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Abstract

Project Code: TRG5780046

Project Title: Cosmological Models due to Generalized Three-Form Field
Investigator: PitayuthWongjun,Naresuan University

E-mail Address: pitbaa@gmail.com

Project Period: 2 years

One of important observational evidences in cosmology indicatesthat the
universe is expanding with acceleration. In order to describe these evidences, one can
introduce an extra mysterious matter into the theory of gravitation namely “dark energy”
or modify General Relativity at cosmological scale known as modified gravity theory.
The aim of this research project is to construct the dark energy model due to a
generalized three-form field. We found that it is possible to use the propose model to
explain the late-time expansion of the universe.Moreover, the three-form can provide
nonrelativistic matter content in the universe. For the fluid description of the three-
form,the fluid can provide nonadiabatic pressure perturbations and corresponds to a
system with nonconservation of the particle flux. Dynamical analysis for this model and
the model with dark matter coupling are very interesting to investigate and we leave
these points for further work. Along with dark energy model, modified gravity model,
especially massive gravity, is also one of the aims for this research project. By
considering dRGT massive gravity coupling to the k-essence scalar field,we found that
the universe has the standard evolution and the graviton mass can play the role of both
nonrelativistic matter and cosmological constant with helping of k-essence scalar field
leading to unification of dark matter and dark energy. Since the stability and
observational constraint for this model has not been investigated yet,it is worthwhile to

examine and we leave it for further work.

Keywords :Dark energy, Three-form field, Massive gravity
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Abstract. A Lagrangian formulation of perfect fluid due to a non-canonical three-form field
is investigated. The thermodynamic quantities such as energy density, pressure and the
four-velocity are obtained and then analyzed by comparing with the k-essence scalar field.
The non-relativistic matter due to the generalized three-form field with the equation of state
parameter being zero is realized while it might not be possible for the k-essence scalar field.
We also found that non-adiabatic pressure perturbations can be possibly generated. The fluid
dynamics of the perfect fluid due to the three-form field corresponds to the system in which
the number of particles is not conserved. We argue that it is interesting to use this three-form
field to represent the dark matter for the interaction theory between dark matter and dark
energy.

Keywords: Three-Form Field, Perfect Fluid, Lagrangian Formulation

European Physical Journal C Editorial Office


mailto:pitbaa$@$gmail.com

©CoO~NOUTA,WNPE

European Physical Journal C

Contents

1 Introduction 1

2 Equations of motion and energy momentum tensor 2

3 Stability 5

4 Fluid dynamics due to three-from field 7
4.1 Standard version and k-essence field 7
4.2 Generalized three-form field 10

5 Summary 12

1 Introduction

A theory of cosmological perturbations is one of important issues in cosmology nowadays.
It provides us to understand how astronomical structures at large scales are generated and
evolve. Also, it can provide us the resulting signatures of the theoretical model to compare
with observational data. The theory of cosmological perturbations for a perfect fluid has
been developed and studied intensively at the level of equations of motion, for example, a
study of the perturbed Einstein field equations together with the equation of conservation
of energy momentum tensor |1, 2]. Beside the cosmological perturbations at the level of the
equations of motion, a study of the cosmological perturbations at the Lagrangian level has
been investigated. The advantage point of the study at Lagrangian level is that it is useful to
find the perturbed dynamical field as well as derive closed evolution equations. This can be
clearly seen by considering the cosmological perturbations in f(R,G) gravity theories where
there are two dynamical fields for scalar perturbations [3, 4|. For the study in Lagrangian
approach, one can straightforwardly identify which fields are dynamical or auxiliary and then
immediately obtain the closed evolution equations.

A Lagrangian formulation for a perfect fluid in general relativity has been constructed
and developed for a long time [5-7|. The Lagrangian of the fluid is simply written as its
pressure [6] or energy density [7]. The advantage point of this formulation is that it naturally
provides a consistent way to construct a covariant theory for dark energy and dark matter
coupling. The study of dark energy and dark matter coupling has been widely investigated
in order to describe a way out from the cosmic coincidence problem [8-12]. Moreover, the
observation also provide a hint for the existence of the coupling [13|. However, in order
to recover the standard thermodynamics equations, the Lagrangian must involve at least
five independent functions. Even though this formulation can provide a consistent way for
studying the perfect fluid in cosmology and is well known as a standard approach for the
perfect fluid at the Lagrangian level, there might be disadvantage for this approach since the
theory involves too many functions.

A simple Lagrangian approach for the perfect fluid has been investigated by using a
non-canonical scalar field [14], namely k-essence field [15-17]. It was found that the k-essence
scalar field can provide a description of the perfect fluid with constant equation of state
parameter. Moreover, it was found that the cosmological perturbations of this kind of the
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scalar field is equivalent to those in perfect fluid. However, it cannot be properly used to
describe a non-relativistic matter with the equation of state parameter being zero since the
Lagrangian is not finite. It was also found that the non-adiabatic pressure perturbations
cannot be generated [18]| as well as a vector mode of the perturbations cannot be produced
[19].

Beside the cosmological models due to the scalar field, a three-form field can be success-
fully used to describe both inflationary models and dark energy models [20-30]. Even though
there is a duality between scalar field and three-form field, the cosmological models are sig-
nificantly differed in both background and perturbation levels. At the perturbation level, it is
obvious to see that the three-form field can generate intrinsic vector perturbations while it is
not possible for the scalar field. Therefore, it might be worthy to find an equivalence between
the three-form field with a perfect fluid. In the present work, by mimicking the k-essence
scalar field, we consider a generalized version of the three-form field and then find a possible
Lagrangian form to describe the perfect fluid at the background level. We found that a simple
power-law of the canonical kinetic term can provide the constant equation of state parameter
like in the case of k-essence. The advantage point of the three-form field compare with the
scalar field is that it can provide a consistent description of the non-relativistic matter field
where its equation of state parameter satisfies w = 0. The stability issue is also investigated
and found that the non-relativistic matter field due to the three-form field is free-from ghost
and Laplacian instabilities.

By using the equations of motion of the generalized three-form field, the thermodynamic
quantities are identified and found that the perfect fluid due to the three-from field corre-
sponds to fluid in which the number of particles is not conserved. By analyzing the speed of
propagation of scalar perturbations and the adiabatic sound speed, we found that the non-
adiabatic perturbations can be possibly generated. We argue that it is interesting to use this
three-form field to represent the dark matter for the interaction theory between dark matter
and dark energy.

This paper is organized as follows. In section 2, we propose a general form of the three-
form field and then find the equation of motion as well as the energy momentum tensor.
By working in FLRW metric, the energy density and the pressure as well as the equation of
state parameter are found. Some specific forms of the Lagrangian satisfying the equations
of motion are obtained and found that it can represent the non-relativistic matter. We also
investigate the stability issue by using the perturbed action at second order in section 3. We
found conditions to avoid ghost and Laplacian instabilities. In section 4, we investigate the
thermodynamic properties of the model. We begin this section with review of some important
idea of the Lagrangian formulation for the standard and k-essence scalar field and then find
the thermodynamic properties due to the three-form fluid. Finally, the results are summarized
and discussed in section 5.

2 Equations of motion and energy momentum tensor

Cosmological models due to a three-form field have been investigated not only in inflationary
models but also dark energy models [20-30]. Moreover, at the end of inflationary period,
a viable model due to the three-form field for the reheating period have been investigated
[31]. A consistent mechanism to generate large scale cosmological magnetic fields by using
the three-form field have been studied [32]. Recently, a generalized inflationary model by
considering two three-form fields was also investigated [29]. All investigations of cosmological

_9_
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models due to three-form are considered only in canonical form. Since the non-canonical
form of scalar field have been intensively investigated, it is interesting to investigate the
cosmological model with a non-canonical form of the three-form field. In this section, we will
consider a non-canonical form of the kinetic term of a three-form field, A,g-, as follows

5_/d4x\/?g [MQ’%lRJrP(K,y) , (2.1)

where the kinetic term and scalar quantity of the three-form field are expressed as

1

- _ afvyd
K 48 FaﬁwéF ) (22)
1
Yy = ﬁAaﬂ'yAaﬁ’yy (2.3)
Fuvpo = VuAvpe = Vo luwp + VAo — ViApoy . (2.4)

By varying the action with respect to the three-form field, the equations of motion of the
three-form field can be written as
Bopy =V (PP, ) + PyAagy, =0, (2.5)

where the notation with subscript P, denotes P, = 0, P. Due to the totally anti-symmetric
property of the tensor F),,3,, one found that there exist constraint equations as follows

Vi (Pyar?) =0, (2.6)

These equations suggest us that the conserved quantity is expressed in terms of three-form
field. Note that for the k-essence scalar field, the conserved quantity is expressed in term
of one-form or vector quantity. We will discuss on this issue in detail in section 4 where we
investigate the fluid dynamics. The energy momentum tensor can be obtained by varying the
action of the three-form field with respect to the metric as

1 1

Ty = §PicFupoal,?”® = 5 PyAupo 4,77 + P (2.7)

For consistency of the derived equations, one can check that the conservation of the energy
momentum tensor can be obtained up to the equation of motion as follows

1 af

vV, TH = ngaﬁvE 7T =0. (2.8)

In order to capture the thermodynamics quantities such as the energy density and pres-

sure due to the three-form field like the investigation in scalar field, let us consider a flat

Friedmann-Lemaitre-Robertson-Walker (FLRW) manifold whose metric element can be writ-

ten as
ds? = —dt* + y;jda'de? = —dt? + a(t)?8;;dx'da’ . (2.9)

By using this form of the metric and the constraint equation in Eq. (2.6), the components of
the three-form field, A,g,, can be written as

Agij =0, Ak = €k X (1) = eijne X () = a’eijr X (1), (2.10)

-3 -
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where €;;;, is the three-dimensional Levi-Civita symbol with €123 = 1. By using this form of
the metric, the components of energy momentum tensor can be expressed as

T) = P - 2K P, (2.11)
T} = (P —2K Py — 2yP,)5, . (2.12)

By comparing these components of the energy momentum tensor of the three-form to one
from the perfect fluid, the energy density and pressure of the three-form can be expressed as

p=2KPy—P, (2.13)
p=P—-2KPg —2yP,=—p—2yP,,. (2.14)

Note that we have used y = X2/2 and K = (X 4+ 3HX)?/2 where H = a/a is the Hubble
parameter. From the energy density and the pressure above, the equation of state parameter
of the three-form can be written as

2y P
wzg:_l_M_

; ; (2.15)

The equation of motion of the three-form field in Eq. (2.5) can be written in flat FLRW
background as

(2KP ki + Pg)K + 2K Py — 2¢/K yPy = 0. (2.16)

From this point, one can check validity of the derived equations by reducing the general form
of the action to the canonical one as setting P = K — V(y). As a result, we found that all
equations can be reduced to the canonical one investigated in [20-30]. Substituting p from
Eq. (2.13) into Eq. (2.15), one obtains

2yP, + (1 +w)2KPg = (1 +w)P. (2.17)

In order to find the form of P, one has to solve this equation. It is useful to solve this equation
by considering a simple assumption such as taking the equation of state parameter to be a
constant, w = const. By using separation of variable method, the solution can be written as

P = PyK"y", (2.18)
where Fp is an integration constant and p, v are the exponent constants obeying the relation

_lrw=op or w=—1+ 21
201 4w) B 1—2v

- % (2.19)

This form of the solution is very useful since one can interpret the three-form field as a
non-relativistic matter or dark matter by setting the equation of state parameter as w = 0
while it cannot be properly used for k-essence scalar field case. We will show explicitly
why we cannot properly use k-essence scalar field for the non-relativistic matter in section
4. In order to study the covariant coupling form between dark matter and dark energy as
suggested from the observation [13], one can use the three-form as the dark matter with the
consistent covariant interaction forms. Moreover, it may be interpreted as dark radiation by
setting w = 1/3. Note that, in the case of v = 1/2, it corresponds to the trivial solution
since the energy density of the field vanishes. It is important to note that the late-time

4
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acceleration of the unverse can also be achieved by setting w = —1. Even though this may
not be distinguished to the cosmological constant at the background level, the cosmological
perturbations due to this model of the three-form can be significantly deviated from the model
of the cosmological constant.

Since the form of the Lagrangian P is obtained by assuming a constant equation of state
parameter, the dark energy model from this three-form field cannot be proposed to solve the
coincidence problem. One may allow the equation of state to be varying in order to overcome
this issue. Ome of interesting solutions is assuming that the equation of state parameter
depends on the three-form field w = w(y). In order to solve Eq. (2.17) to obtain a suitable
form of P, one may choose the equation of state parameter such as w = —1 + Ay, where A is
a constant. As a result, the solution can be written as

P=PKe T,

(2.20)
Naively, it is not difficult to obtain the dynamical dark energy due to the generalized three-
form. One can set A be effectively small and find the condition to provide an evolution of
y such that it evolves from a large value to a small value. However, since it is not in the
canonical form, the theory may be suffered from instabilities. In this work, the stability issue
will be investigated in the next section. The investigation of the dark energy model due to
the generalized three-form is left in further work.

3 Stability

In order to capture the stability conditions of the generalized three-form field, we may consider
the perturbations of the field. Since the field minimally couples to the gravity, one has to
take into account the metric perturbations. However, for simplicity but useful study, we will
investigate the stabilities of the model only in a high-momentum limit. This will capture
only some stability conditions. Nevertheless, this includes most of the necessary conditions
as found in the canonical three-form field [27]. We leave the full investigation in further work
where the cosmological perturbations are taken into account. For this purpose, the metric is
held fixed as the Minkowski metric and the three-form field can be written as

Aije = €ije(X (1) + alt, 7)), (3.1)
Aoij = €iju(OB(L, T) + Br(t, X)),

where a and S are perturbed scalar fields and i is a transverse vector obeying the relation
O,B* = 0. This vector field will be responsible for the intrinsic vector perturbation of the
three-form field. For the linear perturbations, the scalar and vector modes are decoupled and
then they can be separately investigated. For the scalar modes, by expanding the action up
to second order in the field, the second order action can be written as

1 0?2 1 1

(2) — d4 _ - Zp 2 _p 2 2 .
s / o(5 T arEe 3Py + 3Pucta ). (3.3)

Q = (Px +2KPgg)o+ 2K yPrPya — (Pg + 2K P k)08, (3.4)

20uP 4Ky P>
Z=14 2w YKy . (3.5)
Py  Py(2KPgk + Pk)
_ 5 _
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One can see that the field £ is non-dynamical so that one can eliminate it by using its equation
of motion. By applying the Euler-Lagrange equation to the above action, the equation of
motion for the field 8 can be written as

(Pi +2KP i)+ 2¢/ K yPrya — (Pi + 2KP )0 — Py =0, (3.6)

From this equation of motion, we can replace the quantity Q as Q = P,B. Note that this
equation can be obtained by using the component (0,4,5) of the covariant equation in Eq.
(2.5). In order to find the solution for 3, it is convenient to work in Fourier space so that the
above equation can be algebraically solved. As a result, by substituting the solution of 8 into
the action in Eq. (3.3), the second order action for the scalar perturbations can be rewritten
as

S = / dtd3k(F1d2 +F2aa+F3a2), (3.7)
where
P, (2KPkk + Pk)
F - _ Y ) ) , 38
! 2(k*(2KP kK + Pr) — Py) o
2vK yPk P
Py = VEyPgyP, (3.9)

(k2 (2KPkk + Pr) — Py)’
(2yPyy + P)) (2K Pk + k* P — Py) — 4k*KyP%,,
2(k? 2KP kK + Px) — Py) '

F3 = (3.10)

As we have discussed above, we will consider the stability conditions at high-momentum limit.
Therefore, by taking the limit k? — oo, the second order action becomes

5@ = /dtd3k: k~3(~P,) (%oﬁ A %k%goﬂ - %mioﬁ). (3.11)
where
m? = 1( 2VE Y Py ) . MRyl (3.12)
dt\(Px +2KPrk)/ (Pk +2KPkk)?
Therefore, the condition to avoid ghost instabilities can be written as
P, <0. (3.13)

This condition can be reduced to the canonical case by taking P = K — V(y), which provides
the result as V, > 0 consistently with the result in [27]. In order to avoid the Laplacian
instability, one requires c¢? > 0 leading to the condition

2P 4K yP>?
Yy YKy > 0. (3.14)

1+
P, Py(2KPkk +Pk) —

To obtain a clear picture of this condition, one may specify the form of P. For the form
with constant equation of state parameter, P = PyK"y*, the sound speed square can be
expressed as ¢2 = w. Therefore, the three-form field can be interpreted as the non-relativistic
matter up to a perturbation level since ¢ = 0 and w = 0. Moreover, it is obvious that the

-6 —
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non-relativistic matter represented by the generalized three-form field is free from ghost and
Laplacian instabilities. Note that the dark energy model with w < —1/3 for this form of the
Lagrangian is suffered from Laplacian instabilities since the sound speed square is negative.

For another simple form of the Lagrangian with P = PyK ”e%)‘y, the sound speed
square and the equation of state parameter read ¢ = 1+ Ay and w = —1 + \y. From
these expressions, one can see that the phantom expansion of the universe will provide a
superluminality. The no-ghost condition can be expressed as PyA(2v — 1) > 0. At this point,
it is possible to obtain a viable model of dark energy due to the generalized three-form field.

Now we will consider the vector mode of the perturbations by following the same step
as in the scalar one. As a result, the second order action for the vector perturbations can be
written as

9@ — /d4a:( _ %Ryﬁzﬂi). (3.15)

From this action, one can see that the vector mode does not propagate. A condition to avoid
the instabilities coincides with the condition obtained in scalar mode.

In order to find possibility to obtain non-adiabatic perturbations due to the three-form
field, one may find a difference between the speed of propagation of scalar perturbations, 2,
and the adiabatic sound speed, c¢2. If these two kinds of the sound speed are equal, there
are no non-adiabatic perturbations while it provides the possibility to generate non-adiabatic
perturbations if they are not equal [18]. The speed of propagation of scalar perturbations is

found in Eq. (3.5). For the adiabatic sound speed, one can derived as follows

; P+ P K +2JK
CZ = E =1 +2y 7yyy + 7Ky(y + y)’ (316)
1Y -P,yy -2 V KyP,Ky
2
— 2 WEYP Ky 1+ YPyy + yPy = 2Ky P ry . (3.17)
* Pyy—2VEKyPry, Py  Py(Pk+2KPkk)

From this equation, one can see that the sound speed of scalar perturbations and the adiabatic
sound speed are not generally equal. Therefore, it is possible to generate non-adiabatic
perturbations from the generalized three-form field. This is one of advantage points of the
generalized three-form field compare with the k-essence scalar field. Note that both kinds of
the sound speed will coincide when the Lagrangian does not depend on y, P = P(K). For
this case, the non-adiabatic perturbations cannot be generated.

4 Fluid dynamics due to three-from field

In order to compare the results with the standard description of the fluid dynamics for the
perfect fluid, let us briefly review an important concept of the standard version for the fluid
dynamics. Since the perfect fluid dynamics due to the non-canonical scalar filed or k-essence
field has been intensively investigated and interpreted as non-relativistic mater field, for ex-
ample, in the case of massive gravity theory [33, 34|, we will also review some important
results of the k-essence scalar field before we discuss further on the three-form field.

4.1 Standard version and k-essence field

There are many approaches of the standard version for the perfect fluid Lagrangian. We will
use Brown formulation [7] since it is more useful and has been widely used for recent studies

_7 -
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in dark energy and dark matter couplings [9-12]. The Lagrangian of the perfect fluid can be
written in terms of the energy density with Lagrange multipliers as

S = /d493 (—vV=gp+j"(pu+ 50, + /BAafL)) , (4.1)

where p = p(n, s) is the energy density of the fluid, n is a particle number density, s is an
entropy density per particle and j* are components of the particle number flux. The second
term which is contracted with j# is the Lagrange multiplier term with the Lagrange multiplier
fields ¢, 8 and 54 where a4 are the Lagrangian coordinates of the fluid with index A running
as 1,2,3. j# can be written in terms of the four-velocity u* of the fluid as

g = /—gnut. (4.2)

The four-velocity satisfies the relation u,u* = —1 where n = |j|//—g and |j| = /=" 9w J".
The standard energy momentum tensor of the perfect fluid can be obtained by varying the

action with respect to the metric g, as

T = (p + P)upts + P G, (4.3)
where p is the pressure of the fluid defined as

dp
=n-L — ) 4.4
p=ng-—p (4.4)

By varying the action with respect to the Lagrange multiplier fields 8 and ¢, the first law of
Thermodynamics and the conservation of the particle number can be obtained respectively
[7] as

dp = ndp — Tds, (4.5)
95" = 0.

where T is a temperature and p is a chemical potential defined as

_Ptp

- (4.7)

From these equations of motion together with the conservation of the energy momentum
tensor, V, " = 0, all main thermodynamics equations can be obtained. For example,
conservation of the entropy density can be obtained by using a projection of the conservation
equation of the energy momentum tensor along the fluid flow as follows

u, V, T = —J%ayj” — WTdy,s = 0. (4.8)

From these equations, in the viewpoint of field theory, all main thermodynamics equations
can be obtained if one can identify the main thermodynamics quantities in terms of the field
such as energy density, pressure, four-velocity and chemical potential which give the form of
energy momentum tensor as found in Eq. (4.3). We will show this procedure for instruction
in the case of scalar field.

-8 —
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For the k-essence scalar field, we will follow [14] in which action of the k-essence field
can be written as

S0 [ d'ay=apiK,) (1.9)

where Ky = —V,¢V#¢/2 is the canonical kinetic term of the scalar field. The corresponding
equations of motion of the scalar field can be expressed as

v, (P’qu) —0, (4.10)

where prime denotes the derivative with respect to Ky. The energy momentum tensor of the
scalar field can be written as

Ty = P'V,0Vué + g, P. (4.11)

By comparing this energy momentum tensor with that in the perfect fluid in Eq. (4.3), the
energy density, pressure and the four-velocity can be identified as

Py = 2K¢Pl — ]D7 (412)

py = P, (4.13)
VH#

at = = ;;S (4.14)

Therefore, the particle number density can be obtained in order to satisfy the conservation
of the particle flux as ngy = /2K4P’ while the chemical potential reads py = /2K,. There-
fore, one can check that the equation of motion in Eq. (4.10) satisfies the equation of the
conservation of the particle flux as follows

NEn (P'qu) =9, (\/Tgpfvw) ¢ 8u(\/jgn¢u“> = 94" = 0. (4.15)

As a result, all fluid dynamics equations can be derived by using the results in the standard
version. Note that the first law of thermodynamics is adopted for the scalar field while in the
case of the standard version, it is obtained from the equation of motion. It is important to
note that the conservation of the particle flux does not hold if we generalize the Lagrangian
of the scalar field as P = P(Ky, ¢) since the equations of motion in Eq. (4.10) becomes

Vi (P’ V”(b) = —JP/0¢. This is not so surprisingly since the simple scalar field, such as

quintessence field, is also equivalent to the system in which the particle flux is not conserved.
This can be explicitly seen by taking P = K4 — V().

By taking the equation of state parameter to be constant, the form of the Lagrangian
obeys a relation

P(l + w¢) = 2w¢K¢P’. (4.16)
From this equation, one can find the exact form of the Lagrangian as
1+w¢
P= POK;% ,  where wgy # 0. (4.17)

It is obviously that one cannot properly use this form of the scalar field to describe the
non-relativistic matter since its equation of state parameter is zero, w = 0. This is one of
drawbacks for the k-essence scalar field. As we have shown before, this does not happen in
the case of generalized three-form field.

-9 -
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4.2 Generalized three-form field

As we have mentioned, one can find the equivalence between the energy momentum tensor
of the three-form and the standard perfect fluid and then identify the fluid quantities such as
p,p and the four-velocity u* in terms of the three-form field. By using these identifications,
one can find the consequent thermodynamics equations of the three-form field as done in the
scalar field case. The energy density and the pressure have been identified in Eq. (2.13)
and Eq. (2.14) respectively. Now, we will identify the four-velocity of the three-form field
by comparing the energy momentum tensor of the perfect fluid in Eq. (4.3) and the energy
momentum tensor of the three-form in Eq. (2.7). As a result, the relation of the four-velocity
and the three-form field can be written as

1 1
(p+ p)uyuy, = ERKF#PUOCFVPUQ - iRyAupaAupg + (2KP g +2yPy)guu- (4.18)

Since F),, 40 is a totally symmetric rank-4 tensor in 4-dimensional spacetime, it can be written
in terms of a covariant tensor €,,p0 = v/—9€ups Where €,,50 is the Levi-Civita symbol in
four-dimensional spacetime. By using the components of the three-form field in Eq. (2.10),
the field strength tensor can be written as

Fuvpo = (X +3HX)epwpr = V2K €po- (4.19)

By using this equation, the first term in the right hand side of Eq. (4.18) can be rewritten as

1
LK Fupoab,?" = —2KP gy (4.20)

Substituting this equation into Eq. (4.18), one obtains

1
(P + p)u,uuu = _ip,yA,upoAypU + 2yp,yg,ul/>

1
Upthy = @A/‘PUAVM = Guv- (4.21)

One can check that the relation w,u* = —1 valid from this relation. Since the tensor wu,u,
is constructed from two three-form fields, it plays the role of symmetric rank-2 tensor S,
instead of outer product of two four-velocity. Therefore, it is not trivial to find the form
of the four-velocity of the three-form field. However, one may expect that the four-velocity
may relate to the three-form field by the relation of the vector and the three-form in four
dimensionality as u* o e“amAam. As a result, the four-velocity of the fluid can be written
in terms of the three-form field as
ehBY A, By

where the three-form field can be written in terms of the four-velocity as
APV =\ foyer Py, (4.23)

It is not trivial to find the conserved current density corresponding to three-form field. Ac-
tually, there are no conserved quantities obtained from invariance of the action under the
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shift of the field like the scalar field. However, one may find the conserved quantity from the
constraint equation in Eq. (2.6) as follows

§OBY = preBry, — /2y P, Py, = P, AT, (4.24)

From this relation, the conserved quantity is now three-form field instead of vector field and
the number density now is four-form field instead of scalar field. This equivalence comes from
Hodge duality in four-dimensional spacetime. One may obtained the effective particle number
density as

poBy
n = %: 2P, (4.25)

Therefore, the usual particle flux for the three-form field can be written as

ehaBy A

J = Vgt = /=g Py~ (4.26)
This quantity does not trivially vanish due to the equation of motion in Eq. (2.16). Since
Ouj" # 0 together with Eq. (4.8), it is inferred that the entropy along the fluid flow is not
conserved. The non-conservation of the particle flux for the three-form is due to the fact
that the action is not invariant under shift of the field. In the scalar field case, the action is
invariant under ¢ — ¢ + £ where £ is a constant. For general case of the scalar field with
Py = Py(Ky, ¢), this symmetry is also broken and then its dynamics will corresponds to the
non-conservation of the particle flux like in the three-form case. For the three-form, if we
restrict our attention to the case where P = P(K) which is invariant under shift of the field,
the particle number density, n oc p + p o< P, will always vanish. Also, the equation of state
parameter is always equal to —1 which cannot be responsible for the non-relativistic matter.

We also observe that condition of non-conservation of the entropy density along the fluid
flow coincides with the condition of generation of non-adiabatic perturbations even though
these conditions come from different approach. The conservation of the entropy density is
derived from background equation while non-adiabatic perturbations are properties of the
fluid at perturbation level. This argument also hold in both scalar field and three-form field
cases. Therefore, this may shed light on the interplay between conserved quantities under
shift of the filed and non-adiabatic perturbations.

Since the thermodynamics description for the generalized three-form field corresponds
to the system in which the particle number is not conserved, it implies that the field may
interact with other fields and then cause the non-conservation. It is important to note that
the conservation of the energy momentum tensor of the three-form still valid, V, T} = 0. The
non-conservation quantities mentioned above are the thermodynamically effective quantities.
Therefore, the interaction of the three-from field to the other fields is implied only in the
description of the thermodynamical sense. As we have mentioned, the useful point of this
three-form field is that it can represent the non-relativistic matter field with w = 0. Therefore,
one may interpret it as dark matter. Since the particle number density is not conserved, it is
worthwhile to investigate an interaction of this field to the dark energy. This may be useful
approach for studies of dark energy and dark matter coupling since one can find the covariant
interaction terms at the Lagrangian level and then the resulting closed evolution equations
are obtained. This issue is of interest and we leave this detailed investigations for further
work.
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5 Summary

A Lagrangian formulation of perfect fluid is a powerful tool to study dynamics of the universe,
especially interacting approach between dark energy and dark matter. A general description
in this formulation invokes many functions and then it is not easy to handle. A k-essence
scalar field can be used to describe the dynamics of the perfect fluid in cosmology. At the
background level, even though the k-essence scalar field can be use to describe the perfect
fluid with constant equation of state parameter, it cannot properly used for the non-relativistic
matter with wg = 0. At the perturbation level, the k-essence scalar field cannot provide non-
adiabatic perturbations as well as intrinsic vector perturbations.

In the present paper, we propose an alternative way to alleviate these problems by using
a generalized three-form field. The investigation is begun with proposing a general form of
the action of the three-form field with a function depending on both the kinetic term and the
field, P = P(K,y), similarly to the k-essence scalar field. Equations of motion and energy
momentum tensor of the three-form field in covariant form have been calculated. By working
in FLRW background, the energy density and the pressure as well as the equation of state
parameter are found. For the constant equation of state parameter, an exact form of the
Lagrangian reads P = PyK"y" where w = —1 + 13’511 and v # 1/2. Therefore, one can set
w = 0 by choosing proper values of the parameters pu and v and then use the generalized
three-form field to represent the non-relativistic matter. For non-constant equation of state
parameter, we also point out that it is possible to construct an alternative model of dark
energy. The stability analysis of the model is also performed. We found the conditions to
avoid ghost and Laplacian instabilities. For the fluid with w = 0, it is free from ghost and
Laplacian instabilities. For some specific model of dark energy, we argue that, to avoid the
superluminality, the equation of state parameter must be greater than —1. In other words,
the viable model of dark energy from the generalized three-form field cannot provide the
phantom phase of the universe. Note that the no-ghost condition we found in this paper can
be trusted only in the high momentum limit. We leave the full investigation for further work
where we investigate the cosmological perturbations and observational constraint.

Thermodynamics properties due to the generalized three-form field are also investigated.
It is found that this model corresponds to a system with non-conservation of the particle
flux. This leads to a non-conservation of the entropy density along the fluid flow. This is
not so surprisingly since many models of dark energy, for example quintessence model, also
correspond to the non-conservation of the particle flux. We also found some links between
non-conservation of the entropy density along the fluid flow which is a thermodynamically
effective quantity at the background level and the generation of non-adiabatic perturbations
which is a property of the model at perturbation level. This may shed light on the interplay
between conserved quantities under shift of the filed and non-adiabatic perturbations. We can
argue that this is an useful approach for a study of dark energy and dark matter coupling since
one can find the covariant interaction terms at the Lagrangian level and then the resulting
closed evolution equations are obtained. This issue is of interest and we leave this detailed
investigations for further work.
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Abstract For alarge class of mass-varying massive-gravity
models, the graviton mass cannot provide the late-time cos-
mic expansion of the universe due to its vanishing at late time.
In this work, we propose a new class of mass-varying massive
gravity models, in which the graviton mass varies according
to a kinetic term of a k-essence field. By using a more general
form of the fiducial metric, we found a solution such that a
non-vanishing graviton mass can drive the accelerated expan-
sion of the universe at late time. We also perform dynamical
analyses of such a model and find that without introducing
the k-essence Lagrangian, the graviton mass can be respon-
sible for both dark contents of the universe, namely dark
energy, which drives the accelerated expansion of the uni-
verse, and non-relativistic matter, which plays the role of dark
matter. Moreover, by including the k-essence Lagrangian, we
find that it is possible to alleviate the so-called cosmic coin-
cidence problem.

1 Introduction

Massive gravity has its own series of developments as a mod-
ified gravity beyond general relativity. Back in 1939, Fierz
and Pauli investigated a first model of massive gravity [1].
The model was a linearized general relativity, where the fluc-
tuation of geometry propagates a spin-2 graviton, plus lin-
ear interactions, which, in particle physics language, corre-
sponds to giving a non-zero mass to the graviton; hence the
name “‘massive gravity”. This model was supposed to coin-
cide with general relativity in the massless limit but it faced
a theoretical crisis when discontinuities in such a limit were
found by van Dam et al. [2,3]. In particular, the discontinu-
ities were found as different predictions between Fierz—Pauli
massive gravity and general relativity. The problem remained
unsolved for several years, until Vainshtein proposed a way
out by introducing higher-order interactions into the Fierz—

2 e-mail: 1_tannukij@hotmail.com

Pauli massive gravity [4]. In other words, he claimed that
within a particular scale, coined the Vainshtein radius, any
predictions from the linear theory cannot be trusted unless
nonlinear contributions are taken into account. However,
adding such nonlinearities, claimed by Boulware and Deser,
not only fixes the discontinuity problem but also introduces
a theoretical inconsistency, namely a Boulware—Deser ghost
[5]. This ghost is an extra degree of freedom, apart from 5
degrees of freedom originally existing in the linear massive
gravity, whose kinetic term has the wrong sign. The ghost
problem had been a blockage for the massive-gravity the-
ory until recently, in 2010, de Rham, Gabadadze, and Tolley
found suitable nonlinear interactions which do not excite the
Boulware—Deser mode; this is dubbed dRGT massive grav-
ity [6,7]. Thus, massive gravity became again an active field
of study.

Although it was just a generalization back then, massive
gravity has its modern motivations. Introducing a non-zero
mass to a graviton shrinks the scale at which the gravity
works. In other words, the graviton mass weakens the grav-
itation at a large scale. As a result, it allows a cosmic accel-
eration and hence may be able to describe the mysterious
dark energy in its language. This motivates cosmologists
to study its cosmological implications. Moreover, since de
Rham, Gabadadze, and Tolley found a healthy nonlinear mas-
sive gravity model, the theory had again opened a door to
various researches on massive gravity; not only its cosmol-
ogy but also the study of astrophysical objects in the theory,
like black holes [8—13]. For cosmological models of massive
gravity, it has been found that the solutions in the models with
Minkowski fiducial metric do not admit the flat and closed
FLRW solutions for the physical metric [14,15]. In order
to obtain all kinds of FLRW solutions, one may consider a
general form of the fiducial metric [16-20].

It has been found, however, that there are some inconsis-
tencies when cosmology is taken into account. For exam-
ple, some degrees of freedom cease to exist when the

@ Springer
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Friedmann—Lemaitre—Robertson—Walker (FLRW) ansatz is
assumed [19]. This leads to numerous studies beyond the
dRGT massive gravity [21-39]. One of those is to generalize
a constant graviton mass to be varied by other scalar field,
dubbed mass-varying massive gravity [24-27]. The theory is
proven to be free from a Boulware—Deser ghost. However,
cosmological implications of such a model indicates a uni-
verse with subdominant contributions from massive gravity.
In particular, the graviton mass is governed by the inverse of
a scale factor of the universe which will vanish at late time.
Consequently, such a model cannot give a proper explanation
of the cosmic expansion caused by the massive graviton.

In this work, we propose an alternative way to construct a
mass-varying massive gravity. The graviton mass is not only
determined by a scalar field, but also by the kinetic term of
the scalar field. Moreover, the scalar field is governed by a
k-essence Lagrangian [40-42]. Under the FLRW ansatz, we
found a solution whose the graviton mass do not necessarily
vanish at late time. Moreover, by assuming both the k-essence
and the graviton mass to behave as perfect fluids, we found
that the graviton mass can give rise to a “dust-like” matter
while combined with other contributions it is possible to have
an equation of state parameter close to —1, as suggested by
recent observations [43]. Such matter may be responsible
for a dark matter, another mysterious content known to exist
in addition to the ordinary matter. Since the graviton mass
can give rise to both of the dark contents, it is tempting to
consider as regards its evolution whether there exists an epoch
in which the two contents in the dark sector are comparable,
the so-called cosmic coincidence problem.

Our paper is organized as follows. In Sect. 2, the proposed
model is addressed along with its equations of motion in the
FLRW background. We also discuss some crucial properties
of the model in this section where we have shown the exis-
tence of the dust-like matter expected to be responsible for
the dark matter. With the help of appropriate assumptions, we
show in Sect. 3 the solution to this model which corresponds
to the dark energy and the non-vanishing characteristic of the
graviton mass existing in this model. After sketching some
perspectives, we begin the dynamical system analysis in Sect.
4 to find all possible fixed points and their stabilities, and the
extended analyses are covered in Sect. 5. We conclude our
work in the last section by the discussion of key ideas of
our work and of whether or not the coincidence problem is
alleviated.

2 The model and the background equations
We consider a mass-varying dRGT massive-gravity action
where the graviton mass is varied by the k-essence field.

Usually, one may consider the graviton mass as a function
which varies as the scalar field propagates [24-27]. However,

@ Springer

in this work, we will consider the graviton mass not only
as a function of the scalar field ¢ but also its kinetic term
X = —%g’“’VM(j)Vvd). The action of such a model can be
expressed as
M2
S = /d4xv—g[7pR[g] + V(X, ¢)(Lalg, f]
+a3Llslg, f1+ aslalg, f])+P(X,¢)}, (1

where R is a Ricci scalar corresponding to a physical metric
&uv» V(X, ¢) is a square of the graviton mass which depends
on the scalar field and its kinetic term, £; represents the inter-
actions of the ith order of the massive graviton, and P (X, ¢)
is the Lagrangian of the k-essence field. In particular, those
interactions of the massive graviton are constructed from two
kinds of metrics and can be expressed as follows:

1

Lolg. 1= 5 (IKF ~1K7). @)
1

Lalg. f1= 57 (IKP = 3KIK7) +21K7) 3

1
Lalg, f1= E([/C]“ — 6[KCTIP[K?] + 3[K21% + 8IKIIK3]
- 6[K*]), 4)

where the tensor C,,, is constructed from the physical metric
g, and an another metric f;, as

n
’C’ﬁ=5’ﬁ—< g_lf) ; Q)

v

where the square roots of those tensors are defined so that
\/gflfl:)\/g”fi = (g_lf)’f}. In massive gravity, apart
from the physical metric, there exists another kind of the
metric tensor, f},,, usually named “fiducial metric”, which is
an object introduced to the theory so that one can construct
non-trivial interactions from the metric tensors as in Egs. (2),
(3), and (4). Those complicated combinations in the interac-
tions, with arbitrary values of the parameters o3, a4, are to
ensure the absence of the Boulware—Deser (ghostly) degree
of freedom [6,7]. Moreover, thanks to the Stuckelberg tricks,
the general covariance, or the gauge symmetry, can be well
integrated into the massive gravity via

f;w = au(ppav(/)gfpo’ (6)

provided that each of the fields ¢/ transforms as a scalar
under any coordinate transformation. As for the fa », ONE can
choose it to be any kind of metric which shares the symme-
tries of the physical metric. For example, one can have a four-
dimensional Minkowski metric being the fiducial metric for
a cosmological solution [15], or even a higher-dimensional



Eur. Phys. J. C (2016) 76:17

Page3of 11 17

kind of metric whose reduced four-dimensional metric is
isotropic and homogeneous and is considered as the fiducial
metric in the cosmological solution [20].

In this work, we consider the cosmological implications
of the proposed model, where the isotropic and homoge-
neous universe is assumed whose spacetime is represented
quite well by the Friedmann—Lemaitre—Robertson—Walker
(FLRW) metric as follows:

ds? = =N (1)2dr? + a(r)*Q;j (x)dx'dx/ @)

where N (¢) is a lapse function, a(¢) represents a scale factor,
which determines the scale of the spatial distance, and

k88 jpet¢”

Q. =8 + —2r
l](‘ﬂ) ij + 1— k51m§01¢m

(®)
is the spatial maximally symmetric metric whose spatial cur-
vature is characterized by k € {—1, 0, 41} corresponding to
the open, flat, and closed geometry, respectively. As claimed,
the FLRW ansatz is also used as the fiducial metric,

7 TP 042 0)2 042 iqoj

Fuvdg'de” = —n(@")? (dg°)” +ae") 2 (p)dg' g,
)

where n and « are a lapse function and a scale factor in the

fiducial sector. Plugging those in Eq. (1), the mini-superspace
action of the model reads

1 adz
4 2
— / M> | —3— +
S /dx 1 3 p( 3N 3kNa)

3NV (F - G%) + Na3P}, (10)

where

4 1 -
FE(2+—0t3+—0l4>—(3+3053+0l4)X

3 3
B} X3
+ (14203 + ag) X? — (3 +as) =, (1D
1 —
G = 5(3—{—30{3 +ayg) — (1 +2a3 +a4) X
} X3
+ (a3 + aq) X2 — a47, (12)

and we have defined
n

X :
N

. n (13)

o
a
To determine the dynamics of the system, one can vary the
action in Eq. (10) with respect to dynamical variables which
are N, a, ¢, and the Stuckelberg fields ¢*. The corresponding

equations of motion, assuming the unitary gauge ¢* = x*
for simplicity, read

k
M; <3H2 + 3_2> = —3VF 4+ 6XVx (F —Gn)
a

+(2XPx — P), (14
2 2H 2 k Y
My (=5 +3H 4 — ) = -3VF + VEg (X =)~ P,
(15)
14 o\ Fx
v =NH( —hX)?, (16)

Na® (3V4 (F — Gn) + Pg)

d
=< [<a3 2X> (3V.x (F — Gy) + P,X)] , (17)
BHN(—2XPx —6XV x (F—Gn)+ VF 5 (X —1))

d
=4 (-3VF + (2XPx +6XV x (F —Gn)) — P),
(18)

where the last equation is obtained from the conservation
on the energy-momentum tensor; V,LT’J = 0 and we have
defined

H, o

h:F’ H"‘ZE' (19)
From the above equations, one can see that Eq. (14) is a
Friedmann equation with extra matter contents coming from
the graviton mass. As a partner to the Friedmann equation,
the so-called acceleration equation corresponds to Eq. (15).
Since we have the Bianchi identity relating the equations of
motion, these five equations of motion are not entirely inde-
pendent. Note that this set of equations recovers the original
self-accelerating cosmology when the square of a graviton
mass V is constant by which the usual condition F 3 (1 — hn)
is obtained readily from Eq. (16) [15]. However, as V is
no longer constant, the equations of motion look even more
complex than those in general relativity. To simplify the fol-
lowing calculations, we choose P such that the k-essence
field behaves as a perfect fluid. The appropriate form of P,
which satisfies such a behavior, is

P(X,$) = PyX 30 = PyX"/?, (20)

where y = 2XPx/P = 12+_ww, Py is a constant, and w is
an equation of state parameter corresponding to the perfect
fluid represented by the k-essence field [44]. Moreover, we
let the graviton mass function mimic the perfect-fluid form
as

V = VoX/?, (1)

@ Springer
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whose A characterizes the power of the kinetic term as y
does for P,i.e. . = 2XV x/V and Vj is a constant. Note
that under these assumptions, both P and V vary according
to the kinetic term of ¢ but not the ¢ itself. Usually, in the
quintessence model the continuity equation for the scalar
field is obtained from the equation of motion of ¢ [45,46].
Taking that into account, we consider the equation of motion
of ¢ in Eq. (17); then under the perfect-fluid assumptions for
P and V in Egs. (20) and (21) we have

d a’ >

— 6XVx(F—Gn)+2XPx ) =0. (22)
d <<\/2X ( )

After simple manipulations, the above equation gives the
continuity equation for the k-essence field as

d +3HNpx = X (23)
dlﬂx pPx = 2X/Ox,

where we have defined
px = (2XPx +6XV x (F — Gn)). (24)

Equation (23) determines the dynamics of the matter of
energy density px which resides in the Friedmann equation
in Eq. (14). Interestingly, this looks exactly like a continuity
equation of a “dust-like” matter with the interaction with the
other matter sector determined by the flow rate of the form
% px. One can also integrate Eq. (22) to find an expression
for px in terms of the scale factor as

_ V2XC

pPx =

S (25)
where C is an integration constant. In the case of a constant
X, this ensures one of the properties that this matter shares
with the dust; the energy density is inversely proportional
to a> as the dust is. According to such characteristics, it is
reasonable to interpret py as a dark matter. By doing so, this
kind of dark matter possesses some interesting features. First
of all, px is a dust-like matter which can arise naturally from
the massive-gravity sector indicating that dark matter may
be just an artifact of the varying graviton mass caused by the
kinetic term of the k-essence field. Moreover, this claim is
still valid even in the case of P = 0. Since a graviton mass
can represent dark energy in a generic class of the dRGT
massive gravity, this suggests a unification of the dark sec-
tor, namely dark energy and dark matter, by such a varying
graviton mass. Second, by having this kind of matter in the
theory, we may expect this model of mass-varying massive
gravity to solve the cosmic coincidence problem, where the
universe is known to be composed mainly of comparable
amounts of dark energy and dark matter. Thanks to the uni-
fication suggested above, it may be possible to provide an

@ Springer

explanation on the coincidence problem by the existence of
the graviton mass alone, while the cosmic acceleration also
counts.

Since the equations of motion are coupled in a very cum-
bersome way, to get a picture of the whole of this system we
need to perform a dynamical analysis, which is the main sub-
ject in the very last section. However, we can still get some
rough descriptions, as a guideline to the dynamical analy-
sis, by introducing some simple assumptions to the system,
which is done in the next section.

3 Dark energy solution for the self-accelerating universe

It is widely known that our universe is expanding with an
acceleration for which dark energy is responsible. There is
recent observational evidence indicating that the observed
effective equation of state parameter of the dark energy is
close to —1 [43]. In this section, we shall adopt this char-
acteristic by treating all the contributions from the graviton
mass to have such a property. We define

pg =—3VF +6XVx (F—Gn), (26)
py=3VF—VF3(X—n). (27)

From the above definition, the corresponding equation of
state parameter is defined as

wy = 28 (28)

Pg

By treating pg as an energy density of dark energy, we set
wg = —1 and then we have the following condition:

6XVx(F—Gn=VFg(X—n). (29)

To simplify the calculation, we use the perfect-fluid form of
V in Eq. (21). Consequently, Eq. (29) becomes

3M(F—Gn)=Fz(X—n), (30)
_ F,)_( (X_”) (31)
 3(F—-Gnp)’

Equation (31) is a requirement for the exponent A to have
a solution with the equation of state equal to —1. To get a
picture of this characteristic, let us assume

X = constant, (32)

1 = constant, (33)
1

then h = —. (34)
n
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Under these assumptions, the exponent A in Eq. (31) is just
a constant. To investigate this further, we consider Eq. (16)
under the previous assumptions,

. Fe
Y NH(1- ) X,
\% G
A X < X)FX
22 _NH(1-2) =X
2X n) G
_ F_Xd

From the condition of A in Eq. (31),

X  6(F-Gnpa

— 36
X Gn a (36)
Since X, n, and hence F and G, are constant, this equation
can be integrated easily,

dx 6(F—Gn)/da
X Gn a’

_ 6(F—Gn)

X = Coa~ O (37)

where Cy is an integration constant. Now we have

X
(1—7)"‘72 I_X)F)'(

V=VyX oFn = VoCoa( ) (38)

Furthermore, Eq. (37) possibly determines a relation between
the scale factor and the rate of change of the scalar field, since

¢'§2 _ 6(F—Gn)
X=-"—-=Cpa O . (39)

The expression of V in Eq. (38) shows the evolution of the
(square of the) graviton mass as a evolves. In the previous
model of mass-varying massive gravity [24-27], in which the
Minkowski fiducial metric is used, the varying graviton mass
shrinks as the scale factor grows. In this model, however, the
exponent in Eq. (38) determines whether the graviton mass
will shrink or not as the scale factor grows, or whether it
will remain constant in the case that the exponent vanishes.
Note that this crucial difference is caused by the different
form of the fiducial metric, which is the FLRW metric in
this case, to be compared with the Minkowski one in the
previous models. This result indicates the sensitivity of the
fiducial metric existing in the generic dRGT massive gravity
where different fiducial metrics set different stages for the
system and provide different solutions [16-20].

One more crucial point of this analysis is that the contri-
butions from the graviton mass can have the same equation
of state parameter as dark energy, while one of those con-
tributions possesses the characteristic of dust, namely the

term 6XV x (F — Gn). From Eq. (23), such a term belongs
to the dark matter px. This may be a way out for the cos-
mic coincidence problem, since we may infer that varying
graviton mass is responsible for a dark matter via the term
like 6XV x (F — Gn), as we have claimed in the previous
section, while it can still drive the accelerating expansion. To
verify this idea, and to seek a finer description of this model,
we will perform a dynamical analysis, which can be found
in the next section.

4 Dynamical system

In this section, we will consider the dynamics of the universe
to be governed by this new class of mass-varying massive
gravity models using the method of the autonomous system.
Due to the complexity of the graviton mass, we will begin this
section with a simple analysis by considering the flat FLRW
where k = 0 and assuming that X, n are constant over time,
thus 7 = 1/5. From this assumption, the evolution of X is
simply determined by Eq. (16) such that

X=——=—"5(1-hX)=——, 40
HNX A G ( ) AT “0)
2XV x
= 20X 1)
\%4

where the prime denotes the derivative with respect to Ina.
The parameters r and s are constant and defined as

Gn
F

Fz(X—n)
3F ’

r

(42)

, S

In order to obtain a suitable autonomous system, let us define
dimensionless variables as follows:

FV
= mar )
P
___r (44)
SV VEY e
ZXP’X+6XVXF(1—F) PX
= ’ = , (45)
3M§H2 3M1!2,H2
2XPx
= . 46
4 2 (46)

By using these variables, the equations of motion can be
written in the form of autonomous equations as

" _s

x _3x(y+sx r>’ 47)

y’=3y<y+sx—l—;—r>, (48)

x/:ﬁ(i—(ur)), (49)
r \2
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Table 1 Summary of the

properties of the fixed points Name X y z Weff Existence Stability
(a) 0 0 1 -1 y =0 0<2<1
(b) 1 0 1-1 —1+4% y=hx 2 <2 <0
(© 0 1+ - = y=1+2 2 <<l
@ 1+x(lr—1) 115{(:)1) 0 et L= 0<a<l1
© e Mt w = h=y=35  0<i<l
l=x+y+z (50) stability requires both of the eigenvalues to be negative, or
y=—ix(1—r)—zy, (51)  otherwise the fixed point is said to be unstable or to be a sad-

where I' = XV xx/V x. Since we have five variables with
two constraints, it is sufficient to consider only three equa-
tions. Note that the constraint in Eq. (50) is derived from
Eq. (14), while the constraint in Eq. (51) is obtained from
the definition of y in Eq. (45). The equation of A in Eq. (49)
is not directly dependent on the other variables. Therefore,
in principle, we can solve it separately. For simplicity, we
can consider A as a parameter and then consider only the
autonomous equations with two variables, x and y. We will
extend our analysis to a more general case with A being the
variable in the next section. The effective equation of state
parameter can be written in terms of the dimensionless vari-
ables as

P+3VF—VF3(X —n)
22
3M2H
=—14+y+xs.

Weff = =—z—x+xs

(52)

From these autonomous equations, the corresponding fixed
points can be found by evaluating x’ = 0 and y’ = 0 in
Eqgs. (47) and (48), respectively. The properties of all the
fixed points are summarized in Table 1, while the analyses
are separately discussed for each of the fixed points below.

4.1 Fixed point (a)

From Eqgs. (47) and (48), it is obvious that the system has a
fixed point (x, y) = (0, 0). By using the constraint equations,
one obtains z = 1 and y = 0. This means that the function
P is constant and then this point corresponds to general rel-
ativity with a cosmological constant where the universe is
dominated by the cosmological constant. To ensure such a
claim, one can compute the corresponding effective equation
of state parameter, which yields wesf = —1. This is exactly
the equation of state parameter of the cosmological constant
which drives the accelerating de Sitter expansion.

The stability of the fixed point can be found by analyzing
the eigenvalues of the linearly perturbed autonomous equa-
tions. By performing the linear perturbations, the eigenval-
ues can be written as (1, w2) = (—3s/r, =3 — 3s/r). The

@ Springer

dle fixed point. In this case, the signs of those eigenvalues

are determined by the value of the term £ = (X — ) g—’;,
which means 0 < f < 1 for the stable fixed point. Note that
in the case of vanishing eigenvalues, like s = 0, one has to
consider the perturbations up to second order or use a numer-
ical investigation in order to determine the stability. In this
analysis, we ensure the stability in this case by the numerical
method and we have found that it is stable.

Even though this fixed point can provide a period of late-
time expansion, it is not much of interest due to the dis-
appearance of the graviton mass. This resulting property is
one of the drawbacks in the previous model of mass-varying
massive gravity [24-27].

4.2 Fixed point (b)

One of possible fixed points may be in the form (x, y) =
(x0, 0) by which the universe is governed mainly by massive
gravity alone. From Eq. (47), one can find x¢ as follows:

X0 = l (53)
r

According to Eq. (45), there are two possible solutions for

this kind of fixed point. Oneis» = linwhichxg = 1, z9 =0,

and another one is A = y in which xg = %, z0=1-— % The

effective equation of state parameter can be written as

FxX-m _ s

54
3Gn r (>4

Weff = —1 +

Interestingly, wer = —1 as F g = 0 or (X —n) = 0. This
characteristic is a usual cosmological solution of the orig-
inal massive gravity. In particular, this condition indicates
that the graviton mass ceases to vary, according to Eq. (16).
Moreover, since in this case z = 1 — }, the pressure of the
k-essence field is non-zero for » > 1, which means the k-
essence field is supposed to be a form of matter with non-zero
pressure (not dust).

In order to find the stability condition for this fixed
point, one can find the eigenvalues of the linearly perturbed
autonomous equations, which can be written as
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s (A —1)s
(11, p2) = <3—,—3+3—>~ (55)
r Ar

Again, both of the eigenvalues contain the term s/, and then
the fixed point will be stable if ﬁ < 5 < 0. Note that, for
this fixed point, it is possible to provide wefr < —1 to satisfy
the observation, which indicates that the mean value of the
equation of state parameter is slightly less than —1 [43].

4.3 Fixed point (c)

One can obtain a fixed point such that (x, y) = (0, yo). From
Eq. (47), one can find yq as follows:

N

By using the constraint equation in Eq. (50), one obtains
70 = —3,. From the constraint equation in Eq. (51), we
have

y 1 1
y= o iyt —, (57)
z z Wiy
where w,, is the equation of state parameter of the fluid con-
tributed from P(X) = PoX (1+wm)/2Wn The effective equa-

tion of state parameter can be written as

S
=
Again, there exist two significant branches of the solution
such that this fixed point is a matter-dominated point. If z =
0, this corresponds to wefr = 0, which leads to the universe
being in a matter-dominated period.

The eigenvalues of the autonomous system can be written
as

Weff = —2 (58)

s s(A—1)
(w1, n2) = <3+3—,3—3—>- (59

AT AT
If one requires this point to represent the matter-dominated
epoch, one must set the parameters so that this point is unsta-
ble. This means the universe should evolve through this point
to end up in other stable points since we know the matter-
dominated epoch should exist in the universe’s timeline but
not nowadays. One can see that, for small negative value
of s/r, the universe can evolve in the standard history at
which fixed point (c) corresponds to a matter-dominated
period with wegr ~ 0, and fixed point (b) corresponds to
the late-time expansion of the universe due to the contribu-
tion from the graviton mass. However, it is not possible to
alleviate the coincidence problem, since the contribution of
non-relativistic matter vanishes at late time.

4.4 Fixed point (d)

According to Egs. (47) and (48), one may consider the fixed
point corresponding to the non-zero x and y. This point can

be obtained by evaluating both (non-zero) x and y from Egs.
(50), (51), and (47), while a constraint on the parameters by
which the non-zero (x, y) exist can be obtained from Egs.
(47) and (48). After simple manipulation, we have

1 AGr—1)
X=— y=——, andz =0,
L+a(r—1) T+AGr—1)

(60)

where y is arbitrary and A is fixed to be A = = The effec-

-
tive equation of state parameter can be written as

1
= — 61
Weff = (61)

To determine the stability of this point, we find the eigen-
values of the system of equations. Interestingly, this point
renders the two autonomous equations degenerate. This can
be seen by computing the linear perturbed equations for both
x and y evaluated at this fixed point. The eigenvalues of this
autonomous system are expressed as

32
m) . (62)

(1, p2) = <0,
The vanishing eigenvalue here is nothing but an artifact of the
degeneracy due to this fixed point. In particular, it is possible
to redefine the variables such that the problem is reduced
into a one-dimensional system. With such a redefinition, the
stability of this fixed point is due to the non-zero eigenvalue
in Eq. (62), which can be negative when 0 < A < 1. If
this condition is taken into account, requiring the fixed point
(c) to represent the matter-dominated era will restrict the
combination 7 to vanish.

This fixed point seems to provide a possible way to allevi-
ate the coincidence problem due to the non-zero y. However,
it cannot be used since, at the late-time expansion, weff must
approach —1 and then lead to the fact that (x, y) — (1, 0).
Nevertheless, it still provides an interesting result. For the
case of s = 0 and 0 < A < 1, this fixed point is stable,
while the fixed point (b) is unstable and then we can use this
fixed point as the one for the late-time expansion of the uni-
verse. For this condition the fixed point (c) is still used for the
matter-dominated period with z = 0. Therefore, this means
that it is possible to obtain z = 0 for the whole history of
the universe. This leads to the fact that, without providing
an extra non-relativistic matter field such as dark matter, the
contribution from the graviton mass can play the role of both
dark matter and dark energy. This is one of the crucial prop-
erties of this model, since it can unify the two main unknown
contents of the universe, dark matter and dark energy, by
using only a graviton mass.

@ Springer
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4.5 Fixed point (e)

Similarly to the derivation in fixed point (d), one can solve
an algebraic equation by imposing y = A and requiring non-
zero x and y. As the result, the fixed point can be expressed
as

1+ =Dz

_ A=r@o+1)
14 Ar-1" T

T+ar—1 = 7%

(63)

where y = A = > and z is arbitrary. The effective equa-
tion of state parameter is the same as the one in the fixed
point (d), which can be written as

Weff = ——. (64)

Moreover, the eigenvalues for the stability analysis are still
the same asfor the fixed point (d) and then the stability condi-
tion for this fixed point can be expressed as0 < A < 1. Even
though this fixed point shares most properties with fixed point
(d), it cannot provide the unification of the two dark compo-
nents, since z must have a non-zero value.

From the above analyses, we experienced the incompati-
bility between matter domination and the present dark energy
domination. One may see that for a large X, the fixed point (c)
can represent the matter-dominated epoch, while the small
value of A is needed in the fixed point (d) or (e) to solve
the coincidence problem. It is natural to generalize the the-
ory further by allowing A to change appropriately in time.
This idea will be adopted and carefully analyzed in the next
section.

5 Extended analyses

As we have mentioned, even though the model can be used to
unify the dark contents of the universe, it still cannot be used
to solve the coincidence problem. According to our analy-
sis, this is due to the fact that A is set to be a constant. In
this section, we will show the possibility to solve the coin-
cidence problem when A is set as a dynamical variable. For
completeness, we will add radiation into our consideration
and then use numerical method to show that the radiation
does not affect the unification in the dark sector. Note that
the equation of motion for the radiation is obtained by using
the conservation of its energy-momentum tensor or the con-
tinuity equation. By including the radiation and taking A as a
dynamical variable, the autonomous equations can be written
as

@ Springer

, s 4
X =3x|y+sx——-+=-2,, (65)
r 3
, K 4
Y =3y|ly+sx—1—-—+4+-Q, ]|, (66)
A3
, 4
Q. =3Q, | y+sx+ §(Qr -1, (67)
, 65 (A
M=—\z-—-0+D)), (68)
r \2
l=x+y+z+,, (69)
y=—ix(l—r)—2zy, (70)
Pr
Q=—- 71

where p, is the energy density of the radiation. The effective
equation of state parameter can be written as

4
weffz—l—i—y—i—xs—i—gQr. (72)

From Eq. (67), we can see that all fixed points we found
in the previous section still exist with 2, = 0. Also, there
exists the unstable fixed point such that 2, = 1, while x and
z (hence y) vanish. From Eq. (68), one can see that A does
not couple to the others and the fixed point takes place at
A = 2(I" + 1). For simplicity, one can set I" as a constant.
In order to confirm the claim in the previous section that
there exists a standard evolution without introducing a k-
essence Lagrangian or in the case of z = 0, we use numerical
methods to evaluate the equations above by setting s = 0.
The evolutions of x, y, and €2, are illustrated in the left panel
of Fig. 1, and the evolution of the effective equation of state
parameter is shown in the right panel of Fig. 1. We can see that
there exists non-relativistic matter, inferred as dark matter
represented by the variable y, while the variable x represents
the dark energy that drives the late-time expansion of the
universe. Both x and y are contributed from the graviton
mass.

Now, let us consider the possibility to solve the coinci-
dence problem. Let us use the fixed point (e) to be one cor-
responding to the late-time expansion of the universe. For
this fixed point, the parameters s, r, and I' are obtained by
giving the initial conditions for the dynamical variables. In
order to obtain the dynamics of all variables, we have to put
the initial conditions slightly away from the fixed point. It
is sufficient to put A slightly above the fixed point, since we
need A to grow as time goes backward to ensure that it will
have a high enough value for the matter-dominated period.
In order to obtain wefr ~ —1 at the present time, we have to
set the value of the variable A at the fixed point as Ay — 0.
As a result, & = % — 0. In order to obtain a proper
matter-dominated period, one has to put the initial value of A
far away from the fixed point. This situation makes the fixed
point (b) stable and then the system evolves to the point (b)
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Fig. 1 The left panel shows the evolution of x, y, and 2,. The dotted-
red line represents the evolution of x, the dashed-blue line represents
the evolution of x, and the solid-green line represents the evolution of
2. For the right panel, the evolution of wegr is represented

eventually. Therefore, in order to have the fixed point (e) at
late time, one has to set wegr below —1 at the fixed point,
so that the point (e) becomes a stable point. According to
this setting, we show the evolution of the dynamical vari-
ables reaching the fixed point (e) to alleviate the coincidence
problem in Fig. 2. Note that we set Ay = 0.4, leading to
Weff = —1.67 and Ao = 1.0.

In order to overcome the incompatibility among the fixed
points, one may extend the analysis by allowing s, I" or r to
be dynamical variables. This will make the dynamical system
more complicated. We found another possibility to overcome
this incompatibility by imposing the constraint > = y for the
entire evolution. As a result, we have only three independent
equations for six variables and three constraints. The dynam-

ical variable A can be written in terms of other variables

as

0.0
051
Weff
-1.0r
-15¢
-6 -4 -2 0 2
log a

Fig. 2 The left panel shows the evolution of x, y, x + z, and ;.
The dotted-red line represents the evolution of x, the dashed-blue line
represent the evolution of x, the solid-black line represents the evolution
of x + z and the solid-green line represents the evolution of €2,.. For the
right panel, the evolution of wegr is represented. We set the parameters
such that Ay = 0.4 and Ao = 1.0 where Ay is the value at the fixed

point and A is one at the present time

S (73)
rx+y+Q,—1

As a result, by setting the initial condition at the radiation

dominated period, the evolution of the dynamical variables

and the effective equation of state are shown in Fig. 3. From

this figure, one can see that the evolution of the universe
reaches the fixed point (e) at late time while the matter and
radiation period are also properly presented. For the plot in
this figure, we set A = 0.02, and then the consequent results
are ' = —0.99 and wegr ~ —1.02. Note that the behavior of
the resulting plot in Fig. 3 is sensitive to the initial value of
x at the radiation dominated period where we set it choosing

x;j ~ 10716,

@ Springer
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Fig. 3 The left panel shows the evolution of x, y, x + z, and ;.
The dotted-red line represents the evolution of x, the dashed-blue line
represent the evolution of x, the solid-black line represents the evolution
of x + z, and the solid-green line represents the evolution of €2,. For
the right panel, the evolution of wegr is presented

6 Conclusion

We have constructed a new class of mass-varying massive
gravity models, in which not only the k-essence field but also
its kinetic term determines the variation of the graviton mass.
We have shown in Sect. 2 that there is a possibility for the
graviton mass to live at late time compared with the previous
model whose the graviton mass only depends on the scalar
field and shrinks as the universe grows [24-27]. After simple
manipulations and under particular assumptions, we found
that a “dust-like” matter which behaves like a non-relativistic
dust can naturally result from the graviton mass and it is a
possible candidate for dark matter. This can be seen more
clearly in the case P = 0 in which the dark matter comes
solely from the varying graviton mass. Having such matter
in the system, this model of massive gravity can describe

@ Springer

the cosmic accelerating expansion with the equation of state
parameter close to — 1, while the universe is not entirely dom-
inated by the dark energy part contributed also by the graviton
mass. This property signals a possibility of having the uni-
verse composed of comparable amounts between dark energy
and dark matter, known as the cosmic coincidence problem.
To obtain a finer description on this, the usual method of the
dynamical analysis is performed by taking the dark matter
candidate into account and the results are carefully investi-
gated as regards the issue of the coincidence problem. For the
first simple case, the exponent of the kinetic term in the gravi-
ton mass A is kept constant. We found the fixed points which
correspond to various epochs in the history of the universe
such as the matter-dominated period and massive-gravity-
dominated periods. However, to have those fixed points with
the appropriate stabilities in the evolution of the universe, the
results suggest a system with A as additional variable. The
more general case, where A is allowed to vary, is investigated
where the radiation is included. While the result covers all the
fixed points in the constant X case, this allows the evolution in
which there exists a matter-dominated period as well as a late-
time expansion epoch. There are several crucial points in this
investigation. First, we obtain the universe in which the gravi-
ton mass serves as both dark energy and dark matter, while it
can still drive the cosmic acceleration. Second, to solve the
coincidence problem, we obtain a universe with the effective
equation of state parameter significantly below —1 unless
both A and y are set equal with one another for the entire evo-
lution of the universe. Since the analyses are under particular
assumptions, this model still has room for study in more com-
plicated ways. For example, one can exclude the assumptions
proposed in this work for a more complex system or one can
consider this model in a different aspect, like its astrophysical
implications. Not only as regards the applications, but also
studying the theoretical consistency, whether there exists a
ghost instability or not, is a worthy challenge which we leave
for future work. Apart from the constraints mentioned, one
may think of constraining the model with various observa-
tions. This idea is also interesting, since the observations may
judge the fate of this model by tightening it with constraints.
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Abstract. A Lagrangian formulation of perfect fluid due to a non-canonical three-form field
is investigated. The thermodynamic quantities such as energy density, pressure and the
four-velocity are obtained and then analyzed by comparing with the k-essence scalar field.
The non-relativistic matter due to the generalized three-form field with the equation of state
parameter being zero is realized while it might not be possible for the k-essence scalar field.
We also found that non-adiabatic pressure perturbations can be possibly generated. The fluid
dynamics of the perfect fluid due to the three-form field corresponds to the system in which
the number of particles is not conserved. We argue that it is interesting to use this three-form
field to represent the dark matter for the interaction theory between dark matter and dark
energy.

Keywords: Three-Form Field, Perfect Fluid, Lagrangian Formulation
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1 Introduction

A theory of cosmological perturbations is one of important issues in cosmology nowadays.
It provides us to understand how astronomical structures at large scales are generated and
evolve. Also, it can provide us the resulting signatures of the theoretical model to compare
with observational data. The theory of cosmological perturbations for a perfect fluid has
been developed and studied intensively at the level of equations of motion, for example, a
study of the perturbed Einstein field equations together with the equation of conservation
of energy momentum tensor |1, 2]. Beside the cosmological perturbations at the level of the
equations of motion, a study of the cosmological perturbations at the Lagrangian level has
been investigated. The advantage point of the study at Lagrangian level is that it is useful to
find the perturbed dynamical field as well as derive closed evolution equations. This can be
clearly seen by considering the cosmological perturbations in f(R,G) gravity theories where
there are two dynamical fields for scalar perturbations [3, 4|. For the study in Lagrangian
approach, one can straightforwardly identify which fields are dynamical or auxiliary and then
immediately obtain the closed evolution equations.

A Lagrangian formulation for a perfect fluid in general relativity has been constructed
and developed for a long time [5-7|. The Lagrangian of the fluid is simply written as its
pressure [6] or energy density [7]. The advantage point of this formulation is that it naturally
provides a consistent way to construct a covariant theory for dark energy and dark matter
coupling. The study of dark energy and dark matter coupling has been widely investigated
in order to describe a way out from the cosmic coincidence problem [8-12]. Moreover, the
observation also provide a hint for the existence of the coupling [13|. However, in order
to recover the standard thermodynamics equations, the Lagrangian must involve at least
five independent functions. Even though this formulation can provide a consistent way for
studying the perfect fluid in cosmology and is well known as a standard approach for the
perfect fluid at the Lagrangian level, there might be disadvantage for this approach since the
theory involves too many functions.

A simple Lagrangian approach for the perfect fluid has been investigated by using a
non-canonical scalar field [14], namely k-essence field [15-17]. It was found that the k-essence
scalar field can provide a description of the perfect fluid with constant equation of state
parameter. Moreover, it was found that the cosmological perturbations of this kind of the

1=
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scalar field is equivalent to those in perfect fluid. However, it cannot be properly used to
describe a non-relativistic matter with the equation of state parameter being zero since the
Lagrangian is not finite. It was also found that the non-adiabatic pressure perturbations
cannot be generated [18]| as well as a vector mode of the perturbations cannot be produced
[19].

Beside the cosmological models due to the scalar field, a three-form field can be success-
fully used to describe both inflationary models and dark energy models [20-30]. Even though
there is a duality between scalar field and three-form field, the cosmological models are sig-
nificantly differed in both background and perturbation levels. At the perturbation level, it is
obvious to see that the three-form field can generate intrinsic vector perturbations while it is
not possible for the scalar field. Therefore, it might be worthy to find an equivalence between
the three-form field with a perfect fluid. In the present work, by mimicking the k-essence
scalar field, we consider a generalized version of the three-form field and then find a possible
Lagrangian form to describe the perfect fluid at the background level. We found that a simple
power-law of the canonical kinetic term can provide the constant equation of state parameter
like in the case of k-essence. The advantage point of the three-form field compare with the
scalar field is that it can provide a consistent description of the non-relativistic matter field
where its equation of state parameter satisfies w = 0. The stability issue is also investigated
and found that the non-relativistic matter field due to the three-form field is free-from ghost
and Laplacian instabilities.

By using the equations of motion of the generalized three-form field, the thermodynamic
quantities are identified and found that the perfect fluid due to the three-from field corre-
sponds to fluid in which the number of particles is not conserved. By analyzing the speed of
propagation of scalar perturbations and the adiabatic sound speed, we found that the non-
adiabatic perturbations can be possibly generated. We argue that it is interesting to use this
three-form field to represent the dark matter for the interaction theory between dark matter
and dark energy.

This paper is organized as follows. In section 2, we propose a general form of the three-
form field and then find the equation of motion as well as the energy momentum tensor.
By working in FLRW metric, the energy density and the pressure as well as the equation of
state parameter are found. Some specific forms of the Lagrangian satisfying the equations
of motion are obtained and found that it can represent the non-relativistic matter. We also
investigate the stability issue by using the perturbed action at second order in section 3. We
found conditions to avoid ghost and Laplacian instabilities. In section 4, we investigate the
thermodynamic properties of the model. We begin this section with review of some important
idea of the Lagrangian formulation for the standard and k-essence scalar field and then find
the thermodynamic properties due to the three-form fluid. Finally, the results are summarized
and discussed in section 5.

2 Equations of motion and energy momentum tensor

Cosmological models due to a three-form field have been investigated not only in inflationary
models but also dark energy models [20-30]. Moreover, at the end of inflationary period,
a viable model due to the three-form field for the reheating period have been investigated
[31]. A consistent mechanism to generate large scale cosmological magnetic fields by using
the three-form field have been studied [32]. Recently, a generalized inflationary model by
considering two three-form fields was also investigated [29]. All investigations of cosmological

_9_
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models due to three-form are considered only in canonical form. Since the non-canonical
form of scalar field have been intensively investigated, it is interesting to investigate the
cosmological model with a non-canonical form of the three-form field. In this section, we will
consider a non-canonical form of the kinetic term of a three-form field, A,g-, as follows

5_/d4x\/?g [MQ’%lRJrP(K,y) , (2.1)

where the kinetic term and scalar quantity of the three-form field are expressed as

1

- _ afvyd
K 48 FaﬁwéF ) (22)
1
Yy = ﬁAaﬂ'yAaﬁ’yy (2.3)
Fuvpo = VuAvpe = Vo luwp + VAo — ViApoy . (2.4)

By varying the action with respect to the three-form field, the equations of motion of the
three-form field can be written as
Bopy =V (PP, ) + PyAagy, =0, (2.5)

where the notation with subscript P, denotes P, = 0, P. Due to the totally anti-symmetric
property of the tensor F),,3,, one found that there exist constraint equations as follows

Vi (Pyar?) =0, (2.6)

These equations suggest us that the conserved quantity is expressed in terms of three-form
field. Note that for the k-essence scalar field, the conserved quantity is expressed in term
of one-form or vector quantity. We will discuss on this issue in detail in section 4 where we
investigate the fluid dynamics. The energy momentum tensor can be obtained by varying the
action of the three-form field with respect to the metric as

1 1

Ty = §PicFupoal,?”® = 5 PyAupo 4,77 + P (2.7)

For consistency of the derived equations, one can check that the conservation of the energy
momentum tensor can be obtained up to the equation of motion as follows

1 af

vV, TH = ngaﬁvE 7T =0. (2.8)

In order to capture the thermodynamics quantities such as the energy density and pres-

sure due to the three-form field like the investigation in scalar field, let us consider a flat

Friedmann-Lemaitre-Robertson-Walker (FLRW) manifold whose metric element can be writ-

ten as
ds? = —dt* + y;jda'de? = —dt? + a(t)?8;;dx'da’ . (2.9)

By using this form of the metric and the constraint equation in Eq. (2.6), the components of
the three-form field, A,g,, can be written as

Agij =0, Ak = €k X (1) = eijne X () = a’eijr X (1), (2.10)

-3 -
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where €;;;, is the three-dimensional Levi-Civita symbol with €123 = 1. By using this form of
the metric, the components of energy momentum tensor can be expressed as

T) = P - 2K P, (2.11)
T} = (P —2K Py — 2yP,)5, . (2.12)

By comparing these components of the energy momentum tensor of the three-form to one
from the perfect fluid, the energy density and pressure of the three-form can be expressed as

p=2KPy—P, (2.13)
p=P—-2KPg —2yP,=—p—2yP,,. (2.14)

Note that we have used y = X2/2 and K = (X 4+ 3HX)?/2 where H = a/a is the Hubble
parameter. From the energy density and the pressure above, the equation of state parameter
of the three-form can be written as

2y P
wzg:_l_M_

; ; (2.15)

The equation of motion of the three-form field in Eq. (2.5) can be written in flat FLRW
background as

(2KP ki + Pg)K + 2K Py — 2¢/K yPy = 0. (2.16)

From this point, one can check validity of the derived equations by reducing the general form
of the action to the canonical one as setting P = K — V(y). As a result, we found that all
equations can be reduced to the canonical one investigated in [20-30]. Substituting p from
Eq. (2.13) into Eq. (2.15), one obtains

2yP, + (1 +w)2KPg = (1 +w)P. (2.17)

In order to find the form of P, one has to solve this equation. It is useful to solve this equation
by considering a simple assumption such as taking the equation of state parameter to be a
constant, w = const. By using separation of variable method, the solution can be written as

P = PyK"y", (2.18)
where Fp is an integration constant and p, v are the exponent constants obeying the relation

_lrw=op or w=—1+ 21
201 4w) B 1—2v

- % (2.19)

This form of the solution is very useful since one can interpret the three-form field as a
non-relativistic matter or dark matter by setting the equation of state parameter as w = 0
while it cannot be properly used for k-essence scalar field case. We will show explicitly
why we cannot properly use k-essence scalar field for the non-relativistic matter in section
4. In order to study the covariant coupling form between dark matter and dark energy as
suggested from the observation [13], one can use the three-form as the dark matter with the
consistent covariant interaction forms. Moreover, it may be interpreted as dark radiation by
setting w = 1/3. Note that, in the case of v = 1/2, it corresponds to the trivial solution
since the energy density of the field vanishes. It is important to note that the late-time

4
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acceleration of the unverse can also be achieved by setting w = —1. Even though this may
not be distinguished to the cosmological constant at the background level, the cosmological
perturbations due to this model of the three-form can be significantly deviated from the model
of the cosmological constant.

Since the form of the Lagrangian P is obtained by assuming a constant equation of state
parameter, the dark energy model from this three-form field cannot be proposed to solve the
coincidence problem. One may allow the equation of state to be varying in order to overcome
this issue. Ome of interesting solutions is assuming that the equation of state parameter
depends on the three-form field w = w(y). In order to solve Eq. (2.17) to obtain a suitable
form of P, one may choose the equation of state parameter such as w = —1 + Ay, where A is
a constant. As a result, the solution can be written as

P=PKe T,

(2.20)
Naively, it is not difficult to obtain the dynamical dark energy due to the generalized three-
form. One can set A be effectively small and find the condition to provide an evolution of
y such that it evolves from a large value to a small value. However, since it is not in the
canonical form, the theory may be suffered from instabilities. In this work, the stability issue
will be investigated in the next section. The investigation of the dark energy model due to
the generalized three-form is left in further work.

3 Stability

In order to capture the stability conditions of the generalized three-form field, we may consider
the perturbations of the field. Since the field minimally couples to the gravity, one has to
take into account the metric perturbations. However, for simplicity but useful study, we will
investigate the stabilities of the model only in a high-momentum limit. This will capture
only some stability conditions. Nevertheless, this includes most of the necessary conditions
as found in the canonical three-form field [27]. We leave the full investigation in further work
where the cosmological perturbations are taken into account. For this purpose, the metric is
held fixed as the Minkowski metric and the three-form field can be written as

Aije = €ije(X (1) + alt, 7)), (3.1)
Aoij = €iju(OB(L, T) + Br(t, X)),

where a and S are perturbed scalar fields and i is a transverse vector obeying the relation
O,B* = 0. This vector field will be responsible for the intrinsic vector perturbation of the
three-form field. For the linear perturbations, the scalar and vector modes are decoupled and
then they can be separately investigated. For the scalar modes, by expanding the action up
to second order in the field, the second order action can be written as

1 0?2 1 1

(2) — d4 _ - Zp 2 _p 2 2 .
s / o(5 T arEe 3Py + 3Pucta ). (3.3)

Q = (Px +2KPgg)o+ 2K yPrPya — (Pg + 2K P k)08, (3.4)

20uP 4Ky P>
Z=14 2w YKy . (3.5)
Py  Py(2KPgk + Pk)
_ 5 _
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One can see that the field £ is non-dynamical so that one can eliminate it by using its equation
of motion. By applying the Euler-Lagrange equation to the above action, the equation of
motion for the field 8 can be written as

(Pi +2KP i)+ 2¢/ K yPrya — (Pi + 2KP )0 — Py =0, (3.6)

From this equation of motion, we can replace the quantity Q as Q = P,B. Note that this
equation can be obtained by using the component (0,4,5) of the covariant equation in Eq.
(2.5). In order to find the solution for 3, it is convenient to work in Fourier space so that the
above equation can be algebraically solved. As a result, by substituting the solution of 8 into
the action in Eq. (3.3), the second order action for the scalar perturbations can be rewritten
as

S = / dtd3k(F1d2 +F2aa+F3a2), (3.7)
where
P, (2KPkk + Pk)
F - _ Y ) ) , 38
! 2(k*(2KP kK + Pr) — Py) o
2vK yPk P
Py = VEyPgyP, (3.9)

(k2 (2KPkk + Pr) — Py)’
(2yPyy + P)) (2K Pk + k* P — Py) — 4k*KyP%,,
2(k? 2KP kK + Px) — Py) '

F3 = (3.10)

As we have discussed above, we will consider the stability conditions at high-momentum limit.
Therefore, by taking the limit k? — oo, the second order action becomes

5@ = /dtd3k: k~3(~P,) (%oﬁ A %k%goﬂ - %mioﬁ). (3.11)
where
m? = 1( 2VE Y Py ) . MRyl (3.12)
dt\(Px +2KPrk)/ (Pk +2KPkk)?
Therefore, the condition to avoid ghost instabilities can be written as
P, <0. (3.13)

This condition can be reduced to the canonical case by taking P = K — V(y), which provides
the result as V, > 0 consistently with the result in [27]. In order to avoid the Laplacian
instability, one requires c¢? > 0 leading to the condition

2P 4K yP>?
Yy YKy > 0. (3.14)

1+
P, Py(2KPkk +Pk) —

To obtain a clear picture of this condition, one may specify the form of P. For the form
with constant equation of state parameter, P = PyK"y*, the sound speed square can be
expressed as ¢2 = w. Therefore, the three-form field can be interpreted as the non-relativistic
matter up to a perturbation level since ¢ = 0 and w = 0. Moreover, it is obvious that the

-6 —
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non-relativistic matter represented by the generalized three-form field is free from ghost and
Laplacian instabilities. Note that the dark energy model with w < —1/3 for this form of the
Lagrangian is suffered from Laplacian instabilities since the sound speed square is negative.

For another simple form of the Lagrangian with P = PyK ”e%)‘y, the sound speed
square and the equation of state parameter read ¢ = 1+ Ay and w = —1 + \y. From
these expressions, one can see that the phantom expansion of the universe will provide a
superluminality. The no-ghost condition can be expressed as PyA(2v — 1) > 0. At this point,
it is possible to obtain a viable model of dark energy due to the generalized three-form field.

Now we will consider the vector mode of the perturbations by following the same step
as in the scalar one. As a result, the second order action for the vector perturbations can be
written as

9@ — /d4a:( _ %Ryﬁzﬂi). (3.15)

From this action, one can see that the vector mode does not propagate. A condition to avoid
the instabilities coincides with the condition obtained in scalar mode.

In order to find possibility to obtain non-adiabatic perturbations due to the three-form
field, one may find a difference between the speed of propagation of scalar perturbations, 2,
and the adiabatic sound speed, c¢2. If these two kinds of the sound speed are equal, there
are no non-adiabatic perturbations while it provides the possibility to generate non-adiabatic
perturbations if they are not equal [18]. The speed of propagation of scalar perturbations is

found in Eq. (3.5). For the adiabatic sound speed, one can derived as follows

; P+ P K +2JK
CZ = E =1 +2y 7yyy + 7Ky(y + y)’ (316)
1Y -P,yy -2 V KyP,Ky
2
— 2 WEYP Ky 1+ YPyy + yPy = 2Ky P ry . (3.17)
* Pyy—2VEKyPry, Py  Py(Pk+2KPkk)

From this equation, one can see that the sound speed of scalar perturbations and the adiabatic
sound speed are not generally equal. Therefore, it is possible to generate non-adiabatic
perturbations from the generalized three-form field. This is one of advantage points of the
generalized three-form field compare with the k-essence scalar field. Note that both kinds of
the sound speed will coincide when the Lagrangian does not depend on y, P = P(K). For
this case, the non-adiabatic perturbations cannot be generated.

4 Fluid dynamics due to three-from field

In order to compare the results with the standard description of the fluid dynamics for the
perfect fluid, let us briefly review an important concept of the standard version for the fluid
dynamics. Since the perfect fluid dynamics due to the non-canonical scalar filed or k-essence
field has been intensively investigated and interpreted as non-relativistic mater field, for ex-
ample, in the case of massive gravity theory [33, 34|, we will also review some important
results of the k-essence scalar field before we discuss further on the three-form field.

4.1 Standard version and k-essence field

There are many approaches of the standard version for the perfect fluid Lagrangian. We will
use Brown formulation [7] since it is more useful and has been widely used for recent studies

_7 -
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in dark energy and dark matter couplings [9-12]. The Lagrangian of the perfect fluid can be
written in terms of the energy density with Lagrange multipliers as

S = /d493 (—vV=gp+j"(pu+ 50, + /BAafL)) , (4.1)

where p = p(n, s) is the energy density of the fluid, n is a particle number density, s is an
entropy density per particle and j* are components of the particle number flux. The second
term which is contracted with j# is the Lagrange multiplier term with the Lagrange multiplier
fields ¢, 8 and 54 where a4 are the Lagrangian coordinates of the fluid with index A running
as 1,2,3. j# can be written in terms of the four-velocity u* of the fluid as

g = /—gnut. (4.2)

The four-velocity satisfies the relation u,u* = —1 where n = |j|//—g and |j| = /=" 9w J".
The standard energy momentum tensor of the perfect fluid can be obtained by varying the

action with respect to the metric g, as

T = (p + P)upts + P G, (4.3)
where p is the pressure of the fluid defined as

dp
=n-L — ) 4.4
p=ng-—p (4.4)

By varying the action with respect to the Lagrange multiplier fields 8 and ¢, the first law of
Thermodynamics and the conservation of the particle number can be obtained respectively
[7] as

dp = ndp — Tds, (4.5)
95" = 0.

where T is a temperature and p is a chemical potential defined as

_Ptp

- (4.7)

From these equations of motion together with the conservation of the energy momentum
tensor, V, " = 0, all main thermodynamics equations can be obtained. For example,
conservation of the entropy density can be obtained by using a projection of the conservation
equation of the energy momentum tensor along the fluid flow as follows

u, V, T = —J%ayj” — WTdy,s = 0. (4.8)

From these equations, in the viewpoint of field theory, all main thermodynamics equations
can be obtained if one can identify the main thermodynamics quantities in terms of the field
such as energy density, pressure, four-velocity and chemical potential which give the form of
energy momentum tensor as found in Eq. (4.3). We will show this procedure for instruction
in the case of scalar field.

-8 —
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For the k-essence scalar field, we will follow [14] in which action of the k-essence field
can be written as

S0 [ d'ay=apiK,) (1.9)

where Ky = —V,¢V#¢/2 is the canonical kinetic term of the scalar field. The corresponding
equations of motion of the scalar field can be expressed as

v, (P’qu) —0, (4.10)

where prime denotes the derivative with respect to Ky. The energy momentum tensor of the
scalar field can be written as

Ty = P'V,0Vué + g, P. (4.11)

By comparing this energy momentum tensor with that in the perfect fluid in Eq. (4.3), the
energy density, pressure and the four-velocity can be identified as

Py = 2K¢Pl — ]D7 (412)

py = P, (4.13)
VH#

at = = ;;S (4.14)

Therefore, the particle number density can be obtained in order to satisfy the conservation
of the particle flux as ngy = /2K4P’ while the chemical potential reads py = /2K,. There-
fore, one can check that the equation of motion in Eq. (4.10) satisfies the equation of the
conservation of the particle flux as follows

NEn (P'qu) =9, (\/Tgpfvw) ¢ 8u(\/jgn¢u“> = 94" = 0. (4.15)

As a result, all fluid dynamics equations can be derived by using the results in the standard
version. Note that the first law of thermodynamics is adopted for the scalar field while in the
case of the standard version, it is obtained from the equation of motion. It is important to
note that the conservation of the particle flux does not hold if we generalize the Lagrangian
of the scalar field as P = P(Ky, ¢) since the equations of motion in Eq. (4.10) becomes

Vi (P’ V”(b) = —JP/0¢. This is not so surprisingly since the simple scalar field, such as

quintessence field, is also equivalent to the system in which the particle flux is not conserved.
This can be explicitly seen by taking P = K4 — V().

By taking the equation of state parameter to be constant, the form of the Lagrangian
obeys a relation

P(l + w¢) = 2w¢K¢P’. (4.16)
From this equation, one can find the exact form of the Lagrangian as
1+w¢
P= POK;% ,  where wgy # 0. (4.17)

It is obviously that one cannot properly use this form of the scalar field to describe the
non-relativistic matter since its equation of state parameter is zero, w = 0. This is one of
drawbacks for the k-essence scalar field. As we have shown before, this does not happen in
the case of generalized three-form field.

-9 -
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4.2 Generalized three-form field

As we have mentioned, one can find the equivalence between the energy momentum tensor
of the three-form and the standard perfect fluid and then identify the fluid quantities such as
p,p and the four-velocity u* in terms of the three-form field. By using these identifications,
one can find the consequent thermodynamics equations of the three-form field as done in the
scalar field case. The energy density and the pressure have been identified in Eq. (2.13)
and Eq. (2.14) respectively. Now, we will identify the four-velocity of the three-form field
by comparing the energy momentum tensor of the perfect fluid in Eq. (4.3) and the energy
momentum tensor of the three-form in Eq. (2.7). As a result, the relation of the four-velocity
and the three-form field can be written as

1 1
(p+ p)uyuy, = ERKF#PUOCFVPUQ - iRyAupaAupg + (2KP g +2yPy)guu- (4.18)

Since F),, 40 is a totally symmetric rank-4 tensor in 4-dimensional spacetime, it can be written
in terms of a covariant tensor €,,p0 = v/—9€ups Where €,,50 is the Levi-Civita symbol in
four-dimensional spacetime. By using the components of the three-form field in Eq. (2.10),
the field strength tensor can be written as

Fuvpo = (X +3HX)epwpr = V2K €po- (4.19)

By using this equation, the first term in the right hand side of Eq. (4.18) can be rewritten as

1
LK Fupoab,?" = —2KP gy (4.20)

Substituting this equation into Eq. (4.18), one obtains

1
(P + p)u,uuu = _ip,yA,upoAypU + 2yp,yg,ul/>

1
Upthy = @A/‘PUAVM = Guv- (4.21)

One can check that the relation w,u* = —1 valid from this relation. Since the tensor wu,u,
is constructed from two three-form fields, it plays the role of symmetric rank-2 tensor S,
instead of outer product of two four-velocity. Therefore, it is not trivial to find the form
of the four-velocity of the three-form field. However, one may expect that the four-velocity
may relate to the three-form field by the relation of the vector and the three-form in four
dimensionality as u* o e“amAam. As a result, the four-velocity of the fluid can be written
in terms of the three-form field as
ehBY A, By

where the three-form field can be written in terms of the four-velocity as
APV =\ foyer Py, (4.23)

It is not trivial to find the conserved current density corresponding to three-form field. Ac-
tually, there are no conserved quantities obtained from invariance of the action under the

~10 -
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shift of the field like the scalar field. However, one may find the conserved quantity from the
constraint equation in Eq. (2.6) as follows

§OBY = preBry, — /2y P, Py, = P, AT, (4.24)

From this relation, the conserved quantity is now three-form field instead of vector field and
the number density now is four-form field instead of scalar field. This equivalence comes from
Hodge duality in four-dimensional spacetime. One may obtained the effective particle number
density as

poBy
n = %: 2P, (4.25)

Therefore, the usual particle flux for the three-form field can be written as

ehaBy A

J = Vgt = /=g Py~ (4.26)
This quantity does not trivially vanish due to the equation of motion in Eq. (2.16). Since
Ouj" # 0 together with Eq. (4.8), it is inferred that the entropy along the fluid flow is not
conserved. The non-conservation of the particle flux for the three-form is due to the fact
that the action is not invariant under shift of the field. In the scalar field case, the action is
invariant under ¢ — ¢ + £ where £ is a constant. For general case of the scalar field with
Py = Py(Ky, ¢), this symmetry is also broken and then its dynamics will corresponds to the
non-conservation of the particle flux like in the three-form case. For the three-form, if we
restrict our attention to the case where P = P(K) which is invariant under shift of the field,
the particle number density, n oc p + p o< P, will always vanish. Also, the equation of state
parameter is always equal to —1 which cannot be responsible for the non-relativistic matter.

We also observe that condition of non-conservation of the entropy density along the fluid
flow coincides with the condition of generation of non-adiabatic perturbations even though
these conditions come from different approach. The conservation of the entropy density is
derived from background equation while non-adiabatic perturbations are properties of the
fluid at perturbation level. This argument also hold in both scalar field and three-form field
cases. Therefore, this may shed light on the interplay between conserved quantities under
shift of the filed and non-adiabatic perturbations.

Since the thermodynamics description for the generalized three-form field corresponds
to the system in which the particle number is not conserved, it implies that the field may
interact with other fields and then cause the non-conservation. It is important to note that
the conservation of the energy momentum tensor of the three-form still valid, V, T} = 0. The
non-conservation quantities mentioned above are the thermodynamically effective quantities.
Therefore, the interaction of the three-from field to the other fields is implied only in the
description of the thermodynamical sense. As we have mentioned, the useful point of this
three-form field is that it can represent the non-relativistic matter field with w = 0. Therefore,
one may interpret it as dark matter. Since the particle number density is not conserved, it is
worthwhile to investigate an interaction of this field to the dark energy. This may be useful
approach for studies of dark energy and dark matter coupling since one can find the covariant
interaction terms at the Lagrangian level and then the resulting closed evolution equations
are obtained. This issue is of interest and we leave this detailed investigations for further
work.
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5 Summary

A Lagrangian formulation of perfect fluid is a powerful tool to study dynamics of the universe,
especially interacting approach between dark energy and dark matter. A general description
in this formulation invokes many functions and then it is not easy to handle. A k-essence
scalar field can be used to describe the dynamics of the perfect fluid in cosmology. At the
background level, even though the k-essence scalar field can be use to describe the perfect
fluid with constant equation of state parameter, it cannot properly used for the non-relativistic
matter with wg = 0. At the perturbation level, the k-essence scalar field cannot provide non-
adiabatic perturbations as well as intrinsic vector perturbations.

In the present paper, we propose an alternative way to alleviate these problems by using
a generalized three-form field. The investigation is begun with proposing a general form of
the action of the three-form field with a function depending on both the kinetic term and the
field, P = P(K,y), similarly to the k-essence scalar field. Equations of motion and energy
momentum tensor of the three-form field in covariant form have been calculated. By working
in FLRW background, the energy density and the pressure as well as the equation of state
parameter are found. For the constant equation of state parameter, an exact form of the
Lagrangian reads P = PyK"y" where w = —1 + 13’511 and v # 1/2. Therefore, one can set
w = 0 by choosing proper values of the parameters pu and v and then use the generalized
three-form field to represent the non-relativistic matter. For non-constant equation of state
parameter, we also point out that it is possible to construct an alternative model of dark
energy. The stability analysis of the model is also performed. We found the conditions to
avoid ghost and Laplacian instabilities. For the fluid with w = 0, it is free from ghost and
Laplacian instabilities. For some specific model of dark energy, we argue that, to avoid the
superluminality, the equation of state parameter must be greater than —1. In other words,
the viable model of dark energy from the generalized three-form field cannot provide the
phantom phase of the universe. Note that the no-ghost condition we found in this paper can
be trusted only in the high momentum limit. We leave the full investigation for further work
where we investigate the cosmological perturbations and observational constraint.

Thermodynamics properties due to the generalized three-form field are also investigated.
It is found that this model corresponds to a system with non-conservation of the particle
flux. This leads to a non-conservation of the entropy density along the fluid flow. This is
not so surprisingly since many models of dark energy, for example quintessence model, also
correspond to the non-conservation of the particle flux. We also found some links between
non-conservation of the entropy density along the fluid flow which is a thermodynamically
effective quantity at the background level and the generation of non-adiabatic perturbations
which is a property of the model at perturbation level. This may shed light on the interplay
between conserved quantities under shift of the filed and non-adiabatic perturbations. We can
argue that this is an useful approach for a study of dark energy and dark matter coupling since
one can find the covariant interaction terms at the Lagrangian level and then the resulting
closed evolution equations are obtained. This issue is of interest and we leave this detailed
investigations for further work.
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Abstract For alarge class of mass-varying massive-gravity
models, the graviton mass cannot provide the late-time cos-
mic expansion of the universe due to its vanishing at late time.
In this work, we propose a new class of mass-varying massive
gravity models, in which the graviton mass varies according
to a kinetic term of a k-essence field. By using a more general
form of the fiducial metric, we found a solution such that a
non-vanishing graviton mass can drive the accelerated expan-
sion of the universe at late time. We also perform dynamical
analyses of such a model and find that without introducing
the k-essence Lagrangian, the graviton mass can be respon-
sible for both dark contents of the universe, namely dark
energy, which drives the accelerated expansion of the uni-
verse, and non-relativistic matter, which plays the role of dark
matter. Moreover, by including the k-essence Lagrangian, we
find that it is possible to alleviate the so-called cosmic coin-
cidence problem.

1 Introduction

Massive gravity has its own series of developments as a mod-
ified gravity beyond general relativity. Back in 1939, Fierz
and Pauli investigated a first model of massive gravity [1].
The model was a linearized general relativity, where the fluc-
tuation of geometry propagates a spin-2 graviton, plus lin-
ear interactions, which, in particle physics language, corre-
sponds to giving a non-zero mass to the graviton; hence the
name “‘massive gravity”. This model was supposed to coin-
cide with general relativity in the massless limit but it faced
a theoretical crisis when discontinuities in such a limit were
found by van Dam et al. [2,3]. In particular, the discontinu-
ities were found as different predictions between Fierz—Pauli
massive gravity and general relativity. The problem remained
unsolved for several years, until Vainshtein proposed a way
out by introducing higher-order interactions into the Fierz—

2 e-mail: 1_tannukij@hotmail.com

Pauli massive gravity [4]. In other words, he claimed that
within a particular scale, coined the Vainshtein radius, any
predictions from the linear theory cannot be trusted unless
nonlinear contributions are taken into account. However,
adding such nonlinearities, claimed by Boulware and Deser,
not only fixes the discontinuity problem but also introduces
a theoretical inconsistency, namely a Boulware—Deser ghost
[5]. This ghost is an extra degree of freedom, apart from 5
degrees of freedom originally existing in the linear massive
gravity, whose kinetic term has the wrong sign. The ghost
problem had been a blockage for the massive-gravity the-
ory until recently, in 2010, de Rham, Gabadadze, and Tolley
found suitable nonlinear interactions which do not excite the
Boulware—Deser mode; this is dubbed dRGT massive grav-
ity [6,7]. Thus, massive gravity became again an active field
of study.

Although it was just a generalization back then, massive
gravity has its modern motivations. Introducing a non-zero
mass to a graviton shrinks the scale at which the gravity
works. In other words, the graviton mass weakens the grav-
itation at a large scale. As a result, it allows a cosmic accel-
eration and hence may be able to describe the mysterious
dark energy in its language. This motivates cosmologists
to study its cosmological implications. Moreover, since de
Rham, Gabadadze, and Tolley found a healthy nonlinear mas-
sive gravity model, the theory had again opened a door to
various researches on massive gravity; not only its cosmol-
ogy but also the study of astrophysical objects in the theory,
like black holes [8—13]. For cosmological models of massive
gravity, it has been found that the solutions in the models with
Minkowski fiducial metric do not admit the flat and closed
FLRW solutions for the physical metric [14,15]. In order
to obtain all kinds of FLRW solutions, one may consider a
general form of the fiducial metric [16-20].

It has been found, however, that there are some inconsis-
tencies when cosmology is taken into account. For exam-
ple, some degrees of freedom cease to exist when the

@ Springer
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Friedmann—Lemaitre—Robertson—Walker (FLRW) ansatz is
assumed [19]. This leads to numerous studies beyond the
dRGT massive gravity [21-39]. One of those is to generalize
a constant graviton mass to be varied by other scalar field,
dubbed mass-varying massive gravity [24-27]. The theory is
proven to be free from a Boulware—Deser ghost. However,
cosmological implications of such a model indicates a uni-
verse with subdominant contributions from massive gravity.
In particular, the graviton mass is governed by the inverse of
a scale factor of the universe which will vanish at late time.
Consequently, such a model cannot give a proper explanation
of the cosmic expansion caused by the massive graviton.

In this work, we propose an alternative way to construct a
mass-varying massive gravity. The graviton mass is not only
determined by a scalar field, but also by the kinetic term of
the scalar field. Moreover, the scalar field is governed by a
k-essence Lagrangian [40-42]. Under the FLRW ansatz, we
found a solution whose the graviton mass do not necessarily
vanish at late time. Moreover, by assuming both the k-essence
and the graviton mass to behave as perfect fluids, we found
that the graviton mass can give rise to a “dust-like” matter
while combined with other contributions it is possible to have
an equation of state parameter close to —1, as suggested by
recent observations [43]. Such matter may be responsible
for a dark matter, another mysterious content known to exist
in addition to the ordinary matter. Since the graviton mass
can give rise to both of the dark contents, it is tempting to
consider as regards its evolution whether there exists an epoch
in which the two contents in the dark sector are comparable,
the so-called cosmic coincidence problem.

Our paper is organized as follows. In Sect. 2, the proposed
model is addressed along with its equations of motion in the
FLRW background. We also discuss some crucial properties
of the model in this section where we have shown the exis-
tence of the dust-like matter expected to be responsible for
the dark matter. With the help of appropriate assumptions, we
show in Sect. 3 the solution to this model which corresponds
to the dark energy and the non-vanishing characteristic of the
graviton mass existing in this model. After sketching some
perspectives, we begin the dynamical system analysis in Sect.
4 to find all possible fixed points and their stabilities, and the
extended analyses are covered in Sect. 5. We conclude our
work in the last section by the discussion of key ideas of
our work and of whether or not the coincidence problem is
alleviated.

2 The model and the background equations
We consider a mass-varying dRGT massive-gravity action
where the graviton mass is varied by the k-essence field.

Usually, one may consider the graviton mass as a function
which varies as the scalar field propagates [24-27]. However,

@ Springer

in this work, we will consider the graviton mass not only
as a function of the scalar field ¢ but also its kinetic term
X = —%g’“’VM(j)Vvd). The action of such a model can be
expressed as
M2
S = /d4xv—g[7pR[g] + V(X, ¢)(Lalg, f]
+a3Llslg, f1+ aslalg, f])+P(X,¢)}, (1

where R is a Ricci scalar corresponding to a physical metric
&uv» V(X, ¢) is a square of the graviton mass which depends
on the scalar field and its kinetic term, £; represents the inter-
actions of the ith order of the massive graviton, and P (X, ¢)
is the Lagrangian of the k-essence field. In particular, those
interactions of the massive graviton are constructed from two
kinds of metrics and can be expressed as follows:

1

Lolg. 1= 5 (IKF ~1K7). @)
1

Lalg. f1= 57 (IKP = 3KIK7) +21K7) 3

1
Lalg, f1= E([/C]“ — 6[KCTIP[K?] + 3[K21% + 8IKIIK3]
- 6[K*]), 4)

where the tensor C,,, is constructed from the physical metric
g, and an another metric f;, as

n
’C’ﬁ=5’ﬁ—< g_lf) ; Q)

v

where the square roots of those tensors are defined so that
\/gflfl:)\/g”fi = (g_lf)’f}. In massive gravity, apart
from the physical metric, there exists another kind of the
metric tensor, f},,, usually named “fiducial metric”, which is
an object introduced to the theory so that one can construct
non-trivial interactions from the metric tensors as in Egs. (2),
(3), and (4). Those complicated combinations in the interac-
tions, with arbitrary values of the parameters o3, a4, are to
ensure the absence of the Boulware—Deser (ghostly) degree
of freedom [6,7]. Moreover, thanks to the Stuckelberg tricks,
the general covariance, or the gauge symmetry, can be well
integrated into the massive gravity via

f;w = au(ppav(/)gfpo’ (6)

provided that each of the fields ¢/ transforms as a scalar
under any coordinate transformation. As for the fa », ONE can
choose it to be any kind of metric which shares the symme-
tries of the physical metric. For example, one can have a four-
dimensional Minkowski metric being the fiducial metric for
a cosmological solution [15], or even a higher-dimensional
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kind of metric whose reduced four-dimensional metric is
isotropic and homogeneous and is considered as the fiducial
metric in the cosmological solution [20].

In this work, we consider the cosmological implications
of the proposed model, where the isotropic and homoge-
neous universe is assumed whose spacetime is represented
quite well by the Friedmann—Lemaitre—Robertson—Walker
(FLRW) metric as follows:

ds? = =N (1)2dr? + a(r)*Q;j (x)dx'dx/ @)

where N (¢) is a lapse function, a(¢) represents a scale factor,
which determines the scale of the spatial distance, and

k88 jpet¢”

Q. =8 + —2r
l](‘ﬂ) ij + 1— k51m§01¢m

(®)
is the spatial maximally symmetric metric whose spatial cur-
vature is characterized by k € {—1, 0, 41} corresponding to
the open, flat, and closed geometry, respectively. As claimed,
the FLRW ansatz is also used as the fiducial metric,

7 TP 042 0)2 042 iqoj

Fuvdg'de” = —n(@")? (dg°)” +ae") 2 (p)dg' g,
)

where n and « are a lapse function and a scale factor in the

fiducial sector. Plugging those in Eq. (1), the mini-superspace
action of the model reads

1 adz
4 2
— / M> | —3— +
S /dx 1 3 p( 3N 3kNa)

3NV (F - G%) + Na3P}, (10)

where

4 1 -
FE(2+—0t3+—0l4>—(3+3053+0l4)X

3 3
B} X3
+ (14203 + ag) X? — (3 +as) =, (1D
1 —
G = 5(3—{—30{3 +ayg) — (1 +2a3 +a4) X
} X3
+ (a3 + aq) X2 — a47, (12)

and we have defined
n

X :
N

. n (13)

o
a
To determine the dynamics of the system, one can vary the
action in Eq. (10) with respect to dynamical variables which
are N, a, ¢, and the Stuckelberg fields ¢*. The corresponding

equations of motion, assuming the unitary gauge ¢* = x*
for simplicity, read

k
M; <3H2 + 3_2> = —3VF 4+ 6XVx (F —Gn)
a

+(2XPx — P), (14
2 2H 2 k Y
My (=5 +3H 4 — ) = -3VF + VEg (X =)~ P,
(15)
14 o\ Fx
v =NH( —hX)?, (16)

Na® (3V4 (F — Gn) + Pg)

d
=< [<a3 2X> (3V.x (F — Gy) + P,X)] , (17)
BHN(—2XPx —6XV x (F—Gn)+ VF 5 (X —1))

d
=4 (-3VF + (2XPx +6XV x (F —Gn)) — P),
(18)

where the last equation is obtained from the conservation
on the energy-momentum tensor; V,LT’J = 0 and we have
defined

H, o

h:F’ H"‘ZE' (19)
From the above equations, one can see that Eq. (14) is a
Friedmann equation with extra matter contents coming from
the graviton mass. As a partner to the Friedmann equation,
the so-called acceleration equation corresponds to Eq. (15).
Since we have the Bianchi identity relating the equations of
motion, these five equations of motion are not entirely inde-
pendent. Note that this set of equations recovers the original
self-accelerating cosmology when the square of a graviton
mass V is constant by which the usual condition F 3 (1 — hn)
is obtained readily from Eq. (16) [15]. However, as V is
no longer constant, the equations of motion look even more
complex than those in general relativity. To simplify the fol-
lowing calculations, we choose P such that the k-essence
field behaves as a perfect fluid. The appropriate form of P,
which satisfies such a behavior, is

P(X,$) = PyX 30 = PyX"/?, (20)

where y = 2XPx/P = 12+_ww, Py is a constant, and w is
an equation of state parameter corresponding to the perfect
fluid represented by the k-essence field [44]. Moreover, we
let the graviton mass function mimic the perfect-fluid form
as

V = VoX/?, (1)
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whose A characterizes the power of the kinetic term as y
does for P,i.e. . = 2XV x/V and Vj is a constant. Note
that under these assumptions, both P and V vary according
to the kinetic term of ¢ but not the ¢ itself. Usually, in the
quintessence model the continuity equation for the scalar
field is obtained from the equation of motion of ¢ [45,46].
Taking that into account, we consider the equation of motion
of ¢ in Eq. (17); then under the perfect-fluid assumptions for
P and V in Egs. (20) and (21) we have

d a’ >

— 6XVx(F—Gn)+2XPx ) =0. (22)
d <<\/2X ( )

After simple manipulations, the above equation gives the
continuity equation for the k-essence field as

d +3HNpx = X (23)
dlﬂx pPx = 2X/Ox,

where we have defined
px = (2XPx +6XV x (F — Gn)). (24)

Equation (23) determines the dynamics of the matter of
energy density px which resides in the Friedmann equation
in Eq. (14). Interestingly, this looks exactly like a continuity
equation of a “dust-like” matter with the interaction with the
other matter sector determined by the flow rate of the form
% px. One can also integrate Eq. (22) to find an expression
for px in terms of the scale factor as

_ V2XC

pPx =

S (25)
where C is an integration constant. In the case of a constant
X, this ensures one of the properties that this matter shares
with the dust; the energy density is inversely proportional
to a> as the dust is. According to such characteristics, it is
reasonable to interpret py as a dark matter. By doing so, this
kind of dark matter possesses some interesting features. First
of all, px is a dust-like matter which can arise naturally from
the massive-gravity sector indicating that dark matter may
be just an artifact of the varying graviton mass caused by the
kinetic term of the k-essence field. Moreover, this claim is
still valid even in the case of P = 0. Since a graviton mass
can represent dark energy in a generic class of the dRGT
massive gravity, this suggests a unification of the dark sec-
tor, namely dark energy and dark matter, by such a varying
graviton mass. Second, by having this kind of matter in the
theory, we may expect this model of mass-varying massive
gravity to solve the cosmic coincidence problem, where the
universe is known to be composed mainly of comparable
amounts of dark energy and dark matter. Thanks to the uni-
fication suggested above, it may be possible to provide an
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explanation on the coincidence problem by the existence of
the graviton mass alone, while the cosmic acceleration also
counts.

Since the equations of motion are coupled in a very cum-
bersome way, to get a picture of the whole of this system we
need to perform a dynamical analysis, which is the main sub-
ject in the very last section. However, we can still get some
rough descriptions, as a guideline to the dynamical analy-
sis, by introducing some simple assumptions to the system,
which is done in the next section.

3 Dark energy solution for the self-accelerating universe

It is widely known that our universe is expanding with an
acceleration for which dark energy is responsible. There is
recent observational evidence indicating that the observed
effective equation of state parameter of the dark energy is
close to —1 [43]. In this section, we shall adopt this char-
acteristic by treating all the contributions from the graviton
mass to have such a property. We define

pg =—3VF +6XVx (F—Gn), (26)
py=3VF—VF3(X—n). (27)

From the above definition, the corresponding equation of
state parameter is defined as

wy = 28 (28)

Pg

By treating pg as an energy density of dark energy, we set
wg = —1 and then we have the following condition:

6XVx(F—Gn=VFg(X—n). (29)

To simplify the calculation, we use the perfect-fluid form of
V in Eq. (21). Consequently, Eq. (29) becomes

3M(F—Gn)=Fz(X—n), (30)
_ F,)_( (X_”) (31)
 3(F—-Gnp)’

Equation (31) is a requirement for the exponent A to have
a solution with the equation of state equal to —1. To get a
picture of this characteristic, let us assume

X = constant, (32)

1 = constant, (33)
1

then h = —. (34)
n
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Under these assumptions, the exponent A in Eq. (31) is just
a constant. To investigate this further, we consider Eq. (16)
under the previous assumptions,

. Fe
Y NH(1- ) X,
\% G
A X < X)FX
22 _NH(1-2) =X
2X n) G
_ F_Xd

From the condition of A in Eq. (31),

X  6(F-Gnpa

— 36
X Gn a (36)
Since X, n, and hence F and G, are constant, this equation
can be integrated easily,

dx 6(F—Gn)/da
X Gn a’

_ 6(F—Gn)

X = Coa~ O (37)

where Cy is an integration constant. Now we have

X
(1—7)"‘72 I_X)F)'(

V=VyX oFn = VoCoa( ) (38)

Furthermore, Eq. (37) possibly determines a relation between
the scale factor and the rate of change of the scalar field, since

¢'§2 _ 6(F—Gn)
X=-"—-=Cpa O . (39)

The expression of V in Eq. (38) shows the evolution of the
(square of the) graviton mass as a evolves. In the previous
model of mass-varying massive gravity [24-27], in which the
Minkowski fiducial metric is used, the varying graviton mass
shrinks as the scale factor grows. In this model, however, the
exponent in Eq. (38) determines whether the graviton mass
will shrink or not as the scale factor grows, or whether it
will remain constant in the case that the exponent vanishes.
Note that this crucial difference is caused by the different
form of the fiducial metric, which is the FLRW metric in
this case, to be compared with the Minkowski one in the
previous models. This result indicates the sensitivity of the
fiducial metric existing in the generic dRGT massive gravity
where different fiducial metrics set different stages for the
system and provide different solutions [16-20].

One more crucial point of this analysis is that the contri-
butions from the graviton mass can have the same equation
of state parameter as dark energy, while one of those con-
tributions possesses the characteristic of dust, namely the

term 6XV x (F — Gn). From Eq. (23), such a term belongs
to the dark matter px. This may be a way out for the cos-
mic coincidence problem, since we may infer that varying
graviton mass is responsible for a dark matter via the term
like 6XV x (F — Gn), as we have claimed in the previous
section, while it can still drive the accelerating expansion. To
verify this idea, and to seek a finer description of this model,
we will perform a dynamical analysis, which can be found
in the next section.

4 Dynamical system

In this section, we will consider the dynamics of the universe
to be governed by this new class of mass-varying massive
gravity models using the method of the autonomous system.
Due to the complexity of the graviton mass, we will begin this
section with a simple analysis by considering the flat FLRW
where k = 0 and assuming that X, n are constant over time,
thus 7 = 1/5. From this assumption, the evolution of X is
simply determined by Eq. (16) such that

X=——=—"5(1-hX)=——, 40
HNX A G ( ) AT “0)
2XV x
= 20X 1)
\%4

where the prime denotes the derivative with respect to Ina.
The parameters r and s are constant and defined as

Gn
F

Fz(X—n)
3F ’

r

(42)

, S

In order to obtain a suitable autonomous system, let us define
dimensionless variables as follows:

FV
= mar )
P
___r (44)
SV VEY e
ZXP’X+6XVXF(1—F) PX
= ’ = , (45)
3M§H2 3M1!2,H2
2XPx
= . 46
4 2 (46)

By using these variables, the equations of motion can be
written in the form of autonomous equations as

" _s

x _3x(y+sx r>’ 47)

y’=3y<y+sx—l—;—r>, (48)

x/:ﬁ(i—(ur)), (49)
r \2
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Table 1 Summary of the

properties of the fixed points Name X y z Weff Existence Stability
(a) 0 0 1 -1 y =0 0<2<1
(b) 1 0 1-1 —1+4% y=hx 2 <2 <0
(© 0 1+ - = y=1+2 2 <<l
@ 1+x(lr—1) 115{(:)1) 0 et L= 0<a<l1
© e Mt w = h=y=35  0<i<l
l=x+y+z (50) stability requires both of the eigenvalues to be negative, or
y=—ix(1—r)—zy, (51)  otherwise the fixed point is said to be unstable or to be a sad-

where I' = XV xx/V x. Since we have five variables with
two constraints, it is sufficient to consider only three equa-
tions. Note that the constraint in Eq. (50) is derived from
Eq. (14), while the constraint in Eq. (51) is obtained from
the definition of y in Eq. (45). The equation of A in Eq. (49)
is not directly dependent on the other variables. Therefore,
in principle, we can solve it separately. For simplicity, we
can consider A as a parameter and then consider only the
autonomous equations with two variables, x and y. We will
extend our analysis to a more general case with A being the
variable in the next section. The effective equation of state
parameter can be written in terms of the dimensionless vari-
ables as

P+3VF—VF3(X —n)
22
3M2H
=—14+y+xs.

Weff = =—z—x+xs

(52)

From these autonomous equations, the corresponding fixed
points can be found by evaluating x’ = 0 and y’ = 0 in
Eqgs. (47) and (48), respectively. The properties of all the
fixed points are summarized in Table 1, while the analyses
are separately discussed for each of the fixed points below.

4.1 Fixed point (a)

From Eqgs. (47) and (48), it is obvious that the system has a
fixed point (x, y) = (0, 0). By using the constraint equations,
one obtains z = 1 and y = 0. This means that the function
P is constant and then this point corresponds to general rel-
ativity with a cosmological constant where the universe is
dominated by the cosmological constant. To ensure such a
claim, one can compute the corresponding effective equation
of state parameter, which yields wesf = —1. This is exactly
the equation of state parameter of the cosmological constant
which drives the accelerating de Sitter expansion.

The stability of the fixed point can be found by analyzing
the eigenvalues of the linearly perturbed autonomous equa-
tions. By performing the linear perturbations, the eigenval-
ues can be written as (1, w2) = (—3s/r, =3 — 3s/r). The
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dle fixed point. In this case, the signs of those eigenvalues

are determined by the value of the term £ = (X — ) g—’;,
which means 0 < f < 1 for the stable fixed point. Note that
in the case of vanishing eigenvalues, like s = 0, one has to
consider the perturbations up to second order or use a numer-
ical investigation in order to determine the stability. In this
analysis, we ensure the stability in this case by the numerical
method and we have found that it is stable.

Even though this fixed point can provide a period of late-
time expansion, it is not much of interest due to the dis-
appearance of the graviton mass. This resulting property is
one of the drawbacks in the previous model of mass-varying
massive gravity [24-27].

4.2 Fixed point (b)

One of possible fixed points may be in the form (x, y) =
(x0, 0) by which the universe is governed mainly by massive
gravity alone. From Eq. (47), one can find x¢ as follows:

X0 = l (53)
r

According to Eq. (45), there are two possible solutions for

this kind of fixed point. Oneis» = linwhichxg = 1, z9 =0,

and another one is A = y in which xg = %, z0=1-— % The

effective equation of state parameter can be written as

FxX-m _ s

54
3Gn r (>4

Weff = —1 +

Interestingly, wer = —1 as F g = 0 or (X —n) = 0. This
characteristic is a usual cosmological solution of the orig-
inal massive gravity. In particular, this condition indicates
that the graviton mass ceases to vary, according to Eq. (16).
Moreover, since in this case z = 1 — }, the pressure of the
k-essence field is non-zero for » > 1, which means the k-
essence field is supposed to be a form of matter with non-zero
pressure (not dust).

In order to find the stability condition for this fixed
point, one can find the eigenvalues of the linearly perturbed
autonomous equations, which can be written as
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s (A —1)s
(11, p2) = <3—,—3+3—>~ (55)
r Ar

Again, both of the eigenvalues contain the term s/, and then
the fixed point will be stable if ﬁ < 5 < 0. Note that, for
this fixed point, it is possible to provide wefr < —1 to satisfy
the observation, which indicates that the mean value of the
equation of state parameter is slightly less than —1 [43].

4.3 Fixed point (c)

One can obtain a fixed point such that (x, y) = (0, yo). From
Eq. (47), one can find yq as follows:

N

By using the constraint equation in Eq. (50), one obtains
70 = —3,. From the constraint equation in Eq. (51), we
have

y 1 1
y= o iyt —, (57)
z z Wiy
where w,, is the equation of state parameter of the fluid con-
tributed from P(X) = PoX (1+wm)/2Wn The effective equa-

tion of state parameter can be written as

S
=
Again, there exist two significant branches of the solution
such that this fixed point is a matter-dominated point. If z =
0, this corresponds to wefr = 0, which leads to the universe
being in a matter-dominated period.

The eigenvalues of the autonomous system can be written
as

Weff = —2 (58)

s s(A—1)
(w1, n2) = <3+3—,3—3—>- (59

AT AT
If one requires this point to represent the matter-dominated
epoch, one must set the parameters so that this point is unsta-
ble. This means the universe should evolve through this point
to end up in other stable points since we know the matter-
dominated epoch should exist in the universe’s timeline but
not nowadays. One can see that, for small negative value
of s/r, the universe can evolve in the standard history at
which fixed point (c) corresponds to a matter-dominated
period with wegr ~ 0, and fixed point (b) corresponds to
the late-time expansion of the universe due to the contribu-
tion from the graviton mass. However, it is not possible to
alleviate the coincidence problem, since the contribution of
non-relativistic matter vanishes at late time.

4.4 Fixed point (d)

According to Egs. (47) and (48), one may consider the fixed
point corresponding to the non-zero x and y. This point can

be obtained by evaluating both (non-zero) x and y from Egs.
(50), (51), and (47), while a constraint on the parameters by
which the non-zero (x, y) exist can be obtained from Egs.
(47) and (48). After simple manipulation, we have

1 AGr—1)
X=— y=——, andz =0,
L+a(r—1) T+AGr—1)

(60)

where y is arbitrary and A is fixed to be A = = The effec-

-
tive equation of state parameter can be written as

1
= — 61
Weff = (61)

To determine the stability of this point, we find the eigen-
values of the system of equations. Interestingly, this point
renders the two autonomous equations degenerate. This can
be seen by computing the linear perturbed equations for both
x and y evaluated at this fixed point. The eigenvalues of this
autonomous system are expressed as

32
m) . (62)

(1, p2) = <0,
The vanishing eigenvalue here is nothing but an artifact of the
degeneracy due to this fixed point. In particular, it is possible
to redefine the variables such that the problem is reduced
into a one-dimensional system. With such a redefinition, the
stability of this fixed point is due to the non-zero eigenvalue
in Eq. (62), which can be negative when 0 < A < 1. If
this condition is taken into account, requiring the fixed point
(c) to represent the matter-dominated era will restrict the
combination 7 to vanish.

This fixed point seems to provide a possible way to allevi-
ate the coincidence problem due to the non-zero y. However,
it cannot be used since, at the late-time expansion, weff must
approach —1 and then lead to the fact that (x, y) — (1, 0).
Nevertheless, it still provides an interesting result. For the
case of s = 0 and 0 < A < 1, this fixed point is stable,
while the fixed point (b) is unstable and then we can use this
fixed point as the one for the late-time expansion of the uni-
verse. For this condition the fixed point (c) is still used for the
matter-dominated period with z = 0. Therefore, this means
that it is possible to obtain z = 0 for the whole history of
the universe. This leads to the fact that, without providing
an extra non-relativistic matter field such as dark matter, the
contribution from the graviton mass can play the role of both
dark matter and dark energy. This is one of the crucial prop-
erties of this model, since it can unify the two main unknown
contents of the universe, dark matter and dark energy, by
using only a graviton mass.
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4.5 Fixed point (e)

Similarly to the derivation in fixed point (d), one can solve
an algebraic equation by imposing y = A and requiring non-
zero x and y. As the result, the fixed point can be expressed
as

1+ =Dz

_ A=r@o+1)
14 Ar-1" T

T+ar—1 = 7%

(63)

where y = A = > and z is arbitrary. The effective equa-
tion of state parameter is the same as the one in the fixed
point (d), which can be written as

Weff = ——. (64)

Moreover, the eigenvalues for the stability analysis are still
the same asfor the fixed point (d) and then the stability condi-
tion for this fixed point can be expressed as0 < A < 1. Even
though this fixed point shares most properties with fixed point
(d), it cannot provide the unification of the two dark compo-
nents, since z must have a non-zero value.

From the above analyses, we experienced the incompati-
bility between matter domination and the present dark energy
domination. One may see that for a large X, the fixed point (c)
can represent the matter-dominated epoch, while the small
value of A is needed in the fixed point (d) or (e) to solve
the coincidence problem. It is natural to generalize the the-
ory further by allowing A to change appropriately in time.
This idea will be adopted and carefully analyzed in the next
section.

5 Extended analyses

As we have mentioned, even though the model can be used to
unify the dark contents of the universe, it still cannot be used
to solve the coincidence problem. According to our analy-
sis, this is due to the fact that A is set to be a constant. In
this section, we will show the possibility to solve the coin-
cidence problem when A is set as a dynamical variable. For
completeness, we will add radiation into our consideration
and then use numerical method to show that the radiation
does not affect the unification in the dark sector. Note that
the equation of motion for the radiation is obtained by using
the conservation of its energy-momentum tensor or the con-
tinuity equation. By including the radiation and taking A as a
dynamical variable, the autonomous equations can be written
as
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, s 4
X =3x|y+sx——-+=-2,, (65)
r 3
, K 4
Y =3y|ly+sx—1—-—+4+-Q, ]|, (66)
A3
, 4
Q. =3Q, | y+sx+ §(Qr -1, (67)
, 65 (A
M=—\z-—-0+D)), (68)
r \2
l=x+y+z+,, (69)
y=—ix(l—r)—2zy, (70)
Pr
Q=—- 71

where p, is the energy density of the radiation. The effective
equation of state parameter can be written as

4
weffz—l—i—y—i—xs—i—gQr. (72)

From Eq. (67), we can see that all fixed points we found
in the previous section still exist with 2, = 0. Also, there
exists the unstable fixed point such that 2, = 1, while x and
z (hence y) vanish. From Eq. (68), one can see that A does
not couple to the others and the fixed point takes place at
A = 2(I" + 1). For simplicity, one can set I" as a constant.
In order to confirm the claim in the previous section that
there exists a standard evolution without introducing a k-
essence Lagrangian or in the case of z = 0, we use numerical
methods to evaluate the equations above by setting s = 0.
The evolutions of x, y, and €2, are illustrated in the left panel
of Fig. 1, and the evolution of the effective equation of state
parameter is shown in the right panel of Fig. 1. We can see that
there exists non-relativistic matter, inferred as dark matter
represented by the variable y, while the variable x represents
the dark energy that drives the late-time expansion of the
universe. Both x and y are contributed from the graviton
mass.

Now, let us consider the possibility to solve the coinci-
dence problem. Let us use the fixed point (e) to be one cor-
responding to the late-time expansion of the universe. For
this fixed point, the parameters s, r, and I' are obtained by
giving the initial conditions for the dynamical variables. In
order to obtain the dynamics of all variables, we have to put
the initial conditions slightly away from the fixed point. It
is sufficient to put A slightly above the fixed point, since we
need A to grow as time goes backward to ensure that it will
have a high enough value for the matter-dominated period.
In order to obtain wefr ~ —1 at the present time, we have to
set the value of the variable A at the fixed point as Ay — 0.
As a result, & = % — 0. In order to obtain a proper
matter-dominated period, one has to put the initial value of A
far away from the fixed point. This situation makes the fixed
point (b) stable and then the system evolves to the point (b)
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Fig. 1 The left panel shows the evolution of x, y, and 2,. The dotted-
red line represents the evolution of x, the dashed-blue line represents
the evolution of x, and the solid-green line represents the evolution of
2. For the right panel, the evolution of wegr is represented

eventually. Therefore, in order to have the fixed point (e) at
late time, one has to set wegr below —1 at the fixed point,
so that the point (e) becomes a stable point. According to
this setting, we show the evolution of the dynamical vari-
ables reaching the fixed point (e) to alleviate the coincidence
problem in Fig. 2. Note that we set Ay = 0.4, leading to
Weff = —1.67 and Ao = 1.0.

In order to overcome the incompatibility among the fixed
points, one may extend the analysis by allowing s, I" or r to
be dynamical variables. This will make the dynamical system
more complicated. We found another possibility to overcome
this incompatibility by imposing the constraint > = y for the
entire evolution. As a result, we have only three independent
equations for six variables and three constraints. The dynam-

ical variable A can be written in terms of other variables

as

0.0
051
Weff
-1.0r
-15¢
-6 -4 -2 0 2
log a

Fig. 2 The left panel shows the evolution of x, y, x + z, and ;.
The dotted-red line represents the evolution of x, the dashed-blue line
represent the evolution of x, the solid-black line represents the evolution
of x + z and the solid-green line represents the evolution of €2,.. For the
right panel, the evolution of wegr is represented. We set the parameters
such that Ay = 0.4 and Ao = 1.0 where Ay is the value at the fixed

point and A is one at the present time

S (73)
rx+y+Q,—1

As a result, by setting the initial condition at the radiation

dominated period, the evolution of the dynamical variables

and the effective equation of state are shown in Fig. 3. From

this figure, one can see that the evolution of the universe
reaches the fixed point (e) at late time while the matter and
radiation period are also properly presented. For the plot in
this figure, we set A = 0.02, and then the consequent results
are ' = —0.99 and wegr ~ —1.02. Note that the behavior of
the resulting plot in Fig. 3 is sensitive to the initial value of
x at the radiation dominated period where we set it choosing

x;j ~ 10716,
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Fig. 3 The left panel shows the evolution of x, y, x + z, and ;.
The dotted-red line represents the evolution of x, the dashed-blue line
represent the evolution of x, the solid-black line represents the evolution
of x + z, and the solid-green line represents the evolution of €2,. For
the right panel, the evolution of wegr is presented

6 Conclusion

We have constructed a new class of mass-varying massive
gravity models, in which not only the k-essence field but also
its kinetic term determines the variation of the graviton mass.
We have shown in Sect. 2 that there is a possibility for the
graviton mass to live at late time compared with the previous
model whose the graviton mass only depends on the scalar
field and shrinks as the universe grows [24-27]. After simple
manipulations and under particular assumptions, we found
that a “dust-like” matter which behaves like a non-relativistic
dust can naturally result from the graviton mass and it is a
possible candidate for dark matter. This can be seen more
clearly in the case P = 0 in which the dark matter comes
solely from the varying graviton mass. Having such matter
in the system, this model of massive gravity can describe
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the cosmic accelerating expansion with the equation of state
parameter close to — 1, while the universe is not entirely dom-
inated by the dark energy part contributed also by the graviton
mass. This property signals a possibility of having the uni-
verse composed of comparable amounts between dark energy
and dark matter, known as the cosmic coincidence problem.
To obtain a finer description on this, the usual method of the
dynamical analysis is performed by taking the dark matter
candidate into account and the results are carefully investi-
gated as regards the issue of the coincidence problem. For the
first simple case, the exponent of the kinetic term in the gravi-
ton mass A is kept constant. We found the fixed points which
correspond to various epochs in the history of the universe
such as the matter-dominated period and massive-gravity-
dominated periods. However, to have those fixed points with
the appropriate stabilities in the evolution of the universe, the
results suggest a system with A as additional variable. The
more general case, where A is allowed to vary, is investigated
where the radiation is included. While the result covers all the
fixed points in the constant X case, this allows the evolution in
which there exists a matter-dominated period as well as a late-
time expansion epoch. There are several crucial points in this
investigation. First, we obtain the universe in which the gravi-
ton mass serves as both dark energy and dark matter, while it
can still drive the cosmic acceleration. Second, to solve the
coincidence problem, we obtain a universe with the effective
equation of state parameter significantly below —1 unless
both A and y are set equal with one another for the entire evo-
lution of the universe. Since the analyses are under particular
assumptions, this model still has room for study in more com-
plicated ways. For example, one can exclude the assumptions
proposed in this work for a more complex system or one can
consider this model in a different aspect, like its astrophysical
implications. Not only as regards the applications, but also
studying the theoretical consistency, whether there exists a
ghost instability or not, is a worthy challenge which we leave
for future work. Apart from the constraints mentioned, one
may think of constraining the model with various observa-
tions. This idea is also interesting, since the observations may
judge the fate of this model by tightening it with constraints.
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