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Abstract

Project Code: TRG5780037

Project Title: Reaction-diffusion model for mechanically spreading of bacterial
populations

Investigator: Assistant Professor Dr. Waipot Ngamsaad, Division of Physics, School of
Science, University of Phayao

E-mail Address: waipot.ng@up.ac.th

Project Period: 2 years

The growth and spreading of bacterial population are significant problems in
biological science. Reaction-diffusion model, formulated by the nonlinear partial
differential equation, has been a theoretical tool for investigating the structure and
pattern formation in bacterial colony. However, the conventional models assume that the
individual of population behaves like an ideal particle, which has no shape.
Unfortunately, this assumption is correct only in the system of low population density. In
real situations, the individual of bacterial population has heterogeneous shape and
grows under dense environmental conditions. Accordingly, the mechanical interaction
between cells has crucial roles on the spreading of bacterial colony. Therefore, in this
research, we extend the reaction-diffusion model by incorporating the mechanical effect

from the cell shape for investigating the problem of spreading bacterial populations.

Keywords: Reaction-diffusion model, Nonlinear partial differential equation, Population

dynamics



UNANL

WalATIN13: TRG5780037

#alasents: LwuSaes §Aspnunsdmsunansznedudmnavesszmniwuafise
Zawnivy: HTomaaad a3 liwal swsana ;M InAEnd aadnsmans
VANINLIDWELEN

E-mail Address: waipot.ng@up.ac.th

S2aza1lAsIN: 2 U

matdulauszunsnizagvasdszmnswueiisadudgmsagluinemans
Finw unudeesdjiteinsuns douegluzdvessumudaynusdes lidwdadu
diduedesdeifinnuidmiunsanmlasiairsuszmsneguuylulalefivasuuaiise
LL@iashaVLiﬁ@nmLuuﬁ’laaaLLuuﬂﬂaauqﬁlﬁﬂsw’mm@iamﬁﬁwqﬁmiuﬂéﬁﬂamql,mﬂsl,u
q@mﬁﬁ"[ajﬁgﬂi”m LL@ﬁaaugaﬁgﬂﬁaamwwﬂmzuuﬁﬂizﬂmﬂiﬁmﬁmmLwi,u@"h T
@m:uLﬂua’%aﬂiw’mnmﬂﬁﬁsJﬁ'gﬂinﬁiLL@ﬂ@i'mﬁ”ul,l,a:LﬁfylﬁﬂmluamazLn@éfa:uﬁ
ATTIRIN @i”aﬂm@;fﬁmm:ﬁwL%&ﬂaszmwLmaﬁﬁaﬁuwmwﬁwﬁ'@ﬁalummwim:mwaa
UszrnsuuaiiSe  aomulunudseilinezvssuuuines i smaunslasmai
HanTznULBInangdasasiniunmInmTymmsuniniznevesszmng

a A
LUATILIE

aman: wuudeeIdnTennuns, aumslffmatgﬁufﬂ'aﬂmﬂmﬁuﬁu, WRFRAT

Useng



Executive Summary

1. anudanuazfinnasdym

LLUﬂﬁL‘i‘mﬂuQaﬁwﬁLﬂumm@]maﬂiﬂiuugﬂﬁ N uaz &0 udegndlsnanulu
q@lmvﬁmmLl,uﬂﬁﬁalmmmaﬁ”wNa@lﬁwﬁﬁ@uﬂiﬂwﬁ@iamgﬂﬁ I eUTIU ey
mywines dudu aaiumathlafsmansaslszmnuuaiiseielianudan
domaluladfinmuazmaunndiiuasneds  Sunurssvasuueilseindaowulss
AIUNTTLINMILAA MINY ey MILARawi ﬁuagﬁuamwﬁau’mﬁaw mIhwems
LﬂﬁﬂuuﬂawaaﬂszﬂmﬂmmﬁﬁUluu'%LatuLLaznmﬁszmﬂuﬁrymﬁﬁ’]mﬂﬁaé'mﬁalu
ANLNEEATBTININ wuusesmandiarmaafiduitmeiivssansnwlumsdnm
TMawnIveddszmmsuua s oidianm %I\‘lLf]%LLSdgdlﬂlﬁLi’lﬁ’lﬂ’liﬁﬂH’lWaﬂ’lﬂ@]§
yasdszrinsuuaisadingud laalditnvhinsssuuuiindiadnaas

Tumanged  nszvawmsifia mIee waz  maedenfivastizmni®elifie
sansnaasuuy ldlassumatfasonmauniluszaunmunsa MIUNTUFEAININT
\ndauvasmasuuafise LLazﬂg’jﬁ%ﬁLLamﬁaé’mwswmaaﬂ’lsLﬂﬁiwLLﬂaaﬂizmﬂséﬁ
lesnanmafiauszmins  wataasvassumsiilalwenudlasuindslulasias
wazguuuveInamanivalszsns Toglanzegnefsinaansafiazyinwssasisiva
mIunsnsznevadlalafiuuafiseldens

LuUSRaIfIRsUNAmMaasuadl T nsuUAT T nEI Bl RN TR 9N TLWS
9aNAd IuLLuaﬁ@f:"Lﬁauaalasl,ﬁl,mﬂﬁﬁmwiam”aLﬂumgmﬂgﬂﬁvlaiﬁgﬂs'w walagrialud
wuafieiizdinadunsauria é’nfué’umﬁ%mL%dﬂmzwmLﬁnaﬁLLUﬂﬁL%'ﬂvlﬁgﬂa:Laﬂlu
uuudaeslJATenmInwsiuuLi uanmﬂﬁﬁagamnmsmaaa"l,@ﬁl,amlﬁl,ﬁudnmi
mmU@T’smaﬂﬂiaﬁl,wﬂﬁL’%'ﬂﬁgﬂﬂ”ﬂluﬁnmﬁ’m“’mflumammﬂmmé’ﬂﬂ“’wuawnaa‘
ANNNIMIAININMTLAROUAVOILTAS  GITHLU U aIRR= RIS UATASIN TS WIS
01 ldmusnefuemauwinznorasdzmnuuafiieldagnagndas

Tunuisnil azTEnBuLUIassUATeImMIunTEnTUNamsa a9z N3
wuafiSsuuuilasneuasnsonseninasasn e lassazaulalunsdasnsine
Ao wamam%aaszuummsna%mw‘ﬁsa:umn%aagw”uﬁ‘siammuvl,&il,%dLﬁulu 146 99
fanugzaindamanzyi wamaUmnaumiﬁazﬁﬂmg&mwmﬁﬂaﬁﬁﬁuﬁamsﬁ&um
ﬁ’%mizmwmaa{mUqummwiﬂizmﬂﬂuaamﬁwmuuumaaLLUﬂﬁL'%'Umm‘hLthJLLaz

%] =1 > =1 A A v 1
1981 BazaaTILSvaImIuEnaalvaslalaiuuaniylaagngls



2. Januszaen

21

~ aaa 1o e 6 A A =
PNBTEN Elﬁllﬂ'ﬁfﬂgﬂiﬂﬁﬂﬁiLLWiﬁ'\%iﬂJWﬁﬂ?ﬁ@li%adﬂizﬂj’\ﬂﬂl’ﬂﬂ‘ﬂﬁﬂiﬂﬂll

MITINAWAINILTINATERINILTaRLTN L e

~ ¥ o v oo £ o] '
2.2 L‘Wa‘]_litﬁ‘!ﬂ@ﬂ%Na’ﬂ'}ﬂLL‘]JTIJﬁ]']E]?J\‘]‘Y]vl,(ﬂLﬁuﬂ“ll%l%N%ﬂﬂ‘i&ﬂﬂ'ﬁLLWiﬂiZ‘ﬂﬁ£|°llad

AMNAWILUUY DILLATHIIAINFILHAUILAZLIIRT LRE BAT115IVINTVLNLAA
Yaslaladuuaiitse

3. 528 uN 529y

3.1

3.2

3.3

34

3.5

3.6
3.7

Ansuuudasslfisemsuwsdnsunamanizadlsemnsuuaiiselasd
NMITINIUATASLWBINATEAINILTaaLT b

= a

m“ﬁagamimaaaﬁﬁmﬁaaﬁumsﬁagﬂuuulﬂaiauumwL’%'Uﬁmwﬁfﬂﬁd
Nammumﬂgﬁiwﬁm5“11aaLL‘Uﬂﬁt%amn\ﬁu?ﬁ'ﬂﬁﬁﬁuﬁuﬁa Wothan
mivayusyagiuiiasly

Aenziuuuiaelasliinafianadiamaas laonIwHaRasg
’?Lm’]zﬁmaaauﬂ'm%aauw”uﬁ‘siasJLLUU"L&J’L%al,ﬁuﬁl,auafuméﬁ%%'usl,uﬂsn‘iﬁ
anurwLuasuUaiisofidne
FouldsunsuieninsiaasifanssvasuuiisaslaglsndousTinlng
ﬁWLwaiiwﬂumfﬁﬁm']wmuﬂumaaumﬁﬁ'ﬂﬁ@hga
FaUSINmImMenINaINRaLaauLEee 1w Mmalaswulsseny
AWUUBVILLATILIE LaZaaITIVBINNTVLN8AIVRIUT=TINTULANILTE
LﬁmJLﬂ‘%‘ﬂuﬁagamnmsmaaaﬁuNamaﬂﬁvl,éfmﬂl,mmimaa

= a tﬂ‘ 1 A A 6
FUEBRUNAINVUIIULNDRIANWUN



D919 Y

1. Introduction

Bacteria are microorganisms that cause the diseases in human, plant and
animal. However, in industry, some bacteria can make useful products to human, such
as fermented food and chemical used in pharmacy and agriculture. Therefore,
understanding the dynamics of bacterial population is important to biotechnology and
medicine.

The numbers of bacterial cells are always changed by the process of birth,
death and cell migration, depending on the environmental conditions. To predict the
change in bacterial population at the specific region and time is one of the most
challenge problem in biological science. The mathematical modeling is an efficient
method for studying the evolution of bacterial population quantitatively. This motivates
us to investigate the dynamics of bacterial population theoretically by using the
mathematical modeling approach.

In theory, the process of birth, death and migration of the biological population
can be modeled by the reaction-diffusion equation at continuum level. The diffusion
represents the migration of the bacterial cell; and the reaction represents the net
change in population by growth and death. The solution to this equation has been
provided insight into the structure and pattern formation in population dynamics.
Especially, it can predict the expansion speed of the bacterial colony. Most models for
bacterial population dynamics deal with the ideal diffusion of population. In this
approach, the individual member of bacteria is assumed to be a point-like particle that
has no shape. Typically, the shape of bacteria is rod-like. Thus, the mechanical
interaction between bacterial cells has been omitted from the conventional reaction-
diffusion model. In addition, the recent experimental observations show that the
expansion of the bacterial colony, confined in the limited space, is caused by cell
pushing rather than by cell migration. Hence, the model without cell interaction may not
be the accurate description for spreading of bacterial population.

In this research, we extend the conventional reaction-diffusion model for
bacterial population dynamics by incorporating the mechanical interaction between cells-
--which is omitted from past models. We focus on the simplified case where the
dynamics of system can be described by a one-dimensional nonlinear partial differential

equation; which is convenient for analysis. The solutions to this equation could provide



the better understanding of how the mechanical interactions control the spreading of

bacterial density in space and time and expansion speed of the bacterial colony.

2. Literature review

The recent experiments reveal that the bacteria adapt to unfavorable
environments by cooperatively expanding their colony with the well-defined structures
(Ben-Jacob et al., 2000; Murray, 2002). Some species of bacteria such as Escherichia
coli and Bacillus subtilis, grown on Petri dish, exhibit the fascinated patterns, including
circular disk, concentric rings and fractal-like objects (Kawasaki et al., 1997; Ben-Jacob
et al, 2000; Murray, 2002). It has been suggested that the pattern formations,
generated by bacterial colony, reflect the social intelligence and communication of this
microorganism (Ben-Jacob et al., 2012). It has hypothesized that, somehow, the
bacteria use the cooperation to resist the environmental stresses (Ben-Jacob et al.,
2012). Understanding of the underlying mechanism of bacterial pattern formation is
basic knowledge to biotechnology and medicine.

To study this problem in quantitative way, the reaction-diffusion models have
been proposed for the theoretical description of bacterial pattern formation at continuum
level (Kawasaki et al., 1997; Golding et al., 1998; Ben-Jacob et al., 2000; Murray, 2002).
Although there are several set of coupled reaction-diffusion equations have presented to
study this problem, Kawasaki et al. have suggested the simplified case (Kawasaki et al.,
1997). The bacterial colony evolves in two dimensions; however if we neglect the
occasional branching, dynamics of the system evolves in one dimension equivalently.
They have found that this dynamics can be described by a single nonlinear reaction-
diffusion equation (Kawasaki et al., 1997). This simple model admits the mathematical
analysis that provides the details of structures and pattern formation in bacterial colony
analytically (Kawasaki et al., 1997; Ben-Jacob et al., 2000; Murray, 2002).

The dynamics of bacterial population can be described as follows (Ben-Jacob et
al., 2000; Murray, 2002). Each bacterium cell swims randomly in the fluid medium to
locate the nutrient. In the average, the migration of bacterial cell is modeled as the
diffusion. Bacteria consume nutrient and increase the numbers by cell division. When
the nutrient is depleted, the bacteria die. The net rate of birth and death of bacteria is

represented by the reaction term. The general form of reaction-diffusion equation, in



one-dimensional space, is given by (Murray, 2002)

o0_2( o
ot _axLD axj+f(p)

. (1
where p(x,t) is bacterial population density at position X and time t, D is diffusion

/(p) p(x1)20

is the Fisher equation, which has been originated for the description of the spreading of

coefficient and is reaction term. Here . The most recognized model
mutant gene in a population (Fisher, 1937). In the Fisher model, the diffusion coefficient
is constant, D= k, and the reaction term is the logistic growth law. The Fisher equation
is given by

2
8—p:ka—lzo+05p l—i
ot Ox Pu @)

where @ is rate constant and M is maximum density (Murray, 2002). We note that
the logistic law in (2) describes the rate of population change under the limited

resources (Fisher, 1937; Murray, 2002). The density cannot be greater than the

<p<
maximum value ©¥ . Therefore the density is limited to 0<p<py . The solution to the
Fisher equation (2) has demonstrated the propagation of the population density as the

“ (x B ct) with constant front speed, ¢ > 2Nka (Murray,

smooth traveling wave of form
2002). This illuminates that the populations evolve with the well-defined pattern
formations. Inspired by this, the study on pattern formation in the reaction-diffusion
model has been attractive. Due to the diffusion coefficient is constant, the Fisher model
describes the migration of the individual member of bacterial cell as the purely random
walk. However, the random walk is unrealistic motion of the biological organism, which
has sense. Gurney and Nisbet have proposed that the biological organisms move in
such the way that they avoid the crowded population (Gurney and Nisbet, 1975). In this
manner, they move in the direction of decreasing population density as fast as the

population density is increasing. In this case, the diffusion coefficient linearly depends

D(p)zk(p/pM)’ where k is constant. Later, Gurtin and

D(p)=k(p/py)"

on the population density:

MacCamy have proposed a general form of diffusion coefficient:

where q>0 and it implies the degree of population pressure (Gurtin and MacCamy,

1977). Newman has also found a general form of logistic law:



=ap[1-(p/py)']
f(p) 0 (p pM) (Newman 1983). Consequently, the density-dependent

reaction-diffusion equation or the generalized Fisher equation have been originated:
) o "o !
t X1\ Pu X Pu
3)
Newman has found that the solution to (3) is the sharp traveling wave with the constant

front speed, €= ka/(q+1)

(Newman, 1980, 1983; Murray, 2002).

In our previous work, we have found a general form of the exact solution to (3)
(Ngamsaad and Khompurngson, 2012a). The solution evolves from a specific initial
state and converge to the sharp traveling wave of Newman’s solution (Newman, 1983)
with constant front speed at the long time and large distance. In addition, we have also
found the exact solution for (3) by including the chemotaxis, the movement in
responding to chemical gradient (Ngamsaad and Khompurngson, 2012b). However, as
we introduced, the conventional model does not deal with the shape effect of the
bacterial cell. The bacteria are the rod-shaped organisms, not the ideal point-like

particle. The expansion of their colony should be influenced by the cell-to-cell

interaction.

3. Model

Based on the experimental evidences, the shape of bacteria involves the cell
ordering and clustering in the colony (Volfson et al., 2008; Zhang et al., 2010). Recently,
it has been observed that the expansion of the bacterial colony is caused by cell
pushing rather than by cell migration (Su et al., 2012). Therefore, the effect of the
mechanical interaction could dominate the diffusion. The biomechanical models have
been proposed for the investigating the pattern formation in bacterial colony (Volfson et
al., 2008; Farrell et al., 2013). Their model are formulated by the coupled nonlinear
hydrodynamic equations and the reaction-diffusion equations. The governing equations
in the model of Farrell et al. are of interest, which the mechanical interaction can be
contributed to the model via the pressure (Farrell et al., 2013).

In our approach, the bacterial populations are viewed as the continuum fluid that
flows and reproduces to increase the cell numbers. The dynamics of system is
governed by the continuity equation (Murray, 2002)

9% 0=
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P ) describes the

where v(x,t) is the local velocity of the bacterial population and g(
net rate of growth and death of bacteria. As usual, the net rate of the growth and death
obeys the logistic law. Imagine that, the bacteria are growing in the dense colony and
the number of cells are increasing by cell division. The flow of the bacterial population is

driven by the gradient of internal pressure p(p)

. When a bacterium tries to move, it
collides with the surrounding cells. In this scenario, the velocity of the bacteria is
strongly slowed down by the mechanical friction force A Balancing this two forces,

we arise

0
~yv=—-p(p)

ox : (5)
where 7 is friction constant. Equation (5) is similar to the Darcy’s law that describes the
fluid flow in porous media.

In our model, the bacterial cells are hard elastic rods in one-dimensional space,
which consists of non-overlapping line segment of average lengthO . This system is
known as the Tonks’ gas, which the pressure (or equation of state) is provided by

yo,
p(p):kBT
1—p0', (6)

where ki is Boltzmann constant and I is temperature (Tonks, 1936). We note that, in
one-dimensional space, the density means the numbers per unit length and the
pressure is force per unit length or line tension. The bacterial colony is grown under the
constant temperature (or isothermal condition) thus 7 is constant. Combining (4), (5)

and (6), we arise the nonlinear partial differential equation

ot ox| ox\1-po Pur e

where k:kBT/y. Equation (7) is still called the reaction-diffusion equation but it

-1
incorporates the shape effect of bacterial cell through the factor (1_'00-) . This factor

goes to infinity for P _)1/0-. Therefore, the maximum density is as p,, =1/0,, where
o,, <o . Physically, it means one cell can occupy the region with length that is equal
to o,, maximally. This limits the density to 0 < p < p,, . If the shape does not matter,
by setting cell length to zero (O = 0), equation (7) recovers the conventional model (3)

=1

for 4 equivalently. The exact solution in this case has been found from our previous

work (Ngamsaad and Khompurngson, 2012a).



4. Results and Discussion

In this section, we briefly discuss the main results that we have found in this
research. To avoid replication of our published paper (Ngamsaad and Suantai, 2016),
the full details for technical calculations are omitted and listed in that paper in the

Appendix, instead.

4.1 Analytical solutions

For convenience in further analysis, we introduce the dimensionless quantities:

u=plp,, e=op, =clo,, ' =0 and ¥ V}/aa/(kBT)x. Thus & is called the

packing fraction. Applying these quantities to (7), we obtain the dimensionless reaction-
diffusion equation
% =%[—(1 —b;u)z %}+u(l—u>, (8)

where the unknown parameters have been hidden. Now the dimensionless density is
limited to 0=<u <1 At the initial state, the density is low, thus & << 1. This condition
should provide the analytical solution to (8) by using the same analysis as our previous
work (Ngamsaad and Khompurngson, 2012a). Here, we focus on the travelling solution
of (8) that is u(x',t’)z ¢(z) and z=x"—ct' where ¢ is the wave speed. From (8), we

have

d{ 4 d¢}+c@+¢(l—¢) 0. (9)

& (Cepy & |
The analytical solution of (9) can be obtained by using the perturbation method as
described in our published paper (Ngamsaad and Suantai, 2016). From the analytical

solution, the density profile is given by
1- exp[b(z -z, )]

, z<z
#z)=11-aexplb(z =) ° (19)
0, z>2z,
where a = 6—8 b= ﬂ and z,is initial front position. Moreover, we obtain the
5+2¢ 542
analytical form of the front speed (Ngamsaad and Suantai, 2016)
4e—6)In(1-&)+&” -
o(s) = 5 (4 —6)In(1-&)+&” —6¢ (1)

V26 (262 116 +8)In(1-£)- 75> + 8¢

From (11), we see that the front speed is dependence on the packing fraction ¢.

10



4.2 Numerical solutions

To see the actual dynamics of the model, we have solved the full equation (8)
by using a nonstandard fully implicit finite-difference method as described in our
published paper (Ngamsaad and Suantai, 2016). We define the discrete density as
ul = u(xl,tn) where x; = jox, t, =ndt, o is grid spacing and ot is time step. Then,
equation (8) in the discrete form is given by

ou! ~ 2 { ﬁu”“
J

'1 —_—
o' ox' ox'

:|+fn n+1 (12)

where M7 =u; /(1 —gu; )2 and f/ =1-u’. Equation (12) can be discretized further
n+l n
M.~ _u.‘ n+l n+1 n n+l n+1 n n+1
: 5 : ( [Mj+1/2( Ui —U; ) M} 1/2( )]“‘f , (13)

n

where M7, , —( M7 )/2. The complete algorithm is provided in our published

paper (Ngamsaad and Suantai, 2016), listed in the Appendix.

Now, we show the results obtained from the numerical method. We have
studied the dynamics of our model by varying the fraction for 0 to 0.999999. The
demonstration of bacterial density profile is shown in Fig. 1. It was observed that the

density profile evolved with the sharp traveling wave with unchanged shape.

e =(). Jﬂ e=(.99

T T M T

\'\ |

0.6 ' ‘ 0.6

wulx,t)

= 0 =044 t =i 04 t=0) 48 =8

ofx,t)

0.0/ i I AL L, i 0.0 acl .
20 a0 50 80 00 120 140 0 50 100 150 200 250

A T
Fig. 1: The demonstration of density profiles, evolving from t=0 to t=80, obtained by using the

numerical method. The dashed lines represent the initial density profiles. The data are shown for

every t=8.

We also measured the front speed directly from the numerical results. The front speed
by varying the packing fraction is plotted in Fig. 2 in comparision with the analytical
solution in (11). We found that the front speed increased with the packing fraction and
reached a finite value as ¢ — o. The analytical results agreed with the numerical data
for the small packing fraction.

11
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Fig. 2: The front speed versus the packing fraction, &. The dashed line represents the analytical

curve generated from (11) and the circle markers represent the numerical results.

4.3 Comparison to the experimental results

Finally, we compared our theoretical results to experimental evidence. From the
experiments (Sokolov, et al., 2007; Rabani, Ariel, and Be’er, 2013), the dependence
upon the packing fraction of average (or typical) velocity in bacterial suspensions was
determined. Below a critical packing fraction <1, the average velocity of bacteria
increased with the packing fraction and reached the maximum value at the critical
packing fraction. Above this critical point, the average velocity decayed to zero as the
packing fraction approached one, due to the lack of free space. The increased front
speed relative to the packing fraction observed in our model qualitatively agrees with
the experimental observations under the former conditions. Their observations under the
latter conditions were not observed in our results, given that the front speed in our
model reached the maximum value when the packing fraction equaled one, which

represents the closest packing fraction for a one-dimensional hard-rod system.

5. Concluding remarks

We have modified the reaction-diffusion model for bacterial population dynamics
by incorporating the mechanical interaction between cells. The solutions of this model
have been solved both analytically and numerically. The theoretical results revealed that

the expansion speed of bacterial colonies was enhanced by the exclusion effect and

12



dependent upon the cell-packing fraction. These findings are qualitatively consistent with
experimental evidence.

The solutions from this equation, both analytically and numerically, could provide
better understanding of how the mechanical interactions control the structure and
pattern formation of the bacterial colony. Precisely, it helps us to understand the
spreading of bacterial density in space and time and the expansion speed of bacterial
colony. Moreover, this simple one-dimensional model can be extended to investigate

this problem in two-dimensional space for the future work.
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The effect of mechanical interactions between cells in the spreading of bacterial populations
was investigated in one-dimensional space. A continuum-mechanics approach, comprising
cell migration, proliferation, and exclusion processes, was employed to elucidate the dynam-
ics. The consequent nonlinear reaction-diffusion-like equation describes the constitution dy-
namics of a bacterial population. In this model, bacterial cells were treated as rod-like particles
that interact with each other through hard-core repulsion, which introduces the exclusion ef-
fect that causes bacterial populations to migrate quickly at high density. The propagation of

Nonlinear reaction-diffusion model bacterial density as a traveling wave front over extended times was also analyzed. The ana-

Bacterial colony lytical and numerical solutions revealed that the front speed was enhanced by the exclusion
process, which depended upon the cell-packing fraction. Finally, we qualitatively compared
our theoretical results with experimental evidence.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In recent decades, much attention has been paid to the collective behavior of bacterial populations. This system is used as the
prototype for understanding multicellular assemblies, such as tissue and biofilm [1]. The insight into the underlying mechanism
of dynamics is important to biological and medical science.

To cope with unfavorable environmental conditions, bacterial colonies generate varieties of pattern formations [2,3]. The spa-
tiotemporal pattern formation in bacterial colonies results from cell migration and proliferation. These dynamics at a continuum
level can be described by reaction-diffusion processes [2-4]. The simplified model [2] relied on a density-dependent (or degen-
erate) reaction-diffusion equation [5-9], which was an extension of the classical Fisher-KPP equation [10,11]. These well-known
solutions [7,8] revealed that bacterial density evolves as a sharp traveling wave with constant front speed [2]. In our previous
work, we found an explicit space-time solution for the generalized Fisher-KPP equation in one-dimensional space [12]. This so-
lution evolves from a specific initial condition to a self-similar object that converges to the usual traveling wave on an extended
time scale. Although capable of explaining these dynamics, the conventional model omitted the size of the bacterial cell. In real
systems, most bacterial cells are rod shaped and grow in dense environments. Accordingly, the mechanical interactions between
cells could play crucial roles in the spreading of bacterial colonies.

Recent experimental and theoretical studies showed that mechanical interactions between cells have important roles in the
collective behavior of bacterial colonies [13-18]. The dependence on the elastic modulus of the front speed has theoretically
been found [19]. It mentions that the migration of bacteria is caused by cell pushing rather than self-propulsion in dense colonies
[14,17,18]. Therefore, we speculate that the exclusion process that prevents the overlapping of cells could play a crucial role in
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the spreading of bacterial colonies. This issue motivates us to extend the conventional density-dependent reaction-diffusion
equation [5-9] by incorporating the cell size into the investigation of the dynamics of bacterial populations.

In this work, we considered the systems of bacterial cells growing on a thin layer of nutrient-rich fluid medium. The bacteria
increased in population through cell division and interacted through hard-core repulsion (steric interactions), which resulted
in exclusion effects and consequent non-overlapping of cells. Although bacteria are self-propelled particles [20], in colonies of
densely packed or non-motile cells, bacterial migration was caused by cell pushing, resulting from cell growth and division,
rather than self-propulsion [14,17,18]. Thus, the bacteria behave similarly as passive particles or non-motile cells in high density
environments. Apart from cells, Bruna and Chapman [21] observed that the self-diffusion of hard spherical Brownian particles in
a dilute regime decreased as the density increased, due to the diffusion of any single particle being impeded by collisions with
other particles. However, these collisions encouraged the particle to move toward low-density regions, resulting in this biased
migration being faster than self-diffusion and enhancing overall collective diffusion. Guided by the work of Bruna and Chapman
[21], we propose that bacterial cells move based on hard-core repulsion and without self-propelled motility in dense colonies.

After incorporating exclusion processes in cell (or particle) dynamics, altered diffusion coefficients in the continuum limits
were found [22-29]. The enhancement or slowing of diffusion depends upon cell length and the available moving distance, as
shown by lattice-based analysis [28]. In some models, diffusion diverges to infinity in closely packed densities [22,23,29]. Singular
diffusion has also been modeled through the migration of bacterial biofilm [30,31] and glioblastoma tumors [32]. However, the
effect of diverged diffusion on the propagation speed of cell populations remains unknown.

To address this question, we employed a continuum-mechanics approach to cell proliferation [33] in order to investigate the
spreading of bacterial populations in the presence of exclusion processes. Additionally, we analytically and numerically eluci-
dated the front speed of bacterial colony expansion in terms of cell size and discussed the consistency of our theoretical results
with the experimental evidence.

2. Continuum mechanical model
2.1. Constitution equations

From a macroscopic view, bacterial populations constitute continuum fluid capable of reproducing in order to increase cell
numbers. By pushing each other following cell division [14,17,18], population pressure increases as a result of collisions between
cells and forces cells to move. During movement, cells encounter friction from the surrounding fluid medium and the substrate
surface. For the sake of simplicity, we considered the expansion of bacterial colonies in one-dimensional space, regardless of cell
orientation. Adapting from [33], the constitution equations that describe the evolution of the cell density, p(x, t), and collective
velocity, V(x, t), of the bacterial population at position x and time ¢ are given by

dp _ (V)

_dp _0dpap
=P P (2)

where I'(p(x, t)) represents the growth function, p(p(x, t)) represents the internal population pressure, and y represents the
damping constant. Eq. (1) represents the continuity equation with the growth term. We assume that bacterial growth obeys the
law of population growth as described by a logistic function: I'(p) =« p(1 — p/pm), where k is the rate constant and p, is the
maximum density [9,33]. Eq. (2) arises from the force balance between Stokes’ law for friction and the pressure gradient, which
is similar to Darcy’s law describing fluid flow through a porous medium.

We model the bacterial cells as non-overlapping hard-rod particles of average length, o, that interact through hard-core
repulsion. In high-density environments, bacterial self-propulsion can be ignored, since it is dominated by collision between
cells. This defines the bacterial cell as a passive particle or non-motile cell that obeys the laws of thermodynamics. For hard-rod
fluid in one dimension, the exact pressure is given as

,OkBT
1-0p’

p(p) = 3)
where kg is the Boltzmann constant and T represents the temperature [34-36]. In our case where bacterial cells behave as
passive particles, the temperature relates to the average translational kinetic energy of a cell, (E;) = (1/2)kgT, we assume that
the temperature is constant in our system. The pressure in Eq. (3) diverges to infinity at closely packed density: p — 1/o. Notably,
in dilute density, p — 0, Eq. (3) recovers the pressure of an ideal gas: p = pkgT. As shown in [37-39], the pressure for dilute active
particles is similar to the ideal gas, except that the source of kinetic energy comes from the swim speed, Uy: kgT o Ug [37,38]. As
will be shown later, the temperature source is not important; as long as it is constant, the dynamics of our model are invariant.

2.2. Dimensionless equations

We define the maximum density as pn = 1/0m, where o, represents the average length occupied by one cell and o, >
o > 0. The logistic law limits the growth of bacteria, such that 0 < p < p, < 1/o. For convenience of further analysis, we
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introduce the following dimensionless quantities: 0 < u = p/pm < 1, v = [y /(k pmksT)|'/2V,0 < € =0 ppm = 0 Jom < 1.t/ = kt,
and X' = [(ky)/(omksT)]/2x. In one dimension, the packing fraction, (¢), represents the length fraction, which is equivalent to
the area and volume fractions in two and three dimensions, respectively. We then rewrite Eq. (1) and (2) by employing Eq. (3) in
dimensionless form:

%ltl - a(auv) +u(l—u), ()
1 ou

1 o 5

! (1 —eu)® 9x (5)

where the prime has been dropped. From Eq. (5), the migration of bacterial populations is biased to move down the density
gradient and enhanced by the exclusion process, implied from the factor 1/(1 — eu)2. This factor increases with the density and
diverges to infinity as € — 1 at u = 1, which causes the bacterial population to migrate faster at higher density. This singularity
has appeared in similar models using different approaches [22,23,29-32,40]. Fortunately, the velocity in Eq. (5) is finite, since
dufdx — 0 at u = 1. The density inside of the colony reaches a saturated value, except in proximity to the colony edge. In this
regime, the density distribution is homogeneous and its gradient approaches zero.

Substituting Eq. (5) into Eq. (4), we obtain a nonlinear partial differential equation:

du 0 Jau
% E))((M(u)ax) +g(u). (6)

where M(u) = u/(1 — eu)? and g(u) = u(1 — u). Eq. (6) is in the same form as the density-dependent reaction-diffusion equation,
however, the migration or diffusion coefficients differ. This is unrelated to the mean-square displacement, however, M ~ pdp/d p.
In this model, the populations migrate based on the collision between cells as opposed to a random walk. A similar coefficient
represents the contribution of hard-core repulsion between cells to the migration of myxobacteria in a dense phase [40]. Eq. (6)
is degenerate based on M(0) = 0, which results in the sharp interface separated between occupied and cell-free regions. In a very
dilute system (¢ — 0), Eq. (6) recovers the conventional degenerate Fisher-KPP equation [7-9], for which an explicit solution was
determined in our previous work [12].

3. Traveling-wave solution

We focused on behavior of the system over extended times, during which the population density propagates as a traveling
wave: u(x, t) = ¢(z), where z = x — ct and c represent the front speed [9]. Substituting the traveling-wave solution into Eq. (6),
we obtain

( @) ¢) % g =0 ™)

In the degenerate model, the density must vanish at the finite position, z*( < oo), that undergoes the sharp interface. We
then consider the density profile that satisfies the following conditions: ¢( — oc0) =1, ¢(z) = 0 for z > z*, %d)( —o0) =0, and

4 5 ¢ (z*) # 0. Additionally, for € € [0, 1), M(¢( — o0)) < oo and M(¢(z)) =0forz>z* [41]. Multiplying Eq.(7) by M(¢)d¢/dz and

then integrating with respect to z from —oo to z*, we obtain cf M(¢)( )zdz + fz* M(¢)g(¢) ¢z + 1 3 (M(d)) )2
Under these density profile conditions, the last term on the left- hand side i 1s zero. Finally, we obtam the front speed

Jo M(¢)s(¢)do
Jo M()(%)de

To obtain the closed-form of the front speed, c, the solution for the density gradient, d¢/dz, is required.

3.1. Approximate solution

Although the exact solution of Eq. (7) remains unknown, we can find the approximate solution by employing the perturbation
method [42]. By defining w(¢) = d¢/dz, we rewrite Eq. (7):

M(¢)W% +M (@)W’ +cw +g(¢) =0, (9)

where M’ (¢) = dM(¢)/d¢. The migration coefficient can be written in the expansion form: M(¢) ~ d)(l + 2¢€ + 3¢2€? + .. )
We then look for the solution of Eq. (9) in the power series of €:

w(@) = wo(@) +wi(P)e +wa(@)e® +---, (10)
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C=Co+Cl€ +Cr€%+ -, (11)
where w;(¢) and ¢;, that i € {0,1, 2, ..., co} are coefficients to be determined. Substituting Eq. (10) and (11) into Eq. (9), we
obtain the equation for each order as follows: at €°,

¢Wo O w2+ cowo+ (1 —¢) = (12)

¢

and, at e!,

d d
pwo N (gb Wo 4 owp + c0>w1 +2¢2 + 4pWE + c;wp = 0. (13)

dé de

Eq. (12) has the known solutions: wy = (1/+/2)(¢ — 1) and ¢y = 1/+/2 [7-9,42]. Substituting these solutions into Eq. (13), we
obtain a linear first-order ordinary differential equation:

Wodd)

dW1

d(p—1)—1 o " (3 — Ywy +3vV2¢> — 5v2¢% + 2vV2 +¢1)p — ¢ = 0. (14)
After finding the integrating factor [43], we obtain its solution:
1 C 3f 4 3 q 7f )
Wl(d)):W b =9t +2v2¢° - ¢+ (C1+\/j)¢—c1 ; (15)

where C is the integral constant. To prevent the singularity at ¢ = 0 and ¢ = 1, we require that C = 0 and —%ﬁz +2v2 (%1 +
7Tﬁ) + (¢1 + +/2) — ¢; = 0. Thus, we obtain

2
1= ——. 16
NG (16)
Substituting Eq. (16) into Eq. (15), we obtain
2
w =———(@-1)3p -1). 17
1(¢) 5ﬁ(¢> )3 -1) (17)
Finally, gathering all terms, we obtain the approximate solutions with the correction of O(¢?2)
_dp  6(p—1) /54 2¢ 5
~ %5z (s e9) o e
1 2
C:—1+76>+O€2. 19
75 (1+5¢) + o) (19)

The density gradient approaches zero when the density reaches the maximum value, ¢ — 1, as expected. By using w(¢) = d¢p/dz,
we can calculate the approximate density profile:

1—exp [b(z—20) |
¢(z) = { l—aexp[b(z—zg)] ’ Z=20 (20)
) Z > Zp,

wherea= % b= 23

Sroe sf , and zy represents the initial front position where ¢ (zg) =

3.2. Front speed

The front speed is the collective velocity at the edge of the colony, ¢ = v(¢(z*)) = v(0). Based on the correction of 0(e2)
from Eq. (19), the front speed increases linearly with packing fraction (€). However, substituting Eq. (18) into Eq. (8) and after
integration, we can obtain a more precise front speed:

5 (4€ —6)In(1—€) + €2 — 6
V2e (262 —11€ +8)In(1 —€) — 7€2 + 8¢~

c(e) = (21)

The front speed depends upon the packing fraction of a cell. Therefore, the front speed recovers the usual value, that cy = 1/v/2 ~
0.7071, in a very dilute regime, as € — 0[7-9,42]. In a closely packed regime, as € — 1, the front speed approaches a finite value,
that ¢(1) = 10/+/2 ~ 7.071, and increases by a factor of 10 from the dilute regime.
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Fig. 1. The demonstration of density profiles, u(x, t), evolving from t = 0 to t = 80, obtained by using the numerical method. The dashed lines represent the
initial density profiles. The data are shown for every t = 8. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article).

4. Numerical results and discussion

As the correction of our approximate solutions is limited to O(e?), it is counterintuitive, given that the model is designed
for capturing dynamics at high density. To obtain the actual results at high density, we solved Eq. (6) directly and subjected
the solution to a zero-flux boundary condition using the numerical method. In Eq. (6), the migration coefficient increases with
density, which is inefficient when solving with an explicit finite-difference scheme [44]. Unfortunately, solving with the stan-
dard implicit-numerical scheme is also difficult because of the factor 1/(1 — eu)z. We found that the simplest algorithm that
overcomes these obstructions is the nonstandard fully implicit finite-difference method [30]. This algorithm has proven stable
enough to explore the dynamics at high-packing fractions. The detailed algorithm is described in the Appendix.

Although our model is not expected to be accurate for dilute systems, since it has neglected bacterial self-propulsion, we
focused on bacterial population dynamics by varying the values of the packing fraction, € € [0, 1). For our computation, we
chose the spacing step and the time step, such that §x = 0.05 and §t = 0.01, respectively. The computations were performed on
3,000 grids for € € [0, 0.5] and on 5,000 grids for € < (0.5, 0.99], with 8,000 iterations. For € = 0.999999, the computation was
performed on 120,000 grids with 150,000 iterations. The initial density profile, ug(x), was set to a step function:

o (x) = {}) s (22)
where r( represents the initial front position. To ensure that it was far enough from the boundary at origin, we set ry = 50.

The demonstration of the density profiles, obtained from the numerical method, is shown in Fig. (1) for dilute systems
(e =0.10) and dense systems (€ = 0.99). It was observed that the density profile evolved with the sharp traveling wave with
unchanged shape. The front position, r(t), was determined by the first position where the density fell to zero. Due to numeri-
cal deviation, we measured the first position where the density was 1 x 1076, or u(ry, t) <1x 1076, The front positions were
collected for every t = 1. To avoid the transient effects of the initial stage, the last 50 data points were selected for fitting with
the linear equation, r; = ct + ro. The corresponding front positions of the density profiles in Fig. (1), as a function of time, were
fitted well using the linear equation, as demonstrated in Fig. (2). This implied that the density propagated with constant front
speed, which was equal to the slope of the linear equation. We checked the accuracy of our algorithm by considering the front
speed under conditions of € = 0. In this case, the numerical front speed was equal to 0.7074, which displayed an error of 0.04%
of the exact value (cy = 1/+/2 ~ 0.7071 [7-9,42]). Finally, we explored the dynamics of bacterial populations in a closely packed
regime. We set € = 0.999999, in order to avoid dividing by zero for the factor 1/(1 — eu)? when u = 1.In a closely packed system,
the numerical front speed was equal to 3.8115, which was less than the analytically predicted value due to the inaccuracy of the
approximate solution. The plot of the numerical front speed versus the packing fraction, as compared with the analytical curve
generated from Eq. (21), is shown in Fig. (3). We found that the front speed increased with the packing fraction and reached
a finite value as € — 1. The analytical results agreed with the numerical data for the small packing fraction (¢ « 1), since the
correction of our analytical solution was only O(e2).

Finally, we compared our theoretical results to experimental evidence. From the experiments [45,46], the dependence upon
the packing fraction of average (or typical) velocity in bacterial suspensions was determined. Below a critical packing fraction
<1, the average velocity of bacteria increased with the packing fraction and reached the maximum value at the critical packing
fraction [45,46]. Above this critical point, the average velocity decayed to zero as the packing fraction approached one, due to
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Fig. 2. The front position versus time, corresponding to the numerical density profiles in Fig. (1), from t = 0 to t = 80. The data are shown for every t = 1. The
markers represent numerical values and the solid lines represent the fitting lines for the last 50 data points. R? is the correlation coefficient. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article).
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Fig. 3. The front speed versus the packing fraction, €. The dashed line represents the analytical curve generated from Eq. (21) and the circle markers represent
the numerical results. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).

the lack of free space. The increased front speed relative to the packing fraction observed in our model qualitatively agrees with
the experimental observations under the former conditions. Their observations under the latter conditions were not observed in
our results, given that the front speed in our model reached the maximum value when the packing fraction equaled one, which
represents the closest packing fraction for a one-dimensional hard-rod system. Nevertheless, our data showed that the numerical
front speed in a closely packed regime increased by a factor of ~ 5 relative to the dilute regime, which qualitatively agrees with
experimental observations [45,46| showing increases in average velocity by a factor of ~ 3 in suspensions of spherical-shaped
bacteria [46] and in typical velocity by a factor of ~ 5 in suspensions of rod-shaped bacteria [45].

5. Conclusion
This study demonstrated the effect of mechanical interactions between cells based on the spreading of bacterial populations

by employing a continuum-mechanics modeling approach. In dense colonies, bacterial migration is dominated by hard-core
repulsion between cells, which causes exclusion processes. The analytical and numerical results revealed that the expansion
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speed of bacterial colonies was enhanced by the exclusion effect and dependent upon the cell-packing fraction. These findings
are qualitatively consistent with experimental evidence.
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Appendix A. Nonstandard fully implicit finite-difference scheme

We define the discrete density as u’]? = u(x;,ts), where x; = jéx, tny =ndt, dx is a spacing step, §t is a time step, j €
{0.1,2,...,J},ne{0,1,2,...,N}, andJ and N are integers. We then rewrite Eq. (6) as

AU IY VAL S R
S~ o M | (A1)

where M’]? = M(u']?) = u]’?/(l - eu'})2 and fj’? =1- u'}. Using the standard discretized scheme for the differential operators, we
obtain

u™t —yn 1 3 3
j j 1 1
5 = 5X<M;+1/2 % 711/2 M;’ 1/28 ) +f]n um+l (A.2)
We discretize the remain gradient terms in Eq. (A.2) and then have
n+1
Ui - ul]? _ 1 [M" (un+1 n+1) M ( unt _ n+1)] + f” n+1 (A3)
St - (8x)2 J+172\7j+1 J J=172 ’
The migration coefficient at the mid-grid can be computed by
1
n _ n n
Mj 5 = 5 (M +Mj), (A4)
1
M1 = 5 (M) +Mj,). (A5)

Noting that the correction of Eq. (A.3) is O(St, (8x)?). After rearranging Eq. (A.3), we have

1 1 1
oJUiTy + 07U + Ui = uj (A.6)

where

n

_ n

@j = —UMj_y /5.
n

Bi' = —uMj.4 5.

0f =1-4tff + '“(M? 1/2 +M}+1/2)
w = 8t/(8x)%. (A7)
n _qn
We impose the zero-flux condition at the boundary grid, saying €2, that % =0or % = 0. Consequently, uf, ; =ug, 4
and Mg, 12 = M?2+1/2' We then rewrite Eq. (A.6), subjected to the zero-flux boundary condition, in matrix form:
A" U™ = U, (A.8)
where
oy 28§ 0 7
o OF By
L : , (A9)
oy O B
n n
L O 20, or |
and

U=[u u ouw ooy ], (A10)
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According to the boundary condition, 6} =1 -t f{l + ZMM?/z and 9]” =1- Stfl" + 2MMjnf1/2' The numerical density is obtained
by solving the matrix equation (Eq. (A.8)) iteratively.
To find the stability condition of this numerical scheme, we use von Neumann stability analysis:

u:} _ (k)neikjax’ (A1)

where A represents the amplification factor and k is the wave number [44]. Substituting Eq. (A.11) into Eq. (A.3), we obtain

AT =1-8tf1 —puM (e —1) + uMI_ (1 — e~*%), which can be approximated further:

ho~ [1 = 8Cf7 + 4uM? sin? (k8x/2) + 0(80)] (A12)

A stable and temporal non-oscillated numerical solution requires that 0 < A < 1 [30]. According to 0 < fjf' <landO < M? < oo,
without the growth term, ( f]’?), this algorithm is unconditionally stable as long as §x « 1 [44]. With the growth term, the solution
slowly grows to a finite value as long as §t « 1. Based on Eq. (A.12), this algorithm is adequately stable for this type of problem.
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