เอกสารแนบหมายเลข 2

Abstract

Project Code: TRG5780044

Project Title: Effects of Flavonoid Incorporated Micro/nanoemulsion in a Reconstituted

Human Skin for Wound Healing Disorder Model

Investigator: Dr. Ruttiros Khonakrn, Department of Pharmaceutical Sciences, Faculty

of Pharmacy, Chiang Mai University

E-mail Address: pharrutty@gmail.com

Project Period: 2 years

Quercetin is flavonoid compound which interesting to treat keloid via the mechanisms of antioxidant and anti-inflammatory properties as well as controlling cell

proliferation or apoptosis. However, its solubility in common solvent is very low. Besides,

quercetin can be degraded by hydrolysis and oxidation. The aims of this experiment were

to develop formulation of quercetin loaded microemulsion. Moreover, photostability of

quercetin loaded microemulsion under ultraviolet condition, the effects of quercetin

incorporated microemulsion in a reconstituted human skin and in vitro skin permeation and

retention were then evaluated. The compositions of microemulsion were selected based on

solubility of quercetin, ability to form microemulsion using pseudo-ternaryphase diagram

and average particle size. The results showed that the optimal formulation to incorporate

quercetin consisted of tween 80, transcutol, capryol 90 and water. The particle size of

ii

quercetin loaded microemulsion was between 16.3±2.5 to 205.0±26.2 nm. It was

affected by surfactant level as microemulsion with high surfactant level had smaller

particle size. Moreover, quercetin incorporated microemulsion based gel was successful

formulated using 15% cabopol agua as gelling agent and viscosity of guercetin

incorporated microemulsion based gel was not only from gelling agent but also from

microemulsion composition. For photostability analysis, quercetin ethanolic solution was

gradually degraded by12 watt of ultraviolet light in time dependent manner. Controlling pH

of microemulsion to 7.4 could improve photostability of loaded quercetin. The release of

quercetin from microemulsion was higher than that of microemulsion based gel. Besides,

reconstituted keloid dermis was successful prepared by creating collagen lattices. The

permeability of quercetin loaded microemulsion through porcine skin was significantly

higher than that of quercetin loaded microemulsion based gels in 6 h after application.

However, the higher quercetin retained in porcine skin was found from quercetin loaded

microemulsion based gel. It could be concluded that microemulsion is therefore considered

to be an attractive formulation of quercetin for keloid treatment.

Keywords: Quercetin, Microemulsion, Photostability, Skin Permeation, Skin Retention

iii

รหัสโครงการ: TRG5780044

ชื่อโครงการ: การศึกษาผลไมโคร/นาโนอิมัลชันที่กักเก็บฟลาโวนอยด์ต่อแบบจำลองผิวหนัง มนุษย์ที่ถูกสร้างขึ้นมาเพื่อศึกษาการสมานแผลที่ผิดปรกติ

ชื่อนักวิจัย: อ.ดร.ภญ. รัตติรส คนการณ์ สังกัดภาควิชาวิทยาศาสตร์เภสัชกรรม คณะ เภสัชศาสตร์ มหาวิทยาลัยเชียงใหม่

E-mail Address : pharrutty@gmail.com

ระยะเวลาโครงการ: 2 years

เควอชิทินเป็นสารในกลุ่มฟลาโวนอยด์ที่มีฤทธิ์ที่น่าสนใจในการรักษาศีลอยด์ด้วยกลไก ต้านอนุมูลอิสระ ต้านการอักเสบ รวมถึงการควบคุมการแบ่งตัวของเซลล์ หรือกระตุ้นให้เซลล์ ตายแบบอะพอพโทซิส อย่างไรก็ตามความสามารถในการละลายของเควอชิทินในสารละลาย ทั่วไปมีน้อย นอกจากนี้เควอชิทินเกิดการสลายตัวจากปฏิกิริยาไฮโดรไลซิสและออกซิเดชัน วัตถุประสงค์ของการศึกษานี้คือการพัฒนาตำรับเควอซิทินที่กักเก็บในไมโครอิมัลซัน อีกทั้งยัง ศึกษาความคงตัวต่อแสงของเควอชิทินที่กักเก็บในไมโครอิมัลซัน ศึกษาผลของเควอซิทินที่กัก เก็บในไมโครอิมัลซันต่อแบบจำลองผิวหนัง และศึกษาการซึมผ่านและการกักเก็บในผิวหนังหมู องค์ประกอบของตำรับไมโครอิมัลซันได้มาจากค่าการละลายของเควอซิทินในตัวทำละลาย ต่างๆ ความสามารถในการเกิดไมโครอิมัลซันจากแผนภาพวัฏภาคไตรภาคเทียม และขนาดของ อนุภาคไมโครอิมัลซันที่เตรียมได้ ผลการศึกษาพบว่าตำรับไมโครอิมัลซันที่เหมาะสมในการกัก เก็บเควอซิทินประกอบด้วย tween 80, transcutol, capryol และน้ำ ขนาดอนุภาคของ เควอซิทินที่กักเก็บในไมโครอิมัลซันอยู่ระหว่าง 16.3±2.5 ถึง 205.0±26.2 นาโนเมตร ปริมาณ

สารลดแรงตึงผิวมีผลต่อขนาดอนุภาค โดยสารลดแรงตึงที่มีปริมาณมากในตำรับหรับส่งผลให้ ได้ไมโครอิมัลชันขนาดเล็ก นอกจากนี้ยังสามารถเตรียมเควอชิทินที่กักเก็บในไมโครอิมัลชันพื้น เจลโดยใช้ cabopol aqua (15%) เป็นสารก่อเจล ความหนีดของตำรับเควอชิทินที่กักเก็บใน ไมโครอิมัลชันพื้นเจลเกิดจากสารก่อเจลและองค์ประกอบอื่นในตำรับ ส่วนการศึกษาความคง ตัวต่อแสงพบว่าสารเควอชิทินในสารละลายเอทานอลเกิดการสลายตัวเพิ่มขึ้นตามระยะเวลาที่ ส้มผัสแสงยูวี (12 วัตต์) และสามารถเพิ่มความคงตัวของเควอชิทินต่อแสงโดยควบคุมค่าความ เป็นกรดด่างที่ 7.4 เควอชิทินสามารถปลดปล่อยจากตำรับไมโครอิมัลชันได้มากกว่าตำรับ ไมโครอิมัลชันพื้นเจล นอกจากนี้ยังพบว่าสามารถเตรียมแบบจำลองชั้นผิวหนังแท้ของคีลอยด์ จากการสร้าง collagen lattice และพบการซึมผ่านผิวหนังหมูของเควอซอทินที่กักเก็บใน ไมโครอิมัลชันได้สูงกว่าของเควอชิทินที่กักเก็บในไมโครอิมัลชันพื้นเจลหลังจากทาผิว 6 ชั่วโมง อย่างไรก็ตามพบว่ามีปริมาณเควอชิทินที่กักเก็บในผิวหนังหมูของตำรับไมโครอิมัลชันพื้น เจลสูงกว่าตำรับไมโครอิมัลชัน จากผลการศึกษาดังกล่าวตำรับไมโครอิมัลชันเป็นตำรับที่ น่าสนใจสำหรับเควอชิทินในการรักษาคีลอยด์

คำหลัก: เควอซิทิน, ไมโคอิมัลชัน, ความคงตัวต่อแสง, การซึมผ่านผิวหนัง, การกักเก็บใน ผิวหนัง