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Abstract
Project Code : TRG5780041
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E-mail Address : chairatm@nu.ac.th
Project Period : June 02, 2014 – June 01, 2016

ในงานวิจัยนี้ ผูวิจัยมีความสนใจในการสรางแบบจำลองทางคณิตศาสตรเพื่ออธิบายการแพรระบาดของ
โรคไขหวัดนกสายพันธใหมและศึกษาการรักษาและควบคุมการแพรระบาดอยางเหมาะสม เพื่อลดจำนวน
ของผูติดเชื้อและปองกันการแพรระบาดตอไป ซึ่งในงานวิจัยนี้ ผูวิจัยไดศึกษางานวิจัยตางๆมากมายที่เกี่ยวของ
และคนควาหาขอมูลจากเว็บไซตที่สาคัญตางๆเพื่อนำขอมูลมาประกอบในการทางานวิจัยในครั้งนี้ ซึ่งแบบ
จำลองที่ผูวิจัยไดสรางขึ้น สามารถอธิบายการแพรระบาดของโรคไขหวัดนกสายพันธใหมไดดีและมีเสถียรภาพ
ในการนำไปใชงาน ซึ่งสามารถยืนยันไดจากบทพิสูจนทางคณิตศาสตรและผลวิเคราะหเชิงตัวเลข การหาคา
เหมาะสมในการรักษาดวยยาตอตานไวรัสไดรวมในงานวิจัยนี้ดวยเชนเดียวกัน เพื่อเปนประโยชนตอการวางแผน
ในการรักษาผูปวยอยางเหมาะสม

In this work we have studied the spread of bird flu or avian influenza by first we
considered the spread from birds to humans and to have simpler model we have consid-
ered only human-human transmission for our second model. The latter makes analysis
easier for global stability. For both models, we have determined the reproductive num-
bers of both epidemic and endemic equilibrium points. The numerical simulations are
used to verify our analyzes and optimal solutions are computed by optimal control study.

Keywords : Optimal control study, avian influenza, infectious disease.
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Executive summary

In this research, we have studied several avian influenza mathematical models and
we found that many of them have not included treatment strategies to control the dis-
ease outbreaks. Therefore, in our study, we have presented a mathematical model for
avian influenza that involves both bird and human populations and that incorporates
the effects of latency and vaccination for humans, using a system of six nonlinear dif-
ferential equations. Our model employs an SI model for birds and an SEIRS model for
humans, and both bird-to-human and human-to-human transmission routes are included
in the system. We have analyzed the epidemic and endemic dynamics of the combined
model; particularly, we have established the local and global stabilities based on the
basic reproductive numbers. In addition, we have performed an optimal control study
to explore the optimal vaccination strategy in order to contain the disease outbreak in
humans. Our results show that human vaccination, when strategically deployed, can
signifficantly reduce the numbers of exposed and infectious people and help eradicate
the disease outbreak. Throughout the paper, we have utilized both analytical and nu-
merical means so as to gain deeper insight into the disease dynamics. There are several
limitations in this study which we hope to overcome in future work. We have assumed
that vaccination confers lifetime immunity, though, more realistically, we could consider
imperfect vaccination. In such a case, a new compartment representing the vaccinated
class can be added into the model, where vaccinated individuals can lose immunity over
time and re-enter the susceptible class. For simplicity, we have only considered bi-linear
incidence in this work. Similar modeling and analysis techniques can be extended to
other types of incidences (such as half saturation) for more careful investigation of the
disease mechanism. In addition, differentiating LPAI and HPAI dynamics and incorporating
the mutation of virus strains into our model will allow more detailed study, and possibly
lead to deeper understanding of avian influenza.
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Objectives

1. We will study and investigate several avian mathematical models.

2. We will formulate an avian mathematical model with controls.

3. We will conduct numerical simulations to verify our results.

4. We will conclude our resutls and provide some suggestions.
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Chapter 1
Introduction

Avian influenza is an infectious viral disease of birds especially wild water fowl such
as ducks and geese, often causing no apparent signs of illness. Avian Influenza viruses
can sometimes spread to domestic poultry and cause large-scale outbreaks of serious
disease. Some of these Avian Influenza viruses have also been reported to cross the
species barrier and cause disease or subclinical infections in humans and other mam-
mals. Avian Influenza viruses are divided into 2 groups based on their ability to cause
disease in poultry: high pathogenicity or low pathogenicity. Highly pathogenic viruses
result in high death rates (up to 100% mortality within 48 hours) in some poultry species.
Low pathogenicity viruses also cause outbreaks in poultry but are not generally associ-
ated with severe disease.

The H5N1 virus subtype, a highly pathogenic Avian Influenza virus, first infected
humans in 1997 during a poultry outbreak in Hong Kong SAR, China. Since its widespread
re-emergence in 2003 and 2004, this avian virus has spread from Asia to Europe and Africa
and has become entrenched in poultry in some countries, resulting in millions of poultry
infections, several hundred human cases, and many human deaths. Outbreaks in poul-
try have seriously impacted livelihoods, the economy and international trade in affected
countries.

The H7N9 virus subtype, a low pathogenic Avian Influenza virus, first infected 3
humans 2 residents of the city of Shanghai and 1 resident of Anhui province in March
2013. No cases of H7N9 outside of China have been reported. Containment measures,
including the closure of live bird markets for several months, have impacted the agri-
culture sectors of affected countries and international trade. Continued surveillance for
H7N9 will be necessary to detect and control the spread of the virus.

THE CAUSE OF THE AVIAN INFLUENZA DISEASE
Bird flu can be transmitted from livestock to wild birds and also to pet birds,

and vice-versa. The virus spreads through infected birds, via their saliva, nasal secretions,
feces, and feed. Birds become infected when they are in contact with contaminated
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excrements or secretions, or tainted surfaces. Domesticated poultry becomes infected
via direct contact with infected waterfowl, other infected livestock, or tainted surfaces of
cages and other farming equipment and installations.

There are three types of influenza viruses: A, B and C. Wild aquatic birds particu-
larly certain wild ducks, geese, swans, gulls, shorebirds and terns are the natural hosts for
all known influenza type A viruses. Influenza A viruses are divided into subtypes on the
basis of two proteins on the surface of the virus: hemagglutinin (H) and neuraminidase
(N). For example, an “H7N2 virus” designates an influenza A virus subtype that has an H
7 protein and an N 2 protein. Similarly an “H5N1” virus has an H 5 protein and an N 1
protein. There are 18 known H subtypes and 11 known N subtypes. Many different com-
binations of HA and N proteins are possible. All known subtypes of influenza A viruses
can infect birds, except subtypes H17N10 and H18N11, which have only been found in
bats. Only two influenza A virus subtypes i.e. H1N1 and H3N2 are currently in general
circulation among people. Some subtypes are found in other infected animal species.
For example, H7N7 and H3N8 virus infections can cause illness in horses, and H3N8 virus
infection can also cause illness in dogs. Three prominent subtypes of avian influenza A
viruses are known to infect both birds and people.

RISK FACTORS FOR HUMAN INFECTION
The primary risk factor for human infection appears to be direct or indirect ex-

posure to infected live or dead poultry or contaminated environments, such as live bird
markets. Controlling circulation of the (H5N1) and (H7N9) viruses in poultry is essen-
tial to reducing the risk of human infection. Given the persistence of the (H5N1) and
(H7N9) viruses in some poultry populations, control will require long-term commitments
from countries and strong coordination between animal and public health authorities.
Although avian influenza A viruses usually do not infect humans, rare cases of human
infection with these viruses have been reported. Most human infections with avian in-
fluenza A viruses have occurred following direct or close contact with infected poultry.
Illness in humans has ranged from mild to severe.

The spread of avian influenza A viruses from one ill person to another has been
reported very rarely, and has been limited, inefficient and not sustained. However, be-
cause of the possibility that avian influenza A viruses could change and gain the ability
to spread easily between people, monitoring for human infection and person-to-person
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transmission is extremely important for public health.

SYMPTOMS
The reported signs and symptoms of low pathogenic avian influenza A virus infec-

tions in humans have ranged from conjunctivitis to influenza-like illness e.g. fever, cough,
sore throat, muscle aches to lower respiratory disease (pneumonia) requiring hospitaliza-
tion. Highly pathogenic avian influenza A virus infections in people have been associated
with a wide range of illness from conjunctivitis only, to influenza-like illness, to severe
respiratory illness e.g. shortness of breath, difficulty breathing, pneumonia, acute respi-
ratory distress, viral pneumonia, respiratory failure with multi-organ disease, sometimes
accompanied by nausea, abdominal pain, diarrhea, vomiting and sometimes neurologic
changes (altered mental status, seizures). H7N9 and Asian H5N1 have been responsible
for most human illness worldwide to date, including the most serious illnesses and deaths.

TREATMENT
Treatment of patients with severe influenza e.g. those requiring hospitalization

presents multiple challenges. The effect of specific antiviral strategies in serious or life-
threatening influenza is not established from clinical trials conducted to support licensure
of oseltamivir and zanamivir, as those studies were conducted primarily among previously
healthy outpatients with uncomplicated illness. However, a number of more recent ob-
servational studies have reported that oseltamivir treatment up to 96 hours after illness
onset of patients hospitalized with suspected or confirmed influenza is associated with
lower risk for severe outcomes. For this reason, recommendations in this report do not
necessarily represent FDA-approved uses of antiviral products but are based on published
observational studies and expert opinion and are subject to change as the developmental
status of investigational products and the epidemiologic and virologic features of influenza
change over time. Initiation of antiviral treatment as early as possible is recommended
for hospitalized patients. However, antiviral treatment might be effective in reducing mor-
bidity and mortality in hospitalized patients even if treatment is not started until more
than 48 hours after onset of illness. Data from observational studies indicates the benefit
of antiviral treatment for hospitalized persons even when treatment is delayed. Careful
attention to ventilator and fluid management and to the prevention and treatment of
secondary bacterial pneumonia also is critical for severely ill patients.
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PREVENTION
Currently, there is no disease bird flu vaccine that has been allowed to be used

in General, but in the near future is expected to test the vaccine in people. Best flu
vaccine used in the vaccine is a mixture of H1N1 and H3N2 strains B, which should be
injected in the Group at risk like a professional involved with chicken, duck, goose, all
poultry and birds quail farmers who end salvage staffing medical patient care bird flu. In
the area of medicine influenza and bird flu are only 2 – 3 types. For Thailand We use
the drug oseltamivir, which is used to eat. And the first phase, in the disease. However,
this type of medication should have surveillance because it was originally reported to be
drug resistant, such as reports from Japan found infections influenza drugs oseltamivir to
anti-malarial 18 percent, so those who are in high risk groups should get a vaccination
flu prevention. Medical personnel have the opportunity to bird flu infection. Although
it does not happen very often but I do work with caution, according to the international
standard (universal precaution).



Chapter 2
Basic Concepts

In this chapter, we will present some interesting mathematical models that de-
scribes the antiviral influenza dynamics. We will start with an early compartmental model
that includes only a few state equations. The more complicated antiviral influenza model
then will be studied. Finally, we will present and carefully study our model. Then, we
will extend the model and explore strategies to control an antiviral influenza outbreak.

Dr.Chairat Modnak and Dr. Jin Wang : SEIR Model[25]
They let Nh and Nb represent the population of humans and birds, respectively.

The population of birds is divided into two groups: Sb and Ib, where Sb represents the
susceptible and Ib represents the infected birds. The population of humans is classified
into three classes, susceptible (Sh), exposed (E), infective (Ih), and recoverd (R). We
let ϕh represents for vaccination control. The recovered individuals can move to the sus-
ceptible class due to the temporary immunity disapperance. Thus, their purpose model
takes the from below:

Figure 2.1: The SEIR Model
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dSb

dt
= µbNb − µbSb − βBSbIb,

dIb
dt

= βBSbIb − (µb + δb)Ib,
dSh

dt
= µhNh − βhIhSh − βBHShIb + δR− µhSh − ϕhSh,

dE

dt
= βhIhSh + βBHShIb − (µh + σ + κ)E,

dIh
dt

= σE− (µh + α + γ)Ih,
dR

dt
= κE+ γIh − µhR− δR,

Table 1 Biological meaning of all parameters and state variables.

Parameter Biological meaning
Nb Total population of birds
Nh Total population of humans
Sb Susceptible birds
Sh Susceptible humans
Ib Infected birds
Ih Infected humans
E Exposed individuals
R Recovered individuals
µb Natural death and birth rates of birds
βb Rate at which birds contract avian influenza
δb Additional disease death rate due to avian strain in birds
βh Transmission coefficient of the disease
βBH Rate at which bird-to-human avian influenza is contracted
σ The loss of immunity period
µh Natural death and birth rates of humans
κ The recovery rate for exposed popution
γ The recovery rate for infected population
α The disease induced morality rate
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Md.Samsuzzoha : SEIRS Model[7]
In this model, the population under study is divided into four groups: susceptible

(those at risk of contracting the disease),exposed (those who are infected but not yet in-
fectious), infective (those who are infectious and capable of transmitting the disease), and
recovered (those who have not attained permanent immunity). It has been assumed that
only susceptible populations are affected by the infectious populations. Since recovery
does not give immunity, individuals move from the susceptible- exposed-infectious class
to the susceptible class upon recovery when the temporary immunity disappears. The
model consists of the following system of ordinary differential equations:

Figure 2.2: The SEIRS Model

dS

dt
= −β

IS

N
− µS+ rN + δR,

dE

dt
= β

IS

N
− (µ+ σ + κ)E,

dI

dt
= σE− (µ+ α + γ)I,

dR

dt
= κE+ γI− µR− δR,
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and S + E + I +R = N where the variables S,E, I and R represent the proportion
of the populations in each of the four categories: susceptible individuals, exposed
individuals, infected individuals and recovered individuals, respectively. Here N

represents the total population. The parameters representation is as: β, the
transmission coefficient of the disease; µ, the natural mortality rate; r, the birth rate;σ−1

, the incubation period; κ and γ, the recovery rate for both exposed and infected
populations; α, the disease induced morality rate and δ−1, the loss of immunity period.

Table 2 Parameters used in the numerical solution.

Parameter Biological meaning Value Source
β0 Transmission coefficient 0.514000000 [?]
σ−1 Mean duration of latency (days) 2.000000000 [?]
γ−1 Mean recovery time for clinically ill (days) 5.000000000 [?]
δ−1 Duration of immunity loss(days) 365.0000000 [?]
µ Natural mortality rate per day 5.500×10−8 [?]
r Birth rate per day 7.140× 10−5 [?]
κ Recovery rate of latents per day 1.857×10−4 [?]
α Flu induced mortality rate per day 9.300×10−6 [?]
ε Degree ofseasonality 0.500000000 [?]
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Md.Samsuzzoha : SVEIRS Model[8]
The SVEIRS model for influenza proposed of the following system of nonlinear

ordinary differential equations:

dS

dt
= −ββE

ES

N
− ββI

IS

N
− ϕS− µS+ δR+ θV+ rN,

dV

dt
= −ββEβV

EV

N
− ββIβV

IV

N
− µV− θV+ ϕS,

dE

dt
= ββE

ES

N
+ ββI

IS

N
+ ββEβV

EV

N
+ ββIβV

IV

N
− (µ+ κ+ σ)E,

dI

dt
= σE− (µ+ α + γ)I,

dR

dt
= κE+ γI− µR− δR,

The diagram of this model is represented as follows:

Figure 2.3: The SVEIRS Model
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Table 3 Biological meaning of all parameters and state variables.
Parameter Biological meaning
β Contact rate
βE Ability to cause exposed by exposed individuals
βI Ability to cause infection by exposed individuals
1−βV Factor by which the vaccine reduces infection
σ−1 Mean duration of latency
γ−1 Mean recovery time for clinically ill
δ−1 Duration of immunity loss
µ Natural mortality rate
r Birth rate
κ Recovery rate of latents
α Flu induced mortality rate
θ−1 Duration of vaccine-induced immunity loss
ϕ Rate of vaccination
State variables and their biological meaning
S Proportion of susceptible population
V Proportion of vaccinated population
E Proportion of exposed population
I Proportion of infective population
R Proportion of recovered population
N Total population
S0 Number of susceptible population at time t = 0
V0 Number of vaccinated population at time t = 0
E0 Number of exposed population at time t = 0
I0 Number of infective population at time t = 0
R0 Number of recovered population at time t = 0
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Table 4 Estimated parameters value for SEIRS Model.
Parameter Value(First)1 Value (Second wave)1 Source
β 0.502000 0.5000000 Estimated
σ 0.6990000 1.0000000 Estimated
γ 0.3600000 0.3400000 Estimated
δ 0.0027400 0.0027400 ...
µ 0.0003671 0.0003671 ...
r 0.0006762 0.0006762 ...
κ 0.0001500 0.0001500 Estimated
α 0.0300000 0.0300000 Estimated
S0 4865.0000 3982.0000 Estimated
E0 9.0000000 10.000000 Estimated
I0 68.000000 79.000000 Estimated
R0 0.0000000 0.0000000 ...
1 Unit per day where applicable.

Nyuk Sian Chong Model[11]
The population of birds and humans are represented by Nb(t) and Nh(t), respec-

tively, at time t. The bird population is divided into two sub-populations: susceptible (Sb)

and infected (Ib) birds. The number of susceptibles for the bird population is increased
by new recruitment (birth), but reduced through natural death and infection (moving to
class Ib). On the other hand, the infected bird population is increased by the infection
of susceptible birds whereas reduction is caused by natural mortality and death due to
avian influenza. The total bird population at time t is formulated by Nb = Sb + Ib. The
human population is subdivided into those who are susceptible (Sh), infected with avian
strain (Ia), infected with mutant strain (Im), and recovered from avian and mutant strains
(Rh). The total population of humans at time t is given by Nh = Sh + Ia + Im + Rh.
The number of susceptibles for the human population is increased by recruitment, but
diminished by infection (moving to class Ia or Im) and natural death. The number of
infected humans with the avian strain is increased by the infection of susceptible humans
and reduced through mutation (moving to class Im), recovery from the disease (moving
to class Rh), natural death and disease death. The growth of the population of infected
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humans with mutant strain is caused by the infection of susceptible humans and muta-
tion of infected humans with the avian strain, but reduced by recovery from the disease
(moving to class Rh), natural death and disease death.

A schematic flowchart of this model is depicted in Figure 2.4. The descriptions of
the variables and associated parameters are given in Table 4.

Considering the above formulations and the flow diagram, we have the following
system of nonlinear ordinary differential equations:

dSb

dt
= Λb − µbSb −

βbSbIb
Hb + Ib

,

dIb
dt

=
βbSbIb
Hb + Ib

− (µb + δb)Ib,
dSh

dt
= Λh − µhSh −

βaShIa
Ha + Ia

− βmShIm
Hm + Im

− βbhShIb
Hbh + Ib

,

dIa
dt

=
βbhShIb
Hbh + Ib

+
βaShIa
Ha + Ia

− (µh + d+ ε+ γa)Ia,

dIm
dt

=
βmShIm
Hm + Im

+ εIa − (µh + α + γm)Im,
dRh

dt
= γaIa + γmIm − µhRh,

Figure 2.4: Flowchart of the model
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Table 5 Description of the variables and associated parameters.

Symbol Description
Sb(t) Susceptible birds
Ib(t) Infected birbs
Sh(t) Susceptible humans
Ia(t) Infected humans which avian strain
Im(t) Infected humans which mutant strain
Rh(t) Recovered humans from avian and mutant strains
Nb(t) Total bird population
Nh(t) Total human population
Λb(t) Bird inflow
Λh(t) Human recruitment rate
µb(t) Natural death rate of birds
µh(t) Natural death rate of humans
βa(t) Rate at which human-to-human avian influenza is contracted
βm(t) Rate at which human-to-human mutant influenza is contracted
βbh(t) Rate at which bird-to-human avian influenza is contracted
βb(t) Rate at which birds contract aviav influenza
Ha(t) Half-saturation contant for human with avian strain
Hm(t) Half-saturation contant for human with mutant strain
Hb(t) Half-saturation contant for birds with avian strain
α Additional death rate mediated by mutant strain
S0 Number of susceptible population at time t = 0

V0 Number of vaccinated population at time t = 0

E0 Number of exposed population at time t = 0

I0 Number of infective population at time t = 0

R0 Number of recovered population at time t = 0
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Table 6 Model parameters

Parameter Sample value References Range
Λb 1, 000 per day Bowman et al. (2005) [100, 2, 000]

Λh 30 per day Bowman et al. (2005) [1.30]

µb
1

100
per day Gumel (2009) [0.0005, 0.1]

µh
1

70×365
per day Bowman et al. [

1
75×365

, 1
65×365

]
βa 0.4 per day Gumel (2009) [0.05, 2.5]

βm 0.3× βa per day Gumel (2009) [0.01,0.5]
Ha 150, 000 intdividuals Assumed [10, 000, 500, 000]

Hm 150, 000 intdividuals Assumed [10, 000, 500, 000]

α 0.06 per day Iwami et al. (2007) [0.01, 0.1]

ε 0.01 per day Gumel (2009) [0.005, 0.05]

d 1 per day Iwami et al. (2007) (0.05, 2.5)

δb 5 per day Iwami et al. (2007) [1, 10]

γa 0.05 per day Gumel (2009) [0.01, 0.1]

γm 0.01 per day Gumel (2009) [0.005, 0.05]

βb 0.4 per day Gumel (2009) [0.05, 2.5]

Hb 180, 000 individuals Assumed [10, 000, 500, 000]

βbh 0.2 per day Iwami et al. (2007) N/A
Hbh 120, 000 individuals Assumed N/A



Chapter 3
Research methodology

3.1 Our first proposed model
From our model formulation, we next will conduct the epidemic and endemic

analysis. At the disease-free equilibrium state we have absence of infection. We let
Nh and Nb represent the population of humans and birds, respectively. The popula-
tion of birds is divided into two groups: Sb and Ib, where Sb represents the susceptible
and Ib represents the infected birds. The population of humans is classified into three
classes,susceptible (Sh), exposed (E), infective (Ih), and recovered (R). We let ϕh rep-
resents for vaccination control. The recovered individuals can move to the susceptible
class due to the temporary immunity disappearance. Thus, our purpose model takes the
form below: A diagram to illustrate our model is presented in Figure 3.1

Figure 3.1: Diagram of the model.
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dSb

dt
= µbNb − µbSb − βBSbIb (3.1)

dIb
dt

= βBSbIb − (µb + δb)Ib (3.2)
dSh

dt
= µhNh − βhIhSh − βBHShIb − µhSh − ϕSh + δR (3.3)

dV

dt
= ϕSh − βhβEβVEV − βhβIβV IhV − µhV (3.4)

dE

dt
= βhIhSh + βBHShIb + βhβEβVEV + βhβIβV IhV − (σ + µh + κ)E (3.5)

dIh
dt

= σE − (α + µh + γ)Ih (3.6)
dR

dt
= κE + γIh − µhR− δR (3.7)

Written in a vector from, the above equations become

dX

dt
= F (X) (3.8)

with

X = (S, V, E, I, R)T
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Table 7: Parameter symbols

Symbol Parameter
Nb Total birds population
Nh Total humans population
Sb Susceptible birds
Sh Susceptible humans
V Vaccinated population
E Exposed individuals
R Recovered individuals
Ib Infected birbs
Ih Infected humans
µb Natural death and birth rates of birds
µh Natural death and birth rates of humans
βB Rate at which birds contract avian influenza
βE Ability to cause infection by exposed individuals
βI Ability to cause infection by infectious individuals
βV Factor by which the vaccine reduces infection
βh Transmission coefficient of the disease
βBH Rate at which bird-to-human avian influenza is contracted
δb Additional disease death rate due to avian strain in birds
δ Duration of immunity loss
σ The loss of immunity period
κ The recovery rate for exposed population
γ The recovery rate for infected population
α Flu induced mortality rate
ϕ Rate of vaccination

3.2 Epidemic analysis
In this section, we will provide the epidemic analysis which will be conducted into two
parts: for birds and for humans.
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3.2.1 Epidemic analysis for birds
The disease-free equilibrium (DFE):

µbNb − βBSbIb − µbSb = 0 (3.9)
Nb = Sb (3.10)

and the DFE for birds is denoted by

ϵb = (Nb, 0). (3.11)

We first compute the basic reproduction number for this model using the method of
van den Driessche and Watmough. Here for birds, the associated next generation matrices
are given by

F = [βBNb] and V = [µb + δb]

Thus,

FV −1 =
1

µb + δb
[βBNb] =

βBNb

µb + δb

The basic reproduction number is then determined as the spectral radius of FV −1.
Consider:

det(FV −1 − λI) = 0 (3.12)

Thus,

λ = 0 or λ =
βBNb

µb + δb
(3.13)

Therefore the reproduction number for birds is denoted by

Rb
0 =

βBNb

µb + δb
(3.14)

Next, we will determine the reproduction for humans.

3.2.2 Epidemic analysis for humans:
The disease-free equilibrium (DFE):

µhNh − µhSh − ϕSh = 0

Sh =
µhNh

µh + ϕ



19

and

ϕSh − βhβEβVEV − βhβIβV IhV − µhV = 0

V =
ϕSh

µh

=
ϕNh

µh + ϕ

That is the DFE for humans is denoted by

ϵh = (
µhNh

µh + ϕh

,
ϕNh

µh + ϕ
, 0, 0, 0). (3.15)

We first compute the basic reproduction number for this model using the method of van
den Driessche and Watmough. Here for humans, the associated next generation matrices
are given by

F =

[
βhIhSh + βhβEβVEV + βhβIβV IhV

0

]

F =

[
∂F11

∂E
∂F11

∂I
∂F21

∂E
∂F21

∂I

]

F =

[
βhβEβV V βhSh + βhβIβV V

0 0

]

and

V =

[
(µh + σ + κ)E

−σE + (µh + α + γ)Ih

]

V =

[
∂V11

∂E
∂V11

∂Ih
∂V21

∂E
∂V21

∂Ih

]

V =

[
µh + σ + κ 0

−σ µh + α + γ

]

At the DFE point, we have

F (ϵ0) =

[
βhβEβV ϕNh

µh+ϕ
βhSh +

βhβIβV ϕNh

µh+ϕ

0 0

]
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The basic reproduction number is then determined as the spectral radius of FV −1.
Consider

V (ϵ0) =

[
µh + σ + κ 0

−σ µh + α + γ

]
detV = (µh + σ + κ)(µh + α + γ)− 0

= (µh + σ + κ)(µh + α + γ)

adj.V =

[
C11 C12

C21 C22

]T

=

[
µh + α + γ σ

0 µh + σ + κ

]T

=

[
µh + α + γ 0

σ µh + σ + κ

]

and hence,

V −1 =
1

detV
· adj.V,

=
1

g1g2
×

[
g2 0

σ g1

]
,

=

[
1
g1

0
σ

g1g2
1
g2

]
.

Let g1 = µh+σ+κ , g2 = µh+α+γ , g3 = βhβEβV ϕNh

µh+ϕ
and g4 = βhSh+

βhβIβV ϕNh

µh+ϕ
.

Thus

FV −1 =

[
g3 g4

0 0

][
1
g1

0
σ

g1g2
1
g2

]

=

[
g3
g1

+ σg4
g1g2

g4
g2

0 0

]

and
det(FV −1 − λI) =

[
g3
g1

+
σg4
g1g2

− λ

]
(−λ) = 0.
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λ =

[
g3
g1

+
σg4
g1g2

, 0

]
Thus,

Rh
0 = λ =

g3
g1

+
σg4
g1g2

.

The basic reproduction number is then determined as the spectral radius of FV −1

and it is easy to see that the reproduction number for humans is given by

Rh
0 =

βhβEβV ϕNh(µh + α + γ) + σβhSh(µh + ϕ) + σβhβIβV ϕNh

(µh + ϕ)(µh + σ + κ)(µh + α + γ)
(3.16)

and hence the basic reproduction number for our model is

R0 = max{Rb
0, R

h
0}. (3.17)

Theorem 3.1. The disease-free equilibrium of the model is locally asymptotically stable
if R0 < 1, and unstable if R0 > 1 .

We mention that the basic reproduction number, given in equations (3.17), can also
be derived by the next generation matrix analysis.

To study the global asymptotic stabillity of DFE, we will apply the following result
introduced by Castilli-Chavez et al.

Lemma 3.2. Consider a model system written in the form
dX1

dt
= F (X1, X2),

dX2

dt
= G(X1, X2), G(X1, 0) = 0

where X1 ∈ Rm denotes (its components) the number of uninfected individuals and
X2 ∈ Rn denotes (its components) the number of infected individuals including latent,
infections, etc; X0 = (X∗

1 , 0) denotes the disease-free equilibrium of the system.
Also assume the conditions (H1) and (H2) below:

(H1) For dX1

dt
= F (X1, 0),X∗

1 is globally asymptotically stable;
(H2) G(X1, X2) = AX2 − Ĝ(X1, X2), Ĝ(X1, X2) ≥ 0 for (X1, X2) ∈ Ω, where

the Jacobian A = ∂G
∂X2

(X∗
1 , 0) is an M-matrix (the off diagonal elements of A are non-

negative) and Ω is the region where the model makes biological sense.
Then the DFE X0 = (X∗

1 , 0) is globally asymptotically stable provided that R0 < 1.



22

Theorem 3.3. The disease-free equilibrium of the model is globally asymptotic stable
if R0 < 1.

Proof We only need to show that the condition (H1) and (H2) hold when R0 < 1.
In our ODE system, X1 = (Sh, V, R), X2 = (E, Ih), and X∗

1 = (
µhNh

µh + ϕ
,

ϕNh

µh + ϕ
, 0).

We note that the system

dX1

dt
= F (X1, 0) =


µhNh − µhSh − ϕSh + δR

ϕSh − µhV

−µhR− δR



The system is linear and its solution can be easily found as
For R:

dR

dt
= −µhR− δR

dR

dt
+ µhR + δR = 0

R
′
+ (µh + δ)R = 0

R(t) = R(0)e−(µh+δ)t

For S:
dSh

dt
= µhNh − µhSh − ϕSh + δR

dSh

dt
+ µhSh + ϕSh = µhNh + δR

dSh

dt
+ (µh + ϕ)Sh = µhNh + δ(R(0))e−(µh+δ)t

e(µh+ϕ)tdSh

dt
+ e(µh+ϕ)t(µh + ϕ)Sh = e(µh+ϕ)tµhNh + e(µh+ϕ)tδ(R(0))e−(µh+δ)t

d

dt
(e(µh+ϕ)t · Sh) = e(µh+ϕ)tµhNh + e(ϕ−δ)tδ(R(0))∫

d

dt
(e(µh+ϕ)t · Sh)dt =

∫
e(µh+ϕ)tµhNhdt+

∫
e(ϕ−δ)tδ(R(0))dt

e(µh+ϕ)t · Sh = µhNh ·
e(µh+ϕ)t

µh + ϕ
+ δ(R(0)) · e

(ϕ−δ)t

ϕ− δ
+ C1

Sh(t) =
µhNh

µh + ϕ
+ δ(R(0))

e(ϕ−δ)t

ϕ− δ
· e−(µh+ϕ)t + C1e

−(µh+ϕ)t



23

For V:
dV

dt
= ϕSh − µhV

dV

dt
+ µhV = ϕSh

dV

dt
+ µhV =

ϕµhNh

µh + ϕ
+ ϕδ(R(0))

e(ϕ−δ)t

ϕ− δ
· e−(µh+ϕ)t + ϕC1e

−(µh+ϕh)t

eµht
dV

dt
+ eµhtµhV = eµht

ϕµhNh

µh + ϕ
+ eµhtϕδ(R(0))

e(ϕ−δ)t

ϕ− δ
· e−(µh+ϕ)t + ϕC1e

−ϕt

d

dt
(eµht · V ) = eµht

ϕµhNh

µh + ϕ
+ eµhtϕδ(R(0))

e(ϕ−δ)t

ϕ− δ
· e−(µh+ϕ)t + ϕC1e

−ϕt

∫
d

dt
(eµht · V )dt =

∫
eµht

ϕµhNh

µh + ϕ
+

∫
eµhtϕδ(R(0))

e(ϕ−δ)t

ϕ− δ
· e−(µh+ϕ)t +

∫
ϕC1e

−ϕtdt

eµt · V =

ϕµhNh

µh+ϕ
· eµht

µh

+

ϕδ(R(0))
ϕ−δ

· e−δt

−δ
+ C2 − C1

e−ϕt

ϕ

V (t) =
ϕNh

µh + ϕ
+

ϕ(R(0))e−δt

ϕ− δ
· e−µht + C2e

−µht − C1
e−(µh+ϕ)t

ϕ

when t = 0, we have

Sh(0) =
µhNh

µh + ϕ
+ δ(R(0))

e(ϕ−δ)(0)

ϕ− δ
· e−(µh+ϕ)(0) + C1e

−(µh+ϕ)(0)

=
µhNh

µh + ϕ
+

δ(R(0))

ϕ− δ
+ C1

C1 = Sh(0)−
µhNh

µh + ϕ
− δ(R(0))

ϕ− δ

Let C1 be as above in Sh,

Sh(t) =
µhNh

µh + ϕ
+ δ(R(0))

e(ϕ−δ)t

ϕ− δ
· e−(µh+ϕ)t +

[
S(0)− µhNh

µh + ϕ
− δ(R(0))

ϕ− δ

]
e−(µh+ϕ)t

=
µhNh

µh + ϕ
+ δ(R(0))

e(ϕ−δ)t

ϕ− δ
· e−(µh+ϕ)t + S(0)e−(µh+ϕ)t

− µhNh

µh + ϕ
e−(µh+ϕ)t − δ(R(0))

e−(µh+δ)t

ϕ− δ
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When t = 0, we have

V (0) =
ϕNh

µh + ϕ
+

ϕ(R(0))e−δ(0)

ϕ− δ
· e−µh(0) + C2e

−µh(0)

− C1
e−(µh+ϕ)(0)

ϕ

=
ϕNh

µh + ϕ
+

ϕ(R(0))

ϕ− δ
+ C2 −

C1

ϕ

C2 = V (0)− ϕNh

µh + ϕ
− ϕ

(R(0))

ϕ− δ
+

C1

ϕ

Let C2 be as above in V ,

V (t) =
ϕNh

µh + ϕ
+ ϕ(R(0))

e−δt

ϕ− δ
· e−µht +

[
V (0)− ϕNh

µh + ϕ
− ϕ(R(0))

ϕ− δ
+

C1

ϕ

]
e−µht

− C1
e−(µh+ϕ)t

ϕ

V (t) =
ϕNh

µh + ϕ
+ ϕ(R(0))

e−(µh+δ)t

ϕ− δ
e−µht + V (0)e−µht − ϕNh

µh + ϕ
e−µht

− ϕ(R(0))
e−µht

ϕ− δ
+ C1

e−µht

ϕ
− C1

e−(µh+ϕ)t

ϕ

Clearly, R(t) → 0, Sh(t) →
µhNh

µh + ϕ
and V (t) → ϕNh

µh + ϕ
as t → ∞, regardless

of the values of R(0), V(0) and S(0). Thus X∗
1 = (

µhNh

µh + ϕ
,

ϕNh

µh + ϕ
, 0) is globally asymp-

totically stable.
Next, we have

dX2

dt
= G(X1, X2) =


βhIhSh + βBHShIb + βhβEβVEV + βhβIβV IhV

−(µh + σ + κ)E

σE − (µh + α + γ)Ih


∂G

∂X2

(X1, 0) = A =

[
βhβEβV V − (µh + σ + κ) βhSh + βhβIβV V

σ −(µh + α + γ)

]
∂G

∂X2

(X∗
1 , 0) = A =

[
βhβEβV

ϕNh

µh+ϕ
− (µh + σ + κ) βh

µhNh

µh+ϕ
+ βhβIβV

ϕNh

µh+ϕ

σ −(µh + α + γ)

]
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Thus,

G(X1, X2) =AX2 − Ĝ(X1, X2)

Ĝ(X1, X2) =AX2 −G(X1, X2)

=

[
βhβEβV V − (µh + σ + κ) βhSh + βhβIβV V

σ −(µh + α+ γ)

][
E

Ih

]

−

[
βhβEβVEV + βhβIβV IhV − (µh + σ + κ)E

σE − (µh + α + γ)Ih

]

=

[
βhShIh

0

]

which is clearly an M-matrix. Meanwhile, we find

∴ Ĝ(X1, X2) = [βhShIh, 0]
T

It is obvious that Ĝ(X1, X2) ≥ 0.
The stability at the DFE determines the short-term epidemics of the disease, where as
its dynamics over a longer period of time is characterized by the stability at the endemic
equilibrium. In this section we will analyze the endemic properties of our avian influenza
model.

3.3 Endemic analysis
The stability at the DFE determines the short-term epidemics of the disease, where as
its dynamics over a longer period of time is characterized by the stability at the endemic
equilibrium. In this section we will analyze the endemic properties of our avian influenza
model.

3.3.1 Endemic equilibrium
We first examine the existence of the positive endemic equilibrium. Denote the endemic
equilibrium of the model by ϵ∗ = (S∗

b , I
∗
b , S

∗
h, V

∗, I∗h, R
∗). From equations (3.1) - (3.7)
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we obtain
dS∗

b

dt
= µbNb − µbS

∗
b − βBS

∗
b I

∗
b (3.18)

dI∗b
dt

= βBS
∗
b I

∗
b − (µb + δb)I

∗
b (3.19)

dS∗
h

dt
= µhNh − βhI

∗
hS

∗
h − βBHS

∗
hI

∗
b − µhS

∗
h − ϕS∗

h + δR∗ (3.20)
dV ∗

dt
= ϕS∗

h − βhβEβVE
∗V ∗ − βhβIβV I

∗
hV

∗ − µhV
∗ (3.21)

dE∗

dt
= βhI

∗
hS

∗
h + βBHS

∗
hI

∗
b + βhβEβVE

∗V ∗ + βhβIβV I
∗
hV

∗ − (σ + µh + κ)E∗

(3.22)
dI∗h
dt

= σE∗ − (α + µh + γ)I∗h (3.23)
dR∗

dt
= κE∗ + γI∗h − µhR

∗ − δR∗ (3.24)

First, we find S∗
b :

βBS
∗
b I

∗
b − (µb + δb)I

∗
b = 0,

S∗
b =

µb + δb
βB

.

Then, the equation (3.18) becomes

µbNb − µbS
∗
b − βBS

∗
b I

∗
b = 0,

µb

( Nb

µb + δb
− 1

βB

)
= I∗b .

Next, we substitute I∗b into equation (3.22) and obtain

βhI
∗
hS

∗
h + βBHS

∗
hµb(

Nb

µb + δb
− 1

βB

) + βhβEβVE
∗V ∗ + βhβIβV I

∗
hV

∗ − (σ + µh + κ)E∗ = 0

(3.25)

From (3.23), we solve for E∗ and we have

E∗ =
(µh + α + γ)I∗h

σ
(3.26)
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Thus

R∗ = Q2I
∗
h

E∗ = Q1I
∗
h

S∗
h =

µhNh + δQ2I
∗
h

βhI∗h +Q3

V ∗ = ϕ
(µhNh + δQ2I

∗
h)

(βhI∗h +Q3)(Q4Q1I∗h+Q5I∗h + µh)

Q1 =
µh + α + γ

σ

Q2 =
kQ1 + γ

µh + δ

Q3 = βBHI
∗
b + µh + ϕ

Q4 = βhβEβV

Q5 = βhβIβV

Now we find I∗h from ;

N = S∗
h + V ∗ + E∗ + I∗h +R∗

=
µhNh + δQ2I

∗
h

βhI∗h +Q3

+ ϕ
(µhNh + δQ2I

∗
h)

(βhI∗h +Q3)(Q4Q1I∗h +Q5I∗h + µh)
+Q1I

∗
h + I∗h +Q2I

∗
h

=
(µhNh + δQ2I

∗
h)(Q4Q1I

∗
h +Q5I

∗
h + µh) + ϕ(µhNh + δQ2I

∗
h)

(βhI∗h +Q3)(Q4Q1I∗h +Q5I∗h + µh)

+
Q1I

∗
h(βhI

∗
h +Q3)(Q4Q1I

∗
h +Q5I

∗
h + µh) + I∗h(βhI

∗
h +Q3)(Q4Q1I

∗
h +Q5I

∗
h + µh)

(βhI∗h +Q3)(Q4Q1I∗h +Q5I∗h + µh)

+
Q2I

∗
h(βhI

∗
h +Q3)(Q4Q1I

∗
h +Q5I

∗
h + µh)

(βhI∗h +Q3)(Q4Q1I∗h +Q5I∗h + µh)

0 = T1I
∗3
h + T2I

∗2
h + T3I

∗
h + T4
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where

T1 =
Q4Q

2
1βh +Q1Q5βh +Q4Q1βh +Q5βh +Q1Q2Q4βh +Q2Q5βh

Q4Q1βhI∗2h +Q5βhI∗2h + µhβhI∗h +Q4Q1Q3I∗h +Q3Q5I∗h + µhQ3

T2 =
Q4Q1Q2δ +Q5Q2δ +Q1βhµh +Q4Q

2
1Q3 +Q1Q3Q5 + βhµh +Q4Q1Q3 +Q5Q3

Q4Q1βhI∗2h +Q5βhI∗2h + µhβhI∗h +Q4Q1Q3I∗h +Q3Q5I∗h + µhQ3

+
Q2βhµh +Q1Q2Q3Q4 +Q2Q3Q5

Q4Q1βhI∗2h +Q5βhI∗2h + µhβhI∗h +Q4Q1Q3I∗h +Q3Q5I∗h + µhQ3

T3 =
Q4Q1µhNh +Q5µhNh +Q2µhδ +Q2ϕδ +Q1Q3µh +Q3µh +Q2Q3µh

Q4Q1βhI∗2h +Q5βhI∗2h + µhβhI∗h +Q4Q1Q3I∗h +Q3Q5I∗h + µhQ3

T4 =
µ2
hNh + ϕµhNh

Q4Q1βhI∗2h +Q5βhI∗2h + µhβhI∗h +Q4Q1Q3I∗h +Q3Q5I∗h + µhQ3

which our endemic equilibrium point is

(S∗
h, V

∗, E∗, I∗h, R
∗)

Theorem 3.4. The positive endemic equilibrium ϵ∗ of the system (3.1) − (3.7) exists
and unique if R0 > 1, and there is no positive endemic equilibrium if R0 < 1.

3.3.2 Local stabilities
We proceed to analyze the stability properties of the endemic equilibrium. First we
establish the following result regarding the local stability.

Theorem 3.5. WhenR0 > 1, the endemic equilibrium ϵ∗ is locally asymptotically stable.

Proof The jacobian of the system (3.1)− (3.7) at ϵ∗ is given by

J(ϵ)∗ =



−g5 − g6 0 0 −g7 δ

ϕ −g8 − µh g9 −g9 0

g5 g8 g9 − g1 g7 + g10 0

0 0 σ −g2 0

0 0 κ γ −g11





29

where

g1 = µh + σ + κ,

g2 = µh + α + γ,

g3 =
βhβEβV ϕNh

µh + ϕ
,

g4 = βhS
∗
h +

βhβIβV ϕNh

µh + ϕ

g5 = βhI
∗
h + βBHI

∗
b

g6 = µh + ϕ

g7 = βhS
∗
h

g8 = βhβEβVE
∗ + βhβIβV I

∗
h

g9 = βhβEβV V
∗

g10 = βhβIβV V
∗

g11 = µh + δ,

The characteristic equation of the matrix J(ε∗) is

0 = |λI − J(ε∗)|

= (λ+ g5 + g6)[(λ+ g8 + µh)(λ− g9 + g1)(λ+ g2)(λ+ g11)

+ σ(−g7 − g10)(λ+ g11) + g9g8(λ+ g2)(λ+ g11) + g10g8σ(λ+ g11)]− g7[−g8σϕλ

− g8g11σϕ− g5σλ
2 − g5g11σλ− g5g8g13σ − g5σµhλ− g5g11σµh]

− δ[g8ϕγσ + g8ϕκλ+ g8ϕκg2 + g5σγλ+ g5g8σγ + g5µhσγ + g5κλ
2

+ g5g8κλ+ g5µhκλ+ g5g2κλ+ g5g8g2κ+ g5g2κµh]
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= λ5 + [g8 − g9 + g1 + µh + g2 + g11 + g5 + g6]λ
4 + [g8g1 − g8g9 − g9µh

+ g1µh − g9g2 + g8g2 + g1g2 + g2µh − g9g11 + g8g11 + g1g11 + g11µh

+ g2g11 − g5g9 + g5g8 + g5g1 + g5µh + g5g2 + g5g11 − g6g9 + g6g8 + g6g1

+ g6µh + g6g2 + g6g1]λ
3 + [g8g1g2 − g8g9g2 − g9g2µh

+ g1g2µh − g8g9g11 + g8g1g11 − g9g11µh + g1g11µh

− g9g2g11 + g8g2g11 + g1g2g11 + g2g11µh − g5g8g9

+ g5g8g1 − g5g9µh + g5g1µh − g5g9g2 + g5g8g2 + g5g1g2

+ g5g2µh − g5g9g11 + g5g8g11 + g5g1g11 + g5g11µh

+ g5g2g11 − g6g8g9 + g6g8g1 − g6g9µh + g6g1µh − g6g9g2 + g6g8g2

+ g6g1g2 + g6g2µh − g6g9g11 + g6g8g11 + g6g1g11

+ g6g11µh + g6g2g11 + g6g2g11 + g5g7σ − δκg5]λ
2 + [g8g1g2g11 − g8g9g2g11

− g9g2g11µh + g1g2g11µh + g1g2g11µh − g5g8g9g2

+ g5g8g1g2 − g5g9g2µh + g5g1g2µh − g5g8g9g11 + g5g8g11g11 − g5g9g11µh + g5g1g11µh

− g5g9g2g11 + g5g8g2g11 + g5g1g2g11 + g5g2g11µh − g6g8g9g2 + g6g8g1g2 − g6g9g2µh

+ g6g1g2µh − g6g8g9g11 + g6g8g1g11 − g6g9g11µh + g6g1g11µh − g6g9g2g11 + g6g8g2g11

+ g6g1g2g11 + g6g2g11µh + g7g8σϕ+ g5g7g11σ + g5g7g8σ + g5g7σµh − g8δϕκ− g5δσγ

− g5g8δκ− g5δµhκ− g5g2δκ]λ− g5g8g9g2g11 + g5g8g1g2g11 − g5g9g2g11µh + g5g1g2g11µh

− g6g8g9g2g11 + g6g8g1g2g11 − g6g9g2g11µh + g6g1g2g11µh + g7g8g11σϕ+ g5g7g8g11σ

+ g5g7g11σµh − g8δϕγσ − g8g2δϕκ− g5g8δσγ − g5δµhσγ − g5g8g2δκ− g5g2δκµh = 0

Now the equation can be put into the equation of the form

z0λ
5 + z1λ

4 + z2λ
3 + z3λ

2 + z4λ+ z5 = 0 (3.27)
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where

z0 = 1

z1 = g8 − g9 + g1 + µh + g2 + g11 + g5 + g6

z2 = g8g1 − g8g9 − g9µh + g1µh − g9g2 + g8g2 + g1g2 + g2µh

− g9g11 + g8g11 + g1g11 + g11µh + g2g11 − g5g9 + g5g8 + g5g1 + g5µh + g5g2

+ g5g11 − g6g9 + g6g8 + g6g1 + g6µh + g6g2 + g6g1

z3 = g8g1g2 − g8g9g2 − g9g2µh + g1g2µh − g8g9g11 + g8g1g11 − g9g11µh + g1g11µh − g9g2g11

+ g8g2g11 + g1g2g11 + g2g11µh − g5g8g9 + g5g8g1 − g5g9µh + g5g1µh − g5g9g2 + g5g8g2

+ g5g1g2 + g5g2µh − g5g9g11 + g5g8g11 + g5g1g11 + g5g11µh + g5g2g11 − g6g8g9

+ g6g8g1 − g6g9µh + g6g1µh − g6g9g2 + g6g8g2 + g6g1g2 + g6g2µh − g6g9g11

+ g6g8g11 + g6g1g11 + g6g11µh + g6g2g11 + g6g2g11 + g5g7σ − δκg5

z4 = [g8g1g2g11 − g8g9g2g11 − g9g2g11µh + g1g2g11µh

+ g1g2g11µh − g5g8g9g2 + g5g8g1g2 − g5g9g2µh + g5g1g2µh − g5g8g9g11

+ g5g8g11g11 − g5g9g11µh + g5g1g11µh − g5g9g2g11 + g5g8g2g11

+ g5g1g2g11 + g5g2g11µh − g6g8g9g2 + g6g8g1g2 − g6g9g2µh + g6g1g2µh

− g6g8g9g11 + g6g8g1g11 − g6g9g11µh + g6g1g11µh − g6g9g2g11 + g6g8g2g11

+ g6g1g2g11 + g6g2g11µh + g7g8σϕ+ g5g7g11σ + g5g7g8σ + g5g7σµh

− g8δϕκ− g5δσγ − g5g8δκ− g5δµhκ− g5g2δκ

z5 = −g5g8g9g2g11 + g5g8g1g2g11 − g5g9g2g11µh + g5g1g2g11µh

− g6g8g9g2g11 + g6g8g1g2g11 − g6g9g2g11µh + g6g1g2g11µh + g7g8g11σϕ+ g5g7g8g11σ

+ g5g7g11σµh − g8δϕγσ − g8g2δϕκ− g5g8δσγ − g5δµhσγ − g5g8g2δκ− g5g2δκµh
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Let a0 = z0, a1 = z1, a2 = z2, a3 = z3, a4 = z4, a5 = z5

Thus the routh-hurwitz criterion requires.

b1 =
a1a2 − a0a3

a1
≥ 0,

b2 =
a1a4 − a0a5

a1
≥ 0,

c1 =
b1a3 − a1b2

b1
≥ 0,

c2 =
b1a5 − a1a3

b1
≥ 0,

It’s not easy to solve for this equation, therefore, we omit it here.

3.4 Optimal treatments
The Basic Problem and Necessary Conditions

In our basic optimal control problem for ordinary differential equations, we use u(t)
for the control and x(t) for the state. The state variable satisfies a differential equation
which depends on the control variable:

x′(t) = g(t, x(t), u(t)).

As the control function is changed, the solution to the differential equation will
change. Thus we can view the control-to-state relationship as a map u(t) 7→ x = x(u)

(of course, x is really a function of the independent variable t; we write x(u) simply to re-
mind us of the dependence on u). Our basic optimal control problem consists of finding
a piecewise continuous control u(t) and the associated state variable x(t) to maximize
the given objective functional, i.e.,

max
u

∫ t1

t0

f(t, x(t), u(t))dt.

subject to x′(t) = g(t, x(t), u(t)), x(t0) = x0 and x(t1) free.
Such a maximizing control is called an optimal control. By x(t1) free, it is meant that
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the value of x(t1) is unrestricted. For our purposes, f and g will always be continuously
differentiable functions in all three arguments. Thus, as the control(s) will always be
piecewise continuous, the associated states will always be piecewise differentiable.

The principle technique for such an optimal control problem is to solve a set of “nec-
essary conditions” that an optimal control and corresponding state must satisfy. It is
important to understand the logical difference between necessary conditions and suffi-
cient conditions of solution sets.
Necessary Conditions : If u∗(t), x∗(t) are optimal, then the following conditions hold ...
Sufficient Conditions : If u∗(t), x∗(t) satisfy the following conditions ..., then u∗(t), x∗(t)

are optimal.
First, let us derive the necessary conditions. Express our objective functional in terms

of the control:

J(u) =

∫ t1

t0

f(t, x(t), u(t))dt,

where x = x(u) is the corresponding state.
The necessary conditions that we derive were developed by Pontryagin and his co-

workers in Moscow in the 1950’s. Pontryagin introduced the idea of “adjoint” functions to
append the differential equation to the objective functional. Adjoint function have a sim-
ilar purpose as Lagrange multipliers in multivariate calculus, which append constraints to
the function of several variable to be maximized or minimized. Thus, we begin by finding
appropriate conditions that the adjoint function should satisfy. Then, by differentiating
the map from the control to the objective functional, we will derive a characterization of
the optimal control in terms of the optimal state and corresponding adjoint.

Pontryagin’s Maximum Principle
These conclusions can be extended to a version of Pontryagin’s Maximum Principle.

Theorem 3.6. If u∗(t) and x∗(t) are optimal for problem (3.1)-(3.5), then there exists a
piecewise differentiable adjoint variable λ(t) such that

H(t, x∗(t), u(t), λ(t)) ≤ H(t, x∗(t), u∗(t), λ(t))

for all control u at each time t, where the Hamiltonian H is

H = f(t, x(t), u(t)) + λ(t)g(t, x(t), u(t)),
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and
λ

′
(t) = −∂H(t, x∗(t), u∗(t), λ(t))

∂x
, λ(t1) = 0

Theorem 3.7. Suppose that f(t, x, u) and g(t, x, u) are both continuously differentiable
functions in thier three arguments and concave in u. Suppose u∗ is an optimal control
for problem (3.1)-(3.5), with associated state x∗, and λ a piecewise differentiable function
with λ ≥ 0 for all t. Suppose for all t0 ≤ t ≤ t1

0 = Hu(t, x
∗(t), u∗(t), λ(t)).

Then for all controls u and each t0 ≤ t ≤ t1, we have

H(t, x∗(t), u(t), λ(t)) ≤ H(t, x∗(t), u∗(t), λ(t)).

Now we turn to the more general model (3.1-3.7) with time-dependent controls ϕ(t)
.We consider the system on a time interval [0,T ]. The functions ϕ(t) are assumed to be
at least lebesgue measurable on [0,T ]. The control set is defined as

Ω =
{
ϕ(t)|0 ≤ ϕ(t) ≤ ϕmax

} (3.28)

where ϕmax denotes the upper bounds for the effort of vaccination. The bound reflects
practical limitation on the maximum rate of controls in a given time period.

In this study, we perform an optimal control study to minimize the total numbers
of infections as the cost of control over the time interval [0,T ];i.e.

min
ϕ∈Ω

∫ T

0

[Ih(t) + c21ϕ(t)Sh(t) + c22ϕ(t)
2]dt.

where c21 and c22 are appropriate units defined the appropriate costs associated
with the control.

Let us first define the adjoint functions λSh
, λV , λE, λIh and λR associated with

the state equations for Sh,V ,E,Ih and R, respectively.We then from Hamiltionian, H,
by multiplying each adjoint function with the right-hand side of its corresponding state
equation, and adding each of these products to the integrand of the objective functional.
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As a result, we obtain

H = Ih(t) + c21ϕ(t)Sh(t) + c22ϕ(t)
2

+ λSh
[µhNh − βhIhSh − βBHShIb − µhSh − ϕ(t)Sh + δR]

+ λV [ϕ(t)Sh − βhβEβVEV − βhβIβV IhV − µhV ]

+ λE[βhIhSh + βBHShIb + βhβEβVEV + βhβIβV IhV − (µh + σ + κ)E]

+ λIh [σE − (µh + α + γ)Ih]

+ λR[κE + γIh − µhR− δR]

To achieve the optimal control, the adjoint functions must satisfy
dλSh

dt
= − ∂H

∂Sh

,

dλV

dt
= −∂H

∂V
,

dλE

dt
= −∂H

∂E
,

dλIh

dt
= −∂H

∂Ih
,

dλR

dt
= −∂H

∂R
,

Thus, we have
dλSh

dt
= −c21ϕ(t) + λSh

(βhIh + βBHIb + µh + ϕ(t))− λV ϕ(t)− λEβhIh − λEβBHIb,

dλV

dt
= λV (βhβEβVE + βhβIβV Ih + µh)− λE(βhβEβVE + βhβIβV Ih),

dλE

dt
= λV (βhβEβV V )− λE(βhβEβV V ) + λE(µh + σ + κ)− λIh(σ)− λR(κ),

dλIh

dt
= −1 + λSh

(βhSh) + λV βhβIβV V − λE(βhSh + βhβIβV V ) + λIh(γ + µh + α)− λR(γ),

dλR

dt
= λSh

(δ) + λR(µh + δ),
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with the final-time conditions λSh
(T ) = 0, λV (T ) = 0, λE(T ) = 0, and λIh(T ) =

0, λR(T ) = 0, The characterization of the optimal control ϕ∗(t) in then based on the
condition

∂H

∂ϕ
= 0

respectively, subject to the constraint 0 ≤ ϕ ≤ ϕmax.Consider ∂H
∂ϕ

, which gives

∂H

∂ϕ
= Sh

(λSh
− c21 − λV )

2c22

Due to the presence of both initial conditions ( for the state equations ) and final time
conditions ( for the adjoint equations ), and the fact that most models of our interest
are nonlinear, the optimal control system has to be solved numerically. We will use the
Forward-Backward Sweep Method to conduct the numerical simulation.
Assume that u = u(t, x, λ) can be found explicitly from the optimality condition.

• Step 1. Make an initial guess for u (usually 0) on the entire domain.

• Step 2 Using the initial condition x(0) = a and the values for u, solve x forward
in time over the domain.

• Step 3. Using the transversality condition λ(T ) = b (usually 0) and the values for
u and x, solve λ backward in time.

• Step 4 Update u by the new x and λ values. We use the optimality condition to
update control u at this step.

• Step 5. Check convergence. If values in this iteration and the last one are negligibly
close, output the current values as solutions; otherwise, return to Step 2.
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Next,we conduct numerical simulation to verify some of our analytical results. Opti-
mal control theory is applied to the model to seek for optimal vaccination strategies, The
numerical solution show that with a well planned of vaccination can reduce a number
of infections.

Table 8: Parameter values and symbols

Parameter Symbol Value
Total human population Nh 10,000
Total bird population Nb 2 ∗Nh

Natural human birth and death rate µh (70 ∗ 365−1)/day

Natural bird birth and death rate µb (100−1)/day

Rate at which birds contract avian influenza βB 0.4/200, 000/day

Rate at which bird-to-human avian influenza is contracted βBH 0.2/(Nb ∗ 100)/day
Ability to cause infection by exposed individuals βE 0.5/Nh/day

Ability to cause infection by infectious individuals βI 0.5/Nh/day

Factor by which the vaccine reduces infection βV 0.5/Nh/day

Additional disease death rate due to avian strain in birds δb 5/day

Duration of immunity loss in human δ 5/day

The loss of immunity period σ 0.699/day

Rate of vaccination ϕ 0.7/day

The recovery rate for exposed population κ 0.00015

The recovery rate for infected population γ 0.36

The disease induced morality rate α 0.03

Assuming that there are costs of group βV c21 0.01

Assuming that there are costs of group βV c22 0.5
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First we let (1− βV ) = 0.1 which is a vaccine efficacy of 90%. The numerical
simulations are shown below:
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Figure 3.2: The acute avian influenza infection population : it shows that with medications
in the model can reduce the number of acute avian influenza infection group.

Figure 3.2 shows the infection curves for the model with vaccine (solid line) and that
without the optimal control of vaccination (dashed line). It is clearly seen the infection
level has been reduced due to the incorporation of vaccine. In addition, the dynamics
of exposed population is shown in Figure 3.3 similarly the exposed population to the
disease in our model with vaccine cooperated is approaching to zero faster than that
without vaccine.
This result shows that applying vaccine to susceptible humans reduces the infection due
to the avian influenza A viruses and the number of exposed humans to the disease is
reduced versus time.
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Figure 3.3: Clinical latency exposed individuals of the modified model : Similary, we can
see that the number of clinical latency state is reduced with medications in the model.
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The second we let (1− βV ) = 0.5 which is a vaccine efficacy of 50%. The numerical
simulations are shown below:
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Figure 3.4: The acute avian influenza infection population : it shows that with medications
in the model can reduce the number of acute avian influenza infection group.

Figure 3.4 shows the infection curves for the model with vaccine (solid line) and
that without the optimal control of vaccination (dashed line). It is clearly seen the infec-
tion level has been reduced due to the incorporation of vaccine.
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Figure 3.5: Clinical latency exposed individuals of the modified model : Similary, we can
see that the number of clinical latency state is reduced with medications in the model.

The third we let (1− βV ) = 0.7 which is a vaccine efficacy of 30%. The numerical
simulations are shown below:

Figure 3.6 shows the infection curves for the model with vaccine (solid line) and
that without the optimal control of vaccination (dashed line). It is clearly seen the infec-
tion level has been reduced due to the incorporation of vaccine but not much.
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Figure 3.6: The acute avian influenza infection population : it shows that with medications
in the model can reduce the number of acute avian influenza infection group.
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Figure 3.7: Clinical latency exposed individuals of the modified model : Similary, we can
see that the number of clinical latency state is reduced with medications in the model.
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3.5 Our second proposed model
We describe the avian influenza dynamics using a system of four differential equa-

tions. The population of humans is compartmentalized into four classes: susceptible
(S), exposed (E), infectious (I), and recovered (R). A diagram to illustrate our model
is presented in Figure 3.5

We find a unique disease-free equilibrium (DFE) by settingE = I = R = 0 and find
S from the model. Therefore, the DFE will have nonzero states S says ε0 = (S, 0, 0, 0)

By setting dS
dt

equal to zero, we can find S:

Figure 3.8: Diagram of the model.

We use an SEIR model to represent the disease dynamics. Since incubation period
is not given in an exact interval, therefore, we assume that susceptible individuals can be
infected from both exposed (late incubation period) and infectious people with rates of
β1 and β2 , respectively. Susceptible humans, once infected, will first enter the exposed
class E, and then become infectious after an incubation period, 1/σ; here σ is the pro-
gression rate from exposed to infectious. Both the exposed and infectious people may
recover from the disease.

We assume the natural birth and death rates are the same, and denoted by µ.
We also denote the disease caused death rates by α. In addition, we represent the in-
flux rates for the population by the constant Γ. For convenience of discussion, we write
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Γ = µN, whereN can be interpreted as the respective time-averaged population. In case
there is no disease related mortality, N = S+E+I+R and it represents the (constant)
total population. Finally, we incorporate antiviral drug treatments into the exposed and
infectious as disease control measures with rates of ϕ1 and ϕ2, respectively. Our model
thus takes the form below:

dS

dt
= µN − (β1I + β2E)S − µS − ϕS + δR (3.29)

dE

dt
= (β1I + β2E)S − (σ + µ+ γ)E (3.30)

dI

dt
= σE − (α + µ+ γ)I (3.31)

dR

dt
= γE + γI − µR− δR (3.32)

where

- S is the susceptible state.

- E is the exposed state.

- I is the infected state.

- R is the recovered human population sets.

- N is the total population.

- µ is the natural human birth and death rates.

- σ is the transition rate from exposure to infection.

- γ is the recovery rate.

- α is the disease related death rate.

- ϕ is the vaccination rate.

- δ is progression rate.

- β1 is transmission coefficient of the infectious initially.

- β2 is transmission coefficient of the infectious severe.
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The definition and numerical values of all the model parameters are provided in
Table 2. Written in a vector from, the above equations become

dX

dt
= F (X) (3.33)

with X = (S,E, I, R)T

3.6 Epidemic analysis
We start our analysis of the model by studying the disease-free equilibrium (DEF)

and calculating the basic reproduction numbers.It is straightforward to obtain the DFE for
our system:

µN − µS − ϕS = 0

S =
µN

µ+ ϕ

Now we have the DFE:
ε0 =

(
µN

µ+ ϕ
, 0, 0, 0

)
.

Next we will compute the basic reproductive number, R0, for this model using
the method of van den Driessche and Watmough. Here the associated next generation
matrices

F =

[
(β1I + β2E)S

0

]

F =

[
∂F11

∂E
∂F11

∂I
∂F21

∂E
∂F21

∂I

]

F =

[
β2S β1S

0 0

]
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and

V =

[
(σ + µ+ γ)E

−σE + (α + µ+ γ)I

]

V =

[
∂V11

∂E
∂V11

∂I
∂V21

∂E
∂V21

∂I

]

V =

[
σ + µ+ γ 0

−σ α + µ+ γ

]
At the DFE point, we have

F (ϵ0) =

[
β2µN
µ+ϕ

β1µN
µ+ϕ

0 0

]

The basic reproduction number is then determined as the spectral radius of FV −1.
Consider

V (ϵ0) =

[
σ + µ+ γ 0

−σ α + µ+ γ

]
detV = (σ + µ+ γ)(α + µ+ γ)− 0

= (σ + µ+ γ)(α + µ+ γ)

adj.V =

[
C11 C12

C21 C22

]T

=

[
α + µ+ γ σ

0 σ + µ+ γ

]T

=

[
α + µ+ γ 0

σ σ + µ+ γ

]
and hence,

V −1 =
1

detV
· adj.V,

=
1

a1a2
×

[
a2 0

σ a1

]
,

=

[
1
a1

0
σ

a1a2
1
a2

]
.
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Let a1 = σ + µ+ γ and a2 = α+ µ+ γ .
Thus

FV −1 =

[
β2S β1S

0 0

][
1
a1

0
σ

a1a2
1
a2

]

=

[
β2S
a1

+ β1Sσ
a1a2

β1S
a2

0 0

]
and

det(FV −1 − λI) =

(
β2S

a1
+

β1Sσ

a1a2
− λ

)
(−λ) = 0

λ =

[
β2µN

(µ+ ϕ)(σ + µ+ γ)
+

β1µNσ

(σ + µ+ γ)(γ + µ+ α)(µ+ ϕ)
, 0

]
Thus,

R0 = λ =
β2µN

(µ+ ϕ)(σ + µ+ γ)
+

β1µNσ

(σ + µ+ γ)(γ + µ+ α)(µ+ ϕ)
.

Based on the work in [18] , we immediately obtain the result below :
Theorem 3.8. whenR0 < 1, the DFE, ε0 , is locally asymptotically stable; whenR0 > 1,
ε0 is unstable.

To study the global asymptotic stabillity of DFE, one common approach is to
construct an appropriate Lyapunov function. We have found, however, that it is simpler
to apply the following result introduced by Castilli-Chavez et al.
Lemma 3.9. Consider a model system written in the form

dX1

dt
= F (X1, X2),

dX2

dt
= G(X1, X2), G(X1, 0) = 0

where X1 ∈ Rm denotes (its components) the number of uninfected individuals and
X2 ∈ Rn denotes (its compnents) the number of infected individuals including latent,
infectious, etc; X0 = (X∗

1 ) denotes the disease-free equilibrium of the system.
Also assume the conditions (H1) and (H2) below:

(H1) For dX1

dt
= F (X1, 0), X

∗
1 is globally asymptotically stable;

(H2) G(X1, X2) = AX2 − Ĝ(X1, X2), Ĝ(X1, X2) ≥ 0 for (X1, X2) ∈ Ω, where
the Jacobian A = ∂G

∂X2
(X∗

1 , 0) is an M-matrix (the off diagonal elements of A are non-
negative) and Ω is the region where the model makes biological sense.
Then the DFE X0 = (X∗

1 , 0) is globally asymptotically stable provided that R0 < 1.
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Theorem 3.10. The disease-free equilibrium of the model is globally asymptotic stable
if R0 < 1.

Proof. We only need to show that the condition (H1) and (H2) hold when R0 < 1.
In our ODE system, X1 = (S,R), X2 = (E, I), and X∗

1 = ( µN
µ+ϕ

, 0).
We note that the system

dX1

dt
= F (X1, 0) =

[
µN − µS + δR− ϕS

−µR− δR

]

is linear and its solution can be easily found as
For R:

dR

dt
= −µR− δR

dR

dt
+ µR + δR = 0

R
′
+ (µ+ δ)R = 0

R(t) = R(0)e−(µ+δ)t

For S:
dS

dt
= µN − µS + δR− ϕS

dS

dt
+ µS + ϕS = µN + δR

dS

dt
+ (µ+ ϕ)S = µN + δ(R(0))e−(µ+δ)t

e(µ+ϕ)tdS

dt
+ e(µ+ϕ)t(µ+ ϕ)S = e(µ+ϕ)tµN + e(µ+ϕ)tδ(R(0))e−(µ+δ)t

d

dt
(e(µ+ϕ)t · S) = e(µ+ϕ)tµN + e(ϕ−δ)tδ(R(0))∫

d

dt
(e(µ+ϕ)t · S)dt =

∫
e(µ+ϕ)tµNdt+

∫
e(ϕ−δ)tδ(R(0))dt

e(µ+ϕ)t · S = µN · e
(µ+ϕ)t

µ+ ϕ
+ δ(R(0)) · e

(ϕ−δ)t

ϕ− δ
+ C1

S(t) =
µN

µ+ ϕ
+ δ(R(0))

e(ϕ−δ)t

ϕ− δ
· e−(µ+ϕ)t + C1e

−(µ+ϕ)t

Clearly, R(t) → 0, S(t) → µN
µ+ϕ

as t → ∞, regardless of the values of R(0) and
S(0). Hence X∗

1 = ( µN
µ+ϕ

, 0) is globally asymptotically stable and condition H1 holds.
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Next, we have
dX2

dt
= G(X1, X2) =

[
(β1I + β2E)S − (µ+ σ + γ)E

σE − (µ+ α+ γ)I

]
∂G

∂X2

(X1, 0) = A =

[
β2S − (µ+ σ + γ) β1S

σ −(µ+ α + γ)

]
∂G

∂X2

(X∗
1 , 0) = A =

[
β2µN
µ+ϕ

− (µ+ σ + γ) β1µN
µ+ϕ

σ −(µ+ α + γ)

]
Thus,

G(X1, X2) =AX2 − Ĝ(X1, X2)

Ĝ(X1, X2) =AX2 −G(X1, X2)

=

[
β2µN
µ+ϕ

− (µ+ σ + γ) β1µN
µ+ϕ

σ −(µ+ α + γ)

][
E

I

]

−

[
(β1I + β2E)E − (µ+ σ + γ)E

σE − (µ+ α + γ)I

]

=

[
(β2µN

µ+ϕ
− (µ+ σ + γ))E + (β1µN

µ+ϕ
)I

σE +−(µ+ α + γ)I

]

−

[
(β1I + β2E)S − (µ+ σ + γ)E

σE − (µ+ α + γ)I

]

=

[
β2E( µN

µ+ϕ
− S) + β1I(

µN
µ+ϕ

− S)

0

]
which is clearly an M-matrix. Meanwhile, we find

∴ Ĝ(X1, X2) =

[
β2E(

µN

µ+ ϕ
− S) + β1I(

µN

µ+ ϕ
− S), 0)

]T
Since 0 ≤ S ≤ µN

µ+ϕ
≤ N it is obvious that Ĝ(X1, X2) ≥ 0.

3.7 Endemic dynamics
The stability at the DFE determines the short-term epidermics of the disease, where as
its dynamics over a longer period of time is characterized by the stability at the endemics
equilibrium. In this section we will analyze the endemic properties of our avian influenza
model.
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3.7.1 Endemic equilibrium
We first examine the existence of the positive endemic equilibrium. Denote the endemic
equilibrium of the model by ε∗ = (S∗, E∗, I∗, R∗). From equations (3.29) and (3.30) we
obtain

S∗ =
µN + δR∗ − a1E

∗

µ+ ϕ
(3.34)

where a1 = σ + µ+ γ. From equation (3.31), we have

E∗ =
a2I

∗

σ

where a2 = α + µ+ γ. Hence equation (3.32) becomes

R∗ =
(γa2 + γσ)I∗

σ(µ+ δ)

Thus, equation (3.30) gives

0 = (β1I
∗ + β2E

∗)S∗ − a1a2I
∗

σ
,

0 = β1I
∗S∗ +

β2a2I
∗S∗

σ
− a1a2I

∗

σ
,

0 = I∗
(
β1S

∗ +
β2a2S

∗

σ
− a1a2

σ

)
,

0 = I∗
[
β1

(
µN

µ+ ϕ
− a1a2I

∗

σ(µ+ ϕ)
+

δR∗

µ+ ϕ

)
+

β2a2
σ

(
µN

µ+ ϕ

− a1a2I
∗

σ(µ+ ϕ)
+

δR∗

µ+ ϕ

)
− a1a2

σ

]
,

0 =

(
β1µσN

a1a2(µ+ ϕ)
+

β2µN

a1(µ+ ϕ)
+

β2δγ(a2 + σ)

a1σ(µ+ ϕ)(µ+ δ)
− 1− I∗

µ+ ϕ

+
β1δγ(a2 + σ)I∗

a1a2(µ+ ϕ)(µ+ δ)
− β2a2I

∗

σ(µ+ ϕ)(µ+ δ)

)
,

I∗ =
t1t3
t2

Since all parameters are positive, thus we have

R0 =
β2µN

(µ+ ϕ)(σ + µ+ γ)
+

β1µNσ

(σ + µ+ γ)(γ + µ+ α)(µ+ ϕ)
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Hence if R0 > 1, we have
β2µN

(µ+ ϕ)(σ + µ+ γ)
+

β1µNσ

(σ + µ+ γ)(γ + µ+ α)(µ+ ϕ)
> 1.

where

t1 =
β1µσN

a1a2(µ+ ϕ)
+

β2µN

a1(µ+ ϕ)
+

β2δγ(a2 + σ)

a1σ(µ+ ϕ)(µ+ δ)
,

t2 = a1a2σ(µ+ δ) + β2a
2
2a1 − β1δγσ(a2 + σ),

t3 = a1a2(µ+ ϕ)(µ+ δ),

Thus, it is obvious that I∗ > 0.

Theorem 3.11. The positive endemic equilibrium ϵ∗ of the system (3.21)-(3.24) exists and
is unique if R0 > 1, and there is no positive endemic equilibrium if R0 < 1.

3.7.2 Local and global stabilities
We proceed to analyze the stability properties of the endemic equilibrium. First we
establish the following result regarding the local stability. For simplicity, we assume that
δ = 0

Theorem 3.12. When R0 > 1, the endemic equilibrium ϵ∗ is locally asymptotically
stable.

Proof.The Jacobian of the system (3.21)-(3.24) at ϵ∗ is given by

J=


−(β1I + β2E)− µ− ϕ −β2S −β1S

β1I + β2E β2S − µ− σ − γ β1S

0 σ −(µ+ α + γ)


at ϵ∗ is given by

J∗
ϵ =


−(β1I

∗ + β2E
∗)− µ− ϕ −β2S

∗ −β1S
∗

β1I
∗ + β2E

∗ β2S
∗ − µ− σ − γ β1S

∗

0 σ −(µ+ α + γ)


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The characteristic equation of the matrix J(ϵ∗) is

0 =|λI − J(ϵ∗)|

=(λ+ (β1I
∗ + β2E

∗ + µ))(λ− (β2S
∗ − a1))(λ+ a2) + β1S

∗(β1I
∗ + β2E

∗)σ

=λ3 + [(β1I
∗ + β2E

∗ + µ)− (β2S
∗ − a1) + a2]λ

2

+ [a2(β1I
∗ + β2E

∗ + µ)− (β1I
∗ + β2E

∗ + µ)(β2S
∗ − a1)− a2(β2S

∗ − a1)− σβ1S
∗

+ (β1I
∗ + β2E

∗)β2S
∗]λ

+ [β1S
∗(β1I

∗ + β2E
∗)σ − a2(β1I

∗ + β2E
∗ + µ)(β2S

∗ − a1)

− σβ1S
∗(β1I

∗ + β2E
∗ + µ) + a2(β1I

∗ + β2E
∗)β2S

∗]

From matrix J(ϵ∗) can be put into a cubic equation of the form

A3λ
3 + A2λ

2 + A1λ+ A0 (3.35)

where

A3 = 1,

A2 = (β1I
∗ + β2E

∗ + µ)− (β2S
∗ − a1) + a2,

A1 = a2(β1I
∗ + β2E

∗ + µ)− (β1I
∗ + β2E

∗ + µ)(β2S
∗ − a1)

− a2(β2S
∗ − a1)− σβ1S

∗ + (β1I
∗ + β2E

∗)β2S
∗,

A0 = β1S
∗(β1I

∗ + β2E
∗)σ − a2(β1I

∗ + β2E
∗ + µ)(β2S

∗ − a1)

− σβ1S
∗(β1I

∗ + β2E
∗ + µ) + a2(β1I

∗ + β2E
∗)β2S

∗

Note that at the endemic equilibruim, the right-hand side of equation (3.22) become 0,
which yield

β1I
∗S∗

E∗ = a1 − β2S
∗

Since all parameters are positive, we have a1 − β2S
∗ > 0. Thus,

A2 = β1I
∗ + β2E

∗ + µ+ a2 + a1 − β2S
∗ > 0. (3.36)

Now rewrite A1 as

A1 = a2(β1I
∗ + β2E

∗ + µ) + (β1I
∗ + β2E

∗ + µ)(a1 − β2S
∗) (3.37)

+ a2(a1 − β2S
∗)− σβ1S

∗ + (β1I
∗ + β2E

∗)β2S
∗ (3.38)
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From equation (3.38), consider terms

a2(a1 − β2S
∗)− σβ1S

∗ =a1a2 − β2a2S
∗ − σβ1S

∗

=a1a2 − (β2a2 + σβ1)S
∗

=(β2a2 + σβ1)

[
a1a2

β2a2 + σβ1

− S∗
]

and when R0 > 1, we have
β2µN

(µa1 + ϕa1)
+

σβ1µN

a1a2(µ+ ϕ)
> 1

a2β2µN + σβ1µN > a1a2(µ+ ϕ)

N(a2β2µ+ σβ1µ) > a1a2(µ+ ϕ)

N >
a1a2(µ+ ϕ)

β2a2µ+ σβ1µ
.

Hence it is obvious that A1 > 0 since a1 − β2S
∗ > 0 and R0 > 1. Next we consider A0:

A0 = βS∗(β1I
∗ + β2E

∗)σ − a2(β1I
∗ + β2E

∗ + µ)(β2S
∗ − a1)

− σβ1S
∗(β1I

∗ + β2E
∗ + µ) + a2(β1I

∗ + β2E
∗)β2S

∗

= β1S
∗(β1I

∗ + β2E
∗)σ + (β1I

∗ + β2E
∗ + µ)[a1a2 − a2β2S

∗ − σβ1S
∗]

+ a2(β1I
∗ + β2E

∗)β2S
∗.

We have a1a2−a2β2S
∗−σβ1S

∗ > 0 from equation (3.41), sinceN > a1a2(µ+ϕ)
β2a2µ+σβ1µ

when
R0 > 1. Thus, A0 > 0 Next we consider the Routh-Hurwitz table

λ3 A3 A1

λ2 A2 A0

λ1 B1 0

λ0 C1 0

where

B1 =
A2A1 − A0A3

A2

, C1 = A0. (3.39)

To ensure that all roots of equation (3.34) have negative real parts, the Routh-Hurwitz
stability criterion requiresA0,A1,A2,A3,B1 andC1 all to be positive. It is straightforward
to observe that A2A1 > A0A3; i.e., B1 > 0. To that end, we let Q1 = β1I

∗ + β2E
∗ +µ
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and Q2 = β1I
∗ + β2E

∗. Hence

A1A2 = [Q1 + (a1 − β2S
∗) + a2][a2Q1 +Q1(a1 − β2S

∗) (3.40)
+ (a1a2 − a2β2S

∗ − σβ1S
∗) +Q2β2S

∗] (3.41)

and

A0 = β1S
∗Q2σ +Q1[a1a2 − a2β2S

∗ − σβ1S
∗] + a2Q2β2S

∗. (3.42)

Since a1 - β2S
∗ > 0, A1 > 0, A2 > 0 and A0 > 0, it is obvious that A1A2 > A0A3.

This completes the proof.
Next, we will follow the geometric approach originally proposed by Li and Muldowney
[37,22] to investigate the global asymptotic stability of the endemic equilibrium. To that
end, we first present the following result based on the geometric approach.

Lemma 3.13. Consider a dynamical system dx
dt

= f(x) ,where f : D 7→ Rn is a C1

function andD ⊂ Rn is a simply connected domain. Assume that there exists a compact
absorbing set K ⊂ D and the system has a unique equilibrium point X∗ in D. Then X∗

is globally asymptotically stable in D if q̄2 < 0, where

q̄2 = lim sup
t→∞

sup
X0∈K

1

t

∫ t

0

m(P (X(s,X0)))ds. (3.43)

In equation (3.38) , P is a Matrix-valued function defined as

P = QfQ
−1 +QJ [2]Q−1, (3.44)

where Q(X) is a (
n
2

)
×

(
n
2

) matrix-valued C1 function in D, Qf is the derivative of Q
(entry-wise) along the direction of f , and J [2] is the second additive compound matrix of
the Jacobian J(X) = Df(X). Meanwhile, m(P ) is the Lozinski measure of P with respect
to a matrix norm; i.e.,

m(P ) = lim
h→0+

| ⨿+hP | − 1

h
, (3.45)

where ⨿ represents the identity matrix.
To show the global stability of the endemic equilibrium for the system (3.21)-(3.24),

we consider a simplified case of our model by assuming ϕ = 0;i.e.,
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no treatment and no disease caused mortality,and apply the geometric approach sum-
marized in Lemma 3.11 Then S +E + I +R = N is a constant which allows us to drop
equation (3.24) and consider a three-dimensional system (3.21)-(3.23), written as

dS

dt
= µN − (β1I + β2E)S − µS (3.46)

dE

dt
= (β1I + β2E)S − (σ + µ+ γ)E (3.47)

dI

dt
= σE − (α+ µ+ γ)I (3.48)

on the feasible domain

Ω = (S,E, I)|0 ≤ S + E + I ≤ N.

Let us define

Q(S,E, I) =


1 0 0

0 E
I

0

0 0 E
I


Then

QfQ
−1 =


0 0 0

0 ( I
E
)(E

I
)f 0

0 0 I
E
(E
I
)f


where I

E
(E
I
)f = E′

E
− I′

I
based on equations (3.21) and (3.22)

The Jacobian of the system (3.48)-(3.49) is

J =


−(β1I + β2E)− µ −β2S −β1S

β1I + β2E β2S − a1 0

0 σ −a2


where a1 = σ + µ + γ and a2 = α + µ + γ and thus the second additive compound
matrix associated with the Jacobian is,

J [2] =


a11 + a22 a23 −a13

a32 a11 + a33 a12

−a31 a21 a22 + a33



J [2] =


−(β1I + β2E)− µ+ β2S − a1 0 −β1S

σ −(β1I + β2E)− µ− a2 −β2S

0 β1I + β2E β2S − a1 − a2


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Thus we have

QJ [2]Q−1 =


1 0 0

0 E
I

0

0 0 E
I

[
J [2]

]
1 0 0

0 I
E

0

0 0 I
E



=


−(β1I + β2E)− µ+ β2S − a1

β1SI
E

β1S
β1SI
E

Eσ
I

−(β1I + β2E)− µ− a2 −β2S

0 β1I + β2E β2S − a1 − a2



Where
I

E

(
E

I

)
f

=
E ′

E
− I ′

I

Hence

P = QfQ
−1 +QJ [2]Q−1 =

[
P11 P12

P21 P22

]
(3.49)

with

P11 =− (β1I + β2E)− µ+ β2S − a1,

P12 =[ β1SI
E

β1SI
E

],

P21 =

[
Eσ
I

0

]
,

P22 =

[
I
E
(E
I
)f − (β1I + β2E)− µ− a2 −β2S

β2I + β2E
I
E
(E
I
)f + β2S − a1 − a2

]

Let us choose the vector norm | | in R3 as

|(x1, x2, x3)| = max{|x1|, |x2|+ |x3|
}

we need to verify the condition µ(p) < 0.We have

µ(p) ≤
{
sup(g1, g2)

}
,
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where

g1 = µ1(P11) + |P12|

= −β1I − β2E − µ+ β2S − a1 +
β1SI

E

g2 = |P11|+ µ1(P12)

=
Eσ

I
+max

{
I

E

(E
I

)
f
− µ− a2

}
≤ Eσ

I
+

I

E

(E
I

)
f
− µ− a2

Provided that µ < a1 = σ + µ+ γ or 0 < σ + γ which is always true.
Using

E ′

E
=

β1SI

E
+ β2S − a1,

I ′

I
=

σE

I
− a2

Since
I

E

(E
I

)
f
=

E ′

E
− I ′

I

We obtain
g2 ≤ Eσ

I
+

I

E

(E
I

)
f
− µ− a2

=
σE

I
+

E ′

E
− I ′

I
− µ− a2

=
E ′

E
− µ , µ > 0

and
g1 = −β1I − β2E − µ+ β2S − a1 +

β1SI

E

from
g1 = −β1I − β2E − µ+ β2S − a1 +

β1SI

E

=
E ′

E
− E ′

E
− β1I − β2E − µ+ β2S − a1 +

β1SI

E

=
E ′

E
− µ− (β1I + β2E)

≤ E ′

E
− µ
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This implies that

µ(p) ≤ E ′

E
− µ

By the uniform persistence ,there exist ϵ > 0 and T > 0

such that when t > T , we have

E(t) ≥ ϵ,
logE(t)

t
<

µ

2

Thus
1

t

∫ 1

0

µ(p)dt <
logE(t)

t
− µ

<
µ

2
− µ = −µ

2
,

which implies q̄2 < 0.Hence, we have estabished the following result:

Theorem 3.14. The endemic equilibrium of the system (3.47)-(3.48) is globally asymp-
totically stable.

From Theorem 3.14, we obtain the global asymptotically stability of the endemic
equilibrium for the original system (3.29)-(3.32) under the assumptions of no treatments
and disease related mortality.
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Results

Optimal treatments Nowwe turn to the more general model with time-dependent
controls ϕ(t) .We consider the system on a time interval [0,T ]. The functions ϕ(t) are
assumed to be at least lebesgue measurable on [0,T ]. The control set is defined as

Ω =
{
ϕ(t)|0 ≤ ϕ(t) ≤ ϕmax

} (4.1)

where ϕmax denotes the upper bounds for the effort of treatments. The bound reflects
practical limitation on the maximum rate of controls in a given time period.

The presence of time-dependent controls makes the analysis of our system difficult.
In fact, the disease dynamics now depend on the evolution of controls. In what follows
we perform an optimal control study on this problem.We aim to minimize the total num-
ber of infectious people and the costs of control over the time interval [0,T ];i.e.

min
ϕ∈Ω

∫ T

0

[I(t) + c21ϕ(t)S(t) + c22ϕ(t)
2]dt. (4.2)

The cost parameters are associated with the controls and defined by c21 and
c22.Quadratic terms are introduced to indicate nonlinear costs potentially arising at high
intervention levels.

We note that our model is linear in the control variables ϕ, and the control set
Ω is closed and convex. Meanwhile, the integrand of the objective functional in (3.53) is
also convex. Hence, standard optimal control teory [7,21] yields the following result:

Theorem 4.1. There exist ϕ∗ ∈ Ω such that the objective functional in (3.53) is minimized.

Indeed, the optimal control solution is also unique for small T due to the Lipschitz
structure of the model equations and the boundedness of the state variables. To pro-
ceed, we apply Pontryagin’s minimum principle to determine the optimal control. We
first define the adjoint function λS ,λE and λI associated with the state equations for



60

S,E and I , respectively. We then form the Hamiltonian,H , by multiplying each adjoint
function with the right-hand side of its corresponding state equation, and adding each of
these products to the integrand of the objective functional. As a result, we obtain

H = I(t) + c21ϕ(t)S(t) + c22ϕ(t)
2

+ λS[µN − (β1I + β2E)S − µS − ϕ(t)S + δR]

+ λE[(β1I + β2E)S − (µ+ σ + γ)E]

+ λI [σE − (µ+ α + γ)I]

+ λR[γE + γI − µR− δR]

To achieve the optimal control, the adjoint functions must satisfy dλS

dt
= −∂H

∂S
, dλE

dt
=

−∂H
∂E

, dλI
dt

= −∂H
∂I

and dλR

dt
= −∂H

∂R
. Thus, we have

dλS

dt
= −c21ϕ(t) + λS(β1I + β2E + µ+ ϕ)− λE(β1I + β2E),

dλE

dt
= λS(β2S)− λE(β2S + σ + µ+ γ)− λI(σ)− λR(γ),

dλI

dt
= −1 + λS(β1S)− λE(β1S) + λI(γ + µ+ α)− λR(γ),

dλR

dt
= −λS(δ) + λR(µ+ δ),

with the final-time conditions λS(T ) = 0, λV (T ) = 0, λE(T ) = 0, and λI(T ) =

0, λR(T ) = 0, The characterization of the optimal control ϕ∗(t) in then based on the
condition

∂H

∂ϕ
= 0 (4.3)

subject to the constraints 0 ≤ ϕ ≤ ϕmax.Specifically, we have

ϕ∗(t) = max[0,min(ϕ(t), ϕmax)]

where

ϕ∗(t) =
[(λSS − c21S(t))]

2c22

Due to the presence of both initial conditions ( for the state equations ) and final time
conditions ( for the adjoint equations ), and the fact that most models of our interest
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are nonlinear, the optimal control system has to be solved numerically. We will use the
Forward-Backward Sweep Method to conduct the numerical simulation.
Assume that u = u(t, x, λ) can be found explicitly from the optimality condition.

• Step 1. Make an initial guess for u (usually 0) on the entire domain.

• Step 2 Using the initial condition x(0) = a and the values for u, solve x forward
in time over the domain.

• Step 3. Using the transversality condition λ(T ) = b (usually 0) and the values for
u and x, solve λ backward in time.

• Step 4 Update u by the new x and λ values. We use the optimality condition to
update control u at this step.

• Step 5. Check convergence. If values in this iteration and the last one are negligibly
close, output the current values as solutions; otherwise, return to Step 2.

The optimal control system, consisting of the state equations, the adjoint equations and
the optimality condition (3.48), has to be solved numerically. We have conducted nu-
merical simulation using various choices of cost parameters and time intervals, and have
observed a unique solution in each case. The numerical results clearly demonstrate that
an optimal treatment strategy can significant bring down the number of exposed and
infectious individuals, thus reducing the burden of an avian influenza outbreak. Some
typical results are presented below.

Table 9: Parameter values and symbols
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Parameter Symbol Value References
Total population N 10,000
The vaccination rate ϕ 0.07 [28]
Transmission coefficien of the infectious intially β1 0.5/N/day [4]
Transmission coefficien of the infectious severe β2 0.5/N/day [4]
Nutural human birth and death rates µ (70 ∗ 365−1)/day [4]
Disease related death rate α 0.012 [28]
The progression rate δ 0.01 [8]
Transmission rate from exposure to infection σ 0.699/day [28]
Recovery rate γ 0.15 [28]

Assumming that there are costs c21 = 0.2 and c22 = 0.5
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Figure 4.1: Number of infectious individuals.

Figure 3.9 depicts the infectious individuals for the case without treatments (solid line)
and that with optimal treatments (dashed line). The reduction, in both the infection level
and the outbreak period, due to the incorporation of treatments is significant. Figure
3.10 shows the dynamics of the exposed individuals. Without treatments, the exposed
population (E) attains very high values immediately after the onset of the outbreak. As
S decreases,E goes down for a short period of time.Then with the increase of infectious
individuals (I), the exposed population starts increasing again and reaches a peak at
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t ≈ 10 days (not that the peak of E occurs before that of I ; compare Figures 3.9
and 3.10). With optimal treatments, however,E continues decreasing until reaching and
settling at a value close to zero, which,consequently,leads to a very low infection level
for I .
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Figure 4.2: Number of exposed individuals.



Chapter 5
Conclusions and Discussions

In this study, we have presented a mathematical model for the spread of Avian Influenza
that involves with the effect of latency and medical treatments. We have done this work
by studying in both theoretical and numerical ways. In order to observe the effect of
rate of vaccination and vaccine efficiency on the spread of disease and find ways to con-
trol the outbreak of the bird flu disease, we use the optimal control study. The model
exhibits two feasible points of equilibrium, namely, the disease-free equilibrium and the
endemic equilibrium. The stability of these two feasible points of equilibrium are con-
trolled by the threshold number R0. If R0 is less than one, then the disease dies out
and the disease-free equilibrium is stable. If R0 is greater than one, then the disease
persists and the disease free equilibrium is unstable. We have the values is based on the
theory of R0. We assumed that humans are vaccinated with the rate ϕ(t) and thus they
became a vaccinated class. According to our study, it shows that with a good vaccination
plan, when strategically deployed, can significantly reduce the numbers of exposed and
infectious people and help eradicate the disease outbreak. Throughout the paper, we
have utilized both analytical and numerical means so as to gain deeper insight into the
disease dynamics.
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Abstract Avian influenza, caused by influenza A viruses, has received worldwide at-
tention over recent years. The viruses can spread from birds to humans as well as through
the human-to-human transmission route. In this study, we formulate a mathematical model
for avian influenza that includes bird-human interaction and that incorporates the effects
of infection latency and human vaccination. We investigate the essential dynamics of the
model through an equilibrium analysis. Meanwhile, we explore effective vaccination strategy
to control avian influenza outbreaks using optimal control theory. Our results show that
strategically deployed human vaccination can significantly reduce the numbers of exposed
and infectious persons.

1 Introduction

Avian influenza is caused by influenza A viruses. These viruses are naturally carried by wild
aquatic birds such as ducks, geese, swarms, or seagulls, and can infect local poultry and other
bird and animal species [37]. It is known that there are two categories of influenza A viruses
that may cause illness in birds: low pathogenic avian influenza (LPAI) and high pathogenic
avian influenza (HPAI). Wild birds usually spread LPAI viruses to domestic birds and, under
suitable conditions, LPAI undergoes mutation and evolves into HPAI that causes failure of
internal organs and leads to 90-100 percent of death rates among domestic birds within 48
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hours. A recent HPAI outbreak among birds in the United States was reported by the US
Department of Agriculture in 2014.

Influenza A viruses can spread from infected birds to humans. Meanwhile, person-to-
person transmission of such viruses has also been documented [37]. Humans infected by avian
influenza exhibit symptoms such as fever, cough, sore throat, muscle aches, and in severe
cases can have breathing difficulty, pneumonia, acute respiratory distress, and respiratory
failure. Avian influenza subtype H5N1 has been endemic in Asia and several other places,
with 777 laboratory-confirmed human infections; among these 428, or 55.1 percent, have been
fatal [38]. The world’s first three human cases of avian influenza subtype H7N9 were reported
in China in 2013. From 2014 to February 2015, 227 deaths from 602 human H7N9 cases have
been claimed. Severe human infections of other subtypes of avian influenza (H7N3, H7N7,
etc.) have also been reported [38]. If the situation continues without effective control, an
avian influenza pandemic could occur among humans with potentially high mortality rates.

There have been many mathematical models (see, e.g., [2,10,13,18,33]) published for the
transmission of the influenza A viruses and the spread of the infection among birds. Several
avian influenza models have also been proposed with a focus on humans and the impact of
hypothetical pandemics (see, e.g., [8, 9, 26, 28]). Meanwhile, quite a few studies have been
conducted to link birds and humans in avian influenza epidemics. For example, Chong
et al. [4] proposed a model in 2014 for coupled bird-human dynamics with half-saturated
incidence and mutation of virus strains. Liu et al. [25] investigated avian influenza with
psychological effect and utilized an SI (Susceptible-Infected) model for birds and an SIR
(Susceptible-Infected-Recovered) model for humans, where disease transmission in humans
is solely contributed by infected birds. Gumel [12] analyzed the global dynamics of an
avian influenza model with two virus strains. Iwami and co-workers [16, 17, 19] proposed
bird-human interaction models to analyze potential avian flu pandemics and the control
strategy. Martcheva and co-workers [30–32] studied low and high pathogenic avian influenza
and the impact of seasonality on disease dynamics. Other related work can be found in
recent reviews [1, 27] and references therein.

Most (if not all) of the current mathematical studies of avian influenza utilize an SIR
model for human disease transmission. In reality, however, there is generally an incubation
(or, latent) period for avian influenza that has been clinically observed as ranging from 2 to
8 days, with an average of 5 days, and possibly as long as 17 days [15, 39]. It is also found
that the latency of avian influenza is typically longer than that for normal seasonal influenza
(which is around 2 to 3 days). This latent period could have important implications on the
length, frequency and severity of avian influenza outbreaks among humans, as well as on
the surveillance of patients and the control of disease epidemics, yet very little attention has
been placed on its mathematical modeling. Meanwhile, although bird/poultry vaccination
has been widely adopted in containing the influenza and investigated in several studies
(e.g., [11,13,18]), human vaccines for avian influenza are only recently available (FDA licensed
the first H5N1 vaccine in 2007) and are still used in small-scale clinical tests. More guidelines
for human vaccination and other control measures are thus urgently needed to prevent avian
influenza pandemics among humans.
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The main contribution of the present work is a new modeling framework that couples
the bird and human populations and that incorporates the disease incubation period and
the human vaccination. Representing the latency in the model necessitates the addition
of another compartment, i.e., the exposed individuals, and increases the dimension of the
whole system which makes the analysis more challenging. We will utilize both analytical
and numerical means so as to gain deeper insight into the disease dynamics. Meanwhile,
our analysis and simulation results regarding the human vaccination will provide useful
information for public health administrations in the prevention and intervention of an avian
influenza outbreak.

The remainder of this paper is organized as follows. Details of our avian influenza math-
ematical model is provided in Section 2, followed by a careful analysis of the disease-free
equilibria (DFE) for both the bird and human populations in Section 3. The global stability
of the DFE for the entire system is also established. Section 4 is devoted to the analysis of
the endemic dynamics. In particular, the global asymptotic stability of the endemic equilib-
rium is investigated using the geometric approach [6, 22, 23]. An optimal control model for
human vaccination is constructed and analyzed in Section 5. Finally, conclusions are drawn
and some discussion is presented in Section 6.

2 Mathematical model

We describe the avian influenza dynamics using a system of six differential equations. The
population of birds is divided into two compartments: Sb and Ib, where Sb represents the
susceptible birds and Ib represents the infected birds. The population of humans is compart-
mentalized into four classes: susceptible (Sh), exposed (E), infectious (Ih), and recovered
(R). A diagram to illustrate our model is presented in Figure 1.

We use an SI model to represent the disease dynamics among birds. Susceptible birds
are infected through contacts (at a rate of βB) with infected ones. The infected birds then
transmit the disease to human hosts at a contact rate βBH . Meanwhile, the infection also
spreads among the human population through the person-to-person pathway with a trans-
mission rate βh. Susceptible humans, once infected, will first enter the exposed class E,
and then become infectious after an incubation period, 1/σ; here σ is the progression rate
from exposed to infectious. Both the exposed and infectious people may recover from the
disease, and recovered individuals can lose immunity and return to the susceptible class at a
rate of δ. Hence, an SEIRS (Susceptible-Exposed-Infectious-Recovered-Susceptible) model
is employed here to describe the human disease dynamics.

We assume the natural birth and death rates are the same, and denote that by µb and µh
for birds and humans, respectively. We also denote the disease caused death rates by δb and
α, respectively, for birds and humans. In addition, we represent the influx rates for these
two populations by the constants Γb and Γh. For convenience of discussion, we write

Γb = µbNb , Γh = µhNh ,
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where the two constants, Nb and Nh, can be interpreted as the respective time-averaged
population for birds and humans. In case there is no disease related mortality, Nb = Sb + Ib
and Nh = Sh + E + Ih + R and they represent the (constant) total populations for birds
and humans. Finally, we incorporate vaccination into the susceptible human population as
a disease control measure; we assume that the vaccine will confer permanent immunity and
that vaccinated individuals are removed from the susceptible class at a rate of φh.

Figure 1: Diagram of the model.
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Our model thus takes the form below:

dSb
dt

= µbNb − µbSb − βBSbIb, (1)

dIb
dt

= βBSbIb − (µb + δb)Ib, (2)

dSh
dt

= µhNh − βhIhSh − βBHShIb + δR− µhSh − φhSh, (3)

dE

dt
= βhIhSh + βBHShIb − (µh + σ + κ)E, (4)

dIh
dt

= σE − (µh + α + γ)Ih, (5)

dR

dt
= κE + γIh − µhR− δR. (6)

The definition and numerical values of all the model parameters are provided in Table 1.
Written in a vector form, the above equations become

dX

dt
= F(X) (7)

with X = (Sb, Ib, Sh, E, Ih, R)T .

3 Epidemic analysis

We start our analysis of the model by studying the disease-free equilibrium (DFE) and
calculating the basic reproduction numbers. Since our model contains two populations:
birds and humans, it is best that we first investigate the bird subsystem, represented by
equations (1) and (2), and then proceed to the human subsystem that consits of equations
(3)-(6). We will follow the same strategy when analyzing the endemic equilibrium as well.

It is straightforward to obtain the DFE for the bird subsystem:

εb = (Nb, 0). (8)

Consequently, the basic reproduction number for birds can be easily determined as

Rb
0 =

βBNb

µb + δb
. (9)

We have the following result:

Proposition 3.1. When Rb
0 < 1, the DFE, εb, for the bird subsystem is locally asymptoti-

cally stable; when Rb
0 > 1, εb is unstable.
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The DFE for the human subsystem is given by

εh = (
µhNh

µh + φh
, 0, 0, 0). (10)

To compute the basic reproduction number for humans, we use the well-known method of
van den Driessche and Watmough [34], with the associated next-generation matrices

F =

[
0 βh

µhNh

µh+φh

0 0

]
and V =

[
µh + σ + κ 0
−σ µh + α + γ

]
.

The basic reproductive number is then determined as the spectral radius of FV −1; thus we
obtain

Rh
0 =

σβhµhNh

(µh + φh)(µh + σ + κ)(µh + α + γ)
. (11)

Consequently, we have the following result:

Proposition 3.2. When Rh
0 < 1, the DFE, εh, for the human subsystem is locally asymp-

totically stable; when Rh
0 > 1, εh is unstable.

Constructing the next-generation matrices for the entire model, equations (1)-(6), we can
easily obtain the basic reproduction number for the combined system:

R0 = max{Rb
0, R

h
0}. (12)

This expression indicates that both the bird and human subsystems will contribute to the
threshold dynamics of the full system. Based on the work in [34], we immediately obtain
the result below:

Theorem 3.3. The disease-free equilibrium of the full model (1)-(6) is locally asymptotically
stable if R0 < 1, and unstable if R0 > 1.

Next we examine the global asymptotic stability of the DFE. To that end we state the
following result introduced by Castillo-Chavez et al. [3].

Lemma 3.4. Consider a model system written in the form

dX1

dt
= F (X1, X2),

dX2

dt
= G(X1, X2), G(X1, 0) = 0

where X1 ∈ Rm denotes (its components) the number of uninfected individuals and X2 ∈ Rn

denotes (its components) the number of infected individuals including latent, infectious,
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etc; X0 = (X∗1 , 0) denotes the disease-free equilibrium of the system. Also assume the two
conditions (H1) and (H2) below:
(H1) For dX1

dt
= F (X1, 0), X∗1 is globally asymptotically stable;

(H2) G(X1, X2) = AX2−Ĝ(X1, X2), Ĝ(X1, X2) ≥ 0 for (X1, X2) ∈ Ω, where the off-diagonal
elements of the Jacobian matrix A = ∂G

∂X2
(X∗1 , 0) are non-negative, and Ω is the region where

the model makes biological sense.
Then the DFE X0 = (X∗1 , 0) is globally asymptotically stable provided that R0 < 1.

We now apply this lemma to our model, under the assumption that δ = 0; i.e., recovery
from the disease will confer lifetime immunity. Then from equation (3), we observe that
dSh/dt ≤ µhNh − (µh + φh)Sh , which yields Sh ≤ µhNh

µh+φh
.

Theorem 3.5. When R0 < 1, the disease-free equilibrium of the model (7) is globally asymp-
totic stable provided that δ = 0.

Proof. We show that the conditions (H1) and (H2) hold when R0 < 1. In our ODE system
(1)-(6), X1 = (Sb, Sh, R), X2 = (Ib, E, Ih), and X∗1 = (Nb,

µhNh

µh+φh
, 0). We note that

dX1

dt
= F (X1, 0) =

 µbNb − µbSb
µhNh + δR− µhSh − φhSh

−µhR− δR


is linear and its solution can be easily found as

R(t) = R(0)e−(µh+δ)t, Sb(t) = Nb + (Sb(0)−Nb)e
−µbt

and

Sh(t) =
µh

µh + φh
Nh +

δ

φh − δ
R(0)e−(µh+δ)t +

(
Sh(0)− µhNh

µh + φh
− δ

φh − δ
R(0)

)
e−(µh+φh)t.

Clearly, R(t) → 0, Sb(t) → Nb and Sh(t) → µh
µh+φh

Nh as t → ∞, regardless of the values of

R(0), Sb(0) and Sh(0). Hence, X∗1 = (Nb,
µh

µh+φh
Nh, 0) is globally asymptotically stable for

the subsystem dX1/dt = F (X1, 0).
Next, we have

G(X1, X2) =

 βBSbIb − (µb + δb)Ib
βhShIh + βBHShIb − (µh + σ + κ)E

σE − (µh + α + γ)Ih

 .
We can then obtain

A =

βBNb − (µb + δb) 0 0
βBHµh
µh+φh

Nh −(µh + σ + κ) βhµh
µh+φh

Nh

0 σ −(µh + α + γ)


with all non-negative off-diagonal elements. Meanwhile, we find
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Ĝ(X1, X2) =

 βBIb(Nb − Sb)
(βBHIb + βhIh)(

µhNh

µh+φh
− Sh)

0


Since 0 ≤ Sb ≤ Nb and 0 ≤ Sh ≤ µhNh

µh+φh
, it is obvious that Ĝ ≥ 0.

We conclude this section by making another comment on the expression of R0 in equation
(12). Practically, the bird/poultry population (Nb) is much larger than the human population
(Nh) in a typical place of an avian influenza outbreak, while the transmission rates for the
birds and humans are normally of the same order [4,29]. As a result, Rb

0 > Rh
0 usually holds,

which leads to R0 = Rb
0. Indeed, our analysis in what follows highlights the essential role of

Rb
0 in shaping the disease endemic dynamics of the coupled bird-human system.

4 Endemic analysis

The stability at the DFE determines the short-term epidemics of the disease, whereas its
dynamics over a longer period of time is characterized by the stability at the endemic equi-
librium. In this section we will analyze the endemic properties of our avian influenza model.

4.1 Endemic equilibrium

We first examine the existence of the positive endemic equilibrium. Denote the endemic
equilibrium of the full model by

ε∗ = (S∗b , I
∗
b , S

∗
h, E

∗, I∗h, R
∗).

From equations (1) and (2) we obtain

S∗b =
µb + δb
βB

and I∗b = µb

( Nb

µb + δb
− 1

βB
),

where I∗b > 0 as long as Rb
0 > 1.

Next, we substitute I∗b into equation (4) to obtain

βhI
∗
hS
∗
h + βBHS

∗
hµb

( Nb

µb + δb
− 1

βB

)
− (µh + σ + κ)E∗ = 0. (13)

From equation (5), we have

E∗ =
(µh + α + γ)I∗h

σ
. (14)

With some algebraic manipulations, equations (13) and (14) yield

S∗h =
(µh + σ + κ)(µh + α + γ)

σ
(
βhI∗h + βBHµb

(
Nb

µb+δb
− 1

βB

))I∗h.
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Now we substitute E∗, I∗b and S∗h into equation (3) to obtain

µhNh −
(µh + σ + κ)(µh + α + γ)

σ
I∗h

1

βhI∗h + βBHµb

(
Nb

µb+δb
− 1

βB

) ·
(
βhI

∗
h + βBHµb

( Nb

µb + δb
− 1

βB

)
+ µh + φh

)
+
κ
(
µh+α+γ

σ

)
I∗h + γI∗h

µh + δ
δ = 0.

This equation, after some algebra, yields a quadratic equation

A1I
∗2
h +B1I

∗
h + C1 = 0, (15)

where
A1 = (b− a)βh, B1 = µhNhβh − ac− aµh − aφh + bc, C1 = cµhNh,

and where

a =
(µh + σ + κ)(µh + α + γ)

σ
, b =

κ
(
µh+α+γ

σ

)
+ γ

µh + δ
δ, c = βBHµb

( Nb

µb + δb
− 1

βB

)
.

The roots of equation (15) have to satisfy

I∗h1I
∗
h2

=
C1

A1

and I∗h1 + I∗h2 = −B1

A1

.

When Rb
0 > 1, we have C1 > 0. Meanwhile we have

A1 = (b− a)βh

= βh

[κ(µh+α+γ
σ

)
+ γ

µh + δ
δ − (µh + σ + κ)(µh + α + γ)

σ

]
=

−βh
σ(µh + δ)

[
µ3
h + µ2

h(α + γ + σ + κ+ δ) + µh(ασ + σγ + κα + κγ + δαδγ + δσ) + δσα
]

< 0.

Thus I∗h1I
∗
h2
< 0; that is, the two roots of equation (15) are both real: one must be positive

and the other must be negative. Consequently, we have the result below:

Theorem 4.1. The positive endemic equilibrium ε∗ of the system (1)-(6) exists and is unique
provided that Rb

0 > 1.

In addition, we note that if I∗b = 0 (i.e., no infection persistent in birds, and thus no
disease contribution to the humans), then c = C1 = 0, and equation (15) is reduced to

I∗h(A1I
∗
h +B1) = 0 . (16)
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In this case, A1 < 0 still holds, and

B1 = µhβhNh − a(µh + φh) = µhβhNh

(
1− 1

Rh
0

)
> 0

if and only if Rh
0 > 1. Consequently, equation (16) has two biologically feasible roots I∗h1 = 0

and I∗h2 = −B1/A1 > 0 when Rh
0 > 1, and only one biologically meaningful root I∗h1 = 0

when Rh
0 < 1.

These analytical findings show that in the absence of birds, the human subsystem (3)-
(6) is reduced to a normal SEIRS model whose threshold dynamics are determined by the
human reproduction number Rh

0 . In contrast, when the bird-human interaction is included,
the endemic dynamics of the combined system are characterized by the bird reproduction
number Rb

0, a somehow surprising result. We observe, however, that the infected birds (Ib)
directly contribute to a positive growth of the exposed and infectious humans in our model.
Hence, the implication is that an avian influenza outbreak among birds (where Rb

0 > 1) will
always lead to disease outbreak and persistence in a completely susceptible human population.
Using vaccination to reduce the number of susceptible individuals in the human population,
therefore, would be an important control measure to protect humans against the infection
and to contain the disease outbreak.

4.2 Local and global stabilities

We proceed to analyze the stability properties of the endemic equilibrium. First we establish
the following result regarding the local stability.

Theorem 4.2. When Rb
0 > 1, the endemic equilibrium ε∗ is locally asymptotically stable.

Proof. The Jacobian of the system (1)-(6) at ε∗ is given by

J(ε∗) =


−(βhIh + βBHI

∗
b )− (µh − φh) 0 −βhS∗h δ

βhI
∗
h + βBHI

∗
b −(µh + σ + κ) βhS

∗
h 0

0 σ −(µh + α + γ) 0
0 κ γ −(µh + δ)

 .
The characteristic equation of the matrix J(ε∗) is

0 =det|λI − J(ε∗)|
=(λ+ [(βhI

∗
h + βBHI

∗
b )])[(λ+ (µh + σ + κ))(λ+ (µh + α + γ))(λ+ (µh + δ))

− (λ+ (µh + δ))σβhS
∗
h]

+ (βhI
∗
h + βBHI

∗
b )[δσγ − κδ(λ+ (µh + α + γ)) + σβhS

∗
h(λ+ (µh + δ))]. (17)

Let Q = βhI
∗
h + βBHI

∗
b . Equation (17) can be put into a quartic equation of the form

a4λ
4 + a3λ

3 + a2λ
2 + a1λ+ a0, (18)
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where

a4 = 1,

a3 = (µh + σ + κ) + (µh + σ + κ) +Q+ 2µh + δ + φh,

a2 = (µh + σ + κ)(µh + α + γ)− σβhS∗h
+ (Q+ 2µh + δ + φh)(2µh + α + γ + σ + κ)

+Q(µh + δ) + (µh + φh)(µh + δ),

a1 = (Q+ 2µh + δ + φh)[(µh + σ + κ)(µh + α + γ)− σβhS∗h]
+ [Q(µh + δ) + (µh + φh)(µh + δ)][(µh + α + γ) + (µh + σ + κ)],

a0 = [Q(µh + δ) + (µh + φh)(µh + δ)][(µh + σ + κ)(µh + α + γ)− σβhS∗h].

Using equation (5), at the endemic equilibrium we have I∗h = σE∗

µh+α+γ
. Thus equation (4)

yields

(µh + σ + κ)(µh + α + γ)− βσS∗h =
(µh + α + γ)βBHS

∗
hI
∗
b

E∗
> 0

as long as Rb
0 > 1. Therefore, we obtain ai > 0 for 0 ≤ i ≤ 4. Next we consider the

Routh-Hurwitz table [20]

λ4 a4 a2 a0

λ3 a3 a1 0
λ2 b1 b2 0
λ1 c1 0 0
λ0 d1 0 0

where

b1 =
a3a2 − a1a4

a3

, b2 =
a0a3

a3

= a0, c1 =
a1b1 − a3b2

b1

, d1 =
b2c1

c1

= b2.

To ensure that all roots of equation (18) have negative real parts, the Routh-Hurwitz stability
criterion [20] requires b1, b2, c1 and d1 all to be positive.

It is straightforward to observe that a3a2 > a1a4; i.e., b1 > 0. Since a0 > 0, we have
b2 > 0 and d1 > 0. For c1, we note that

a1b1 − a3b2 = a1

[a3a2 − a1a4

a3

]
− a3a0 =

a1a2a3 − (a2
1 + a2

3a0)

a3

.

We proceed to show that a1a2a3 > a2
1 + a2

3a0. For ease of comparison, we denote A =
Q+ 2µh + δ+φh, B = (µh +σ+κ)(µh +α+ γ)−σβhS∗h, C = Q(µh + δ) + (µh +φh)(µh + δ),
and D = (µh + α + γ) + (µ+ σ + κ). Note that A,B,C,D > 0. Then we can write

a1a2a3 = (AB + CD)(B + AD + C)(D + A)
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and
a2

1 + a2
3a0 = (AB + CD)2 + (D + A)2CB.

Simple algebra then yields a1a2a3 > a2
1 + a2

3a0; i.e., c1 > 0. This completes the proof.

Next, we will follow the geometric approach originally proposed by Li and Muldowney
[6, 22, 23] to investigate the global asymptotic stability of the endemic equilibrium. To that
end, we first present the following result based on the geometric approach.

Lemma 4.3. Consider a dynamical system dX
dt

= f(X), where f : D 7→ Rn is a C1 function
and D ⊂ Rn is a simply connected domain. Assume that there exists a compact absorbing
set K ⊂ D and the system has a unique equilibrium point X∗ in D . Then X∗ is globally
asymptotically stable in D if q̄2 < 0, where

q̄2 = lim sup
t→∞

sup
X0∈K

1

t

∫ t

0

m
(
P (X(s, X0))

)
ds . (19)

In equation (19), P is a matrix-valued function defined as

P = QfQ
−1 +QJ [2]Q−1 ,

where Q(X) is a
(
n
2

)
×
(
n
2

)
matrix-valued C1 function in D, Qf is the derivative of Q (entry-

wise) along the direction of f , and J [2] is the second additive compound matrix of the
Jacobian J(X) = Df(X) . Meanwhile, m(P ) is the Lozinskǐi measure of P with respect to
a matrix norm; i.e.,

m(P ) = lim
h→0+

|I + hP | − 1

h
,

where I represents the identity matrix.

We start our global stability analysis by considering the bird-only subsystem. The fol-
lowing result can be easily established:

Theorem 4.4. When Rb
0 > 1, the endemic equilibrium (S∗b , I

∗
b ) of the bird-only subsystem

is globally asymptotically stable.

Proof. Let us rewrite equations (1) and (2) as

dSb
dt

= µbNb − µbSb − βBSbIb , f1(Sb, Ib),

dIb
dt

= βBSbIb − (µb + δb)Ib , f2(Sb, Ib).

We already know that when Rb
0 > 1, the disease-free equilibrium (Nb, 0) is unstable and the

endemic equilibrium (S∗b , I
∗
b ) exists and is unique. Let h(Sb, Ib) = 1

Ib
which is positive and

smooth on the domain R2
+ , {(Sb, Ib) Sb > 0, Ib > 0}.

Then ∂
∂Sb

(f1h) + ∂
∂Ib

(f2h) = −µb
Ib
− βb < 0 throughout the domain R2

+. Based on the

Bendixson-Dulac criteria, there is no closed orbit in the region R2
+. Hence (S∗b , I

∗
b ) is globally

asymptotically stable.
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Now, to show the global stability of the endemic equilibrium for the full system (1)-(6),
we only need to consider the subsystem (3)-(6) with the bird components already at the
endemic steady state [25]. Still, the subsystem (3)-(6) is four-dimensional and challenging to
analyze in general. In what follows, we consider a simplified case of our model by assuming
φh = α = 0; i.e., no vaccination and no disease caused mortality, and apply the geometric
approach summarized in Lemma 4.3. Then Sh +E+ Ih +R = Nh is a constant which allows
us to drop equation (6) and consider a three-dimensional system (3)-(5), written as

dSh
dt

= µhNh − βhIhSh − (µh + βBHI
∗
b )Sh + δ(Nh − Sh − E − Ih), (20)

dE

dt
= βhIhSh − (µh + σ + κ)E + βBHI

∗
bSh, (21)

dIh
dt

= σE − (µh + γ)Ih, (22)

on the feasible domain

Ω = {(Sh, E, Ih)
∣∣ 0 ≤ Sh + E + Ih ≤ Nh}.

We shall mention that although the system (20)-(22) is slightly simpler than the original
system (3)-(6), it is still an SEIRS model with an additional, but essential, incidence term
(contributed by the infected birds). It is thus different from a typical SEIR model analyzed
in the literature. When Rb

0 > 1, the disease-free equilibrium of the system (20)-(22), located
on the boundary of the domain Ω, is unstable. This implies that the disease is uniformly
persistent. It then follows from the compactness of the domain and the uniform persistence
of the system that there exists a compact absorbing set in Ω. By the geometric approach, it
remains to verify the generalized Bendixson criterion q̄2 < 0, where q̄2 is defined in equation
(19).

Let us define

Q(Sh, E, Ih) =

1 0 0
0 E

Ih
0

0 0 E
Ih

 .
Then

QfQ
−1 =

0 0 0
0 Ih

E
( E
Ih

)f 0

0 0 Ih
E

( E
Ih

)f

 ,
where Ih

E
( E
Ih

)f = E′

E
− I′h

Ih
based on equations (3) and (4).

The Jacobian of the subsystem (20)-(22) is

J =

−βhIh − d1 − δ −δ −βhSh − δ
βhIh + d3 −d2 βhSh

0 σ −d4

 ,
13



where

d1 = µh + βBHI
∗
b , d2 = µh + σ + κ, d3 = βBHI

∗
b , and d4 = µh + γ,

and the second additive compound matrix associated with the Jacobian is given by

J [2] =

j11 βhSh βhSh + δ
σ j22 −δ
0 βhIh + βBHI

∗
b j33

 ,
where

j11 = −βhIh − δ − 2µh − σ − κ− βBHI∗b ,
j22 = −βhIh − δ − 2µh − γ − βBHI∗b ,
j33 = −2µh − σ − κ− γ.

We thus have

QJ [2]Q−1 =

1 0 0
0 E

Ih
0

0 0 E
Ih

j11 βhSh βhSh + δ
σ j22 −δ
0 βhIh + βBHI

∗
b j33

1 0 0
0 Ih

E
0

0 0 Ih
E


=

−βhIh − δ − 2µh − σ − κ− βBHI∗b βhSh
Ih
E

Ih
E

(βhSh + δ)
σ E
Ih

−(βhIh + δ + 2µh + γ + βBHI
∗
b ) −δ

0 βhIh + βBHI
∗
b −(2µh + σ + κ+ γ)


Hence

P = QfQ
−1 +QJ [2]Q−1 =

[
p11 p12

p21 p22

]
,

with

p11 = −βhIh − δ − 2µh − σ − κ− βBHI∗b ,

p12 =
[
βh
ShIh
E

,
(βhSh + δ)Ih

E

]
,

p21 =

[
σ E
Ih

0

]
,

and

p22 =

[
Ih
E

( E
Ih

)f − βhIh − δ − 2µh − γ − βBHI∗b −δ
βhIh + βBHI

∗
b

Ih
E

( E
Ih

)f − 2µh − σ − κ− γ

]
.

Let us choose the vector norm | · | in R3 as

|(x1, x2, x3)| = max{|x1|, |x2|+ |x3|}.
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One can then verify that the Lozinskǐi measure m(P ) with respect to this norm can be
estimated as

m(P ) ≤ sup{g1, g2},

where

g1 = m1(p11) + |p12|,
g2 = |p21|+m1(p22).

Here |p12| and |p21| are matrix norms induced by the L1 vector norm, and m1 denotes the
Lozinskǐi measure with respect to the L1 norm. We thus obtain

g1 = −βhIh − δ − 2µh − σ − κ− βBHI∗b +
(βhSh + δ)Ih

E
,

g2 = σ
E

Ih
+ max

{Ih
E

(E
Ih

)
f
− δ − 2µh − γ,

Ih
E

(E
Ih

)
f
− 2µh − δ − κ− γ + δ

}
≤ Ih
E

(E
Ih

)
f
− δ − 2µh − γ + σ

E

Ih
,

provided that 2δ < σ + κ. Using

E ′

E
= βh

IhSh
E

+ βBHI
∗
b

Sh
E
− (µh + σ + κ),

I ′h
Ih

= σ
E

Ih
− (µh + γ),

Ih
E

(E
Ih

)
f

=
E ′

E
− I ′h
Ih
,

we obtain

g1 ≤
E ′

E
− δ − µh + max

{ δ
E
− βh, 0

}
,

g2 ≤
E ′

E
− δ − µh .

By the uniform persistence of the system, there exist ε > 0 and T > 0 such that when
t > T , we have E ≥ ε, and logE(t)

t
< δ+µh

2
. If δ < εβh, then δ

E
− βh < 0 when t > T , and

1

t

∫ t

0

m(P )dt <
logE(t)

t
− (δ + µh) < −

δ + µh
2

,

which implies q̄2 < 0. Hence, we have established the following result:

Theorem 4.5. When Rb
0 > 1, the endemic equilibrium of the system (20)-(22) is globally

asymptotically stable provided that δ < min
(
σ+κ

2
, εβh

)
.
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Combining the results in Theorems 4.4 and 4.5, we obtain the global asymptotic stability
of the endemic equilibrium for the original system (1)-(6) under the assumptions of no vacci-
nation and disease related mortality as well as small immunity loss. A numerical illustration
of this global endemic stability result is provided in Figure 2.
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Figure 2: Phrase portraits for R0 > 1 with different initial conditions. (a) Ih vs. Sh. All the
curves converge to the endemic equilibrium with I∗h ≈ 4.01, S∗h ≈ 7799.9. (b) Ib vs. Sb. All
the curves converge to the endemic equilibrium with I∗b ≈ 988, S∗b ≈ 2.5× 106.

5 Optimal vaccination

Now we turn to the more general model (1)-(6) with a time-dependent vaccination profile
φh(t), and conduct an optimal control study. We consider the system on a time interval
[0, T ]. The function φh(t) is assumed to be at least Lebesgue measurable on [0, T ]. The
control set is defined as

Λ = {φh(t) | 0 ≤ φh(t) ≤ φmax},

where φmax denotes the upper bounds for the vaccination rate. The bound reflects practical
limitation on the maximum rate of control in a given time period.

Our optimal control study aims to minimize the total numbers of infectious people and
the cost of control over the time interval [0, T ]; i.e.,

min
φh∈Λ

T∫
0

[
Ih(t) + c1φh(t)Sh(t) + c2φ

2
h(t)
]
dt , (23)

where the linear and quadratic terms are introduced to account for the costs at different
intervention levels [36], and c1 and c2 are cost parameters (with appropriate units) associated
with the control.
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We note that our model is linear in the control variable φh and that the control set Λ
is closed and convex. Meanwhile, the integrand of the objective functional in (23) is also
convex. Hence, standard optimal control theory [7, 21] yields the following result:

Theorem 5.1. There exists a φ∗h ∈ Λ such that the objective functional in (23) is minimized.

Indeed, the optimal control solution is also unique for small T due to the Lipschitz
structure of the model equations and the boundedness of the state variables [7]. To proceed,
we apply Pontryagin’s minimum principle to determine the optimal control. We first define
the adjoint functions λSh

, λE, λIh and λR associated with the state equations for Sh, E, Ih and
R, respectively. We then from the Hamiltonian, H, by multiplying each adjoint function with
the right-hand side of its corresponding state equation, and adding each of these products
to the integrand of the objective functional. As a result, we obtain

H = Ih(t) + c1φh(t)Sh(t) + c2φ
2
h(t)

+ λSh

[
µhNh − βIhSh − βBHShIb + δR− µhSh − φhSh

]
+ λE

[
βIhSh + βBHShIb − (µh + σ + κ)E

]
+ λIh

[
σE − (µh + α + γ)Ih

]
+ λR

[
κE + γIh − µhR− δR

]
.

To achieve the optimal control, the adjoint functions must satisfy
dλSh

dt
= − ∂H

∂Sh
, dλE

dt
= −∂H

∂E
,

dλIh
dt

= − ∂H
∂Ih

, and dλR
dt

= −∂H
∂R

. Thus, we have

dλSh

dt
= −c1φh(t) + λSh

(βIh + βBHIb + µh + φh)− λE(βIh + βBHIb), (24)

dλE
dt

= λE(µh + σ + κ)− λIhσ − λRκ, (25)

dλIh
dt

= −1 + λSh
βSh − λEβSh + λIh(µh + α + γ)− λRγ, (26)

dλR
dt

= −λSh
δ + λR(µh + δ), (27)

with the final-time conditions λSh
(T ) = 0, λIh(T ) = 0, λE(T ) = 0, and λR(T ) = 0. The

characterizations of the optimal control φh(t) is then based on the condition

∂H

∂φh
= 0 (28)

subject to the constraint 0 ≤ φh ≤ φmax.
The optimal control system, consisting of the state equations, the adjoint equations and

the optimality condition (28), has to be solved numerically. We have conducted numerical
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Table 1: Model parameters and values

Parameter Symbol Value Source
Averaged human population Nh 10, 000 Assumed
Averaged bird population Nb 300 ∗Nh Assumed
Natural birth and death rate of humans µh (70 ∗ 365)−1 /day [4]
Natural birth and death rate of birds µb (100)−1/day [4]
Contact rate for birds βB 0.4/200,000/day [4]
Bird-to-human transmission rate βBH 0.2/(Nb ∗ 100)/day [4]
Human-to-human transmission rate βh 0.5/Nh /day [4]
Disease related death rate for birds δb 5/day [4]
Disease related death rate for humans α 0.03/day [29]
Rate of immunity loss δ 0.699/day [29]
Transition rate from exposure to infection σ 0.2/day [15]
Recovery rate for exposed people κ 0.00015/day [29]
Recovery rate for infected people γ 0.16/day [29]

simulation using various choices of cost parameters and time intervals, and have observed a
unique solution in each case. The numerical results clearly demonstrate that an optimal vac-
cination strategy can significantly bring down the number of exposed and infectious human
individuals, thus reducing the burden of an avian influenza outbreak. Some typical results
are presented below.
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Figure 3: Number of infectious humans.
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Figure 3 depicts the infectious humans for the case without vaccination (solid line) and
that with optimal vaccination (dashed line). The reduction, in both the infection level and
the outbreak period, due to the incorporation of vaccination is significant. Figure 4 shows
the dynamics of the infectious human population for a much longer period of time. We
observe that when vaccination is not deployed, the infection curve, after several epidemic
oscillations (with decaying magnitudes), eventually approaches a positive endemic state. In
contrast, with an optimal vaccination strategy, the infection is quickly reduced to a level
very close to zero, and stays there for all the time afterwards.

0 1000 2000 3000 4000 5000 6000
0

100

200

300

400

500

600

700

800

900

1000

H
um

an
 In

fe
ct

io
ns

Days

 

 
Without Control
With Control

Figure 4: Number of infectious humans for a long term.

In addition, the dynamics of the exposed humans can be observed from Figure 5. Without
vaccination, the exposed population (E) attains very high values immediately after the onset
of the outbreak, mainly due to the contribution from the infected birds (Ib). As Ib and Sh
decrease, E goes down for a short period of time. Then with the increase of infectious
humans (Ih), the exposed population starts increasing again and reaches a peak at t ≈ 10
days (note that the peak of E occurs before that of Ih; compare Figures 3 and 5). With
optimal vaccination, however, E continues decreasing until reaching and settling at a value
close to zero, which, consequently, leads to a very low infection level for Ih.
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Figure 5: Number of exposed humans.

6 Conclusions

We have presented a mathematical model for avian influenza that involves both bird and
human populations and that incorporates the effects of latency and vaccination for humans,
using a system of six nonlinear differential equations. Our model employs an SI model
for birds and an SEIRS model for humans, and both bird-to-human and human-to-human
transmission routes are included in the system. We have analyzed the epidemic and endemic
dynamics of the combined model; particularly, we have established the local and global
stabilities based on the basic reproductive numbers. In addition, we have performed an
optimal control study to explore the optimal vaccination strategy in order to contain the
disease outbreak in humans. Our results show that human vaccination, when strategically
deployed, can significantly reduce the numbers of exposed and infectious people and help
eradicate the disease outbreak. Throughout the paper, we have utilized both analytical and
numerical means so as to gain deeper insight into the disease dynamics.

There are several limitations in this study which we hope to overcome in future work.
We have assumed that vaccination confers lifetime immunity, though, more realistically, we
could consider imperfect vaccination. In such a case, a new compartment representing the
vaccinated class can be added into the model, where vaccinated individuals can lose immunity
over time and re-enter the susceptible class. For simplicity, we have only considered bi-linear
incidence in this work. Similar modeling and analysis techniques can be extended to other
types of incidences (such as half saturation) for more careful investigation of the disease
mechanism. In addition, differentiating LPAI and HPAI dynamics and incorporating the
mutation of virus strains into our model will allow more detailed study, and possibly lead to
deeper understanding of avian influenza.
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