By multiplying equation (4) by 𝐴𝛼𝑖1 , … , 𝐴𝛼𝑖𝑚 and 𝐴𝛼𝑘1 , … , 𝐴𝛼𝑘𝑚 and summing 
over indices 𝑖1, … , 𝑖𝑚, 𝑘1, … , 𝑘𝑚, we obtain that 

𝐼𝑁
𝑚(𝐴) = ∑ 𝑀𝜌(𝑁)∑ ∑ 𝐴𝛼𝑎𝐴𝑏𝑎𝐴𝑏𝑐𝐴𝑑𝑐 …𝐴𝑦𝑧𝐴𝑧𝛽𝑎,𝑏,𝑐,…,𝑦,𝑧𝜏∈𝑆𝑚𝜌,𝜏∈𝑆𝑚 . 
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We can see that  
∑ 𝐴𝛼𝑎𝐴𝑏𝑎𝐴𝑏𝑐𝐴𝑑𝑐…𝐴𝑦𝑧𝐴𝑧𝛽𝑎,𝑏,𝑐,…,𝑦,𝑧 = (𝐴𝐴∗)𝛼𝛼

𝑚 . 
The sum over 𝜏 is the number of elements in 𝑆𝑚 that is equal to 𝑚!. Since 𝜆 
depends on cycle structure of 𝜌 and the number of the same cycle structure is 
𝑔𝜆. Hence we derive formula (1) as required.       
 

Let us denote the moments of 𝒩(0,1), the normal random variable with 
mean 0 and variance 1, by 𝜇2𝑚𝐺 , i.e. 

𝜇2𝑚
𝐺 ≔ (2𝑚 − 1)‼. 

 
Theorem 2. We have the following bounds 

𝜇2𝑚 = 𝜇2𝑚
𝐺 (1 + 𝑂(𝑚!𝑁−1)). 

Proof. From equations (1) and (2), we have 
𝜇2𝑚 =

(2𝑚−1)‼

(2𝜎2)𝑚
∑ 𝑔𝜆𝑀𝜆(𝐴𝐴

∗)𝛼𝛼
𝑚

𝜆⊢𝑚 . 
Since (𝐴𝐴∗)𝛼𝛼𝑚 = (2𝜎2)𝑚𝑁𝑚, we get 

𝜇2𝑚 = (2𝑚 − 1)‼∑ 𝑔𝜆𝑀𝜆𝑁
𝑚

𝜆⊢𝑚 .     (5) 
Denote by 𝜆𝑒 = (1𝑚) the cycle-type of the identity in 𝑆𝑚. The sum in 

equation (5) can be split as follows: 
𝜇2𝑚 = (2𝑚− 1)‼𝑀𝜆𝑒𝑁

𝑚 + (2𝑚 − 1)‼∑ 𝑔𝜆𝑀𝜆𝑁
𝑚

𝜆⊢𝑚
𝜆≠𝜆𝑒

. 

From Brouwer and Beenakker [2], the large-𝑁 expansion of 𝑀𝜆 is 
           𝑀𝑗1,…,𝑗𝑘 = ∏ 𝑀𝑗𝑖

𝑘
𝑖=1 + 𝑂(𝑁𝑘−2𝑚−2), 

          𝑀𝑗 =
1

𝑗
𝑁1−2𝑗(−1)𝑗−1 (2𝑗−2

𝑗−1
) + 𝑂(𝑁−1−2𝑗). 

Then 
𝑀1𝑟1 ,…,𝑚𝑟𝑚 = ∏ [𝑀𝑗]

𝑟𝑗𝑚
𝑗=1 = ∏ [𝑂(𝑁1−2𝑗)]

𝑟𝑗𝑚
𝑗=1 = 𝑂(𝑁𝑙(𝜆)−2𝑚).  

Therefore, 

𝜇2𝑚 = (2𝑚 − 1)‼ [
1

𝑁𝑚
+ 𝑂(𝑁−𝑚−2)]𝑁𝑚

+ (2𝑚 − 1)‼ ∑ 𝑔𝜆 [
1

𝑁𝑚
+ 𝑂(𝑁−𝑚−2)]𝑁𝑚

𝜆⊢𝑚
𝜆≠𝜆𝑒

. 

The sum in the second term can be estimated by the greatest value of 𝑙(𝜆) 
which is 𝑚− 1, and we know that 𝑔𝜆 ≤ 𝑚!. So we have 

𝜇2𝑚 = (2𝑚 − 1)‼ [
1

𝑁𝑚
+ 𝑂(𝑁−𝑚−2)]𝑁𝑚 + (2𝑚 − 1)‼𝑚! [𝑂(𝑁−𝑚−1)]𝑁𝑚 
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           = 𝜇2𝑚𝐺 (1 +𝑚!𝑂(𝑁−1)). 
as required.            
 
Remark 3. If we take 𝑁 → ∞, we will get 𝜇2𝑚 = 𝜇2𝑚𝐺 . This demonstrates that 𝑋𝑁 
converges in distribution to a standard normal. 
 
Remark 4. When 𝐴 = 𝐼, we get 

𝐼𝑁
𝑚(𝐼) = 𝑚!∑ 𝑔𝜆𝑀𝜆𝜆⊢𝑚 . 

Then 
 𝜇2𝑚 =

(2𝑚−1)‼

(2𝜎2)𝑚
∑ 𝑔𝜆𝑀𝜆𝜆⊢𝑚  

  =
(2𝑚−1)‼

(2𝜎2)𝑚
[𝑀𝜆𝑒 + ∑ 𝑔𝜆𝑀𝜆𝜆⊢𝑚

𝜆≠𝜆𝑒

] 

  =
(2𝑚−1)‼

(2𝜎2)𝑚
[
1

𝑁𝑚
+ 𝑂(𝑁−𝑚−2) + 𝑚!𝑂(𝑁−𝑚−1)] 

=
(2𝑚−1)‼

(2𝜎2)𝑚
𝑂(𝑁−𝑚).  

 
 
 

4. Conclusion 
   
In summary, we obtain that all odd moments of 1

𝜎
 𝑅𝑒(𝐴𝑈)𝛼𝛽 are zero and even 

moments are given by 
𝜇2𝑚 =

(2𝑚−1)‼

(2𝜎2)𝑚𝑚!
 𝐼𝑁
𝑚(𝐴),      

where 
𝐼𝑁
𝑚(𝐴) = 𝑚! ∑ 𝑔𝜆𝑀𝜆(𝑁) (𝐴𝐴

∗)𝛼𝛼
𝑚

𝜆⊢𝑚

, 

𝑚 ≤ 𝑁 and 𝜆 = (1𝑟1…𝑚𝑟𝑚) is a partition of 𝑚. Moreover, we derive the 
bounds 

𝜇2𝑚 = 𝜇2𝑚
𝐺 (1 + 𝑂(𝑚!𝑁−1)). 
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