รายงานวิจัยฉบับสมบูรณ์

โครงการ Identification of CD99 ligand(s) and functional analysis of CD99 molecule for approaching the development of strategies for immunomodulation and tumor therapy

การระบุและการหาลักษณะเฉพาะของโมเลกุลที่ทำงาน ร่วมกับโมเลกุล CD99 เพื่อใช้ในการพัฒนากลยุทธ์สำหรับ การบำบัดโรคทางภูมิคุ้มกันและเนื้องอก

โดย อ.ดร.สุพรรษา ปาต๊ะ ภาควิชาเทคนิคการแพทย์ คณะเทคนิคการแพทย์ มหาวิทยาลัยเชียงใหม่ มิถุนายน 2559

รายงานวิจัยฉบับสมบูรณ์

โครงการ Identification of CD99 ligand(s) and functional analysis of CD99 molecule for approaching the development of strategies for immunomodulation and tumor therapy

การระบุและการหาลักษณะเฉพาะของโมเลกุลที่ทำงานร่วมกับ โมเลกุล CD99 เพื่อใช้ในการพัฒนากลยุทธิ์สำหรับการบำบัดโรค ทางภูมิคุ้มกันและเนื้องอก

> ภาควิชาเทคนิคการแพทย์ คณะเทคนิคการแพทย์ มหาวิทยาลัยเชียงใหม่ สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย

> > (ความเห็นในรายงานนี้เป็นของผู้วิจัย) สกว.ไม่จำเป็นต้องเห็นด้วยเสมอไป)

บทคัดย่อ

โมเลกุล CD99 เป็นใกลโคโปรตีนที่ปรากฏอยู่บนผิวเซลล์หลากหลายชนิด โดยสามารถพบ โมเลกุล CD99 บนเซลล์เกือบทุกชนิดและมีการแสดงออกที่แตกต่างกัน บนผิวเซลล์โมเลกุล CD99 จะมี การแสดงออกเป็น 2 ไอโซฟอร์ม คือ แบบยาว (ขนาด 32 กิโลดาลตัน) และแบบสั้น (ขนาด 28 กิโลดาล ์ตัน) จากการศึกษาที่ผ่านมา มีรายงานว่าโมเลกุล CD99 เกี่ยวข้องกับการทำงานของเซลล์หลายประการ เช่นเกี่ยวข้องกับกระบวนการ cell adhesion และ cell death รวมทั้งการทำหน้าที่เกี่ยวกับการควบคุม การกระตุ้นเซลล์ ที่ ลิมโฟซัยต์ อย่างไรก็ตามกลไกการทำงานของโมเลกุล CD99 นี้ยังไม่ทราบแน่ชัด อีก ทั้งยังคงไม่มีการค้นพบ ligand หรือ counter receptor ของโมเลกุล CD99 และเพื่อความเข้าใจถึงการทำ หน้าที่ที่แท้จริงของโมเลกุล CD99 ในโครงการวิจัยนี้ ผู้วิจัยมีวัตถุประสงค์ที่จะค้นหาและศึกษา ligand หรือ counter receptor ของ โมเลกุล CD99 และศึกษากลไกการทำงานของโมเลกุล CD99 ที่เกี่ยวข้องกับ การกระตุ้นการทำงานของเซลล์ ที่ ลิมโฟซัยต์ โดยผู้วิจัยได้นำเทคนิคพันธุวิศวกรรมมาใช้ในการเตรียม recombinant CD99-IgG fusion protein เพื่อใช้เป็นเครื่องมือในการตรวจหา CD99 natural ligands ใน การศึกษานี้ recombinant CD99 protein ที่ถูกสร้างขึ้นจะต่ออยู่กับชิ้นส่วนของ IgG ดังนั้น CD99-IgG fusion protein ที่ผลิตได้จะสามารถทำบริสุทธิ์้ได้โดยการใช้ Protein G coated beads อีกทั้งชนิดของ plasmid vector ที่เลือกใช้ในการศึกษานี้ประกอบด้วยยืนดื้อยา จึงทำให้สามารถคัดเลือกเซลล์ที่ผลิต โปรตีนนี้ได้อย่างถาวร (stable expression system) ซึ่งเหมาะสมสำหรับการเตรียม recombinant protein ในปริมาณมากเพื่อใช้ในการตรวจหา CD99 ligand ต่อไปได้ เมื่อนำ recombinant CD99-lgG ไปย้อมเซลล์เพื่อตรวจหาเซลล์ที่มีการแสดงออกของ immunofluorescence staining พบว่า ligands หรือ counter receptors ของ CD99 สามารถพบได้บน เซลล์มะเร็งเม็ดเลือดขาวชนิด THP-1 เมื่อนำเซลล์ THP-1 และ recombinant CD99-IgG fusion protein ไปตรวจหาชนิดของ CD99 ligands โดยวิธี immunoprecipitation และ protein identification โดย LC-MS-MS ผู้วิจัยสามารถตรวจพบโปรตีนที่น่าจะเป็น ligand หรือ counter receptor ของโมเลกุล CD99 ได้

สำหรับการศึกษาหน้าที่ของโมเลกุล CD99 และ CD99 ligands พบว่า recombinant CD99-IgG fusion protein ไม่ทำให้เกิดการเปลี่ยนแปลงการแสดงออกของ activation markers (ได้แก่ CD25, CD69 และ MHC class II) บนผิวเซลล์ และไม่ทำให้เกิดการกระตุ้นการแบ่งตัวของเซลล์ ทั้งใน unstimulated และ activated lymphocytes แต่พบว่าระดับของการสร้าง IL-6 และ TNF-α เพิ่มมากขึ้นโดยที่ร้อยละของ เซลล์ที่สร้าง cytokines (ได้แก่ IL-6, TNF-α และ IFN-γ) ไม่เปลี่ยนเปลง ผลการศึกษานี้บ่งชี้ได้ว่า โมเลกุล CD99 และ CD99 ligands เกี่ยวข้องกับการควบคุมการสร้าง cytokines ใน lymphocytes และ activated T cell

นอกจากการศึกษาหน้าที่ของโมเลกุล CD99 ดังกล่าวแล้ว ในการศึกษานี้ ผู้วิจัยยังได้พัฒนาวิธี flow cytometry รูปแบบใหม่สำหรับศึกษากระบวนการ phagocytosis โดยสามารถแยกกระบวนการ attachment และ phagocytic activity ได้และได้พัฒนาวิธีการใหม่ในการผลิตโพลีโคลนอล แอนติบอดีเพื่อ ใช้ในการเป็นเครื่องมือสำหรับการศึกษาหน้าที่ของโมเลกุล CD99 และโปรตีนบนผิวเซลล์เม็ดเลือดขาว ชนิดอื่นๆ ได้ด้วย

Project Code: TRG5780017

Project Title: Identification of CD99 ligand(s) and functional analysis of CD99 molecule for approaching the development of strategies for immunomodulation and tumor therapy (ชื่อโครงการ) การระบุและการหาลักษณะเฉพาะของโมเลกุลที่ทำงานร่วมกับโมเลกุล CD99 เพื่อ ใช้ในการพัฒนากลยุทธ์สำหรับการบำบัดโรคทางภูมิคุ้มกันและเนื้องอก

Investigator : อ.ดร.สุพรรษา ปาต๊ะ ภาควิชาเทคนิคการแพทย์ คณะเทคนิคการแพทย์ มหาวิทยาลัยเชียงใหม่

E-mail Address :supansa.pata@cmu.ac.th

Project Period : 2 ปี วัตถุประสงค์ของโครงการ

- 1. เพื่อเตรียม recombinant CD99-IgG fusion protein สำหรับใช้ในการเป็นเครื่องมือสำหรับ การตรวจหา CD99 natural ligands
- 2. เพื่อตรวจหาเซลล์มะเร็งเม็ดเลือดขาวที่มีการแสดงออกของ CD99 ligands
- 3. เพื่อระบุชนิดของ CD99 ligand
- 4. เพื่อศึกษาหน้าที่ของ CD99 และ CD99 ligands ในการควบคุมการทำงานของ ที ลิใฟชัยต์
- 5. เพื่อพัฒนาวิธี flow cytometry รูปแบบใหม่สำหรับศึกษากระบวนการ phagocytosis ที่ สามารถแยกกระบวนการ attachment และ phagocytic activity
- 6 เพื่อพัฒนาวิธีการใหม่ในการผลิตโพลีโคลนอล แอนติบอดี

วิธีการทดลอง

1 การผลิตและการศึกษาคุณลักษณะของ CD99-lgG fusion protein

ผู้วิจัยได้นำเทคนิคด้านพันธุวิศวกรรมมาใช้ในการ เตรียม CD99-IgG fusion protein (CD99-hIgG) ซึ่ง CD99 protein ที่ถูกสร้างขึ้นจะต่ออยู่กับชิ้นส่วนของ IgG จึงทำสามารถบริสุทธิ์ได้โดยการใช้ Protein G beads อีกทั้งชนิดของ plasmid DNA ที่เลือกใช้ในการศึกษานี้ประกอบด้วยยืนดื้อยา จึงทำให้เกิดเซลล์ที่ ผลิตโปรตีนนี้ได้อย่างถาวร (stable expression system)

1.1 การสังเคราะห์ plasmid DNA กำหนดการสร้าง CD99-lgG fusion protein

ผู้วิจัยได้นำวิธี Polymerase chain reaction (PCR) มาใช้ในการเพิ่มปริมาณ cDNA ที่กำหนดการ สร้าง CD99 protein ชนิด CD99 long form (LF), CD99 short form (SF) และ CD99 extracellular part (Ex) จาก CD99 DNA ซึ่งได้รับความอนุเคราะห์จาก ศ.ดร.วัชระ กสิณฤกษ์ จากนั้นนำ PCR product ที่

ได้เข้าสู่ pFuse-hlgG1 Fc2 expression vector (Invivogen, USA) แล้วทำ transformation เพื่อนำ plasmid DNA เข้าสู่ competent bacteria E.coli strain DH5Q ต่อมาจึงแยก plasmid DNA จาก bacteria สำหรับการนำมาพิสูจน์ว่า plasmid DNA ที่เตรียมได้เป็น plasmid DNA ที่กำหนดการสร้าง CD99-lgG fusion protein โดยการทำ PCR และการทำ DNA sequencing

1.2 การทดสอบการแสดงออกของ CD99-IgG fusion protein จาก plasmid DNA ที่ได้เตรียม ขึ้น

น้ำ CD99LF-lgG plasmid DNA, CD99SF-lgG plasmid DNA และ CD99Ex-lgG plasmid DNA ที่เตรียมได้เข้าสู่ COS cells โดยหนึ่งวันก่อนการทำ transfection ทำการเติม COS cells ปริมาณ 1 x 10⁶ cells ใน 10% FCS-DMEM 4 ml ลงใน 6-cm tissue culture dishes จากนั้นทำการ transfect COS cells ด้วย 2 ml transfection solution ที่ประกอบด้วย DMEM media ที่มี Lipofectamine2000 (Invitrogen, USA) 4 µl และ 2 µg plasmid DNA เลี้ยงเซลล์ที่อุณหภูมิ 37°C ใน 5% CO₂ incubator นาน 3 ชั่วโมง ครบเวลาดูด transfection solution ออกให้หมด ทำการเลี้ยงเซลล์ต่อใน 10% FCS- DMEM 4 ml ที่ อุณหภูมิ 37°C ใน 5% CO₂ incubator ข้ามคืน จากนั้นเปลี่ยน media โดยใช้ 10% FCS-DMEM 4 mI และทำการเลี้ยง transfected COS cells ต่อจนครบ 48 ชั่วโมง จึงนำเซลล์ออกมาทดสอบการแสดงออก Intracellular immunofluorescence staining โดยการเจาะรูเซลล์ CD99-hlaG โดยวิธี (permeabilization) ด้วย 90% methanol จากนั้นย้อม transfected COS cells ความเข้มข้น 5 x10⁵ cells/ml จำนวน 50 µl ด้วย CD99 mAb หรือ Anti-human IgG antibodies 10 µg/ml 50 µl ที่ 4°C นาน 30 นาที่ ครบเวลาทำการล้างเซลล์ด้วย 1% BSA–PBS-azide 2 ครั้ง จากนั้นเติม sheep anti-mouse Igs-FITC จำนวน 25 µl แล้ว incubate ที่ 4°C นาน 30 นาที ครบเวลาล้างเซลล์ด้วย 1% BSA-PBS-azide 3 ครั้ง และ fixed ด้วย 1% paraformaldehyde-PBS แล้วนำไปตรวจวิเคราะห์ด้วยกล้อง fluorescence microscope

1.3 การสังเคราะห์ CD99-IgG fusion protein stable expressing cells

เพื่อให้โปรตีน CD99 ที่สังเคราะห์ขึ้นมานั้นมีความใกล้เคียงกับโปรตีน CD99 ที่พบในธรรมชาติ จึงนำส่ง CD99LF-IgG plasmid DNA, CD99SF-IgG plasmid DNA และ CD99Ex-IgG plasmid DNA เข้าสู่ 293T cell line ซึ่งเป็น human cell line (รายละเอียดวิธีการทดลองดังแสดงในหัวข้อ 1.2) หลังจาก การ transfection ทำการเลี้ยงเซลล์ในอาหารเลี้ยงเซลล์ที่มียา zeocin 100 ug/ml เพื่อคัดเลือกเฉพาะ เซลล์ที่รับเวกเตอร์เท่านั้น จากนั้นตรวจสอบการแสดงออกของ CD99-hIgG โดยการแบ่งเซลล์ส่วนหนึ่ง ไปทำ intracellular immunofluorescence staining ด้วย anti-human IgG antibodies (รายละเอียด วิธีการทดลองดังแสดงในหัวข้อ 1.2)

1.4 การผลิตโปรตีน CD99Ex-hlgG และ CD147Ex-hlgG

เพื่อเตรียม CD99Ex-hlgG สำหรับการนำไปใช้ในการตรวจหา CD99 ligand และ CD147Ex-hlgG สำหรับใช้เป็น control จึงได้นำเซลล์ 293T ที่มี CD99Ex-lgG plasmid DNA และ CD147Ex-lgG plasmid DNA มาเลี้ยงใน Serum free media (SFM) แล้วทำการเก็บน้ำเลี้ยงเซลล์มาแยกบริสุทธิ์ CD99Ex-hlgG โดยใช้ protein G column จากนั้นตรวจหา CD99Ex-hlgG โดยวิธี ELISA ด้วยแอนติบอดี

จำเพาะต่อ CD99 CD147 และ human IgG โดยน้ำ recombinant protein ใน 0.1 M carbonate bicarbonate buffer pH 9.6 มาเคลือบหลุม ใน 96-well plate หลุมละ 50 µl ที่ 4°C ข้ามคืน จากนั้น block plate ด้วย 2% skimmed milk ใน PBS หลุมละ 100 µl ทำการ incubate ที่อุณหภูมิห้องนาน 1 ชั่วโมง ล้าง plate ด้วย 0.05% Tween 20 ใน PBS (PBS-Tween) 4 ครั้ง ซับ plate ให้แห้ง เติม CD99 mAb CD147 mAb หรือ Anti-human IgG antibodies 10 µg/ml ลงไป หลุมละ 50 µl incubate ที่อุณหภูมิห้อง นาน 1 ชั่วโมงล้าง plate ด้วย 0.05% Tween 20 ใน PBS (PBS-Tween) 4 ครั้งและซับ plate ให้แห้ง แล้วเติม goat anti-mouse immunoglobulins ที่ติดฉลากด้วยเอนไซม์ peroxidase หลุมละ 50 µl แล้ว incubate ที่อุณหภูมิห้องนาน 1 ชั่วโมง จากนั้นล้าง plate ด้วย PBS-Tween 4 ครั้งและซับ plate ให้แห้ง แล้วเติม TMB-H₂O₂ substrate หลุมละ 50 µl ที่อุณหภูมิห้องในที่มืด หยุดปฏิกิริยาด้วยการเติม 1N HCl หลุมละ 50 µl จากนั้นตรวจวิเคราะห์ด้วยเครื่อง ELISA reader ที่ความยาวคลื่น 450 nm

1.5 การเตรียม purified human IgG (HIgG)

เพื่อเตรียม purified human IgG (HIgG) สำหรับใช้เป็น protein control จึงได้นำ serum ของผู้บริจากหมู่ เลือด AB มาแยกบริสุทธิ์ IgG โดยใช้ protein G column จากนั้นตรวจวัดความเข้มข้นของโปรตีนโดยการ วัดค่าการดูดกลืนแสงที่ยาวคลื่น 280 nm

2 การตรวจหาเซลล์มะเร็งเม็ดเลือดขาวที่มีการแสดงออกของ CD99 ligands บนผิวเซลล์

เพื่อตรวจหาชนิดของเซลล์ที่มีการแสดงออกของ CD99 ligands ผู้วิจัยได้นำ CD99Ex-hlgG CD147Ex-hlgG และ human lgG (HlgG) ที่เตรียมได้มาย้อมกับนำเซลล์มะเร็งเม็ดเลือดขาวหลากหลาย ชนิด อย่างไรก็ตาม การจับกันของโปรตีนและลิแกนด์นั้นแยกออกจากกันได้ง่าย ผู้วิจัยจึงได้ทดสอบหาวิธี ที่เหมาะสม ในการตรึงการจับกันของโปรตีนและลิแกนด์ เพื่อนำไปใช้ในการตรวจหาเซลล์ที่มีการ แสดงออกของ CD99 ligands ในการศึกษานี้ได้เลือกใช้ paraformaldehyde fixation และ 3,3'-Dithiobis sulfosuccinimidyl propionate (DTSSP) protein crosslinking

2.1 Indirect immunofluorescence staining with paraformaldehyde fixation

นำเซลล์มะเร็งเม็ดเลือดขาวชนิดที่ลิมโฟไซต์ได้แก่ Jurkat, SupT1, Molt4 cell line เซลล์เม็ดเลือดขาว ชนิดบีลิมโฟไซต์คือ Raji, Daudi cell line เซลล์เม็ดเลือดขาวชนิดมัยอีโลไซต์ได้แก่ KG1a, HL-60 cell line และเซลล์เม็ดเลือดขาวชนิดโมโนไซต์ได้แก่ U937, THP-1 cell line มา block Fc receptor ด้วย 10% Fetal calf serum จากนั้นเติม recombinant CD99Ex-hlgG, CD147Ex-hlgG และ HlgG 5 µg/ml, incubate on ice เป็นเวลา 30 นาที แล้วเติม 1% paraformaldehyde เพื่อ fix ให้ recombinant protein ติดกับ ligands จากนั้นล้าง unbound protein ทิ้งแล้วเติม Rabbit anti-human lgs-FITC แล้วทำการ ตรวจหาเซลล์ที่มีการแสดงออกของ ligands ซึ่งถูกจับได้ด้วย recombinant CD99-hlgG โดยวิธี flow cytrometry

2.2 Indirect immunofluorescence staining with DTSSP protein crosslinking

นำเซลล์ Jurkat B10, U937 และ THP-1 cell line มา block ด้วย human IgG ที่ความเข้มข้น 10µg/ml จากนั้น link ด้วย 2mM DTSSP และ neutralize DTSSP ส่วนเกินด้วย 20mM Glycine-PBS หลังจาก ล้าง unbound แล้วย้อมด้วย biotinylated recombinant CD99Ex-hIgG และ biotinylated recombinant CD147Ex-hIgG 20 µg/ml, incubate on ice เป็นเวลา 1 ชม. เติม 2mM DTSSP เพื่อตรึง recombinant

protein ให้ติดอยู่กับ ligands จากนั้นกำจัด DTSSP ส่วนเกินด้วย 20mM Glycine-PBS และการล้าง จากนั้นเติม human IgG-FITC เพื่อยืนยันว่า human IgG block เซลล์ได้ และเติม streptavidin-PE เพื่อ ตรวจหา biotinylated recombinant hIgG ซึ่งจับกับ ligands บนผิวเซลล์

3. การตรวจหาโมเลกุล CD99 ligand บน THP-1 cell line ด้วยเทคนิค immunoprecipitation และ western blot analysis

น้ำ THP-1 cell line จำนวน 1x10⁸ cells มาทำปฏิกิริยากับ recombinant CD99-hlgG และ recombinant CD147-hlgG 10 μg หรือ hlgG 10 μg ใน 1XPBS 500 ul, rotate 4 °C เป็นเวลา 3.30 ชม. เติม 2mM DTSSP เพื่อเชื่อม recombinant protein ติดกับ ligands จากนั้น neutralize DTSSP ส่วนเกิน ด้วย 20mM Glycine-PBS และล้างเพื่อกำจัด unbound protein ต่อมาแตกเซลล์ด้วย 1% lauryl maltoside ใน pretease inhibitor-1X Tris lysis buffer 1 ml/condition แล้วเติม Protein G agarose beads 40 μl ที่ 4 °C ข้ามคืน หลังจากที่ล้าง beads ด้วย 0.1% LM-Tris-lysis buffer แล้วใช้ 2X non reducing buffer 90 μl ในการ elute immunoprecipitated proteins จากนั้นตรวจวิเคราะห์ immunoprecipitated protein ที่ได้ด้วย western blotting

4. การระบุชนิดของ CD99 ligand

ผู้วิจัยได้นำวิธี cross linking immunoprecipitation ที่พัฒนาขึ้นมาใช้ในการเตรียม CD99 ligand ปริมาณมากสำหรับการทำ protein identification ด้วยวิธี LC/MS/MS โดยได้รับความร่วมมือจาก ดร. สิทธิรักษ์ รอยตระกูล ศูนย์พันธุวิศวกรรมและเทคโนโลยีชีวภาพแห่งชาติ และได้ใช้บริการของบริษัท First BASE Laboratories Sdn Bhd เปปไทด์ซึ่งวิเคราะห์โดยเครื่อง LC-MS/MS ถูก blast กับฐานข้อมูล NCBI human database โดยใช้ online MASCOT search engine (http://www.matrixscience.com) ซึ่ง ตั้งค่าดังนี้ enzyme; trypsin, fixed modifications;carbamidomethyl (C), variable modifications; oxidation (M), pep-tide mass tolerance; ±1.2 Da, fragment mass tolerance; ±0.6 Da,Peptide charge 1+, 2+ and 3+, maximum missed cleavages; 3, Instru-ment; ESI-QUAD-TOF. Ion score is $-10 \times \log(P)$, (p < 0.5)

5. การศึกษาผลกระทบของ recombinant CD99-hlgG ต่อการทำงานของเซลล์

5.1.1 วิเคราะห์การแสดงออกของ activation marker โดยวิธี immunofluorescent staining

แยก peripheral blood mononuclear cells (PBMCs) จาก Heparinized blood ของผู้บริจาคสุขภาพดี จำนวน 3 ราย โดยวิธี Ficoll Hypaque gradient centrifugation จากนั้นนำ PBMC 1 x 10⁶ cell/ml 500 µl มากระตุ้นด้วย CD99-hlgG หรือ HlgG ที่ความเข้มขัน 5 µg/ml ใน 24 well plate เป็นเวลา 1 2 หรือ 3 วัน ใน 5%CO₂ ที่ 37 °C แล้วนำเซลล์มา block Fc receptor ด้วย 10% Fetal calf serum เป็นเวลา 30 นาที จากนั้นเติมแอนติบอดีที่ติดฉลากด้วยสารเรื่องแสง ซึ่งประกอบด้วยแอนติบอดีที่จำเพาะต่อ CD69 CD25 และ MHC class II ทำการ incubate on ice เป็นเวลา 30 นาที แล้วจึงล้างเซลล์ 3 ครั้ง ด้วย1% FCS-PBS และเติม 1% paraformaldehyde สำหรับตรวจวิเคราะห์ปฏิกิริยาด้วยเครื่อง flow cytometer เปรียบเทียบปฏิกิริยาระหว่างสภาวะที่มี CD99-hlgG กับสภาวะที่มี HlgG หรือสภาวะที่ไม่มีโปรตีน เพิ่มเติม โดยใช้การวิเคราห์ทางสถิติแบบ unpaired t-tests

5.1.2 การวิเคราะห์การสังเคราะห์ Cytokines

นำ PBMCs 1 x 10 6 cell/ml 500 μ l มากระตุ้นด้วย CD99-hlgG หรือ HlgG ที่ความเข้มข้น 5 หรือ 10 μ g/ml ใน 24 well plate ใน 5%CO $_2$ ที่ 37 $^{\circ}$ C เป็นเวลา 1 ชั่วโมง จากนั้นเติม brefidin และ monensin

เพื่อยับยั้ง protein secretion แล้วทำการ incubate เป็นเวลา 5 ชั่วโมง ใน 5%CO₂ ที่ 37 °C จากนั้นจึง นำเซลล์มาทำการ Fix และ permeabilization ด้วย 0.1% saponin-PBS แล้วจึงเติม PerCP conjugated Anti-CD3 mAb และ PE conjugated anti-cytokine antibodies (IFN-γ TNF-α IL-4 IL-10 IL-17 IL-22 และ IL-6) ทำการ incubate on ice เป็นเวลา 30 นาที แล้วจึงล้างเซลล์ 3 ครั้ง ด้วย 1% FCS-PBS และ เติม 1% paraformaldehyde สำหรับตรวจวิเคราะห์ปฏิกิริยาด้วยเครื่อง flow cytometer เปรียบเทียบ ปฏิกิริยาระหว่างสภาวะที่มี CD99-hIgG กับสภาวะที่มี HIgG หรือสภาวะที่ไม่มีโปรตีนเพิ่มเติม โดยใช้ การวิเคราะห์ทางสถิติแบบ unpaired t-tests

5.2 การแสดงออกของ activation marker และ Cytokines ใน activated T cells

5.2.1 วิเคราะห์การแสดงออกของ cell activation marker โดยวิธี immunofluorescent staining

นำ PBMCs 1 x 10⁶ cell/ml 500 µl มากระตุ้นด้วย anti-CD3 antibody ที่ sub-optimal dose (ความ เข้มขันที่ titrate ได้คือ 60 ng/ml) ใน 24 well plate ในสภาวะที่มี CD99-hlgG หรือ HlgG ที่ความเข้มขัน 5 µg/ml เป็นเวลา 1 2 หรือ 3 วัน ใน 5%CO₂ ที่ 37 °C แล้วนำเซลล์มาตรวจวิเคราะห์การแสดงออกของ cell activation marker โดยวิธี immunofluorescent staining วิธีการทดลองดังแสดงในข้อ 5.1.1

5.2.2 การวิเคราะห์การสังเคราะห์ Cytokines

นำ PBMCs 1 x 10 6 cell/ml 500 µl มากระตุ้นด้วย anti-CD3 antibody ที่ sub-optimal dose (ความ เข้มข้นที่ titrate ได้คือ 60 ng/ml) ใน 24 well plate ในสภาวะที่มี CD99-hlgG หรือ HlgG 5 หรือ 10 µg/ml ใน 5%CO $_2$ ที่ 37 $^{\circ}$ C เป็นเวลา 1 ชั่วโมง จากนั้นเดิม brefidin และ monensin เพื่อยับยั้ง protein secretion แล้วทำการ incubate เป็นเวลา 5 ชั่วโมง ใน 5%CO $_2$ ที่ 37 $^{\circ}$ C จากนั้นจึงนำเซลล์มาทำการ วิเคราะห์การสังเคราะห์ cytokine โดยวิธี intracellular immunofluorescent staining วิธีการทดลองดัง แสดงในข้อ 5.1.2

5.3 การแบ่งตัวของเซลล์์ (cell proliferation assay)

นำ PBMCs มาย้อมด้วย Carboxyfluorescein diacetate succinimidyl ester (CFSE) จากนั้นนำ stained PBMCs 1 x 10⁶ cell/ml 100 μl มากระตุ้นด้วย CD99-hlgG หรือ HlgG ที่ความเข้มข้น 5 หรือ 10 μg/ml ในสภาวะที่มีหรือไม่มี anti-CD3 antibody ที่ sub-optimal dose (ความเข้มข้นที่ titrate ได้คือ 60 ng/ml) เป็นเวลา 3 หรือ 5 วัน ใน 5%CO₂ ที่ 37 °C เมื่อครบเวลาตรวจวิเคราะห์เซลล์ด้วยเครื่อง flow cytometer และเปรียบเทียบปฏิกิริยาระหว่างสภาวะที่มี CD99-hlgG กับสภาวะที่มี HlgG หรือสภาวะที่ไม่มีโปรตีน เพิ่มเติม โดยใช้การวิเคราห์ทางสถิติแบบ unpaired t-tests

6.การพัฒนาวิธีการสำหรับการศึกษากระบวนการ phagocytosis

เนื่องด้วยผู้วิจัยมีความสนใจที่จะศึกษาหน้าที่ของ CD99 จึงได้พัฒนาวิธีการศึกษากระบวนการ phagocytosis ซึ่งผลงานวิจัยนี้ได้รับการตีพิมพ์แล้วในชื่อเรื่อง Simultaneous flow cytometric measurement of antigen attachment to phagocytes and phagocytosis.วารสาร Journal of Immunoassay and Immunochemistry ปี 2016 โดย Laopajon W, Takheaw N, Kasinrerk W, Pata S.

วิธีการทดลอง

6.1 Preparation of LPS-IgG coated latex beads

Polystyrene latex beads (1.4×10⁹ beads) were coated with 62.5 µg of LPS, 1 mg of rabbit IgG suspended in 1ml of poly-L-lysine solution (1:10 of poly-L-lysine in phosphate buffered saline [PBS]) by rotation at 4°C overnight. To block the free binding sites of the surface of the beads, latex beads were subsequently rotated with 2 ml of fetal bovine serum (FBS) (Gibco, Grand Island, NY) at 4°C for 4 hr. After incubation, the LPS-IgG coated latex beads were washed three times with RPMI 1640 containing 10% FBS (10% FBS-RPMI), resuspended in 10% FBS-RPMI, and stored at 4°C.

6.2 CFSE labeled LPS-IgG coated latex beads

The 1×10⁹ LPS-IgG coated latex beads were labeled with 50 nM CFSE in 1 ml of PBS by rotation at room temperature for 90 min. The succinimidyl reactive group of CFSE was quenched by adding 2 ml of FBS and rotating at 4°C overnight. The CFSE labeled beads were pelleted and washed twice with 10% FBS-RPMI. The CFSE labeled LPS-IgG coated beads (CFSE-LPS-IgG coated latex beads) were resuspended in 10% FBS-RPMI and stored at 4°C.

The success of labeling CFSE on beads was determined by the level of green fluorescence on the FL1 detector of the flow cytometer (FACSort; Becton Dickinson, CA, USA).

6.3 Immunofluorescence staining of CFSE-LPS-IgG coated latex beads

The CFSE-LPS-IgG coated latex beads (4×10^5) were stained with PE-Cy5.5 conjugated goat antirabbit IgG antibody or R-PE conjugated goat anti-mouse IgM antibody at room temperature for 30 min in the dark. The beads were then washed for three times with PBS containing 1% FBS and 0.02% sodium azide (1% FBS-0.02% NaN₃-PBS). The stained beads were analyzed by flow cytometry.

6.4 Titration of CFSE-LPS-IgG coated latex beads for attachment and phagocytic process assay

For the titration of beads, heparinized whole blood from healthy donors (50 μ I) was incubated with various numbers of CFSE-LPS-IgG coated latex beads at 37°C for 60 min. After washing twice with 1%FBS-0.02%NaN₃-PBS, red blood cells (RBC) were lysed by adding 1 ml of FACSTM lysing solution (Becton Dickinson) and incubated at room temperature in the dark for 15 min. The remaining leukocytes were then washed twice with 1%FBS-0.02%NaN₃-PBS. The green fluorescence intensity of phagocytes was analyzed using a flow cytometer.

6.5 Attachment and phagocytic process assay

Whole blood (50 μ I) was incubated with CFSE-LPS-IgG coated latex beads (1×10 6) on ice or at 37°C in the presence or absence of 1% NaN $_3$ or 0.125 mM sodium fluoride (NaF) for 60 min. The cells were stained with PE-Cy5.5 conjugated anti-rabbit IgG antibody and incubated for another 30 min. The stained cells were washed three times with 1%FBS-0.02%NaN $_3$ -PBS and RBC were lysed with FACSTM lysing solution. For the flow cytometric analysis, non-lymphocytes

(phagocytes) were gated by forward scatter (FSC) and side scatter (SSC). The percentage of beads-phagocytic cells (which was indicated by the green fluorescence of CFSE) and the percentage of attachment of phagocytes to beads (which was indicated by the PE-Cy5.5fluorescence and CFSE) were determined.

7.การนำเทคนิคด้านพันธุวิศวกรรมในการเตรียม recombinant CD99-hlgG protein ไป ประยุกต์ใช้ในการผลิตแอนติบอดี

การทดลองนี้ผู้วิจัยได้นำความรู้ทางด้านพันธุวิศวกรรมที่ได้เรียนรู้จากโครงการวิจัยนี้ ไปใช้ใน การพัฒนาวิธีการผลิตแอนติบอดี ซึ่งผู้วิจัยได้ค้นพบวิธีการใหม่ในการผลิตโพลีโคลนอลแอนติบอดี ซึ่งได้ จัดทำต้นฉบับผลงานวิจัยสำหรับการตีพิมพ์ในวารสารวิชาการระดับนานาชาติและอยู่ในระหว่างรอการ พิจารณาจากวารสารนานาชาติ

วิธีการทดลอง

7.1 Preparation of mouse myeloma cells stably expressing human CD99 membrane protein

Mouse myeloma cells stably expressing human CD99 molecules were established using the retroviral expression system. In brief, 9×10⁵ cells of Phoenix-Eco packaging cell line (Origene. Rockville, MD, USA) were seeded in 2 ml of DMEM containing 10% fetal bovine serum. The cells were then transfected with 1.6 µg of pMSCV-CD99 (plasmid vector harboring human CD99 encoding gene) (Pata et al., 2011), using lipofectamine 2000 transfection reagent (Invitrogen, Grand Island, NY, USA), according to the manufacturer's protocol. After 2 days of cultivation, the culture supernatants containing virion were collected and clarified by centrifugation. A volume of 1 ml of the supernatant containing virion was used to spin-infect (1200×g, 90 min at room temperature) the 5×10⁵ of the P3-X63Ag8.653 myeloma cells (BALB/c mouse myeloma cells) in the presence of 10 µg/ml polybrene (Sigma-Aldrich, St. Louis, MO, USA). After overnight incubation at 37°C in a 5% CO2 incubator, the myeloma cells were re-infected with the supernatant containing virion. After 3 days of cultivation, the expression of CD99 on the myeloma cells was determined by immunofluorescence staining and flow cytometric analysis. The CD99 positive myeloma cells were separated by magnetic cell sorting using MS column (Miltenyi Biotec, Bergisch Gladbach, Germany), according to the MACS cell separation protocol. Briefly, 5×10⁵ of the transduced myeloma cells were stained with anti-CD99 mAb (MT99/1, IgM isotype) (Khunkaewla et al., 2007) and Phycoerythrin (PE) conjugated anti-mouse IgM Abs (µ-chain specific) (Beckman Coulter, Marseille, France), followed by anti-PE Microbeads (Miltenyi Biotec). After cell sorting, the magnetically labeled cells were collected and preformed limiting dilution for single cell cloning. The level of the CD99 expression of single cell clones was then analyzed by flow cytometry. The clone with the high CD99 expression was selected, grown, and used as the immunogen for the production of pAbs in mice.

7.2 Mouse immunization

Three BALB/c mice were immunized with human CD99 expressing mouse myeloma cells. The quantity of 2×10^7 of the stably expressed human CD99 myeloma cells was suspended in 500 µl

of phosphate buffer saline (PBS). The cell suspension was injected into intraperitoneal of each mouse at 2-week intervals for a total of three times. Blood was collected before and after each immunization by tail bleeding. The sera were separated and stored at -20° C.

7.3 Immunofluorescence staining and flow cytometric analysis

Cell lines or PBMCs were blocked the Fc receptor with 10% fetal bovine serum for 30 min on ice. The cells were then stained with either 10 μ g/ml of purified mAbs or 1:50 to 1:400 of tested mouse sera for 30 min on ice. After washing, the bound antibodies were detected by staining with PE conjugated anti-mouse IgM Abs (μ -chain specific) or PE conjugated anti-mouse IgG Abs (γ -chain specific) (Beckman Coulter) or FITC conjugated anti-mouse IgS Abs (Chemicon, Melbourne, Australia) or Alexa fluor 488-anti-mouse IgG Abs (H+L chains specific) (Invitrogen, Eugene, Oregon, USA) for 30 min on ice. The stained cells were analyzed by using a FACSort flow cytometer (BD Biosciences).

7.4 Preparation of human CD99-IgG-Fc fusion protein and human CD147-IgG-Fc fusion protein

The human CD99-IgG-Fc fusion protein (CD99Rg) was generated in our laboratory. Briefly, the human CD99 encoding gene was amplified from the pCDM8-CD99 plasmid vector (Kasinrerk et al., 2000). Subsequently, the CD99 genes were inserted by replacing the sequence of CD147 in the pCDM8-CD147Rg plasmid (Koch et al., 1999) to obtain the pCDM8-CD99Rg plasmid. The pCDM8-CD147Rg plasmid is a mammalian expressing vector for the production of the human CD147- IgG-Fc fusion protein (CD147Rg). To produce CD99Rg, the pCDM8-CD99Rg plasmid was transfected by using lipofectamine 2000 (Invitrogen) and expressed in the COS7 cell line. The purified CD99Rg was obtained by purification from the COS7 cell lysates using protein G agarose beads (Pierce, Rockford, IL, USA). To obtain CD147Rg, Chinese Hamster Ovarian (CHO) cells carrying the pCDM8-CD147Rg plasmid (Koch et al., 1999) were cultured in CHO-S-SFM II media (Gibco, Grand Island, NY, USA) containing 5 mM methotrexate. The culture supernatant containing CD147Rg was harvested and then subjected to purify CD147Rg by affinity chromatography on HiTrap Protein G HP (GE Healthcare, Uppsala, Sweden).

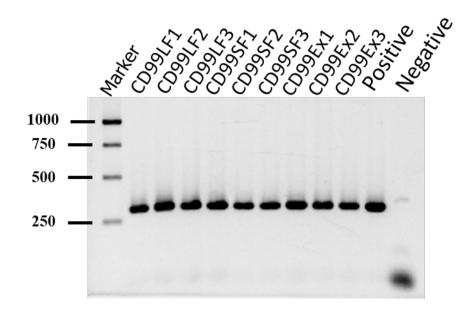
7.5 ELISA

Purified CD99Rg and CD147Rg (negative control) recombinant proteins were coated onto a 96-well ELISA plate (Costar, NY, USA) (50 μl/well) using a carbonate/bicarbonate coating buffer pH 9.6, and incubated at 4°C overnight. The plate was blocked with 100 μl of 2% skimmed milk-PBS at 37°C for 1 h. The mouse sera were diluted to 1:200 with PBS containing 0.05% Tween 20. A volume of 50 μl of the diluted mouse sera was added to each well and incubated at 37°C for 1 h. Horseradish peroxidase conjugated rabbit anti-mouse immunoglobulins Abs (DAKO, Glostrup, Denmark) were added to each well and incubated at 37°C for 1 h. After that, the plate was washed and the 3,3′,5,5′-Tetramethylbenzidine (TMB) substrate (Invitrogen, Carlsbad, CA, USA)

was added. The reaction was stopped by using 1M HCl, and the absorbance was measured at 450 nm.

7.6 Western blotting analysis

For SDS-polyacrylamide gel electrophoresis (SDS-PAGE), the cell lysates were prepared in SDS-loading buffer (62.5 mM Tris-HCl pH 6.8, 2% sodium dodecyl sulfate [SDS], 10% glycerol, and 0.01% bromophenol blue) at 5×10⁷ cells/ml. After heating at 95°C for 5 min, 30 µl of the cell lysates was resolved by 10% SDS-PAGE and subsequently transferred to a nitrocellulose membrane (Merck Millipore, Dublin, Ireland). The membrane was blocked in PBS containing 5% skimmed milk at 4°C overnight. The blocked membrane was incubated with either appropriate dilutions of mouse serum or control mAb for 1 h at room temperature. The membrane was washed five times for 5 min in PBS containing 0.1% Tween 20, and then incubated with horseradish peroxidase conjugated rabbit anti-mouse immunoglobulins Abs (DAKO) for 1 h at room temperature. After washing, the bands were developed by using Chemiluminescent Western Blotting detection reagents (ECL Western Blotting Substrate, Pierce).


ผลการทดลอง

1.การผลิตและการศึกษาคุณลักษณะของ recombinant CD99-IgG fusion protein

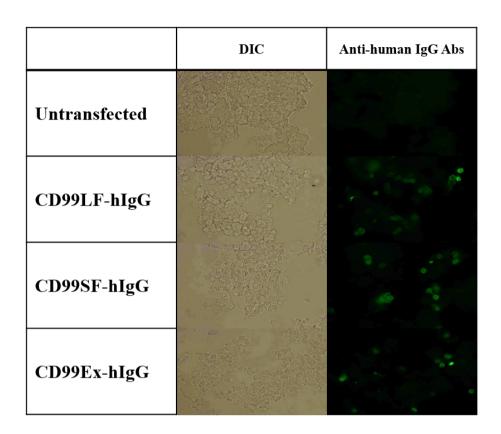
เพื่อศึกษา CD99 ligand โดยอาศัยเทคนิคพันธุวิศวกรรม ผู้วิจัยได้เตรียม recombinant CD99-IgG fusion protein โดย CD99 protein ที่สร้างขึ้นจะต่ออยู่กับชิ้นส่วนของ IgG ดังนั้น CD99-IgG fusion protein ที่ผลิตได้จะสามารถทำบริสุทธิ์ได้โดยการใช้ Protein G และ plasmid vector ที่เลือกใช้ใน การศึกษานี้ประกอบด้วยยืนดื้อยา จึงทำให้สามารถคัดเลือกเซลล์ที่ผลิตโปรตีนนี้ได้อย่างถาวร (stable expression system) ได้

1.1 การตรวจพิสูจน์ plasmid DNA กำหนดการสร้าง CD99-lgG fusion protein

เมื่อทำการสร้าง plasmid DNA กำหนดการสร้าง CD99-IgG fusion protein ได้แล้ว จึงได้นำ plasmid DNA ที่เตรียมได้มาเป็นต้นแบบการทำ PCR ด้วยการใช้ primer ที่จำเพาะต่อ CD99 extracellular part พบว่าได้ชิ้นส่วนของ DNA ขนาดประมาณ 300 base pair ซึ่งสอดคล้องกับขนาดของ DNA ที่กำหนดการสร้าง CD99 protein ในส่วน extracellular part (ดังแสดงในรูปที่ 1) และผลจากการ ทำ DNA sequencing พบว่า CD99LF และ CD99SF ในเวกเตอร์มีความเหมือน 99.8% กับ CD99 ในฐานข้อมูล NCBI และ CD99Ex ในเวกเตอร์มีความเหมือน 100% กับ CD99 ในฐานข้อมูล NCBI ผลการ ทดลองที่ได้นี้แสดงให้เห็นว่า plasmid DNA ที่เตรียมได้นี้เป็น plasmid DNA ที่กำหนดการสร้าง CD99-IgG fusion protein ซึ่งจะสามารถนำไปใช้ในการผลิต CD99-IgG fusion protein ได้ในลำดับต่อไป ผู้วิจัย จึงได้ตั้งชื่อ plasmid DNA ที่เตรียมได้ดังต่อไปนี้ CD99LF-IgG plasmid DNA, CD99SF-IgG plasmid DNA และ CD99Ex-IgG plasmid DNA

ร**ูปที่ 1** แสดง PCR product ที่ได้จากการเพิ่มจำนวนโดยใช้ primer ที่จำเพาะต่อ CD99 extracellular part จาก plasmid DNA ที่ได้เตรียมขึ้น

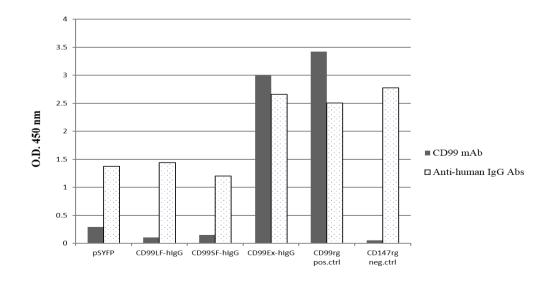
1.2 การทดสอบการแสดงออกของ CD99-IgG fusion protein จาก plasmid DNA ที่เตรียมได้

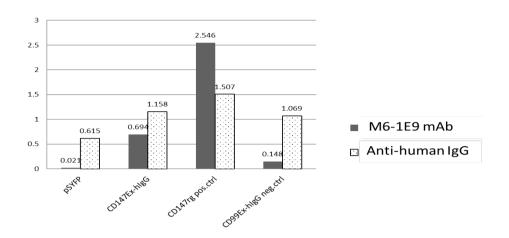

เมื่อนำ COS cells ที่ถูก transfect ด้วย CD99LF-IgG plasmid DNA, CD99SF-IgG plasmid DNA และ CD99Ex-IgG plasmid DNA มาทดสอบการแสดงออกของ CD99-IgG fusion protein โดยวิธี intracellular immunofluorescence staining ด้วยการใช้ anti-CD99 mAb หรือ anti-human IgG antibodies ผลการตรวจวิเคราะห์ด้วยกล้อง fluorescence microscope พบว่าสามารถตรวจพบเซลล์ที่มี การแสดงออกของ CD99-IgG fusion proteins ดังแสดงในรูปที่ 2 ซึ่งแสดงให้เห็นว่า CD99LF-IgG plasmid DNA, CD99SF-IgG plasmid DNA และ CD99Ex-IgG plasmid DNA ที่เตรียมได้เป็น plasmid DNA ที่กำหนดการสร้าง CD99LF-hIgG, CD99SF-hIgG และ CD99Ex-hIgG ตามลำดับ

	DIC	CD99 mAb	DIC	Anti-human IgG Abs
Untransfected				
CD99LF-hIgG				
CD99SF-hIgG				
CD99Ex-hIgG				

ร**ูปที่ 2** แสดงผลการวิเคราะห์ด้วย fluorescence microscope ของการตรวจหา CD99-IgG fusion proteins ภายใน COS cells

1.3 การทดสอบการสังเคราะห์ CD99-IgG fusion protein stable expressing cells

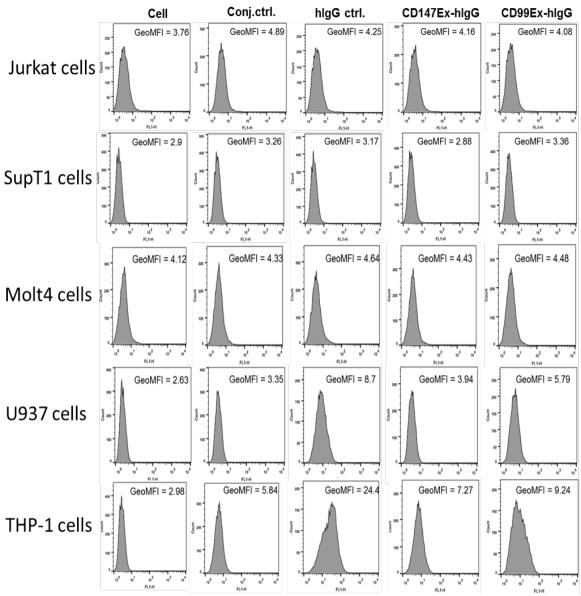

โดยวิธี Intracellular immunofluorescence staining ด้วยการใช้ anti-human IgG antibodies แล้วตรวจวิเคราะห์ด้วยกล้อง fluorescence microscope สามารถตรวจพบ 293T cells ที่มีการแสดงออก ของ CD99LF-hlgG, CD99SF-hlgG และ CD99Ex-hlgG ภายในเซลล์ (ดังแสดงในรูปที่ 3) ผลการ ทดลองนี้บ่งชี้ว่าผู้วิจัยสามารถสังเคราะห์เซลล์ที่มีการแสดงออก CD99LF-hlgG, CD99SF-hlgG และ CD99Ex-hlgG แบบถาวรได้


ร**ูปที่ 3** แสดงผลการวิเคราะห์ด้วย fluorescence microscope ของการตรวจหา CD99-IgG fusion proteins ภายใน 293T cells

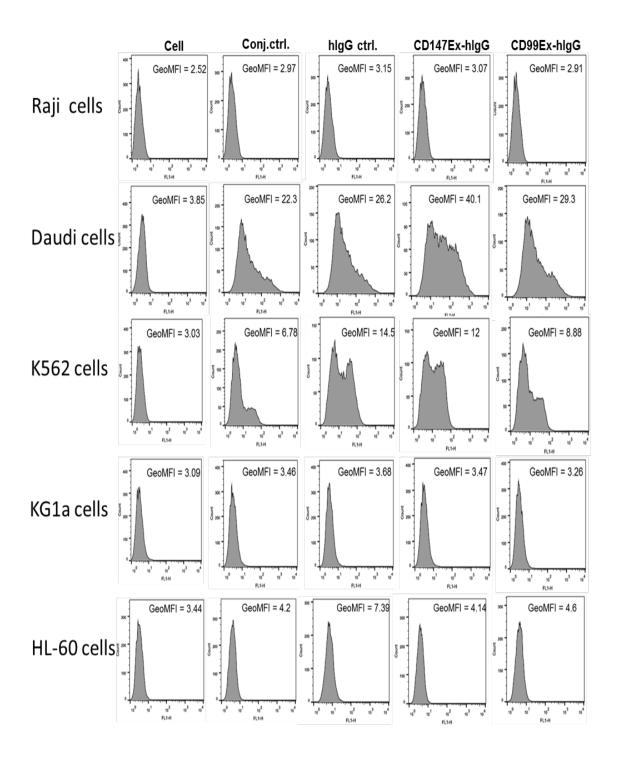
1.4 การตรวจหา CD99Ex-hlgG หรือ CD147Ex-hlgG ใน purified protein ที่เตรียมได้

ด้วยวิธี ELISA ผู้วิจัยสามารถตรวจพบ CD99Ex-hlgG และ CD147Ex-hlgG ใน purified protein ที่เตรียมได้ (ดังผลการทดลองที่ได้แสดงในรูปที่ 4 และรูปที่ 5) จึงบอกได้ว่าผู้วิจัยสามารถผลิต recombinant protein สำหรับการใช้ในการตรวจหา CD99 ligands และการศึกษาหน้าที่ของ CD99 ได้

ร**ูปที่ 4** แสดงผลการตรวจหา CD99Ex-hlgG ในโปรตีนที่แยกได้จาก culture supernatant ด้วยวิธี ELISA


ร**ูปที่ 5** แสดงผลการตรวจหา CD147Ex-hlgG ในโปรตีนที่แยกได้จาก culture supernatant ด้วยวิธี ELISA

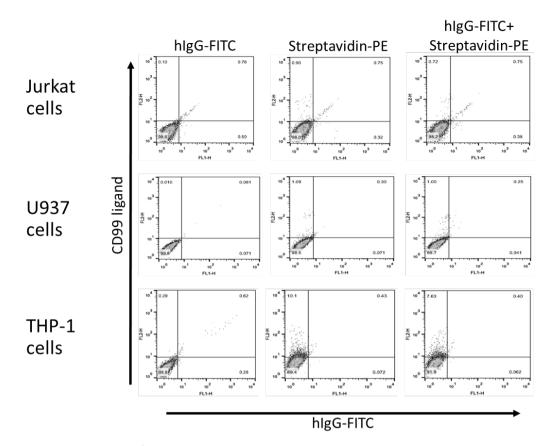
2. การตรวจหาเซลล์มะเร็งเม็ดเลือดขาวที่มีการแสดงออกของ CD99 ligands บนผิวเซลล์


เพื่อตรวจหาชนิดของเซลล์ที่มีการแสดงออกของ CD99 ligands ผู้วิจัยได้นำ CD99Ex-hlgG (CD99-hlgG), CD147Ex-hlgG (CD147-hlgG) และ purified HlgG ที่ผลิตได้ทำปฏิกิริยากับเซลล์มะเร็งเม็ดเลือด ขาวหลากหลายชนิดและเลือกใช้ paraformaldehyde fixation และ 3,3'-Dithiobis sulfosuccinimidyl propionate (DTSSP) protein crosslinking เป็นสารยึดเหนี่ยวการจับกันของโปรตีน

2.1 Indirect immunofluorescence staining with paraformaldehyde fixation

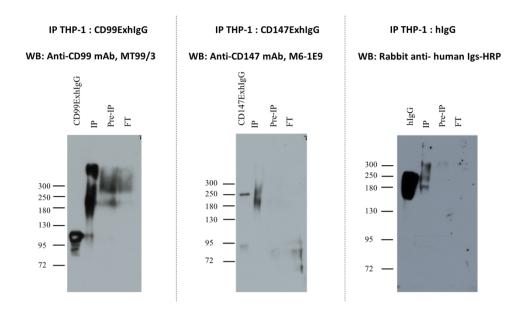
โดยวิธี flow cytrometry พบว่าเซลล์มะเร็งเม็ดเลือดขาวชนิด U937 THP-1, Daudi และ KGa1 ให้ผล positive เมื่อทำปฏิกริยากับ recombinant CD99-hIgG (รูปที่ 6A รูปที่ 6B และตารางที่ 1) อย่างไรก็ตาม เซลล์ดังกล่าวได้แสดงผล positive เมื่อทำปฏิกิริยากับ recombinant CD147-hIgG ซึ่งเป็น protein control ด้วย ดังนั้นจึงไม่สามารถสรุปได้ว่าเซลล์ที่แสดงผล positive นี้มีการแสดงออกของ CD99 ligands

รูปที่ 6A แสดงผลการตรวจหา CD99 ligands บนผิวเซลล์มะเร็งเม็ดเลือดขาวชนิด Jurkat, SupT1, Molt4, U937, THP1 โดยวิธี immunofluorescence staining และ Flow cytometry

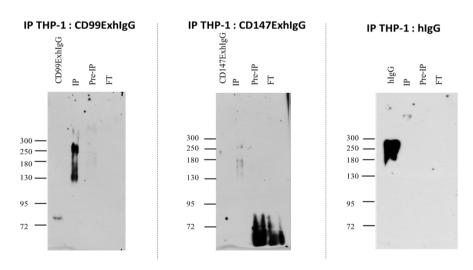

รูปที่ 6B แสดงผลการตรวจหา CD99 ligands บนผิวเซลล์มะเร็งเม็ดเลือดขาวชนิด Raji, Daudi, KG1a, HL-60 โดยวิธี immunofluorescence staining และ Flow cytometry

ตารางที่ 1 แสดงร้อยละของเซลล์และระดับการแสดงออกของ CD99 ligands

Cell line	Cell	Conj.Ctrl	CD147Ex- hlgG	CD99Ex- hIgG	Cell	Conj.Ctrl	CD147Ex- hlgG	CD99Ex- hIgG
	%	%	%	%	Geo mean	Geo mean	Geo mean	Geo mean
Jurkat	0.020	0.081	0.12	0.17	4.33	4.5	5.12	4.62
SupT1	0.023	0.26	0.15	0.22	3.42	3.79	4.11	3.87
U937	0	0.92	3.34	17.5	3.02	5.59	6.32	9.09
THP-1	0.092	1.16	2.31	10.4	3.3	7.95	9.11	12
Raji	0.021	0.38	0.23	0.29	3.67	4.39	4.49	4.35
Daudi	0.041	78.0	79.3	59.6	3.47	68.6	71.4	40.5
K562	0.19	27.8	20.4	26.9	4.71	8.6	7.78	8.84
KG1a	0.082	0.12	0.083	0.072	2.97	3.11	3.47	3.14
HL-60	0.043	0.83	0.94	6.21	2.81	3.73	3.95	4.9


2.2 Indirect immunofluorescence staining with DTSSP protein crosslinking

สืบเนื่องจากผลการทดลองที่ได้จากข้อ 2.1 อาจจะเป็นผลจากการจับกันของโปรตีนโดยใช้ ส่วนของ hIgG ผู้วิจัยได้นำเซลล์ Jurkat B10, U937 และ THP-1 cell line มาทำปฏิกิริยากับ purified hIgG จากนั้นจึง นำมาทำปฏิกิริยากับ biotinylated recombinant CD99Ex-hIgG และ biotinylated recombinant CD147Ex-hIg แล้วเติม DTSSP เพื่อตรึง recombinant protein ให้ติดอยู่กับ ligands และเติม streptavidin-PE เพื่อตรวจหา biotinylated recombinant hIgG ซึ่งจับกับ ligands บนผิวเซลล์ พบว่ามี เพียง THP-1 cell line ที่ให้ผล positive กับ streptavidin-PE เท่านั้นเมื่อย้อมด้วย recombinant CD99Ex-hIgG ดังแสดงในรูปที่ 7 ดังนั้นจึงสรุปได้ว่า THP-1 cell line มีการแสดงออกของ CD99 ligands บนผิว เซลล์ และสามารถนำไปทำการทดลองเพื่อระบุชนิดของ CD99 ligands โดยใช้เทคนิค immunoprecipitation ต่อไปได้


3. การตรวจหาโมเลกุล CD99 ligands บน THP-1 cell line ด้วยเทคนิค Immunoprecipitation และ Western blot analysis

ผู้วิจัยได้นำวิธีการตรึงการจับกันของโปรตีนด้วยสาร DTSSP ร่วมกับการทำ immunoprecipitation มาใช้ ในการตรวจหาและคัดแยก CD99 ligands ออกจากโปรตีนชนิดอื่น เนื่องจาก CD99-hIgG ติดอยู่กับ CD99 ligands ผู้วิจัยสามารถตรวจสอบว่ามีโปรตีนจับอยู่กับ recombinant CD99-hIgG โดยการทำ Western blotting ด้วยแอนติบอดีต่อ recombinant protein หรือ hIgG หากมี CD99 ligand จับอยู่ จะ ตรวจพบการเปลี่ยนแปลงของขนาดโมเลกุลของ recombinant protein ผู้วิจัยพบว่าโมเลกุลบน THP-1 cell line ถูกจับและดึงออกมาได้ด้วย recombinant CD99-hIgG ซึ่งโปรตีนนี้ไม่พบใน immunoprecipitated protein ของ CD147-hIgG และ hIgG ที่ใช้เป็น control protein (ดังแสดงในรูปที่ 8 และ 9) ผลการทดลองนี้แสดงให้เห็นว่าผู้วิจัยสามารถแยก CD99 ligand ออกมาได้โดยการใช้ recombinant CD99-hIgG ร่วมกับวิธีที่ได้พัฒนาขึ้นมาได้

ร**ูปที่ 8** แสดงผลการทำ Western blotting ด้วยแอนติบอดีที่จำเพาะต่อโปรตีนที่ใช้เป็นเครื่องมือในการ ดึง protein ligands และ control protein

WB: Rabbit anti- human Igs-HRP

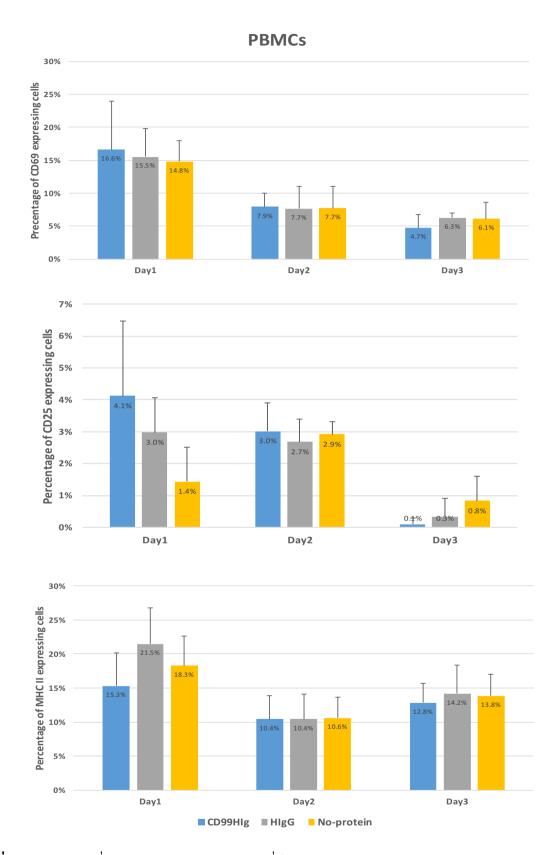
ร**ูปที่ 9** แสดงผลการทำ Western blotting ด้วยแอนติบอดีที่จำเพาะต่อ hlgG ซึ่งเป็น fusion protein

4. CD99 ligands identification

จากการทำ protein identification ด้วยวิธี LC/MS/MS พบว่าโปรตีนที่ติดอยู่กับ CD99-hlgG ประกอบ ด้วยชิ้นส่วนของโปรตีนที่คล้ายคลึงกับ dismutase fragment, Cu/Zn superoxide, OCTN1, hypothetical protein, T cell receptor delta chain, partial, T-cell receptor alpha, partial T-cell และ receptor beta chain รายละเอียดดังแสดงในตารางที่ 2 ซึ่งจะได้ทำการตรวจยืนยันด้วย วิธี immunoprecipitation และ Western blot analysis ต่อไป

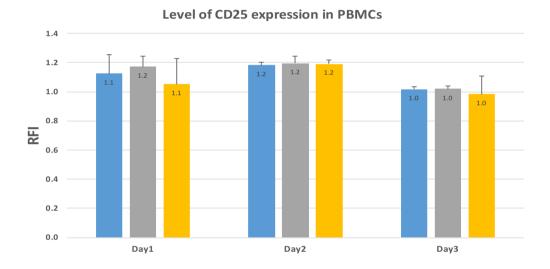
ตารางที่ 2 แสดงชนิดของโปรตีนที่จับอยู่กับ recombinant CD99-hlgG

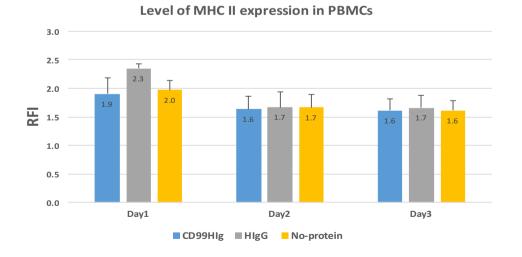
prot_acc	prot_desc	prot_score
gi 223020	dismutase fragment , Cu/Zn superoxide	44
gi 2605501	OCTN1 [Homo sapiens]	40
gi 6650826	PRO2044 [Homo sapiens]	40
	ubiquitin-60S ribosomal protein L40 isoform 1 precursor [Homo	
gi 4507761	sapiens]	33
	ubiquitin-60S ribosomal protein L40 isoform 1 precursor [Homo	
gi 4507761	sapiens]	33
gi 1236329	p37NB [Homo sapiens]	27
gi 21928747	seven transmembrane helix receptor [Homo sapiens]	25
gi 339303	T-cell receptor alpha, partial [Homo sapiens]	18
gi 547076	T cell receptor delta chain, partial [Homo sapiens]	17
gi 28317373	TPA: IL-1F7b (IL-1H4, IL-1H, IL-1RP1) [Homo sapiens]	16
gi 4028230	T-cell receptor beta chain [Homo sapiens]	16


5. การศึกษาหน้าที่ของ CD99 และ CD99 ligands

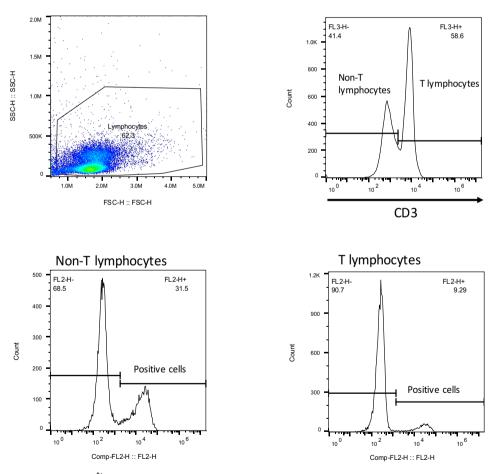
5.1 การศึกษาหน้าที่ของโมเลกุล CD99 และ CD99 ligands ในการควบคุมการแสดงออกของ cell activation markers และการสร้าง cytokines ใน PBMCs

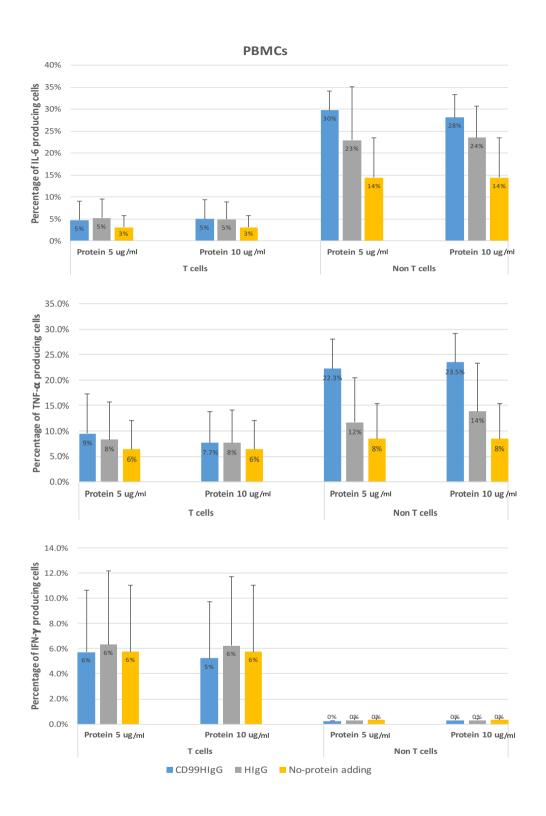
เนื่องจากเซลล์ในระบบภูมิคุ้มกันนั้นต้องการการทำงานร่วมกันของโปรตีนหลากหลายชนิดที่อยู่บนผิว เซลล์และหลั่งออกมาจากเซลล์ ในการศึกษานี้จึงวิเคราะห์การเปลี่ยนแปลงของ cell activation markers บนผิวของ lymphocytes และ cytokine ที่ถูกสังเคราะห์ขึ้น ซึ่งโปรตีนเหล่านี้ทำหน้าที่ในการช่วยส่งเสริม การทำงานของเซลล์ในระบบภูมิคุ้มกัน


5.1.1 การศึกษาการเปลี่ยนแปลงของ cell activation markers

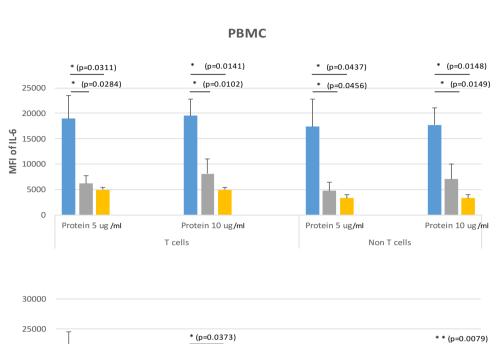

เพื่อศึกษาถึงกลไกในการควบคุมการทำงานโดย CD99 molecule ผู้วิจัยได้กระตุ้น PBMCs ด้วย recombinant CD99-hIgG fusion protein เป็นเวลา 1 2 และ 3 วัน แล้วศึกษาการเปลี่ยนแปลงของ cell activation markers ซึ่งประกอบด้วย CD69, CD25 และ MHC class II โดยวิธี Direct immunofluorescence staining และทำการวิเคราะห์ด้วย flow cytometer เมื่อทำการวิเคราะห์ร้อยละของ lymphocytes ที่มีการแสดงออกของ CD69, CD25 และ MHC class II ระดับการแสดงออกของ cell activation markers บนผิวของ lymphocytes ในภาวะที่มี CD99-hIgG fusion protein เปรียบเทียบกับ สภาวะที่มี HIgG และไม่มีโปรตีน เป็นเวลา 1, 2 และ 3 วัน ผลการทดลองไม่พบความแตกต่างอย่างมี นัยสำคัญทางสถิติ (รูปที่ 10 และ 11) ซึ่งแสดงว่า recombinant CD99 protein interaction กับ PBMCs โดยตรงนั้นไม่ส่งต่อการแสดงออกของ cell activation markers ที่ใช้ศึกษาบนผิวของ lymphocytes

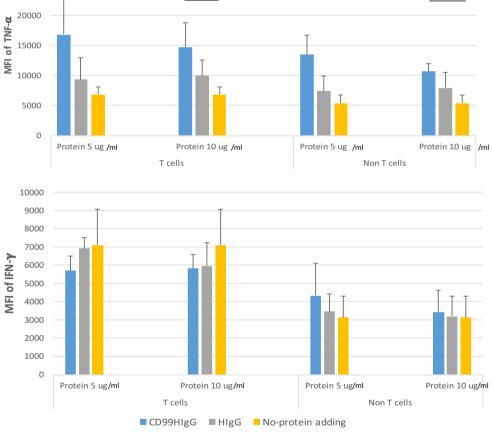
ร**ูปที่ 10** แสดงค่าเฉลี่ยร้อยละของ lymphocytes ที่มีการแสดงออกของ activation marker บนผิวเซลล์์ ซึ่งเป็นผลการศึกษาโดยวิธี Immunofluorescence staining ของเซลล์์ของผู้บริจาคจำนวน 3 ราย




ร**ูปที่ 11** แสดงระดับการแสดงออกของ activation marker บนผิวของ lymphocytes ซึ่งเป็นผลการศึกษา โดยวิธี Immunofluorescence staining ของเซลล์์ของผู้บริจาคจำนวน 3 ราย

5.1.2 การศึกษาผลการทำงานของ CD99 และ CD99 ligands ต่อการสังเคราะห์ cytokines


ผู้วิจัยได้กระตุ้น PBMCs ด้วย CD99-hlgG recombinant protein เป็นเวลา 18 ชั่วโมง จากนั้นวิเคราะห์ การสังเคราะห์ cytokine ในกลุ่มของ Th1 (IFN-γ และ TNF-α), Th2 (IL-4 และ IL-10) และ Th17 (IL-17 และ IL-22) cytokines และ IL-6 โดยวิธี Intracellular immunofluorescence staining ด้วยแอนติบอดีที่ จำเพาะต่อ cytokines ชนิดต่าง ๆ ร่วมกับ anti-CD3 mAb ซึ่งเป็น protein markers ของ T cells จึงทำ ให้สามารถวิเคราะห์การสังเคราะห์ในกลุ่มของ T lymphocytes และ non-T lymphocytes เมื่อวิเคราะห์ เซลล์ด้วย flow cytometer ดังแสดงตัวอย่างขั้นตอนการวิเคราะห์ผลการทดลองในรูปที่ 12 ผลการทดลอง พบว่าในภาวะที่มี CD99-hlgG เปรียบเทียบกับสภาวะที่มี HlgG และไม่มีโปรตีน เป็นเวลา 1, 2 และ 3 วัน พบว่าร้อยละของ T lymphocytes และ non-T lymphocytes ที่มีการสังเคราะห์ IL-6, TNF-α และ IFN-γ ไม่มีความแตกต่างอย่างมีนัยสำคัญทางสถิติ (รูปที่ 13) ในทางตรงกันข้ามกันเมื่อวิเคราะห์ระดับ การสังเคราะห์ในเซลล์ที่ผลิต cytokines (positive cells) ผู้วิจัยได้พบความแตกต่างอย่างมีนัยสำคัญทาง สถิติของปริมาณการสังเคราะห์โดยเซลล์ (รูปที่ 14) โดยพบว่า CD99-hlgG ทำให้ T lymphocytes และ non-T lymphocytes มีการสังเคราะห์ IL-6 และ TNF-α เพิ่มมากขึ้น แต่สำหรับ IFN-γ นั้นไม่พบความ แตกต่าง อย่างไรก็ตามผู้วิจัยไม่สามารถตรวจพบเซลล์ชนิด Th2 (IL-4 และ IL-10) และ Th17 (IL-17 และ IL-22) cytokines ได้จากการศึกษานี้

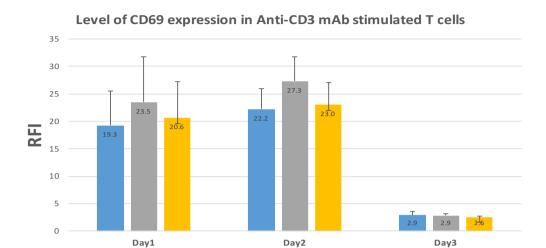


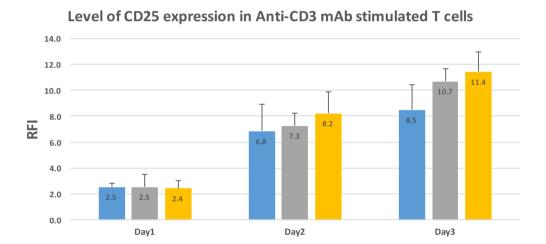
ร**ูปที่ 12** แสดงตัวอย่างขั้นตอนการวิเคราะห์ผลการทดลองโดย flow cytometry ด้วยการใช้ anti- CD3 mAb ทำให้สามารถแยก lymphocytes ออกเป็น 2 กลุ่มคือ T lymphocytes และ non-T lymphocytes สำหรับการวิเคราะห์การสังเคราห์ cytokines

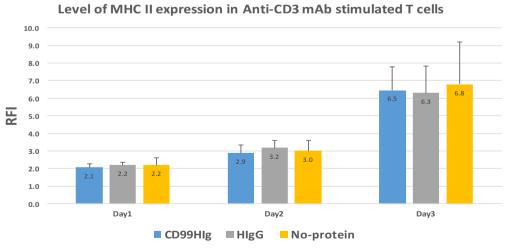
ร**ูปที่ 13** แสดงค่าเฉลี่ยร้อยละของเซลล์ที่มีการสังเคราะห์ cytokines ชนิดต่าง ๆ ดังที่ได้ระบุในกราฟ โดยเป็นผลการศึกษาโดยวิธี Immunofluorescence staining ของเซลล์ของผู้บริจาคจำนวน 3 ราย

ร**ูปที่ 14** แสดงระดับของการสังเคราะห์ cytokines ใน lymphocytes ซึ่งเป็นผลการศึกษาโดยวิธี Immunofluorescence staining ของเซลล์ของผู้บริจาคจำนวน 3 ราย

5.2 การศึกษาหน้าที่ของ CD99 และ CD99 ligands ในการควบคุมการแสดงออกของ cell activation markers และการสร้าง cytokines ใน activated T cells

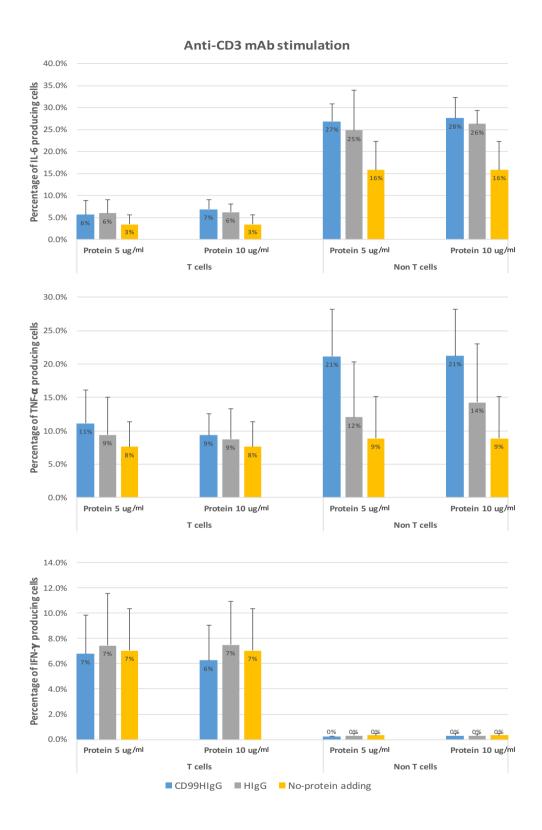

เพื่อศึกษาถึงกลไกในการการทำงานของ CD99 molecules ที่เกี่ยวข้องกับการกระตุ้น T cells ผู้วิจัยจึงได้กระตุ้น PBMCs ด้วย anti-CD3 mAb โคลน OKT3 ในสภาวะที่มี CD99-hlgG fusion protein จากนั้นวิเคราะห์การแสดงออกของ activation markers และการสังเคราะห์ cytokines


5.2.1 การศึกษาการเปลี่ยนแปลงของ cell activation markers

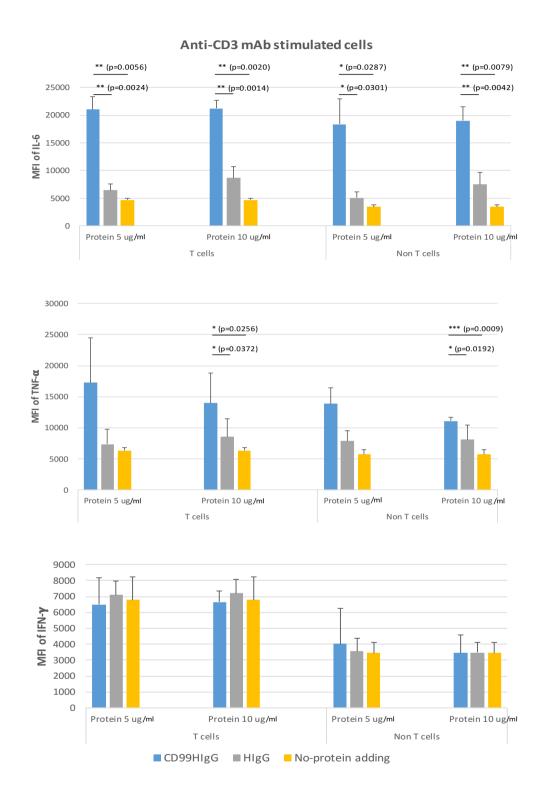

เมื่อทำการวิเคราะห์ร้อยละของ lymphocytes ที่มีการแสดงออกของ cell activation markers ชนิด CD69, CD25 และ MHC class II และระดับการแสดงออกของ cell activation markers บนผิวของ lymphocytes ในภาวะที่มี CD99-hlgG fusion protein เปรียบเทียบกับสภาวะที่มี HlgG และไม่มีโปรตีน ใน เป็นเวลา 1, 2 และ 3 วัน ผลการทดลองไม่พบความแตกต่างอย่างมีนัยสำคัญทางสถิติ (รูปที่ 15 และ รูปที่ 16)

Anti-CD3 mAb stimulated T cells 90% T 77.0% 78.0% 10% 0% Day1 Day2 Day3 90.0% 80.0% Percentage of CD25 expressing cells 70.0% 60.0% 50.0% 40.0% 30.0% 20.0% 10.0% 0.0% Day1 Day2 Day3 80.0% Percentage of MHC II expressing cells 70.0% 60.0% 50.0% 53.4% 40.0% 30.0% 20.0% 15.9% 10.0% 0.0% Day1 Day3 ■ CD99HIg ■ HIgG ■ No-protein

ร**ูปที่ 15** แสดงค่าเฉลี่ยร้อยละของ lymphocytes ที่มีการแสดงออกของ activation marker บนผิวเซลล์ที่ ถูกกระตุ้นด้วย anti-CD3 mAb ในสภาวะที่มี CD99-hIgG โดยเป็นผลการศึกษาด้วยวิธี Immunofluorescence staining ของเซลล์ของผู้บริจาคจำนวน 3 ราย



ร**ูปที่ 16** แสดงระดับการแสดงออกของ activation marker บนผิวของ lymphocytes ซึ่งถูกกระตุ้นด้วย anti-CD3 mAb ในสภาวะที่มี CD99-hlgG โดยเป็นผลการศึกษาด้วยวิธี Immunofluorescence staining ของเซลล์ของผู้บริจาคจำนวน 3 ราย


5.2.2 การศึกษาผลการทำงานของ CD99 และ CD99 ligands ต่อการสังเคราะห์ cytokines

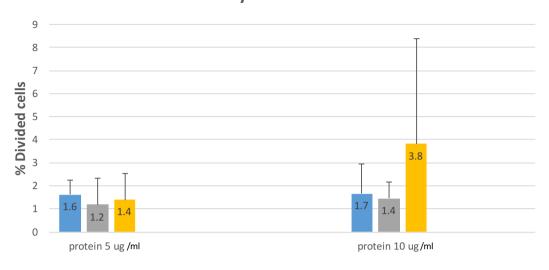
ผู้วิจัยได้วิเคราะห์การสังเคราะห์ cytokine ในกลุ่มของ Th1 (IFN-γ และ TNF-α), Th2 (IL-4 และ IL-10) และ Th17 (IL-17 และ IL-22) cytokines และ IL-6 เมื่อ T cell ถูกกระตุ้น ดังแสดงในรูปที่ 17 เมื่อ เปรียบเทียบสภาวะที่มี CD99-hlgG กับสภาวะที่มี HlgG และไม่มีโปรตีน พบว่าร้อยละของ T lymphocytes ที่มีการสังเคราะห์ IL-6, TNF-α และ IFN-γ ไม่มีความแตกต่างอย่างมีนัยสำคัญทางสถิติ (รูปที่ 18) แต่ระดับของการสังเคราะห์ของ IL-6 และ TNF-α เพิ่มมากขึ้นเมื่อมี CD99-hlgG protein บ่ง บอกได้ว่าเมื่อ T cell ถูกกระตุ้น เมื่อทำปฏิกิริยากับ recombinant CD99 protein อาจจะไม่เกี่ยวข้องกับ การเปลี่ยนแปลงชนิดของ cytokines ที่สังเคราะห์และการเปลี่ยนแปลงสัดส่วนของ Th1 T cell แต่ทำให้ กลุ่มของ T cell ที่ถูกกระตุ้นแล้วมีการสังเคราะห์ IL-6 และ TNF-α สามารถสังเคราะห์ในปริมาณที่สูงขึ้น ได้

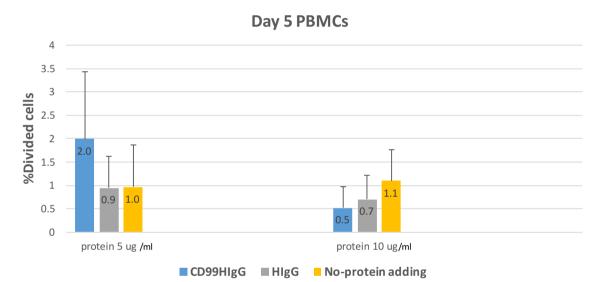
สำหรับการวิเคราะห์ non-T lymphocytes ในสภาวะที่ T cell ถูกกระตุ้นนั้น ผลการทดลองที่ได้สอดคล้อง กับการศึกษาใน PBMCs ที่ อย่างไรก็ตามผู้วิจัยไม่สามารถตรวจพบเซลล์ Th2 (IL-4, IL-10) , Th17 (IL-17, IL-22) cytokines ได้จากการศึกษานี้

ร**ูปที่ 17** แสดงค่าเฉลี่ยร้อยละของเซลล์ที่มีการสังเคราะห์ cytokines ชนิดต่าง ๆ ดังที่ได้ระบุในกราฟ โดย เป็นผลการศึกษาโดยวิธี Immunofluorescence staining ของเซลล์ของผู้บริจาคจำนวน 3 ราย ที่ถูก กระตุ้นด้วย anti-CD3 mAb ในสภาวะที่มี CD99-hIgG

ร**ูปที่ 18** แสดงระดับของการสังเคราห์ cytokines ใน lymphocytes ซึ่งเป็นผลการศึกษาโดยวิธี Immunofluorescence staining ของเซลล์ของผู้บริจาคจำนวน 3 รายที่ถูกกระตุ้นด้วย anti-CD3 mAb ใน สภาวะที่มี CD99-hlgG

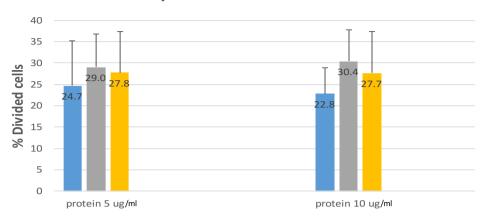
5.3 การศึกษาหน้าที่ในส่วนที่เกี่ยวข้องกับการแบ่งตัวของเซลล์

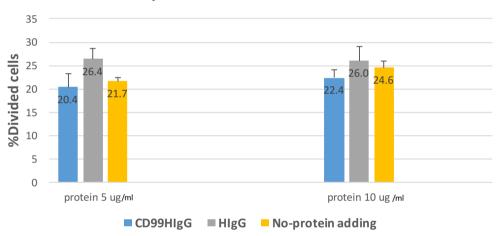

5.3.1 การศึกษาผลการกระตุ้นการแบ่งตัวของ PBMCs


ในการศึกษานี้ผู้วิจัยได้กระตุ้น PBMCs ซึ่งได้แยกจาก Heparinized bloods ของผู้บริจาคสุขภาพ ดี ด้วย CD99-hlgG fusion protein เป็นเวลา 3 และ 5 วัน และวัดอัตราการแบ่งตัวของเซลล์ด้วย CFSE dilution technique และ flow cytometer พบว่า CD99-hlgG fusion protein ไม่สามารถกระตุ้นให้เซลล์ แบ่งตัวได้เมื่อเปรียบเทียบกับสภาวะที่มี HlgG และไม่มีโปรตีน (รูปที่ 19) ผลการทดลองนี้อาจบ่งบอกว่า CD99-hlgG fusion protein ไม่สามารถทำให้เกิดการแบ่งตัวของเซลล์เม็ดเลือดขาวได้โดยตรง

5.3.2 การศึกษาผลต่อการแบ่งตัวของ T cells

เพื่อศึกษาถึงกลไกในการการทำงานของ CD99 molecules ที่เกี่ยวข้องกับการแบ่งตัวของ T cells ผู้วิจัย จึงได้กระตุ้น PBMCs ด้วย anti-CD3 mAb โคลน OKT3 โดยใช้ความเข้มข้นของแอนติบอดีที่ suboptimal ในสภาวะที่มี CD99-hlgG fusion protein จากนั้นวิเคราะห์ผลการแบ่งตัวของเซลล์โดย CFSE dilution technique และ flow cytometer พบว่าเมื่อมีการเติม CD99-hlgG fusion protein การแบ่งตัวของ T cells ไม่แตกต่างกับสภาวะที่มี HlgG และไม่มีโปรตีน (รูปที่ 20) แสดงถึง CD99-hlgG protein ไม่ส่งผล กระทบต่อการแบ่งตัวของ T cell


Day 3 PBMCs



ร**ูปที่ 19** แสดงค่าเฉลี่ยร้อยละของ PBMCs ที่มีการแบ่งตัว โดยเป็นผลการศึกษาด้วยวิธี CFSE dilution technique และ flow cytometer ของเซลล์ของผู้บริจาคจำนวน 3 ราย

Day 3 Anti-CD3 mAb stimulated T cells

Day 5 Anti-CD3 mAb stimulated T cells

ร**ูปที่ 20** แสดงค่าเฉลี่ยร้อยละของเซลล์ที่มีการแบ่งตัว โดยเป็นผลการศึกษาด้วยวิธี CFSE dilution technique และ flow cytometer ของเซลล์ของผู้บริจาคจำนวน 3 รายที่ถูกกระตุ้นด้วย anti-CD3 mAb ในสภาวะที่มี CD99-hlaG

6 การพัฒนาวิธีการสำหรับการศึกษากระบวนการ phagocytosis

เนื่องด้วยผู้วิจัยมีความสนใจที่จะศึกษาหน้าที่ของ CD99 จึงได้พัฒนาวิธีการใหม่เพื่อศึกษากระบวนการ phagocytosis ของเซลล์ phagocytes ซึ่งผลงานวิจัยนี้ได้รับการตีพิมพ์แล้วในชื่อเรื่อง Simultaneous flow cytometric measurement of antigen attachment to phagocytes and phagocytosis.วารสาร Journal of Immunoassay and Immunochemistry ปี 2016 โดย Laopajon W, Takheaw N, Kasinrerk W, Pata S.

ผลการทดลอง

6.1 Preparation of CFSE-LPS-IgG coated latex beads

To develop the flow cytometry analysis for the simultaneous measurement of attachment and phagocytic processes of phagocytes, latex beads were coated with LPS and IgG using a highly positively charged poly-L-lysine. The LPS-IgG coated beads were, subsequently, labeled with CFSE to obtain CFSE-LPS-IgG coated latex beads. The CFSE-LPS-IgG coated latex beads were verified prior to use. As expected, under the flow cytometric analysis, strong green fluorescence intensity was observed in the CFSE-LPS-IgG coated latex beads, but was not detected in the LPS-IgG coated latex beads (without CFSE) (data not shown).

As the IgG on the coated beads would be used for detecting the attachment process, to ensure that CFSE labeling did not disrupt the structure of IgG on the beads, LPS-IgG coated latex beads (without CFSE) and CFSE-LPS-IgG coated latex beads were stained with PE-Cy5.5 conjugated anti-rabbit IgG antibody. As shown in Figure 21A, both types of beads displayed the same level of PE-Cy5.5 fluorescence intensity, indicating that CSFE labeling has no effect on the coated IgG. We, however, raised the question whether the observed positive reactivity may be due to the binding of the conjugates to the free surface on beads. To address this question, the beads were stained with PE conjugated rabbit anti-mouse IgM antibody. Flow cytometry analysis revealed that CFSE-LPS-IgG coated latex beads showed negative red signal of PE fluorescence (Figure 21B). Taken together, these results indicated that CFSE labeling did not destroy the structure of the IgG coated and did not interfere the binding of the PEcy5.5 conjugated anti-rabbit IgG antibodies. Moreover, these results indicated that the free space of the beads was completely occupied by the blocking step. The CFSE-LPS-IgG coated latex beads, therefore, could be used for further experiments.

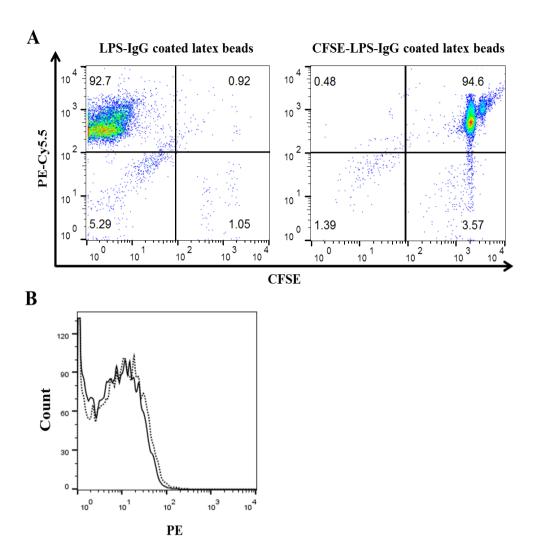
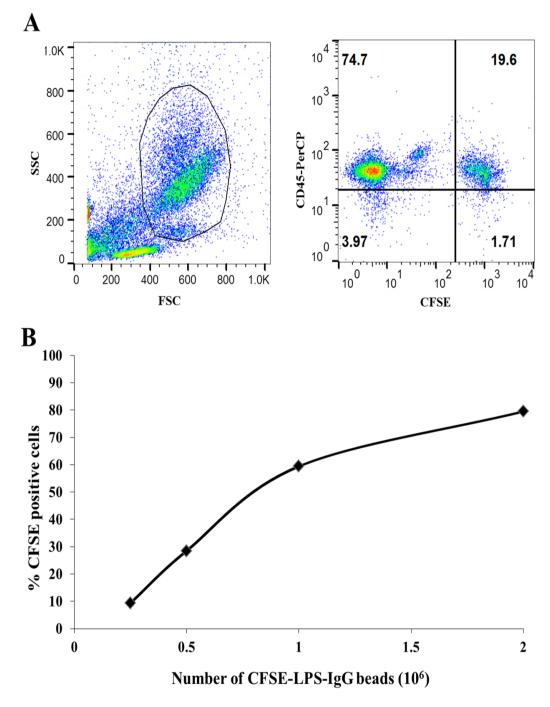
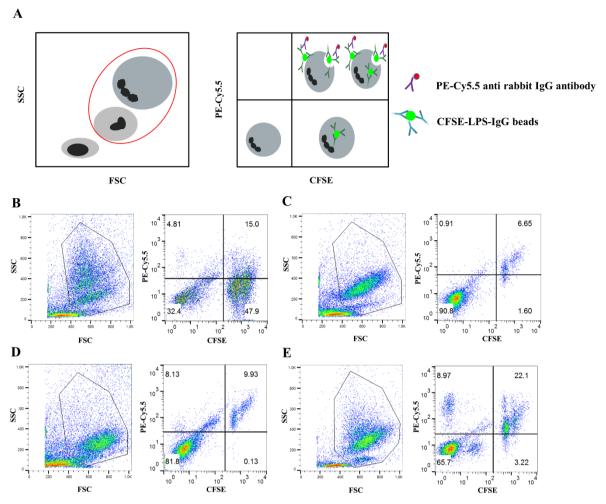



Figure 21 Verification of CFSE-LPS-IgG coated latex beads. (A) LPS-IgG coated latex beads and CFSE-LPS-IgG coated latex beads were stained with PE-Cy5.5 conjugated anti-rabbit IgG antibody and subjected to flow cytometric analysis. The beads were gated according to their FSC and SSC, and analyzed by dot plot between CFSE and PE-Cy5.5. (B) LPS-IgG coated latex beads (dashed line) and CFSE-LPS-IgG coated latex beads (solid line) were stained with PE conjugated anti-mouse IgM antibody

6.2 Gating strategies and beads titration

To set up a method for the detection of phagocytosis, the appropriate flow cytometric gating strategies are required. For this purpose, whole blood was incubated with CFSE-LPS-IgG coated latex beads to allow phagocytosis, and stained with PerCP conjugated anti-human CD45 mAb. By flow cytometry, non-lymphocytes (phagocytes) were gated using FSC and SSC detectors and, subsequently, analyzed on PerCP-CD45 and CFSE. The gated non-lymphocyte cells were CD45⁺ cells (Figure 22A). No CFSE-LPS-IgG coated latex beads (CD45⁻ CFSE⁺ particles) were observed in the gated cells (Figure 22A). These data indicate that, by their FSC and SSC properties, phagocytes can be gated, and the aggregated CFSE-LPS-IgG coated latex beads did not appeare in the gated cells.

To obtain the suitable number of beads to be used in the phagocytosis assay, various numbers of CFSE-LPS-IgG coated latex beads were incubated with whole blood. The percentages of the CFSE positive cells of the phagocytes were analyzed (Figure 22B). The number of beads at 1×10⁶ was demonstrated to be the optimal beads number.


Figure 22 Determination of gating strategies and beads titration. (A) Whole blood was incubated with CFSE-LPS-IgG coated latex beads. The non lymphocytes were gated using FSC and SSC (left panel), and analyzed as CD45-PerCP versus CFSE (right panel). (B) Whole blood was incubated with the indicated number of CFSE-LPS-IgG coated latex beads at 37°C

for 1 hr. The percentage of CFSE positive cells of phagocytes being gated at various numbers of beads were shown.

6.3 Simultaneous flow cytometric analysis of attachment and phagocytic processes of phagocytes

To use the generated beads as a tool for studying the attachment and the phagocytic processes simultaneously, the analysis models were created. As shown in Figure 23A, after gating phagocytes from the FSC and SSC plot, the cells were plotted between CFSE and PE-Cy5.5. The cells showing up negative for both CFSE and PE-Cy5.5 florescence intensity were un-phagocytic phagocytes. All the CFSE positive cells (upper and lower right panels) were the cells having intact attachment. The stages of phagocytosis could be distinguished by staining rabbit IgG on beads with PE-Cy5.5 conjugated anti-rabbit IgG antibody. The gated cells that could be detected the IgG on the beads, were defined as cells-beads attachment and/or as incompletely engulfed (upper right panel). On the other hand, the cells showed up positive only for CFSE fluorescence, were identified as complete internalization of the beads (lower right panel). A combination of the CFSE and the IgG detection can indicate the attachment and the phagocytic processes.

We then employed this method to measure the attachment and the phagocytic process of phagocytes. As expected, after incubation at 37°C for 60 min, the cells were separated in three populations: complete internalization, attachment or incomplete engulfment, and unphagocytic phagocytes (Figure 23B). In order to confirm our viewpoint, phagocytosis inhibition reagents, NaN₃ and NaF, were employed. As predicted, in the presence of NaN₃and NaF, the phagocytic activity was inhibited (Figure 23C and Figure 23D). Moreover, we also incubated the cells-beads mixture on ice, and the results showed that only attached beads were observed, whereas the phagocytic, or completely engulfed, beads were almost undetectable (Figure 23E). These data indicated that a suitable method to determine attachment and phagocytic processes was successfully developed.

Figure 23 Detection of attachment and phagocytic processes. (A) The model illustrated the analysis strategies of attachment and phagocytic processes of phagocytosis. Phagocytes were gated according to their FSC and SSS properties, and then subjected to the analysis of CFSE-LPS-IgG coated latex bead versus PE-Cy5.5 anti-rabbit IgG antibody by dot plot. (B) Whole blood was incubated with 1×10⁶ beads or in the presence of NaN₃ (C) or NaF (D) at 37°C for 60 min or incubated on ice (D) for 60 min and analyzed by flow cytometry. The data are representative for three samples.

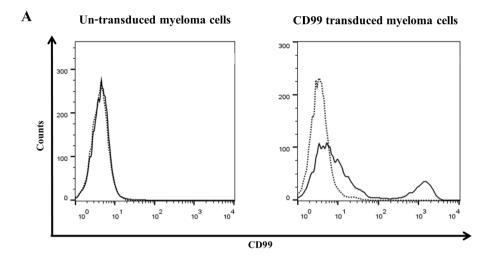
6.4 Kinetic measurement of phagocytosis

To apply the developed technique for monitoring phagocytosis processes, we generated the kinetic assay by the incubation of CFSE-LPS-IgG coated latex beads with whole blood at 37°C at various time points. As shown in Figure 24A, with the increasing of the incubation time, the percentages of the completely internalized phagocytes were increased, whereas the percentages of the cells showing attachment or incomplete engulfment were decreased. We, also, determined the phagocytic processes in the presence of phagocytosis inhibition reagents, NaN₃ and NaF. The results demonstrated that both the attachment and the engulfment of the

phagocytes were blocked in the presence of the phagocytosis inhibitors (Figure 24B and Figure 24C). At non-physiological temperatures, on ice, the beads were attached to the surface of the cells, but could not be engulfed into phagocytes over the incubation periods (Figure 24D). These results illustrated that the established method could be used to simultaneously monitor attachment and phagocytic processes of phagocytes.



Figure 24 Kinetic phagocytosis analysis. Phagocytosis was performed by incubation with CFSE-LPS-IgG coated latex beads, stained PE-Cy5.5 anti-rabbit IgG antibody incubated at various time points using the indicated conditions (A–D). The phagocytes were gated using FSC and SSC, and analyzed between CFSE and PE-Cy5.5. The percentage of attachment or incomplete engulfment and complete internalization are demonstrated. The data are presented as mean±SD of three different samples.


7. การนำเทคนิคพันธุวิศวกรรมในการเตรียม recombinant CD99-hlgG protein ไปประยุกต์ใช้ ในการผลิตแอนติบอดี

การทดลองนี้ผู้วิจัยได้นำความรู้ทางด้านพันธุวิศวกรรมที่ได้เรียนรู้จากโครงการวิจัยนี้ ไปใช้ในการพัฒนา วิธีการผลิตแอนติบอดีต่อโมเลกุล CD99 ซึ่งผู้วิจัยได้ค้นพบวิธีการใหม่ในการผลิตโพลีโคลนอลแอนติบอดี ซึ่งได้จัดทำต้นฉบับผลงานวิจัยสำหรับการตีพิมพ์ในวารสารวิชาการระดับนานาชาติและอยู่ในระหว่างรอ การพิจารณาจากวารสารนานาชาติ

ผลการทดลอง

7.1 Investigation of human CD99 expression on mouse myeloma cell surface membrane

To prepare immunogen for BALB/c mouse immunization, we first generated stably CD99 expressing mouse myeloma cells. The expression of CD99 on mouse myeloma cells was detected by immunofluorescence staining and flow cytometry. The CD99 infected mouse myeloma cells showed positive reactivity with standard CD99 mAb, MT99/1, while uninfected mouse myeloma cells and isotype-matched control showed negative reactivity (Fig. 25A). The results indicated that we cloud generate CD99 expressing mouse myeloma cells. To obtain highly CD99 expressing mouse myeloma cells, the magnetic cell sorting followed by single cell cloning was performed. After limiting dilution, a highly CD99 expressing mouse myeloma cell was chosen (Fig. 25B) and further used as an immunogen for BALB/c mouse immunization.

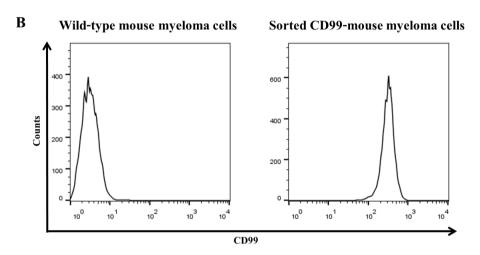
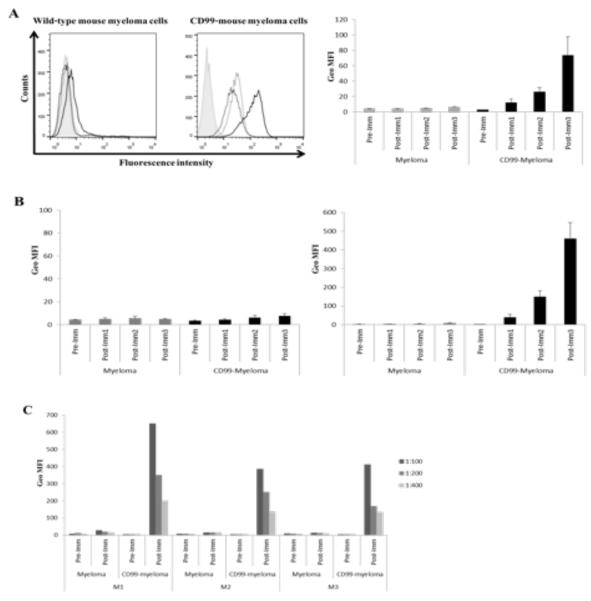
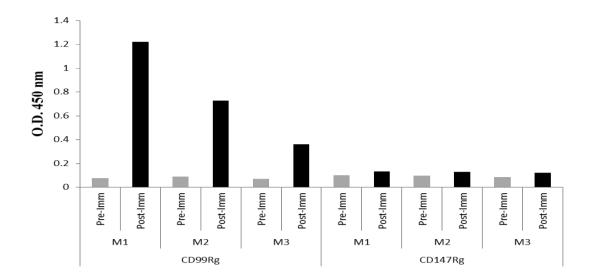


Fig. 25. The flow cytometric analysis of human CD99 expressing mouse myeloma cells. (A) Un-transduced and CD99 transduced myeloma cells were stained with anti-human CD99 mAb (MT99/1, IgM isotype) (solid line) or IgM isotype control mAb (dotted line). The Ab binding was detected by using PE conjugated anti-mouse IgM Abs. (B) The wild-type mouse myeloma cells and the sorted CD99 expressing mouse myeloma cells were stained with anti-CD99 mAb (MT99/3; IgG isotypes). Specific mAb binding was detected by FITC conjugated anti-mouse immunoglobulins Abs.


7.2 Verification of specificity of produced anti-CD99 pAbs

After immunizations, sera in all immunized mice were determined for the presence of anti-CD99 activity by staining with the generated stably human CD99 expressing mouse myeloma cells. The results show that post-immunized sera obtained from three immunized mice showed positive reactivity with CD99 expressing mouse myeloma cells, but not wild-type mouse myeloma cells (Fig. 26A) indicating the immunized sera contain specific anti-CD99 antibodies. Furthermore, the generated specific anti-CD99 pAbs were characterized as IgG isotype because its showed negative activity when followed by anti-mouse IgM (Fig. 26B), but showed positive activity when detected by anti-mouse IgG (Fig. 26B). We further measured the titer of specifically anti-CD99 antibodies of the third-immunized sera. By flow cytometry analysis, anti-CD99 pAbs showed a titer higher than 400 (Fig. 26C).


Furthermore, ELISA using recombinant CD99 expressed in mammalian cells was performed. The third-immunized sera of the three mice recognized CD99Rg but not control fusion protein, CD147Rg (Fig. 27).

Western blotting analysis was performed, cell lysates of CD99 expressing mouse myeloma cells and wild-type mouse myeloma cells were subjected to SDS-PAGE and Western blotting. No reactive band was observed in the reaction of post-immunized serum (Fig. 28). These results indicated that the produced specific anti-CD99 pAbs may not react to the linear epitope under the SDS-PAGE condition.

Taken together, the results demonstrated that, by our strategy, the production of specific anti-CD99 pAbs was successful. All of anti-CD99 specific antibodies are IgG isotype with high titer.

Fig. 26. Specificity of the anti-human CD99 pAbs. The overlay histogram plots represent the wild-type mouse myeloma cells and the stably human CD99 expressing mouse myeloma cells stained with pre-immunized sera (gray graph), the first-immunized sera (dotted line), the second-immunized sera (thin solid line), and the third-immunized sera (thick solid line) by using Alexa fluor 488-anti-mouse IgG Abs (H+L chains specific) (A, left panel). The graphs exhibit the geometric mean fluorescence intensity of the flow cytometric results of each of the mouse sera, using Alexa fluor 488-anti-mouse IgG Abs (H+L chains specific) (A, right panel), PE conjugated anti-mouse IgM Abs (μ-chain specific) (B, left panel), and PE conjugated anti-mouse IgG Abs (γ-chain specific) (B, right panel). The bar graph shows the mean \pm standard error of three mouse sera. The wild-type mouse myeloma cells and the human CD99 expressing mouse myeloma cells were stained with various dilutions of the third-immunized sera from the three mice (C). The three individual mice are presented as M1, M2, and M3.

Fig. 27. Determination of specificity of the anti-CD99 pAbs by ELISA. The pre-immunized sera (Pre-Imm) and the third-immunized sera (Post-Imm) of the three immunized mice (presented as M1, M2, and M3) were incubated with coated recombinant human CD99 protein (CD99Rg) and human CD147 protein (CD147Rg) at 5 μg/ml. The absorbance (O.D.) values at 450 nm are demonstrated.

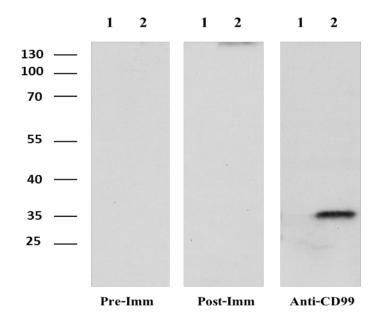


Fig. 28. The western blotting analysis of the anti-human CD99 pAb. Western blotting was performed by monitoring the reaction of the wild-type mouse myeloma cell lysates (lane 1) and the stably CD99 expressing mouse myeloma cell lysates (lane 2) with the pre-immunized serum (Pre-Imm), the third-immunized serum (Post-Imm), and the anti-human CD99 mAb clone MT99/3 (Anti-CD99).

7.3 Detection of CD99 molecule on cell line and primary cells using the produced anti-CD99 pAbs

The produced anti-CD99 pAb were then used to stain Jurkat cell line and peripheral blood mononuclear cells. CD99 molecules on both Jurkat cell line and primary peripheral blood cells could be detected by post-immunized sera (Fig. 29A-C). The obtained cellular distribution patterns comparable to the reported data (Waclavicek et al., 1998; Kasinrerk et al., 2000). These results indicated that the produced anti-CD99 pAbs recognize conformational epitope expressed on Jurkat and peripheral blood cells. We also concluded that a practical procedure for production of specific antibody to a cell surface membrane protein was established.

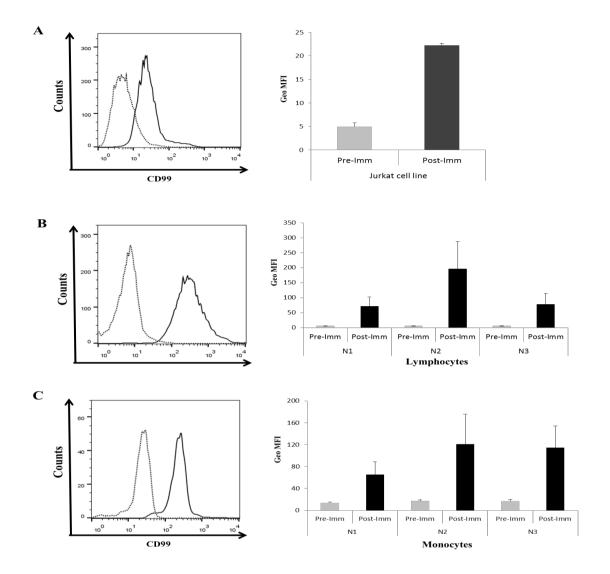


Fig. 29. The reactivity of the produced anti-human CD99 pAbs to the CD99 expressed on human leukocytes. Jurkat cell line and PBMCs from three individuals (N1, N2, and N3) were stained with the pre-immunized serum and the third-immunized serum, and analyzed by flow cytometry. The Jurkat cell line (A) and the gated lymphocytes (B) or the gated monocytes (C) are shown. The overlay histograms show a representative result from one of the three donors. The dotted lines represent the pre-immunized serum and the solid lines represent the third-immunized serum. The geometric mean fluorescence intensity bar graphs indicate the mean \pm standard error of the three mouse sera.

วิจารณ์และสรุปผลการทดลอง

ในการศึกษานี้ผู้วิจัยได้นำเทคนิคด้านพันธุวิศวกรรมมาใช้ในการเตรียมเซลล์ที่ผลิต recombinant CD99-IgG fusion protein ได้อย่างถาวร (stable expression system) และเนื่องด้วย CD99 protein ที่ ถูกสร้างขึ้นต่ออยู่กับชิ้นส่วนของ IgG ดังนั้น CD99-IgG จึงทำให้สามารถทำบริสุทธิ์ได้โดยการใช้ Protein G ดังนั้นวิธีการนี้จึงเหมาะสมสำหรับการเตรียม recombinant protein เพื่อใช้เป็นเครื่องมือในการ ศึกษาวิจัย ด้วยการใช้ recombinant protein ร่วมกับวิธี Immunofluorescence staining พบว่า ligands หรือ counter receptors ของ CD99 สามารถพบได้บนเซลล์มะเร็งเม็ดเลือดขาวชนิด THP-1 เมื่อนำเซลล์ THP-1 และ recombinant CD99-IgG fusion protein มาทำ immunoprecipitation เพื่อแยก CD99 ligands ออกมาและวิเคราะห์ด้วย LC-MS-MS พบว่าโปรตีนที่น่าจะเป็น ligand หรือ counter receptor ของโมเลกุล CD99 ได้แก่ T cell receptors ชนิด alpha beta delta, Dismutase fragment, Cu/Zn superoxide, Ubiquitin-60S, Ribosomal protein L40 isoform 1 precursor และ Heat shock cognate protein 70

สำหรับการศึกษาหน้าที่ของ CD99 พบว่า recombinant CD99-IgG fusion protein ไม่ทำให้เกิดการ เปลี่ยนแปลงการแสดงออกของ activation marker (ได้แก่ CD25, CD69 และ MHC class II) บนผิวเซลล์ อัตราการแบ่งตัวของเซลล์และร้อยละของเซลล์ที่สร้าง cytokines (ได้แก่ IL-6, TNF-α และ IFN-γ) ทั้งใน unstimulated และ activated lymphocytes แต่พบว่าระดับของการสร้าง IL-6 และ TNF-α เพิ่มมากขึ้น บ่งบอกได้ว่าการทำงานของ CD99 และ CD99 ligands เกี่ยวข้องกับการควบคุมการสร้าง cytokines ใน lymphocytes และ activated T cell ผลการทดลองที่ได้นี้อยู่ในขั้นตอนของการจัดทำตันฉบับสำหรับการ ตีพิมพ์

นอกจากการศึกษาหน้าที่ของโมเลกุล CD99 ดังกล่าวแล้ว ในการศึกษานี้ ผู้วิจัยยังได้พัฒนาวิธี flow cytometry รูปแบบใหม่สำหรับศึกษากระบวนการ phagocytosis และพัฒนาวิธีการใหม่ในการผลิตโพลี โคลนอล แอนติบอดีเพื่อใช้ในการเป็นเครื่องมือสำหรับการศึกษาหน้าที่ของโมเลกุล CD99 และโปรตีนบน ผิวเซลล์เม็ดเลือดขาวชนิดอื่นๆ ด้วย

Keywords: CD99, CD99 ligands, cytokine production, phagocytosis, antibody production

Output จากโครงการวิจัยที่ได้รับทุนจาก สกว.

1. ผลงานตีพิมพ์ในวารสารวิชาการนานาชาติ (ระบุชื่อผู้แต่ง ชื่อเรื่อง ชื่อวารสาร ปี เล่มที่ เลขที่ และหน้า) หรือผลงานตามที่คาดไว้ในสัญญาโครงการ

จำนวน 4 เรื่อง

- 1.1 Laopajon W, Takheaw N, Kasinrerk W, <u>Pata S</u>. Simultaneous flow cytometric measurement of antigen attachment to phagocytes and phagocytosis. J Immunoassay Immunochem. 2016. [Epub ahead of print]
- 1.2 Chruewkamlow N, Mahasongkram K, <u>Pata S</u>, Chaiwarith R, Salee P, Supparatpinyo K, Kasinrerk W. Immune Alterations in Patients with Anti-Interferon-γ Autoantibodies. PLoS One. 2016 4;11(1):e0145983
- 1.3 Takheaw N, Laopajon W, Kasinrerk W, <u>Pata S</u>. A Proficient System for Production of Specific Polyclonal Antibodies Using Self-like Cell Immunization. (Submitted).
- 1.4 Takheaw N, Laopajon W, Kasinrerk W, <u>Pata S</u>. CD99 and its ligand in regulation of cytokine production (manuscript in preparation).
- 2. การนำผลงานวิจัยไปใช้ประโยชน์
- เชิงพาณิชย์ (มีการนำไปผลิต/ขาย/ก่อให้เกิดรายได้ หรือมีการนำไปประยุกต์ใช้โดยภาคธุรกิจ/ บุคคลทั่วไป)
- เชิงนโยบาย (มีการกำหนดนโยบายอิงงานวิจัย/เกิดมาตรการใหม่/เปลี่ยนแปลงระเบียบข้อบังคับ หรือวิธีทำงาน)
- เชิงสาธารณะ (มีเครือข่ายความร่วมมือ/สร้างกระแสความสนใจในวงกว้าง)
- เชิงวิชาการ (มีการพัฒนาการเรียนการสอน/สร้างนักวิจัยใหม่)

<u>มีนักศึกษาปริญญาเอกร่วมในโครงการนี้ จำนวน 1 คน</u>

3. อื่นๆ (เช่น ผลงานตีพิมพ์ในวารสารวิชาการในประเทศ การเสนอผลงานในที่ประชุมวิชาการ หนังสือ การจดสิทธิบัตร)

<u>การเสนอผลงานในที่ประชุมวิชาการ</u>

- 3.1 Takheaw N, Laopajon W, Kasinrerk W, <u>Pata S</u>. Identification of natural ligand(s) for human the leukocyte surface glycoprotein CD99. Organized by Allergy, Asthma and Immunology Association of Thailand (AAIAT). November, 6-8 2014 Bangkok, Thailand.
- 3.2 Laopajon W, Takheaw N, Kasinrerk W, <u>Pata S</u>. Simultaneous flow cytometric measurement of antigen attachment to phagocytes and phagocytosis. International Congress in Immunology (ICI) 2016. Melbourne, Australia. 21-26 August 2016.

- 3.3 <u>Pata S</u>, Chruewkamlow N, Mahasongkram K, Chaiwarith R, Salee P, Supparatpinyo K, Kasinrerk W. Alteration of T cell responses in Adult Onset Immunodeficiency with Acquired AntiInterferon γ Autoantibodies International Congress in Immunology (ICI) 2016. Melbourne, Australia. 21-26 August 2016.
- 3.4 Takheaw N, Laopajon W, Kasinrerk W, <u>Pata S</u>. Identification of CD99 counter-receptor by pull-down method using dimeric CD99-human IgG Fc fusion proteins in combination with DTSSP crosslinking. International Congress in Immunology (ICI) 2016. Melbourne, Australia. 21-26 August 2016.
- 3.5 Laopajon W, Takheaw N, Kasinrerk W, <u>Pata S</u>. Ligation of CD99 inhibits T cell proliferation. International Congress in Immunology (ICI) 2016. Melbourne, Australia. 21-26 August 2016.

ภาคผนวก

- ผลงานวิจัยที่ได้รับการตีพิมพ์จำนวน 2 เรื่อง
 บทคัดย่อการนำเสนอผลงานวิจัยในที่ประชุมวิชาการระดับนานาชาติจำนวน 5 เรื่อง

Journal of Immunoassay and Immunochemistry

Date: 15 June 2016, At: 23:19

ISSN: 1532-1819 (Print) 1532-4230 (Online) Journal homepage: http://www.tandfonline.com/loi/ljii20

Simultaneous flow cytometric measurement of antigen attachment to phagocytes and phagocytosis

Witida Laopajon, Nuchjira Takheaw, Watchara Kasinrerk & Supansa Pata

To cite this article: Witida Laopajon, Nuchjira Takheaw, Watchara Kasinrerk & Supansa Pata (2016) Simultaneous flow cytometric measurement of antigen attachment to phagocytes and phagocytosis, Journal of Immunoassay and Immunochemistry, 37:5, 527-539, DOI: 10.1080/15321819.2016.1171780

To link to this article: http://dx.doi.org/10.1080/15321819.2016.1171780

	Accepted author version posted online: 28 Mar 2016. Published online: 28 Mar 2016.
	Submit your article to this journal 🗷
ılıl	Article views: 28
Q ^L	View related articles 🗗
CrossMark	View Crossmark data 🗗

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ljii20

Simultaneous flow cytometric measurement of antigen attachment to phagocytes and phagocytosis

Witida Laopajona, Nuchjira Takheawa, Watchara Kasinrerka, and Supansa Pataa, b

^aDivision of Clinical Immunology, Department of Medical Technology, Chiang Mai University, Chiang Mai, Thailand; ^bBiomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand

ABSTRACT

The current available assays cannot differentiate the stages of phagocytosis. We, therefore, established methods for concurrent detection of antigen attachment and engulfment by phagocyte using latex beads coated with lipopolysaccharide, rabbit IgG, and carboxyfluorescein diacetate succinimidyl ester. The generated beads were incubated with whole blood at 37°C for 1 hr and stained with PE-Cy5.5 anti-rabbit IgG antibody. By flow cytometry, attachment and phagocytic processes could be detected, simultaneously. The established method is a valuable tool for diagnosis of phagocytic disorder and study of molecules involved in phagocytosis.

KEYWORDS

phagocytosis; attachment; engulfment; phagocytes; opsonized beads; flow cytometry

Introduction

Phagocytosis is an important mechanism of the immune response for eliminating extracellular pathogenic microorganisms. Phagocytes are cells which play a major role in phagocytosis, and they are present in various tissues throughout the body and also circulate in the blood stream. The process of phagocytosis is initiated by the attachment of microbes to the "phagocyte's membrane." Subsequently, the attached microbes are internalized into the phagocytes, forming phagosome in the cytoplasm and, finally, degradation of the internalized microbes occurs. The binding between the microbes and the membrane receptors of the phagocytes is, therefore, one of the important steps of successful phagocytosis. The attachment processes have been demonstrated to be dependent on the microbe components or the deposition of serum opsonins, mainly immunoglobulins and early components of the complement cascade, on the surface of the microbes, and the receptors on the surface of the phagocytes. [1–3]

As phagocytosis plays the important role of immune response, phagocytic dysfunction leads to recurrent bacterial or fungal infection. [4–6] The disorders

in phagocytic defense may be due to defects in the interaction between phagocytes and microbes, serum factors, or phagocytic activity of phagocytes themselves. Defective receptors and adhesion proteins on the surface of determined by immunofluorescence phagocytes can be Consequently, several methods have been developed to investigate the phagocytic function of phagocytes. Nonetheless, the available methods have their advantages and disadvantages, and the selection of a method will depend on the required information and the resources available. [8]

Flow cytometry has been applied and utilized for assaying phagocytosis and killing of microorganisms by phagocytes. [9-12] However, the results obtained by using flow cytometry are not useful in determining the defects in each step of phagocytosis. The available phagocytosis assays are unable to identify and determine the defect in the attachment or the engulfment process. Currently, there is no flow cytometry method available for the simultaneous measurement of attachment and phagocytic processes. [10,12-13] In this study, a comprehensive technique for the measurement of both attachment and phagocytic processes in a single assay is demonstrated.

Materials and methods

Reagents, antibodies, and sample collection

Polystyrene latex beads, poly-L-lysine, lipopolysaccharide (LPS) from Escherichia coli 055:B5, and carboxyfluorescein succinimidyl ester (CFSE) were purchased from Sigma-Aldrich (St. Louis, MO, USA). R-phycoerythrin (PE) conjugated goat anti-mouse IgM (μ-chain specific) antibody and PE-Cy5.5 conjugated goat anti-rabbit IgG (heavy chain and light chain specific) antibody were obtained from Invitrogen (Eugene, OR, USA). PerCP conjugated mouse anti-human CD45 monoclonal antibody (mAb) was purchased from BD Biosciences (San Jose, CA, USA). Rabbit IgG was purified from rabbit serum using HiTrap protein G chromatography (GE Healthcare Bio-Sciences AB, Uppsala, Sweden). For sample collection, heparinized whole blood was collected from healthy human donors. The study was approved by ethic committees of Faculty of Associated Medical Sciences, Chiang Mai University.

Preparation of LPS-IgG coated latex beads

Polystyrene latex beads (1.4×10⁹ beads) were coated with 62.5 µg of LPS and 1 mg of rabbit IgG suspended in 1 mL of poly-L-lysine solution (1:10 of poly-L-lysine in phosphate buffered saline [PBS]) by rotation at 4°C overnight. To block the free binding sites of the surface of the beads, latex beads were subsequently rotated with 2 mL of fetal bovine serum (FBS) (Gibco, Grand Island, NY, USA) at 4°C for 4 hr. After incubation, the LPS-IgG coated latex beads were washed three times with RPMI 1640 (Gibco) containing 10% FBS (10% FBS-RPMI), resuspended in 10% FBS-RPMI and stored at 4°C.

Labeling of CFSE on LPS-IgG coated latex beads

The 1×10⁹ LPS-IgG coated latex beads were labeled with 50 nM CFSE in 1 mL of PBS by rotation at room temperature for 90 min. The succinimidyl reactive group of CFSE was quenched by adding 2 mL of FBS and rotating at 4°C overnight. The CFSE labeled beads were pelleted and washed twice with 10% FBS-RPMI. The CFSE labeled LPS-IgG coated beads (CFSE-LPS-IgG coated latex beads) were resuspended in 10% FBS-RPMI and stored at 4°C.

The success of labeling CFSE on beads was determined by the level of green fluorescence on the FL1 detector (LP 505, BP 530/30 filter; wavelength 515–545 nm) of the flow cytometer (FACSort, Becton Dickinson, CA, USA).

Immunofluorescence staining of CFSE-LPS-IgG coated latex beads

The CFSE-LPS-IgG coated latex beads (4×10⁵) were stained with PE-Cy5.5 conjugated goat anti-rabbit IgG antibody or R-PE conjugated goat anti-mouse IgM antibody at room temperature for 30 min in the dark. The beads were then washed for three times with PBS containing 1% FBS and 0.02% sodium azide (1% FBS-0.02% NaN₃-PBS). The stained beads were analyzed by flow cytometry. The florescence of PE-Cy5.5 conjugated goat anti-rabbit IgG antibody and R-PE conjugated goat anti-mouse IgM antibody were detected with FL-3 detector (LP 650 filter; wavelength above 650 nm) and FL-2 detector (LP 550, BP 575/26; wavelength 562-588 nm) of flow cytometer, respectively.

Titration of CFSE-LPS-IgG coated latex beads for attachment and phagocytic process assay

For the titration of beads, heparinized whole blood from healthy human donors (50 µL) was incubated with various numbers of CFSE-LPS-IgG coated latex beads at 37°C for 60 min. After washing twice with 1% FBS-0.02% NaN3-PBS, red blood cells (RBC) were lysed by adding 1 mL of FACSTM lysing solution (Becton Dickinson) and incubated at room temperature in the dark for 15 min. The remaining leukocytes were then washed twice with 1% FBS-0.02% NaN₃-PBS. The green fluorescence intensity of phagocytes was analyzed using FL-1 detector (LP 505, BP 530/30 filter; wavelength 515-545 nm) of a flow cytometer.

Staining of human CD45 molecule

Whole blood from healthy human donors (50 µL) was incubated with 2×10⁶ of CFSE-LPS-IgG coated latex beads at 37°C for 60 min. After washing twice with 1% FBS-0.02% NaN3-PBS, the PerCP conjugated mouse anti-human CD45 antibody was added and further incubated at room temperature for 30 min. The stained cells were washed twice with 1% FBS-0.02% NaN₃-PBS, then 1 mL of FACSTMRBC lysing solution was added and incubated at room temperature for 15 min. Cells were washed twice with 1% FBS-0.02% NaN3-PBS and the stained cells were analysed by using FL-3 detector (LP 650 filter; wavelength above 650 nm) of flow cytometer.

Attachment and phagocytic process assay

Heparinized whole blood from healthy human donors (50 µL) was incubated with CFSE-LPS-IgG coated latex beads (1×106) on ice or at 37°C in the presence or absence of 1% NaN3 or 0.125 mM sodium fluoride (NaF) for 60 min. The cells were stained with PE-Cy5.5 conjugated anti-rabbit IgG antibody and incubated for another 30 min. The stained cells were washed three times with 1% FBS-0.02% NaN3-PBS and RBC were lysed with FACSTM lysing solution. For the flow cytometric analysis, non-lymphocytes (phagocytes) were gated by forward scatter (FSC) and side scatter (SSC). The gated cells were plotted between CFSE on FL-1 (LP 505, BP 530/30 filter; wavelength 515-545 nm) and PE-Cy5.5 on FL-3 (LP 650 filter; wavelength above 650 nm) parameters. The percentage of beads-phagocytic cells (which was indicated by the green fluorescence of CFSE) and the percentage of attachment of phagocytes to beads (which was indicated by the PE-Cy5.5 fluorescence and CFSE) were determined.

Results

Preparation of CFSE-LPS-IgG coated latex beads

To develop the flow cytometry analysis for the simultaneous measurement of attachment and phagocytic processes of phagocytes, latex beads were coated with LPS and IgG using a highly positively charged poly-L-lysine. [14] The LPS-IgG coated beads were, subsequently, labeled with CFSE to obtain CFSE-LPS-IgG coated latex beads. The CFSE-LPS-IgG coated latex beads were verified prior to use. As expected, under the flow cytometric analysis, strong green fluorescence intensity was observed in the CFSE-LPS-IgG coated latex beads, but was not detected in the LPS-IgG coated latex beads (without CFSE) (data not shown).

To ensure that CFSE labeling did not disrupt the structure of IgG on the beads which would be used as indicator of particle attachment, LPS-IgG coated latex beads (without CFSE) and CFSE-LPS-IgG coated latex beads were stained with PE-Cy5.5 conjugated anti-rabbit IgG antibody. As shown in Figure 1A, both types of beads displayed the same level of PE-Cy5.5 fluorescence intensity, indicating that CSFE labeling has no effect on the coated IgG. We, however, raised the question whether the observed positive reactivity may be due to the binding of the conjugates to the free surface on beads. To address this question, the beads were stained with PE conjugated rabbit anti-mouse IgM antibody. Flow cytometry analysis revealed that CFSE-LPS-IgG coated latex beads showed negative yellow signal of PE fluorescence (Figure 1B). Taken together, these results indicated that CFSE labeling did not destroy the structure of the IgG coated and did not interfere the binding of the PEcy5.5 conjugated anti-rabbit IgG antibodies. Moreover, these results indicated that the free space of the beads was completely occupied by the blocking step. The CFSE-LPS-IgG coated latex beads, therefore, could be used for further experiments.

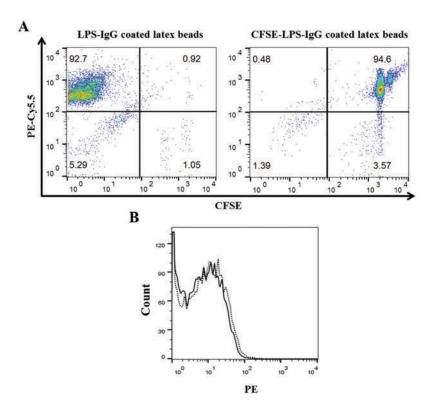


Figure 1. Verification of CFSE-LPS-lgG coated latex beads. (A), LPS-lgG coated latex beads and CFSE-LPS-IgG coated latex beads were stained with PE-Cy5.5 conjugated anti-rabbit IgG antibody and subjected to flow cytometric analysis. The beads were gated according to their FSC and SSC, and analyzed by dot plot between CFSE and PE-Cy5.5. (B), LPS-IgG coated latex beads (dashed line) and CFSE-LPS-IgG coated latex beads (solid line) were stained with PE conjugated antimouse IgM antibody.

Gating strategies and beads titration

To set up a method for the detection of phagocytosis, the appropriate flow cytometric gating strategies are required. For this purpose, whole blood was incubated with CFSE-LPS-IgG coated latex beads to allow phagocytosis, and stained with PerCP conjugated anti-human CD45 mAb. By flow cytometry, non-lymphocytes (phagocytes) were gated using FSC and SSC detectors and, subsequently, analyzed on PerCP-CD45 and CFSE. The gated non-lymphocyte cells were CD45⁺ cells (Figure 2A). In the non-lymphocyte gated cells, no CFSE-LPS-IgG coated latex beads (CD45 CFSE particles) were observed (Figure 2A). These data indicate that, by their FSC and SSC properties,

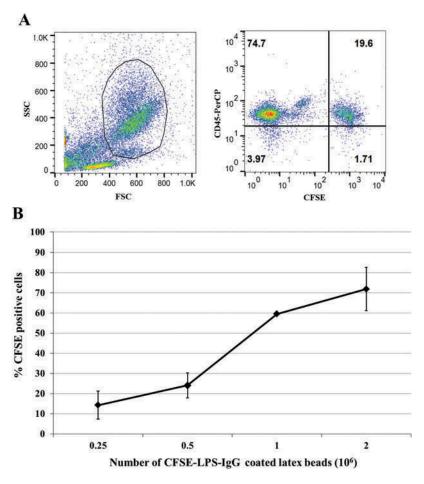


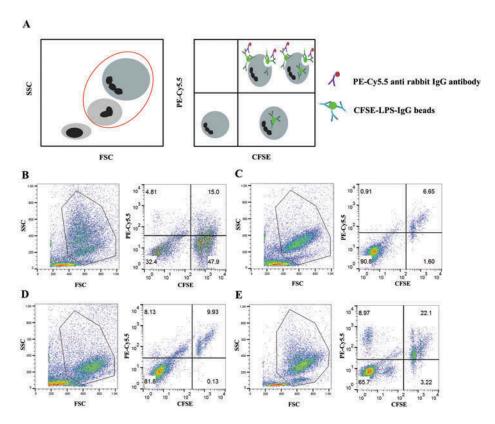
Figure 2. Determination of gating strategies and beads titration. (A), Whole blood was incubated with CFSE-LPS-IgG coated latex beads. The non lymphocytes were gated using FSC and SSC (left panel), and analyzed as CD45-PerCP versus CFSE (right panel). (B), Whole blood was incubated with the indicated number of CFSE-LPS-IgG coated latex beads at 37° C for 1 hr. The percentage of CFSE positive cells of phagocytes being gated at various numbers of beads were shown. The dots represent the mean of % CFSE positive cells. The error bars indicate the SD value of the duplicate experiments.

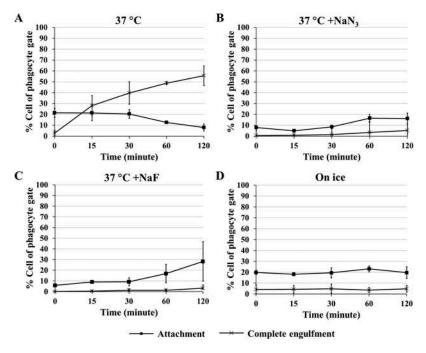
phagocytes can be gated, and the aggregated CFSE-LPS-IgG coated latex beads did not appeare in the gated cells.

To obtain the suitable number of beads to be used in the phagocytosis assay, various numbers of CFSE-LPS-IgG coated latex beads were incubated with whole blood. The percentages of the CFSE positive cells of the phagocytes were analyzed (Figure 2B). The number of beads at 1×10⁶ was demonstrated to be the optimal beads number.

Simultaneous flow cytometric analysis of attachment and phagocytic processes of phagocytes

To use the generated beads as a tool for studying the attachment and the phagocytic processes simultaneously, the analysis models were created. As shown in Figure 3A, after gating phagocytes from the FSC and SSC




Figure 3. Detection of attachment and phagocytic processes. (A), The model illustrated the analysis strategies of attachment and phagocytic processes of phagocytosis. Phagocytes were gated according to their FSC and SSS properties, and then subjected to the analysis of CFSE-LPS-IgG coated latex bead vs. PE-Cy5.5 anti-rabbit IgG antibody by dot plot. (B), Whole blood was incubated with 1×10^6 beads or in the presence of NaN₃ (C) or NaF (D) at 37°C for 60 min or incubated on ice (E) for 60 min and analyzed by flow cytometry. The data are representative for three samples.

plot, the cells were plotted between CFSE and PE-Cy5.5. The cells showing up negative for both CFSE and PE-Cy5.5 florescence intensity were un-phagocytic phagocytes. All the CFSE positive cells (upper and lower right panels) were the cells having intact attachment. The stages of phagocytosis could be distinguished by staining rabbit IgG on beads with PE-Cy5.5 conjugated anti-rabbit IgG antibody. The gated cells that could be detected the IgG on the beads, were defined as cells-beads attachment and/or as incompletely engulfed (upper right panel). On the other hand, the cells showed up positive only for CFSE fluorescence, were identified as complete internalization of the beads (lower right panel). A combination of the CFSE and the IgG detection can indicate the attachment and the phagocytic processes.

We then employed this method to measure the attachment and the phagocytic process of phagocytes. As expected, after incubation at 37°C for 60 min, the cells were separated in three populations: complete internalization, attachment or incomplete engulfment, and un-phagocytic phagocytes (Figure 3B). In order to confirm our viewpoint, phagocytosis inhibition reagents, NaN₃ and NaF, were employed. As predicted, in the presence of NaN₃and NaF, the phagocytic activity was inhibited (Figures 3C and 3D). Moreover, we also incubated the cells-beads mixture on ice, and the results showed that only attached beads were observed, whereas the phagocytic, or completely engulfed, beads were almost undetectable (Figure 3E). These data indicated that a suitable method to determine attachment phagocytic processes and was developed.

Kinetic measurement of phagocytosis

To apply the developed technique for monitoring phagocytosis processes, we generated the kinetic assay by the incubation of CFSE-LPS-IgG coated latex beads with whole blood at 37°C at various time points. As shown in Figure 4A, with the increasing of the incubation time, the percentages of the completely internalized phagocytes were increased, whereas the percentages of the cells showing attachment or incomplete engulfment were decreased. Also, we determined the phagocytic processes in the presence of phagocytosis inhibition reagents, NaN₃ and NaF. The results demonstrated that both the attachment and the engulfment of the phagocytes were blocked in the presence of the phagocytosis inhibitors (Figures 4B and 4C). At non-physiological temperatures, on ice, the beads were attached to the surface of the cells, but could not be engulfed into phagocytes over the incubation periods (Figure 4D). These results illustrated that the established method could be used to simultaneously monitor attachment and phagocytic processes of phagocytes.

Figure 4. Kinetic phagocytosis analysis. Phagocytosis was performed by incubation with CFSE-LPS-IgG coated latex beads, stained PE-Cy5.5 anti-rabbit IgG antibody incubated at various time points using the indicated conditions (A–D). The phagocytes were gated using FSC and SSC, and analyzed between CFSE and PE-Cy5.5. The percentage of attachment or incomplete engulfment and complete internalization are demonstrated. The data are presented as mean±SD of three different samples.

Discussion

Phagocytosis is a crucial part of the innate and adaptive immune responses. It has been defined as the ingestion of particles that are larger than 0.5 μm by phagocytes. Phagocytosis can be divided into three major steps: attachment, engulfment, and elimination of phagocytosed particles. The attachment phase is initiated by the recognition of ligands on target microbes via receptors on phagocytes, including opsonin receptors (Fc receptors and complement receptors) and pattern recognition receptors (CD14, scavenger receptors, mannose receptors). [1-3] After the attachment process, the attached microbes are engulfed, which is facilitated by actin cytoskeleton, into phagocyte cells in a vascular form called phagosome. By fusion with lysosomes, the microbes insight phagolysosomes are destroyed. The defect at any step of phagocytosis leads to defects in the immune system. Hence, a comprehensive method to determine the stages of phagocytosis should be emphasized. Flow cytometry techniques have been developed for phagocytosis measurement. However, by flow cytometry, the discrimination between adherent and ingested particles is required. The quenching of external fluorescence particle with trypan blue is commonly used to distinguish the internalized from surface-adherent particles. [15,16] By trypan blue quenching, phagocytotic measurement can be determined, however, the presence of surface attachment particles cannot be obtained. [15,16] In this study, we established a flow cytometric method for simultaneous measurement of attachment and phagocytic processes of phagocytosis.

To develop the aforementioned method, latex beads (3 µm) were coated with two substances, LPS and IgG, by using poly-L-lysine. Poly-L-lysine contains a strong positive charge that has been used for increasing the binding of the coating materials on polystyrene. [17-19] The binding of LPS and IgG to the beads involves hydrophobic interaction and also ionic interaction between the negative charges of LPS and IgG and the positive charge of poly-L-lysine. [14,20] The LPS-IgG coated latex beads were, subsequently, labeled with CFSE, and then the CFSE-LPS-IgG coated latex beads were employed for the phagocytosis assay. The CFSE is a fluorescent ester, so after excitation at 488 nm, it emits the green fluorescent wavelength at 521 nm which can be detected by flow cytometry. [21] By this CFSE coating, the phagocytes that internalize the beads are detected by flow cytometry. LPS and IgG sensitized on the beads are purposed to function as target ligands for recognition by receptors on phagocytes that induce the phagocytosis process. [22-25] In addition, the IgG on the beads were employed to be targeted for detecting the attachment of beads on the surface of the phagocytes. The beads which attach on the surface of the phagocytes are detected using PE-Cy5.5 anti-rabbit IgG conjugates; therefore, by flow cytometery, the beads attached to the phagocytes become red fluorescent at wavelength 578 nm. [26]

By this strategy, the phagocytes were incubated with CFSE-LPS-IgG coated latex beads at 37°C for 1 hr. By FACS analysis, beads-phagocytosed cells were detected of CFSE at FL1 detector. In addition, the incomplete engulfment, the beads attached to the surface of the phagocytes, were detected by FL1 and FL3 detectors after staining with PE-Cy5.5 conjugated anti-IgG antibody. Since the PE-Cy5.5 conjugates cannot enter live cells, the beads internalized by the phagocytes will not be detected by the FL3 detector, and can be detected only with the FL1 detector. By this combination, the defect in the attachment process, or the phagocytic process, of the phagocytes can be determined, simultaneously. The flow cytometric analysis results may be displayed in the form of three categories: (1) non-fluorescent phagocytes are detected, which means cells have some defect as regards the attachment process; (2) two colors of CFSE and PE-Cy5.5 positive cells are detected, without a single color CFSE positive cells, indicates that there is intact attachment process but dysfunctional phagocytic process; (3) cells become single-color CFSE positive, indicating intact functioning of both attachment and phagocytic processes of the phagocytes.

In our experiment, CFSE-LPS-IgG coated latex beads were prepared, and it was demonstrated that the CFSE and the IgG coated on the beads could be detected by using a flow cytometer. Phagocytosis assay by using whole blood was optimized by including the number of beads and gating strategies. Since, after phagocytosis, the phenotypes of the phagocytes were changed, we validated the gating strategies using CD45 as the marker of the leukocytes. [27,28] The results showed that the gated cells were leukocytes and that there were no beads in the gated cells. The developed methods were employed for the detection of phagocytosis, and it was found that the established method could be used for the determination of attachment and phagocytic processes, simultaneously, as given in the principle mentioned in Figure 3. In addition, the kinetic assay showed that the established methods could monitor the steps of phagocytosis. In the presence of NaN3 and NaF, phagocytosis inhibitors,-[29-31] the results showed that both the attachment and the engulfment were inhibited. The inhibition effect of NaN3 and NaF could be used as indicative for patients who have defects in both attachment and engulfment processes. Moreover, under on-ice condition, the engulfment of the particles was blocked, while the attachment process could still be determined. The on-ice condition could be used as indicative for patients who have defects in the engulfment but not the attachment process. To the best of our knowledge, this system has never been reported before. The developed method has several advantages over the reported phagocytosis assay. This method is very suitable for the determination of dysfunction of phagocytes and also for validating functional leukocyte surface molecules which are involved in cell adhesion and internalization.

Funding

This study was supported by the Thailand Research Fund grant number (TRG5780017), the National Research University Project under Thailand's Office of the Higher Education Commission for Chiang Mai University. Witida Laopajon and Nuchjira Takheaw are doctoral candidates of the Royal Golden Jubilee Ph.D. program (PHD/0345/2551 and PHD/0121/2557, respectively).

References

- 1. Flannagan, R. S.; Jaumouille, V.; Grinstein, S. The Cell Biology of Phagocytosis. Ann. Rev. Pathol. 2012, 7, 61-98.
- 2. Underhill, D. M.; Goodridge, H. S. Information Processing during Phagocytosis. Nat. Rev. Immunol. 2012, 12(7), 492-502.
- 3. Freeman, S. A.; Grinstein, S. Phagocytosis: Receptors, Signal Integration, and the Cytoskeleton. Immunol. Rev. 2014, 262(1), 193-215.
- 4. Gallin, J. I.; Leto, T. L.; Rotrosen, D.; Kwong, C. H.; Malech, H. L. Delineation of the Phagocyte NADPH Oxidase through Studies of Chronic Granulomatous Diseases of Childhood. Curr. Opin. Immunol. 1992, 4(1), 53-56.

- 5. Engelich, G.; Wright, D. G.; Hartshorn, K. L. Acquired Disorders of Phagocyte Function Complicating Medical and Surgical Illnesses. Clin. Infect. Dis. 2001, 33(12), 2040-2048.
- 6. Andrews, T.; Sullivan, K. E. Infections in Patients with Inherited Defects in Phagocytic Function. Clin. Microbiol. Rev. 2003, 16(4), 597-621.
- 7. Larson, R. S.; Springer, T. A. Structure and Function of Leukocyte Integrins. Immunol. Rev. 1990, 114, 181-217.
- 8. Hampton, M. B.; Winterbourn, C. C. Methods for Quantifying Phagocytosis and Bacterial Killing by Human Neutrophils. J. Immunol. Meth. 1999, 232(1-2), 15-22.
- 9. Singboottra, P.; Pata, S.; Tayapiwatan, C.; Kasinrerk, W. Method for Analysis of Surface Molecule Alteration upon Phagocytosis by Flow Cytometry. Asian Pac. J. Aller. Immunol. 2010, 28(2-3), 170-176.
- 10. Bicker, H.; Hoflich, C.; Wolk, K.; Vogt, K.; Volk, H. D.; Sabat, R. A Simple Assay to Measure Phagocytosis of Live Bacteria. Clin. Chem. 2008, 54(5), 911-915.
- 11. Niki, Y.; Matsumoto, H.; Otani, T.; Suda, Y.; Yatabe, T.; Yoshimine, F.; Kondo, M.; Toyama, Y. Flow Cytometric Technique for the Detection of Phagocytosed Wear Particles in Patients with Total Joint Arthroplasty. Biomaterials 2003, 24(21), 3715–3724.
- 12. Lehmann, A. K.; Sornes, S.; Halstensen, A. Phagocytosis: Measurement by Flow Cytometry. J. Immunol. Meth. 2000, 243(1-2), 229-242.
- 13. Horvathova, M.; Wsolova, L.; Jahnova, E. Simultaneous Flow Cytometric Evaluation of Phagocytosis and Oxidative Burst in Human Polymorphonuclear Cells. Bratisl. Lek. Listy 2005, 106(2), 63-66.
- 14. Mazia, D.; Schatten, G.; Sale, W. Adhesion of Cells to Surfaces Coated with Polylysine. Applications to Electron Microscopy. J. Cell. Biol. 1975, 66(1), 198-200.
- 15. Van Amersfoort, E. S.; Van Strijp, J. A. Evaluation of a Flow Cytometric Fluorescence Quenching Assay of Phagocytosis of Sensitized Sheep Erythrocytes Polymorphonuclear Leukocytes. Cytometry 1994, 17(4), 294-301.
- 16. Nuutila, J.; Lilius, E. M. Flow Cytometric Quantitative Determination of Ingestion by Phagocytes Needs the Distinguishing of Overlapping Populations of Binding and Ingesting Cells. Cytometry A 2005, 65(2), 93–102.
- 17. Pata, S.; Khummuang, S.; Pornprasert, S.; Tatu, T.; Kasinrerk, W. A Simple and Highly Sensitive ELISA for Screening of the Alpha-thalassemia-1 Southeast Asian-type Deletion. J. Immunoass. Immunochem. 2014, 35(2), 194-206.
- 18. Wen, X.; He, H.; Lee, L. J. Specific Antibody Immobilization with Biotin-poly (L-lysine)-g-poly(ethylene glycol) and Protein A on Microfluidic Chips. J. Immunol. Meth 2009, 350(1-2), 97-105.
- 19. Seurynck-Servoss, S. L.; White, A. M.; Baird, C. L.; Rodland, K. D.; Zangar, R. C. Evaluation of Surface Chemistries for Antibody Microarrays. Anal. Biochem. 2007, 371 (1), 105-115.
- 20. Gabrilovac, J.; Pachmann, K.; Rodt, H.; Jager, G.; Thierfelder, S. Particle-labeled Antibodies. I. Anti T-cell Antibodies Attached to Plastic Beads by Poly-L-lysine. J. Immunol. Meth. 1979, 30(2), 161-170.
- 21. Deleyrolle, L. P.; Rohaus, M. R.; Fortin, J. M.; Reynolds, B. A.; Azari, H. Identification and Isolation of Slow-dividing Cells in Human Glioblastoma using Carboxy Fluorescein Succinimidyl Ester (CFSE). J. Vis. Exp. 2012, (62), e3918, 1-5.
- 22. Garcia-Garcia, E.; Rosales, C., Signal Transduction during Fc Receptor-mediated Phagocytosis. J. Leukoc. Biol. 2002, 72(6), 1092-1108.
- 23. Semple, J. W.; Aslam, R.; Kim, M.; Speck, E. R.; Freedman, J. Platelet-bound Lipopolysaccharide Enhances Fc Receptor-mediated Phagocytosis of IgG-opsonized Platelets. Blood 2007, 109(11), 4803-4805.

- 24. Magenau, A.; Benzing, C.; Proschogo, N.; Don, A. S.; Hejazi, L.; Karunakaran, D.; Jessup, W.; Gaus, K. Phagocytosis of IgG-coated Polystyrene Beads by Macrophages Induces and Requires High Membrane Order. *Traffic* **2011**, *12*(12), 1730–1743.
- Nakanishi-Matsui, M.; Yano, S.; Matsumoto, N.; Futai, M. Lipopolysaccharide Induces Multinuclear Cell from RAW264.7 Line with Increased Phagocytosis Activity. *Biochem. Biophys. Res. Commun.* 2012, 425(2), 144–149.
- 26. Baumgarth, N.; Roederer, M. A Practical Approach to Multicolor Flow Cytometry for Immunophenotyping. *J. Immunol. Meth.* **2000**, *243*(1–2), 77–97.
- 27. Nakano, A.; Harada, T.; Morikawa, S.; Kato, Y. Expression of Leukocyte Common Antigen (CD45) on Various Human Leukemia/Lymphoma Cell Lines. *Acta Pathol. Jpn.* **1990**, *40*(2), 107–115.
- 28. Thomas, M. L., The Leukocyte Common Antigen Family. *Ann. Rev. Immunol.* **1989**, *7*, 339–369.
- 29. Mazur, M. T.; Williamson, J. R. Macrophage Deformability and Phagocytosis. *J. Cell. Biol.* **1977**, *75*(1), 185–199.
- 30. Cifarelli, A.; Pepe, G.; Paradisi, F.; Piccolo, D. The Influence of Some Metabolic Inhibitors on Phagocytic Activity of Mouse Macrophages in vitro. *Res. Exp. Med.* (*Berl.*) **1979**, *174*(2), 197–204.
- 31. Silva, I. D.; Jain, N. C. Effects of Glycolytic and Cytoskeletal Inhibitors on Phagocytic and Nitroblue Tetrazolium Reductive Activities of Bovine Neutrophils. *Am. J. Vet. Res.* **1989**, *50*(7), 1175–1179.

Immune Alterations in Patients with Anti-Interferon-y Autoantibodies

Nuttapol Chruewkamlow¹, Kodchakorn Mahasongkram¹, Supansa Pata^{1,2}, Romanee Chaiwarith³, Parichart Salee³, Khuanchai Supparatpinyo^{3,4}, Watchara Kasinrerk^{1,2}*

- 1 Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Sciences and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand, 2 Department of Medical Technology, Division of Clinical Immunology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand,
- 3 Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand,
- 4 Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
- * wkasinrerk@gmail.com

OPEN ACCESS

Citation: Chruewkamlow N, Mahasongkram K, Pata S, Chaiwarith R, Salee P, Supparatpinyo K, et al. (2016) Immune Alterations in Patients with Anti-Interferon-γ Autoantibodies. PLoS ONE 11(1): e0145983. doi:10.1371/journal.pone.0145983

Editor: Matthaios Speletas, University of Thessaly, Faculty of Medicine, GREECE

Received: August 24, 2015

Accepted: December 11, 2015

Published: January 4, 2016

Copyright: © 2016 Chruewkamlow et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are

Data Availability Statement: All relevant data are within the paper.

Funding: This work was supported by the National Research University Project under Thailand's Office of the Higher Education Commission for Chiang Mai University to KS, Chiang Mai University Center of Excellence grant for Biomedical Technology Research Center to KW, and Thailand Research Fund [TRG5780017] to SP. NC is a postdoctoral researcher supported by Chiang Mai University at the Biomedical Technology Research Center. The funders had no role in study design, data collection

Abstract

Autoantibodies against interferon-gamma (IFN- γ) can cause immunodeficiency and are associated with various opportunistic infections. In the present study, we investigated other cellular immune parameters for a better understanding of the immunodeficiency condition in the patients. The numbers of WBC, monocytes and NK cells were increased in patients with anti-IFN- γ autoantibodies (AAbs). Upon TCR activation, T cell proliferation and IL-2 receptor of the patients remained intact. Nonetheless, the Th1 cytokine (IFN- γ and TNF- α) production was up-regulated. The production of Th2 (IL-4) and Th17 (IL-17) cytokines was unchanged. We suggest that, in addition to the presence of anti-IFN- γ autoantibodies, alterations in the cellular immune functions may also contribute to this immunodeficiency.

Introduction

Immune system plays an important role in the eradication of infectious diseases and cancers. Immunodeficiency, caused by either genetic defects or infections, leads to an increased predisposition to infections and malignancy. In recent years, autoantibodies (AAbs) against cytokines in humans have been reported [1–7]. These anti-cytokine AAbs can neutralize host cytokines and disrupt the immune function causing pathogenesis and immunodeficiency. Anti-granulocyte macrophage colony stimulating factor (GM-CSF) AAbs can cause pulmonary alveolar proteinosis (PAP) [8]. Anti-IL-1 α , IL-12 and TNF- α AAbs can be found in SLE patients [9]. The presence of anti-IL-17 or anti-IL-22 AAbs in patients was associated with chronic mucocutaneous candidiasis [6, 10]. Moreover, anti-IFN- γ AAbs was shown to be associated with immunodeficiency [1–5, 11, 12].

IFN- γ is a critical cytokine involved in immune responses and is produced by various cells, including natural killer (NK) cells, natural killer T (NKT) cells, CD4⁺ T helper 1 (Th1) cells, and CD8⁺ T cells [13–17]. Depletion of IFN- γ production is associated with abnormalities of

and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

both the innate and adaptive immune responses and, therefore, increases the susceptibility to infection, particularly intracellular microbes [18-20]. During the last decade, immunodeficiency due to anti-IFN- γ AAbs has been described [1-4, 11, 12, 21]. Autoantibodies against IFN- γ have been reported to exist in the serum of these patients [1-4, 11, 21]. The anti-IFN- γ AAbs titer was significantly higher among the patients with active opportunistic infections compared to those without opportunistic infections [1, 4]. Interferon receptor 1 expression on patients' lymphocytes, however, was fundamentally normal [1]. The anti-IFN- γ AAbs was shown to neutralize IFN- γ activity in the body and lead to immunodeficiency [1]. The mechanism initiating the production of anti-IFN- γ AAbs, however, remains unknown.

Severe or disseminated non-tuberculous mycobacteria and other opportunistic infections are regularly observed in patients with anti-IFN- γ AAb [1–4, 11, 21]. In addition to the presence of anti-IFN- γ AAbs, we raise the question whether other immune-abnormalities also contribute to the immunodeficiency in these patients. To address this question, in this study, the numbers of phagocytes and lymphocyte sub-population involved in the immune responses, such as T cells sub-populations, B cells, NK cells, and NKT cells were determined. Additionally, T cell activation and function were investigated. The results obtained may lead to a better understanding of the immunodeficiency condition of the patients.

Materials and Methods

Study population

Patients with immunodeficiency and anti-IFN- γ AAbs were diagnosed at Maharaj Nakorn Chiang Mai Hospital, Chiang Mai University. All patients were anti-IFN- γ AAbs positive and HIV negative. Healthy normal subjects were included as a control group. All the healthy subjects were anti-IFN- γ AAbs negative. The determination of anti-IFN- γ AAbs in plasma or sera was carried out using an indirect ELISA, as previously reported [4, 12].

In this study, 36 patients (18 female and 18 male) with anti-IFN- γ AAbs were enrolled and their average age was 54 years old (range: 37 to 77). Ten healthy subjects (8 female and 2 male) were also recruited and their average age was 26 years old (range: 23 to 32).

The study was approved by the ethics committees of the Faculty of Medicine and the Research Institute for Health Sciences at Chiang Mai University. Written informed consent was obtained for each subject prior to enrollment.

Leukocyte distribution analysis

Blood samples were collected from subjects in tubes containing acid citrate dextrose as the anti-coagulant. Leukocyte distributions in the patients with anti-IFN-γ AAbs and the healthy subjects were determined by flow cytometry in combination with complete blood count (CBC) data. Lymphocyte sub-populations were determined by the lysed whole blood staining method, using the following antibodies: (i) PerCP conjugated anti-CD45, PE conjugated anti-CD4, and FITC conjugated anti-CD3 monoclonal antibodies (mAbs) (BD Biosciences, San Jose, CA, USA) were used for the enumeration of CD4⁺ T lymphocytes; (ii) PerCP conjugated anti-CD45, PE conjugated anti-CD8, and FITC conjugated anti-CD3 mAbs (BD Biosciences) were used for the enumeration of CD8⁺ T lymphocytes; (iii) PerCP conjugated anti-CD45, PE conjugated anti-CD56, and anti-CD16 mAbs were used for the enumeration of NK cells; (iv) FITC conjugated anti-CD45, PE conjugated anti-CD45, PE conjugated anti-CD46, and anti-CD16 mAbs for counting NKT cells; (v) FITC conjugated anti-CD45, PE conjugated anti-CD45, PE conjugated anti-CD14 (BD Biosciences), and PerCP conjugated anti-CD19 mAbs (BioLegend, San Diego, CA, USA) were used for the enumeration of CD19⁺ B lymphocytes.

For the staining method, 50 μ L of whole blood was stained with 10 μ L of the appropriate combination of mAbs for 30 min at room temperature. The red blood cells were then lysed using FACS lysing solution (BD Biosciences). The cells were then washed twice with a washing reagent (1% fetal bovine serum [FBS], 0.02% NaN₃ in phosphate buffered saline [PBS]) and analyzed using a FACSort flow cytometer (BD Biosciences). For flow cytometric analysis, the lymphocyte population was gated using CD45 expression and side scatter signals. The cell subpopulations were then determined according to their surface markers expression.

CFSE-based proliferation assay

Peripheral blood mononuclear cells (PBMCs) were separated from blood by gradient centrifugation over Ficoll-Hypaque solution (GE Healthcare Life Sciences, Pittsburgh, PA, USA). PBMCs (1×10^7 cells/mL) were incubated with carboxyfluorescein succinimidyl ester (CFSE; Invitrogen/Molecular Probes, Eugene, OR, USA) at a final concentration of 0.5 μ M for 10 min at 37°C. The cells were then washed with 10% FBS in RPMI two times in order to remove any excessive CFSE. The CFSE-labeled PBMCs (5×10^5 cells/mL) were stimulated with or without immobilized anti-CD3 mAb clone OKT3 (Ortho Pharmaceuticals, Raritan, NJ, USA) (60 ng/mL) for 3 days in a 5% CO₂ incubator at 37°C. The cells were harvested and investigated for cell proliferation by monitoring the reduction in CFSE using FACSort flow cytometer (BD Biosciences).

CD25 (Interleukin-2 receptor) determination

PBMCs were activated with or without anti-CD3 mAb OKT3 (Ortho Pharmaceuticals), as was described above. On the third day of cultivation, the cells were harvested and stained for CD25 expression using FITC-conjugated anti-CD25 mAb (Beckman Coulter, Marseille, France). The expression of CD25 in lymphocytes was assessed by FACSort flow cytometer (BD Biosciences).

Intracellular cytokine staining

To determine the cytokine production of T cells, PBMCs were activated using 10 ng/mL phorbolmyristate acetate (PMA; Sigma-Aldrich, MO, USA) and $1\mu g/mL$ ionomycin (Sigma-Aldrich) in the presence of 5 $\mu g/mL$ Brefeldin A (Sigma-Aldrich) for 6 h. The cells were then harvested, washed once with washing reagent (1% FBS, 0.02% NaN₃ in PBS), and stained with PerCP conjugated anti-CD3 mAb for 30 min at 4°C. The stained cells were fixed using 200 μL fixation buffer (4% paraformaldehyde in PBS) for 20 min at RT. The fixed cells were then washed twice with PBS and once with permeabilization buffer (5% FBS, 0.1% saponin, 0.02% NaN₃ in PBS), and then incubated for 15 min at room temperature. The intracellular cytokine was stained with PE conjugated anti-IFN- γ , anti-IL-4, anti-IL-17A, or anti-TNF- α mAb for 30 min at 4°C. After that, the stained cells were washed with permeabilization buffer and re-suspended in staining buffer, following which the cells were subjected to flow cytometer (FACSort, BD Biosciences) and analyzed with the FlowJo software (Tree Star, Inc. Ashland, USA). All the PE conjugated anti-cytokine mAbs were purchased from BioLegend (San Diego, CA, USA).

For the flow cytometric analysis, the T cells were gated according to the expression of the PerCP conjugated anti-CD3 mAb. The gated CD3⁺ T cells were further assessed for intracellular cytokine-producing cells by monitoring the PE-positive cells.

Statistical analysis

The significance of the difference between the compared populations was analyzed by using the Mann-Whitney U test. A *p* value less than 0.05 was considered significant.

Results

Leukocyte distribution in patients with anti-IFN-y AAbs

Peripheral blood leukocyte distribution was compared between the patients with anti-IFN- γ AAbs and healthy subjects. The total number of white blood cells was significantly higher in the patients with anti-IFN- γ AAbs than the healthy subjects (<u>Table 1</u>). In addition, the monocyte count was also found to be higher in the patients with anti-IFN- γ AAbs patients (<u>Table 1</u>). However, there was no difference in the absolute lymphocyte counts between tested groups (<u>Table 1</u>).

The lymphocyte sub-populations were also determined by staining with specific set of mAbs. By flow cytometric analysis, lymphocytes were gated according to the CD45 expression and their size and the percentages of lymphocyte sub-populations were determined. We found that the total numbers of the CD3 $^+$, CD4 $^+$, CD8 $^+$ T and CD19 $^+$ B cells were not significantly changed (Table 1). The NK (CD3 $^-$ CD56 $^+$) cell population was increased in the patients with anti-IFN- γ AAbs.

T cell proliferation and CD25 expression of the patients with anti-IFN-γ AAbs

The ability of T cells activation in the patients with anti-IFN- γ AAbs was investigated using the CFSE based proliferation assay. Upon CD3 stimulation, the percentage of divided cells was not significantly different between patients with anti-IFN- γ AAbs and the healthy subjects (S1 Fig).

We also investigated the expression of CD25 (IL-2 receptor) of the CD3-activated lymphocytes. The lymphocytes were gated and assessed for the expression of CD25 using FITC-conjugated anti-CD25 mAb (S2A Fig). The mean fluorescence intensity (MFI) ratio of the CD25 expression (MFI of stimulation/MFI of un-stimulation) (S2B Fig) and the percentage of the CD25 expressing cells (S2C Fig) were not significantly different between the two groups.

Cytokine production of T cells of the patients with anti-IFN-y AAbs

In order to assess the function of T cells in the patients with anti-IFN- γ AAbs, we determined the production of various intracellular cytokines upon T cell activation. After PMA and ionomycin stimulation, the Th1 cytokine production, including IFN- γ and TNF- α , were significantly up-regulated in the patients with anti-IFN- γ AAbs in comparison with the healthy subjects (Fig 1A). However, the Th2 and the Th17 cytokines, IL-4 and IL-17, in the patients were not statistically significantly different from the healthy subjects (Fig 1B).

Stimulation of T cells by anti-CD3 mAb was performed. The IFN- γ production in the patients with anti-IFN- γ AAbs was significantly up-regulated compared to the heathy subjects (Fig 2). Our results simply reflect an alteration of the cell-mediated immune response in patients with anti-IFN- γ AAbs.

Discussion

The presence of anti-IFN- γ autoantibodies has been demonstrated to be strongly associated with immunodeficiency syndrome in adults, leading to various opportunistic infections [1–4, 11, 21]. Several studies have proposed that the immunodeficiency involves the neutralization of IFN- γ activity by the autoantibody [1–4, 11, 21]. We investigated other immune parameters which may also contribute to this immunodeficiency.

Increasing numbers of white blood cells and phagocytes in the general circulation is used as a marker of infection. A trend towards higher numbers of white blood cells and phagocytes was observed in patients with anti-IFN- γ AAbs. These results correlate with the C-reactive

Table 1. Leukocyte Distribution in the patients with anti-IFN-y Autoantibodies and Healthy Subjects.

	Patients with anti-IFN-γ AAbs (N = 29)	Healthy subjects (N = 10)	p-value*
WBC (×10 ³ cells/µL)	8.9±4.3	6.2±1.0	<0.05
Neutrophil (×10 ³ cells/μL)	5.5±3.8	3.6±0.9	0.160
Monocyte (×10 ² cells/μL)	5.3±1.4	3.9±0.9	<0.005
Lymphocyte (×10 ² cells/μL)	22.2±10.9	35.8±8.9	0.857
CD3+T cell (×10 ² cells/µL)	12.9±6.2	14.1±3.8	0.258
CD4 ⁺ T cell (×10 ² cells/µL)	6.5±3.4	7.8±2.2	0.092
CD8 ⁺ T cell (×10 ² cells/µL)	5.6±2.9	6.3±2.5	0.290
CD19 ⁺ cell (×10 ² cells/µL)	3.2±2.0	3.9±1.7	0.087
CD3 ⁻ CD56 ⁺ NK cells (×10 ² cells/µL)	4.6±2.0	2.8±1.7	<0.05
CD3 ⁺ CD56 ⁺ NKT cells (cells/μL)	98±77	126±75	0.126

^{*}Comparison between patients with anti-IFN-γ AAbs and healthy subjects. Boldfacing indicates statistical significance.

doi:10.1371/journal.pone.0145983.t001

protein (CRP) level in patients' sera. In this study, 48% of the enrolled patients have higher CRP level from the normal range. In the patients with and without active opportunistic infection during the past 30 days, 75% and 38% had higher CRP level from the normal range, respectively. The increased CRP and WBC levels indicate the presence of inflammation in these patients. This indicates that the immunodeficiency symptom and repeat infection in patients with autoantibodies against IFN- γ is not due to panleukopenia or a reduction in the number of phagocytes. The NK cell population also increased in the patients, indicating an alteration in the NK cells in patients with and without active opportunistic infection during the past 30 days (data not shown). The chronic and repeating opportunistic infections occurring in patients with anti-IFN- γ AAbs may activate and cause an increase in the number of NK cells. Incidentally, as IFN- γ is considered the prototypic NK cell cytokine, the diminished activity of IFN- γ due to the neutralizing anti-IFN- γ AAbs in the patients may induce a compensatory effect by increasing the NK cell number.

Cell-mediated immunity (CMI) plays a central role in the eradication of infectious diseases [20, 22, 23]. This type of immunity is dependent on the recognition of antigen by TCR expressed on the T cell surface and their subsequent destruction of cells bearing the antigen, or on the secretion of lymphokines that enhance the ability of phagocytes to eliminate the invaded microbes, particularly intracellular microbes [23]. Patients with anti-IFN-γ AAbs have been reported to be susceptible to various types of intracellular infections, for example, disseminated non-tuberculous mycobacterial infection, disseminated penicilliosis marneffei, non-typhoidal Salmonella bacteremia, cytococcosis, histoplasmosis, and disseminated herpes zoster, with a relative high mortality rate [1-4, 11, 21]. Autoantibody to IFN- γ was proposed to be the cause of CMI immunodeficiency. We speculate that, besides the presence of the anti-IFN-γ antibody, T cell responses may be dysfunctional in these patients. The activation of TCR on T cells was carried out using anti-CD3 mAb. Upon TCR activation, the T cell proliferation and the CD25 (IL-2 receptor) expression of the patients with anti-IFN-γ AAbs remained intact. The results indicate that at least part of the signal transduction subsequence of TCR triggering was still intact. As cytokines produced by T cells are the crucial mediators for cell-mediated immunity [23], we further determined the T helper (Th) cell cytokines after T cell activation. Surprisingly, after PMA and ionomycin stimulation, the Th1 cytokine production, including the production of IFN-γ, and TNF-α, were up-regulated in patients with anti-IFN-γ AAbs, in comparison with the healthy subjects. Our results were not in agreement with a previous report which observed a reduction in the production of TNF- α and IL-2 [12]. Compared to this previous report [12],

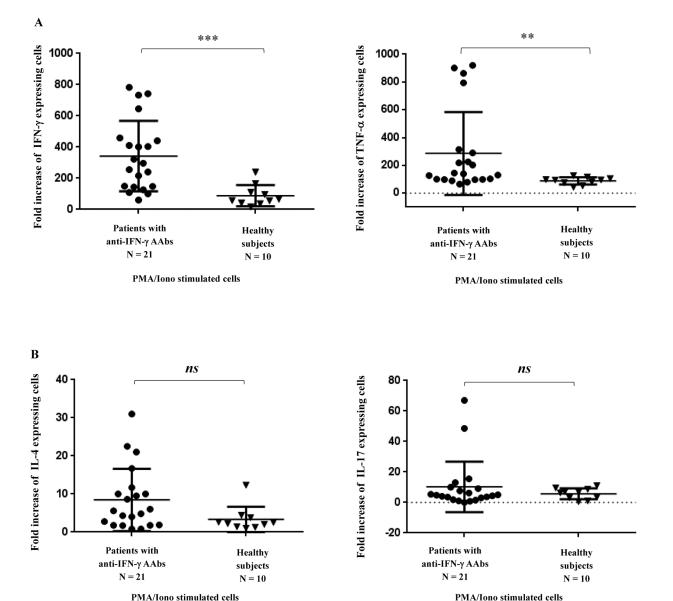
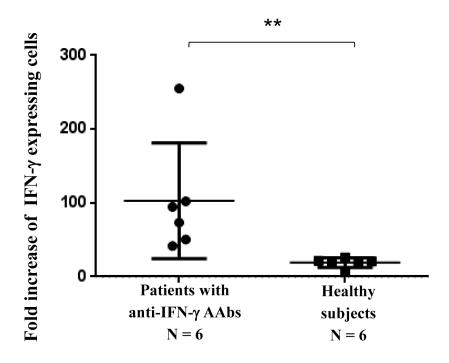



Fig 1. Intracellular cytokine production of patients with anti-IFN-γ AAbs and healthy subjects. PBMCs were stimulated with PMA and ionomycin (lono). The PBMCs were then stained surface CD3 using PerCP conjugated anti-CD3 mAb and PE conjugated anti-cytokine antibody. The expression of the indicated intracellular cytokines of the CD3⁺ T cell was analyzed by flow cytometry. The fold increase in the cytokine production in response to the stimulants as compared to cell culture with no stimulants is shown. "ns represents no statistical significance"; "**" represents p<0.005; "***" represents p<0.001.

doi:10.1371/journal.pone.0145983.g001

in our study, PMA and ionomycin were used as stimulators, instead of PHA. PHA and PMA/ ionomycin act on cells in a different manner. By using PHA activation, the signals could be coming from any glycosylated surface molecule. In contrast, PMA directly activates protein kinase C (PKC) omitting the requirement of surface receptor stimulation. Ionomycin, a calcium ionophor, is able to trigger calcium release which is required for NFAT signaling. The PMA/ionophor activation is, therefore, closer to the physiological condition for T cell activation [24]. In this study, although enhancement of IFN- γ and TNF- α production was observed in the patients, the production of Th2 (IL4) and Th17 (IL-17) cytokines were at the same level as healthy controls. To confirm whether enhancement of Th1 cytokines occurred under

Anti-CD3 mAb stimulated cells

Fig 2. Intracellular interferon-γ production in patients with anti-IFN-γ AAbs and healthy subjects. PBMCs were stimulated with immobilized anti-CD3 mAb. The PBMCs were then stained surface CD3 using PerCP conjugated anti-CD3 mAb and PE conjugated anti-cytokine antibody. The expression of the intracellular IFN-γ of the CD3⁺ T cell was analyzed by flow cytometry. The fold increase in the IFN-γ production in response to the stimulants as compared to cell culture with no stimulants is shown. "**" represents *p*<0.005.

doi:10.1371/journal.pone.0145983.g002

physiological conditions, activation of TCR by anti-CD3 mAb was performed. Up-regulation of IFN- γ production in the patients with anti-IFN- γ AAbs was observed. Our results indicate an alteration in cell-mediated immune response in the patients with anti-IFN- γ AAbs.

In this study, the patients enrolled seem to be older than the healthy subjects. Reduction of T proliferation, IL-2 production and IL-2 receptor expression have been reported in the elderly $[\underline{25}-\underline{27}]$. However, the age of affect was observed in patients with an average at 65 or older $[\underline{26}-$ 28], which was much older than our patient group. In addition, we found no statistically significant difference between patients and healthy subjects in T cell proliferation and the expression of CD25 (IL-2 receptor) as shown in S1 and S2 Figs. The observed increase of IFN-γ and TNFα production in T cells may be related to an alteration of the Th1/Th2 balance in patients with anti-IFN- γ AAbs. The mechanism of the up-regulation of IFN- γ and TNF- α in the patients is, however, unclear. We speculate that T cells of the patients have already committed to be Th1 cells. The imbalance of Th1 and Th2 cytokine has been reported in some autoimmune diseases. Th1 dominant was observed in autoimmune disease such as multiple sclerosis (MS), inflammatory bowel diseases (IBD), Rheumatoid Arthritis (RA) and Hashimoto's Thyroiditis [29]. These autoimmune diseases have high levels of IFN-γ and uncontrolled inflammation and infection [30, 31]. Based on our findings, we proposed that there may be a defect in the regulatory function of the immune system resulting in an error to control the Th1 and Th2 balance in patients with anti-IFN-γ AAbs. Excessive Th1 cytokines, i.e. IFN-γ, have been reported to induce autoimmune disease [30, 31]. We hypothesize that the over production of Th1

cytokines observed in these patients may alter the controlling of auto-reactive B cells results in the production of anti-IFN- γ AAbs. The overwhelmed Th1 activation and the enhanced Th1 cytokine production in these patients may also be due to a compensation mechanism in which the ability of IFN- γ was neutralized by the autoantibodies. It is also possible that activation of T cells *in vivo* following chronic antigenic stimulation may also have occurred and may need to be taken into consideration.

Supporting Information

S1 Fig. T cell proliferation in patient with anti-IFN- γ AAbs and healthy subjects. CFSE-labeled PBMCs were stimulated with immobilized anti-CD3 mAb. The T cell proliferation of the patients with anti-IFN- γ AAbs and the healthy subjects upon anti-CD3 activation was presented as percentage of divided cells in the dot density plot. (TIF)

S2 Fig. CD25 expressions in patients with anti-IFN-γ **AAbs and healthy subjects.** PBMCs were stimulated or un-stimulated with immobilized anti-CD3 mAb. (A) The expression of CD25 was found to have increased in all the tested groups after stimulation. The stimulated cells are presented in close gray histogram plots and the un-stimulated cells of each sample are overlaid in open black histogram plots. (B) The expressions of CD25 in the patient with anti-IFN-γ AAbs and the healthy subjects are presented as the ratio of mean fluorescent intensity (MFI) of activation and no activation in the dot density plot. (C) The percentage of the CD25 expressing cells is presented, and it was observed that there was no difference between the tested groups. The bars represent the mean of the percentages of the CD25 expressing cells. The error bars indicate the SD value. (TIF)

Acknowledgments

This work was supported by the National Research University Project under Thailand's Office of the Higher Education Commission for Chiang Mai University, Chiang Mai University Center of Excellence grant for Biomedical Technology Research Center and Thailand Research Fund [TRG5780017]. We are grateful to all the study subjects and the staff of the Internal Medicine of Maharaj Nakorn Chiang Mai Hospital, Chiang Mai University, for their kind support. NC is a postdoctoral researcher supported by Chiang Mai University at the Biomedical Technology Research Center.

Author Contributions

Conceived and designed the experiments: NC KM SP WK. Performed the experiments: NC KM SP. Analyzed the data: NC KM SP WK. Contributed reagents/materials/analysis tools: WK. Wrote the paper: NC WK. Patient enrollment: RC PS KS.

References

- Browne SK, Burbelo PD, Chetchotisakd P, Suputtamongkol Y, Kiertiburanakul S, Shaw PA, et al. Adult-onset immunodeficiency in Thailand and Taiwan. N Engl J Med. 2012; 367:725–34. doi: 10.1056/ NEJMoa1111160 PMID: 22913682.
- Chi CY, Chu CC, Liu JP, Lin CH, Ho MW, Lo WJ, et al. Anti-IFN-gamma autoantibodies in adults with disseminated nontuberculous mycobacterial infections are associated with HLA-DRB1*16:02 and HLA-DQB1*05:02 and the reactivation of latent varicella-zoster virus infection. Blood. 2013; 121:1357– 66. doi: 10.1182/blood-2012-08-452482 PMID: 23243276.

- Koya T, Tsubata C, Kagamu H, Koyama K, Hayashi M, Kuwabara K, et al. Anti-interferon-gamma autoantibody in a patient with disseminated Mycobacterium avium complex. J Infect Chemother. 2009; 15:118–22. doi: 10.1007/s10156-008-0662-8 PMID: 19396523.
- Wongkulab P, Wipasa J, Chaiwarith R, Supparatpinyo K. Autoantibody to interferon-gamma associated with adult-onset immunodeficiency in non-HIV individuals in Northern Thailand. PLoS One. 2013; 8: e76371. doi: 10.1371/journal.pone.0076371 PMID: 24086734.
- Browne SK, Holland SM. Immunodeficiency secondary to anticytokine autoantibodies. Curr Opin Allergy Clin Immunol. 2010; 10:534–41. PMID: 20966748.
- Browne SK. Anticytokine autoantibody-associated immunodeficiency. Annu Rev Immunol. 2014; 32:635–57. doi: 10.1146/annurev-immunol-032713-120222 PMID: 24499273.
- Prummer O, Bunjes D, Wiesneth M, Arnold R, Porzsolt F, Heimpel H. High-titre interferon-alpha antibodies in a patient with chronic graft-versus-host disease after allogeneic bone marrow transplantation. Bone Marrow Transplant. 1994; 14:483–6. PMID: 7994279.
- Rosen SH, Castleman B, Liebow AA. Pulmonary alveolar proteinosis. N Engl J Med. 1958; 258:1123–42. doi: 10.1056/NEJM195806052582301 PMID: 13552931.
- Meager A, Wadhwa M, Dilger P, Bird C, Thorpe R, Newsom-Davis J, et al. Anti-cytokine autoantibodies in autoimmunity: preponderance of neutralizing autoantibodies against interferon-alpha, interferonomega and interleukin-12 in patients with thymoma and/or myasthenia gravis. Clin Exp Immunol. 2003; 132:128–36. PMID: 12653847.
- Kisand K, Boe Wolff AS, Podkrajsek KT, Tserel L, Link M, Kisand KV, et al. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J Exp Med. 2010; 207:299–308. doi: 10.1084/jem.20091669 PMID: 20123959.
- Poulin S, Corbeil C, Nguyen M, St-Denis A, Cote L, Le Deist F, et al. Fatal Mycobacterium colombiense/cytomegalovirus coinfection associated with acquired immunodeficiency due to autoantibodies against interferon gamma: a case report. BMC Infect Dis. 2013; 13:24. doi: 10.1186/1471-2334-13-24
 PMID: 23336346.
- Wipasa J, Wongkulab P, Chawansuntati K, Chaiwarit R, Supparatpinyo K. Cellular immune responses in HIV-negative immunodeficiency with anti-interferon-gamma antibodies and opportunistic intracellular microorganisms. PLoS One. 2014; 9:e110276. doi: 10.1371/journal.pone.0110276 PMID: 25329064.
- Schoenborn JR, Wilson CB. Regulation of interferon-gamma during innate and adaptive immune responses. Adv Immunol. 2007; 96:41–101. doi: 10.1016/S0065-2776(07)96002-2 PMID: 17981204.
- Schroder K, Hertzog PJ, Ravasi T, Hume DA. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol. 2004; 75:163–89. doi: 10.1189/jlb.0603252 PMID: 14525967.
- Billiau A, Matthys P. Interferon-gamma: a historical perspective. Cytokine Growth Factor Rev. 2009; 20:97–113. doi: 10.1016/j.cytogfr.2009.02.004 PMID: 19268625.
- Abbas AK, Lichtman AH, Pillai S. Cellular and molecular immunology. 6th ed. Philadelphia, Pa.: Saunders Elsevier; 2010. p. 3–17.
- Doffinger R, Patel S, Kumararatne DS. Human immunodeficiencies that predispose to intracellular bacterial infections. Curr Opin Rheumatol. 2005; 17:440–6. PMID: 15956841.
- Al-Muhsen S, Casanova JL. The genetic heterogeneity of mendelian susceptibility to mycobacterial diseases. J Allergy Clin Immunol. 2008; 122:1043–51. doi: 10.1016/j.jaci.2008.10.037 PMID: 19084105.
- Crum NF, Lederman ER, Wallace MR. Infections associated with tumor necrosis factor-alpha antagonists. Medicine (Baltimore). 2005; 84:291–302. PMID: 16148729.
- Haverkamp MH, van Dissel JT, Holland SM. Human host genetic factors in nontuberculous mycobacterial infection: lessons from single gene disorders affecting innate and adaptive immunity and lessons from molecular defects in interferon-gamma-dependent signaling. Microbes Infect. 2006; 8:1157–66. doi: 10.1016/j.micinf.2005.10.029 PMID: 16520075.
- Tang BS, Chan JF, Chen M, Tsang OT, Mok MY, Lai RW, et al. Disseminated penicilliosis, recurrent bacteremic nontyphoidal salmonellosis, and burkholderiosis associated with acquired immunodeficiency due to autoantibody against gamma interferon. Clin Vaccine Immunol. 2010; 17:1132–8. doi: 1128/CVI.00053-10 PMID: 20445006.
- van de Vosse E, Hoeve MA, Ottenhoff TH. Human genetics of intracellular infectious diseases: molecular and cellular immunity against mycobacteria and salmonellae. Lancet Infect Dis. 2004; 4:739–49. doi: 10.1016/S1473-3099(04)01203-4 PMID: 15567123.
- Abbas AK, Lichtman AH, Pillai S. Cellular and molecular immunology. 7th ed. Philadelphia, Pa.: Saunders Elsevier; 2012. p. 225.
- Chopra RK, Powers DC, Adler WH, Nagel JE. Phorbol myristate acetate and calcium ionophore A23187-stimulated human T cells do not express high-affinity IL-2 receptors. Immunology. 1989; 66:54–60. PMID: 15493263.

- 25. Desai A, Grolleau-Julius A, Yung R. Leukocyte function in the aging immune system. J Leukoc Biol. 2010; 87:1001–9. doi: 10.1189/jlb.0809542 PMID: 20200405.
- Nagel JE, Chopra RK, Chrest FJ, McCoy MT, Schneider EL, Holbrook NJ, et al. Decreased proliferation, interleukin 2 synthesis, and interleukin 2 receptor expression are accompanied by decreased mRNA expression in phytohemagglutinin-stimulated cells from elderly donors. J Clin Invest. 1988; 81:1096–102. doi: 10.1172/JCl113422 PMID: 3127423.
- Nagel JE, Chopra RK, Powers DC, Adler WH. Effect of age on the human high affinity interleukin 2 receptor of phytohaemagglutinin stimulated peripheral blood lymphocytes. Clin Exp Immunol. 1989; 75:286–91. PMID: 2784739.
- Whisler RL, Beiqing L, Chen M. Age-related decreases in IL-2 production by human T cells are associated with impaired activation of nuclear transcriptional factors AP-1 and NF-AT. Cell Immunol. 1996; 169:185–95. doi: 10.1006/cimm.1996.0109 PMID: 8620546.
- Damsker JM, Hansen AM, Caspi RR. Th1 and Th17 cells: adversaries and collaborators. Ann N Y Acad Sci. 2010; 1183:211–21. doi: 10.1111/j.1749-6632.2009.05133.x PMID: 20146717.
- Trinchieri G. Type I interferon: friend or foe? J Exp Med. 2010; 207:2053–63. doi: 10.1084/jem. 20101664 PMID: 20837696.
- Pollard KM, Cauvi DM, Toomey CB, Morris KV, Kono DH. Interferon-gamma and systemic autoimmunity. Discov Med. 2013; 16:123–31. PMID: <u>23998448</u>.

Identification of CD99 counter-receptor by pull-down method using dimeric CD99-human IgG Fc fusion proteins in combination with DTSSP crosslinking

Takheaw, N.¹, Kasinrerk, W.^{1,2}, Pata, S.^{1,2}

¹Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences,

Chiang Mai University, Chiang Mai, Thailand. ²Biomedical Technology Research Center, National Center for

Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of

Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.

Presenting author: Nuchjira Takheaw

Abstract

CD99 is a human leukocyte surface molecule involving T cell activation, cell adhesion, cell migration and cell death. Its counter-receptor is, however, still a matter of controversy. In an attempt to identify CD99 counter-receptor, a pull-down assay was developed. The successful of the pull-down method is indeed depending on the bait protein structure. To obtain bait protein composed of a similar structure and post-translational modification to native CD99 protein, we produced secreted dimeric CD99-human IgG Fc fusion proteins in 293T cell line. The CD99-IgG Fc fusion proteins were, then, used to search for the CD99 ligand, in combination with 3,3'dithiobissulfosuccinimidylpropionate (DTSSP) crosslinking, in various human cell lines by indirect immunofluorescence staining. Upon several cell lines tested, only THP-1 cell line showed positive staining with CD99 bait protein. To pull down CD99 counter-receptor, THP-1 cells were stained with CD99-IgG Fc fusion proteins, crosslinked with DTSSP and pulled down by protein G beads. By western blotting, the molecular weight of the pulled down protein was higher than the CD99 bait protein indicating the presence of CD99 counter-receptor in the pulled down material. In this study, we introduced here the pull-down method using a flexible-dimeric CD99 fusion protein in combination with DTSSP crosslinking for identification of its counterreceptor.

Engagement of CD99 surface molecules inhibits T cell responses

Witida Laopajon, ¹ Supansa Pata^{1, 2} and Watchara Kasinrerk^{1,2}

¹Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand

²Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand

Abstract

CD99 is a broadly expressed transmembrane glycoprotein which has been described as a T cells-co-stimulator. We previously demonstrated that CD99 molecules were translocated into immunological synapse during T cell activation. However, the complete function of CD99 involving in T cell activation is still unclear. In this study, the role of CD99 on T cell responses was investigated. T cells proliferation, induced by anti-CD3 mAb, was inhibited by an anti-CD99 monoclonal antibody (mAb). The inhibition ability of anti-CD99 mAb was neutralized by CD99 recombinant proteins indicated that blocking of T cell proliferation was resulted from the engagement of CD99 molecules by anti-CD99 mAb. In addition, we found that engagement of CD99 before CD3 activation could not induce the T cell proliferation inhibition. This data suggested that stimulation of CD3 was required for induction of inhibition of T responses by CD99. The mechanism underlying this phenomenon was investigated. The expression of IL2 receptor (CD25) and IL2 was altered upon CD99 engagement. Our results illustrated that, during T cell activation, stimulation of CD3 molecules may provide a signal involving CD99 function. Subsequently, ligation of CD99 will generate T cell inhibitory signal. The generated inhibitory signal by CD99 molecules might be the negative feedback mechanism of T cell activation.

Simultaneous Flow Cytometric Measurement of Attachment and Phagocytic Processes of Phagocytes

Witida Laopajon, ¹ Nuchjira Takheaw, ¹ Watchara Kasinrerk, ^{1,2} and Supansa Pata ^{1,2}

¹Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand

²Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand

Abstract

Phagocytosis can be divided into three stages including attachment, internalization, and degradation of the microbes. The available phagocytosis assays, however, could not differentiate the stages of phagocytosis. In this study, the method for concurrent detection the attachment and engulfment of phagocytosis was developed by using latex beads coated with lipopolysaccharide (LPS), rabbit IgG, and carboxyfluorescein diacetate succinimidyl ester (CFSE). The generated CFSE-LPS-IgG coated latex beads were incubated with whole blood at 37°C for 1 hour. After incubation, the cells were stained with PE-Cy5.5 anti-rabbit IgG antibody. The phagocytosis was analyzed by flow cytometry. The results demonstrated that CFSE and IgG coated on beads could be detected by flow cytometer. The developed methods could be used for determination of attachment and phagocytic processes. In the presence of NaN₃ and NaF, phagocytosis inhibitors, inhibition of both the attachment and the engulfment was demonstrated. Under on-ice condition, the engulfment step was blocked, while the attachment process could still be observed. In summary, the established methods could be employed for the detection of both attachment and engulfment of phagocytes, simultaneously. This method is a valuable tool for the diagnosis of phagocytosis disorder as well as the study of the molecules involved in phagocytosis.

Identification of natural ligand(s) for human the leukocyte surface glycoprotein CD99

Nuchjira Takheaw¹, Supansa Pata^{1, 2}, Watchara Kasinrerk^{1, 2}

ABSTRACT

Leukocyte surface molecules are CD molecules on leukocyte that play the important role in regulation of cell function and cell signaling. They often act as receptors or ligands, the molecule that activates receptor, on the cell surface. CD99 is a leukocyte surface type 1 transmembrane glycoprotein broadly expressed in both hematopoietic and non-hematopoietic cells. It is separated in two distinct isoforms, a long 32 kDa form (type I) and a short 28 kDa form (type II). CD99 is known to be involved in the T cell activation, cell-cell adhesion, cell migration and cell death. In several years ago, many researchers try to study the functions of human CD99 in T cells. However, so far the study of human CD99 mostly engaged by agonistic monoclonal antibodies. Several conflict data have been reported. Therefore, the functions of human CD99 in T cell regulation are unclear. In this study, we aim to identify natural CD99 ligand(s) and study the mechanism of CD99 in T cell stimulation by using CD99 ligand(s). Firstly, we generated recombinant human CD99-IgG fusion protein in mammalian cells. The short form and long form of CD99 encoding genes were amplified from a plasmid vector pCDM8-CD99 by PCR. And subsequently inserted into pFuse-hIgG1 Fc2 harboring Zeocin resistance gene, the plasmid designed for the construction of IgG-Fusion proteins by Zeocin drug selection. The correct of inserted CD99 genes was proved by re-amplification by PCR and subjected to DNA sequencing. It was found that, the nucleotide sequences of both CD99 short form and CD99 long form were completely identical to the nucleotide sequence in CD99 gene database. To produce recombinant human CD99-IgG fusion protein, the pFuse-CD99 hIgG1 Fc2 plasmid vectors were transfected into Jurkat cell line by electroporation technique. To generate stable CD99-IgG expressing cell line, the transfected cells were then cultured in medium containing zeocin drug. By ELISA and Western blotting, CD99-IgG were detected. The result indicated that the CD99-IgG was produced and could be used as a tool for identification of natural CD99 ligand(s). Finally, we would like to use natural CD99 ligand(s) for study CD99 in T cell stimulation in order to more understanding of the key role of the human CD99 molecule in immunoregulation and immunologic function.

¹Division of Clinical Immonology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand

²Biomedical Technology Research Center, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand

Identification of natural ligand(s) for human the leukocyte surface glycoprotein CD99

Nuchjira Takheaw¹, Supansa Pata^{1, 2}, Watchara Kasinrerk^{1, 2}

¹Division of Clinical Immonology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand

²Biomedical Technology Research Center, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand

ABSTRACT

Leukocyte surface molecules are CD molecules on leukocyte that play the important role in regulation of cell function and cell signaling. They often act as receptors or ligands, the molecule that activates receptor, on the cell surface. CD99 is a leukocyte surface type 1 transmembrane glycoprotein broadly expressed in both hematopoietic and non-hematopoietic cells. It was separated in two distinct isoforms, a long 32 kDa form (type I) and a short 28 kDa form (type II). CD99 is known to be involved in the regulation of T cell activation, cell-cell adhesion, cell migration and cell death. In several years ago, many researchers try to study the functions of human CD99 in T cells. However, so far the study of human CD99 mostly engaged by agonistic monoclonal antibodies. The reports showed many functions of human CD99 have been confused. The functions of human CD99 in T cell regulation are unclear. Therefore, we would like to identify natural CD99 ligand(s) in order to use instead of agonistic monoclonal antibodies to clarify the mechanism of CD99 in T cell stimulation.

In this study, we generated recombinant human CD99-IgG fusion protein in mammalian cells. The cellular distribution of CD99 ligand(s) on various cell types including peripheral blood cells and several tumor cell lines were investigated by flow cytometry using CD99-IgG fusion staining. We further used CD99-IgG fusion coated Sepharose beads to pull down CD99 ligand(s) from cell lysates. Subsequently, we isolated and then subject CD99 ligand(s) for SDS-PAGE and western blotting analysis. The isolated CD99 ligand(s) was submitted to amino acid sequencing in order to identify CD99 ligand. The identified ligand was produced as IgG fusion protein in mammalian cells. The CD99 ligand-IgG fusion protein used as a tool for study function of CD99 on T cell stimulation.

Form this study, we hope that the identification of CD99 ligand give us more understanding of the key role of the human CD99 molecule in immunoregulation and immunologic function.