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Abstract 
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Runtime estimation is an important issue for resource management in high performance 
computing (HPC) systems. To improve the performance of a job scheduler in a HPC system, 
a runtime of applications must be predicted accurately. In this work, we propose an 
optimization technique to support the runtime estimation framework in HPC systems. The 
objective to efficiently predict runtime of “black-box” applications in an HPC environment.   
Our prediction model uses the Artificial Bee Colony (ABC) optimization in concert with linear 
regression. To evaluate our proposed technique, we performed our experiment on the actual 
ALICE applications where ALICE, A Large Ion Collider Experiment, is a heavy-ion detector 
for studying the physics of strongly interacting matter at the CERN. From the experimental 
results, the average runtime prediction accuracy for the ALICE system was approximately 
90.85%. Therefore, our approach can efficiently estimate the runtime of the offline 
applications in the ALICE system and be further used to improve the scheduler performance 
in the EPN (the Event Processing Node) cluster of the ALICE system. In the future, we can 
extend our framework to provide APIs and runtime estimation service to typical schedulers 
used in HPC systems. 
 
Keywords : Optimization, Runtime Estimation, Scheduler, High Performance Computing 
(HPC), Artificial Bee Colony 
 
 



3 
 

บทคัดยอ 
 
 รหัสโครงการ  TRG5780059 
 
 ชื่อโครงการ เทคนิคการหาคาเหมาะสมที่สุดเพื่อใชสําหรับการจัดการทรัพยากรในระบบการ
คํานวณสมรรถนะสูง 
 
 ชื่อนักวิจัย ดร. พร พันธุจงหาญ มหาวิทยาลัยเทคโนโลยีพระจอมเกลาธนบุรี 
 
E-mail Address : phond.p@mail.kmutt.ac.th 
 
ระยะเวลาโครงการ  3 ป 3 เดือน 
 
การประเมินหาคาเวลาในการประมวลผลเปนปญหาสําคัญสําหรับการจัดการทรัพยากรในระบบการ
คํานวณสมรรถนะสูง (HPC) ซ่ึงการเพ่ิมประสิทธิภาพของตัวจัดลําดับงานในระบบ HPC จําเปนตองมี
การทํานายคาเวลาในการประมวลผลของโปรแกรมประยุกตไดอยางถูกตอง ซ่ึงงานวิจัยน้ี ไดนําเสนอ
เทคนิคการหาคาเหมาะสมที่สุดเพ่ือใชสนับสนุนโครงรางการประเมินหาคาเวลาในการประมวลผล 
โดยวัตถุประสงคคือการทํานายคาเวลาในการประมวลผลของโปรแกรมประยุกตทีไ่มรูจักมากอนใน
สภาพแวดลอมของระบบการคํานวณสมรรถนะสูง โดยโมเดลที่ใชในการทํานายใชเทคนิคของ
อัลกอริทึมอาณานิคมผึ้งเทยีมรวมกับการวิเคราะหถดถอยเชิงเสน เราไดทําการทดลองเพ่ือประเมิน
ประสิทธิภาพของเทคนิคทีนํ่าเสนอกับโปรแกรมประยุกตทีใ่ชจริงในระบบ ALICE ซ่ึง ALICE ยอมา
จาก A Large Ion Collider Experiment คือ ตัวตรวจจับไออนที่มีขนาดใหญเพ่ือใชสําหรับการศกึษา
ทางดานฟสิกสในเรื่องการปฏิสัมพันธของสสารที่ CERN จากผลการทดลองพบวา การทํานายคาเวลา
ในการประมวลผลมีความถกูตองถึง 90.85% ดังน้ัน สามารถสรุปไดวาวิธีการที่เราไดนําเสนอสามารถ
ประเมินเวลาในการประมวลผลของโปรแกรมประยุกตแบบออฟไลนในระบบ ALICE ไดอยางมี
ประสิทธิภาพและสามารถนาํไปใชในการเพ่ิมประสิทธิภาพของตัวจัดลําดับงานในคลัสเตอร EPN 
(โหนดเพ่ือใชประมวลผลเหตุการณ) ของระบบ ALICE ในอนาคตเราสามารถขยายงานของเราเพื่อ
สามารถทํางานผาน API ไดและใหบริการประเมินหาคาเวลาในการประมวลผลสําหรับตวัจัดลําดับงาน
ที่ใชในระบบ HPC ได  
 
 
 คําหลัก การหาคาเหมาะสมที่สุด การประเมินคาเวลาประมวลผล ตัวจัดลําดับงาน ระบบการ
ปะมวลผลสมรรถนะสูง อาณานิคมผ้ึงเทยีม 
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Executive Summary 
 
The runtime of an application is an important attribute in many scheduling schemes, e.g., backfilling [1]. 
Backfilling requires an application’s runtime to insert short jobs in the available slots without delaying 
higher-priority jobs. Consequently, the accuracy of runtimes in backfilling is critical in realizing an efficient 
scheduled system. In High Performance Computing Systems, accurate runtime prediction is very important 
to improve the schedulers for the resource management. Based on the control factors for generating the 
prediction models, we can divided the previous works into three main groups which are Cluster specific, 
Machine type specific, and Application specific.  For the ‘Cluster specific’ group [2-6], the prediction 
models were generated by using information gathered from a specific cluster which could be either 
homogeneous or heterogeneous. Therefore, the cluster environment must be controlled. The predication 
models assumed that jobs from the same users are similar. However, the actual runtimes depend on both 
the application characteristics and machine specifications. Consequently, the mean absolute error 
percentages (MEAP) of ‘Cluster specific’ group ranged from 15% to 45%. To improve the accuracy of 
runtime prediction, the prediction models using machine learning techniques for specific machines (called 
‘Machine type specific’ group) were proposed in [7-8]. Since the machine specification was controlled and 
machine learning techniques could adaptively learn and detect the patterns of jobs and machine 
behaviors, the MEAP of ‘Machine type specific’ could be improved to the range between 10% and 20%. 
Finally,   [9-12] proposed the runtime prediction models specifically to applications, called ‘Application 
specific’ group. Although these approaches utilized particular application characteristic data to predict 
runtimes, there were no significant improvement of the MEAP (range between 5% and 30%). Moreover, 
runtime prediction models in this group were too limited. The specific predication models must be 
constructed for each application.  In practice, there is a broad range of applications executed in a 
machine. The approaches in this group would therefore not be suited for such the systems.  
 
We focus on a generic runtime estimation model that can predict a runtime for any types of applications 
that have similar characteristics on a specific machine. Although machine learning techniques in [7-12] can 
provide a promising accuracy in runtime estimation, these techniques are not suitable for a dynamic 
environment. If the characteristics of applications are constantly changing so the learning models must be 
retrained and the prediction models must be regenerated. Consequently, we propose a meta-heuristic 
optimization algorithm together with classification and regression technique to estimate runtime accurately 
and robustly in dynamic environments. 
 
 
 
The objective of this research is to develop efficient techniques to solve the optimization problem for 

supporting resource allocation in High Performance Computing Systems. One of the most important issues 

for the resource allocation in HPC systems is how to accurately estimate the runtimes of the applications 

in the system because the runtime is required by most scheduling algorithms. The runtime prediction 
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model can be described by the relationship between the metrics, input size, and runtime. The optimization 

technique will be used to provide the runtime prediction model with high accuracy. Also, the technique 

must obtain a predicted runtime with low complexity. To this end, the developed techniques will be used to 

support the scheduling in an HPC system. The scheduler will allocate resources in the HPC system based 

on the predicted runtime. 

The research was pursued in the following steps: 
 

1. Define a runtime estimation framework. This step will study and identify the process for each step 
in the runtime estimation framework. 

2. Define parameters of a black-box applications for profile sampling. This step will define the 
parameters for both microarchitecture-independent metrics collected using MICA and 
microarchitecture-dependent metrics collected using perf.  

3. Define classes for each black-box applications based on their profiles. This step will define 
classes using Berkeley Dwarf classes. The 255 different workload profiles are collected in the 
previous step and label them into Dwarf classes using a decision tree algorithm. 

4. Formulate the problem in a mathematical form. This step will formulate the problem of 
constructing a runtime prediction model for each class with high accuracy. The runtime prediction 
model will be described by the relationship between the metrics, input size, and runtime. 

5. Develop an efficient algorithm to solve the problem. The proposed algorithm should provide 
runtime accurately and robustly in dynamic environments. 

6. Evaluate the proposed algorithm and framework by using experiments. This step will setup and 
perform experiments on the actual ALICE applications where ALICE is a heavy-ion detector for 
studying the physics of strongly interacting matter at the CERN. 

7. Collect the results from the experiments and analyze the results. 
 
Our prediction model uses the Artificial Bee Colony (ABC) optimization in concert with linear regression. 
To evaluate our proposed technique, we performed our experiment on the actual ALICE applications 
where ALICE, A Large Ion Collider Experiment, is a heavy-ion detector for studying the physics of strongly 
interacting matter at the CERN. From the experimental results, the average runtime prediction accuracy for 
the ALICE system was approximately 90.85%. Therefore, our approach can efficiently estimate the runtime 
of the offline applications in the ALICE system and be further used to improve the scheduler performance 
in the EPN (the Event Processing Node) cluster of the ALICE system. In the future, we can extend our 
framework to provide APIs and runtime estimation service to typical schedulers used in HPC systems. 
Reference: 
[1] R. Baraglia, G. Capannini, M. Pasquali, D. Puppin, L. Ricci, A. D. Techiouba, Backfilling strategies for 
scheduling streams of jobs on computational farms, in: Making Grids Work, Springer, 2008, pp. 103–115. 
[2] W. Tang, N. Desai, D. Buettner, Z. Lan, Job scheduling with adjusted runtime estimates on production 
supercomputers, Journal of Parallel and Distributed Computing 73 (7) (2013) 926–938. 
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[3] D. Tsafrir, Y. Etsion, D. G. Feitelson, Backfilling using system-generated predictions rather than user 
runtime estimates, IEEE Transactions on Parallel and Distributed Systems 18 (6) (2007) 789–803. 
[4] T. N. Minh, L. Wolters, Using historical data to predict application runtimes on backfilling parallel 
systems, in: 2010 18th Euromicro Conference on Parallel, Distributed and Network-based Processing, 
IEEE, 2010, pp. 670 246–252. 
[5] E. Gaussier, D. Glesser, V. Reis, D. Trystram, Improving backfilling by using machine learning to 
predict running times, in: Proceedings of the International Conference for High Performance Computing, 
Networking, Storage and Analysis, ACM, 2015, p. 64. 
[6] S. Krishnaswamy, S. W. Loke, A. Zaslavsky, Estimating computation times of data-intensive 
applications, IEEE Distributed Systems Online 5 (4) (2004) 127–136. 
[7] S. Kadirvel, J. A. Fortes, Grey-box approach for performance prediction in map-reduce based 
platforms, in: 2012 21st International Conference on Computer Communications and Networks (ICCCN), 
IEEE, 2012, pp. 1–9. 
[8] G. Kousiouris, A. Menychtas, D. Kyriazis, S. Gogouvitis, T. Varvarigou, Dynamic, behavioral-based 
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Generation Computer Systems 32 (2014) 27–40. 
[9] R. Prodan, V. Nae, Prediction-based real-time resource provisioning for massively multiplayer online 
games, Future Generation Computer Systems 25 (7) (2009) 785–793. 
[10] S. Islam, J. Keung, K. Lee, A. Liu, Empirical prediction models for adaptive resource provisioning in 
the cloud, Future Generation Computer Systems 28 (1) (2012) 155–162. 
[11] J. Li, X. Ma, K. Singh, M. Schulz, B. R. de Supinski, S. A. McKee, Machine learning based online 
performance prediction for runtime parallelization and task scheduling, in: Performance Analysis of 
Systems and Software, 2009. ISPASS 2009. IEEE International Symposium on, IEEE, 2009, pp. 89–100. 
[12] A. Matsunaga, J. A. Fortes, On the use of machine learning to predict the time and resources 
consumed by applications, in: Proceedings of the 2010 10th IEEE/ACM International Conference on 
Cluster, Cloud and Grid Computing, IEEE Computer Society, 2010, pp. 495–504. 
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เนื้อหางานวิจัย 
 

1. Construction of the Runtime Estimation Model 
To construct the runtime estimation model, we need to determine the relationship among the 12 metrics 
from MICA and perf, input size, and runtime of the workloads and then construct a set of equations that 
represent the relation- ships. We have limited the number of equation terms to not exceed 11 in order to 
control the number of possible equations. Each term can take the form of logarithmic, natural logarithmic, 
power, square root, or linear functions. Operation in an equation can either be ‘+’ and ‘-’. Thus, the 
possible combination of equation terms can be as high as 1311 × 511 × 210 (13 possible parameters (12 
metrics + input size); 5 possible functions for each term; 2 possible operations for each pair of terms). In 
order to select the equation that can best represent the relation of runtimes and its parameters, a Heuristic 
method is then required. 
Based on previous literature, the Artificial Bee Colony algorithm, also known as ABC, is our Heuristic 
method of choice. 
ABC is an optimization algorithm that mimics the foraging behavior of bees. A set of feasible solutions to a 
problem is represented by the food sources. There are three types of bees in the hive: employed bees, 
onlooker bees, and scout bees. These bees iteratively perform different tasks for identifying food sources. 
The employed bees initially search for good food sources in the neighborhood. Once found, they will 
present qualities of their discovered food sources. The onlooker bees will forage in the vicinity of existing 
food sources presented by the employed bees. The best food sources have more possibility to be visited. 
This is the exploitation process, where the best among the neighbors is selected. On the other hand the 
food sources that are arid will be dropped and replaced by the new sources that are searched for by the 
scout bees. This process is the exploration process in the algorithm. The best food source will be kept in 
each iteration until the stopping criterion is met. 
In our context, runtime estimation equations are the solutions and are rep- resented as food sources. 
There are 3 types of bees iteratively perform different tasks for identifying the best estimation equation. 
According to Figure 1, the employed bees are responsible for the following tasks: 
 
1. Randomly generating equation structures. For example, runtime = β1x1 + β2x2 + ... + β0, where βi 
and xi are coefficients and independent variables, respectively. 
2. Using the linear regression method to compute coefficients. The coeffi- cients of the newly generated 
equation are unknown initially. Once proved that our collected data is normally distributed, linear 
regression was used to find the coefficients. 
3. Computing R-squared [40] values of an equation. We compute R-squared in order to evaluate the 
accuracy, the prediction power for each randomly generated equation. The closer the R-squared value is 
to 1 (100%), the higher the accuracy of the prediction model. 
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Figure 1: Steps for the Artificial Bee Colony (ABC) 
 
All the discovered equations from different employed bees are then sorted and given a probability based 
on the R-squared values. After that, each onlooker bee selects one of the structures based on the 
probability value and attempts to improve the structure. The structures that have no R-squared 
improvement for a certain period will be replaced by new structures that are generated by the scout bees. 
At the end of each iteration, the best equation structure and its coefficients are stored. The bees 
repeatedly improve the structures until the termination criteria is satisfied (the number of iterations reaches 
10,000). In summary, the goal of ABC is to find the mathematical equation that can best describe the 
relationship among 12 metrics from MICA and perf, input size, and runtime. 
For ABC, the solution is encoded in three main arrays: Term, Function, and Operation, as shown in Figure 
2.  
 
 
 
 
 

Figure 2: Structure of an ABC Solution 
 
As mentioned earlier, the search space for finding the equations can be as high as 1311 × 511 × 210. 
Due to this large search space, we adopt parallel computing in order to improve the runtime performance 
of ABC. The algorithm ran on 12-core computers with 32 GB of memory. The number of bees (compute 
agents) used in our run was 3,600 in total (1,200 bees for each type of bee), and the algorithm ran until 
10,000 iterations were completed. 
Because ABC applies a heuristic method to search for a “good enough” solution in a limited amount of 
time, the best solutions from ABC may not be the same every time, even for the same training data.  
Consequently, we ran ABC five times on each data set and selected the runtime equations with the 
highest R-squared value. Figure 3 shows the R-squared values of the runtime estimation equations 
obtained from our ABC. The R-squared values of nearly all the equations are higher than 90% for all of 
the dwarfs. This implies that ABC can efficiently find the model that can describe the relationship between 
the inputs and the runtime of a workload. 
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Figure 3: Percentage of R-squared values of Dwarfs on Virtual Machines 

 

 
Note that our work focuses on applications where their behaviors fit in the context of a single dwarf. 
Applications whose behaviors span multiple dwarfs are out of the scope of this paper. To address this 
problem, however, we can add dwarf classes with mixed behaviors. For instance, workload classes would 
include the classes that represent the combinations of existing dwarf classes (e.g., dense & sparse class 
and dense & grapht class). 
 

2. Runtime Estimation 
 
To estimate the runtime of the workloads from the ALICE system, the pre- diction equation was selected 
from the 21 pre-generated equations based on the Dwarf class (7 classes) that the workload belongs to 
and the HPC computing platforms (3 types of platforms) that the workload is executed on. The collected 
profile from the first step is then substituted in the equation terms and the runtime is computed. 
 

3. Validation of Runtime Estimation 
This section presents evaluation results of our runtime estimation. Three metrics are used: the prediction 
error percentage (EP), the mean absolute error percentage (MAEP), and the weighted absolute error 
percentage (WAEP). The runtime estimation model quality is evaluated, where the lower error percentages 
mean the better model quality. 
Based on the results of the aforementioned workload classification, we select the appropriate model and  
use  the aforementioned  sample data  for  runtime prediction. The exception is the cg A application, 
where we leverage two models: sparse and sgrid. In order to evaluate the accuracy of the runtime 
prediction, we calculate a prediction error percentage (EP) of each data point using Equation 1. 

 

                                     (1) 
 

We  also  calculate  the  mean  absolute  error  (MAEP)  to  evaluate  the overall prediction error across 
all the benchmarks. 
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            (2) 
 
With the same percentage of prediction error, the impact of the longer run- time jobs to the overall system 
is higher than the shorter ones. Thus, we calculate the weighted absolute error (WAEP) in order to 
emphasize more on the impact of the errors of the long runtime jobs and less on the effect of the errors of 
the short jobs. 
 

        (3) 
 
Note that A is an actual runtime, P is a predicted runtime, N is the number of benchmarks that we want to 
take into account in MAEP or WAEP. 
Table 1 presents the actual and predicted results as well as the prediction error percentages (EPs). Except 
for the cg A outlier, the maximum and minimum errors for the runtime predictions are 0.36% and 35.51%, 
respectively, which is better than what can currently be achieved via qualitative metrics such as the user 
name and project name in previous studies. Moreover, the mean absolute error percentage (MAEP) for 
each machine type, which is between 1.4% and 5%, suggests that the overall prediction result for all 
benchmarks is promising. The same applies to the weighted absolute error percentage (WAEP). However, 
WAEPs for the General Purpose and the Memory Optimized machines show that the major contribution of 
the errors comes from long runtime jobs because WAEPs are higher than MAEPs. 
The three benchmarks that delivered runtime-prediction errors higher than 30% — spectral A, nbody2d A, 
and quickSort A — have short runtimes, i.e. less than 900 seconds in the training step. Because our 
framework is intended for HPC applications, which have significantly longer execution times, we expect 
that our models are more appropriate for predicting the runtime of such HPC applications. 
For the cg A outlier, the framework mispredicted the runtime. The root cause for this misprediction still 
remains unknown, but as part of our future work, we seek to improve the robustness of classification and 
runtime prediction models and to use additional (and likely more diverse) data in the training step. 
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Table 1: Runtime Prediction Results for Trained Benchmarks 
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nn A 3081 3501 13.67 2492 3168 27.17 1822 2131 17 

nn B 15841 15559 1.76 7572 7068 6.66 5822 5801 0.36 

cg A on 
 

sparse  model 

233 253 8.71 159 208 31 140 145 3.73 

cg A on 
 

sgrid model 

694 5270 >100 438 27971 >100 388 5317 >100 

cg B 694 758 9.4 438 495 13.17 388 384 0.77 

spectral A 111 101 8.29 74 98 33.67 73 85 16.69 

spectral B 286 278 2.54 186 196 5.84 177 203 15.06 

nbody2d A 894 1062 18.83 785 839 6.91 592 800 35.17 

nbody2d B 11291 12557 11.22 9348 9528 1.92 7020 8293 18.14 

particle A 2168 2477 14.26 580 701 20.87 883 801 9.20 

particle B 96305 76925 20.12 14174 16133 13.82 26326 18765 28.72 

monteCarlo 
 

A 

3067 3333 8.69 2022 2517 24.51 1193 1173 1.67 

monteCarlo 
 

B 

12133 9420 22.35 12457 8729 29.92 2292 2210 3.56 

quickSort A 370 444 20.24 245 296 20.85 219 296 35.51 

quickSort B 708 500 29.32 507 349 31.12 432 366 15.19 

MAEP 1.34 4.61 2.05 

WAEP 8.80 3.57 9.25 

 
 

4. Runtime Estimation in the ALICE System 
This section presents the performance of our framework in predicting the runtime of ALICE’s applications. 
We focus on the scheduler for the offline applications run on the EPN cluster, where scientists from the 
ALICE collaboration often create and run new applications to analyze the collision data. In our 
experiments, the reference machine contained an 8-core Intel Core i7-2600 CPU, 8 GB of memory, and 
470 GB of storage and ran the Scientific Linux CERN 6 (SLC 6) operating system. 
To train the models, as outlined earlier in this paper, we collect the profiles of the benchmarks, by using 
MICA and perf tools on a reference machine. Because the execution times of ALICE’s applications are 
relatively short, the time needed to construct the models using the full-run profiles is not measurably 
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different from that of the sample profiles. Consequently, we used the full-run profiles to construct the 
models for runtime estimation. For each class of dwarf, we collected 15 profiles, where each profile 
contained 12 metrics— eight (8) from MICA and four (4) from perf.  We then obtained 105 profiles of 
benchmarks to train the models. 
For the workload classification model, we applied C4.5 to the training data in order to build a decision tree. 
The input attributes for the algorithm were only the eight (8) MICA metrics. Seven rules derived from the 
decision tree were used to determine the classes of applications. With stratified 10-fold cross- validation, 
our model can achieve 81.14% accuracy. The rules derived from the decision tree were used to categorize 
applications into a specific class. 
In this test, we used four ALICE applications that run frequently in the EPN cluster to evaluate the 
performance of our framework. First, TPC-CE calibrates the central electrode of the Time-Projection 
Chamber (TPC) detector by analyzing ionization tracks left by a laser in the chamber. Second, PHS- GAIN 
measures the gain of the input channels of the PHoton Spectrometer (PHS) detector. This allows to adjust 
the bias of each APD (Avalanche Photo Diode) to have an equal gain. Third, SSD-PED measures the 
pedestal values of the Silicon Strip Detector (SSD) detector channels, i.e. the value when no input signal 
is expected (empty event). This value can then be eliminated at runtime to reduce the data size by 
removing the constant and useless signal. Fourth, MCH-PED performs the same operation as SSD-PED 
but on the data of the Muon Chambers (MCH) detector, which has a different data format. We note that 
the execution patterns differ when running the same operations on the data from different detectors. Each 
of these applications creates statistics on a few hundred collision events, e.g., calculating an average 
value of a measured parameter. 
To build a runtime prediction equation, we collected the full-run profiles of each application with various 
input sizes and used them to train the model. We constructed only models for the classes that the 
applications belonged to. From the classification rules, we could classify the applications into classes as 
shown in Table 2. Therefore, only dense, sparse, mapred, and spectral runtime prediction equations would 
be constructed. 
 

Table 2: Classification Results for ALICE’s Applications 
 

Application Name Dwarf Class MAEP WAEP 

TPC-CE dense 1.02 1.24 

PHS-GAIN sparse 0.22 0.28 

SSD-PED mapred 0.28 0.26 

MCH-PED spectral 0.61 1 
 

 
We applied the Artifical Bee Colony (ABC) algorithm and linear regression on the collected data and 
derived the runtime equations, which each could yield at least 95% R-squared. The runtime equations for 
dense, sparse, mapred, and spectral are shown in Equations (4) through (7). 
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We then predicted runtimes for the ALICE applications with different input sizes. We calculated the error 
percentages (EPs) in the same fashion as for the previous experiment (see Equation 1). The runtime 
prediction results of TPC- CE, PHS-GAIN, SSD-PED, and MCH-PED are presented in Figure 4, Figure 5, 
Figure 6, and Figure 7, respectively. Please note that the labels on the graphs show the EPs. 
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Figure 4: Runtime prediction results for TPC-CE (dense) 
 

 
Figure 5: Runtime prediction results for PHS-GAIN (sparse) 

 
 

 
 

Figure 6: Runtime prediction results for SSD-PED (mapred) 
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Figure 7: Runtime prediction results for MCH-PED (spectral) 

 
 
 

5. Discussion and Conclusion 
In this section, we discuss some limitations of our framework and propose approaches to overcome such 
limitations in the future. There are several factors causing the variation between predicted and actual 
runtime (e.g., network bandwidth, size of data, algorithms, and file dependency). Comparison between 
actual/predicted values should be controlled. In our work, we have controlled the machine specification for 
each prediction model and the practical physics applications used at CERN’s ALICE are schedule to be 
executed mostly on one machine. Consequently, the large discrepancy between our predicted runtimes 
and actual runtimes mainly results from the sizes of data and algorithms as follows: 
  1. When parameters (MICA/perf metrics and data size) and a runtime of an algorithm are not 
linearly correlated 

2. When a class of an algorithm is inconclusive (i.e., an algorithm is a combination of 2 classes or 
more 

One way to improve the discrepancy is to generate hybrid-dwarfs and added them to  the 7 
dwarfs used in our work. The hybrid-dwarfs will cover more characteristics of applications.  This is left for 
our future work. 

Moreover, the accuracy could also be improved if a “white-box” approach was used. The “white-
box” method can build a runtime estimation equation by using complexity analysis and the linear 
regression method where source codes of the applications must be given [44]. Although this method can 
provide higher accuracy, source codes of some applications cannot be provided. Also, this method 
requires a significant amount of manual processing. On the other hand, our proposed framework can be 
applied to applications, both without source codes (“black-box”) and with source codes (“white-box”), to 
generate the runtime estimation equations with the same accuracy. 

In fact, scientists at CERN create and run many testing applications in the EPN system on a 
regular basis in addition to the applications already in use. Consequently, the “white-box” approach would 
not be practical to manually create a runtime estimation model for every single application. For this reason, 
our runtime prediction mechanism for “black-box” applications is more practical for the EPN’s scheduler. 
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Output จากโครงการวิจัยที่ไดรับทุนจาก สกว. 
 

1. ผลงานตีพิมพในวารสารวิชาการนานาชาติ  
S. Pumma, W. Feng, P. Phunchongharnb, S. Chapeland, and T. Achalakul, “A Runtime 
Estimation Framework for ALICE”, Future Generation Computer Systems, Vol. 72, pp. 
65-77. 
 

2. การนําผลงานวิจัยไปใชประโยชน 
- เชิงวิชาการ (มีการพัฒนาการเรียนการสอน/สรางนักวิจัยใหม) 

สามารถนําองคความรูจากผลงานวิจัยท่ีตีพิมพนําไปตอยอดเพ่ือใชในการสรางตัวจัดลําดับ
งานใหกับหนวยงาน CERN เพ่ือใชในการประเมินเวลาในการประมวลผลของโปรแกรม
ประยุกตแบบออฟไลนในระบบ ALICE ไดอยางมีประสิทธิภาพและสามารถนําไปใชในการ
เพ่ิมประสิทธิภาพของตัวจัดลําดับงานในคลัสเตอร EPN (โหนดเพ่ือใชประมวลผล
เหตุการณ) ของระบบ ALICE ในอนาคตเราสามารถขยายงานของเราเพื่อสามารถทํางาน
ผาน API ไดและใหบริการประเมินหาคาเวลาในการประมวลผลสําหรับตัวจัดลําดับงานท่ีใช
ในระบบ HPC ได 
 

3. อ่ืนๆ (เชน ผลงานตีพิมพในวารสารวิชาการในประเทศ การเสนอผลงานในที่ประชุมวิชาการ 
หนังสือ การจดสิทธิบัตร) 

 
- ผลงานบางสวนไดนําไปเสนอผลงานในที่ประชุมวิชาการ โดยมีรายละเอียดดังนี ้

“P. Lerdsuwan and P. Phunchongharn, “An Energy-Efficient Transmission 
Framework for IoT Monitoring Systems in Precision Agriculture”, in The 8th iCatse 
Conference on Information Science and Applications, Macau China, March 20-23, 
2017, pp. 714-721. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



20 
 

 
 

 
 
 
 
 

ภาคผนวก 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 



Future Generation Computer Systems 72 (2017) 65–77
Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

A runtime estimation framework for ALICE
Sarunya Pumma a, Wu-chun Feng a, Phond Phunchongharn b,∗, Sylvain Chapeland c,
Tiranee Achalakul b
a Department of Computer Science, Virginia Tech, USA
b Department of Computer Engineering, King Mongkut’s University of Technology Thonburi, Thailand
c Department of Physics, European Organization for Nuclear Research (CERN), Switzerland

h i g h l i g h t s

• We proposed a runtime estimation method for the ALICE system at CERN.
• We uses application profiles to predict the runtime without the need for any metadata.
• Berkeley Dwarfs are used in the process of application profiling.

a r t i c l e i n f o

Article history:
Received 19 June 2016
Received in revised form
20 February 2017
Accepted 24 February 2017
Available online 28 February 2017

Keywords:
Runtime estimation
ALICE experiment
Berkeley Dwarfs
Offline scheduling
Scheduler
Workload characterization

a b s t r a c t

The European Organization for Nuclear Research (CERN) is the largest research organization for particle
physics. ALICE, short for A Large Ion Collider Experiment, serves as one of the main detectors at CERN
and produces approximately 15 petabytes of data each year. The computing associated with an ALICE
experiment consists of both online and offline processing. An online cluster retrieves data while an offline
cluster farm performs a broad range of data analysis. Online processing occurs as collision events are
streamed from the detector to the online cluster. This process compresses and calibrates the data before
storing it in a data storage system for subsequent offline processing, e.g., event reconstruction. Due to
the large volume of stored data to process, offline processing seeks to minimize execution time and data-
staging time of the applications via a two-tier offline cluster — the Event Processing Node (EPN) as the first
tier and the World LHC Grid Computing (WLGC) as the second tier. This two-tier cluster requires a smart
job scheduler to efficientlymanage the running of the application. Thus, we propose a runtime estimation
method for this offline processing in the ALICE environment.

Our approach exploits application profiles to predict the runtime of a high-performance computing
(HPC) applicationwithout the need for any additionalmetadata. To evaluate our proposed framework, we
performed our experiment on the actual ALICE applications. In addition, we also test the efficacy of our
runtime estimation method to predict the run times of the HPC applications on the Amazon EC2 cloud.
The results show that our approach generally delivers accurate predictions, i.e., low error percentages.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

Currently, the European Organization for Nuclear Research
(CERN) is the world’s largest research organization for particle
physics. Its most recent particle accelerator is the Large Hadron
Collider (LHC), which serves to boost the energy of particles to
be close to the speed of light. Inside the LHC, two proton beams
travel in opposite directions in the separated pipes until they are

∗ Corresponding author.
E-mail address: phond.p@mail.kmutt.ac.th (P. Phunchongharn).

http://dx.doi.org/10.1016/j.future.2017.02.040
0167-739X/© 2017 Elsevier B.V. All rights reserved.
allowed to cross each other at the detectors, where the collisions
between particles occur. An enormous number of collision events,
in the order of 600-million collisions per second, are detected and
recorded by the detectors located along the LHC ring.

ALICE, A Large Ion Collider Experiment, is a heavy-ion detector
for studying the physics of strongly interacting matter at the CERN
LHC [1]. In particular, it targets the analysis of the properties of
Quark–Gluon Plasma, using proton–proton, nucleus–nucleus, and
proton–nucleus collisions at high energies. In 2018, the ALICE
detectors will be upgraded [2,3], and the associated amount of
data that will be produced from the detectors will increase by an
additional two orders of magnitude, resulting in a data throughput
of approximately 1 TB/s. In order to keep upwith this data deluge, a

http://dx.doi.org/10.1016/j.future.2017.02.040
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Fig. 1. ALIce’s online and offline processing data flow.
morepowerful and intelligent computing systemmust be designed
and realized.

This new computing system includes the design, implementa-
tion, and optimization of both online and offline processing capa-
bilities, as outlined by the data flow in Fig. 1. The detectors and on-
line cluster farm normally operate only 4–8 months per year; the
rest of the time is dedicated to offline processing. In ALICE, the on-
line process receives collision events from the detectors and stores
them for further processing. Since the amount of incoming data
will increase substantially in the next phase of LHC in 2018 (re-
ferred to as Run3), this processwill then have to compress and con-
trol the data rate so as to not exceed the capability of the storage
system, which provides a data rate of 200 GB/s at peak and 50 GB/s
on average.

Based on the data flow from Fig. 1, our online data acquisition
consists of two compute clusters—First-Level Processors (FLP) and
Event ProcessingNodes (EPN). The FLP cluster receives the collision
events, which are grouped in a timeframe spanning 0.1 s. The
resulting data rate is then 100,000 collision events per second or
10 timeframes per second. Due to the limited network bandwidth,
FLPs reduce the data by approximately a factor of five and stream
it to the EPN cluster. The EPN cluster then aggregates the streamed
sub-time frames into full-time frames, reduces the data size by an
additional factor of four, and then calibrates the data before storing
it in the storage system.

The EPN cluster also processes offline tasks, which include
event reconstruction, event calibration, event simulation, and data
analysis. The offline processes run on EPNwhen it is unoccupied by
the online processes. Since there are a large number of applications
running on the EPN cluster, an efficient scheduler is required to
manage job executions. The scheduler has to be able to assign the
jobs to efficiently run onmachines in the EPN cluster. When EPN is
not available, the offline processes are assigned to the Worldwide
LHC Computing Grid (WLCG) as a second-tier (alternative) cluster.
The preference, however, is to run offline jobs on the EPN cluster
rather than on WLGC.

In this work, we focus on the scheduling of offline jobs on the
EPN cluster as WLCG already has its own job scheduler, namely
gLite [4]. Our offline scheduler seeks to run the offline jobs on the
EPN cluster as efficiently as possible, as running them on WLCG
is more expensive. To implement an efficient scheduler, we need
to predict the runtimes of applications. However, predicting the
runtimes of the applications in a computer system is a daunting
challenge. To ease this challenge, some computer systems request
the expected runtime from the users. Although this method is
easy, it is inaccurate and inefficient due to overestimation [5]. In
addition, some existing methods for runtime estimation assume
that the same user runs the same application in the system [6].
Therefore, a user name and a project are used as a key. If the
application submitted to the system has the same key, the runtime
is calculated from the actual runtime of the previous run. However,
the key used in this method is not as informative as it does not
contain any runtime behavior of the application.

We propose a methodology to efficiently estimate the runtime
of ‘‘black-box’’ applications in the ALICE experimental environ-
ment. The ‘‘black-box’’ processes are the applications in which
their source codebases are not available. In contrast to other ap-
proaches, we extract important application characteristics, which
capture execution behavior, to predict the runtime for an applica-
tion. When the application is submitted to the EPN cluster, these
characteristics are sampled for a short period by using workload
characterization tools, namely MICA, short for Microarchitecture-
Independent Characterization of Applications [7], and the perf tool
from the Linux kernel [8], in order to create a workload profile. Our
methodology then creates a model for workload classification, fol-
lowed by amodel for runtime prediction. The input to both of these
modeling steps is a set of performance metrics collected from the
MICA and perf tools. Theworkload classificationmodel categorizes
the application into a certain class based on its characteristics. The
characteristics of the applications in each class are classified with
respect to the Berkeley Dwarfs taxonomy [9], where each class of
applications has a separate runtime prediction model on a specific
type ofmachine. Our predictionmodel uses the Artificial Bee Colony
(ABC) [10] optimization in concert with linear regression.

In turn, the runtimeof theworkload can then be predictedwith-
out any additional information about the applications. Further-
more, once our runtime-prediction models are constructed, they
are reusable. Thus, the runtimes of the applications in the EPN clus-
ter can be estimated immediately and automatically. In addition,
the estimation models can be re-calibrated as additional data sets
become available.

The rest of the paper is organized as follows. In Section 2, we
present related work. Section 3 describes our proposed runtime
estimation framework. In Section 4, we present our experiments
and experimental results. Section 5 discusses some limitations of
our runtime prediction framework. Finally, Section 6 concludes the
paper.

2. Related work

The runtime of an application is an important attribute inmany
scheduling schemes, e.g., backfilling [11]. Backfilling requires an
application’s runtime to insert short jobs in the available slots
without delaying higher-priority jobs. Consequently, the accuracy
of runtimes in backfilling is critical in realizing an efficient
scheduled system. Oftentimes, the runtimes of applications in
a system are provided by users. However, the user typically
overestimates the runtimes. [6] has shown that approximately
50% of 275,000 jobs in the system used only half of the user-
estimated runtime to finish their jobs. This results in degrading the
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overall efficiency of the system [5]. Therefore, a large body of work
addresses the user runtime overestimation problem [12–14,6].

For user characteristic based approaches [12–14,6], Tsafrir
et al. [12] improved a scheduler’s performance by using the user’s
estimated runtime as an upper bound and predicting a runtime
by averaging the runtimes of the last two jobs of the same user.
Minh and Wolters [13] estimated a runtime of a job based on
K-nearest neighbors by aiming to reduce a number of jobs that
were underestimatedwhilemaintaining a good runtimeprediction
accuracy. Gaussier et al. [14] replaced a user runtime prediction of
the EASY backfilling scheduler with the l2-regularized polynomial
model and gained 28% performance improvement. Another user-
dependent runtime prediction method was proposed by Tang
et al. [6]. The authors proposed a methodology to adjust the
user-provided runtime in order to improve the performance of a
supercomputer system. Their adjustment scheme searched for a
similar application based on keys (i.e., a user name of the user
who submitted the job and the project name) from the historical
data and calculated an adjustment factor (R) by averaging the
R-values of similar applications. This approach is still based on
the assumption that the same user will submit the same project
with the same input and with the same level of over-estimation.
However, this assumption would not be practical in some cases.
Instead, the runtime of an application should depend on the
characteristics of the applications rather than the users.

For application characteristic based approaches, a large number
of estimators exploit historical data to infer runtimes [15–18].
Krishnaswamy et al. [15] estimated the computation times for
data-intensive applications by using the mean runtimes of similar
applications. The similarity between applications could then be
determined by rough sets theory, which uses the historical data
to find the subset of attributes that strongly relate to the runtimes.
The output of rough sets is a similarity template. Smith et al. [16]
also implemented their runtime prediction framework based on
similarity templates, which could be determined by greedy and
genetic algorithms. The runtime of the application could be derived
in two ways: (1) using the mean of the runtimes or (2) using the
linear equation to calculate the runtime. However, the similarity
template could only work well in the scenarios in which similar
applications are repeatedly executed in the system.

Xia et al. [17] predicted the runtime from the historical
information stored in the form of cases. The cases were defined
by using the TA3 algorithm, a case-based reasoning approach,
which determines the runtime using the average value of the
runtimes. The drawback, however, is that the number of cases
is not predefined and can grow without bound, which in turn,
could significantly reduce the performance of the system. Thus,
the policy to control the number of cases must be well defined for
this approach to be effective. Zhang et al. [18] proposed a resource-
oriented approach that predicts the runtime of the workloads in a
grid environment by extracting information about the resources
from the Grid Information System (GIS), namely CPU load. The
CPU load is then fed into a time-series model to predict the
estimated runtime. However, this method requires an accurate
value for the CPU load for the application. The approaches in [15–
18] require some historical computational data or attributes of
the applications for similarity identification. However, certain sets
of attributes used in workload classification or clustering are not
explicitly defined. Consequently, common attribute sets need to
be defined to improve the performance of workload similarity
identification.

Since the relationship between application characteristics and
runtime is not explicit, machine learning techniques have been
widely used in performance and runtime prediction frame-
works [19–25]. Kadirvel and Fortes [19] proposed a gray-box
machine learning based approach to estimate performance of
Map-Reduce platforms. This work explored multiple machine
learning techniques, for example, Gaussian Process Regression
and Multilayer Perceptron, and showed that they outperformed
typical regression approaches, such as simple linear regression,
in an aspect of accuracy. Kousiouris et al. [20] predicted non-
deterministic black-box user behaviors using the neural network
in the Software-Platform-Infrastructure (SPI) cloud to efficiently
provision low-level resources to guarantee the quality of service
(QoS). Prodan andNae [21] predicted load ofMassivelyMultiplayer
Online Games based on historical data series. The neural network
with a sliding window method (where the training input was the
set of data points within the window)was presented to predict the
sudden surge of resource usages in the cloud computing platforms
to proactively provision resources to prevent a severe delay in re-
sponse time [22]. Li et al. [23] proposed a function-specific runtime
prediction model using the artificial neural network. Although the
approach could provide a promising accuracy, it was not practical
for programs with a large number functions to have one model for
one function since the training time could be enormous as well as
the prediction time. In [24,25], the Predicting Query Runtime Re-
gression (PQR2) method, which is a binary tree-based approach,
was used to generate a runtime estimationmodel. One of the draw-
backs of the model is that it is application-specific.

Based on the control factors for generating the prediction
models, we can divided the previous works into three main
groups which are Cluster specific, Machine type specific, and
Application specific. For the Cluster specific group [6,12–18], the
prediction models were generated by using information gathered
from a specific cluster which could be either homogeneous
or heterogeneous. Therefore, the cluster environment must be
controlled. The predication models assumed that jobs from the
same users are similar. However, the actual runtimes depend on
both the application characteristics and machine specifications.
Consequently, the mean absolute error percentages (MEAP) of
Cluster specific group ranged from 15% to 45%. To improve
the accuracy of runtime prediction, the prediction models using
machine learning techniques for specificmachines (calledMachine
type specific group) were proposed in [19,20,25]. Since the
machine specification was controlled and machine learning
techniques could adaptively learn and detect the patterns of jobs
and machine behaviors, the MEAP of Machine type specific could
be improved to the range between 10% and 20%. Finally, [21–
24] proposed the runtime prediction models specifically to
applications, called Application specific group. Although these
approaches utilized particular application characteristic data to
predict runtimes, there were no significant improvement of the
MEAP (range between 5% and 30%). Moreover, runtime prediction
models in this group were too limited. The specific predication
models must be constructed for each application. In practice,
there is a broad range of applications executed in a machine. The
approaches in this groupwould therefore not be suited for such the
systems.

Since the ALICE system consists of various types of physics
applications to run on specific types of machines, we focus on a
generic runtime estimation model that can predict a runtime for
any types of applications that have similar characteristics on a
specific machine. Although machine learning techniques in [19–
25] can provide a promising accuracy in runtime estimation,
these techniques are not suitable for a dynamic environment. If
the characteristics of applications are constantly changing so the
learning models must be retrained and the prediction models
must be regenerated. Consequently, we propose a meta-heuristic
optimization algorithm together with classification and regression
technique to estimate runtime accurately and robustly in dynamic
environments.

Unlike other work, we use Artificial Bee Colony (ABC) [10], a
meta-heuristic artificial intelligence approach, collaborating with
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Table 1
Dwarf list.

Dwarf name Notation

Dense linear algebra dense
Sparse linear algebra sparse
Spectral methods spectral
N-body methods nbody
Structured grids sgrid
MapReduce mapred
Graph traversal grapht

the linear regression technique to construct a runtime estimation
model based on an informative set of attributes. The ABC algorithm
has been chosen because, based on several research papers [26–
28], it can produce a better optimal solution than other ap-
proaches such as Particle Swarm Optimization (PSO), Evolutionary
Algorithm (EA), and Genetic Algorithm (GA). For the informative
set of attributes, we obtain them from MICA (Microarchitecture-
Independent Characterization of Applications) [7], an analysis tool
for capturing the profile of workloads on computer systems, and
perf [8] from the Linux kernel. These attributes can capture the ex-
ecution behavior of the applications. Consequently, our proposed
framework can adaptively estimate the runtime in dynamic en-
vironments. With the attributes from MICA and perf, we classify
workloads based on the taxonomy of the Berkeley Dwarfs. Relative
to the Berkeley Dwarfs, the similarity in computation behavior and
data flow can be used to define membership in the class [29]. Cur-
rently, there are 13 dwarfs [30]. Of the 13 dwarfs, we realized only
seven classes of the dwarfs and eliminated the remaining classes
as they would produce redundant characteristics. These seven (7)
dwarfs are able to represent classes of most applications in the AL-
ICE system.

3. Runtime estimation framework

We propose an efficient runtime estimation framework for
offline jobs, especially in the EPN cluster of the ALICE system. Our
proposed framework contains three main steps as illustrated in
Fig. 2. In Step 1 Profile Sampling, a ‘‘black-box’’ application from the
ALICE experiment is submitted to our system and runs for a small
period of time.MICA and perf tools are deployed to create a sample
profile of the application. To elaborate, application behavior is
profiled based on a set of parameters, such as percentage of
multiply instructions, branch predictability, and probability of a
local and global load and store (The full list of parameters is
shown in Table 1). These parameters’ values are captured for
each application during runtime using MICA and perf tools. In
Step 2 Workload Classification, the captured data is fed into a
decision tree in order to classify the application into one of the
Berkeley Dwarf classes with the most similar runtime behavior.
Note that using only seven out of thirteen Dwarf classes is
sufficient to represent applications in the ALICE system. Table 1
shows the abbreviated notation for the seven classes used in this
paper. In Step 3 Runtime Estimation, the application runtime is
predicted using the regression model of the dwarf class that the
application belong to. The runtime models are described in a
set of mathematical equations. The following subsections provide
detailed descriptions of our methodology and validation.

3.1. Profile sampling

The ‘‘Black Box’’ workload is profiled using twelve pa-
rameters as listed in Table 2. The top eight parameters are
microarchitecture-independent metrics collected using MICA,
while the bottom four are system parameters collected using perf.
These 12 quantitative metrics truly represents runtime character-
istics of applications. Moreover, our profile sampling method only
relies on the parameter values of the current run. No assumption
is made on users’ previous runs. Thus, no background knowledge
on usage pattern is needed.

Algorithm 1: Profile Sampling
1 run application under MICA environmentwhile application is
running do do

2 for every 1 million instruction do
3 MICA collects architecture-independent parameter

values
4 end
5 for every 2 second do
6 run perf to collect architecture-dependent parameter

values
7 end
8 end

The profile sampling step has to be performed separately for the
Training and Testing phases in the proposed runtime estimation
framework.

• In the training phase, we collect the profile sample of 20
benchmarks offline. The benchmarks come from three standard
suites, which are Rodinia [31], NPB [32], and TORCH [33].
These benchmarks are good representations of most scientific
applications. Algorithm 1 shows the steps of profile sampling.
Each benchmark is executed multiple times until completion
with various settings of input parameters, input sizes, and
runtime. During each execution, the top eight parameters
(architecture-independent) from Table 2 are collected every
1 million instructions via MICA. The bottom four parameters
(architecture-dependent) are collected every 2 seconds using
perf. These values are the profile of the benchmarks, which will
be used to construct the classification model in the next step.

• In the testing phase, the profiles of the workloads from the
ALICE system are created in real time using amethod presented
in Algorithm 1. The test applications only run for a small
window of time. The profile is fed to the next step for
classification.

3.2. Workload classification model

In this step, the pre-constructed classification model is used
to categorize an unknown-profile workload from the previous
step into one of the dwarf classes listed in Table 1. The
classification result is further utilized in the runtime prediction
step. Sections 3.2.1 and 3.2.2 explain the details of this step for
the Training (model construction) and the Testing (model testing)
phases in our proposed framework respectively.

3.2.1. Construction of the workload classification model
In order to construct a classification model, we prepared a set

of feature vectors to be used as a training data set.We used the 255
different workload profiles collected in the previous step and label
them into Dwarf classes using information provided in the related
works [31,33,34]. Twenty applications from three benchmark
suites were mapped into Berkeley Dwarf classes as shown in
Table 3. Note that only the architecture-independent (AI) metrics
were used in the feature vectors because the characteristics of
the algorithm do not depend on the system architecture. Thus,
each feature vector consists of 8 floating point numbers (0–1),
representing AI metrics, and a class label.

We have selected the C4.5 decision tree algorithm as our model
construction method. C4.5 has a low overhead, is easy to interpret,
and is widely used in real applications [35,36]. To construct a
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Fig. 2. The overall methodology of the runtime estimation framework.
Table 2
List of metrics.

Tool Metric Notation

MICA 1. Probability of a register dependence distance ≤16 PRegDist≤16
2. Branch predictability of per-address, global history table (PAg)
prediction—by-partial-matching (PPM) predictor

Bpredict

3. Percentage of multiply instructions Pctmult
4. Data stream working-set size at 32-byte block level WSS
5. Probability of a local load stride = 0 PLRStride=0
6. Probability of a global load stride ≤8 PGRStride≤8
7. Probability of a local store stride ≤8 PLWStride≤8
8. Probability of a local store stride ≤4096 PLWStride≤4096

Perf 9. CPU clock CLK CPU
10. Task clock CLK Task
11. Page faults PF
12. Context switches CS
Table 3
Mapping between benchmarks and dwarfs.

Dwarf Kernel/Application
Rodinia NPB TORCH

dense kmeans lu(A,B,C,S) dense
lud
nn

sparse – cg(A,B,C,S) sparse
spectral – – spectral
nbody – – nbody2d
sgrid heartwall sp(A,B,C,S) –

hotspot
lavaMD
leukocyte
particle

mapred – ep(A,B,C,S) monteCarlo

grapht – – integerSort
quickSort
radixSort

decision tree, the Weka data mining analysis tool is used. During
this training phase, 255 feature vectorswere fed as inputs into C4.5.
The treewas formed and self-adjusted until the training phasewas
finished. The output of the C4.5 algorithm is a decision tree that
can be linearized into a set of decision rules. These sets of rules
can be used to classify applications into Dwarf classes. There are 7
rules generated for 7 Dwarfs. Each rule is a Boolean expression of
MICA’s metrics. The application belongs to a Dwarf class if a set of
conditions on MICA metric values fit the rule of that class.

To measure the accuracy of the decision tree, we apply a
stratified 10-fold cross-validation to the model. The stratified
cross-validation ensures that the testing data in each fold is
sampled from all classes. Our decision tree yields a high accuracy
of 96.89%. Experiments on the classification model itself are
presented in Section 4.

3.2.2. Workload classification
The profiles of the workloads from the ALICE system collected

in the previous step can be fed into a decision tree in real time.
During classification, eight architecture-independent values in the
workload profile is validated against each rule. The rules are
obtained from linearizing the C4.5 algorithm decision tree during
classification. If the condition is met for one of the seven rules, the
Dwarf class is declared for thatworkload. The classificationmethod
can be illustrated in Algorithm 2.
Algorithm 2:Workload Classification
Data: MICA metrics collected in the previous step

1 for rule 1 to rule 7 do
2 if data condition is met then
3 declare a Dwarf class
4 break
5 end
6 end

3.3. Runtime estimation model

To estimate the runtime, we need to consider the machine
architecture on which the workloads are run. Since our work
seeks to predict the runtime of the workloads in the ALICE
system that require high-performance computing (HPC), we focus
on three (3) instance types that are chosen for HPC purposes
in Amazon EC2 [37], being general-purpose, compute-optimized,
andmemory-optimized instances. Consequently, we provide three
(3) runtime prediction models for each dwarf (i.e., 21 runtime
prediction models in total).

The runtime prediction model describes the relationship
between themetrics, input size, and runtime. Both themetrics and
runtimes can be obtained from MICA and perf. The input size can
be obtained by normalization methods, as shown in Table 4.

Sections 3.3.1 and 3.3.2 explain the details of this step for
the Training and the Testing phases in our proposed framework,
respectively.

3.3.1. Construction of the runtime estimation model
To construct the runtime estimation model, we need to

determine the relationship among the 12 metrics from MICA and
perf, input size, and runtime of the workloads and then construct a
set of equations that represent the relationships. We have limited
the number of equation terms to not exceed 11 in order to control
the number of possible equations. Each term can take the form
of logarithmic, natural logarithmic, power, square root, or linear
functions. Operations in an equation can either be ‘+’ and ‘−’.
Thus, the possible combination of equation terms can be as high
as 1311

× 511
× 210 (13 possible parameters (12 metrics + input

size); 5 possible functions for each term; 2 possible operations for
each pair of terms). In order to select the equation that can best
represent the relation of runtimes and its parameters, a heuristic
method is then required. Based on previous literature, the Artificial
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Table 4
Normalization of input size.

Dwarf class Input size Remarks

dense n × m n is the number of rows of a matrix/vector
m is the number of columns of a matrix/vector

sparse nnz nnz is the number of non-zero elements
spectral n n is the number of data to be transformed
nbody n × (time steps) n is the number of particles/bodies

time steps is the number of time steps to be simulated

sgrid n × m × (time steps) n is the number of rows
m is the number of columns
time steps is the number of time steps to be computed

mapred n n is the number of data items
grapht n n is the number of nodes in a graph
Fig. 3. Steps for the Artificial Bee Colony (ABC).

Bee Colony algorithm, also known as ABC, is our heuristic method
of choice.

ABC is an optimization algorithm that mimics the foraging
behavior of bees. A set of feasible solutions to a problem is
represented by the food sources. There are three types of bees in
the hive: employed bees, onlooker bees, and scout bees. These bees
iteratively perform different tasks for identifying food sources.
The employed bees initially search for good food sources in the
neighborhood. Once found, they will present qualities of their
discovered food sources. The onlooker bees will forage in the
vicinity of existing food sources presented by the employed bees.
The best food sources have more possibility to be visited. This is
the exploitation process, where the best among the neighbors is
selected. On the other hand the food sources that are arid will be
dropped and replaced by the new sources that are searched for
by the scout bees. This process is the exploration process in the
algorithm. The best food source will be kept in each iteration until
the stopping criterion is met.

In our context, runtime estimation equations are the solutions
and are represented as food sources. There are 3 types of
bees iteratively perform different tasks for identifying the best
estimation equation. According to Fig. 3, the employed bees are
responsible for the following tasks:

1. Randomly generating equation structures. For example,
runtime = β1x1 + β2x2 + · · · + β0, where βi and xi are co-
efficients and independent variables, respectively.

2. Using the linear regression method to compute coefficients.
The coefficients of the newly generated equation are unknown
initially. Once proved that our collected data is normally
distributed, linear regression was used to find the coefficients.

3. Computing R-squared [38] values of an equation. We compute
R-squared in order to evaluate the accuracy, the prediction
power for each randomly generated equation. The closer the
R-squared value is to 1 (100%), the higher the accuracy of the
prediction model.

All the discovered equations from different employed bees are
then sorted and given a probability based on the R-squared values.
After that, each onlooker bee selects one of the structures based
on the probability value and attempts to improve the structure.
The structures that have no R-squared improvement for a certain
periodwill be replaced by new structures that are generated by the
scout bees. At the end of each iteration, the best equation structure
and its coefficients are stored. The bees repeatedly improve the
structures until the termination criteria is satisfied (the number of
iterations reaches 10,000). In summary, the goal of ABC is to find
the mathematical equation that can best describe the relationship
among 12 metrics from MICA and perf, input size, and runtime.

For ABC, the solution is encoded in three main arrays: Term,
Function, and Operation, as shown in Fig. 4. As mentioned earlier,
the search space for finding the equations can be as high as
1311

× 511
× 210. Due to this large search space, we adopt parallel

computing [39] in order to improve the runtime performance
of ABC. The algorithm ran on 12-core computers with 32 GB of
memory. The number of bees (compute agents) used in our runwas
3,600 in total (1,200 bees for each type of bee), and the algorithm
ran until 10,000 iterations were completed.

Because ABC applies a heuristic method to search for a ‘‘good
enough’’ solution in a limited amount of time, the best solutions
from ABC may not be the same every time, even for the same
training data. Consequently, we ran ABC five times on each data
set and selected the runtime equations with the highest R-squared
value. Fig. 5 shows the R-squared values of the runtime estimation
equations obtained from our ABC. The R-squared values of nearly
all the equations are higher than 90% for all of the dwarfs. This
implies that ABC can efficiently find the model that can describe
the relationship between the inputs and the runtime of aworkload.

Note that our work focuses on applications where their
behaviors fit in the context of a single dwarf. Applications whose
behaviors span multiple dwarfs are out of the scope of this paper.
To address this problem, however, we can add dwarf classes with
mixed behaviors. For instance, workload classes would include the
classes that represent the combinations of existing dwarf classes
(e.g., dense & sparse class and dense & grapht class).

3.3.2. Runtime estimation
To estimate the runtime of the workloads from the ALICE

system, the prediction equation was selected from the 21 pre-
generated equations based on the Dwarf class (7 classes) that the
workload belongs to and the HPC computing platforms (3 types of
platforms) that the workload is executed on. The collected profile
from the first step is then substituted in the equation terms and the
runtime is computed.

3.4. Validation of framework

This section seeks to validate the performance of each
component in our proposed framework. Section 3.4.1 validates
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Fig. 4. Structure of an ABC solution.
Fig. 5. Percentage of R-squared values of dwarfs on virtual machines.

our proposed profile sampling. The correctness of our proposed
workload classification is then validated in Section 3.4.2. Finally,
Section 3.4.3 evaluates the performance of our proposed runtime
estimation.

3.4.1. Validation of profile sampling
In our work, profiles of the test applications are created from

a small window of execution time. This section presents results,
which validate the fact that sample profiles can represent full run
profiles relativelywell and can thus be used to predict the runtime.
We compared a sample profile against a full run profile for each
benchmark by using the Z-score as a validation metric.

To reduce the computation time for the runtime estimation,
we proposed collecting the profile of an application in the profile-
sampling phase by using a sample datum, also called a ‘‘sample
profile’’ (i.e., the applications sampling their profiles for a short
period), instead of using the full-run data, also called the ‘‘full-run
profile’’ (i.e., the profile collected from the beginning until the end
of execution). This section seeks to verify that the sample data can
be used instead of the full-run data for profile sampling. At the
beginning, the profile of a benchmark was sampled by running it
on the master computer for a short period (i.e., one minute since it
was the lowest runtime in the training data).

In the experiment, we select two types of benchmarks, type
I and type II, from each dwarf. The two benchmarks are the
same application but with different input sizes. Type I and type
II represent a small input size and a large input size, respectively.
Table 5 shows the actual runtimes of the selected benchmarks. In
the subsequent discussion, we compare the actual runtimes with
the predicted runtimes.

Before using the sample profiles to predict the runtime of the
benchmarks, we plotted the Kiviat diagrams to determine the
similarity between the sample data and the full-run data. The
values plotted in the graphs are normalized as Z-scores.

For each diagram in Fig. 6, the dashed line, which represents
the sample data, nearly conceals the border of the gray area, which
represents the full-run data. Thus, the sample data and the full-
run data are approximately the same. Therefore, the sample data
can be used to represent the full-run data and further be used in
themodel construction phase. However, the sample data should be
used in the case that the training applications have long execution
times, so it can substantially reduce the time required to train the
models.
3.4.2. Validation of workload classification
This section validates that the C4.5 decision tree produces

sufficiently good results forworkload classification. A set of labeled
benchmarks are used to test the decision tree and the classification
accuracy is measured.

To validate the classification correctness of our workload
classification model, we use the model to predict classes of
the trained benchmarks by using the sample data. The results
show that all the benchmarks are correctly classified into their
appropriate classes with the exception of cg A. The cg A benchmark
actually belongs to sparse, but it is categorized as sgrid. (However,
in the next step, we use both the sparse and sgrid runtime
prediction models for cg A.)

3.4.3. Validation of runtime estimation
This section presents evaluation results of our runtime estima-

tion. Three metrics are used: the prediction error percentage (EP),
the mean absolute error percentage (MAEP), and the weighted ab-
solute error percentage (WAEP). The runtime estimation model
quality is evaluated, where the lower error percentages mean the
better model quality.

Based on the results of the aforementionedworkload classifica-
tion, we select the appropriate model and use the aforementioned
sample data for runtime prediction. The exception is the cg A ap-
plication, wherewe leverage twomodels: sparse and sgrid. In order
to evaluate the accuracy of the runtime prediction, we calculate a
prediction error percentage (EP) of each data point using Eq. (1).

EP =
|A − P|

A
× 100. (1)

We also calculate the mean absolute error (MAEP) [13] to
evaluate the overall prediction error across all the benchmarks.

MAEP =

N
i=1

|Ai − Pi|

N ×

N
i=1

Ai

× 100. (2)

With the same percentage of prediction error, the impact of the
longer runtime jobs to the overall system is higher than the shorter
ones. Thus, we calculate the weighted absolute error (WAEP) [40]
in order to emphasize more on the impact of the errors of the long
runtime jobs and less on the effect of the errors of the short jobs.

WAEP =

N
i=1

(|Ai − Pi| × Ai)
N
i=1

Ai

2 × 100. (3)

Note that A is an actual runtime, P is a predicted runtime, N is
the number of benchmarks that we want to take into account in
MAEP or WAEP.

Table 6 presents the actual and predicted results as well as
the prediction error percentages (EPs). Except for the cg A outlier,
the maximum and minimum errors for the runtime predictions
are 0.36% and 35.51%, respectively, which is better than what
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Table 5
Actual runtimes of trained benchmarks.

Dwarf:Benchmark Type Actual runtime (s)
General purpose Compute optimized Memory optimized

dense:nn I 3 081 2492 1822
II 15841 7572 5822

sparse:cg I 233 159 140
II 694 438 388

spectral:spectral I 111 74 73
II 286 186 177

nbody:nbody2d I 894 785 592
II 11291 9348 7020

sgrid:particle I 2 168 580 883
II 96305 14174 26326

mapred:monteCarlo I 3 067 2022 1193
II 12133 12457 2292

grapht:quickSort I 370 245 219
II 708 507 432
can currently be achieved via qualitative metrics such as the
user name and project name in previous studies. Moreover, the
mean absolute error percentage (MAEP) for each machine type,
which is between 1.4% and 5%, suggests that the overall prediction
result for all benchmarks is promising. The same applies to the
weighted absolute error percentage (WAEP). However, WAEPs for
the General Purpose and the Memory Optimized machines show
that the major contribution of the errors comes from long runtime
jobs because WAEPs are higher than MAEPs.

The three benchmarks that delivered runtime-prediction errors
higher than 30% – spectral A, nbody2d A, and quickSort A – have
short runtimes, i.e. less than 900 s in the training step. Since
our framework is intended for HPC applications, which have
significantly longer execution times, we expect that our models
are more appropriate for predicting the runtime of such HPC
applications.

For the cg A outlier, the framework mispredicted the runtime.
The root cause for this misprediction still remains unknown, but
as part of our future work, we seek to improve the robustness of
classification and runtime prediction models and to use additional
(and likely more diverse) data in the training step.

4. Runtime estimation in the ALICE system

This section presents the performance of our framework in
predicting the runtime of ALICE’s applications. We focus on the
scheduler for the offline applications run on the EPN cluster, where
scientists from the ALICE collaboration often create and run new
applications to analyze the collision data. In our experiments, the
reference machine contained an 8-core Intel Core i7-2600 CPU,
8 GB of memory, and 470 GB of storage and ran the Scientific Linux
CERN 6 (SLC 6) operating system.

To train the models, as outlined earlier in this paper, we collect
the profiles of the benchmarks, shown in Table 3, by using MICA
and perf tools on a reference machine. Since the execution times
of ALICE’s applications are relatively short, the time needed to
construct the models using the full-run profiles is not measurably
different from that of the sample profiles. Consequently, we
used the full-run profiles to construct the models for runtime
estimation. For each class of dwarfs,we collected 15profiles,where
each profile contained 12metrics—eight (8) fromMICA and four (4)
from perf. We then obtained 105 profiles of benchmarks to train
the models.

For the workload classification model, we applied C4.5 to the
training data in order to build a decision tree. The input attributes
for the algorithmwere only the eight (8)MICAmetrics. Seven rules
derived from the decision tree were used to determine the classes
of applications. With stratified 10-fold cross-validation, our model
can achieve 81.14% accuracy. The rules derived from the decision
tree were used to categorize applications into a specific class.

In this test, we used four ALICE applications that run frequently
in the EPN cluster to evaluate the performance of our framework.
First, TPC-CE calibrates the central electrode of the Time-Projection
Chamber (TPC) detector by analyzing ionization tracks left by a
laser in the chamber. Second, PHS-GAIN measures the gain of the
input channels of the PHoton Spectrometer (PHS) detector. This
allows to adjust the bias of each APD (Avalanche Photo Diode) to
have an equal gain. Third, SSD-PED measures the pedestal values
of the Silicon Strip Detector (SSD) detector channels, i.e. the value
when no input signal is expected (empty event). This value can
then be eliminated at runtime to reduce the data size by removing
the constant and useless signal. Fourth, MCH-PED performs the
same operation as SSD-PED but on the data of the Muon Chambers
(MCH) detector, which has a different data format. We note that
the execution patterns differ when running the same operations
on the data from different detectors. Each of these applications
creates statistics on a fewhundred collision events, e.g., calculating
an average value of a measured parameter.

To build a runtime prediction equation, we collected the full-
run profiles of each application with various input sizes and used
them to train the model. We constructed only models for the
classes that the applications belonged to. From the classification
rules, we could classify the applications into classes as shown in
Table 7. Therefore, only dense, sparse,mapred, and spectral runtime
prediction equations would be constructed.

We applied the Artificial Bee Colony (ABC) algorithm and
linear regression on the collected data and derived the runtime
equations, which each could yield at least 95% R-squared. The
runtime equations for dense, sparse,mapred, and spectral are shown
in Eqs. (4) through (7), respectively.

Runtimedense
= 14 + 0.254


SizeInput

+ 5075PRegDist≤16 + 60311PLRStride=0

+ 0.0441PF − 79824PLWStride≤8

− 13.7

CLK CPU + 153 log(PLWStride≤8)

− 11.1
√
PF − 7104


PLRStride=0

− 1949Pct2mult − 146 ln(WSS) (4)
Runtimesparse

= −538.10 + 0.0175WSS + 943.1P2
LWStride≤4096

+ 7.944 ln(CLK CPU) − 1.3634
√
WSS − 8.815(SizeInput)
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Fig. 6. Kiviat diagrams of sample and full-run data.
+ 0.507(CS) + 65.514 ln(Bpredict)

+ 0.00012PF + 5.62 ln(PLWStride≤8) − 0.0256
√
PF (5)

Runtimemapred

= −4261 + 3.256

SizeInput

+ 246 log(WSS) − 2.063 ln(PGRStride≤8)

−216.87 ln(SizeInput) + 31.05 ln(PF)

+ 0.1004SizeInput + 208.72 ln(CS)
−0.00557WSS − 17.851
√
PF

+ 478.5 ln(CLK Task) + 1684

PGRStride≤8 (6)

Runtimespectral
= 56124 + 0.011


SizeInput

− 38.69 ln(SizeInput) + 12.08 ln(PF)

+ 17.05 ln(WSS) + 145613PLWStride≤4096 − 0.0114CLK CPU

+ 3.395 ln(PLWStride≤8) − 30875P2
LWStride≤4096
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Table 6
Runtime prediction results for trained benchmarks.

Benchmark General purpose Compute optimized Memory optimized
Actual (s) Predicted (s) EP Actual (s) Predicted (s) EP Actual (s) Predicted (s) EP

nn A 3081 3501 13.67 2492 3168 27.17 1822 2131 17
nn B 15841 15559 1.76 7572 7068 6.66 5822 5801 0.36
cg A on sparsemodel 233 253 8.71 159 208 31 140 145 3.73
cg A on sgridmodel 694 5270 >100 438 27971 >100 388 5317 >100
cg B 694 758 9.4 438 495 13.17 388 384 0.77
spectral A 111 101 8.29 74 98 33.67 73 85 16.69
spectral B 286 278 2.54 186 196 5.84 177 203 15.06
nbody2d A 894 1062 18.83 785 839 6.91 592 800 35.17
nbody2d B 11291 12557 11.22 9348 9528 1.92 7020 8293 18.14
particle A 2168 2477 14.26 580 701 20.87 883 801 9.20
particle B 96305 76925 20.12 14174 16133 13.82 26326 18765 28.72
monteCarlo A 3067 3333 8.69 2022 2517 24.51 1193 1173 1.67
monteCarlo B 12133 9420 22.35 12457 8729 29.92 2292 2210 3.56
quickSort A 370 444 20.24 245 296 20.85 219 296 35.51
quickSort B 708 500 29.32 507 349 31.12 432 366 15.19

MAEP 1.34 4.61 2.05
WAEP 8.80 3.57 9.25
Fig. 7. Runtime prediction results for TPC-CE (dense).

Fig. 8. Runtime prediction results for PHS-GAIN (sparse).

+ 12844Bpredict − 0.545
√
CS − 170519


PLWStride≤4096. (7)

We then predicted runtimes for the ALICE applications with
different input sizes. We calculated the error percentages (EPs)
in the same fashion as for the previous experiment (see Eq. (1)).
The runtime prediction results of TPC-CE, PHS-GAIN, SSD-PED, and
MCH-PED are presented in Figs. 7, 8, 9, and 10, respectively. Please
note that the labels on the graphs show the EPs.

The runtime prediction result for each application was fairly
accurate. The EPs are between 1% and 35%. Moreover, according to
Table 7, themean absolute error percentages (MAEP) andweighted
absolute error percentages (WAEP) are below 2%.

To compare our runtime prediction performance with the
previous works, we adopt the MAEP metric as it has been
Table 7
Classification results for ALICE’s applications.

Application name Dwarf class MAEP WAEP

TPC-CE dense 1.02 1.24
PHS-GAIN sparse 0.22 0.28
SSD-PED mapred 0.28 0.26
MCH-PED spectral 0.61 1

Table 8
A prediction accuracy comparison with other machine specific prediction models.

Technique(s) used MAEP

Various machine learning approaches & Regression [19] ≤12%
Neural network & Regression [20] ≤10%
PQR2 [25] ≤20%
Our work: decision tree C4.5 & Regression ≤5%

used across various previous works [13,15–17,19,20,22,24,25].
However, the data set in the experiments of previous works
and our work differed. The comparison is drawn based on the
assumptions that previous works have empirically selected the
best experimental factors for their experiments. The goal of
the comparison is to address that our proposed model has a
comparable accuracy to the state of the art works. Since our
proposed work is a Machine type specific prediction model, we
compare the prediction performance with other Machine type
specific approaches as shown in Table 8. We can see that our
proposed work can provide a comparative MAEP to the previous
works with ≤ 5%.

5. Discussion

In this section, we discuss some limitations of our framework
and propose approaches to overcome such limitations in the
future.

There are several factors causing the variation between
predicted and actual runtime (e.g., network bandwidth, size of
data, algorithms, and file dependency). Comparison between
actual/predicted values should be controlled [41]. The practical
physics applications used at CERN’s ALICE are scheduled to be
executedmostly on onemachine. Therefore, in order to imitate real
environment, we utilized a single ALICE’s server in our experiment.
Network bandwidth should not affect the runtime prediction.
We have carefully controlled the machine specification for each
prediction model. Consequently, the large discrepancy between
our predicted runtimes and actual runtimes mainly results from
the sizes of data and algorithms as follows:
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Fig. 9. Runtime prediction results for SSD-PED (mapred).
Fig. 10. Runtime prediction results for MCH-PED (spectral).

1. When parameters (MICA/perf metrics and data size) and a
runtime of an algorithm are not linearly correlated.

2. When a class of an algorithm is inconclusive (i.e. an algorithm
is a combination of 2 classes or more).

All cases, when occur, can worsen the prediction accuracy. One
way to improve the discrepancy is to generate hybrid-dwarfs and
added them to the 7 dwarfs used in our work. The hybrid-dwarfs
will cover more characteristics of applications. This is left for our
future work.

Moreover, the accuracy could also be improved if a ‘‘white-box’’
approach was used. The ‘‘white-box’’ method can build a runtime
estimation equation by using complexity analysis and the linear
regression method where source codes of the applications must
be given [42]. Although this method can provide higher accuracy,
source codes of some applications cannot be provided. Also,
this method requires a significant amount of manual processing.
On the other hand, our proposed framework can be applied to
applications, both without source codes (‘‘black-box’’) and with
source codes (‘‘white-box’’), to generate the runtime estimation
equations with the same accuracy.

In fact, scientists at CERN create and run many testing
applications in the EPN system on a regular basis in addition to
the applications already in use. Consequently, the ‘‘white-box’’
approach would not be practical to manually create a runtime
estimation model for every single application. For this reason,
our runtime prediction mechanism for ‘‘black-box’’ applications is
more practical for the EPN’s scheduler.

6. Conclusion

Since the ALICE detector will be upgraded in 2018 to acquire
more collision data, the scheduler for supporting the ALICE system
has to be fast and highly efficient. One of the most important
issues for the scheduler is how to accurately estimate the runtimes
of the applications in the system because runtime is required
by most scheduling algorithms. The main contribution of our
work is a mechanism to estimate the runtimes of the applications
with unknown profiles on the ALICE system. Our mechanism can
support the workload scheduler that is practical and effective
for particle physic studies in the near future. Similar to other
runtime estimation approaches, our framework consists of two
phases: workload classification and runtime prediction. However,
the key attributes used in our framework are more informative
than those of similar other works. We utilized 12 performance
metrics, measured by the MICA and perf tools, rather than using
the qualitative measures of a user name and a project name.

For workload classification, we realized a decision tree with the
input of eight (8) MICA metrics. The output of the classification is
one of seven (7) Berkeley Dwarfs classes. Each class has its own
runtime estimation equation, where the model of the equation
consists of the relationships among 12 performance metrics of
MICA and perf, input size, and runtime of the workload. The
Artificial Bee Colony (ABC) algorithm is then used to construct
the runtime estimation model. However, the runtime equation is
specific to the type of machine used.

We evaluated our framework by predicting the runtime of
some of the ALICE applications. From the experimental results,
the average runtime prediction accuracy for the ALICE system
was approximately 90.85%. Therefore, our approach can efficiently
estimate the runtime of the offline applications in theALICE system
and be further used to improve the scheduler performance in the
EPN cluster of the ALICE system. In the future, we can extend
our framework to provide APIs and runtime estimation services
to typical schedulers used in HPC systems. In the framework
extension, disaster recovery [43] and security of the scheduling
node should also be considered for the ALICE system.
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