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Abs t rac t :  

In population structure analysis, genetic variations, e.g., single nucleotide polymorphisms, 
are used to characterize commonality and difference of individuals from various populations. At 
present, high-complexity, high-dimensional genotypic data sets are common. Thus, an efficient way 
to handle such data sets is desirable. 

In this research project, we design two algorithms for population structure studies. First, we 
develop a new, efficient graph-based clustering framework for resolving population structure called 
the iNJclust algorithm.  The algorithm operates iteratively on the Neighbor-Joining (NJ) tree. The 
framework uses well-known genetic measurements, namely the allele-sharing distance and the 
fixation index. The behavior of the fixation index is proven mathematically and is utilized as a 
stopping criterion. The algorithm provides an estimated number of populations, individual 
assignments, and relationships between populations in terms of a binary population tree as outputs. 
The accurate clustering performance and robustness of the iNJclust algorithm are demonstrated 
using simulated and real data sets from bovine, sheep, and human populations.   

To cope with high computational cost and faulty substructure detected from noisy data due 
to redundant or non-informative SNPs, efforts have been done to extract a smaller informative SNP 
subset that still represents the same intrinsic structure of populations as the full panel of SNPs. The 
second part of this research describes an informative marker selection technique based on principal 
component analysis (PCA). It improves upon another technique called PCA-correlated SNPs. A 
new informativeness score based on a basis function expansion of the SNP variation patterns 
across individuals is introduced. Such score is computed for each SNP to select a subset of SNPs 
with the best scores. Using a bovine data set, we demonstrate that our technique is superior to the 
PCA-correlated SNPs method.  Our method is simple, efficient, and is robust to the assumed rank 
of the data. High data representation accuracy is also achieved after a significant reduction of the 
number of SNPs while retaining information about the underlying population structure from the 
original data.  
 
Keywords :  clustering, neighbor-joining tree, population structure, principal component analysis,  
informative SNPs 
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บทคัดย'อ:  
 การศึกษาโครงสร+างประชากรจากความแตกต4างของความถี่อัลลีลในข+อมูลทางพันธุกรรม เช#นข"อมูล 
สนิป (Single nucleotide polymorphisms หรอื SNPs)  เป#นหนึ่งในหัวข-อที่สําคัญในงานวิจัยด-านพันธุ-
กรรมประชากร ความเข(าใจในโครงสร(างดังกล3าวทําให&นักวิจัยสามารถระบุถึงตัวแปรในการวิวัฒนาการของ 
เผ#าพันธุ*สิ่งมีชีวิตที่ทําให8เกิดความหลากหลายทางพันธุกรรม ในป$จจุบันชุดข%อมูลสนิปมักมีขนาดใหญ*และม ี
ความซับซ(อนสูง  อัลกอริธึมที่สามารถวิเคราะห5และจัดการข:อมูลได#อย#างมีประสิทธิภาพจึงเป4นที่ต8องการยิ่ง  
โครงการวิจัยนีไ้ด#ออกแบบอัลกอริธึมสําหรับการศึกษาโครงสร#างประชากรไว#สองวิธี งานวิจัยส"วนแรกได# 
พัฒนากรอบการวิเคราะห0เชิงกราฟสําหรับการแบ/งกลุ/มประชากรชื่อว&าอัลกอรธิึม iNJclust ซึ่งทำงาน 
แบบวนซ้ําบนแผนภูมิเนเบอร1จอยนิงทรี โดยใช#ปริมาณทางพันธุกรรมที่เป5นที่รู#จักดี ได#แก& ระยะห%างอัลลีล 
(allele-sharing distance) และดัชนีฟ%กเซชัน (fixation index) และค"นพบทฤษฎีที่เกี่ยวข"องกับคุณสมบัต ิ
ของดัชนีฟ*กเซชันโดยใช1การพิสูจน9ทางคณิตศาสตร) และนํามาใช'เป*นเงื่อนไขการหยุดทํางานของอัลกอริธึม 
ผลลัพธ&ของอัลกอริธึมได#แก& การประมาณจํานวนกลุ#มประชากรย#อย การแบ#งกลุ#ม และจําแนกข(อมลูตัวอย'าง 
และแผนภูมติ"นไม#ที่แสดงโครงสร#างความสัมพันธ)ระดับกลุ1มประชากร การทดสอบการทํางานกับชุดข0อมูล 
สนิปขนาดใหญ+จากวัว แกะ และมนุษย.  พบว$าอัลกอริธึมไอเอ็นเจคลัสต7ให:ผลลัพธ7ที่ถูกต:อง 
 เพื่อแก(ป*ญหาการใช&ทรัพยากรการคํานวณที่สิ้นเปลือง และการระบุโครงสร&างย"อยที่ไม"ถูกต-องจาก 
สัญญาณรบกวนที่เกิดจากข"อมูลซ้ําซ"อนหรือสนิปบางส"วนไม#ได%มีข%อมูลเชิงโครงสร%างที่สําคัญ งานวิจัยใน 
ส"วนที่สองจึงมุ#งเน'นหาหลักเกณฑ/ในการเลือกกลุ$มของสนิปขนาดเล็กที่มีข&อมูลสําคัญเกี่ยวกับโครงสร#างประ
ชากรเทียบเท&ากับข+อมูลดั้งเดิมโดยใช&การวิเคราะห0บนมิติของพรินซิเพิลคอมโพเนนท0 โดยในงานวิจัยได#พัฒ- 
นาการจัดอันดับคะแนนความสําคัญของสนิปแต-ละตําแหน-งโดยปรับปรงุมาจากไอเดียของอัลกอริธึม PCA-
correlated SNPs การวัดคะแนนแบบใหม/ที่ได4พัฒนาขึ้นมีพื้นฐานมาจากการอธิบายการกระจายตัวของ 
สนิปแต'ละตําแหน'งบนกลุ'มตัวอย'างโดยใช:การขยายด:วยเบสิสฟ?งก@ชัน และทําการลดขนาดข,อมูลให,เหลือ 
เพียงกลุ)มของสนิปขนาดเล็กที่มีคะแนนสูงสุด  การทดสอบอัลกอริธึมที่พัฒนาขึ้นกับข%อมูลจากวัวแสดงให' 
เห็นว&าอัลกอริธึมมคีวามเรียบง+ายและมีประสิทธิภาพการทํางานเหนือกว4าอัลกอริธึม PCA-correlated SNPs  
และยังไม#ขึ้นกับลําดับของข1อมูล นอกจากนี้ยังสามารถลดขนาดข"อมูลลงอย%างมีนัยสําคัญ โดยยังคงรักษาข*อ 
มูลสําคัญด%านโครงสร%างประชากรจากข%อมูลดั้งเดิมไว%อย#างครบถ*วน 
 
คําหลัก:  การแบ&งกลุ&ม เนเบอร.จอยนิงทรี โครงสร7างประชากร การวิเคราะห.พรินซิเพิลคอมโพเนนท. 
สนิปสําคัญ  
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I .  Execu t i ve  Summary 
 
In t roduc t i on :   
 Understanding genetic differences among populations is one of the most important issues in 
population genetics. Genetic variations, e.g., single nucleotide polymorphisms, are used to 
characterize commonality and difference of individuals from various populations and analyze 
population structures. Applications of such discovery include population ancestry and migration 
studies, association studies, or even breed composition and traceability of livestock. Using today’s 
high throughput genotyping platforms, a data set may contain several thousands of individuals, 
each of which has a million of SNPs to be analyzed. There are two approaches in designing 
algorithms for population studies. The first approach relies on genetic model in which each 
individual is assigned with inferred ancestral contributions. Bayesian inference is implemented 
directly into these algorithms in order to cluster the individuals and analyze the underlying 
population structure. The second approach is non-parametric, and population structure is analyzed 
on different spaces, e.g. using principal component analysis (PCA) or various distance matrices. 
Limitations of existing algorithms in both categories include high computational cost, inaccurate 
clustering, or obscurity of inferred population structure. Faulty substructure may also be detected if 
the data is noisy from redundant or non-informative SNPs. Considerable efforts have been done to 
extract a smaller informative SNP subset that still represents the same intrinsic structure of 
populations within a data set as the full panel of SNPs. Thus, more efficient ways to handle such 
high-complexity, high-dimensional data sets are desirable. 
 
Ob jec t i ves :   
 This research project addresses the problem of analyzing population structure within 
genotypic data sets with high complexity. First, we aim to develop a graph-based clustering 
framework that uses relatedness information between populations provided by phylogenetic trees to 
resolve complex population structure. Secondly, we would like to investigate the problem of finding 
the subset of SNPs markers that contain important information on the intrinsic population structure 
using principal component analysis. 
 
Me thodo logy :   

We design two different algorithms for population structure studies. First, we develop a new 
computational framework for automatically classifying individuals to clusters and call it an “iterative 
neighbor-joining clustering” or iNJclust algorithm. Genetic similarity information inherits in neighbor-
joining (NJ) tree, which is a commonly used phylogenetic tree, is used for resolving population 
structure. Instead of clustering from PCA-derived data points, the iNJclust algorithm performs a 
graph-based clustering on the NJ tree constructed using an allele-sharing distance (ASD) matrix. 
Data points are viewed as nodes of a graph, whereas the graph topology captures the pattern of 
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clusters. We perform clustering on a graph by selectively cutting the longest edge of a minimum 
spanning tree. An iterative process is also adopted so that in each iteration, a new NJ tree is 
constructed for clustering. The framework uses well-known genetic measurements, namely the 
allele-sharing distance, and the fixation index. The behavior of the fixation index is investigated and 
utilized in the algorithm’s stopping criterion. The iNJclust algorithm provides an estimated number 
of populations, individual assignments, and relationships between populations as outputs. The 
clustering result is reported in the form of a binary population tree, whose terminal nodes represent 
the final inferred populations and the tree structure preserves the genetic relationships among 
them. 
 For the second part of our research, we establish a simple and efficient PCA-based 
informative marker selection technique. We improve upon another spectral analysis technique 
called PCA-correlated SNPs method by Paschou et al. proposed in 2007. A basis function 
expansion viewpoint of the SNP variation patterns across individuals is adopted to suggest a new 
informativeness score. The construction of our method is such that the bases are orthonormal. This 
informative score is computed for each SNP loci. The score for all SNP markers are ranked and a 
subset of SNPs with the best scores is deemed the most informative.  
 
Resu l t s  and  D iscuss ion :  

The clustering performance and the robustness of the iNJclust algorithm are tested using 
simulated and real data sets from bovine, sheep, and human populations. We compare the iNJclust 
algorithm against existing clustering algorithms of similar natures, namely the AWclust algorithm 
and the NJclust algorithm and also corroborate its results with the Admixture patterns. The results 
illustrate that the iNJclust algorithm outperforms the other algorithms. It is observed that our 
proposed algorithm operates in a computationally efficient manner. In addition, the iterated tree 
reconstruction process is crucial for accurate clustering results. The results also indicate that it can 
effectively handle irregular cluster patterns. The result indicates that the number of populations 
within each data set is reasonably estimated, the individual assignment is robust, and, although 
primitively, the structure of the inferred population tree corresponds to the intrinsic relationships 
among populations within the data. However, there is a limitation of inferring population tree 
topology with admixed individuals, as people with admixture may be assigned to different branches 
on the tree to which they have similarities.  

We give mathematical prove for the behavior of the fixation index after each iteration and 

utilize it as the iNJclust algorithm's stopping criterion called ΔF. Although the stopping criterion 
based on this fixation index property is mathematically sound and flexible, no process is discovered 

to produce an optimal value of the ΔF criterion. In stead, ranges of decent ΔF values for different 
data complexity have been suggested heuristically after an extensive investigation on many 
experimental data sets. 
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 Using a bovine data set, we demonstrate that our technique for identifying structure 
informative SNPs is superior to the PCA-correlated SNPs method, which requires accurate rank 
estimation to perform well. In contrast, it is demonstrated that our result is robust to the assumed 
rank of the data, i.e., the choice of a rank estimation technique has little effect on the final selection 
of informative SNPs. In fact, rank estimation may be bypassed with negligible degradation in data 
representation accuracy. Additionally, sizable dimensional reduction can be achieved using a very 
small subset of structure informative SNPs, while retaining information on the underlying population 
structure from the original data.  
 
Fu tu re  d i rec t i on :  

For an extension of this work, we plan to look at the performance of our methods on 
additional human or animal data sets with varying complexities. We would like to validate the 
hypothesis that our techniques are advantageous in the cases where we want to study the 
population structure at a finer scale, e.g. populations within continents or with common ancestry.
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I I .  Ob jec t i ves  
 

This research project addresses the problem of analyzing population structure within 
genetic data by applying graph-based data clustering with genetic similarity information inherits in 
neighbor-joining (NJ) tree, which is a commonly used phylogenetic tree. We also investigate the 
problem of finding the subset of SNPs markers that contain important information on the intrinsic 
population structure using principal component analysis. The specific aims are as follows: 
 
(1) To develop a new, efficient framework for resolving population structure which can handle 
genotype data sets with high complexity without a statistical data model. 
(2) To develop an accurate graph-based iterative clustering algorithm with an appropriate stopping 
criterion.  
(3) To derive a measure used for determining homogeneity of a subpopulation. 
(4) To construct a condition for selecting a small set of informative SNPs markers based on 
principal component analysis. 
(5) To demonstrate the efficacy of the proposed algorithms using simulated and real genetypic data 
sets. 
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I I I .  Research  Methodo logy   
 
I I I .A  The  iNJc lus t  f ramework :  A  new ,  e f f i c i en t  g raph -based  i t e ra t i ve  c lus te r i ng  
a lgo r i t hm 
 

We develop a new computational framework for automatically classifying individuals to 
clusters and call it “iterative neighbor-joining clustering” or iNJclust. The framework is non-
parametric. However, instead of clustering from PCA-derived data points as typically done for 
existing non-parametric algorithms, the framework uses relatedness information between 
populations provided by the phylogenetics-based methods to resolve complex population structure. 
The iNJclust algorithm performs a graph-based clustering on the NJ tree constructed using an 
allele-sharing distance (ASD) matrix. Data points are viewed as nodes of a graph, whereas the 
graph topology captures the pattern of clusters. We perform clustering on a graph by selectively 
cutting the longest edge of a minimum spanning tree. We also adopt the iterative process from so 
that the iNJclust algorithm is computationally efficient. 
 
(1) The iNJclust process  

D
ASD Calcula!on/Update

NJ Tree

Q - Criterion

D
Subtree 1 Subtree 2

NJ Tree

Homogeneous NJ treeNoHomogeneous 
cluster?

NJ tree
clustering

Yes

Subclusters
Cj ; j=1,…k

 
F igu re  1 :  The  sys tem f l owchar t  o f  ou r  a lgo r i t hm 

  
The system flowchart of our algorithm is depicted in Fig. 1. SNP sequences of M 

individuals forms the input matrix X  = [x 1, x 2, …, xM]T. Each row vector x i, i = 1,…, M is genotyped 
from L loci of individual i, at which there are two alleles of either A (major allele) or a (minor allele) 
for three possible genotypes (AA, Aa, aa). The SNP sequence is encoded by counting the number 
of minor allele a. Therefore, x i is an L-dimensional vector of numerical values 0,1, or 2.  
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After receiving the input matrix X , the algorithm computes the ASD matrix D , whose 
elements are   

    
D(i, j) = 1

L
|| x i − x j ||1,i, j = 1,…, M .

 (1) 
 
Therefore, D (i,j) is proportional to the L1-norm of the pairwise difference between the SNP 
sequences of individual i and individual j. The smaller the value of D (i,j), the closer the pair are 
genetically. The ASD matrix D  is subsequently used to construct the NJ tree. Treating each 
individual as a leaf node, we compute the minimum evolution criteria or the Q criterion,  
 

   
Q(i, j) = (r −1)d(i, j)− d

k=1

r

∑ (i,k)− d
k=1

r

∑ ( j,k)
 (2) 

 
where d(i,j) is the Fitch-Margoliash distance between node i and j, and r is the number of the 
remaining nodes. A pair of nodes who are nearest to each other are merged into a parent node. 
The tree construction process continues until all nodes are merged onto the NJ tree. The algorithm 
then determines if the cluster is homogeneous, i.e., all individuals on the tree come from the same 
population. A theoretical measure for determining subpopulation homogeneity has been derived 
(details in the next section). If the cluster is said to be heterogeneous, the algorithm performs 
clustering on the NJ tree by bisecting the tree into two subtrees. The NJ tree is split at the longest 
branch (edge) between two nodes within the tree. In the next stage, both subtrees cycle back to 
the ASD update step where they are processed independently. The method iterates until all 
populations (in the form of subtrees) are considered homogeneous and output from the process as 
the final subpopulations.  

Besides resolving population structure in three major aspects commonly performed in a 
clustering method: detecting population structure, predicting the number of populations within the 
dataset, and assigning individuals to predicted populations, the iNJclust algorithm also derives a 
bifurcated population tree based on the order at which each population are separated from the 
original dataset. The terminal nodes of the tree represent the final inferred populations and the tree 
structure preserves the genetic relationships among them. 
 
(2) A measure for determining subpopulation homogeneity 
 
  The fixation index Fst , which is wildly used to measure homogeneity of populations in 
genetic, is defined as follows. Suppose a dataset of M individuals is composed of N populations 
{C1, C2, …, CN} containing m1, m2, …, mN individuals, respectively. If the corresponding dominant 
allele frequencies of each population are p1, p2, …, pN,  the average dominant allele frequencies of 
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the entire dataset is 
  
p = 1

M
pi

i=1

N

∑ mi  and the quantity   HT = 2 p(1− p)  represents the expected 

heterozygosity of the entire dataset.  The expected heterozygosity of all populations is computed 
from 

   
Hs

N = 1
M

H j
j=1

N

∑ ( pj )mj
 (3) 

 
where   

H j ( pj ) = 2 pj (1− pj )  is the local expected heterozygosity of population j. By definition, the 

Fst value is 

  
Fst =

HT − Hs

HT   (4) 
 
That is, the normalized difference between the expected heterozygosities of all populations and the 
total dataset. Large value of Fst indicates that the intrinsic populations are highly dissimilar when 
viewed as a whole, i.e., the population is heterogeneous. Small value of Fst means that the 
population is more homogenous.  
 We first investigate the behavior of the fixation index value after data clustering and prove 
theoretically that the fixation index monotonically increases at each iteration until a homogeneous 
cluster is formed. We have derived the following proposition. 
 
Proposition: Let Fk be the Fst value computed at the kth iteration of the algorithm. Fk is non-
decreasing, i.e.,  

   Fk+1 ≥ Fk  
Proof:  

At iteration k, the original cluster of M individuals is divided into k ≥ 2 subclusters containing  m1, 
m2, …, mk  individuals, respectively. Let the corresponding dominant allele frequencies within each 
subcluster be p1, p2, …, pk. The average dominant allele frequencies of the entire dataset 

is
  
p = 1

M
pi

i=1

k

∑ mi  and the quantity   HT = 2 p(1− p)  represents the expected normal-type allele 

frequency of the data.   

Since 
  
Fk =

HT − Hs
k

HT

= 1−
Hs

k

HT

, to prove that   Fk+1 ≥ Fk  it is equivalent to showing  Hs
k+1 ≤ Hs

k .  

 

   
Hs

k = 1
M

H j
j=1

k

∑ ( pj )mj = C + 1
M

Hk ( pk )mk
 

where 
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C ≡ 1

M
H j

j=1

k−1

∑ ( pj )mj .
 

 
If the cluster at iteration k is considered heterogeneous, the NJ tree clustering bisects the cluster. 
Consequently,  

  
Hs

k+1 = C + 1
M

Hk+1
1 ( pk+1

1 )mk+1
1 + 1

M
Hk+1

2 ( pk+1
2 )mk+1

2

 
where  

  mk = mk+1
1 + mk+1

2
 . 

Trivially, 

  
pk =

pk+1
1 mk+1

1 + pk+1
2 mk+1

2

mk

.
 

For notational convenience, hereafter we drop the subscript denoting the iteration number and 
shorthand   pk+1

1  as   p
1 ,   pk+1

2  as   p
2 ,   mk+1

1  and   mk+1
2  as   m1  and  m2 , respectively.    

Thus, 

  

Hs
k+1 = C + 2

M
p1(1− p1)m1 + p2(1− p2 )m2⎡⎣ ⎤⎦

= C − 2(m1 + m2 )
M

− p1(1− p1) m1

m1 + m2

⎡

⎣
⎢

⎤

⎦
⎥ −

2(m1 + m2 )
M

− p2(1− p2 ) m2

m1 + m2

⎡

⎣
⎢

⎤

⎦
⎥

= C − 2(m1 + m2 )
M

f ( p1)λ1 + f ( p2 )λ2
⎡⎣ ⎤⎦  

 
using  

  
f ( y) = − y(1− y),λ1 =

m1

m1 + m2
,    
λ2 =

m2

m1 + m2 .
 

 
Since λ1,λ2 > 0,λ1 + λ2 = 1, and  f y( )  is a continuous concave up function, it follows from 

Jensen's inequality that  

  

Hs
k+1 ≤ C − 2(m1 + m2 )

M
f ( p1λ1 + p2λ2 )⎡⎣ ⎤⎦

= C − 2(m1 + m2 )
M

f ( pk )⎡⎣ ⎤⎦

= C + 1
M

Hk ( pk )mk

= Hs
k

 
If the cluster is already homogenous before splitting, the average dominant allele 
frequencies  p

1 ≈ p2 ≈ pk , thus   Hs
k+1 ≈ Hs

k .  
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 From the proposition the Fst value of the data after each iteration increases monotonically 
and converges after all populations have been identified. We propose using the difference,  
 

   ΔF = Fk+1 − Fk  (5) 
 

as a measure to detect homogeneous clusters. Using ΔF, the difference between clustered 

populations is now quantifiable and has a basis in genetics. If ΔF is sufficiently small we announce 

that the cluster is homogeneous and terminates the process. The smaller the ΔF threshold, the 
higher the sensitivity of the algorithm to differentiate between clusters. Thus, the threshold can be 
adjusted to obtain the desirable clustering resolution/sensitivity. 
 
(3) Explore the performance of the iNJclust algorithm as a function of the ΔF  stopping criterion  
 
 We explore the effects of evolution time and number of populations on the optimal value of 
ΔF, as well as consistency of the clustering results. We compare the iNJclust clustering results at 
each value of ΔF to the ground truth and compute the F-measure [1]  
 

   

Ψ(S ,C) =
| Si |
Mi=1

N

∑ max j

2 ⋅
| Si ∩C j |2

| Si || C j |
| Si ∩C j |

| Si |
+

| Si ∩C j |
| C j |

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

          (6) 

 
where   C ={C1,C2 ,…,CN }  is the clustering result from the iNJclust algorithm and  S is the ground 

truth. The higher the F-measure value, the closer the result is to the simulated model (an F-
measure value of 1 occurs when the iNJclust clustering result is exactly the same as the true 
clusters). From the F-measure plot we select the appropriate ΔF threshold value that gives the best 
clustering performance. We also perform bootstrapping to investigate the robustness of the iNJclust 
algorithm and examine how two factors, namely evolution time and number of populations, may 
affect the optimal value of the ΔF threshold. 
 

(4) Investigation on the properties of the ΔF threshold and a criterion for selecting its value  
 

For the iNJclust algorithm, the number of final populations and their individual assignments 
are dependent on the stopping point of the iterative process. If the ΔF criterion is too high, the 
predicted result may include a cluster with mixed populations. On the other hand, a too-low value 
of the criterion may split a single population into multiple clusters. Both situations give rise to 
clustering errors. Therefore, It is desirable to select the best possible value of the stopping criterion 
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to minimize the clustering error. Here we investigate whether there is an optimal or near-optimal 
value for the ΔF terminating criterion. If so, the value should be selected systematically. Otherwise, 
the value can be selected heuristically from extensive sets of data. 
 For the clustering problem, the objectives are to select compact clusters by maximizing the 
intra-cluster connectivity, and to minimize the inter-cluster connectivity such that different clusters 
are well-separated [2]. Therefore, the most appropriate value of the ΔF  threshold should produce 
the best clustering result possible. Different cluster validation techniques have been developed to 
analyze cluster structure, e.g., [3-5]. We consider two cluster validity indices based on inter- vs. 
intra-cluster connectivity, namely the Dunn’s index and Davies Bouldin index [3]. We also look at 
the Silhouette index, which is an index based on node’s neighborhood [2]. The indices parameters 
are summarized in Table 1 followed by their equations.  
 
Tab le  1 :  Cluster validity index parameters 
Index parameters Meaning 

 k  Number of clusters 

  d(x, y)  Distance between individuals  x  and  y  
Note: We use distance on the dissimilarity 
matrix in our computation.  

 Ci  ith cluster 

  
d(Ci ,C j ) = min

x∈Ci ,y∈C j

d(x, y){ }  Distance between cluster  Ci  and  
C j  

  
diam(Ci ) = max

x ,y∈Ci

d(x, y){ }  Diameter of cluster  Ci  

  
d(vi ,C j )  Distance between node  vi  and cluster  

C j  

 Ni  Number of node (individual) within cluster  Ci  

 
1) Dunn’s index: 

  

D = min
i=1:k

min
j=i+1:k

d(Ci ,C j )

max
l=1:k

(diam(Cl ))

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
          (7) 

 
For well-separated clusters, the distances among the clusters should be large and the diameter of 
each cluster should be small. Hence, the larger value of the index implies better cluster structure.   
 
2) Davies-Bouldin index: 

  
DB = 1

k
max

j≠i

diam(Ci )+ diam(C j )

d(Ci ,C j )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥i=1

k

∑          (8) 

 
The smaller Davies-Bouldin index, the more compact the clusters are.  



 13 

3) Silhouette index: 
 

  
s(vi ) =

d(vi ,Ch )− d(vi ,C j )

max(d(vi ,C j ),d(vi ,Ch ))
          (9) 

 
where  Ch  is the closest cluster to node  vi , which belongs to cluster  

C j . 

Note that   −1≤ s(vi ) ≤1 and   s(vi ) is well-clustered when the value is near 1. The silhouette  
S j for 

cluster  
C j is given by  

  
S j =

1
N j

s
i=1

N j

∑ (vi )          (10) 

and finally, the global silhouette index is 

      
  
GS = 1

k
S j

j=1

k

∑           (11) 

 
Other possible cluster validity indices include compactness index, modularization quality, 

RMSSDT and RS validity indices, and SD validity index. We hope to find an index that can 
automatically provide a clear choice for the iNJclust stopping criterion.   
 
 
I I I .B  PCA-based  in fo rma t i ve  SNP se lec t i on  fo r  ana lyz ing  popu la t i on  s t ruc tu re  
 

When dealing with large number of SNPs, there are an intensive computational requirement 
of existing algorithms for population studies, and high genotyping cost. Moreover, genotyping 
platform errors may introduce small perturbation that could cause spurious patterns. Thus, methods 
that can identify a smaller set of SNPs containing information about intrinsic population structures 
are appealing. In particular, we are interested in an approach termed PCA-correlated SNPs 
technique [6], which infers these structure informative markers using PCA. The technique is simple 
and very effective. However, PCA-correlated SNPs requires estimating the rank of data matrix, and 
the selected set of informative SNPs varies greatly with different assumed ranks. Consequently, the 
inferred underlying structures are not consistent. In this part of the research, we modify the PCA-
correlated method. The process diagram of the PCA-correlated SNPs technique is depicted on Fig. 
2, with the modified parts highlighted in gray.  
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F igu re  2 :  P rocess  d iag ram fo r  mod i f i ed  PCA-co r re la ted  SNPs me thod .  

 
(1) Selecting structure informative SNPs 
 

Consider the data of M individuals genotyped with L SNP markers in the form of an M x L 
matrix X . The ith row of X  represents the SNP sequence of individual i. The jth column of X  gives 

the variation of SNP at location j across all individuals. Typically, we have M ≤ L. The biallelic SNP 
representation at each locus is encoded as 0 (homozygous wild type), 1 (heterozygous), or 2 
(homozygous mutant). To reveal the structure within the data using PCA, the singular value 
decomposition (SVD) is performed so that X  can be written as  

Truncated  
Input 
Data 

  PCA/SVD 

Data 
Coding 

Rank Estimation 

 Score 
Computation 

Score Sorting 

Input Data 

Set of structure  
Informative SNPs 



 15 

               
   
X = UΣVT = σ i

i=1

M

∑ uiv i
T ,                        (12) 

where U  = [u 1, … , uM] is the matrix containing left singular vectors. The diagonal matrix Σ 

contains the singular values {σ1,   σ2, … , σM} in descending order; V  = [v 1, ... , v L] is the matrix of 
right singular vectors. The construction is such that U  and V  are unitary. Equivalently, U  contains 
the principal components computed from the sample covariance matrix of X . To observe population 
structure within the data, it is common that the data is projected onto the first few dominant 
principal components and visualized or used in subsequent clustering technique of choice.  

To gauge whether a particular SNP greatly contributes in shaping the underlying population 
substructure using the PCA framework, Paschou et al. [6] has suggested that we look at the jth 
column of X  corresponding to values of the jth SNP across individuals, defined as 

    
a j = σ i

i=1

M

∑ uivi
j ,

               (13) 
where vi

j is the jth element of v i.The so-called PCA-correlated SNPs method for identifying a 
smaller set of SNPs computes the score for SNP j 

 

              
p j = (vi

j )2

i=1

R

∑ , j = 1,…, L
               (14) 

 
and selects the desired number of SNPs with the largest pj values. The resulting SNP locations are 
presumably the most informative. In terms of a basis function expansion, PCA-correlated SNPs 

approximates the column vector a j using R bases {σiu i, i = 1, … , R} and the vi
j 's are the basis 

expansion coefficients. The parameter R is the rank of matrix X , i.e., the number of significant 

principal components. It is observed that the norms of the basis vectors {σiu i} usually vary greatly, 
depending upon the singular value distribution of the data. Consequently, the coefficients vi

j whose 

corresponding singular values σi are very small do not give significant contributions to a j. 
Nevertheless, they have been given equal importance for the score computation. There is also a 
rank parameter R to be estimated. The error of the selected rank R has an effect on the final 
selection of SNPs that are deemed informative.  

This work presents an improvement on computing an informativeness score of each SNP. 
Starting with the representation in Eq. (13), we select the left singular vectors {u i} as our bases. 

Hence, the basis expansion coefficients are {σivi
j, i = 1, …, R}, which are a function of both the 

singular values and the elements of the right singular vectors. The updated score is now computed 
as 

              
!pj = (σ ivi

j )2

i=1

R

∑ , j = 1,…, L .
               (15) 
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Notice that the bases {u i} are orthonormal. This is a nice property in the case where the basis 
expansion coefficients are unknown and need to be estimated. The singular values appropriately 
weight the contribution of vi

j in column j in the same manner as the right singular vectors v j's have 
been weighted for constructing the original data matrix X .  

 

(2) Data representation accuracy 
 

It is desirable that, even with much fewer SNPs, the new data matrix retains the underlying 
population structure. To investigate the results using k principal components, we denote the matrix 
of k left singular vectors from the original data matrix corresponding to the k largest singular values 
as U k = [u 1, u 2, … , u k]. A new M x P data matrix   !X  with reduced dimension is formed by keeping 
only P columns of X  corresponding to P largest 

  
!pj

values. The principal components of the new 

data matrix are computed from 

                 X
! = U!Σ!V!

T

                     (16) 
Similarly, we define    

!Uk
as the left singular matrix   !U with only the first k columns. Using the 

same number of significant principal components, the structure representation accuracy is defined 
as  

                  
γ (k) =

trace{Uk
T U! k U! k

T
Uk}

trace{Uk
T Uk}                (17) 

 
This measures the fraction of signal energy captured by the first k principal components of the 
original data matrix that can be represented using the k dominant principal components of the 

reduced data matrix. Ideally, we would like γ(k) to be as close to 1 as possible. 
 
The comparisons between our method and the PCA-correlated method is summarized in Table 2. 
 
Tab le  2 :  comparisons between our method and the PCA-correlated method 

 Our Method PCA-correlated SNPs  

Informativeness Score based on singular vectors  
weighted by singular values 

based on singular vectors only  

Accurate rank estimation  NOT essential Crucial  

Basis functions Orthonormal Orthogonal  

Performance assessment Data representation accuracy Clustering accuracy 
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IV. Resu l t s  and Discussions 
 
IV.A Test Data  
 

We design and generate two simulated data sets using GENOME simulator. The data sets 
are used to explore the effects of different genetic parameters on the optimal value of the stopping 
criterion, as well as the consistency of the clustering results for the iNJclust algorithm. The first 
simulated data set contains 20 clusters of 60 individuals each (for a total of 1,200 individuals), and 
10,000 SNPs per individual. The second data set contains 1,200 individuals separated into 10 
clusters of varying sizes ranging from 60 to 330 individuals per cluster, also genotyped at 10,000 
SNPs.  We use the following parameters:  
  
Data set 1:  

-pop 20 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 
60 60 60 60    -c 20 -s 500 -N UD1model.txt 

Data set 2:  
-pop 10 330 150 60 60 60 300 60 60 60 60 -c 20 -s 500 -N  
UD2model.txt 

 
The tree files UD1model.txt and UD2model.txt  for generating data sets 1 and 2 are represented 
graphically in Fig. 3 and 4, respectively. The branch lengths represent the evolution time of 
populations in terms of the number of generations they evolve.  
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F igu re  3 :  S imu la ted  popu la t i on  h i s to ry  t ree  fo r  s imu la ted  da ta  se t  1  
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F igu re  4 :  S imu la ted  popu la t i on  h i s to ry  t ree  fo r  Da ta  se t  2  

 
 For real data used to assess the performance of our algorithms, we obtain two large animal 
data sets with different complexities for our preliminary investigation. The first data set is a 28-
breed sheep data set [7], which contains 392 individuals and 1,046 SNPs. The second data set is 
from 47 breeds of 1,089 bovines [8], genotyped at 44,706 SNPs. We also acquire the third data set 
comprises of 27 human populations spanning Europe, East Asia, India, and Africa [9] for a total of 
554 individuals and 243,855 SNPs. The last data set is the 13 hilltribes data set from the PanAsian 
SNP Initiative genotyped using the 50K Affymetrix SNP array. 
  
IV .B  Pe r fo rmances  o f  t he  iNJc lus t  a lgo r i t hm 
 

(1) Performance of the iNJclust algorithm on simulated datasets using ΔF stopping criterion 
 

We use the two simulated datasets to explore the effects of evolution time and number of 
populations on the optimal value of ΔF, as well as consistency of the clustering results. We 
compare the iNJclust clustering results at each value of ΔF to the ground truth and compute the F-
measure. From the F-measure plot we select the appropriate ΔF threshold value that gives the best 
clustering performance.  

The optimal values of ΔF stopping threshold for clustering simulated dataset 1 and 2 are 
determined by scanning the iNJclust algorithm over possible ΔF threshold values ranging from 10-5 
to 10-1, i.e., the difference of 10% to 0.001% in the fixation indices of successive iterations. 

Figure 5 depicts the F-measure value as a function of ΔF  threshold for the two simulated 

datasets. If the ΔF threshold is too high, the iNJclust process undersplits the clusters. Contrastly, a 
too-low value of the threshold oversplits the cluster. Both situations results in the decreases of the 
F-measure values. We also observe a step-like behavior of the F-measure values, which indicates 

that the optimal threshold for the ΔF stopping criterion is not a single point but rather a range, 
making selecting an appropriate value for the threshold slightly flexible. From the graph, we select 
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the threshold of 0.001 for simulated dataset 1 and 0.003 for simulated dataset 2 to stop the 
iNJclust iterations.  
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F igu re  5 :  F -Measure  va lues  o f  s imu la ted  da ta  se ts  as  a  func t i on  o f  the  ΔF  t h resho lds .  

 
We also employ the bootstrapping method to investigate clustering consistency of the 

iNJclust algorithm. To perform bootstrapping, simulated datasets 1 and 2 are each resampled with 
replacement to obtain 100 bootstrap datasets with 400 individuals. Each bootstrap dataset is then 
clustered by the iNJclust algorithm. The corresponding results are given below. 
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F igu re  6 :  H ie ra rch i ca l  popu la t i on  t ree  o f  s imu la ted  da tase t  1  f rom iNJc lus t  (ΔF  i s  se t  a t  

0 .001 ) .  
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The iNJclust results are depicted in the form of hierarchical population trees inferred from 

the full datasets in Fig. 6 and 7. The branch lengths on the trees correspond to the computed ΔF 

values at each iteration. Observe that ΔF monotonically decreases as the iteration progresses. The 
terminal nodes of the tree contain iNJclust individual assignments, where the individuals are 
labeled by their true cluster number. The numbers in the square brackets represent the number of 
individuals within each cluster. A careful examination of the individual assignment results of the full 
datasets confirms that the iNJclust algorithm is able to correctly assign most individuals to their 
respective clusters. For simulated dataset 1, one individual from population POP16 is grouped with 
POP17. This is possible since the pair of populations POP16 and POP17 only differs by 20 
generations; they are closely related populations in the dataset. The total individual assignment is 
99.92% correct. In simulated dataset 2, we also vary the number of individuals in each population 
to investigate the ability of the iNJclust algorithm to handle varying cluster sizes. The result in Fig. 
7 shows that the clustering performance remains excellent in this situation with no individual 
assignment error. 
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F igu re  7 :  H ie ra rch i ca l  popu la t i on  t ree  o f  s imu la ted  da tase t  2  f rom iNJc lus t  (ΔF  i s  se t  a t  
0 .003 ) .  

 
The bootstrap percentage is represented as a green slider bar at the end of each terminal 

node in Fig. 6 and 7. These bootstrap values correspond to the optimal performance of the 

algorithm, because the ΔF threshold has been selected at the point where the F-measure equals 
to 1, i.e., the optimal stopping point.   It is discovered that most of the terminal nodes have 
bootstrap percentages of nearly 100%, validating the consistency of the iNJclust's clustering ability. 
The drop in bootstrap percentage at some terminal nodes happens when individuals from one or 
more clusters are not resampled.  
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We observe that the topology of the inferred tree may be changed slightly by swapping 
small branches during the bifurcation. For example, in simulated dataset 1 the POP19 branching is 
in a different order from the simulated model. However, this does not greatly affect the overall tree 
topology, as the trend of the inferred tree structure is consistent with the underlying model. For 
simulated dataset 2, the relationships among populations in the iNJclust tree output also largely 
follow the structure of the simulated model, even though the simulated tree is not binary.  
 

(5) Effects of evolution time and number of populations on the optimal value of ΔF 
 

We investigate how two factors, namely evolution time and number of populations, may 
affect the optimal value of the ΔF threshold. To eliminate other possible parameters that may 
influence the threshold value, e.g. tree structure, we simulate a one-layer tree with varying number 
of populations and generations. The evolution time is manifested in the number of generations in 
the simulation, i.e., the longer the evolutions, the further apart the populations are. Hence, we vary 
the genetic distance between populations by simulating data ranges between 40 to 500 
generations (corresponding to approximately 80 to 10,000 years of genetic evolution). We also vary 
the number of populations in the data from 2 to 64 populations.  
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F igu re  8 :  Re la t i onsh ip  be tween the  op t ima l  ΔF  t h resho ld  va lue  and  genera t i ons /number  

o f  popu la t i ons .  

 
From the result depicted in Fig. 8, data with larger number of generations are further apart 

genetically, so the threshold increases with generations as expected. On the other hand, when the 
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number of populations (n) increases the threshold value decreases, since more sensitivity is 

needed to differentiate between populations. We observe that the ΔF  threshold is also fairly 
robust with the number of generations (representing the evolution time of the population) when the 
structure is sufficiently complex.  
 
(6) Clustering performance of the iNJclust algorithm on real datasets 
 

Three real data sets are used to investigate the performance of our algorithms—the 27 
human populations, the 28-breed sheep, and the 47-breed bovine data sets. Since there is no 
ground truth on the underlying populations within the data, we compare the individual assignments 
to data labels.  We also compare clusters given by our algorithm to the ancestry ratios produced 
by the Admixture algorithm. 

To test the iNJclust algorithm on these real datasets, The ΔF threshold of 0.001 has been 
chosen as a stopping criterion. We compare the clustering performance of iNJclust with two similar 
algorithms in terms of the F-measure value. First is the AWclust algorithm [10], which also uses 
ASD matrix for inputs but employs hierarchical clustering for individual assignments. We also 
compare iNJclust with the so-called NJclust algorithm, which is basically the iNJclust algorithm 
without the successive NJ tree rebuilding step. Since there is no ground truth on the underlying 
populations within the data, we compare the individual assignments to data labels. The result is 
summarized in Table 3.  
 
Tab le  3 :  Comparison between iNJclust, NJclust, and AWclust F-measure values and their 
estimated number of populations on real datasets 

 
AWclust iNJclust NJclust 

F-measure No. of pop. F-measure No. of pop. F-measure No. of pop. 

Sheep  
28 breeds 

0.76 16 0.92 30 0.87 30 

Bovine  
47 breeds 

0.10 2 0.92 39 0.80 33 

Human  
27 populations 

N/A N/A 0.80 22 0.68 16 

 
The F-measures for the three algorithms—iNJclust, NJclust, and AWclust, and the 

estimated numbers of populations, are reported in Table 3. The result confirms that the iNJclust 
algorithm produces the best clustering results. The estimated number of populations are 30 for the 
28-breed sheep dataset and 39 for 47-breed bovine dataset. These estimated numbers of 
populations are reasonable. The estimated number of populations for the bovine data is low 
because the dataset is more complex and contains many breeds. Some breeds, e.g., three B. 
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indicus breeds (GIR, NEL, BRM) are very similar and are lumped into one cluster. The estimated 
numbers of cluster from the AWclust algorithm are far from the truth due to its computational 
limitation. The individual assignments of the AWclust algorithm are also worse than the 
assignments of iNJclust. We believe that the NJ tree based clustering proposed in our algorithm is 
more appropriate in distinguishing between populations than hierarchical clustering for genetic data. 
The NJclust clustering result is more erroneous than iNJclust, illustrating the necessity of 
reconstructing the NJ tree at each iteration. For Human 27 populations data, it is worthy to note 
that the AWclust algorithm cannot be completed in a reasonable amount of time due to large data 
dimension and complexity, hence its F-measure value is not reported here. The F-measure value 
of iNJclust is 0.8. We think this low value may in part be the consequence of the wrong self-
reported labels.  
 
(7) Comparison between iNJclust and Admixture results on real datasets 
 

Since self-reported labels may not always correspond to the individual's intrinsic genetic 
pattern, we also compare the iNJclust results with the results from the Admixture method [11] as a 
way to alternatively verify the clustering results on the real datasets. The Admixture algorithm 
estimates the ancestry contributions within each dataset.  

In Fig. 9-11 we corroborate the iNJclust clustering results with the admixture patterns by 
looking at the admixture pattern for each of the cluster assigned by iNJclust. Each panel of 
admixture patterns separated by the black lines is one cluster assigned by the iNJclust algorithm. 
The corresponding self-reported labels of individuals are displayed below the panels, with the 
number of individuals from that label shown in the bracket. Overall, the admixture results are in 
very good agreements with the iNJclust individual assignments. That is, each assigned iNJclust 
cluster has a distinct admixture pattern. Because 28-breed sheep dataset contains much fewer 
SNPs per individuals than the SNP profiles for 47-breed bovine or Human 27 populations, some 
admixture ratios in Fig. 9 on the right-hand side are visually less distinguishable from one another, 
for example {CHA(14)} and {COM(16)DOS(4)}. Nevertheless, the iNJclust algorithm is able to 
correctly separate these clusters. For 47-breed bovine dataset, the iNJclust cluster with mixed 
populations {GIR, NEL, BRM, and OBB} corresponds to non-uniform admixture patterns, whereas 
other homogeneous populations correspond to uniform and distinct admixture patterns.   
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F igu re  10 :  Admix tu re  resu l t s  o f  the  47 -b reed  bov ine  da ta  se t   
( t he  ances t r y  number  i s  12 ) .  

 
As expected for Human 27 populations dataset, some given labels differ from their genetic 
patterns. For example, {UEP, CEU}, {STK, URK}, and {KHM, CHN, CHB, JPT, VNM} estimated 
clusters contain individuals with mixed labels. However, they all have similar admixture patterns. 
Blind to the labels, the iNJclust algorithm is able to correctly cluster them into the same cluster. In 
contrast, individuals from the KNG and HMA populations, though carrying the same labels, are 
assigned to different clusters by the iNJclust algorithm. The admixture patterns confirm their 
genetic differences. Using these labels to calculate the F-measure results in the lower F-measure 
values, which does not necessarily reflect the real clustering efficacy of the iNJclust algorithm in 
human dataset. 
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(8) Inferred population trees of the real datasets 
 

Another output that can be used to infer genetic similarities between populations is the 
population tree output. We try to construct the population tree from the order in which each cluster 
is bifurcated in the iterative clustering process.   

The population trees generated by the iNJclust algorithm for the sheep, bovine, and human 
datasets are depicted in Fig. 12-14, respectively. The individual labels for each estimated 
population are reported with the number of individuals from each labels in the square brackets.  
We observe an interesting phenomenon in the structure of the inferred trees. Population that is 
most distinct genetically, or has the largest number of individuals, tends to be first identified. For 
example, for the Bovine dataset in Fig. 13 the European taurines are first separated from the West 
African taurines and the Zebus from Indian origin. At the second step the cluster containing B. 
indicus breeds is removed in the lower branch of the tree. At later iteration the West African 
taurines are broken away from the Zebus. Similarly, in Fig. 14 African individuals are separated at 
the first iteration, possibly because their genetic profiles are the most distinctive. Then, the East 
Asians populations are recognized. The Europeans and Indians, who have common ancentry as 
illustrated in their admixture patterns in Fig. 11, are divided at later iterations. The order at which 
each population are bisected in the inferred tree is very much agreeable with their corresponding 
admixture patterns. We believe that the resolved tree may partially reflect the actual history of 
population diversity.  

We notice that even though the orders at which each population is bisected in the inferred 
tree look as if they follow the actual history of population diversity, the history is not observable 
using only a single snapshot of population variations. Hence, the resulting iNJclust population tree 
can only reflect the underlying relationships among populations. Similar populations tend to be 
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clustered together or branched off from the same parental node. Also, the branch lengths of our 
tree are equal. They do not reflect the actual genetic distances. Therefore, this inferred population 
tree is still limited in illustrating the evolutionary relationships among the populations and warrant 
further investigation.  
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IV .C  Inves t i ga t i on  on  c lus te r  va l i d i t y  i nd i ces  as  the  ΔF  se lec t i on  c r i t e r i on  
 

We compute the three indices, namely Dunn’s index, Davies Bouldin index and the 
Silhouette index for different values of the ΔF stopping criterion using the two simulated datasets 
and four real datasets—the 27 human populations dataset, sheep 28 breeds dataset, bovine 47 
breeds dataset, and the 13 hilltribes dataset from the PanAsian SNP Initiative. We also compare 
the indices with the F-Measure values. The F-Measure is particularly useful for simulated datasets, 
because it provides the reference point at which the clustering error is zero. However, for real 
datasets the F-measures are calculated using the self-reported labels, so the values are typically 
lower than the truth.  

The shaded areas in Fig. 15 and 16 correspond to the ranges of threshold values that give 
zero clustering error (F-measure = 1). Unfortunately, it is observed that there is no evident trend of 
any cluster validity indices following the clustering accuracy measured from the F-measure values. 
Similarly, results for all real datasets in Fig. 17-20 suggest that there is no obvious “optimal” point 
of the cluster validity indices that can be used as a guide for selecting the stopping criterion.  

From our extensive testing on data sets with varying sizes and complexities, the threshold 
of 0.001 is suitable and is chosen as the default threshold value for data having more than 20 
populations. We suggest using a threshold of 0.002-0.003 for data containing 10-20 populations, 
and a threshold of 0.01 for data with fewer than five populations. Note that we provide these 
values only as a rough guideline. There is some flexibility in selecting the value of the ΔF 
threshold, since there is not an optimal point of the threshold, but rather an optimal range for a 
particular population structure. Note that the threshold does not influence the structure of the 
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inferred population tree at early iterations. It only determines the amount of branching at later 
iterations of the process. Thus, the threshold can be adjusted to obtain the desirable clustering 
resolution/sensitivity. 
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IV .D  Tes t i ng  the  PCA-based  SNP se lec t i on  on  rea l  da ta  
 

The experiment is conducted using a subset of the 47-breed bovine data set. It is 
comprised of 230 individuals from 9 breeds of cattle genotyped at 8781 SNPs. This smaller data 
set is chosen because the structure in bovine data set is much more evident than the human data 
set, which usually have complex structures. We also would like to minimize the effects of noise or 
obscurity in data structure when assessing the performance of our technique. However, note that 
data sets with smaller numbers of SNPs are more challenging to analyze since there are less 
information. 

The population data is represented by an M x L matrix, where  M = 230 and L = 8781. In order 
to eliminate the effect of genetic drift and amplify structures within the data, we normalize it so that 
each column is zero-mean with unit variance. Effectively, the full rank of the data matrix equals M-1 
= 229.   

In order to visualize the population structure within the data, k=3 is used. The PCA analysis for 
population structure of the original data matrix (full 8781 SNPs) using three principal components is 
shown in Fig. 21 where each breed is color-coded. The population structure within the data is 
obvious, with individuals from five out of nine breeds formed nicely separated clusters. Individuals 
from the other four breeds are conglomerated in the middle. 
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F igu re  21 .  S t ruc tu re  w i th in  the  bov ine  da ta  se t  us ing  fu l l  se t  o f  SNPs (L  =  8781 )   

and  th ree  dominan t  p r inc ipa l  componen ts .  
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(1) Robustness of informative SNPs selection 
 

Since both the PCA-correlated SNPs scores in [6] and the informativeness scores of our 
proposed method are computed from R < M basis vectors, we investigate the effect of rank 
selection in the score computations on the selection of structure informative SNPs. To do this, the 
scores in Eq. (14) and (15) are computed with rank R varies from 1 (using only the first dominant 
principal component) to the full rank of M-1 (using all principal components). For each R, two sets 

of  informative SNPs are selected from the largest pj and   
!pj scores, respectively. The percent 

overlaps between the selected SNP loci for successive values of R are computed, as shown in Fig. 
22. The numbers of selected SNPs are chosen to be 200, 500, 1000, 5000 SNPs. These are 
equivalent to 2.28%, 5.69%, 11.39%, and 56.94% of all available SNPs, respectively. Usually, the 
rank of the data is close to the number of subpopulation within the data. Therefore, the percent 
overlaps for R = 1-15 when 200 SNPs are kept (equivalent to about 2.28% of all available SNPs) is 
also reported in Table 4.  
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Tab le  4 :  Percent overlap of 200 selected SNPs between successive ranks for R = 1-15. 

Estimated Rank (R) 
Percent overlap of selected SNP markers (%) 

Our method 
PCA-correlated SNPs 

method 
1 79.0 51.0 
2 88.5 63.5 
3 87.5 58.0 
4 93.0 61.5 
5 92.5 65.0 
6 93.0 67.5 
7 97.5 68.0 
8 94.5 67.0 
9 98.5 70.5 
10 96.5 76.5 
11 97.5 81.5 
12 98.0 83.0 
13 95.0 81.0 
14 99.0 80.5 
15 98.0 87.0 

 
For 200 selected SNPs, the percent overlaps for the PCA-correlated SNPs method are lower 

than our method. Particularly for small values of R (R < 9), the overlaps are between 50-70%. This 
implies that if there were an error in estimating the rank of data matrix, even if we are off by one 
rank, it would give a resulting set of SNPs that are vastly different. In contrast, our method is fairly 
lenient to the chosen value of R. It is seen that more than 93% of markers are similar after R = 3, 
and the similarities are on average at around 98% with R > 5. Hence, the proposed method for 
selecting informative SNPs is very robust to the assumed rank of the data matrix. We may use the 
full rank R=M-1 (or R=M without the normalization) to compute 

  
!pj  and eliminate the need for rank 

estimation completely. Otherwise, a low rank-R approximation with R << M can be used with 
negligible difference. This trend replicates with larger sets of SNPs. An exception occurs when we 
keep 5000 SNPs, or around 57% of the total number of SNPs. The PCA-correlated SNPs method 
is almost as robust as our proposed method. However, the data dimensional reduction is not very 
high in this case.  
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(2) Structure representation accuracy 
 

We compare the structure representation accuracy of our technique with the PCA-
correlated SNPs method for low-rank and full-rank basis expansions. In order to estimate R, the 
singular values of the bovine data is plotted in Fig. 23 in descending order  
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F igu re  23 .  S ingu la r  va lues  o f  the  bov ine  da ta  se t .  

 
The first principal component explains 7.44% of the variance within the data. We notice that 

there is a sharp drop of the singular values before tapering off. We identify the bend of the graph, 
which signifies the changing point in the singular value contributions (depicted in Fig. 23 by the 
dotted line), using gradients of the singular values. This corresponds to the point where the 
gradient is less than 5%, which occurs at the 11th singular value. So we choose R = 11 for the low-
rank basis expansion of the data matrix in our subsequent analysis. These eleven dominant 
principal components account for 26.9% of the  variance within the data. Each of the remaining 
principal components contributes only 0.34% on average. For the full-rank counterpart, we use R = 
M-1.  

Although we have not tried to estimate the rank of the data matrix with the technique used in 
[6], we observe that the selected ranks therein always equal or are close to the number of the 
underlying populations within the data. We anticipate that for our bovine data set, the rank 
estimated by the original PCA-correlated SNPs method would be close to 9, so using R=11 is not 
unreasonable.  
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F igu re  24 .  Da ta  rep resen ta t i on  accu racy .  

 

Fig. 24 depicts the values of γ(3) for the numbers of SNPs ranging between 100 to 2000 
markers. The data representation accuracy of our method is superior to the PCA-correlated SNPs 
method for both low-rank and full-rank results. When R=11 is used to compute the scores, the 
representation accuracy of our method is greater than 0.85 when we use only 100 SNPs, or just 
slightly over 1% of the total number of available SNPs. However, PCA-correlated SNPs selects 100 

SNPs that can capture only 34% of signal energy (γ(3)= 0.34). With our proposed modification, we 
achieve over 0.93 accuracy with merely 200 SNPs. The PCA-correlated SNPs technique reaches 
the same representation accuracy using 1000 SNPs. At 2000 SNPs, or 23% of the original 
dimension, both methods perform well with the accuracies of 0.99 and 0.97 for our method and 
PCA-correlated SNPs, respectively.  

For full-rank results, the representation accuracies decrease slightly for our method when small 
sets of 100 and 200 SNPs are used. This is because more bases representing “noise” are included 
in the score computation. The accuracies are comparable to the low-rank results when the number 
of SNPs is greater than 500, as more SNPs provide more structure information. In contrast, the 
degradation in representation accuracy is more substantial for PCA-correlated SNPs. This is a 
direct consequence of its rank-dependency and improper weighting of basis coefficient vi

j as 
discussed earlier. 
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(3) Visualizing population structures 
 

The population structures within the bovine dataset using two sets of 200 informative SNPs 
selected with our technique and the PCA-correlated SNPs technique are visualized on three 
dominant principal component axes in Fig. 25 and 26. We compare the results for R = 11, 30, 70, 
and 229 (full-rank). Regardless of the rank, the population structure within the original data in Fig. 
21 is correctly retained using our proposed method. Separations of individuals from the same five 
breeds are still noticeable, although the individuals are slightly more dispersed when larger values 
of R are used.  

For PCA-correlated SNPs method, lower values of R produce structures that differ from the 
original, as seen in Fig. 25. For R=11, individuals from three breeds are separated from the 
remaining breeds. However, only two breeds are similar to those seen in Fig. 21. For R=30, only 
two breeds are separated out. In Fig. 26, the structure also changes drastically for the PCA-
correlated SNPs method when R becomes large (R=70 and R=229). No visible structure can be 
detected. 
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F igu re  25 .  S t ruc tu res  w i th in  the  bov ine  da ta  se t  us ing  se lec ted  se ts  o f  200  SNPs .   
(a )  P roposed me thod ,  R=11 .  (b )  P roposed me thod ,  PCA-co r re la ted  SNPs ,  R=11 .   

( c )  P roposed me thod ,  R=30 .  (d )  PCA-co r re la ted  SNPs ,R=30 .  
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F igu re  26 .  S t ruc tu res  w i th in  the  bov ine  da ta  se t  us ing  se lec ted  se ts  o f  200  SNPs .   
(a )  P roposed me thod ,  R=70 .  (b )  P roposed me thod ,  PCA-co r re la ted  SNPs ,  R=70 .   

( c )  P roposed me thod ,  R=229 ( fu l l - rank ) .  (d )  PCA-co r re la ted  SNPs ,  R=229 ( fu l l - rank ) .  
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V. Conclusions 
 

In the first part of our research project, a graph-theoretic approach has been applied to 
develop an unsupervised, iterative algorithm for clustering genotypic data. Popular genetic 
measures are exploited to produce clustering results that are genetically meaningful. The NJ tree 
clustering is used to distinguish between populations based on their intrinsic genetic relationships. 
It is discovered that the iterated tree reconstruction process is crucial. The stopping criterion based 
on the fixation index is mathematically sound and is flexible. The sensitivity of the clustering result 
can be controlled by adjusting the threshold of the stopping criterion. However, no process is 

discovered to produce an optimal value of the ΔF criterion. In stead, ranges of decent ΔF values 
for different complexity of data sets have been suggested heuristically. The threshold of 0.001 is 
chosen as the default threshold value for data having more than 20 populations. We suggest using 
a threshold of 0.002-0.003 for data containing 10-20 populations, and a threshold of 0.01 for data 
with fewer than five populations. Since the threshold only determines the amount of branching at 
later iterations of the process, it can be adjusted to obtain the desired clustering resolution or 
sensitivity. 

The iNJclust algorithm has been tested extensively against existing clustering algorithms of 
similar natures, namely the AWclust algorithm and the NJclust algorithm. Our proposed algorithm 
operates in a computationally efficient manner. The results illustrate that the iNJclust algorithm 
outperforms the other algorithms. It can effectively handle irregular cluster patterns and provide 
reasonable estimate of the number of populations as well as accurate individual assignments. 
However, because of the model choice, there is a limitation of inferring population tree topology 
with admixed individuals, as people with admixture may be assigned to different branches on the 
tree to which they have similarities.  

For the second part of the research, we have modified the PCA-correlated SNPs technique for 
identifying structure informative SNPs by improving the calculation of the informativeness score for 
each SNP and select a small subset of SNPs with the best scores. The proposed technique is 
simple and efficient. It is demonstrated that the result is robust to the assumed rank of the data, 
i.e., the choice of a rank estimation technique has little effect on the final selection of informative 
SNPs. In fact, rank estimation may be bypassed with negligible degradation in data representation 
accuracy. Additionally, sizable dimensional reduction can be achieved while retaining information on 
the underlying population structure from the original data. 

For an extension of this work, we plan to look at the performance of our methods on more  
human data sets with varying complexities, including the ones used in [8, 9]. We believe that our 
techniques are advantageous in the cases where we want to study the population structure at a 
finer scale, e.g. populations within continents or with common ancestry. 



 40 

V I .  Ou tpu t  (Acknow ledge the  Tha i land Research  Fund)   
 
V I .A  Pub l i ca t i ons  
 
(1) International Journal Publication 
 
Limpiti, T.; Amornbunchornvej, C.; Intarapanich, A.; Assawamakin, A.; Tongsima, S., "iNJclust: 
Iterative Neighbor-Joining Tree Clustering Framework for Inferring Population Structure," IEEE/ACM 
Transactions on Computational Biology and Bioinformatics, vol. 11, no. 5, 2014, pp. 903-914. 
 
(2) International Conference Proceedings 
 
T. Limpiti, A. Intarapanich and S. Tongsima, "PCA-based informative SNP selection for analyzing 
population structure," Proceedings of the 7th International Conference on Computational Systems-
Biology and Bioinformatics (CSBio2016), 19-22 Dec 2016, Macao, Macau.  
* The conference paper will be published in the Scopus-indexed International Conference 
Proceedings Series by ACM.  
 
(See the appendix for the reprints of both publications.) 
 
V I .B  So f twa re  package  
 
 We have developed executable version of the iNJclust algorithm and make the software 
available for the public. A copyright request has also been filed with the Software Industry 
Promotion Agency (SIPA). The executable and source codes of the iNJClust algorithm for Windows 
and Linux platforms can be downloaded from the website at http://www.biotec.or.th/GI/tools/injclust.  



 41 

V I I .  Re fe rences  
 
[1] N. Chinchor, “Evaluation metrics,” in Proc. 4th Message Understanding Conf., pp. 22–29, 1992. 
[2] F. Boutin and M. Hascoet, “Cluster validity indices for graph partitioning,” Proceedings of the 
International Conference on Information Visualization (IV’2004), London, UK, July 2004. 
[3] F. Kovacs, C. Legany and A. Babos, “Cluster validity measurement techniques,” 6th International 
Symposium of Hungarian Researchers on Computational Intelligence, Budapest, Hungary, 
November 2005.  
[4] S.J. Peter and S.P. Victor, “Clustering validity with minimum spanning tree based clustering,” 
Journal of Theoretical and Applied Information Technology, vol. 17, no. 1/2, pp. 89-96, 2010. 
[5] J. Handl, J. Knowles, and D.B. Kell, “Computational cluster validation in post-genomic data 
analysis,” Bioinformatics, vol. 21, no. 15, pp. 3201-3212, 2005. 
[6] P. Paschou, E. Ziv, E. Burchard, S. Choudhry, W. Rodriguez-Cintron, M. Mahoney and P. 
Drineas, “PCA-correlated SNPs for structure identification in worldwide human populations. PLoS 
Genet., vol. 3, no. 9, pp. 1672–1686, 2007.  
[7] J. Kijas, D. Townley, B. Dalrymple, M. Heaton, J. Maddox, A. McGrath, P. Wilson, R. G. 
Ingersoll, R. McCulloch, S. McWilliam, D. Tang, J. McEvan, N. Cockett, V. H. Oddy, F. W. 
Nicholas, H. Raadsma, Int. Sheep, and Genomics Consortium, “A genome wide survey of SNP 
variation reveals the genetic structure of sheep breeds,” PLoS ONE, vol. 4, no. 3, p. e4668, 2009. 
[8] M. Gautier, D. Laloë, and K. Moazami-Goudarzi, “Insights into the genetic history of french 
cattle from dense SNP data on 47 worldwide breeds,” PLoS ONE, vol. 5, no. 9, p. e13038, 2010. 
[9] J. Xing, W. S. Watkins, D. J. Witherspoon, Y. Zhang, S. L. Guthery, R. Thara, B. J. Mowry, K. 
Bulayeva, R. B. Weiss, and L. B. Jorde, “Fine-scaled human genetic structure revealed by SNP 
microarrays,” Genome Res., vol. 19, no. 5, pp. 815–825, 2009.  
[10] X. Gao and J. Starmer, “AWclust: Point-and-click software for non-parametric population 
structure analysis,” BMC Bioinformatics, vol. 9, pp. 77, 2008. 
[11] D. H. Alexander, J. Novembre, and K. Lange, “Fast model-based estimation of ancestry in 
unrelated individuals,” Genome Res., vol. 9, no. 19, pp. 1655–1664, Jul. 31 2009. 
 



 42 

 
 
 
 
 
 
 
 
 
 
 
 

Append ix  
Manuscript reprints 

 
 
 
 



iNJclust: Iterative Neighbor-Joining Tree
Clustering Framework for Inferring

Population Structure
Tulaya Limpiti, Chainarong Amornbunchornvej, Apichart Intarapanich,

Anunchai Assawamakin, and Sissades Tongsima

Abstract—Understanding genetic differences among populations is one of the most important issues in population genetics. Genetic

variations, e.g., single nucleotide polymorphisms, are used to characterize commonality and difference of individuals from various

populations. This paper presents an efficient graph-based clustering framework which operates iteratively on the Neighbor-Joining (NJ)

tree called the iNJclust algorithm. The framework uses well-known genetic measurements, namely the allele-sharing distance, the

neighbor-joining tree, and the fixation index. The behavior of the fixation index is utilized in the algorithm’s stopping criterion. The

algorithm provides an estimated number of populations, individual assignments, and relationships between populations as outputs. The

clustering result is reported in the form of a binary tree, whose terminal nodes represent the final inferred populations and the tree

structure preserves the genetic relationships among them. The clustering performance and the robustness of the proposed algorithm

are tested extensively using simulated and real data sets from bovine, sheep, and human populations. The result indicates that the

number of populations within each data set is reasonably estimated, the individual assignment is robust, and the structure of the

inferred population tree corresponds to the intrinsic relationships among populations within the data.

Index Terms—Allele-sharing distance, clustering, fixation index, neighbor-joining tree, population structure analysis

Ç

1 INTRODUCTION

THE study of differences in allele frequencies, called
population stratification or structure, is one of the key

topics in population genetics. Understanding complex
structure facilitates researchers to comprehend the effects
of evolutionary forces that shape the current populations.
Not only used in population ancestry and migration
studies, e.g., [1], the impact of population structure has
been echoed in the field of association studies where the
population structure should be detected and corrected [2],
[3], [4]. Furthermore, the concept of population structure
can also be applied to study breed composition and trace-
ability of livestock [5]. Distinct sequences of genetic data,
e.g., single nucleotide polymorphisms (SNPs), represent
differences among individuals [6]. With the advent of par-
allel genotyping technology, over a million of SNPs can
now be genotyped for each person to create an individual
SNP profile. A genotypic data set may contain several

thousands of individuals, each of which has a million of
SNPs to be analyzed. Thus, an efficient way to handle such
high-complexity, high-dimensional data sets is desirable.

There are different approaches in designing algorithms
for population studies. The first approach relies on genetic
model in which each individual is assigned with inferred
ancestral contributions. Bayesian inference is implemented
directly into these algorithms in order to cluster the individ-
uals. Widely-used methods include STRUCTURE [7], and
its variations, e.g., [8], [9]. ADMIXTURE [10] also estimates
the ancestry ratio, but does not implement the Bayesian
clustering from the admixture results. The second approach
is non-parametric. For example, EIGENSTRAT/SmartPCA
[2], utilizes principal component analysis (PCA) by means
of spectral decomposition [2], [11]. The ipPCA algorithms
[12], [13] perform clustering after PCA by clustering arrays
of genetic profiles that are transformed to the principal com-
ponent subspace, whereas the AWclust algorithm [14] uti-
lizes an allele-sharing distance (ASD) matrix. Thus distance
among the individuals can be used to distinguish clusters. It
can be illustrated that information obtained from the admix-
ture ratio using the first class of approaches can be used
complementarily to corroborate the resulting clusters from
the algorithms in this second class of methods [13].

A different viewpoint for understanding populations
from genetic data focuses on the demographic or evolution-
ary history of populations. This genetic relationship may be
inferred by a phylogenetic tree [15]. A widely-used phylo-
genetic tree construction algorithm is the Neighbor-joining
(NJ) tree [16], which estimates an additive tree from a
genetic distance matrix. The cost of an edge on an NJ tree,
represented by its length, corresponds to the genetic
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distance between individuals (the tree nodes). The quality
of an NJ tree depends upon the quality of the distance
matrix used for tree construction [17]. Due to the tree’s abil-
ity to capture spatial structure relationship, Li et al. [18]
employ NJ tree to correct population structure. Several new
phylogenetics-based methods for analyzing human popula-
tions genetics data have been proposed recently. Treemix
[19] accounts for both population splits and gene flows, and
creates an admixture tree containing all populations in the
data set. On the other hand, Mixmapper [20] proposes a
two-stage tree building mechanism where admixed popula-
tions are added to an initial unadmixed scaffold tree. Both
methods are similar in nature and construct admixture trees
from genome-wide allele frequencies data. The phyloge-
netic trees have been used to interpret genetic relationships
among populations by inspection of their hierarchical struc-
tures, but has not yet been viewed in a clustering sense.
Nevertheless, they provide complementary information to
those obtained from the clustering methods for analyzing
population structure.

We present a new computational framework for auto-
matically classifying individuals to clusters called iterative
neighbor-joining tree clustering or iNJclust. Instead of clus-
tering from PCA-derived data points, the framework uses
relatedness information between populations provided by
the phylogenetics-based methods to resolve complex
population structure. The iNJclust algorithm performs a
graph-based clustering on the NJ tree constructed using an
ASD matrix. Graph-partitioning techniques have been uti-
lized to cluster complex patterns due to its robustness [21],
[22], [23]. Data points are viewed as nodes of a graph,
whereas the graph topology captures the pattern of clus-
ters. One of the most common techniques to perform clus-
tering on a graph is by selectively cutting the graph edges,
e.g., the longest edge of a minimum spanning tree [21],
until the number of clusters, k, is achieved. To our knowl-
edge, the AWclust algorithm [14] is the first algorithm to
adopt the graph-based clustering scheme to resolve popu-
lation structure. This tool constructs a hierarchical tree
from an ASD matrix. Each entry of the ASD matrix repre-
sents an average allele difference between a pair of indi-
viduals. The clustering step is done by partitioning the
tree at a certain depth that gives the number of popula-
tions derived from Gap statistics [24]. However, due to
high complexity of Gap statistics, the method works well
only when the number of clusters is small. Furthermore,
edges in a hierarchical tree do not reflect the underlying
genetic relationships among individuals that are of impor-
tance in population genetics. Thus, we instead use the NJ
tree, which is constructed from the intrinsic genetic rela-
tionships. We also adopt the iterative process from, [12],
[13] so that the iNJclust algorithm is computationally
efficient.

We consider our algorithm to be a non-parametric
clustering algorithm, most similar to the AWclust algo-
rithm, which also perform graph-based clustering on a tree.
So we choose to compare our algorithm with AWclust.
Instead of using the ASD, other model-based clustering
algorithms, e.g., [7], [8], [9], [10], assign individuals to popu-
lations using the posterior probability that an individual
belongs to each of the populations. These STRUCTURE-

based algorithms shed different light on the data, hence
their results are complimentary to our method.

In the preliminary version of iNJclust proposed in [25],
a criterion for detecting cluster homogeneity based on a
particular topological pattern of the NJ tree branch (called
UT1 topology) has been proposed. However, this UT1 cri-
terion is purely ad hoc. It is speculated from observing the
NJ tree of the test data sets. Although the iNJclust frame-
work with the UT1 criterion can cluster well to a certain
degree, the relationship between the terminating topologi-
cal pattern and the genetic distances between populations
is not clear. Moreover, the criterion places a limit on the
number of individuals within a single population that
can be clustered correctly. In this paper we present an
improved version of the iNJclust framework. Significant
updates have been added to the algorithm. A novel crite-
rion DF , which is derived from a measure of population
structure difference called the fixation index (Fst) [26], is
used to terminate iNJclust’s process. Using DF , the differ-
ence between clustered populations is now quantifiable
and has a basis in genetics. The behavior of Fst after
clustering can also be proved mathematically. Besides
resolving population structure in three major aspects com-
monly performed in a clustering method: detecting popu-
lation structure, predicting the number of populations
within the data set, and assigning individuals to predicted
populations, the iNJclust algorithm also derives a bifur-
cated population tree based on the order at which each
population is separated from the original data set. The
terminal nodes of the tree represent the final inferred
populations and the tree structure preserves the genetic
relationships among them.

The remaining of this paper is organized as follows. The
iNJclust algorithm and its properties are presented in
details in the next section. We thoroughly investigate the
performance of the new iNJclust algorithm with the DF
stopping criterion in Section 3, using both simulated and
real data sets. The paper ends with some insightful discus-
sions in Section 4.

2 METHODS

2.1 The iNJclust Algorithm

The system flowchart of the proposed algorithm is depicted
in Fig. 1. SNP sequences of M individuals form the input
matrix X ¼ x1;x2; . . . ;xM½ �T . Each column vector xi; i ¼
1; . . . ;M is genotyped from L loci of individual i, at which
there are two alleles of either A (major allele) or a (minor
allele) for three possible genotypes (AA;Aa; aa). The SNP
sequence is encoded by counting the number of minor allele
a. Therefore, xi is an L-dimensional vector of numerical
values 0, 1, or 2.

After receiving the input matrix X, the iNJclust algo-
rithm computes the ASD matrixD, whose elements are

Dði; jÞ ¼ 1

L
kxi � xjk1; i; j ¼ 1; . . . ;M: (1)

Therefore, Dði; jÞ is proportional to the L1-norm of the pair-
wise difference between the SNP sequences of individual i
and individual j. The smaller the value of Dði; jÞ, the closer
the pair are genetically.
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We choose ASD as our distance matrix because it has
been suggested that it contains accurate information for
clustering if the number of SNPs are sufficiently large [27].
It is also adopted by the AWClust algorithm [14].

The ASD matrix D is subsequently used to construct the
NJ tree. Treating each individual as a leaf node, a pair of
nodes who are nearest to each other as measured by the
minimum evolution criteria or the Q criterion [28]

Qði; jÞ ¼ ðr� 1Þdði; jÞ �
Xr
k¼1

dði; kÞ �
Xr

k¼1

dðj; kÞ (2)

are merged into a parent node. dði; jÞ is the Fitch-Margo-
liash distance [29] between node i and j, and r is the
number of the remaining nodes. The tree construction
process continues until all nodes are merged onto the NJ
tree. The algorithm then determines if the cluster is
homogeneous, i.e., all individuals on the tree come from
the same population. If the cluster is said to be heteroge-
neous, the algorithm performs clustering on the NJ tree
by bisecting the tree into two subtrees. The NJ tree is split
at the longest branch (edge) between two nodes within
the tree. In the next stage, both subtrees cycle back to the
ASD update step where they are processed indepen-
dently. The method iterates until all populations are con-
sidered homogeneous. The iterative scheme is similar to
the previous PCA-based algorithms [12], [13], which are
shown to be computationally efficient and increase
clustering resolution.

To avoid the effect of noise or outliers, we give a
threshold for cluster size when constructing a phylogenetic
tree, similar to [18]. The cutoff is set at 10 percent. Note that
the 10 percent cutoff is calculated from the number of
individuals remained in the new tree at each iteration, not
the global 10 percent of individuals in the entire data set.
Put in another way, at later stages of the iteration process,
the tree contains far fewer number of individuals, thus
10 percent is a relatively small number. This technique
should not affect clusters that are less homogeneous due to

inbreeding, as they tend to be separated later in the process.
However, the tradeoff is that some intrinsic populations
that are originally small in size cannot be differentiated.

For iNJclust, the ASD matrix is only calculated once at
the initial iteration for the original input matrix X. The
ASD matrix of individual within each subtree is readily
available by selecting elements of the original ASD matrixD
corresponding to the appropriate subset of individuals. After
the new ASDmatrix is obtained, the NJ tree of each subset of
individuals is constructed. We note that the new NJ tree
reconstructed at each iteration may have different topology
from the old tree, since the genetic relationships illustrated
in the new tree only account for those individuals within the
subcluster, thus enhancing the sensitivity of the algorithm to
differentiate closely-related populations. The cluster homo-
geneity criterion is then checked against the new tree. We
explain this newly proposed criterion in details in the follow-
ing section. Once the subtree is deemed homogenous, it is
output from the process as one of the final population Ci. The
choice to compare individuals within each tree means that it
can only observe differences within a data set, not differen-
ces with respect to some third population. The selection of
the next cluster to evaluate is done using a breadth-first-
search approach. Because the NJ tree clustering only bisects
the tree in each iteration, the number of final iterations k̂ pro-
vides an estimated number of populations. We choose to
present the clustering result of the iNJclust algorithm in the
form of a binary tree, whose terminal nodes represent the
final populations and the tree structure preserves the genetic
relationship among inferred populations.

The executable and source codes of the iNJClust algo-
rithm for Windows and Linux platforms can be down-
loaded from our website [http://www.biotec.or.th/GI/
tools/injclust].

2.2 Determining Cluster Homogeneity

One factor which is widely used to measure homogeneity of
populations is the Fixation index or Fst [26]. It is defined as
follows. Suppose a data set ofM individuals is composed of
N populations C1; C2; . . . ; CN containing m1;m2; . . . ;mN

individuals, respectively. Let the corresponding dominant
allele frequencies of each population be p1; p2; . . . ; pN .
Hence, the average dominant allele frequencies of the entire
data set is p ¼ 1

M

PN
i¼1 pimi, and the quantity

HT ¼ 2pð1� pÞ (3)

represents expected heterozygosity of the entire data set. The
expected heterozygosity of all populations is computed from

Hs ¼ 1

M

XN
j¼1

HjðpjÞmj; (4)

where HjðpjÞ ¼ 2pjð1� pjÞ is the local expected heterozy-
gosity of population j. By definition, the Fst value is

Fst ¼ HT �Hs

HT
: (5)

That is, the normalized difference between the expected het-
erozygosities of all populations and the total data set. Large
value of Fst indicates that the intrinsic populations are

Fig. 1. The iNJClust system flowchart.
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highly dissimilar when viewed as a whole, i.e., the popula-
tion is heterogeneous. Small value of Fst means that the
population is more homogenous.

Let us first investigate the behavior of the fixation index
value after data clustering. It can be proven that the fixation
index monotonically increases at each iNJclust iteration
until a homogeneous cluster is formed.

2.2.1 Fst Behavior After Data Clustering

Proposition 1. Let Fk be the Fst value computed at the kth itera-
tion of the iNJclust algorithm. Fk is non-decreasing, i.e.,

Fkþ1 � Fk: (6)

Proof. At the kth iteration, the original cluster of M
individuals is divided into k � 2 subclusters containing
m1; m2; . . . ;mk individuals, respectively. Let the
corresponding dominant allele frequencies within each
subcluster be p1; p2; . . . ; pk.

Recall that the Fst value at the k
th iteration is

Fk ¼ HT �Hk
s

HT
¼ 1� Hk

s

HT
:

Hence, to prove that Fkþ1 � Fk it is equivalent to showing
Hkþ1

s � Hk
s .

From (4)

Hk
s ¼ 1

M

Xk
j¼1

HjðpjÞmj ¼ C þ 1

M
HkðpkÞmk; (7)

where

C � 1

M

Xk�1

j¼1

HjðpjÞmj: (8)

If the cluster at iteration k is considered heterogeneous,
the NJ tree clustering bisects the cluster. Consequently,

Hkþ1
s ¼ C þ 1

M
H1

kþ1

�
p1kþ1

�
m1

kþ1

þ 1

M
H2

kþ1

�
p2kþ1

�
m2

kþ1;

(9)

where

mk ¼ m1
kþ1 þm2

kþ1: (10)

Trivially,

pk ¼
p1kþ1m

1
kþ1 þ p2kþ1m

2
kþ1

mk
: (11)

Hereafter we drop the subscript denoting the iteration
number and shorthand p1kþ1 as p1, p2kþ1 as p2, m1

kþ1 and
m2

kþ1 asm
1 andm2, respectively. Thus,

Hkþ1
s ¼ C þ 2

M
p1ð1� p1Þm1 þ p2ð1� p2Þm2
� �

(12)

¼ C � 2ðm1 þm2Þ
M

�p1ð1� p1Þ m1

m1 þm2

� �

� 2ðm1 þm2Þ
M

�p2ð1� p2Þ m2

m1 þm2

� � (13)

¼ C � 2ðm1 þm2Þ
M

fðp1Þ�1 þ fðp2Þ�2

� �
(14)

using fðyÞ ¼ �yð1� yÞ; �1 ¼ m1

m1þm2, and �2 ¼ m2

m1þm2.

Since �1; �2 > 0, �1 þ �2 ¼ 1, and fðyÞ is a continuous
concave up function, it follows from Jensen’s inequality that

Hkþ1
s � C � 2ðm1 þm2Þ

M
f
�
p1�1 þ p2�2

�� �
(15)

¼ C � 2ðm1 þm2Þ
M

fðpkÞ½ � (16)

¼ C þ 1

M
HkðpkÞmk (17)

¼ Hk
s : (18)

If the cluster is already homogenous before splitting, the
average dominant allele frequencies p1 � p2 � pk, thus

Hkþ1
s � Hk

s :

To generalize, the proposition holds when cluster Ck is
divided into L � 2 subclusters, since we can write

pk ¼
PL

l¼1 plmlPL
l¼1 ml

; (19)

�l ¼ mlPL
l¼1 ml

; (20)

and Jensen’s inequality still applies. tu

2.2.2 A Novel Stopping Criterion for Terminating the

iNJclust Algorithm

From the proposition in Section 2.2.1, the Fst value of the
data after each iNJclust iteration increases monotonically
and converges after all populations have been identified.
Recall that Fk is the Fst value computed at the kth iteration
of the iNJclust algorithm. We propose using the difference,

DF ¼ Fkþ1 � Fk (21)

to detect homogeneous clusters. We announce that the clus-
ter is homogeneous and iNJclust iteration terminates if DF
is sufficiently small. The smaller the DF threshold, the
higher the sensitivity of the iNJclust algorithm to differenti-
ate between clusters.

From our extensive testing on data sets with varying
sizes and complexities, the DF threshold of 0.001 is suitable,
and is chosen as the default threshold value, for data having
more than 20 populations. We suggest using a threshold of
0.002-0.003 for data containing 10-20 populations, and a
threshold of 0.01 for data with fewer than five populations.
Note that we provide these values only as a rough guide-
line. As will be shown in the following section, there is
some flexibility in selecting the value of the DF threshold.
There is not an optimal point of the threshold, but rather an
optimal range for a particular population structure. Note
that the threshold does not influence the structure of the

906 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 11, NO. 5, SEPTEMBER/OCTOBER 2014



inferred population tree at early iterations. It only deter-
mines the amount of branching at later iterations of the pro-
cess. Thus, the threshold can be adjusted to obtain the
desirable clustering resolution/sensitivity.

For the final iNJclust algorithm, a flag has also been
added to the algorithm to warn if the user-defined DF
threshold may be too small, i.e., resulting with clusters con-
taining only a single individual as member.

3 RESULTS

3.1 Simulation Data Sets

In this section we first explore the performance of the
iNJclust algorithm as a function of the DF stopping crite-
rion. Simulated data is useful in investigating the efficacy
of the algorithm since the inherent number of populations
in a real genotype data set is usually unknown or self-
reported. We adopt Dendroscope [30] for tree visualiza-
tion of our results.

We use two simulated data sets to explore the effects of
evolution time and number of populations on the optimal
value of DF , as well as consistency of the clustering results.
The data sets are generated using the GENOME tool [31].
GENOME is a whole genome simulator utilizing coalescent
approach, assuming neutral genetic drift. The program is
fast and is able to vary the mutation rates. We use the fol-
lowing parameters:

Data set 1:
-pop 20 60 60 60 60 60 60 60 60 60 60 60 60 60 60

60 60 60 60 60 60 -c 20 -s 500 -N UD1model.txt

Data set 2:
-pop 10 330 150 60 60 60 300 60 60 60 60 -c 20 -s

500 -N UD2model.txt

The tree files UD1model.txt and UD2model.txt for generat-
ing data sets 1 and 2 are represented graphically in Figs. 2a
and 2b, respectively. The branch lengths represent the evo-
lution time of populations in terms of the number of genera-
tions they evolve. The first simulated data set contains 20
clusters S ¼ S1; . . . ;S20f g of 60 individuals each (for a total
of 1,200 individuals), and 10,000 SNPs per individual. The
second data set contains 1,200 individuals separated into 10
clusters fS1; . . . ;S10g of varying sizes ranging from 60 to
330 individuals per cluster, also genotyped at 10,000 SNPs.

The optimal values of DF stopping threshold for cluster-
ing data set 1 and 2 are determined by scanning the iNJclust
algorithm over possible DF threshold values ranging from
10�5 to 10�1, i.e., the difference of 10 to 0.001 percent in the
fixation indices of successive iterations. We compare the
iNJclust clustering results C ¼ C1; . . . ; CNf g at each value of
DF to the ground truth S and compute the F-measure [32],

CðS; CÞ ¼
XN
i¼1

jSij
M

max
j

2 	 jSi\Cjj2
jSikCjj

jSi\Cjj
jSij þ jSi\Cjj

jCjj

0
B@

1
CA; (22)

where N ¼ 20 for data set 1 and N ¼ 10 for data set 2. The
j 	 j symbol denotes cluster size. For both data sets
M ¼ 1;200. The higher the F-measure value, the closer the
result is to the simulated model. An F-measure value of 1
occurs when the iNJclust clustering result is exactly the
same as the true clusters. Fig. 3 depicts the F-measure value
as a function of DF threshold for the two simulated data
sets. If the DF threshold is too high, the iNJclust process
undersplits the clusters. Contrastly, a too-low value of the
threshold oversplits the clusters. Both situations result in
the decreases of the F-measure values. We also observe a
step-like behavior of the F-measure values, which indicates
that the optimal threshold for the DF stopping criterion is
not a single point but rather a range, making selecting an
appropriate value for the threshold slightly flexible. From

(a)

(b)

Fig. 2. Simulated population history trees. The branch lengths represent
the generations of populations. (a) data set 1. (b) data set 2.

Fig. 3. F-Measure values of simulated data sets as a function of the DF
thresholds.
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the graph, we selected the threshold of 0.001 for data set 1
and 0.003 for data set 2.

The iNJclust results are depicted in the form of hierar-
chical population trees inferred from the full data sets in
Figs. 4 and 5. The branch lengths on the trees correspond
to the computed DF values at each iteration. Observe that
DF monotonically decreases as the iteration progresses.
The terminal nodes of the tree contain iNJclust individual
assignments, where the individuals are labeled by their
true cluster number. The numbers in the square brackets
represent the number of individuals within each cluster.
A careful examination of the individual assignment
results of the full data sets confirms that the iNJclust algo-
rithm is able to correctly assign most individuals to their
respective clusters. For data set 1, one individual from
population POP16 is grouped with POP17. This is possi-
ble since the pair of populations POP16 and POP17 only
differs by 20 generations; they are closely related popula-
tions in the data set. The total individual assignment is
99.92 percent correct. In data set 2, we vary the number
of individuals in each population to illustrate the ability

of our algorithm to handle varying cluster sizes. The
result in Fig. 5 shows that the clustering performance
remains excellent in this situation with no individual
assignment error.

We employ the bootstrapping method [33] to investi-
gate clustering consistency of the iNJclust algorithm. To
perform bootstrapping, simulated data sets 1 and 2 are
each resampled with replacement to obtain 100 bootstrap
data sets with 400 individuals. Each bootstrap data set is
then clustered by the iNJclust algorithm. The bootstrap
percentage is represented as a slider bar at the end of
each terminal node in Figs. 4 and 5. These bootstrap
values correspond to the optimal performance of the algo-
rithm, because the DF threshold has been selected at the
point where the F-measure equals to 1, i.e., the optimal
stopping point. It is discovered that most of the terminal
nodes have bootstrap percentages of nearly 100 percent,
validating the consistency of the iNJclust’s clustering abil-
ity. The drop in bootstrap percentage at some terminal
nodes happens when individuals from one or more clus-
ters are not resampled.

Fig. 4. Hierarchical population tree of data set 1 generated by iNJclust. The DF threshold is set at 0.001.

Fig. 5. Hierarchical population tree of data set 2 generated by iNJclust. The DF threshold is set at 0.003.
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Note that the topology of the inferred tree may be
changed slightly by swapping small branches during the
bifurcation. For example, in data set 1 the POP19 branching
is in a different order from the simulated model. However,
this does not greatly affect the overall tree topology, as the
trend of the inferred tree structure is consistent with the
underlying model. For data set 2, the relationships among
populations in the iNJclust tree output also largely follow
the structure of the simulated model, eventhough the simu-
lated tree is not binary.

We investigate how two factors, namely evolution time
and number of populations, may affect the optimal value
of the DF threshold. To eliminate other possible parame-
ters that may influence the threshold value, e.g., tree
structure, we simulate a one-layer tree with varying num-
ber of populations and generations. The evolution time is
manifested in the number of generations in the simula-
tion, i.e., the longer the evolutions, the further apart the
populations are. Hence, we vary the genetic distance
between populations by simulating data ranges between
40 to 500 generations (corresponding to approximately 80
to 10,000 years of genetic evolution). We also vary the
number of populations in the data from 2 to 64 popula-
tions. The result is depicted in Fig. 6. Data with larger
number of generations are further apart genetically, so
the threshold increases with generations as expected. On
the other hand, when the number of populations
increases the threshold value decreases, since more sensi-
tivity is needed to differentiate between populations.

From Fig. 6, we observe that the threshold is also fairly
robust with the number of generations (representing the
evolution time of the population) when the structure is
sufficiently complex. So the suggested range of the DF
threshold in Section 2.2.2 should work quite well in practice.

3.2 Real Data Sets

We test the iNJclust algorithm on three large data sets with
different complexities. The first data set is a 28-breed sheep
data set [34], which contains 392 individuals and 1,046 SNPs.
The second data set is from 47 breeds of 1,089 bovines [35],
genotyped at 44,706 SNPs. The third data set comprises of 27
human populations spanning Europe, East Asia, India, and

Africa [36] for a total of 554 individuals and 243,855 SNPs.
TheDF threshold of 0.001 has been chosen for all data sets.

We compare the clustering performance of iNJclust
with two similar algorithms in terms of the F-measure
value. AWclust [14] is an algorithm that also uses ASD
matrix for inputs, but employs hierarchical clustering for
individual assignments. A main drawback of AWclust is
the fact that it can automatically detect the number of
populations only up to k ¼ 16. For data with more popu-
lations, k have to be supplied as one of the inputs. For
fair comparison we let both iNJclust and AWclust esti-
mate k. We also compare iNJclust with the so-called
NJclust algorithm, which is basically the iNJclust algo-
rithm without the successive NJ tree rebuilding step
(using the same DF threshold). Since there is no ground
truth on the underlying populations within the data, we
compare the individual assignments to data labels.

The F-measures depicted in Fig. 7 confirm that the
iNJclust algorithm produces the best clustering results. It
estimates the correct numbers of populations for the simu-
lated data sets. The estimated number of populations
are k̂ ¼ 30 for the 28-breed sheep data set and k̂ ¼ 39
for 47-breed bovine data set. These estimated numbers
of populations are reasonable. The estimated number of
populations for the bovine data is low because the data set
is more complex and contains many breeds. Some breeds,
e.g., three B. indicus breeds {GIR, NEL, BRM} are very simi-
lar and are lumped into one cluster. For the simulated and
animal data sets, the estimated numbers of cluster from
the AWclust algorithm are far from the truth due to its
computational limitation. The individual assignments of
the AWclust algorithm are also worse than the assign-
ments of iNJclust. We believe that the NJ tree based clus-
tering proposed in our algorithm is more appropriate in
distinguishing between populations than hierarchical clus-
tering for genetic data. The NJclust clustering result is
more erroneous than iNJclust, illustrating the necessity of
reconstructing the NJ tree at each iteration.

For Human 27 populations data, k̂ ¼ 22. It is worthy to
note that the AWclust algorithm cannot be completed in a
reasonable amount of time due to large data dimension and
complexity, hence its F-measure value is not reported here.
The F-measure value of iNJclust is 0.8. Since self-reported
labels may not always correspond to the individual’s intrin-
sic genetic pattern, we adopt the Admixture method [10], to

Fig. 6. Relationship between the optimal DF threshold value and genera-
tions. The number of populations are varied from 2 to 64.

Fig. 7. F-measures of the AWclust, iNJclust, and NJclust algorithms on
all data sets. The estimated numbers of clusters are displayed on top of
the bar graphs.
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alternatively verify the clustering results of the iNJclust
algorithm on the human data set.

To gain more information on the underlying population
structure by observing their ancestry contributions, in
Figs. 8, 9, and 10 we corroborate the iNJclust clustering
results with the admixture patterns. Each panel of admix-
ture patterns separated by the black lines is one cluster
assigned by the iNJclust algorithm. The corresponding data
labels of individuals are displayed below the panels, with
the number of individuals from that label shown in the
bracket. Overall, the admixture results are in very good
agreements with the iNJclust individual assignments. That
is, each assigned iNJclust cluster has a distinct admixture
pattern. Because the 28-breed sheep data set contains much
fewer SNPs per individuals than the SNP profiles for the
47-breed bovine or Human 27 populations, some admixture
ratios on the right-hand side of Fig. 8 are visually less distin-
guishable from one another, for example, {CHA(14)} and
{COM(16)DOS(4)}. Nevertheless, the iNJclust algorithm is
able to correctly separate these clusters. For the 47-breed
bovine data set in Fig. 9, the iNJclust cluster with mixed

populations {GIR, NEL, BRM, and OBB} (first panel) corre-
sponds to non-uniform admixture patterns, whereas other
homogeneous populations correspond to uniform and dis-
tinct admixture patterns.

As expected for the Human 27 populations data set in
Fig. 10, some self-reported labels differ from their genetic
patterns. For example, {UEP, CEU}, {STK, URK}, and
{KHM, CHN, CHB, JPT, VNM} estimated clusters contain
individuals with mixed labels. However, they all have
similar admixture patterns. Blind to the labels, the iNJclust
algorithm is able to correctly cluster them into the same
cluster. In contrast, individuals from the KNG and HMA
populations, though carrying the same labels, are assigned
to different clusters by the iNJclust algorithm. The admix-
ture patterns confirm their genetic differences. Using these
labels to calculate the F-measure results in the lower
F-measure values, which does not necessarily reflect the
real clustering efficacy of the iNJclust algorithm in the
human data set.

As shown in Table 1, the computational time of the iNJclust
algorithm is also superior to that of theAWclust algorithm. The

Fig. 8. Admixture results of the 28-breed sheep data set, with the ancestry number of 7.

Fig. 9. Admixture results of the 47-breed bovine data set, with the ancestry number of 12.
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AWclust algorithm has the computational complexity ofOðn6Þ
due to the use of Gap statistic [24], while iNJclust has the com-
plexity of onlyOðn3Þ. TheGap statisticmay also be the cause of
estimation error in the AWclust algorithm, since it is not a
genetic model. The proposed iNJclust algorithm, in contrast,
uses the fixation index Fst, which is a measurement of true
genetic distances among populations.

Another output that can be used to infer genetic simi-
larities between populations is the population tree
output. The trees generated by the iNJclust algorithm for
the sheep, bovine, and human data sets are depicted
in Figs. 11, 12, and 13, respectively. The structure of the
population tree is constructed from the order at which
each cluster is bifurcated in the iterative clustering pro-
cess. The individual labels for each estimated population
are reported with the number of individuals from each
label in the square brackets. We observe an interesting
phenomenon in the structure of the inferred trees. Popu-
lation that is most distinct genetically, or has the largest
number of individuals, tends to be first identified. For
example, for the Bovine data set in Fig. 12 the European
taurines are first separated from the West African taur-
ines and the Zebus from Indian origin. At the second step
the cluster containing B. indicus breeds is removed in the
lower branch of the tree. At later iteration the West Afri-
can taurines are broken away from the Zebus. Similarly,
in Fig. 13 African individuals are separated at the first
iteration, possibly because their genetic profiles are the
most distinctive. Then, the East Asians populations are
recognized. The Europeans and Indians, who have

common ancentry as illustrated in their admixture pat-
terns in Fig. 10, are divided at later iterations. The order
at which each population are bisected in the inferred tree
is very much agreeable with their corresponding admix-
ture patterns. We believe that the resolved tree may par-
tially reflect the actual history of population diversity.
Nevertheless, the history is not observable using only a
single snapshot of population variations. Hence, the
resulting iNJclust population tree can only reflect the
underlying relationships among populations. Similar pop-
ulations tend to be clustered together or branched off
from the same parental node.

4 DISCUSSION

A graph-theoretic approach has been applied to develop
an unsupervised, iterative algorithm for clustering geno-
typic data. Popular genetic measures are exploited to
produce clustering results that are genetically meaning-
ful. The NJ tree clustering is used to distinguish between
populations based on their intrinsic genetic relationships.
It is discovered that the iterated tree reconstruction pro-
cess is crucial. The stopping criterion based on the fixa-
tion index is mathematically sound and is flexible. The
sensitivity of the clustering result can be controlled by
adjusting the threshold of the stopping criterion.

The iNJclust algorithm has been tested extensively
against existing clustering algorithms of similar natures,
namely the AWclust algorithm and the NJclust algorithm.
Our proposed algorithm operates in a computationally effi-
cient manner. The results illustrate that the iNJclust algo-
rithm outperforms the other algorithms. It can effectively
handle irregular cluster patterns and provide reasonable
estimate of the number of populations as well as accurate
individual assignments.

However, because of the model choice, there is a limita-
tion of inferring tree topology with admixed individuals, as
people with admixture may be assigned to different
branches on the tree to which they have similarities.

TABLE 1
Computational Times of the AWclust and iNJclust Algorithms

Fig. 10. Admixture results of the Human 27 populations data set, with the ancestry number of 8.
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However, distinguishing individuals with admixture from
other populations is possible. In practice, we do not intend to
infer genetic differences solely on the inferred tree of our
algorithm. In fact, we illustrate that the estimated genetic
relationships between populations in the inferred popula-
tion tree complement the ancestry patterns of the individuals
within the data set. The iNJclust algorithm addresses more
information not seen in admixture, namely the structure of
the genetic similarities and accurate automatic clustering.

The iNJclust algorithm can also be used for a classic
classification task where an individual with unknown
origin (population) is to be classified. To perform the

placement, we can append this individual’s genotyping
profile to the input genotyping matrix and use iNJclust
to cluster the input individuals. This new entry will be
clustered together with his/her affiliated population or
placed as an outlier if the profile is not compatible with
the rest.

Although using the algorithm outputs to adjust for
stratification in association studies is beyond the scope of
this paper, it is worth noting that it is plausible to do so
with some concerns. Traditionally, researchers deploy
genomic control and/or EIGENSTRAT [11] to detect and
correct the SNPs that are likely to carry population signals.

Fig. 12. Inferred population tree of the 47-breed bovine data set.

Fig. 11. Inferred population tree of the 28-breed sheep data set.
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Alternatively, after clustering individuals according to
their genetic relatedness, e.g., using the iNJClust algo-
rithm, genome-wide association studies (GWAS) can be
performed on the cases and controls that come from the
same cluster. However, sub-clustering the cohort will
result in smaller number of samples that will affect the
Chi-square statistical significance in GWAS. We recom-
mend that the iNJClust algorithm may be used to recruit
more individual samples of the similar genetic profile
prior to performing more association studies.

Finally, our proposed algorithm can be generalized for
clustering many other types of high-dimensional data such
as corpus texts, images, or biosignals simply by modifying
the similarity matrix, the distance measure, and construct-
ing an appropriate type of graph before clustering.
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ABSTRACT 
Phenotypic differences among individuals of the same species are 
the result of a set of genetic variations which can be observed in 
the DNA sequence. To conduct a population genetic study, a high 
throughput genotyping platform such as Single Nucleotide 
Polymorphism (SNP) array is popularly used to obtain a large set 
of SNPs for each individual. However, analyzing today’s 
genotypic data can be computationally expensive due to its large 
size and complexity. Faulty substructure may also be detected if 
the data is noisy from redundant or non-informative SNPs. 
Considerable efforts have been done to extract a smaller 
informative SNP subset that still represents the same intrinsic 
structure of populations within a data set as the full panel of 
SNPs. This work describes a foundation of a PCA-based 
informative marker selection technique. The proposed technique 
is simple and efficient. It improves upon another spectral analysis 
technique called PCA-correlated SNPs. A new informativeness 
score based on a basis function expansion of the SNP variation 
patterns across individuals is introduced. Such score is computed 
for each SNP to select a subset of SNPs with the best scores. 
Using a bovine data set, we demonstrate that our technique is 
superior to the PCA-correlated SNPs method, which requires 
accurate rank estimation to perform well. In contrast, our method 
is robust to the assumed rank of the data. High data representation 
accuracy is also achieved after a significant reduction of the 
number of SNPs while retaining information about the underlying 
population structure from the original data.  
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• Applied computing~Population genetics  • Applied computing 
~Computational biology • Mathematics of computing 
~Nonparametric statistics  
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1. INTRODUCTION 
In population genetics, evolutionary forces that differentiate 
different populations are investigated. The underlying phenotypic 
distinctions come from allele differences, called genotypes, in the 
DNA sequence. With an advent of high throughput genotyping, 
scientists can quickly observe millions of Single Nucleotide 
Polymorphisms (SNPs) of an individual. When observed at a 
population level, the samples’ variations belonging to one 
population reveal a unique genotypic population pattern, called 
population stratification or population structure. By studying 
population structure, we can understand key mechanisms of 
evolution that help shape a population. 

Population structure impacts various applications ranging from 
disease association studies in human [4, 5] to livestock breeding 
program [3]. Such allele frequency differences defined for each 
population cast back the underlying evolutionary traces [1, 7]. 
Hence, researchers strive to identify informative SNPs responsible 
for population substructure that can equivocally describe and/or 
correct the underlying faulty substructure signals. 

STRUCTURE [11] has laid a foundation to study population 
structure by constructing a Bayesian model that can effectively 
predict a contribution of founders. Alternatively, to avoid 
potential unrealistic genetic model assumptions, nonparametric 
approach based on principal component analysis (PCA) has been 
introduced by Cavalli-Sforza [6] and made popular by Patterson et 
al. [10] to detect and identify population structures. 

When dealing with large number of SNPs, there are an intensive 
computational requirement of existing algorithms for population 
studies, and high genotyping cost. Moreover, genotyping platform 
errors may introduce small perturbation that could cause spurious 
patterns. Thus, methods that can identify a smaller set of SNPs 
containing information about intrinsic population structures, e.g., 
[9, 12], are appealing. In particular, we are interested in an 
approach termed PCA-correlated SNPs technique [9], which 
infers these structure informative markers using PCA. The 
technique is simple and very effective, and has been applied to 
several population genetic studies including [7, 8]. However, 
PCA-correlated SNPs requires estimating the rank of data matrix, 
and the selected set of informative SNPs varies greatly with 
different assumed ranks. Consequently, the inferred underlying 
structures are not consistent.  
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This paper demonstrates how to efficiently select structure 
informative SNPs as suggested by the basis function expansion in 
PCA. The proposed algorithm modifies the PCA-correlated SNPs 
method, and greatly improves the robustness to rank selection. 
The construction of our method is such that the bases are also 
orthonormal. The performance improvements over the PCA-
correlated SNPs method are illustrated using a previously 
published bovine data set [2]. 

2. METHODS 
2.1 Selecting structure informative SNPs 
Consider the data of M individuals genotyped with L SNP markers 
in the form of an M x L matrix X. The ith row of X represents the 
SNP sequence of individual i. The jth column of X gives the 
variation of SNP at location j across all individuals. Typically, we 
have M ≤ L. The biallelic SNP representation at each locus is 
encoded as 0 (homozygous wild type), 1 (heterozygous), or 2 
(homozygous mutant). To reveal the structure within the data 
using PCA, the singular value decomposition is performed so that 
X can be written as  

           
   
X = UΣVT = σ i

i=1

M

∑ uiv i
T ,                  (1) 

where U = [u1, … , uM] is the matrix containing left singular 
vectors. The diagonal matrix Σ contains the singular values {σ1,   
σ2, … , σM} in descending order; V = [v1, ... , vL] is the matrix of 
right singular vectors. The construction is such that U and V are 
unitary. Equivalently, U contains the principal components 
computed from the sample covariance matrix of X. To observe 
population structure within the data, it is common that the data is 
projected onto the first few dominant principal components and 
visualized or used in subsequent clustering technique of choice.  

To gauge whether a particular SNP greatly contributes in shaping 
the underlying population substructure using the PCA framework, 
Paschou et al. [9] has suggested that we look at the jth column of 
X corresponding to values of the jth SNP across individuals, 
defined as 

 
   
a j = σ i

i=1

M

∑ uivi
j ,          (2) 

where vi
j is the jth element of vi..The so-called PCA-correlated 

SNPs method for identifying a smaller set of SNPs computes the 
score for SNP j 

         
  
p j = (vi

j )2

i=1

R

∑ , j = 1,…, L         (3) 

and selects the desired number of SNPs with the largest pj values. 
The resulting SNP locations are presumably the most informative. 
In terms of a basis function expansion, PCA-correlated SNPs 
approximates the column vector aj using R bases {σiui, i = 1, … , 
R} and the vi

j 's are the basis expansion coefficients. The 
parameter R is the rank of matrix X, i.e., the number of significant 
principal components. It is observed that the norms of the basis 
vectors {σiui} usually vary greatly, depending upon the singular 
value distribution of the data. Consequently, the coefficients vi

j 
whose corresponding singular values σi are very small do not give 
significant contributions to aj. Nevertheless, they have been given 
equal importance for the score computation. There is also a rank 
parameter R to be estimated. The error of the selected rank R has 

an effect on the final selection of SNPs that are deemed 
informative.  

This work presents an improvement on computing an 
informativeness score of each SNP. Starting with the 
representation in Eq. (2), we select the left singular vectors {ui} as 
our bases. Hence, the basis expansion coefficients are {σivi

j, i = 1, 
…, R}, which are a function of both the singular values and the 
elements of the right singular vectors. The updated score is now 
computed as 

        
   
!pj = (σ ivi

j )2

i=1

R

∑ , j = 1,…, L .        (4) 

Notice that the bases {ui} are orthonormal. This is a nice property 
in the case where the basis expansion coefficients are unknown 
and need to be estimated. The singular values appropriately 
weight the contribution of vi

j in column j in the same manner as 
the right singular vectors vj's have been weighted for constructing 
the original data matrix X.  

2.2 Representation accuracy 
It is desirable that, even with much fewer SNPs, the new data 
matrix retains the underlying population structure. To investigate 
the results using k principal components, we denote the matrix of 
k left singular vectors from the original data matrix corresponding 
to the k largest singular values as Uk = [u1, u2, … , uk]. A new M x 
P data matrix   !X  with reduced dimension is formed by keeping 
only P columns of X corresponding to P largest 

  
!pj

values. The 

principal components of the new data matrix are computed from 

            X
! = U!Σ!V!

T
         (5) 

Similarly, we define 
   
!Uk

as the left singular matrix   !U with only 
the first k columns. Using the same number of significant 
principal components, the structure representation accuracy is 
defined as  

          

    
γ (k) =

trace{Uk
T U! k U! k

T
Uk}

trace{Uk
T Uk}

         (6) 

This measures the fraction of signal energy captured by the first k 
principal components of the original data matrix that can be 
represented using the k dominant principal components of the 
reduced data matrix. Ideally, we would like γ(k) to be as close to 1 
as possible. 

3. RESULTS  
Due to space limitation, we only illustrate the performance of our 
method using a single data set. The experiment is conducted using 
a bovine data set of 230 individuals [2]. The data is from 9 breeds 
of cattle genotyped at 8781 SNPs. This data set is chosen because 
the structure in bovine data set is much more evident than the 
human data set, which usually have complex structures. We 
would like to minimize the effects of noise or obscurity in data 
structure when assessing the performance of our technique. 
However, note that data sets with smaller numbers of SNPs are 
more challenging to analyze since there are less information. 

The population data is represented by an M x L matrix, where  
M=230 and L=8781. In order to eliminate the effect of genetic 
drift and amplify structures within the data, we normalize it 



 
Figure 1. Structure within the bovine data set using full set of 
SNPs (L = 8781) and three dominant principal components. 

 
Figure 2. Percent overlap of selected SNP markers between 

successive ranks. 
according to [10] so that each column is zero-mean with unit 
variance. Effectively, the full rank of the data matrix equals M-1 = 
229.   
In order to visualize the population structure within the data, k=3 
is used in this paper. The PCA analysis for population structure of 
the original data matrix (full 8781 SNPs) using three principal 
components is shown in Fig. 1 where each breed is color-coded. 
The population structure within the data is obvious, with 
individuals from five out of nine breeds formed nicely separated 
clusters. Individuals from the other four breeds are conglomerated 
in the middle. 

3.1 Robustness of informative SNPs selection 
Since both the PCA-correlated SNPs scores in [9] and the 
informativeness scores of our proposed method are computed 
from R < M basis vectors, we investigate the effect of rank 
selection in the score computations on the selection of structure 
informative SNPs. To do this, the scores in Eq. (3) and (4) are 
computed with rank R varies from 1 (using only the first dominant 
principal component) to the full rank of M-1 (using all principal 
components). For each R, two sets of 200 informative SNPs are 
selected from the largest pj and 

  
!pj

scores, respectively. The 

                        
Figure 3. Singular values of the bovine data set. 

Figure 4. Data representation accuracy. 
 

percent overlaps between the selected SNP loci for successive 
values of R are computed, as shown in Fig. 2.  

The percent overlaps for the PCA-correlated SNPs method in [9] 
are lower than our method. Particularly for small values of R (R < 
9), the overlaps are between 60-70%. This implies that if there 
were an error in estimating the rank of data matrix, even if we are 
off by one rank, it would give a resulting set of SNPs that are 
vastly different. In contrast, our method is fairly lenient to the 
chosen value of R. It is seen that more than 93% of markers are 
similar after R = 3, and the similarities are on average at around 
98% with R > 5. Hence, the proposed method for selecting 
informative SNPs is very robust to the assumed rank of the data 
matrix. We may use the full rank R=M-1 (or R=M without the 
normalization) to compute 

  
!pj

 and eliminate the need for rank 

estimation completely. Otherwise, a low rank-R approximation 
with R << M can be used with negligible difference. Although not 
shown here, this trend replicates with larger sets of SNPs.  

3.2 Structure representation accuracy 
We compare the structure representation accuracy of our 
technique with the PCA-correlated SNPs method for low-rank and 
full-rank basis expansions. In order to estimate R, the singular 
values of the bovine data is plotted in Fig. 3 in descending order. 
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Figure 5. Structures within the bovine data set using selected sets of 200 SNPs. (a) Proposed method, R = 11. (b) Proposed method, 

full-rank. (c) PCA-correlated SNPs, R = 11. (d) PCA-correlated SNPs, full-rank.
The first principal component explains 7.44% of the variance 
within the data. We notice that there is a sharp drop of the singular 
values before tapering off. We identify the bend of the graph, 
which signifies the changing point in the singular value 
contributions (depicted in Fig. 3 by the dotted line), using 
gradients of the singular values. This corresponds to the point 
where the gradient is less than 5%, which occurs at the 11th 
singular value. So we choose R = 11 for the low-rank basis 
expansion of the data matrix in our subsequent analysis. These 
eleven dominant principal components account for 26.9% of the  
variance within the data. Each of the remaining principal 
components contributes only 0.34% on average. For the full-rank 
counterpart, we use R = M-1.  

Although we have not tried to estimate the rank of the data matrix 
with the technique used in [9], we observe that the selected ranks 
therein always equal or are close to the number of the underlying 
populations within the data. We anticipate that for our bovine data 
set, the rank estimated by the original PCA-correlated SNPs 
method would be close to 9, so using R=11 is not unreasonable.  

Fig. 4 depicts the values of γ(3) for the numbers of SNPs ranging 
between 100 to 2000 markers. The data representation accuracy of 
our method is superior to the PCA-correlated SNPs method for 
both low-rank and full-rank results. When R=11 is used to 
compute the scores, the representation accuracy of our method is 
greater than 0.85 when we use only 100 SNPs, or just slightly 
over 1% of the total number of available SNPs. However, PCA-
correlated SNPs selects 100 SNPs that can capture only 34% of 
signal energy (γ(3)= 0.34). With our proposed modification, we 

achieve over 0.93 accuracy with merely 200 SNPs. The PCA-
correlated SNPs technique reaches the same representation 
accuracy using 1000 SNPs. At 2000 SNPs, or 23% of the original 
dimension, both methods perform well with the accuracies of 0.99 
and 0.97 for our method and PCA-correlated SNPs, respectively.  

For full-rank results, the representation accuracies decrease 
slightly for our method when small sets of 100 and 200 SNPs are 
used. This is because more bases representing “noise” are 
included in the score computation. The accuracies are comparable 
to the low-rank results when the number of SNPs is greater than 
500, as more SNPs provide more structure information. In 
contrast, the degradation in representation accuracy is more 
substantial for PCA-correlated SNPs. This is a direct consequence 
of its rank-dependency and improper weighting of basis 
coefficient vi

j as discussed earlier. 

3.3 Visualizing population structures 
The population structures within the bovine dataset using two sets 
of 200 informative SNPs selected with our technique and the 
PCA-correlated SNPs technique are visualized on three dominant 
principal component axes in Fig. 5. Again we compare the full-
rank and the low-rank results. Regardless of the rank, the 
population structure within the original data in Fig. 1 is correctly 
retained using our proposed method. Separations of individuals 
from the same five breeds are still noticeable, although the 
individuals are slightly more dispersed.  

For low rank, PCA-correlated SNPs produces a structure that 
differs from the original. Individuals from three breeds are 
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separated from the remaining breeds. However, only two breeds 
are similar to those seen in Fig. 1. The structure also changes 
drastically for the PCA-correlated SNPs full-rank result. No 
visible structure can be detected. 

4. CONCLUSIONS 
We modify the PCA-correlated SNPs technique for identifying 
structure informative SNPs by improving the calculation of the 
informativeness score for each SNP and select a small subset of 
SNPs with the best scores. The proposed technique is simple and 
efficient. It is demonstrated that the result is robust to the assumed 
rank of the data, i.e., the choice of a rank estimation technique has 
little effect on the final selection of informative SNPs. In fact, 
rank estimation may be bypassed with negligible degradation in 
data representation accuracy. Additionally, sizable dimensional 
reduction can be achieved while retaining information on the 
underlying population structure from the original data. 

For an extension of this work, we plan to look at the performance 
of our method on human data sets with varying complexities, 
including the ones used in [8, 9]. We believe that our technique is 
advantageous in the cases where we want to study the population 
structure at a finer scale, e.g. populations within continents or 
with common ancestry. 
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