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CHAPTER 1

INTRODUCTION

In optimization theory, one of the most important and interesting problems
in the theory of maximal monotone operators is to find zeroes of maximal mono-
tone operators. To be more precise, many problems that involve convexity can
be expressed as the variational inclusion problem of maximal monotone operators.
These problems include convex minimization, min-max problems, complementarity
problems and variational inequalities as special cases. The regularization is one of
the most important techniques in handling ill-posed problems and inverse prob-
lems. The Tikhonov regularization and proximal point methods are widely used to
deal with one maximal monotone operator. The proximal point algorithm (PPA)
initiated by Martinet in 1970 and subsequently studied by Rockafellar in 1976 is
often referred. However, since the PPA does not necessarily converges strongly,
many researchers have conducted worthwhile work on modifying the PPA so that
the strong convergence is guaranteed, for examples, the relaxed proximal point
algorithm (RPPA) and the contraction-proximal point algorithm (CPPA). The
Tikhonov regularization is another method commonly used for solving this prob-
lem. In general, many practical nonlinear problems arising in applied areas such as
inverse problems especially signal processing, image recovery, and machine learning
can be formulated as finding the zeroes of the operator decomposed as the sum of
two maximal monotone operators. The splitting methods play a central role in the
analysis and the numerical solution of such problems. The Forward-Backward and
Douglas-Rachford splitting algorithms are classical methods for computing those
reliable solutions. Due to its applications, there have been several modifications
and generalizations of these methods suggested and invented independently for

solving the problem in many different contexts.

It is therefore the main objective in this research to study the modified



forward-backward splitting methods and also to investigate strong convergence
theorems for solving variational inclusion problems and to give some optimization
problem including its numerical experiments. The main results can improve and
extend the corresponding results in this area and, of course, can be applied to
solve major problems existed in science, engineering, economics and other related
branches. To be more precise, we apply our main results to the minimization

optimization problem and the linear inverse problem.



CHAPTER II

LITERATURE REVIEW

Let H be a real Hilbert space and let T : H — 2 be a maximal monotone

operator. A fundamental problem of monotone operators is that of finding an
x € D(A) such that
0eTx. (2.1)

where D(T) denotes the domain of 7. Denote by JI' = (I +rT)~', r > 0 the

resolvent of a maximal monotone operator 7.

A classical method for solving this problem introduced by Martinet [33] is
the well-known proximal point algorithm (PPA), which generates, for any initial

guess xo € H, an iterative sequence as
Tp € Tpg1 + 10T Tpi1, n>1 (2.2)
where {r,} is a positive real sequence. Note that (2.2) is equivalent to
Tpi1 = I} 2, n>1 (2.3)

where {r,} is a positive real sequence. It was shown, in a real Hilbert space, that
the sequence generated by (2.3) converges weakly to a zero of T. As pointed in
Eckstein [15], the ideal form of the method is often impractical since, in many
cases the exact iteration (2.3) may require a computation as difficult as solving the
original problem (2.1). Rockafellar [39] has given a more practical method which

is an inexact variant of the method: xqg € H
Tptepn €xpr +1r 1T, n>1 (2.4)
where {e,} is an error sequence. Note that the algorithm (2.4) can be rewritten as
Tyl = JZ; (X +en), n>1 (2.5)

This is an inexact proximal point algorithm. It was shown that, if Y~ | ||e,|| < oo,

then the sequence {z,} defined by (2.5) converges weakly to a zero of T.



Eckstein and Bertsekas [16] constructed the relaxed proximal point algo-
rithm (RPPA):

ot = Q@ + (L= 0n) S}, Zn + €, 02 1 (2.6)

where {a,} is a real sequence in (0,1) and {e,} is an error sequence. The weak
convergence of (2.6) is guaranteed provided that {«,} and {e,} satisfy some mild
conditions. It is noted that Guler [17] obtained an example to show that Rockafel-
lar’s proximal point algorithm does not converge strongly, in general. Since then,

there are many modifications on the PPA.

Theorem 2.1.1. Let K be a bounded closed convex subset of a Hilbert space H
and T : K — K be a nonexpansive mapping. Let u € K be arbitrary. Define a real
sequence {ay,} in [0,1] by a,, = n7%, 0 € (0,1). Deine a sequence {z,} in K by
r1 € K,

Tpi1 = au+ (1 —a,)Tx,, n>1. (2.7)

Then, {x,} converges strongly to the element of F(T) := {x € K : Tz = x}

nearest to u.

This method is called Halpern’s iteration process. Employing the Halpern’s
iteration, to obtain the strong convergence, in 2004, Marino and Xu [32] proposed

the contraction-proximal point algorithm (CPPA): zg,u € H and
Tpt1 = apu+ (1 — an)JZ;xn +e,, n>1 (2.8)

where {a,, } is a real sequence in (0, 1) and {e, } is an error sequence. Under suitable

conditions, the CPPA (2.8) converges strongly to a zero of T
Yao and Noor [55] extended the CPPA to the following form:
Tpi1 = Qpu + Bpx, + %JZJCTL +ep,, n>1 (2.9)

where {a,,}, {#,} and {v,} are a real sequence in (0,1) and {e,} is an error se-
quence. It was proved that the sequence {z, } generated by (2.9) strongly converges

to a zero of T.



In recent years, many researchers attempt to construct new algorithms and
study convergence of the sequence and also to generalize and improve the works on

this direction (see, for instance, [1, 6, 7, 19, 21, 37, 45, 10]).

Another powerful and successful technique to obtain strong convergence is
the Tikhonov regularization method which is generated a sequence{z,} by the
following manner:

Tpe1 = JLu, n>1, (2.10)

where uw € H and r, > 0 such that r, — oo. The strong convergence was investi-

gated in Hilbert spaces.

In [26], Lehdili and Moudafi combined the technique of the proximal map-
ping and the Tikhonov regularization to introduce the prox-Tikhonov method

which generates the sequence {x,} by the algorithm
Tp1 = I, n>1 (2.11)

where T,, = u, I + T, u, > 0 is viewed as a Tikhonov regularization of T. Using
the concept of variational distance, the strong convergence is obtained under some

mild conditions.

Subsequently, algorithm (2.11) was extended by Xu [52] in the following:
To,u € H

Tpi1 = I (anu+ (1 — )z, +€,), n>1 (2.12)

where {«,} is a real sequence in (0,1) and {e,} is an error sequence. The strong
convergence was proved in a Hilbert space. Some modifications and generalizations

of the Tikhonov regularization can also be found in [44, 41, 46, 50].

The problems can be solved via the proximal point algorithm. But one of

the major drawbacks of this algorithm is the need to evaluate the resolvent

JE =T +r,T)"" (2.13)



However, in some cases, the operator T' can be decomposed into the sum of
two maximal monotone operators A and B whose resolvents Jé and in are easier
to evaluate than J,fq . In this case, the strategy is to find a zero of T by using only

J;i and JEL rather than Jg. Such a method is called an operator splitting method.

In 1955-1956, Peaceman and Rachford [35] and Douglas and Rachford [13]
introduced the splitting methods for linear equations.
In 1969-1991, Kellogg [25] and Lions and Mercier [27] (see also [34, 18, 8])

extend this method to nonlinear equations in Hilbert spaces.

The central problem is to iteratively find a zero of the sum of two monotone
operators A and B in a Hilbert space H, namely, a solution to inclusion problem:
find z € H such that

0€ (A+ B)zx. (2.14)

where A : H — H is an operator and B : H — 2 is a set-valued operator. This
problem includes, as special cases, convex programming, variational inequalities,
split feasibility problem and minimization problem. To be more precise, some con-

crete problems in machine learning, image processing and linear inverse problem.

A splitting method for (2.14) means an iterative method for which each
iteration involves only with the individual operators A and B, but not the sum A+
B. To solve (2.14), Peaceman and Rachford [35] introduced the Forward-Backward

Splitting Method (FBSM) which generate a sequence {x,} by the recursion

Tpe1 = (2J2 —1)(2J° — Dy, n>1 (2.15)

Tn

where J*, JB are resolvents of A, B. It was shown that {z,} defined by (2.15)
converges to the zeroes of A+ B. In 1956, Douglas and Rachford [13] introduced
Douglas-Rachford Splitting Method (DRSM) as follows: zy € H and

Tpi1 = J (202 — Dy + (1 — JP )2, n>1 (2.16)

where J*, JB are resolvents of A, B. It was shown that {z,} defined by (2.16)

converges to the zeroes of A+ B.



The nonlinear Peaceman-Rachford algorithm (2.15) fails, in general, to con-
verge (even in the weak topology in the infinite-dimensional setting). This is due to
the fact that the generating operator (2J;} — I)(2J2 — I for the algorithm (2.15)
is merely nonexpansive. However, the mean averages of {u,} can be weakly con-
vergent [31]. The nonlinear Douglas-Rachford algorithm (2.16) always converges in
the weak topology to a point u and u = Jflv is a solution to (2.14), since the gen-
erating operator J7 (2J2 — I)+ (I — J2) for this algorithm is firmly nonexpansive,

(I+7)

namely, the operator is of the form ~—=—, where T" is nonexpansive.

In 2012, Takahashi et al. [17] proved some strong convergence theorems of
Halpern’s type in a Hilbert spacec H, which is defined by the following manner:

X € H and
Tpt1 = BpZn + (1 - ﬁn)(anu + (1 - an)Jqﬁ (xn - TnAxn))a (2'17)

wher u € H is a fixed and A is an a-inverse strongly monotone mapping on H and B
is an maximal monotone operator on H. They proved that if {r,} C (0,00),{3,} C
(0,1) and {a,} C (0,1) satisfy

1. 0<a<r, <2aq,

2. limy, oo (7 — The1) =0,

3.0<cec<L B, <d<1,

4. lim, oo, = 0 and Y 7 |, = 00,

then {x,} generated by (2.17) converges strongly to a solution of A + B.

Let X be a Banach space. It shold be noted that there is a few works

concerning the split method established in a Banach space setting.

Recently, Lépez et al. [28] introduced the following Halpern-type forward-

backward method: z; € X and
Tnt1 = a4+ (1 — o) (J2 (20 — 1Az + an)) 4 bn), n > 1, (2.18)

where v € X, A is an a-inverse strongly accretive mapping on X and B is an

m-accretive operator on X, {r,} C (0,00), {a,} C (0,1] and {a,},{b,} are error



sequences in X. It was proved that the sequence {z, } generated by (2.18) strongly
converges to a zero point of the sum of A and B under some appropriate conditions.
There have been many works concerning the problem of finding zero points of the
sum of two monotone operators (in Hilbert spaces) and accretive operators (in

Banach spaces); see [1 1, 12, 43, A7, 19, 50].

In our research, we aim to study the forward-backward splitting methods
for solving (2.14) for nonlinear operators in a certain Banach space. Furthermore,
we establish the strong convergence theorem under suitable conditions. Also, we
discuss a results to the minimization optimization problem and related problems
including the numerical experiments. Our results generalize and improve some

known others appeared in the literature.



CHAPTER I11

PRELIMINARIES

3.1 Preliminaries and lemmas

In this section, we provide some basic concepts, definitions and lemmas

which will be used in the sequel.

Definition 3.1.1. (Fixed point)
Let X be a nonempty set and T' : X — X a self-mapping. We say that
x € X is a fixed point of T if
T(x)=ux (3.19)

and denote by Fiz(T) the set of all fixed points of T'.

Example 3.1.2. 1. If X =R and T(x) = 2> + bz + 4, then Fiz(T) = {-2};
2. If X =R and T(x) = 2* — z, then Fiz(T) = {0, 2};
3. If X =R and T(x) =z + 5, then Fix(T) = 0;
4. If X =R and T'(z) = z, then Fiz(T) = R;.

Definition 3.1.3. (Metric space)
Let X be a nonempty set and d : X x X — [0,00) a function. Then d is
called a metric on X if the following properties hold:
1. d(z,y) > 0 for all z,y € X
2. d(z,y) =0 if and only if x = y for all z,y € X;
3. d(z,y) = d(y,x) for all z,y € X;
4. d(z,y) < d(x,z) +d(z,y) for all z,y,z € X.

The value of metric d at (x,y) is called distance between x and y, and the ordered

pair (X, d) is called a metric space.

Example 3.1.4. The real line R and define

d(z,y) = |x —y| for all z,y € R. (3.20)



Then (R, d) is a metric space.

Example 3.1.5. The Euclidean plane R? and define

d(z,y) = /(&1 —m)? + (&2 — 1o)? (3.21)

where © = (£1,&),y = (m,m2) € R% Then (R?,d) is a metric space.

Example 3.1.6. The Fuclidean space R™ and define

d(z,y) = V(€& —m)? + (& —m)? + (& = m)* + . + (§a — 1)? (3.22)

where x = (£1,€2,&3,-.,80),y = (M1, 12,13, -, ) € R™. Then (R™,d) is a metric

space.

Example 3.1.7. Let X be the set of all bounded sequences of complex numbers;

that is every element of X is a complex sequence

T = (617627 )

such that |;| < ¢, for all j = 1,2, ... and ¢, is a real number which may depend on

x, but does not depend on j and define

d(x,y) = sup |&; — nj (3.23)
jeN
where y = (n;) € X and N=1,2,.... Then (X,d) is a metric space.

Definition 3.1.8. (Closed set)
Let (X,d) be a metric space. A subset U C X is open if for every z € X
there exists r > 0 such that B(z,r) C U. A set U is closed if its complement X \ U

is open.

Theorem 3.1.9. Let M be a nonempty subset of a metric space X. Then M is

closed if and only if there exists a sequence {x,} C M and x, — x implies that

re M.

Definition 3.1.10. (Convergent sequence)
A sequence {z,} in a metric space X is said to be convergent to x € R if
for all € > 0 there exists N € N if n > N then d(z,y) < e. In this case, we write

T, — X



Definition 3.1.11. (Cauchy sequence)
A sequence {z,} in a metric space X is said to be Cauchy if for all € > 0

there exists N € N if m,n > N then d(x,,, x,) < €.

Definition 3.1.12. (Bounded sequence)
A sequence {z,} in X is bounded if there exists M > 0 such that ||z,| < M

for all n € N.

Definition 3.1.13. (Lipschitzian mapping)
Let (X, d) be a metric space. Then amap T : X — X is called a lipschitzian

mapping on X if there exists L > 0 such that
d(T(x), T(y)) < Ld(x,y) for all z,y € X.

Definition 3.1.14. (Nonexpansive mapping)
Let (X, d) be a metric space. Then a map T': X — X is called a nonex-

pansive mapping on X if
d(T'(x), T(y)) < d(z,y) forall z,y € X.

Definition 3.1.15. (Contraction mapping)
Let (X, d) be a metric space. Then amap 7' : X — X is called a contraction

mapping on X if there exists ¢ € [0,1) such that
d(T(x),T(y)) < qd(z,y) forall x,y € X.

Theorem 3.1.16. (The Banach contraction principle)
Let X be a complete metric space and let T' be a contraction of X into itself.

Then T has a unique fixed point.

Definition 3.1.17. (Vector space)

A vector space or linear space X over the field K (R or C) is a set X together
with an internal binary operation ”"+” called addition and a scalar multiplication
carrying (o, x) in K x X to az in X satisfying the following for all z,y,z € X and
a, B ek



lL.e+y=y+ux;

2. (z+y)+z=a+(y+2);

3. there exists an element 0 € X call the zero vector of X such that xt+0 =z
for all z € X;

4. for every element x € X, there exists an element —x € X called the

additive inverse or the negative of x such that x + (—x) = 0;

5. a(z +y) = ar + ay;
6. (o + B)x = ax + By;
7. (af)r = a(fz);

8. 1-

The elements of a vector space X are called vectors, and the elements of K are

called scalars.

Example 3.1.18. The Fuclidean space R™ and define

r+y = (& +n,&%+n,8 03,06+ M)

oar = (0451, ala, afs, ..., afn)

where x = (£1,82,83,.-,80), 9y = (N1, M2, M3, -, M) € R™ and o € R. Then, space R

1S a real vector space.

Definition 3.1.19. (Convex set)
Let C' be a subset of a linear space X. Then C is said to be convex if

(1= MNax+ Ay € C for all z, y and all scalar A € [0, 1].

Example 3.1.20. 1. Every subspace of vector space is convex set.
2. B(w;r) ={x: ||z|| < r} is convex set.

3. [0,1]Y = [1,0] x [1,0] x ... x [1,0] is convex set in RY.

Proposition 3.1.21. Let C be a subset of a linear space X. Then C is convex if
and only if \yx1 4+ Aoxo + ... + Az, € C for any finite set {1, xq,...,x,} C C and
scalars A; > 0 with Ay + Ao+ ... + A\, = 1.



Definition 3.1.22. (Convex function)
Let X be a linear space and f : X — (—o00, 00] a function. Then f is said to

be convex if f(Ax+ (1 —=N)y) < Af(z)+ (1 —=N)f(y) for all z,y € X and X € [0, 1].

Example 3.1.23. 1. F(z) = |z|P where p > 1 is convex function in R.
2. F(x) = — 2% is convex function in [3,00).

3. F(x) = xlogx where p > 1 is convex function in RT.

Definition 3.1.24. (Normed space)
let X be a norm linear space over field K (R or C) and || - || : X — R" a
function. Then || - || is said to be a norm if the following properties hold:
L Jjz|| > 0, and ||z]| =0 < 2 = 0;
2. ||azx|| = |af||z] for all z € X and a € K;
3. |lz+yl| < |lz|| + ||ly|| for all z,y € X.

The ordered pair (X, || - ||) is called a normed space.

Example 3.1.25. R" is a normed space with the following norms:

n
Izl = > |ai| forall x = (21,79,...3,) € R™;
=1

- 1/p
lz|l, = (Z ]xi\p) forall = (xy,29,..,2,) € R" and p € (1, 00);
i=1

[7]]ec = 1r£1?<>;|x,| forall z = (xy,29,..,2,) € R".

Remark 3.1.26. 1. R" equipped with the norm defined by ||z, = (7, |2:]?) e
is denoted by [y for all 1 < p < occ.

2. R" equipped with the norm defined by ||z|l = maxi<;<y |z;| is denoted by I..

Example 3.1.27. Let X = [y, the linear space whose elements consist of all abso-

lutely convergent sequences (x1, T, ..., T;, ...) of scalars (R or C),
o
Lh=A{x:2=(21,29,..,24...) and Z |z;| < o0}
i=1

Then l; is a normed space with the norm defined by ||z|ly = >_°, |z



Example 3.1.28. let X =1, (1 < p < 00), the linear space whose elements consist

of all p-summable sequences (x1,xa, ..., T;, ...) of scalars (R or C),
l,={z:2=(21,29,...,2; ...) and Z |z;|P < oo}
i=1
Then 1, is a normed space with the norm defined by ||z|l, = (35, |i|P)V/P.

Example 3.1.29. let X = [, the linear space whose elements consist of all

bounded sequences (x1, T, ..., Z;, ...) of scalars (R or C),
lo ={z 2= (21,29, ..., 24, ...) and {x;}3°, is bounded}.
Then ls is a normed space with the norm defined by |||/ = sup;ey |-

Definition 3.1.30. (Completeness)

The space X is said to be complete if every Cauchy sequence in X converges.

Example 3.1.31. The Euclidean space R™ is complete with

d(w,y) = V(& —m)? + (& — 1) + (& — m3)? + oo + (€0 — )? (3.24)

where T = (517527537 7£n>7y = (771777277737 77771) € R".

Example 3.1.32. The sequence space lo, is complete.
Example 3.1.33. The sequence space l, is complete.

Definition 3.1.34. (Banach space)
A normed space which is complete with respect to the metric induced by

the norm is called a Banach space.

Example 3.1.35. The Euclidean space R™ is a Banach space with the norm defined
by

n 1/2
ol = (D lil?)
=1

where © = (x1, T2, ..., T,) € R™.



Example 3.1.36. The space l,, 1 < p < 00 is a Banach space with the norm

defined by
= 1/p
lally = (D lat”) ™,
i=1
where x = (T1, X, ..., Tp, ...) and > o |x,|P < 00.

Example 3.1.37. The space lo, of all bounded sequence x = (1, Ta, ..., Ty, ...) IS a

Banach space with the norm defined by
|]| = sup |-

Definition 3.1.38. (Inner product space)

An inner product space is a vector space X with an inner product defined
on X. Here, an inner product on X is a mapping of X x X into the scalar field K
of X; that is, with every pair of vectors x and y there is associated a scalar which

18 written
(z,y) (3.25)

and is called the inner product of x and y, such that for all vectors x, y, z and

scalars a we have

Example 3.1.39. The function (-,-) : R" x R" — R defined by
<x,y> - szyz fO’f’ all z = (xlax% ...7ZIZn)7 Yy = (y17y27 7yn) € R" (326)
i=1

15 an inner product on R™. In this case R™ with this inner product is called real

FEuclidean n-space.

Example 3.1.40. Let C™ be the set of n-tuples of complex numbers. Then the
function (-,-) : R" x R® — R defined by

<$ay> = Zl’ZE fO?" all v = (xlmea "'7x7Z)7 Y= (y17y27 7yn) € Cn (327)
i=1



1s an inner product on C"*. In this case C™ with this inner product is called complex

FEuclidean n-space.

Example 3.1.41. Let Iy be the set of all sequences of complex numbers
(a1,a9, ... a;,...) with Y2, |a;|* < oo. Then the function (-,-) : Iy x Iy — C
defined by

(w,y) =Y @ for all v = {x;}2,,y = {y:}2, € 1y (3.28)

i=1

18 an inner product on ls.

Proposition 3.1.42. (The Cauchy-Schwarz inequality)

Let X be an inner product space. Then the following holds:
[(z, 9) [ < (,2)(y,y) forall z,y € X, (3.29)

1.€.,

[(z, )| < llzllllyll for all x,y € X. (3.30)

Definition 3.1.43. (Hilbert space)
An inner product space which is complete with respect to the induced norm

is called a Hilbert space.

Example 3.1.44. The Fuclidean space R™ is a Hilbert space with inner product
defined by

(x,y) = 2191 + T2y2 + .. + TpUn

where © = (1, %2, ..., Tn), Y= (Y1, Y2, .., Yn) € R

Example 3.1.45. The space ly is a Hilbert space with inner product defined by

<$, y) - Z .ij_j,
j=1

where x,y € ls.

Definition 3.1.46. (Proper function)
Let function f: X — (—o0,00]|. Then f is said to be proper if there exists

x € X with f(z) < oo.



Definition 3.1.47. (Lower semicontinuous function)
Let X be a linear space and f : X — (—o00,00] a proper function. Then f

is said to be lower semicontinuous (l.s.c.) at zo € X if

f(zo) <liminf f(zg) = sup inf f(x), (3.31)

T—0 VeUz, TEV

where U,, is a base of neighborhoods of the point zy € X. f is said to be lower
semicontinuous on X if it is lower semicontinuous on each point of X, 7.e., for each
r € X,

r — xo = f(z) <liminf f(z,). (3.32)

n—oo

Example 3.1.48. Let (X, || - ||) be normed space. If F(z) = ||z|| for all z € X

then F' s lower semicontinuous function.

Definition 3.1.49. (Bounded linear operator)
Let X and Y be normed spaces and T' : X — Y a linear operator. The

operator T is said to be bounded if there is a real number ¢ such that for all x € X,
[T]| < cfl=]]. (3.33)

Definition 3.1.50. (Strict convexity)

A Banach space X is said to be strictly convex if
z,y € Sy withx #y = ||(1 =Xz + Ay|| <1 forall X € (0,1). (3.34)

This says that the midpoint (z 4+ y)/2 of two distinct points z and y in the unit
sphere Sy of X does not lie on Sx. In other words, if z,y € Sx with ||z| = ||y|| =

I(z +y)/2], then z = y.

Example 3.1.51. Let X = R",n > 2 with norm ||z||s defined by

n 1/2
lello = (322) 7w = (@0, ) € R (3.35)

i=1

Then X is strictly convez.



The modulus of convezity of a Banach space X is the function dx(e) :
(0,2] — [0, 1] defined by

, rT+y
5x() = it {1 2 o — g = -y 2 ),
Then X is said to be uniformly convex if dx(e) > 0 for any € € (0, 2].

Example 3.1.52. Fvery Hilbert space H is a uniformly convex space. In fact, the

parallelogram law gives us
lz+yl1* = 2(l=1* + lyll*) — |l = ylI* for all 2,y € H. (3.36)
Suppose x,y € By with x # vy and ||x — y|| > €. Then
o +yl? <4— ¢,

so it follows that
I +y)/2* < 1= d(e),

where 6(e) =1 — /1 — €2/4. Therefore, H is uniformly convex.

The modulus of smoothness of X is the function px(t) : Rt — R* defined

by
T+ ty|| + ||z —ty
pxtt) = sup {IEFIEITZ 00y gy = 1),
t
Then X is said to be uniformly smooth if p'y(0) = lir% pXT() = 0. For any ¢ € (1,2],

a Banach space X is said to be g-uniformly smooth if there exists a constant ¢, > 0

such that px(t) > ¢,t? for any ¢ > 0.

Example 3.1.53. The l, spaces (1 < p < 2) are uniformly smooth. In fact,

1+)t/r -1
lim 220 — i (1+) =

t—0 t t—0 t

0.

The subdifferential of a proper convex function f : X — (—o0,+o0] is the

set-valued operator 9f : X — 2% defined as

Of (x) ={a" € X*: (o y —x) + f(x) < f(y)}.



If f is proper convex and lower semicontinuous, then the subdifferential df (z) # ()

for any x € intD(f), the interior of the domain of f.
The generalized duality mapping J, : X — 2% is defined by

Jo(x) = {j(@) € X2 (Ggl), ) = [l=]|7, Njg(x)ll = ll=]|""*}.

If ¢ = 2, then the corresponding duality mapping is called the normalized
duality mapping and denoted by J. We know that the following subdifferential

inequality holds: for any z,y € X,
lz+yll* < [l + q(y, jo(x +v)), Jolx +y) € Jo(z +y). (3.37)
In particular, it follows that, for all z,y € X,

x4+ ylI> < |zl +2(y, i (z +v)), jlz+y) € J(z +y). (3.38)

Lemma 3.1.54. [[53], Corollary 1'] Let 1 < ¢ < 2 and X be a smooth Banach

space. Then the following statements are equivalent:
(i) X is g-uniformly smooth.
(ii) There is a constant k, > 0 such that for all x,y € X

[z +yll* < Nz[|” + ¢y, Jq(2)) + kqllyl*- (3.39)

The best constant k, will be called the g-uniform smoothness coefficient of

X.

Theorem 3.1.55. Let E be a Banach space and let J be the duality mapping of
E. Then:

1. Forx € E, J(x) is nonempty, bounded, closed and convez;

2. J(0)={0};

3. forx € E and a real o, J(ax) = aJ(x);

4. forz,ye B, feJ(x)andge J(y), (x—y,f—g) >0;

5. forzy € E, f € J(y), [lal* = llyI* = 2(x — v, f).



Proposition 3.1.56. ([10]) Let 1 < g < co. Then we have the following:

1. The Banach space X s smooth if and only if the duality mapping J, is
single valued.

2. The Banach space X is uniformly smooth if and only if the duality mapping

Jq 1s single valued and norm-to-norm uniformly continuous on bounded sets of X.

A set-valued operator A : X — 2% with the domain D(A) and the range

R(A) is said to be accretive if, for all ¢ > 0 and z,y € D(A),
[z =yl < [l =y + t(u —v)| (3.40)
for all u € Az and v € Ay.

Recall that A is accretive if and only if, for each x,y € D(A), there exists
j(x —y) € J(z — y) such that

(u—=wv,j(x—y)) =0 (3.41)

for all w € Az and v € Ay. An accretive operator A is said to be m-accretive if the
range

R(I + M) = X

for some A > 0. It can be shown that an accretive operator A is m-accretive if and
only if
R(I+MA) =X

for all A > 0.

For any a@ > 0 and ¢ € (1,00), we say that an accretive operator A is «-
inverse strongly accretive (shortly, a-isa) of order q if, for each =,y € D(A), there

exists j,(z —y) € Jy(x — y) such that
(u—wv,jo(z —y)) = alu— vl (3.42)

for all u € Az and v € Ay.



Let C be a nonempty closed and convex subset of a real Banach space X
and K be a nonempty subset of C'. A mapping T': C — K is called a retraction
of C'onto K if Tx = z for all x € K. We say that T is sunny if, for each x € C
and t > 0,

T(te + (1 - t)Tz) = Tx, (3.43)

whenever tx+(1—t)Tx € C. A sunny nonexpansive retraction is a sunny retraction

which is also nonexpansive.

Theorem 3.1.57. ([38]) Let X be a uniformly smooth Banach space and T : C —
C be a nonexpansive mapping with a fixed point. For each fixed u € C and t €
(0,1), the unique fized point x, € C' of the contraction C' > x — tu+ (1 —t)Tx
converges strongly as t — 0 to a fized point of T. Define a mapping Q@ : C' — D
by Qu = s — limy_,gxy. Then Q) is the unique sunny nonexpansive retract from C

onto D.

Lemma 3.1.58. ([29], Lemma 3.1) Let {a,},{c,} C R", {a,} C (0,1) and {b,} C

R be the sequences such that
Gp41 S (1 - an)an + bn + Cn

for alln > 1. Assume that Y ", ¢, < co. Then the following results hold:
1. If b, < o, M where M > 0, then {a,} is a bounded sequence.

2. If > ay, = 00 and limsup,,_, 2—’; <0, then lim,_,o a, = 0.

Lemma 3.1.59. ([20]) Let {s,} be a sequence of nonnegative real numbers such

that
Snt1 < (1= 70)Sn + YuTn
and
Sp41 < Sp — N+ Pn

for alln > 1, where {v,} is a sequence in (0,1), {n,} is a sequence of nonnegative

real numbers, {1,} and {p,} are real sequences such that



‘Z' Z:—zozl ryn = OO;
2. limy, oo prn = 0;

3. limg— o0 N, = 0 implies limsup,_, . 7, < 0 for any subsequence {n;} C
{n}.
Then lim,,_,oo S, = 0.
Lemma 3.1.60. [[31], p.63] Let ¢ > 1. Then the following inequality holds:

1
1= pats (3.44)

1
ab < —af +
q
for arbitrary positive real numbers a and b.
Lemma 3.1.61. ([238], Lemma 3.1) For any r > 0, if
T, :=JP(I —rA) = (I+rB)'(I — rAx),
then Fix(T,) = (A+ B)~(0).
Lemma 3.1.62. ([23], Lemma 3.2) For any s € (0,7] and x € X, we have
|z — Tszx|| < 2||lx — T,x||.
Lemma 3.1.63. ([28], Lemma 3.3) Let X be a uniformly convex and q-uniformly
smooth Banach space for some q € (1,2]. Assume that A is a single-valued a-isa

of order q in X. Then, for any s > 0, there exists a continuous, strictly increasing

and convez function ¢, : RY — RT with ¢,(0) = 0 such that, for all x,y € B,,
IToe = Toyll* <l =yl —r(ag — " k)| Az — Ay|*
— oI = )T =rA)x — (I = J)(I —rA)yl), (3.45)
where Ky is the g-uniform smoothness coefficient of X.
Remark 3.1.64. For any p € [2,00), L is 2-uniformly smooth with ko = p — 1

and, for any p € (1,2], L? is p-uniformly smooth with s, = (14 t271)(1 4 t,)' 77,

where ¢, is the unique solution to the equation
(p—2)P "+ (p—1tFr?—1=0

for any t € (0,1).



CHAPTER IV

MAIN RESULTS

4.1 The modified forward-backward splitting method for solving quasi

inclusion problem

In this section, we first establish some crucial propositions and then prove our

main theorem.

Proposition 4.1.1. Let ¢ > 1 and let X be a real smooth Banach space with the
generalized duality mapping j,. Let m € N be fived. Let {x;}7"; C X and t; > 0

for alli=1,2,...,m with Y. t; < 1. Then we have

S i billwa|?
1) ti||” < = - (4.46)
i1 q—(¢— 1)L t)

Proof. By definition of the generalized duality mapping j, and Lemma 3.1.60, we

can estimate the following:

Hilwi“q = <i1tixi7jq(iltixi)>

= iti<xiajq(itixi)>
inzlti||xi|1||§;tixi||q—l
gménxinu%HgthQ)

m

= St + Y b ),
i=1 =1 1

1=

IA

IA

which implies that

1 n 1 &
i=1 i=1 i=1

We see that 1 — % > i, t; is positive since ¢ > 1 and ) .-, t; < 1. It follows that

. S|
| Y tiw]|* < = L
; q— (q - 1)(Zi:1 ti)



Proposition 4.1.2. Let X be a uniformly convex and q-uniformly smooth Banach
space. Let A : X — X be an a-isa of order ¢ and B : X — 2% an m-accretive
operator such that Q := (A+ B)~'(0) # 0. Let {e,} be a sequence in X. Let {x,}

be generated by u,x1 € X and
Tpil = QpUt + Ay, + 5n<]r]i (T — TpAxy) + €4, n>1, (4.47)

where JB = (I +1r,B)7', 0 < r, < (ag/ky)" "V and {o,}, {\.}, and {5,} are
sequences in [0, 1] with a,+ 4+, = 1. If > 07 len]| < 00 orlim, . ||en]| /am = 0,

then {x,} is bounded.

Proof. For each n € N, we put T, = JZ (I — r, A) and let {y,} be defined by
Ynt1 = QplUl + AnYn + 0nTnyn. (448)
Firstly, we compute the following:

[Zn41 = Ynsill = N An(@n = Yn) + 0n(Tan — Toyn) + enl|

IN

A

)‘nuxn - ynH + Onllwn — ynH + HenH

= (1= an)llzn = yall + llenll-

By the assumptions and Lemma 3.1.58 (2), we conclude that lim,, . ||z, —yn|| = 0.

Let z = Qu, where () is a sunny nonexpansive retraction of X onto €2.

We next show that {y,} is bounded. Indeed

”yn—i-l - z“ = ||a7L<u - Z) + /\n(yn - Z) + 57L(Tnyn - Z)”

IN

anllu = 2] + Anllyn = 2l + 0l Toyn — 2|

IN

anflu =zl + Anllyn = 2l + Onllyn — =|l

anflu = 2] + (1 = an)||y. — ||

This shows that {y,} is bounded by Lemma 3.1.58 (1) and hence {z,} is also
bounded. O



Theorem 4.1.3. Let X be a uniformly convex and q-uniformly smooth Banach
space. Let A : X — X be an a-isa of order ¢ and B : X — 2% an m-accretive
operator such that Q := (A+ B)~'(0) # 0. Let {e,} be a sequence in X. Let {x,}

be generated by u,x1 € X and
Tpil = QpUt + Ay, + 5nJ£L (T, — TpAxy,) + €4, n>1, (4.49)

where JB = (I +r,B)~", {r,} C (0,00) and {an}, {M\n}, and {6, } are sequences
in [0, 1] with o, + A\ + 6, = 1. Assume that

(i) lim, oo oty =0, D07 | @ty = 00;

(ii) 0 < liminf, . r, < limsup,, . r, < (agq/k,)YY;

(111) liminf,, ., 8, > 0;

(i) S lewll < 00 o7 lim s llenll /o = 0.

Then {x,} strongly converges to z = Qu, where Q) is a sunny nonerpansive

retraction of X onto €.

Proof. Since, by Proposition 4.1.2, lim,, . ||, — yn|| = 0, it suffices to show that

limy, 0o Y = 2 = Qu. From (3.37), we have

[ynt1 — 2|7 = lan(u = 2) + Aa(yn — 2) + 0 (Tnyn — 2)||*
< ”/\n(yn —2)+ 571(Tnyn - Z)Hq

T g0t — 2 jaltner — 2)). (4.50)
On the other hand, by Proposition 4.1.1 and Lemma 3.1.63, we obtain

H)‘n(yn - Z) + 5n(Tnyn - Z)Hq

1

¢—(g=1)1 —an)
1

)‘n Ynp — 2 a
==y (e
6 (llyn = 211* = ralag — rg ™ k,) || Ay, — Az

< Anllyn = 2[1" + 0nl| Ty — 2[|)




~64(lyn = oAy — Ton +raA2]))))

B 1— o, g — 2t — Onrnl0q — i hy)

T og—@—D—ay'" ¢ —(g—D(1—ay,)
5n

EIEDETD

Replacing (4.51) into (4.50), it follows that

[ Ayn — Az[|?

anq
o — 2l < (1- ——T
lpnss =" < (1= oy ) e =2
) — a1
. nrn(aq Tn kq) HAyn_Aqu
q—(¢— 11— ay,)
1)
— L n — TnAy, — Ty, + 1y Az
Fgan{i = 2. (s — ). (452

We can check that ——=5f— is in (0,1) since {an} C (0,1) and 1 < ¢ < 2.

OnTn (Oéq—ﬁ]flkq)
q—(¢—1)(1-an)

On

Moreover, by condition (ii), “-1D(1-a

and . j are positive. From

(4.52), we then have

ang

[Yn1— 2|7 < (1— PR T r an)> [y — 2119+ g (u— 2, jg(Yns1 —2)) (4.53)

and also

[ Ayn — Az[|?

_ g1
R T P .
n

q—(¢—1(1 )

0
— - n — Ay, — Thy, + rpAz
+ qan(u = 2,y (g — 2)). (454)

For each n > 1, we set
anq
q—(g— 1)1 —an)’

o = (0= (=D = 0n))(u— 2 Jg(yns1 — 2)),
Onrn(ag — ri k)

Sp = ||yn_z||qa TYn =

n Ay, — Az||4
" D ay
0
+ = n_rnAn_Tnn+TnAZ )
Pn = qan<u_z7jq(yn+1 _Z)>' (4'55)

Then (4.53) and (4.54) are reduced to the following:

Sn+1 S (1 - Vn)sn + YnTn, T 2 1



and
Sp41 < Sy — My + pp, 12> 1.

[e.9]

Since Y7 | o, = 00, it follows that )~ | 7, = co. By the boundedness of {y,,} and
lim,, . a,, = 0, we see that lim, ., p, = 0. In order to complete the proof, using
Lemma 3.1.59, it remains to show that limy_., 7, = 0 implies lim sup;_, . 7, <0

for any subsequence {n;} C {n}.

Let {ng} be a subsequence of {n} such that limy_., 7, = 0. So, by our

assumptions and the property of ¢,, we can deduce that
I}erolo | Ayn, — Az|| = I}LT{)IO WYne — T AYny, — Ty Yny, + 7o Az|| = 0.
This gives, by the triangle inequality, that
S (| Ty g = Y, || = 0. (4.56)

Since lim inf,,_,, r, > 0, there is r > 0 such that r,, > r for all n > 1. In particular,

rp, > 1 forall £ > 1. Lemma 3.1.62 yields that

HT;LLBynk - ynkH < 2||Tnkynk - ynk”
Then, by (4.56), we obtain

lim sup || TPy, = yn, || <2 lim [T, 9n, — g, [| = 0.

k—o00

It follows that
lim [ T2y, — yo | = 0. (4.57)

k—o0
Let z; = tu + TABz, t € (0,1). Employing Theorem 3.1.57, we have 2, — Qu = z

as t — 0. So we obtain

12t = Y19 = [[t(u = yny) + (1 = (TP 2 — g,
< (1= OYTAP2 — yn 17+ gt i — Yng, Go (2t — Y)Y
= (1=0)NT P2 — yu |+ qt{u — 22, Jo (2t — Yny))

+ qt (2 — Yngs Jo(2t — Yny))



< (1=t)UIT P2 = TPy |+ 1T Yo, — Y l)*
+qt<u - Zt;jq<Zt - ynk)> + thZt - ynqu
< (1 — t)q(HZt - ynk” + ”TTA7Bynk - ynkH)q
—|—qt<u — 2, Jo(2 — ynk)> + qtl|z — yn, ||*.
This shows that

(1-t) (¢t —1)

(e oz =yn)) < ==l =N Py =g )+ Nz = g ]
(4.58)
From (4.58) and (4.57), we obtain
liin_igp <zt —u, jo(z — ynk)> < u;—tt)qu + %M(I
_ ((1 - t)qq: qt — 1>M‘1, (4.59)

where M = limsup,_, . ||zt — yn,|l,t € (0,1). We see that (l—t)‘;—th—l —0ast—0.
From Proposition 3.1.56 (2), we know that j, is norm-to-norm uniformly continuous
on bounded subsets of X. Since z; — z as t — 0, we have ||j,(z: — yn,) — Jo(z —

Yn, )|l = 0 as t — 0. Observe that

(2t =, Jg (20 — Yny)) — (2 = 1, Jg (2 = Yny))|

IN

[(ze = 2, Jg(ze =y )+ 1(2 = w, Jo (2 = Uni,) = Jg(Z = Uni )|
< lze = 2llllze =yl + 11z = ulllia(ze = yn) = Jolz = yu)|l-
So, as t — 0, we get
(2t = u, g (20 = yny)) = (2 = 0, g (2 — )
From (4.59), as t — 0, it follows that
limsup (z — u, jo(2 — yn,)) <O0. (4.60)

k—o0

On the other hand, by (4.48) and (4.56), we see that

||ynk+1 - ynk” < ankHu - ynk” + 5nk||Tnkynk - ynkH - 07 (461)



as k — oo. Combining (4.60) and (4.61), we get that

limsup (z — u, jo(z — Ynet1)) < 0.

k—o0

It also follows that limsup,_ . 7,, < 0. We conclude that lim, .. s, = 0 by
Lemma 3.1.59. Hence y,, — z as n — oo. We thus complete the proof. O
By setting A, = 0 for all n > 1, we obtain the following result:

Corollary 4.1.4. Let X be a uniformly convex and q-uniformly smooth Banach
space. Let A : X — X be an a-isa of order ¢ and B : X — 2% an m-accretive
operator such that Q := (A+ B)~1(0) # 0. Let {e,} be a sequence in X. Let {z,}

be generated by u,x1 € X and
Tpi1 = apu+ (1 — an)JfL (xy — rnAzy,) + e, n > 1, (4.62)

where JP = (I +1,B)"", {r,} C (0,00) and {a,} is a sequence in [0,1]. Assume

that
(i) lim, oo oy, = 0, D07 vy = 00;
(ii) 0 < liminf, . r, < limsup,, . r, < (agq/k,)Y Y,
(iii) Y0 |len]| < 0o or lim,_.« [l€s]|/as = 0.

Then {x,} strongly converges to z = Qu, where Q) is a sunny nonerpansive

retraction of X onto Q.

Remark 4.1.5. (1) Our results extend those of [3, 21, 32, 51, 54, 55] from Hilbert

spaces to Banach spaces.

(2) We remove the conditions that lim,, . |rp11—72] = 0and 0 < liminf,, . A, <

limsup,_,.o An < 1 in Theorem 3.3 of Yao-Noor [55] and the conditions that
Yoo A < 00, limy, o (ﬁ - %) =0and > 7, m%;a”‘ < oo in Theorem 1

of Boikanyo-Moroganu [3].



We now give an example in ¢35 space which is a uniformly convex and 2-

uniformly smooth Banach space but not a Hilbert space.

Example 4.1.6. Let A : {3 — (3 be defined by Ax = 2x+ (1,1,1,0,0,0,0,...) and
let B : {3 — U3 be defined by Bx = bx where x = (x1, x9,x3,...) € l3.

We see that A is a 1/2-isa of order 2 and B is an m-accretive operator.

Indeed, let x,y € ¢3, then

(Az — Ay, jo(z —y)) = (22— 2y,j2(x —y))
= 2z -yl
= SllAr - Ayl
We also have
(Bx — By, ja(x —y)) = 5|z — yll7, > 0
and R(I +rB) = {3 for all » > 0. By a direct calculation, we have for s > 0
JP(x —sAz) = (I+sB) '(r — sAx)

1—2s S
l’_
1+ 5s 14 5s

(1,1,1,0,0,0,0,...),

where x = (x1,79,23,...) € f3. Since, in 3, ¢ = 2, ks = 2 and o = 1/2, we

can choose r, = 0.1 for all n € N. Let «,, = A\p = —=— and §,, = (1-—

1
1000n+1"? 10n

o — o). Let u = (—0.05,-0.08,-0.06,0,0,0,0, ...) and e, = (0,0,0,...).
Starting z; = (1.2,2.5,3.4,0,0,0,0,...) and computing iteratively algorithm (4.49)

in Theorem 4.1.3, we obtain the following numerical results.
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(1.2000000,2.5000000,3.4000000,0.0000000,0.0000000,...)
(-0.1368743, -0.1311181, -0.1271209,0.0000000,0.0000000,...)
(-0.1428340, -0.1428263, -0.1428159,0.0000000,0.0000000,...)
(-0.1428499, -0.1428522, -0.1428507,0.0000000,0.0000000,...)
(-0.1428519, -0.1428536, -0.1428524,0.0000000,0.0000000,...)
(-0.1428530, -0.1428543, -0.1428534,0.0000000,0.0000000,...)
(-0.1428537, -0.1428548, -0.1428541,0.0000000,0.0000000,...)
(-0.1428542, -0.1428552, -0.1428545,0.0000000,0.0000000,...)
(-0.1428546, -0.1428554, -0.1428549,0.0000000,0.0000000,...)
(-0.1428549, -0.1428556, -0.1428551,0.0000000,0.0000000,...)

(-0.1428551, -0.1428558, -0.1428553,0.0000000,0.0000000,...)

(-0.1428561, -0.1428565, -0.1428562,0.0000000,0.0000000,...)
(-0.1428563, -0.1428566, -0.1428564,0.0000000,0.0000000,...)
(-0.1428565, -0.1428567, -0.1428565,0.0000000,0.0000000,...)
(-0.1428566, -0.1428568, -0.1428566,0.0000000,0.0000000,...)
(-0.1428566, -0.1428568, -0.1428567,0.0000000,0.0000000,...)
(-0.1428567, -0.1428568, -0.1428567,0.0000000,0.0000000,...)
(-0.1428567, -0.1428569, -0.1428568,0.0000000,0.0000000,...)
(-0.1428568, -0.1428569, -0.1428568,0.0000000,0.0000000,...)
(-0.1428568, -0.1428569, -0.1428568,0.0000000,0.0000000,...)

(-0.1428568, -0.1428569, -0.1428569,0.0000000,0.0000000,...)

1.6937789E4-00

8.2573797E-03

1.7112628E-05

3.4600332E-07

1.7301589E-07

1.0843686E-07

7.4310792E-08

5.4092528E-08

4.1132625E-08

3.2329686E-08

2.6078314E-08

6.4012505E-09

4.0821310E-09

2.8280803E-09

2.0742607E-09

1.5860974E-09

1.2519825E-09

1.0133107E-09

8.3691026E-10

7.0286201E-10

5.9861825E-10

Table 1 Numerical results of Example 4.1.6 for iteration process (4.49)

From Table 1, the solution is (—0.142857, —0.142857, —0.142857, 0,0, 0,0, ...).




4.2 Applications and numerical examples

In this section, we discuss some concrete examples as well as the numerical

results for supporting the main theorem.

4.2.1 Minimization Problem

In this subsection, we apply Theorem 4.1.3 to the convex minimization problem.
Let H be a real Hilbert space. Let F': H — R be a convex smooth function and
G : H — R be a convex, lower-semicontinuous and nonsmooth function. We

consider the problem of finding & € H such that
F(z)+G(z) < F(x) + G(x)

for all x € H. This problem is equivalent, by Fermat’s rule, to the problem of
finding £ € H such that
0 € VF(z)+ 0G(2),

where VF' is a gradient of F' and 0G is a subdifferential of G. In this point of view,
we can set A = VF and B = G in Theorem 4.1.3. This is because if VF'is (1/L)-

Lipschitz continuous, then it is L-inverse strongly monotone [[1], Corollary 10].
Moreover, G is maximal monotone [[10], Theorem A]. So we obtain the following
result.

Theorem 4.2.1. Let H be real Hilbert space. Let F': H — R be a convex and
differentiable function with (1/L)-Lipschitz continuous gradient VF and G : H —
R be a convex and lower semi-continuous function which F+G attains a minimizer.

Let {e,} be a sequence in H. Let {x,} be generated by u,x; € H and
Tpa1 = QU+ ANy + On S, (:L‘n — rnVF(xn)) +e,, n>1, (4.63)

where J,, = (I +r,dG)~", {r,} C (0,00) and {a,}, {\n}, and {6, } are sequences
in [0, 1] with o, + N\ + 6, = 1. Assume that



(i) lim,, oo v, =0, D7 | @ty = 00;

(i1) 0 < liminf,, . r, <limsup,,_, 7, < 2L;

(#11) liminf,, ., 8, > 0;

(i0) 52 Nleall < 00 o7 Ty e leall = 0.

Then {x,} strongly converges to a minimizer of F + G.

Example 4.2.2. Solve the following minimization problem:
min |z]|5+ (3,5, —1)z + 9 + ||z, (4.64)
xe

where © = (yla y271/3) S Rg'

For each x € R3, we set F(z) = [|z]|3 + (3,5, —1)x + 9 and G(z) = ||z||;.
Then VF(z) = 2z + (3,5, —1). We can check that F' is convex and differentiable
on R? with 2-Lipschitz continuous gradient VF. Moreover, G is convex and lower

semi-continuous but not differentiable on R3. From [?] we know that, for r > 0,
(I +70G) " (z) = (max{|y1| — r,0}sign(y1), ..., max{|ys| — r,0}sign(ys)).

99n

— 1 = —=2n

Op = 5 and 7, = 0.2. Let e, =
(% #, n—lz), u = (2.553479, 5.187352,1.903486) and x; = (3.425859, 8.231258, 1.430561).

Using algorithm (4.63) in Theorem 4.2.1, we obtain the following numerical results.



n Ty = (Y1, Y5, y3) F(z,) + G(zn) | Tns1 — 202
1 (3.425859,8.231258,1.430561) 153.6276069 1.4677578E+00
2 (3.332050, 6.954869, 2.149131) 128.1489310 2.7041086E4-00
3 (2.156296, 4.541443, 1.824807) 73.4780908 2.4690302E+00
4 (1.021838, 2.392267, 1.388738) 36.1366456 1.8578516E+00
5} (0.270687, 0.736212, 1.008125) 16.1316179 9.8758376E-01
6 (-0.108319, -0.126974, 0.713871) 8.8129329 6.9838132E-01
7 (-0.381831, -0.732534, 0.498872) 6.2374757 4.8162425E-01
8 (-0.573595, -1.147294, 0.346679) 5.0291149 3.2683581E-01
9 (-0.705677, -1.426945, 0.240984) 4.4730915 2.1951923E-01
10 (-0.795670, -1.613558, 0.168420) 4.2194535 1.4654722E-01
654 (-0.999858, -1.999718, 0.000079) 4.0000001 5.1403155E-07
655 (-0.999858, -1.999718, 0.000079) 4.0000001 5.1241306E-07
656 (-0.999858, -1.999719, 0.000079) 4.0000001 5.1080220E-07
657 (-0.999858, -1.999719, 0.000079) 4.0000001 5.0919892E-07
658 (-0.999858, -1.999720, 0.000079) 4.0000001 5.0760317E-07
659 (-0.999859, -1.999720, 0.000078) 4.0000001 5.0601491E-07
660 (-0.999859, -1.999721, 0.000078) 4.0000001 5.0443408E-07
661 (-0.999859, -1.999721, 0.000078) 4.0000001 5.0286064E-07
662 (-0.999859, -1.999721, 0.000078) 4.0000001 5.0129456E-07
663 (-0.999860, -1.999722, 0.000078) 4.0000001 4.9973577E-07

Table 2 Numerical results of Example 4.2.2 for iteration process (4.63)

From Table 2, we see that xgs3 = (—0.999860, —1.999722,0.000078) is an approxi-
mation of the minimizer of F'+ G with an error 4.9973577F — 07 and its minimum
value is approximately 4.0000001. In fact, the minimizer of F' + G is (—1,—2,0)
and (F + G)(—-1,-2,0) = 4.



300
Iteration Number (n)

Figure 1 The error plotting of ||z,4+1 — 2,||2 in Table 2

4.2.2 Linear Inverse Problem

In this subsection, we apply Theorem 4.1.3 to solve the unconstrained linear

system

Cex=d (4.65)

where C'is a bounded linear operator on H and d € H. For each x € H, we define
F:H— R by
1
F(zx) = §||C’x —d||*. (4.66)

From [?] we know that VF(z) = CT(Cz — d) and VF is K-Lipschitz continuous

with K the largest eigenvalue of CTC. So we obtain the following result.

Theorem 4.2.3. Let H be real Hilbert space. Let C': H — H be a bounded linear
operator and d € H with K the largest eigenvalue of CTC. Let {e,} be a sequence

in H. Let {x,} be generated by u,x; € H and
Tyl = Qplh + A2y + Oy (a:n —r,CT(Cx,, — d)) +en, n>1, (4.67)

where {r,} C (0,00) and {a,}, {\.}, and {3,} are sequences in [0,1] with o, +
Ap + 0, = 1. Assume that

(7;) lim,, .o a, = 0, 2211 Qp = 00,

(i1) 0 < liminf,, . r, <limsup,,_, . r, < 2/K;



(#4i) liminf, . 0, > 0;
(iv) Y27 len]l < 0o or limy, .« ||€n]| /o = 0.

If (4.65) is consistent, then {x,} strongly converges to a solution of a linear

system.

Example 4.2.4. Solve the following linear system:

200 +y2 —3ys + 2y, = 13
Y1 —2y2+3ys +5y4 = 9
—3y1 +5ys +4dys — 2y, = -3 (4.68)

dy1 +2y2 —ys —ys = O.

2 1 -3 2 n 13
1 -2 3 5 n 9
Let C' = , = and d = . Then
-3 5 4 =2 Y3 -3
4 2 -1 -1 Ya 6

30 -7 =19 11

. ~7 34 9 -20
10 =
-19 9 35 2

11 =20 2 34

The largest eigenvalue of CTC' is 65.5033. This allows us to choose the upper bound
of {r,}. We also note that since CTC is symmetric, the largest eigenvalue K is
less than mb, where m is the dimension of the matrix C7C and b is its maximal

element; see [[57], Theorem 1].

)\n _ 49n 571 —

(1) (50n+1) and 7, = 0.03 for all

_ 1 n
We choose Oy = 50nt1’ el

n>1. Let e, = (5,25, 5, 25)", u = (3,1,1,4)" and z; = (—1,3,2,5)". Using

algorithm (4.67) in Theorem 4.2.3, we obtain the following numerical results.



zn = (Y, vy, v,y

[Zn41 — a2

238

239

240

241

242

243

244

245

246

247

(-1.000000,3.000000,2.000000,5.000000)
(1.608431,3.435784,0.640392,5.500392)
(1.626720,3.340500,-0.516476,4.245509)
(1.339520,2.891206,-0.916370,3.727969)

(1.099700,2.553623,-1.039057,3.465156)

(1.000364,1.999292,-0.999491,2.999184)
(1.000363,1.999295,-0.999493,2.999188)
(1.000361,1.999298,-0.999496,2.999191)
(1.000359,1.999301,-0.999498,2.999195)
(1.000358,1.999304,-0.999500,2.999198)
(1.000356,1.999307,-0.999502,2.999202)
(1.000355,1.999310,-0.999504,2.999205)
(1.000353,1.999313,-0.999506,2.999208)
(1.000352,1.999316,-0.999508,2.999212)

(1.000350,1.999319,-0.999510,2.999215)

3.0154184E+00
1.7095286E4-00
8.4386757E-01
5.0556755E-01

2.9280323E-01

5.3648214E-06
5.3189260E-06
5.2735040E-06
5.2287703E-06
5.1844999E-06
5.1408891E-06
5.0977315E-06
5.0552065E-06
5.0131244E-06

4.9716496E-06

Table 3 Numerical results of Example 4.2.4 for iteration process (4.67)

From Table 3 we see that the solution of a linear system (4.68) is (1,2,

1
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Figure 2 The error plotting of ||z,+1 — 2|2 in Table 3

Remark 4.2.5. We remark that Theorem 4.1.3 can be further applied to the

—1,3).



variational inequality problem, the split feasibility problem and the fixed point

problem. See also [28, 17].

We next prove another strong convergence theorem which mainly extends

and improves the results obtained by Takahashi et al. [17].

Theorem 4.2.6. Let X be a uniformly conver and q-uniformly smooth Banach
space. Let A X — X be an a-isa of order ¢ and B : X — 2% be an m-accretive
operator. Assume that S = (A + B)7Y(0) # 0. We define a sequence {z,} by the

iterative scheme: for any x, € X,
o1 = Bnn + (1= Bp)(apu+ (1 — an)Jg(xn — rpAxy)) (4.69)

for each n > 1, where uw € X, J? = (I +r,B)™", {a,} € (0,1), {8} C [0,1) and

{rn} C (0,400). Assume that the following conditions are satisfied:
(a) lmy, oo 0, =0, 07 |y, = 00;

(b) limsup,,_,. On < 1;

1

(¢) 0 <liminf, .7, <limsup,_, . r, < (z—g)qfl‘

Then the sequence {x,} converges strongly to a point z = Q(u), where Q is

the sunny nonexpansive retraction of X onto S.

Proof. Let z = Q(u). Let T,, = JP (I—r,A) and 2, = apyu+(1—0oy,) JP (2, —r, Azy,)

for each n > 1. Then we obtain, by Lemma 3.1.61,

ln =2l = lawu+ (1= @) J7 (20 = raAza) = 2|
= Jlan(u—2) + (1 — ap)(Tha, — 2)||

< apllu=z|| + (1 —ap)|zn — 2] (4.70)
It follows from (4.70) that

||xn+1 - Z“ = ”ﬁn(xn - Z) + (1 - 571)(271 - z)”



A

< Bullen =zl + (1 = Bo)llzn — 2|
< Ballen = 2] + (1 = Ba)(anllu = 2] + (1 = an)||zn = 2[])
= Ballen =zl + (1 = Bo)anfu = 2] + (1 = B2)(1 = an) [z — ]|
= (1= an(l = Ba))llzn — 2 + (1 = Bn)amlu — z]|.
Hence we can apply Lemma 3.1.58 to claim that {x,} is bounded. Using the

inequality (3.37) and Lemma 3.1.63, we derive that

[zn — 2|7 = [lan(u—2)+ (1 - an)(‘]fl<xn — rpAzy,) — Jfb(z — 1, A2)) |

IA

(1 — )| JE (20 — rnAaxy) — J5 (2 — 1, A2) |
+qan(u — 2, Jy (2, — 2))

= (1 — o) Thz, — Toz|| + qanu — 2z, Jy (2, — 2))

IN

(1= an)?|llea = 217 = ra(aq = ri ™, Azy — Az

—~64(I(1 = JENI = 1o A)an = (I = JEYI = raA)z])]

+qon(u — z, Jy (2, — 2))

= (1= an)lon — 2|7 = (1 — o) (g — 13 kg) | Azn — Az|?
—(1 — )| (zy, — rnAzxy, — Thxy) — (2 — rpAz = T,,2)||)
+qan(u — z, Jy (2, — 2))

= (1= an)lon — 2| = (1 — o) ru(aq — 187 g) | Azn — Az||?

—(1 — )%yl xn — rAxy, — Ty + 1 Az||)

+qon, (u — z, Jy (2, — 2)). (4.71)

It follows from (4.71) that

[ensn =217 = NBu(zn — 2) + (1= Bn)(zn — 2)[
< Billn = 2"+ (1 = 8)"|zn — 2]
= Blllen = 27+ (1= 57 [(1 = @)z, — 2|1
—(1 = ) ru(aq — i~ kg) || Azn — Azl
—(1 = an)?y(||xn — rAxy, — Ty + 1y Az||)

+qon, (u — 2, Jy (2, — z))}



= Billzn =217+ (1 = 8)"(1 = an)[lwn — 2|7

—(1 = B)"(1 = an)'rn(ag — i k) [ Ay, — Az|?

—(1 = Ba)"(1 = )y (| — Az, — Ty, + 1, A2|))
(1 = Ba) g0 (u — 2, Jo(2n — 2))

(B 4 (1 = Ba) (1 = a)) |25 — 2|

—(1 =311 — an)rp(ag — r8 k) || Az, — Az]|?

IN

—(1 =61 — an)ioy(|xn, — rnAzy — Thxn + 1, AzZ]))
+(1 = Bn)lqan(u — 2, Jy(z, — 2))
= (1= (1= p8)an)llzn — 2|

—(1 = 8a)"(1 = ) rs(ag — i )| Az, — Az]|

—(1 =61 — an)ioy(|xn, — rnAzy — Thx, + 1, AzZ]))

+(1 = Bn)%qan(u — 2z, Jy(zn — 2)). (4.72)
We know that (1 — f3,)a,, is in (0,1) and (1 — 3,)%(1 — a,,)? are positive since
{an},{Bn} C (0,1). Moreover, by the condition (c) and 1 < ¢ < 2, we can show

that (1 — 8,)9(1 — ay,)irp (g — 11k, is positive. Then, from (4.72), it follows

that

[#nr — 2|7 < (1= (1= Bn)an)[lzn — 2|

+<1 - 6n)qqan<u —Z, Jq<Zn - Z)> (473)
and also

[2n1 — 2|7 < o — 2|7 = (1= B2) (1 — ) rn(ag — ri rg) || Ay — Az
—(1 =511 — )¢ (||xn, — rnAxy, — Thx, + 1,AZ]|)

+(1 — Bn)%qan(u — 2z, Jy(zn — 2)). (4.74)
For each n > 1, set

Sn = ||In—2||qa

Tn = (1_6n)04n7



T = (1-— ﬁn)q_lq(u — 2, Jy(zn — 2)),
U (1 - 6n)q(1 - Oén)qrn(aq - Tg_lliq)HAl’n — AZHq
_'_(1 - 671)(](1 - an)q(bq(Hxn - 7’7”L14xn - TnLUn + TnAZH),

pn = (1= Bn)qan(u— 2, Jy(2, — 2)).
Then it follows from (4.73) and (4.74) that
Spt1 < (1= 7)80 + YnTn

and
Sn+1 S Sn — T + Pn

for each n > 1. Since Y ° o, = oo, it follows that > 7 =, = oo. By the

boundedness of {z,} and lim,, .., a;,, = 0, we see that lim,_, p, = 0.

In order to complete the proof, using Lemma 3.1.59, it remains to show that
limy—00 M, = 0 implies limsup,_, 7, < 0 for any subsequence {n;} C {n}. Let
{nx} be a subsequence of {n} such that limy_ 7,, = 0. So, by our assumptions

and the property of ¢,, we can deduce that
khj& | Az, — Az|| = kh_g |Zp, — Tny A, — Doy @, + 10, Az|| =0,
which gives, by the triangle inequality, that
I}l_{go | T, Tny — Ty || = 0.

By the condition (c), there exists € > 0 such that r, > ¢ for all n > 0. Then, by

Lemma 3.1.62, we have

It follows that

limsup ||Texn, — xn, || < 2limsup |1}, @n, — Tn, || =0 (4.75)
k—o0 k—o0
and so
limsup ||Tex,, — @n, || = 0. (4.76)

k—oo



Let z; = tu+ (1 — t)T.z for any t € (0,1). Employing Theorem 3.1.57, we have

zt — Qu =z ast — 0. So we obtain

”Zt - anHq

This shows that

IN

IA

[£(u = 2n,) + (L = O)(T5,,, 20 — 20 |?

(1-— t)q||Trnkzt — Zn |7 qt(u — 2y, Jo(20 — 20,.))
(=T, 2t — zn, |7 + qt{u — 2, (2t — 2n,))
+qt(ze — zp,, Jy(2t — 2n,))

(1-— t)qHTrnkzt =T, 20 + T 20y — Zn, ||
+qt{u — 2z, Jo(2 — zn,)) + qtll2e — 20, ||*

(U= 07T, 2 = Ty il + | To 2y — 2l
Fatu — 2, Jo(2 — 2n,)) + qtl[ 2 — 20, |

(1= 0)7l120 = 20, ]l + 1T,

q
R O H]

Fqt{u — 2, Jo (2 = 2 ) + qtllze — 20, ]|,

(1—1t) q
(= oo =)} < = o Tz = ]
(¢t = 1)
+ " |zt — 2zn, |7 (4.77)
So we have
limsup(z; — u, Jy(zt — 2n,.))
k—o0
‘ 1 — )2 a t—1
< tmsup Sz — 4 17, 20— 2ol]+ s L
1—1)4 t—1
_ qu X MMQ
qt qt
1—-1%)¢ t—1
_ (( ) ;Fq )Mq, (4.78)
4q

where M = limsup,_, ||z

— Zn, ||, t € (0,1). We see that A-Di+qt=1 5 o
qt

t — 0. From Proposition 3.1.56 (2), we know that .J; is norm-to-norm uniformly

continuous on bounded subset of X. Since z; — z as t — 0, we have || J,(z; — 2y, ) —

Jy(z —xp,)|| — 0 ast — 0. We see that

<Zt — U, Jq(zt - an)> - <Z —u, Jq(z - an»



= (o= 2+ (=) Tyl = ) = G = (e = )|

ot = 2 daCe = 2 )| (2 = oz = ) = (2 =,y = 2,))|

IA

< lae = 2llllze = 2, 171 + 12 = wlll Ty (2 = 2a,) = Jo(z = 20,1
So, as t — 0, we get
(2 —u, Jy(z — 2n,)) — (2 —u, Jy(2 — 2n,))- (4.79)
From (4.78), as t — 0, we see that

lim sup(z — u, J,(z — z,,)) < 0.

k—o0

This shows that limsup,,_, . 7, < 0. We conclude that lim,,_, s, = 0 by Lemma

3.1.59 (iii). Hence x,, — z as n — oo. This completes the proof. ]

We finally discuss some concrete examples as well as the numerical results

for supporting the main theorem.

Theorem 4.2.7. Let H be real Hilbert space. Let ' : H — R be a bounded
linear operator with K-Lipschitz continuous gradient VF and G : H — R be a
convex and lower semi-continuous function which F + G attains a minimizer. Let

JO% = (I +1,0G)™" and {x,} be a sequence generated by u,z1 € H and
Tpt1 = Bpxn + (1= 6y)(au+ (1 — an)anG(xn — 1, VF(z,))) (4.80)

for each n > 1, where {a,,} C (0,1), {8,} C [0,1) and {r,} C (0,400). Assume

that the following conditions are satisfied:
(a) limy, ooy =0, 07 | 01, = 00;

(b) limsup,,_,. Bn < 1;

2

(c) 0 <liminf, o7, <limsup, 7 < 3.

Then the sequence {x,} converges strongly to a minimizer of F + G.



Example 4.2.8. Solve the following minimization:

1 5
min [ Co — dl}3 + [«

where _ _ _ _ _ -
2 1 8 5 0 26
3 -7 -3 -6 —6
C = Ca= | 4=
-1 5 -3 9 Y3 7
7 -1 —4 2 Y4 —6

We set F(z) = 3||Cx — d||5 and G(z) = ||z||;. Then VF(z) = C*(Cx — d)

and VF(x) is K-Lipschitz continuous by [!]. From [1&], for any r > 0,

J2% () = | max{|y1 — r|,0}sign(y1), ..., max{|ys — r|,0}sign(ys)|.

We see that

63 —-31 —-18 -3
T -31 76 18 90
c'C =
—-18 18 98 23

-3 90 23 146

and the largest eigenvalue of CTC is 0.00915.

We choose «a,, = m, B, = ﬁ, r, = 0.009,z; = (3,-5,1,3)T and
u = (1,—-1,—1,-2)". Using algorithm (4.80) in Theorem 4.2.7, we obtain the

following numerical results.



n Tn F(x,) + G(y) [Zni1 — Tnll2

1 (3.000000, -5.000000, 1.000000, 3.000000) 1073.000000 4.806639E+00
50 (-0.926970, -2.533429, 2.102770, 3.138152) 24.821487 7.558257E-01

100 | (-0.857996, -2.666656, 2.025993, 2.870673) 9.253030 1.423229E-01

150 | (-0.845881, -2.693438, 2.011434, 2.821389) 8.701192 2.681196E-02

200 | (-0.843740, -2.698758, 2.008675, 2.812280) 8.681616 5.052011E-03

250 | (-0.843365, -2.699816, 2.008152, 2.810599) 8.680922 9.520138E-04

300 | (-0.843304, -2.700034, 2.008053, 2.810294) 8.680898 1.794090E-04

700 | (-0.843312, -2.700130, 2.008028, 2.810253) 8.680897 6.302689E-08

750 | (-0.843314, -2.700132, 2.008028, 2.810254) 8.680897 5.458308E-08

800 | (-0.843315, -2.700134, 2.008028, 2.810256) 8.680897 4.773015E-08

850 | (-0.843315, -2.700136, 2.008028, 2.810257) 8.680897 4.209251E-08

900 | (-0.843316, -2.700138, 2.008028, 2.810258) 8.680897 3.739877E-08

950 | (-0.843317, -2.700139, 2.008028, 2.810259) 8.680897 3.344924E-08
1000 | (-0.843318, -2.700140, 2.008028, 2.810259) 8.680897 3.009437E-08

Table 4

Form Table 4 we see that x990 = (—0.843318, —2.700140, 2.008028, 2.810259) is an
approximation of the minimizer of F' + G with an error 3.009437F — 08 and its

minimum value is approximately 8.680897.
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Example 4.2.9. Solve the following minimization:

irelg% |Az + c||2 + %xT:c—l—dejLQ (4.81)
where
-1 3 4
A=1| 2 -7 9 |, z=Lwy) c=(1196", d=(7,68)".
-2 -5 =3

For cach z € R?, we set F(z) = 3272 + d"z +9 and G(z) = ||Az + ¢||;. Then
VF(x) =2+(7,6,8)". We can check that F' is convex and differentiable on R? with
1-Lipschitz continuous gradient VF' and G is convex and lower semi-continuous.

We choose oy, = 5oz, B = 55, ™ = 0.1, 21 = (8,-2,6)" and u = (-2,3,5)".

We have that, for r > 0,

|2

L= Yy if |||y > s
(I +7r9G) \(z) = <' ) =] 2

0, otherwise.

Using algorithm (4.80) in Theorem 4.2.7, we obtain the following numerical results:

n Tn F(xn) + G(an) [Znt1 — @2

1 (8.000000, -2.000000, 6.000000) 161.316850 7.460748E4-00
50 (-0.524837, -0.433635, -0.574738) 0.545773 3.947994E-04

100 | (-0.520385, -0.438070, -0.582402) 0.497188 9.656413E-05

150 | (-0.518942, -0.439522, -0.584907) 0.481252 4.261886E-05

200 | (-0.518229, -0.440242, -0.586151) 0.473332 2.389088E-05

250 | (-0.517803, -0.440673, -0.586894) 0.468594 1.525893E-05

300 | (-0.517520, -0.440960, -0.587389) 0.465442 1.058212E-05

800 | (-0.516640, -0.441852, -0.588928) 0.455624 1.481869E-06

850 | (-0.516609, -0.441884, -0.588982) 0.455278 1.312465E-06

900 | (-0.516582, -0.441911, -0.589030) 0.454971 1.170533E-06

950 | (-0.516557, -0.441936, -0.589073) 0.454696 1.050439E-06
1000 | (-0.516535, -0.441959, -0.589112) 0.454449 9.479211E-07




Table 5

Form Table 5, we see that x1900 = (—0.516535, —0.441959, —0.589112) is an approx-
imation of the minimizer of F' + G with an error 9.479211F — 07 and its minimum

value is approximately 0.454449.
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1 Introduction

Let X be a real Banach space. We study the following inclusion problem: find X € X
such that

0 A% + B} (1.1)

where A : X — X is an operator and B : X — 2% is a set-valued operator.
This problem includes, as special cases, convex programming, variational inequali-
ties, split feasibility problem and minimization problem. To be more precise, some
concrete problems in machine learning, image processing and linear inverse problem
can be modeled mathematically as this form.
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A classical method for solving problem (1.1) is the forward-backward splitting
method [10, 17, 24, 30] which is defined by the following manner: x; € X and

Xnt1 = (I +7B) (x4 —rAx,), n > 1, (1.2)

where r > (0. We see that each step of iterates involves only with A as the forward
step and B as the backward step, but not the sum of B. This method includes, in
particular, the proximal point algorithm [5, 6, 13, 22, 27] and the gradient method [2,
12]. Lions-Mercier [17] introduced the following splitting iterative methods in a real
Hilbert space:
Xpr1 = QI = DQIE - Dx,, n>1 (1.3)
and
Xnp1 = JAQIE — Dy + (I = JB)xy, n> 1, (1.4)
where JT = (I 4+rT)~'. The first one is often called Peaceman-Rachford algorithm
[25] and the second one is called Douglas-Rachford algorithm [11]. We note that
both algorithms can be weakly convergent in general [24].
Recently, Lopez et al. [18] introduced the following Halpern-type forward-
backward method: x; € X and

Xng1 = ot + (1= o) (J2 (6 = ra(Axy + an)) + by). (1.5)

where J,B is the resolvent of B, {r,} C (0, 00), {a,} C (0, 1] and {a,}, {b,} are error
sequences in X. It was proved that the sequence {x,} generated by (1.5) strongly
converges to a zero point of the sum of A and B under some appropriate conditions.
There have been many works concerning the problem of finding zero points of the
sum of two monotone operators (in Hilbert spaces) and accretive operators (in Banach
spaces); see [9, 29-31, 35].

In this work, we study a generalized forward-backward method for solving the
inclusion problem (1.1) for an accretive and m-accretive operators in the framework
of Banach spaces. We then prove its strong convergence under some mild conditions.
Finally, we provide some numerical examples to support our main results.

2 Preliminaries and lemmas

In this section, we provide some basic concepts, definitions and lemmas which
will be used in the sequel.
The modulus of convexity of X is the function § : (0, 2] — [0, 1] defined by

x+y

8(8):inf{l—l

cxyeX, xll=lyll=1 llx =yl = 8}. 2.1

Then X is uniformly convex if §(¢) > 0 for all ¢ € (0, 2].
The modulus of smoothness of X is the function p : Rt — R™ defined by
X + oyl 4 llx — eyl
2

Then X is uniformly smooth if lim,_,¢ p(¢)/t = 0. For 1 < g < 2, a Banach space
X is said to be g-uniformly smooth if there exists a constant ¢, > 0 such that p(7) <

p(t) = sup{ 1:xyeX. lxl =yl = 1}. 2.2)

@ Springer
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cqt? for t > 0. We see that if X is g-uniformly smooth, then it is uniformly smooth.
Let X* be the dual space of X. Let J, (g > 1) denote the generalized duality mapping
from X into 2% given by J,(x) = {j,(x) € X* 1 (x, j,(x)) = [Ix[|9, [lj; ()|l =
[x[197"}, Vx € X, where (-, -) denotes the duality pairing between X and X*. In
particular, J, := J is called the normalized duality mapping on X. It is also known
(e.g., [[32], p-1128]) that

Jg(0) = X972 T (x), x #0. (23)

We next provide some properties of the duality mapping.

Proposition 2.1. (Cioranescu [8]) Let 1 < g < oo.

(i) The Banach space X is smooth if and only if the duality mapping J; is single-
valued.

(ii))  The Banach space X is uniformly smooth if and only if the duality mapping J,
is single-valued and norm-to-norm uniformly continuous on bounded subsets of
X.

Using the concept of sub-differentials, we know the following inequality:

Lemma 2.2. [[7],p.33] Let g > 1 and X be a real normed space with the generalized
duality mapping J,. Then, for any x,y € X, we have

x + v < x4+ gy, jg(x +¥)) 2.4)
Jorall ju(x +y) € Jy(x +y).

Lemma 2.3. [[32], Corollary 1/] Let 1 < g <2 and X be a smooth Banach space.
Then the following statements are equivalent:

(i) X is g-uniformly smooth.
(ii)  There is a constant k; > 0 such that forall x,y € X

x4yl < X1 + gy, jg () + kg llyI17. 2.5

The best constant k; will be called the g-uniform smoothness coefficient of X.

We define the domain and the range of an operator A : X — 2% by D(A) =
{x € X : Ax # @} and R(A) = |J{Az : z € D(A)}, respectively. The inverse of A,
denoted by A~!,is defined by x € A~!yif and only if y € Ax. A set-valued operator
A is said to be accretive if, for each x, y € D(A), there exists j(x —y) € J(x — y)
such that

(u—v,j(x—y))zO, u € Ax, v € Ay. (2.6)

An accretive operator A is said to be m-accretive if R(I +rA) = X forall» > 0.

Given ¢ > 0 and ¢ € (1, 00), we say that an accretive operator A is «-inverse
strongly accretive (-isa) of order ¢ if, for each x, y € D(A), there exists j, (x —y) €
J4(x — y) such that

(u—v, jgx—y) =allu—v|?, uec Ax, v e Ay. 2.7

@ Springer
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Let C be a nonempty subset of a real Banach space X. Let T : C — C be a
nonlinear mapping. We denote the fixed point set of 7 by Fix(T), thatis, Fix(T) =
{xeC:x="Tux}.

Let C be a nonempty, closed and convex subset of a real Banach space X and let
D be a nonempty subset of C. A retraction from C to D is a mapping Q : C — D
such that Qx = x for all x € D. A retraction Q from C to D is nonexpansive if
10x — Qy|l < |lx —y| forall x, y € C. A retraction Q from C to D is sunny if , for
each x € C and r > 0, we have

O(tx 4+ (1 —1)Qx) = QOx, (2.8)

whenever tx + (1 —t) Qx € C. A sunny nonexpansive retraction is a sunny retraction
which is also nonexpansive. Reich [26] showed that if X is uniformly smooth and if
D is the fixed point set of a nonexpansive mapping from C into itself, then there is
a unique sunny nonexpansive retraction from C onto D and it can be constructed as
follows.

Theorem 2.4. [[26], Corollary 1] Let X be a uniformly smooth Banach space and
let T : C — C be a nonexpansive mapping with a fixed point. For each fixed u € C
and every t € (0, 1), the unique fixed point x; € C of the contraction C > x +>
tu+ (1 —1)T x converges strongly ast — 0 to a fixed point of T. Define Q : C — D
by Qu = s — lim;_0x;. Then Q is the unique sunny nonexpansive retract from C
onto D.

In what follows, we shall use the following notation:

TAB = JB(I —rA)=U +rB) ' —rA), r > 0. (2.9)

Lemma 2.5. [[18], Lemma 3.1 and Lemma 3.2] Let X be a Banach space. Let A :
X — X be an a-isa of order q and B : X — 2% an m-accretive operator. Then we
have

(i) Forr >0, Fix(T*8) = (A + B)~1(0).

A.B

(ii) ForO<s<randxeX, ||x — T TAB

x|l =2lx =T x|

Lemma 2.6. [[18], Lemma 3.3] Let X be a uniformly convex and q-uniformly
smooth Banach space for some q € (1, 2]. Assume that A is a single-valued a-isa of
order q in X. Then, given r > 0, there exists a continuous, strictly increasing and
convex function ¢4 : RY — Rt with ¢4 (0) = 0 such that, for all x, y € By,

IT48x = TAB 1 < llx — yl19 — rleg — 77 'kg) [ Ax — Ay|? (2.10)
—¢g (1T = IPYUT —rA)x — (I = IP)T = rA)ylD,
where k; is the q-uniform smoothness coefficient of X.
Lemma 2.7. [[20], Lemma 3.1] Let {a,} and {c,} are sequences of nonnegative real
numbers such that

ap+1 =< (1 —=éan+by+cn, n>1, (2.11)
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where {8,,} is a sequence in (0, 1) and {by,} is a real sequence. Assume Z,ﬁ] cp < 0Q.
Then the following results hold:

(i) Ifb, < 6, M for some M > 0, then {a,} is a bounded sequence.
(ii) Ifzzozl 8, = oo and limsup,,_, o, bp /8, <0, then lim,_, » a, = 0.

Employing the technique of Maingé [19], He-Yang [15] proved the following
lemma.

Lemma 2.8. [[15], Lemma 8] Assume {s,} is a sequence of nonnegative real
numbers such that

Spp1 = (L= yu)sy + YuTu, n > 1
and
S+l < Sp — N+ Pn, = 1,

where {y,} is a sequence in (0, 1), {n,} is a sequence of nonnegative real numbers
and {t,}, and {p,} are real sequences such that

(i) Dty Vn =0,

(ii) limy_o0 pp =0,

(iii) limg_oo Ny, = 0 implies limsupy_, o, Ty, < O for any subsequence {ny} C
{n}. Then lim,_, o s, = 0.

Lemma 2.9. [[23], p.63] Let g > 1. Then the following inequality holds:

1 1 .
ab < —a? + 1~ " pit 2.12)

q q

for arbitrary positive real numbers a and b.

3 Main results

In this section, we first establish some crucial propositions and then prove our
main theorem.

Proposition 3.1. Let ¢ > 1 and let X be a real smooth Banach space with the
generalized duality mapping j,. Let m € N be fixed. Let {x;}!" , C X and t; > 0 for
alli =1,2,...,mwith ) 7", t; < 1. Then we have

m m

>y tilli |

1Y nxill < = : (X))
; T a- - DL
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Proof By definition of the generalized duality mapping j, and Lemma 2.9., we can
estimate the following:

I Zr,x, 19 = () tixi, M(Z tixi) (32)
pr

= 2 i Zt,x, (3.3)

£ lxi 1 Zt,x, e~ (3.4)

3

3

Ms i Ms i

IA

<<—||x, 1+ T” an, 19) (3.5)

1 i=1

m m

—1
>t + = I § 1O 1), (3.6)
i=1 i=1 i=1

Q| =

which implies that
- Do) hxil? < ” > il 3.7)
i=1 i=1 i=1

We see that 1 — ”T_l YL, ti is positive since ¢ > 1 and Y ;- ; < 1. It follows that

m m
> iey tillxill?
Iy e < —=i= . (3:8)
2 T a— - DL 0
O

Proposition 3.2. Let X be a uniformly convex and q-uniformly smooth Banach
space. Let A : X — X be an a-isa of order ¢ and B : X — 2% an m-accretive
operator such that Q := (A + B)~L(0) # (. Let {e,} be a sequence in X. Let {x,}
be generated by u, x1 € X and

Xn+1 = Opl +)\nxn+5njrl:(xn —1pAxy) +ep, n > 1, (3.9)
where J = (I + 1 B)~", 0 < ry < (aq/kg)"/""" and {ay), {3}, and {6,} are
sequences in [0, 1] with oy + 1+, = 1. Ifzzil llen |l < oo orlimy,_ o |len|l/an =
0, then {x,} is bounded.
Proof Foreachn e N,weputT, = Jrf (I —rpA) and let {y, } be defined by

V41 = Otk + ApYn + 6n T yn. (3.10)
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Firstly, using Lemma 2.6, we compute the following:

lxXn+1 — Ynttll = NAn(Xn — yn) + 8n(Tuxn — Tuyn) + enll (3.1D

< Mllxn = Yull + 8ull Tuxn — Tuynll + llenll (3.12)

< Allxn = yull + 8nllxn — yull + llenll (3.13)

= (I —an)llxn — yull + llenll. (3.14)

By the assumptions and Lemma 2.7 (ii), we conclude that lim;,—, o [|X, — Yn|l = O.

Let z = Qu, where Q is a sunny nonexpansive retraction of X onto <.
We next show that {y,} is bounded. Indeed

[ Ynr1 — 2l = llatn(u — 2) + 2n(yp — 2) + 8n (T yn — 2l (3.15)
< apllu =zl + 2nllyn = 2l + 8 Tuyn — zll (3.16)
< anllu =zl + Anllyn = zll + 8ullyn — 2|l (3.17)
= apllu =zl + A —an)lly. —zl. (3.18)

This shows that {y,} is bounded by Lemma 2.7 (i) and hence {x,} is also bounded.
O

Theorem 3.3. Let X be a uniformly convex and q-uniformly smooth Banach space.
Let A : X — X be an a-isa of order ¢ and B : X — 2% an m-accretive operator
such that Q := (A+B)~'(0) # . Let {e,} be a sequence in X. Let {x,} be generated
byu,x; € X and

Xn+1 = Qult + Apxy + (SnJrf(xn —rmAxy) + ey, n > 1, (3.19)

where J,Ij = +rmB)~Y, {r,)} C (0, 00) and {an}, {An}, and {8,} are sequences in
[0, 1] with a,, + A,y + 8, = 1. Assume that

(i) limyoootn =0, > 00y = 005

(i) 0 < liminfy— oo 7y < limsup,_, o1 < (g/ky)V/@=V;
(iii) liminf, . 8, > O;

(iv) 220:1 lleqll < o0 or lim, o0 llenll /oy = 0.

Then {x,} strongly converges to z = Qu, where Q is a sunny nonexpansive
retraction of X onto 2.

Proof Since, by Proposition 3.2, lim,_, » [|x, — yu|| = 0, it suffices to show that
lim,— o0 ¥ = z = Qu. From Lemma 2.2, we have

llotn (e — 2) + Ap(yn — 2) + 8u(Tnyn — 2D (3.20)
< NAn(n —2) + 8, (Tyyn — Z)”q
+ qonu — 2, jg(ns1 — 2))- (3.21)

lynt1 — zll4

A
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On the other hand, by Proposition 3.1 and Lemma 2.6, we obtain

1
Rallyn — 2117
qg—(q—D0—-0ay)
+ 8 Tuyn — zl19) (3.22)

(hally = 207

IA

1An (Yn — 2) + 80 (Tuyn — 2II?

IA

TS
+8u(lyn — 2019 = rulag — rd ™ kIl Ay, — Az]?

=643 = ruAy = Tuyn + raAz]))) (3.23)

Lo I 1
= y —Z
g—(@—-DU—ay "

-1
_ Snrn(aq_rg kq)

qg—(q—D0—oa)
)

g (gD —ay

Ayn — Az|| (3.24)

¢q(||yn — 1 Ayn — Tyyn + rnAzl)).

Replacing (3.24) into (3.21), it follows that

onq
41 —zll? < <1— )IIy —z||?
" g—(@q—-D0—an)""
. (Snrn(aq_rr(zl_lkq)

qg—(—1Dd—-ay)
— 8"

qg—(g—D(—ay)
+qan(u — 2z, jg(yus1 — 2))- (3.25)

[ Ayn — Azl

¢qUlyn — rnAyn — Tuyn + rnAzl)

We can check that is in (0, 1) since {o,} € (0,1) and 1 < g <

g
—(q—D(T=an) 1
Bnrn(otq—r,‘f ko)
4—(q-D(l—a, and

2. Moreover, by condition (ii),

8, ..
23, oo T—G—D(i—a,) &€ positive. From
.25), we then have

anq
qg— (g =D —ay)

)Ilyn — 2|1+ qon(u — z, jg(Yns1 — 2))
(3.26)

yar1 —zl9 < <1 -
and also

—1
Snrn(aq — }’g kq)
lynsr — 2l < llyn —zll4 —
" " q—(q— D —ay)

¢q(||yn — 1 Ayy — Tyyn +1rnAz|)

Ay, — Az||?

Tg—(q— D —ay)
+ qan(u — 2, jg(Yus1 — 2))- (3.27)
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For eachn > 1, we set

ang
— (=D —ay)’
= (q— (@ — DA —a))u—z, jsOns1 —2),

Sn = llyn _Z”q’ Vn =

Surn(ag T )
My = —— I || Ay, — Az||?
qg—(g—D—ay)

+

- f)(l “ary $a o = rndyn = Tayn + raAz)).
Pn = qatn{u — 2. jg(Vny1 — 2)). (3.28)
Then (3.26) and (3.27) are reduced to the following:
Sn1 = (L= ¥n)sn + YaTn, n 2 1
and

Sl < Sp —Mp + pp, n > 1.

Since Y, | oy = 00, it follows that ) .~ | ¥, = cc. By the boundedness of {y,} and
lim,,, 5 o, = 0, we see that lim,, . 0, = 0. In order to complete the proof, using
Lemma 2.8, it remains to show that limy_, o 17,, = O implies limsup,_, ., 7,, < 0
for any subsequence {ny} C {n}.

Let {ny} be a subsequence of {n} such that limy_ 7, = 0. So, by our
assumptions and the property of ¢,, we can deduce that

lim [|Ayn, — Azl = Lm |lyn — ragAyng — Ty Yny + rn Azl = 0. (3.29)
k—00 k— 00
This gives, by the triangle inequality, that
lim {| Ty Yo, — Yni Il = 0. (3.30)
k— 00

Since liminf,,_, o, 7, > O, there is r > 0 such that r,, > r for all n > 1. In particular,
Ty, = rforall k > 1. Lemma 2.5 (ii) yields that

ITA v, — Yl < 20T Y — Y- (3.31)
Then, by (3.30), we obtain

limsup | T4 By, — yull < 2k1_ig>1o I Ty Yre — Yl = 0. (3.32)

k—o0
It follows that

lim 747y, =y, Il = 0. (3.33)
k—o00
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Letz; = tu + T,A’Bz,, t € (0, 1). Employing Theorem 2.4, we have z; — Qu = 2
ast — 0. So we obtain

lze = ym 9 = N2 = yu) + (A = (TP 2 = yu )| (3.34)

< A=0UTA Bz — yu 19 +qt{u — yus g @ — yn)) (3.35)
= (1 =DINTA Bz — yu 19 + qt(u — 21, jg @ — yn))
+ C]t(Zt — Yng» jq (zr — ynk)) (336)
< A =D9TA B2 — TA By | + 1T By — Y 1D
+qt(u =z, jg @ — yu)) + qtllze — yu lI? (3.37)
< (U =091ze = Yull + 1T By, — Y ID?
+qt(u — 21, jg @ — yu)) +qtllze — yu Il (3.38)
This shows that
. (1—1) (gt — 1)
(ze—u, jg(zi—yn)) < - Uzt =y I+ TA By, =y D9+ llze— e 17
(3.39)
From (3.39) and (3.33), we obtain
. . 1 —1) t—1
limsup (z; — u, jg(zr — yn)) < d-9 M1 +—(q )Mq (3.40)
k— 00 qt qt
1 —1)4 t—1
_ (( ) +a )Mq, (3.41)
qt
where M = limsup,_, o, lzs — yn, ll, ¢ € (0, 1). We see that M# — Qast —

0. From Proposition 2.1 (ii), we know that j; is norm-to-norm uniformly continuous
on bounded subsets of X. Since z; — z ast — 0, we have || j;(zr — yn,) — Jjg(z —
Yn )|l = 0as ¢t — 0. Observe that

[z —u, jg (2 = yn)) — (2 = u, jg (2 = Y ))

IA

Hze — 2, jg (@ — yu ) + Wz —u, jg(zr — yn) — Jg(z = yu )| (3.42)
< llze = zllllze — Yu 1971+ Nz = ulllljg @ = Yu) = Jg(z — Yu)ll. (3.43)

A

So, as t — 0, we get

(zr —u, Jg(ze — Yu)) = (2 — 1, jg(Z — yur))- (3.44)
From (3.41), as t — 0, it follows that
limsup (z — u, jy(z — yn,)) < 0. (3.45)
k— o0

On the other hand, by (3.10) and (3.30), we see that

||yn1<+1 — Yni | < Ay llu — Yny I+ 8111( ”Tnkynk — Yny I — 0, (3.46)
as k — oo. Combining (3.45) and (3.46), we get that
limsup (z — u, jy(z — yn+1)) < 0. (3.47)
k— 00
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It also follows that limsup,_, o, 7,;, < 0. We conclude that lim, s, = 0 by
Lemma 2.8. Hence y,, — z as n — 0o. We thus complete the proof. O

By setting A,, = O for all n > 1, we obtain the following result:

Corollary 3.4. Let X be a uniformly convex and q-uniformly smooth Banach space.
Let A : X — X be an a-isa of order ¢ and B : X — 2% an m-accretive operator
such that Q := (A+B)~'(0) # @. Let {e,} be a sequence in X. Let {x,} be generated
byu,x; € X and

Xt = ottt + (1= @) I (o — raAxy) + €, n = 1, (3.48)

where Jrf = +r,B)} {rn} C (0, 00) and {a,} is a sequence in [0, 1]. Assume
that

(i) limyooa, =0, Z;‘Q oy = O0;
(i) 0 < liminf,— ooy < limsup,_, o7 < (aq/ky)!/@=V;
(iii) Y opy llenll < 00 or limy o llenll /ety = 0.

Then {x,} strongly converges to 7 = Qu, where Q is a sunny nonexpansive retraction
of X onto Q.

Remark 3.5. (1) Our results extend those of [3, 16, 21, 31, 33, 34] from Hilbert spaces
to Banach spaces.

(2) We remove the conditions that lim,_ |rp+1 — 7] = 0 and 0 <
liminf, o A, < limsup,_,,, A, < 1in Theorem 3.3 of Yao-Noor [34] and the con-

. ) . 1 1y _ 00 loyq1—tnl 1
ditions that ) > | A, < 00, lim,_ (_rn+1 rn) =0and ) -, St < ooin

Theorem 1 of Boikanyo-Morosanu [3].

We now give an example in £3 space which is a uniformly convex and 2-uniformly
smooth Banach space but not a Hilbert space.

Example 3.6. Let A : £3 — {3 be defined by Ax =2x + (1,1,1,0,0,0,0, ...) and
let B : £3 — £3 be defined by Bx = 5x where x = (x1, x2, X3, ...) € {3.

We see that A is a 1/2-isa of order 2 and B is an m-accretive operator. Indeed, let
x,y € {3, then

(Ax — Ay, p(x = y)) = (2x =2y, p(x — y))

= 2[lx — yl7,
1 2
= §||Ax — Ay||€3. (3.49)
We also have
(Bx — By, ja(x — ) = 5|x — y7, = 0 (3.50)
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and R(I 4+ rB) = {3 for all r > 0. By a direct calculation, we have for s > 0

JB(x —sAx) = (I +5sB)"'(x — sAx)
1—2s s
x —

14 5s 1+ 5s
where x = (x1,x2,x3,...) € £3. Since, in €3, g = 2,k = 2 and o = 1/2, we
can choose r, = 0.1 for all m € N. Let a, = m, A = ﬁ and 6, = (1 —
07 — TooogT)- Let u = (=0.05, —0.08, —0.06, 0, 0,0.0, ...) and e, = (0, 0,0, ...).
Starting x; = (1.2,2.5,3.4,0,0, 0,0, ...) and computing iteratively algorithm (3.19)
in Theorem 3.3, we obtain the following numerical results.

From Table 1, the solution is (—0.142857, —0.142857, —0.142857, 0,0, 0, 0, ...).

1,1,1,0,0,0,0, ..., (3.51)

4 Applications and numerical examples

In this section, we discuss some concrete examples as well as the numerical
results for supporting the main theorem.

Table 1 Numerical results of Example 3.6 for iteration process (3.19)

n Xn lXn+1 — Xn ng

1 (1.2000000,2.5000000,3.4000000,0.0000000,0.0000000,0.0000000,...) 1.6937789E+00
10 (—0.1368743, —0.1311181, —0.1271209,0.0000000,0.0000000,0.0000000,...) ~ 8.2573797E-03
20 (—0.1428340, —0.1428263, —0.1428159,0.0000000,0.0000000,0.0000000,...)  1.7112628E-05
30 (—0.1428499, —0.1428522, —0.1428507,0.0000000,0.0000000,0.0000000,...) ~ 3.4600332E-07
40 (—0.1428519, —0.1428536, —0.1428524,0.0000000,0.0000000,0.0000000,...)  1.7301589E-07
50 (—0.1428530, —0.1428543, —0.1428534,0.0000000,0.0000000,0.0000000,...) ~ 1.0843686E-07
60 (—0.1428537, —0.1428548, —0.1428541,0.0000000,0.0000000,0.0000000,...) ~ 7.4310792E-08
70 (—0.1428542, —0.1428552, —0.1428545,0.0000000,0.0000000,0.0000000,...)  5.4092528E-08
80 (—0.1428546, —0.1428554, —0.1428549,0.0000000,0.0000000,0.0000000,...) ~ 4.1132625E-08
90 (—0.1428549, —0.1428556, —0.1428551,0.0000000,0.0000000,0.0000000,...) ~ 3.2329686E-08
100 (—0.1428551, —0.1428558, —0.1428553,0.0000000,0.0000000,0.0000000,...) ~ 2.6078314E-08

NN N N N N N NN

6.4012505E-09
4.0821310E-09
2.8280803E-09
2.0742607E-09
1.5860974E-09
1.2519825E-09
1.0133107E-09
8.3691026E-10
7.0286201E-10
5.9861825E-10

200  (—0.1428561, —0.1428565, —0.1428562,0.0000000,0.0000000,0.0000000,...
250  (—0.1428563, —0.1428566, —0.1428564,0.0000000,0.0000000,0.0000000,...
300 (—0.1428565, —0.1428567, —0.1428565,0.0000000,0.0000000,0.0000000,...
350 (—0.1428566, —0.1428568, —0.1428566,0.0000000,0.0000000,0.0000000....
400  (—0.1428566, —0.1428568, —0.1428567,0.0000000,0.0000000,0.0000000,...
450  (—0.1428567, —0.1428568, —0.1428567,0.0000000,0.0000000,0.0000000,...
500 (—0.1428567, —0.1428569, —0.1428568,0.0000000,0.0000000,0.0000000,...
550  (—0.1428568, —0.1428569, —0.1428568,0.0000000,0.0000000,0.0000000,...
600 (—0.1428568, —0.1428569, —0.1428568,0.0000000,0.0000000,0.0000000,...
650 (—0.1428568, —0.1428569, —0.1428569,0.0000000,0.0000000,0.0000000,...

NN N N N N N N
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4.1 Minimization problem

In this subsection, we apply Theorem 3.3 to the convex minimization problem.
Let H be a real Hilbert space. Let F : H — R be a convex smooth function and G :
H — IR be a convex, lower-semicontinuous and nonsmooth function. We consider
the problem of finding x € H such that

F(X)+GX) < F(x) + G(x) 4.1
for all x € H. This problem (4.1) is equivalent, by Fermat’s rule, to the problem of
finding X € H such that

0e VF@X) +9G(x), 4.2)
where VF is a gradient of F' and dG is a subdifferential of G. In this point of view,
we can set A = VF and B = 9G in Theorem 3.3. This is because if VF is (1/L)-
Lipschitz continuous, then it is L-inverse strongly monotone [[1], Corollary 10].

Moreover, dG is maximal monotone [[28], Theorem A]. So we obtain the following
result.

Theorem 4.1. Let H be real Hilbert space. Let F : H — R be a convex and differ-
entiable function with (1/L)-Lipschitz continuous gradient VF and G : H — R be
a convex and lower semi-continuous function which F + G attains a minimizer. Let
{en} be a sequence in H. Let {x,} be generated by u, x1 € H and

Xpt1 = it + ApXxy + 8p Jr, (x,, — rnVF(xn)) +en, n>1, 4.3)

where J,, = (1 +r,0G)7 1, {rn} C (0, 00) and {&,}, {A,}, and {6,} are sequences in
[0, 1] with o, + Ay, + 8, = 1. Assume that

(i) limyoootn =0, > 00y = 005

(ii) 0 < liminf, o1, <limsup,_, ¥y <2L;
(iii) liminf, . 8, > O;

(iv) 220:1 llexll < oo orlimy— o lley |l /oty = 0.

Then {x,} strongly converges to a minimizer of F + G.

Example 4.2. Solve the following minimization problem:
min [|x[3 4+ 3,5, —=Dx +9 + ||x]l1, (4.4)
xeR3
where x = (y1, y2, y3) € R*.
For each x € R3, we set F(x) = ||x||% + (3,5, —Dx +9and G(x) = |x]|.
Then VF(x) = 2x 4+ (3,5, —1). We can check that F is convex and differen-
tiable on R3 with 2-Lipschitz continuous gradient VF. Moreover, G is convex

and lower semi-continuous but not differentiable on R>. From [14] we know that,
forr > 0,

(I+r3G) ™" (x) = (max{|yi| -, O}sign(y1), max{|y>| —r, O}sign(y2), max{|y3| —r, O}sign(y3)).
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- 1 - 99 — _n_ _
We choose «, = 100n+1, A = CESITESE &y = pra| and r, =

0.2. Let e, = ( , 2, 2) u = (2.553479,5.187352,1.903486) and x; =
(3.425859, 8. 231258 i 430561) Using algorithm (4.3) in Theorem 4.1, we obtain
the following numerical results.

From Table 2, we see that xgg3 = (—0.999860, —1.999722, 0.000078) is an
approximation of the minimizer of F + G with an error 4.9973577E — 07 and its
minimum value is approximately 4.0000001. In fact, the minimizer of F + G is
(—=1,-2,0) and (F 4+ G)(—1, —2,0) = 4 (Figs. 1 and 2).

4.2 Linear inverse problem

In this subsection, we apply Theorem 3.3 to solve the unconstrained linear
system
Cx=d 4.5)
where C is a bounded linear operator on H and d € H. For each x € H, we define
F:H — Rby

1
F(x) = 5||Cx —d|>. (4.6)

Table 2 Numerical results of Example 4.2 for iteration process (4.3)

xn = (], 3 ¥5) F(xn) + G(xn) 1Xn+1 = Xnll2
1 (3.425859,8.231258,1.430561) 153.6276069 1.4677578E+00
2 (3.332050, 6.954869, 2.149131) 128.1489310 2.7041086E+4-00
3 (2.156296, 4.541443, 1.824807) 73.4780908 2.4690302E+00
4 (1.021838, 2.392267, 1.388738) 36.1366456 1.8578516E4-00
5 (0.270687, 0.736212, 1.008125) 16.1316179 9.8758376E—01
6 (—0.108319, —0.126974, 0.713871) 8.8129329 6.9838132E—01
7 (—0.381831, —0.732534, 0.498872) 6.2374757 4.8162425E—01
8 (—0.573595, —1.147294, 0.346679) 5.0291149 3.2683581E—01
9 (—0.705677, —1.426945, 0.240984) 4.4730915 2.1951923E—-01
10 (—0.795670, —1.613558, 0.168420) 4.2194535 1.4654722E—01
654 (—0.999858, —1.999718, 0.000079) 4.0000001 5.1403155E—07
655 (—0.999858, —1.999718, 0.000079) 4.0000001 5.1241306E—07
656 (—0.999858, —1.999719, 0.000079) 4.0000001 5.1080220E—07
657 (—0.999858, —1.999719, 0.000079) 4.0000001 5.0919892E—-07
658 (—0.999858, —1.999720, 0.000079) 4.0000001 5.0760317E—07
659 (—0.999859, —1.999720, 0.000078) 4.0000001 5.0601491E—07
660 (—0.999859, —1.999721, 0.000078) 4.0000001 5.0443408E—07
661 (—0.999859, —1.999721, 0.000078) 4.0000001 5.0286064E—07
662 (—0.999859, —1.999721, 0.000078) 4.0000001 5.0129456E—07
663 (—0.999860, —1.999722, 0.000078) 4.0000001 4.9973577TE—07

@ Springer



Numer Algor (2016) 71:915-932 929

09 i

0.8 B

0.6 -

0.5 -

Errors

0.3 -

0.2 -

0.1 -

0 ! ! I ' -
0 100 200 300 400 500 600

Iteration Number (n)

Fig. 1 The error plotting of ||x,+1 — x, |2 in Table 2

From [4] we know that VF (x) = CT(Cx — d) and VF is K-Lipschitz continuous
with K the largest eigenvalue of CT C. So we obtain the following result.

Theorem 4.3. Let H be real Hilbert space. Let C : H — H be a bounded linear
operator and d € H with K the largest eigenvalue of CT C. Let {e,} be a sequence
in H. Let {x,} be generated by u, x; € H and

Xp4l = Ot + ApXpy + an(xn - rnCT(an - d)) +e,, n>1, 4.7

0.3 —

0.2 i

0 L L T L
0 50 100 150 200 250

Iteration Number (n)

Fig. 2 The error plotting of ||x,4+1 — x, |2 in Table 3
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where {r,} C (0, 00) and {&,}, {An}, and {6,} are sequences in [0, 1] with a, + A, +
6y = 1. Assume that

(i) limyoootn =0, > 00y = 005

(ii) 0 < liminf, oo r, <limsup,_, rn <2/K;
(iii) liminf,_ 8, > O;

(iv) Zzil llexll < o0 orlimy— o llen |l /oty = 0.

If (4.5) is consistent, then {x,} strongly converges to a solution of a linear system.

Example 4.4. Solve the following linear system:

2y1+y2—3y3+2y4 = 13

i —2y2+3y3+ 54
=3y1+5y2+4y3 —2ys =
4y1 42y, —y3 —ya = 6.

1
| O
w

(4.8)

2 1 -3 2 Y1 13

_ 1 -2 3 5 _ b _ 9

Let C = 35 4 2| x = v and d = _3
4 2 -1 -1 ya 6

Table 3 Numerical results of Example 4.4 for iteration process (4.7)

xn = O, 8 ve yiT [EE
1 (—1.000000,3.000000,2.000000,5.000000) 3.0154184E+00
2 (1.608431,3.435784,0.640392,5.500392) 1.7095286E+00
3 (1.626720,3.340500, —0.516476,4.245509) 8.4386757E-01
4 (1.339520,2.891206, —0.916370,3.727969) 5.0556755E-01
5 (1.099700,2.553623, —1.039057,3.465156) 2.9280323E-01
238 (1.000364,1.999292,—0.999491,2.999184) 5.3648214E-06
239 (1.000363,1.999295,—0.999493,2.999188) 5.3189260E-06
240 (1.000361,1.999298,—0.999496,2.999191) 5.2735040E-06
241 (1.000359,1.999301,—0.999498,2.999195) 5.2287703E-06
242 (1.000358,1.999304,—0.999500,2.999198) 5.1844999E-06
243 (1.000356,1.999307,—0.999502,2.999202) 5.1408891E-06
244 (1.000355,1.999310,—0.999504,2.999205) 5.0977315E-06
245 (1.000353,1.999313,—0.999506,2.999208) 5.0552065E-06
246 (1.000352,1.999316,—0.999508,2.999212) 5.0131244E-06
247 (1.000350,1.999319,—0.999510,2.999215) 4.9716496E-06
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Then
30 =7 —-19 11

-7 34 9 =20
-19 9 35 2
11 =20 2 34

The largest eigenvalue of CT C is 65.5033. This allows us to choose the upper
bound of {r,}. We also note that since C” C is symmetric, the largest eigenvalue K
is less than mb, where m is the dimension of the matrix CT C and b is its maximal
element; see [[36], Theorem 1].

_ 1 _ 49n . n _
We choose oy = 55,77, An = m, 8 = 4 and r, = 0.03 for all

n>1lLete, = (=5 %, &, 57 u=3114"and x; = (-1,3,2,5)7. Using
algorithm (4.7) in Theorem 4.3, we obtain the following numerical results.
From Table 3 we see that the solution of a linear system (4.8) is (1, 2, —1, 3).

clc =

Remark 4.5. We remark that Theorem 3.3 can be further applied to the variational
inequality problem, the split feasibility problem and the fixed point problem. See also
[18, 29].
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Abstract In this article, we take a look at the recent results of Moudafi (Inverse Probl
26:587-600, 2010), Tang et al. (Math Model Anal 17:457-466, 2012) and Wang and Cui
(Math Model Anal 18:537-542, 2013), which weak convergence results were obtained for
the split common fixed point problem for demicontractive mappings. We introduce a new
algorithm for solving the split common fixed point problem for demicontractive mappings
and then prove strong convergence of the sequence in real Hilbert spaces. We also apply
our results to the split common null point problem in real Hilbert spaces. Finally, we give
numerical results to demonstrate its convergence.

Keywords Demicontractive mappings - Split common fixed point problems -
Iterative scheme - Strong convergence - Hilbert spaces
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1 Introduction

In this paper, we shall assume that H is a real Hilbert space with inner product (-, -) and norm
|| - |]. Let I denote the identity operator on H. Let C and Q be nonempty, closed and convex
subsets of real Hilbert spaces H; and Ha, respectively. The split feasibility problem (SFP) is
to find a point

x € C suchthat Ax € Q, (1.D
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where A: Hi — H> is a bounded linear operator. The SFP in finite-dimensional Hilbert
spaces was introduced by Censor and Elfving [9] for modeling inverse problems which arise
from phase retrievals and in medical image reconstruction [4]. The SFP attracts the attention
of many authors due to its application in signal processing. Various algorithms have been
invented to solve it (see, for example [5,18,24,28,31,32,36] and the references therein).

Note that the SFP (1.1) can be formulated as a fixed point equation by using the following
fact:

Pc(I —yA*(I — Pg)A)x™ = x™; (1.2)
that is, x* is a solution of the SFP (1.1) if and only if x* is a solution of the fixed point Eq. (1.2)
(see [27] for the details). This suggests that we can use fixed point algorithms (see [33,34,37])
to solve SFP. A well known algorithm used to solve the SFP (1.1) is Byrne’s CQ algorithm
[4] which is found to be a gradient projection method (GPM) in a convex minimization.
Subsequently, Byrne [5] applied Krasnoselskii-Mann iteration to the CQ algorithm. Zhao
and Yang [39] applied Krasnoselskii—Mann iteration to the perturbed CQ algorithm to solve
the SFP. It is well known that the CQ algorithm and the Krasnoselskii-Mann algorithm for
the SFP do not necessarily converge strongly in the infinite-dimensional Hilbert spaces.

We next provide some definitions which will be used in the sequel.

Let 7: H — H be a mapping. A point x € H is said to be a fixed point of T provided
that 7x = x. In this paper, we denote F(T') by the fixed point set. The symbols — and —
mean the strong convergence and the weak convergence, respectively.

Definition 1.1 The mapping 7: H — H is said to be
(a) nonexpansive if
Tx =Tyl < [lx =yll, ¥x,ye€H.
(b) quasi-nonexpansive if
ITx =Tpll <llx —pll. VYxeH, peF(T).

(c) firmly nonexpansive mapping if

ITx =TI < llx = yIP = llx = y) = (Tx =TI, Vx,y € H.
(d) quasi-firmly nonexpansive mapping if

ITx = Tpl* < |lx — pII* = llx = Tx|’, Vx e H, peF(T).

(e) strictly pseudocontractive mapping if there exists a constant k € [0, 1) such that

1T = TyI1? < llx = yIP +kl|(x = y) = (Tx = TP, Vx,y € H.
(f) pseudocontractive mapping if

NTx — Tyll* < [lx — ylF + [|(x —y) = (Tx = Ty)||>, Vx,y € H.
(g) demicontractive (or k-demicontractive) if there exists k < 1 such that

ITx — Tpll* < llx — plI* + kllx — Tx||*, ¥x e H,pe F(T). (1.3)

Remark 1.2 1t is clear that, in a real Hilbert space H, (1.3) is equivalent to

_kl

1
(Tx — p,x —p)llx — pl* = ——I|lx = Tx||>, YxeH,peF(T). (14
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We denote by Iy, Son, SFN, SoF, s, Sp, Sp (with k > 0) the classes of nonexpansive,
quasi-nonexpansive, firmly-nonexpansive, quasi-firmly nonexpansive, strictly pseudocon-
tractive, pseudocontractive and demicontractive mappings, respectively. It is easily seen that
SEN SN S Son €30, 3rn € SgF € Son € SpandSpy € Sy € Ss € Ip by the
following examples.

The following example is the demicontractive mapping which is not pseudocontractive and
also is not strictly pseudocontractive.

Example 1.3 [15] Let H be the real line and C = [—1, 1]. Define T on C by

2 6in (L
ree|fron(). 120 05

The following example is the demicontractive mapping which is not quasi-nonexpansive and
also is not pseudocontractive.

Example 1.4 [13] f: [-2, 1] = [-2, 1], f(x) = —x? — x.

Furthermore, 3y is well known to include the resolvent operator and the projection operator,
while JpF contains the subgradient projection operator (see, e.g., [20] and the reference
therein).

In this paper, we shall focus our attention on the following split common fixed point
problem (SCFPP) for two operators:

find x € C such that Ax € Q, (1.6)

where A: Hy — H> is a bounded linear operator, S: Hy — Hj and T: Hy, — H, are two
demicontractive operators with nonempty fixed point sets F(S) = C and F(T) = Q. We
denote the solution set of the SCFPP by

Fi={yeC:Aye 0}l=CnA Q). (1.7)

Recall that F(S) and F(T') are nonempty, closed and convex subsets of H; and H», respec-
tively. If I" # @, then I' is a closed and convex subset of H;. The SCFPP is a generalization
of the SFP and the convex feasibility problem (CFP) (see [4,11]).

In order to solve (1.6), Censor and Segal [11] studied, in finite-dimensional spaces, the
convergence of the following algorithm:

Xn+1 = S, + VA[(T —DAxy), n>1, (18)
7)
b )\. 9
matrix transposition). In 2011, Moudafi [21] introduced the following relaxed algorithm:

where y € (0 with A being the largest eigenvalue of the matrix A’A (A’ stands for

Xn+1 = (1 _an)yn +anSyna n>1, (19)
where y, = x,+yA*(T —1)Ax,, B € (0,1),a, € (0, 1),and y € (0, #),with)\beingthe
spectral radius of the operator A* A. Moudafi proved weak convergence result of the algorithm
(1.9) in Hilbert spaces where S and T are quasi-nonexpansive operators. We observe that
strong convergence result can be obtained in the results of Moudafi [21] if a compactness
type condition like demicompactness is imposed on the operator S. Furthermore, we can also
obtain strong convergence result by suitably modifying the algorithm (1.9). Recently, Zhao
and He [38] introduced the following viscosity approximation algorithm:

Xn+1 = O‘nf(xn)'i_(l_an)((l_wn)xn +wnS(xn + VA*(T - I)Axn))v n = 1’ (110)
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'

A being the spectral radius of the operator A*A. They proved strong convergence theorems
concerning (1.6) for quasi-nonexpansive operators S and 7 in real Hilbert spaces. Inspired
by the work of Zhao and He [38], Moudafi [23] quite recently revisited the viscosity-type
approximation method. In fact, Moudafi gave a simple proof of the strong convergence of
the iterative sequence {x,} defined by (1.10) based on attracting operator properties, then
proposed its modification and finally proved its strong convergence (see Theorem 2.1 of
[23]).

In 2010, Moudafi [22] proposed an algorithm to solve the two-operator SCFPP (1.6)
where S and T are demicontractive operators. The class of demicontractive operators is
fundamental since many common types of operators arising in optimization belong to this
class (see Remark 2 of Tang et al. [25]). Moudafi [22] proved that the sequence {x, } generated
by Algorithm 1 converges weakly to the solution of (1.6).

where f: Hy — H; is a contraction of modulus p > 0, w, € (0, %) y € (0 1), with

Algorithm 1 [22] Let xg € H; be arbitrary and let the sequence {x,} be defined by:
Xn+1 = (I —ap)up + apSup, n =0, (I.11)

where u, = x, + yA*(T — I)Ax,,y € (0, FT”) with X being the spectral radius of the
operator A*A and {«,} C (0, 1).

Theorem 1.5 [22] Given a bounded linear operator A: Hy — Hj, let S: Hl — H; and
T: Hy — Hj be demicontractive (with constants B, i, respectively) with nonempty F(S)
and F(T). Assume that S — I and T — I are demiclosed at 0. If the two sets of SCFPP (1.6)
is nonempty, then any sequence {x,} generated by Algorithm 1 converges to a split common
fixed point x* of (1.6), provided y € (0, 17%) and oy € (8,1 — B — §) for a small enough
5> 0.

Recently, inspired and motivated by the result of Moudafi [22], Tang et al. [25] proposed
a cyclic algorithm (Algorithm 2 below) to solve the SCFPP for demicontractive operators
{S;} lp:l and {T; };:1 . Then they proved that the sequence generated by the proposed algorithm
converges weakly to the solution of (SCFPP). Their work extends those of Moudafi [22],
Censor and Segal [11] and others.

Algorithm 2 [25] Let xg € H; be arbitrary and let the sequence {x,} be defined by:
Xpp1 = (I —ap)uy + anSi(n)una n >0, (1.12)

where u, = x, +y A*(Tjn) — [)Ax,, i(n) = n(mod p)+1and j(n) =n(modr)+1,y €
(0, el ) with A being the spectral radius of the operator A*A and {a,} C (0, 1).

A

Quite recently, Wang and Cui [26] presented a simple proof of the result of Tang et al. [25]
and removed the continuity of the mapping. They obtained the weak convergence of the
Algorithm 2 above.

We comment on the results of Moudafi [22], Tang et al. [25] and Wang and Cui [26] as
follows:

(1) Theorem 1.5 gives a weak convergence result for two-operator SCFPP (1.6) when the
operators S and T are demicontractive. In order to get strong convergence, one must
impose a compactness type condition (demi-compactness) on the mapping S. But this
compactness condition appears strong.
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(2) Similarly, in order to obtain strong convergence result in those of Moudafi [22], Tang et
al. [25] and Wang and Cui [26] without compactness type condition on the mappings
S, a modification of (1.11) and (1.12) is necessary. This modification could be implicit
iterative scheme or explicit iterative scheme. In the implicit iterative scheme, the com-
putation of the next iteration x, 4 involves solving a nonlinear equation at every step
of the iteration, a task which may pose the same difficulty level as the initial problem.
Therefore, in order to get strong convergence result for two-operator SCFPP (1.6) when
the operators S and 7 are demicontractive in infinitely dimensional Hilbert spaces with-
out compactness type condition, a modification of (1.11) and (1.12) which is an explicit
iterative scheme is necessary. This leads to this natural question.

Question Can we modify the iterative schemes (1.11) and (1.12) so that strong convergence
is guaranteed without any further condition of compactness type on the operator?

Our aim in this work is to answer the above question. Thus, we propose a new algorithm to
solve the two-operator SCFPP (1.6) when the operators S and T are demicontractive. Then
we prove that the sequence generated by the proposed algorithm converges strongly to the
solution of (1.6). Our work extends the results of Zhao and He [38], Moudafi [21,23], Censor
and Segal [11] to the SCFPP when the operators S and 7 are demicontractive. Furthermore,
our work improves the recent works of Moudafi [22], Tang et al. [25] and Wang and Cui [26].

2 Preliminaries

Definition 2.1 A mapping T : H — H is called demiclosed at 0 if any sequence {x, } weakly
converges to x, and if the sequence {7 x,} strongly converges to 0, then Tx = 0.

Next, we state the following well-known lemmas which will be used in the sequel.

Lemma 2.2 Let H be a real Hilbert space. Then the following results hold:
@ b+ yIP = 11x1? +20x, y) + [IyI1%, Vx, y € H.
(i) |lx+yI* < |Ix[*+2(y.x +y), Vx,yeH.

Lemma 2.3 (Xu [29]) Let {a,} be a sequence of nonnegative real numbers satisfying the
following relation:

ap+1 = (1 - Oln)an +apon + Vu, n = 0,
where

(i) {on) C10,1], 202 g an = 00;
(i) limsup,_, 0, <0;
(i) yn =0, 202 ¥n < 00.

Then, a, — 0 asn — oo.

3 Main results

In this section, we propose a new modification of (1.11) and then prove its strong convergence
under some mild conditions.



206 Y. Shehu, P. Cholamjiak

Theorem 3.1 Let H| and H» be two real Hilbert spaces, A: Hi — H be a bounded
linear operator and A*: Hy — H) be a adjoint operator of A. Let S: Hi — H be a
k1-demicontractive mapping such that S — I is demi-closed at 0 and C := F(S) # (. Let
T: Hy — Hj be a ky-demicontractive mapping such that T — I is demi-closed at 0 and
Q := F(T) # 0. Suppose that SCFPP (1.6) has a nonempty solution set Q2. Let {B,} and

{An} be two real sequences in (0, 1) and y € (0, ﬁ) Let {y,} and {x,} be generated by
X1 € Hy and

[yn =xn + YA (T — D Ax, (3.1)

Xnt1 = (1 = Bn)(Anyn) + BuSyn, n > 1.
Suppose the following conditions are satisfied:

(@) lim, 00 hp = 1;
(b) 3521 (1—dy) = 00;
(c) Bn € [e, %),for some € > 0 and limsup,,_, . B, < 1 —kj.

Then {x,} converges strongly to an element x* of 2, where x* is the minimum-norm solution

of (1.6).
Proof Let x* € Q. From (3.1) and Lemma 2.2(i), we have
lyn — x*[1* = |lxy — x* + Yy A*(T — 1) Ax,||?
= |2y — X*|* + 2y (x, — x*, AX(T — D Ax,) + YA (T — ) Ax,| >

3.2)
We see that
V2IANT — DAxy| > = y*(AX(T — I)Axy, A(T — 1) Axy)
= yz(AA*(T — 1)Ax,, (T —I1)Axy)
<V IAIPIT = DAx| . 3.3)

Since T is a demicontractive mapping and Ax* € Q = F(T), we obtain
(xp — x*, A*(T — DAx,) = (A(x, — x™), (T — I)Ax,,)
= (A(xy —x*) + (T — I)Ax, — (T — I)Ax,,, (T — I)Axy,)
= (T Ax, — Ax*, (T — DAxp) — ||(T — I)Ax,||?
= (1T A% — X1 1T — D AR 1A%, — Ax*1P]
— (T = 1) Ax,||?

1 %12 2
< 5[114% = A2+ kall (7 = D A, ]

1
+ 5 [T = DA% = 14z, — 4x71]

— (T = D Ax,|?
ky — 1
-T2
Substituting (3.4) and (3.3) into (3.2), we have

(T — 1) Ax,] . (3.4)

yn = x*[12 < lxn — x> =y (1 — k2 — y[JAIDII(T — ) Ax, . 3.5)
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From (3.1), we see that
[xn1 = ¥ = [1(1 = B — (1 = B)(1 = 2u)) (Y — X7)
+ Bn(Syn — x)—(1- Bl — )\‘H)X*”
<A =B — (0 = B) (1 = 22)) (yn — X7)
+ Bu(Syn — XN+ (1 = Bo) (1 — 2| |x*]. (3.6)
Using condition (c¢), we also have
An(1 — k1)
b < T i o € Pl = (=R =) < (1 = k)
& By — Bl — k) —Ay) < Ay (1 —ky)
© Bu < (1 —ki) + Bn(1 — k1)1 — Apn)
& B <=0 =2))A=k1)+ Bp(1 = k1)1 —2p)
< B < —kp)— =2 =k1) + Bu(1 = k)1 = 4y)
S B <A —k)— A=k =B —2p)
S B <=k =1 =B —24y)
© B — A=k =01 -=8)1—2x)) <0. (3.7

Using Lemma 2.2(i), (1.3), (1.4) and (3.7), we obtain
=By — A =B —A2))(yn — x*) + Bu(Syn — )C*)H2

= (1= By — (1= B)A = 1)) llyn —x*I1?
+ B2ISyn — x*P +2(1 = By — (1 = B) (1 = ) Bu(Syn — x*, yp — x¥)

< (1= By — (L= B)L = 2)2llym — x*11% + B2y — 112 + ki lyn — Syal?]

2

k
+2(1 = By — (1 = B = 1)) B [nyn —x*? - LIy — Syn||2}

== (=B = 1)) lyn — ™|

+ k1B — (1= kA = By — (1 = B A = 1)) Balllyn — Syall?
= (1= 1= B = 1)) yn —x*?

+ BulBn — (1 — k)1 = (1 = ) (1 — 2 yn — Synll?
< (1= (1= B =22 yn — x*I1%

which implies
1A =By — 1 =B — An))()’n _x*) +,3n(SYn _X*)”
< (== B0 =2 Dllyn — x*I.

From (3.5), (3.6) and (3.9), we get that

11 — x| < (1= (1 = Bu) (L = A )llyn — x™[| 4+ (1 = B) (X — ) |Ix™]|
<=1 =B =a)lxn — x|+ 1 = B (A — An)[Ix"]|

< max({||lx, — x|, x|}

(3.8)

(3.9)
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<:
< max{||x; — x*||, [lx*|I}. (3.10)

Therefore, {x,} and {y,} are bounded.
Now, for any x € Hj, we have

182 = 2|12 < [lx = x| + kil — Sx]|?
= (Sx —x*, Sx —x*) < (x —x*, x — Sx) + (x — x*, Sx — x*) + ki ||x — Sx||?
= (Sx — x*, Sx —x) < (x —x*, x — Sx) + ki||x — Sx||?
= (Sx —x,Sx —x) 4+ (x —x", Sx — x) < (x — x*, x — Sx) + ki||x — Sx||?
= (1 —kD)llx — Sx|? < 2(x — x*, x — Sx). 3.11)

Since B, < %, it follows that 8, < 1 — kj. Furthermore, by (3.5) and (3.11),
we have

yntt — 1% < [xngt — X117 = 111 = B)Anyn + BuSyn — x|
=11 = (1 = Ba)(1 = &) = Bu)¥n + BuSyn — x*|I
=11 — %) = Ban — Syn) — (1 = B)(1 — M)yl
<O = x) = BaOn — Sy)II* =21 = Bu) (1 = An) Y, X1 — X7)
= 1lyn = X*1* = 282 (0 — Syn. yn — X*) + Brllyn — Syall?
—2(1 = B = An) (Yo Xngt — %)
< lyn = x*I1> = Ba (L = kD)llyn = Syall® + Ballyn — Syall®
—2(1 = B = An) (¥ Xngt — X%
= {lyn — x*I1* = Bal(1 = k1) — Bulllyn — Synll?
—2(1 = B (X = An) (¥ Xnp1 — %)
< o — x*[17 = Bul(1 — k1) — Bulllyn — Synll?
—2(1 = )X = An) (¥ Xnp1 — X¥). (3.12)

Since {y, } and {x, } are bounded, there exists M > Osuchthat —2(1—8,){yn, Xn41—x*) <M
for all n > 0. Hence, by (3.12), we have

a1 — 212 = 1yn — ¥ 4 Bal(1 = k1) — Balllyn — Syall* < (1 = A,)M. (3.13)

The rest of the proof will be divided into two cases.

Case 1 Suppose that there exists ng € N such that {||y, — x*[[};Z,,, is nonincreasing. Then
{llyn — x*[1}52, converges and ||y, — x*12 = |lyng1 — x*||*> = 0 as n — oo. From (3.13)

and since A, — 1, we have

l1yn = Synll = 0 (3.14)
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as n — oo. From (3.5) and (3.10), we have
y(I —ka = y[|AIDIT — 1) Axy|?
< lxn = X*I17 = Iy — x*|
< (Ilynt = 1+ (0 = Bue (A = A DIx11)* = [y — x*|1?
= [lyn—1 = x*[1F = 1lya = x*[1* + 21 = Bae1)(1 = Aue D1 |[1yn—1 — x|
+ (= B (X = A1
< ynet = 212 = lyn = 217 + 201 = Anm DI Nyn—1 — ¥+ (1 = Aue)?[ ]2
Using condition (a), we get that
y(1 —ky = y[[AIDIT = DAxy| > = 0,
as n — o00. This shows that
[I(T — I)Ax,|| — 0, (3.15)
as n — 00. Also, we observe that
lyn = Xull = YIIAN(T — DAx, || < yI|A*III(T — DAxy || — 0,
asn — oo. Since ||y, — x,|| = 0 and ||y, — Sy,|| = 0asn — oo, we have

X0 = Synll < 1yn — Xull + lyn — Synll = 0,
as n — 00. Moreover, we also have
HAnYn — Syull = |AnYn — yn + yu — Synll

= G = Dyall + llyn — Synll
= (I =2)llynll + lyn = Syall = 0,

asn — 00. So, from (3.1), we have
Xnt1 = Synll = (L= B)lIAnyn — Synll = 0,
as n — oo. This implies that
[1Xnt1 = Xnll < [[xn41 = Syall + [lxn = Synll = 0,

as n — oo. Since {x,} is bounded, there exists a subsequence {x,,} of {x,} such that
Xn; = z € H\. Using the fact that x,,; — z € Hj and ||y, — x,|| — 0, we conclude that
Yo =~ Z € Hj. By the demiclosedness principle of § — I at zero and (3.14), we have that
z € F(S) = C. On the other hand, since A is a linear bounded operator and Xn; —~Z € H,
we have Axnj — Az € Hj. Hence, by (3.15), we obtain

||TAxnj - Axn,-” = ||TAxn_/ - Axn_;” — 0,

as j — oo. Since T — [ is demiclosed at zero, we get that Az € F(T) = Q. Hence z € Q.
Next, we prove that {x, } converges strongly to x*. Setting w, = (1—8,)yn+BnSyn, n > 1,
then from (3.1) we have that

Xp+1 = Wy — (1 - lgn)(l - )‘-n)yn-



210 Y. Shehu, P. Cholamjiak

It then follows that
Xt = (L= (1= B = 2wy — (1 = B) (1 — 1) (Vi — W)
= (1= (1= B)A = )wy + A = B)A = 2 Bu(3n — Syn). (3.16)
Also we have
lwn = x| = llyn = x* = Bu(yn — Sya)|I*
= llyn = X*|1> = 284 (yn — Syns yn — X*) + Ballyn — Syall?
< lyn — X*I1* = Bal(1 — k1) = Bulllyn — Syall?
< llyn — x*| 1% (3.17)
Applying Lemma 2.2(ii) to (3.16), we have
Y1 — X1 < g — x|
= [1(1= (1= Ba) (1= 1)) (W =)+ (1= Bu) (1= 20) B O — Syn) — (1 = Bn) (1= A )x*||*
< (A== (=2 lwn =[P 4+2(0 = B) A= 2n) (Ba (yn — Syn) — x*, X1 — x7)
= (1= (1= B)A =2 |lwn — x*1* + 21 = B (L = ) Bu (¥ — Syn. X1 — x*)
—2(1 = B = ) (5™, Xpp1 — x¥)
< (1= (1= B = 1) yn — ¥ 4+ 201 = B)(1 = A)Bu{yn — Sy Xng1 — x¥)
—2(1 = B = ) (x*, Xpp1 — x¥)

< (1= =B =2 )lyn — x* 12+ A = B (1 = 2280 (yn — SYns Xng1 — x¥)
— 20, Xpat — X5 (3.18)

Clearly, 2B, (yn — Sy, Xns1 —x*) — Oasn — coand lim sup, _, {—2<x*,xn+1 —x*)} <
—2limsup;_, o (x*, xp; —x*) = —2(x*, z—x*) < 0 (here x* is the minimum-norm solution
of (1.6)). Now, using (3.18) and Lemma 2.3, we have ||y, —x*|| — 0. Thus ||x, —x*|| = 0
and x,, — x*asn — oo.

Case 2 Assume that {||y, — x*||} is not monotonically decreasing. Set I";, = ||y, — x*| |2 and

let t: N — N be defined by
t(n) :=max{k e N:k <n, Tj <Tiq1}

for all n > ng (for some ng large enough). Clearly, 7 is a nondecreasing sequence such that
T(n) - ocoasn — oo and

1-‘r(n)-i—l - 1—‘r(n) >0, Vn=>nyp.

From (3.13), it is easy to see that

(1—2x M
Yty = Syeamll? < £

< — 0,
ﬂr(n)[(l - kl) - ,Br(n)]

asn — oo. Thus,
”yr(n) - SYI(n)” — 0,
as n — oo. Furthermore, we can show that

(T — I)Ax; )|l = 0,
yrm)y — X ll = YIIA*(T — DAxc |l < yIA*III(T — D Ax || = 0,
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and

xXz@y+1 — Xemyll = O,

as n — o0. Since {y;(,)} is bounded, there exists a subsequence of {y.(,)}, still denoted by
{yz(m)}, which converges weakly to z € H;. Observe that since lim,,_, oo |[Xz(n) — Yr ()|l = 0,
we also have x;(;) — z. Using the demiclosedness of S — I at the origin and the fact
that ||y;(n) — Syzmll — 0, we have that z € F(S) = C. Similarly, we can show that
z € F(T) = Q. Hence z € 2. We note that, for all n > ny,

0 < [1yee+1 — ¥ = [[ye(n — x*1?
< (1= B = e ()D2{Briny ey — Syr(n))s Xrny+1 — X™)
— 20, Xe ()1 — XF) = yeen — X171

This implies that

yemy = X117 < 20Bein ey — SVeam)s Xema1 — x%) = 25, Xe(mya1 — x%). (3.19)
Since ||y () — Szl = 0 and [|xr )41 — Xz ()|l = 0, by (3.19), it follows that

lim sup||yz(ny — x*]1* < —2(x*,z —x*) <0,
n—oo

which also implies that
lim [[yr(m) — x| = 0.
n—o0

Therefore

lim FT(,,) = lim l“r(,,)+1 =0.
n—oo n—oo

Moreover, for n > ny, it is easy to see that I'; ;) < I'r(n)41 if n # T(n) (thatis (n) < n),

because I'; > I';j 4 for T(n) + 1 < j < n. As a consequence, we obtain, for all n > ny,

0<T, <max{T'rm), Tey+1) = Tre+1-

Solim,—~ I';; = 0 and {y,} converges strongly to x*. Hence {x, } converges strongly to x*.
This completes the proof. O

Corollary 3.2 Let Hy and H> be two real Hilbert spaces, A: Hl — Hj, be a bounded
linear operator and A*: Hy — H| be the adjoint operator of A. Let S: Hl — Hj be a
quasi-nonexpansive mapping such that S — I is demi-closed at 0 and C := F(S) # 0. Let
T: Hy — H> be a quasi-nonexpansive mapping such that T — I is demi-closed at 0 and
Q := F(T) # 0. Suppose that SCFPP (1.6) has a nonempty solution set Q2. Let {B,} and
{An} be two real sequences in (0, 1) and y € (0, W) Let {y,} and {x,} be generated by
(3.1). Suppose the following conditions are satisfied:
(@) limy 00 dy = 1;

(b) 202 (1= 2y) = 00;

) 0<e<B,<b< 1

Then {x,} converges strongly to an element x* of 2, where x* is the minimum-norm solution

of (1.6).
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Following the proof line in Theorems 3.1 and 2 of Tang et al. [25], we can easily prove
the following theorem for multiple-set split feasibility problem (MSSFP) of demicontractive
operators. The MSSFP is formulated as:

find x €N/ C; suchthat Ax € ;_, 0}, (3.20)
where A: H; — H; is abounded linear operator, C; (i = 1,2, ..., p) is anonempty, closed
and convex subset of a Hilbert space Hy and Q; (j = 1,2, ..., r) is anonempty, closed and

convex subset of a Hilbert space H>.

Theorem 3.3 Let H| and H> be two real Hilbert spaces, A: Hl — H, be a bounded
linear operator and A*: H» — H) be the adjoint operator of A. For eachi = 1,2,...,p
let S;: Hi — Hj be a p;-demicontractive mapping such that S; — I is demi-closed at
0and C = ﬂleF(Si) # (. Foreach j = 1,2,...,r let T; : Hyp — H be a ;-
demicontractive mapping such that T; — I is demi-closed at 0 and Q := ﬂ;zl F(T;) # 9.
Let ky := max{p;:i = 1,2,...,p}and ky := max{u;: j = 1,2,...,r}. Suppose that
(MSSFP) (3.20) has a nonempty solution set Q2. Let {8, } and {A,} be two real sequences in

O, andy € (0, \l|/:\k|%)' Let {y,} and {x,} be generated by x1 € Hy and

[ Yn = Xp + VA*(Tj(n) —DAx, (3.21)

Xpt1 = (1 = Bu)(Apyn) + ,BnSi(n)yn, n>1,
where i(n) = n(mod p) + 1 and j(n) = n(mod r) + 1. Suppose the following conditions
are satisfied:

(@) limy 500y = 1;
(b) Zi](l - )“n) = 00,
(c) Bn € [6, %),for some € > 0 and limsup,,_, . B, < 1 —kj.

Then {x,};°, converges strongly to an element x* of Q, where x* is the minimum-norm
solution of (3.20).

4 An application
4.1 The split common null point problem

We now apply Theorem 3.1 to solve the split common null point problem (see, for example
[6]) for set-valued mappings in Hilbert spaces. Let H; and H, be two real Hilbert spaces.
Let Bi: Hy — 21 (1 <i < p)and Fj: H, - 2% (1 < j <r)andlet A;: Hl — H,
(1 < j < r) be a bounded linear operator. This problem is formulated as follows: find a
point x* € Hj such that

0en’_ Bi(x") @.1)
and such that the point y;’.‘ = A;x* € Hy and solves
0e ﬂ;lej(yl’,‘f). 4.2)

We denote by SCNPP(p, r) the solution set of (4.1). Special case of SCNPP(p, r) includes
the split variational inequality problem (SVIP) in a real Hilbert space.

Let Hy; and H; be two real Hilbert spaces. Let f: H; — H; and g: H, — H;. Let
A: Hy — H; be a bounded linear operator. Let C and Q be nonempty, closed and convex
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subsets of Hj and Hy, respectively. The SVIP (see, for example [10]) is formulated as follows:
find a point x* € C such that

(f(&™),x=x") =0 VxeC (4.3)
and such that the point y* = Ax* € Q and solves

("), y=y") =0 VyeQ. 4.4

We note that (4.3) is the classical variational Inequality problem (VIP) and also denote its
solution set by SOL(C, f). The SVIP is quite general and should enable split minimization
between two spaces so that the image of a solution point of one minimization problem, under
a given bounded linear operator, is a solution point of another minimization problem.

In this section, we prove strong convergence theorem for solving the split common null
point problem (4.1)—(4.2) for the case when p = r = 1. That is, given two set-valued
mappings By: Hy — 281 ‘and F;: Hy — 22 and a bounded linear operator A: H; — H»,
we find a point x* € Hj such that

0€ Bi(x*) and 0 € Fi(A(x")). 4.5)

We denote by Q2 the solution set of (4.5).

A set-valued mapping M : H — 2 is called monotone if forall x, y € H, f € M(x)
and g € M(y) imply (x — y, f — g) > 0. A monotone mapping M is said to be maximal if
the graph G (M) is not properly contained in the graph of any other monotone map, where
GM) := {(x,y) € H x H: y € Mx} for a multi-valued mapping M. It is also known
that M is maximal if and only if for (x, f) € H x H, (x —y, f — g) > 0 for every
(v, g) € G(M) implies f € Mx. The resolvent operator J, associated with M and r is the
mapping J,: H — H defined by

Jow)=U+rM)" "), ueH, r>0. (4.6)

It is known that the resolvent operator J, is single-valued and nonexpansive (see, for example
[3]) and that a solution of the problem: find u € H such that 0 € M (u) is a fixed point of
Jr, Vr > 0 (see, for example [17]).

‘We now prove the following convergence theorem for the split common null point problem.

Theorem 4.1 Let Hy and H, be real Hilbert spaces andlet A: Hy — Hj be a bounded linear
operator. Given set-valued maximal monotone mappings By: H;y — 21, and F\: Hy, —

212 yespectively. Assume that y € (O ) Assume that Q # (. Let {8,} and {)\,,} be two

1
> IAl12
real sequences in (0, 1) satisfying:

(a) lim, 00 Ap = 1;
(b) 202 (1 —2y) = o0;
b)) 0<e<pB,<b<l

Letr > 0. Then {y,} and {x,} generated by x; € Hy and

[ Y = 2+ y AR = D Ax, @7

Xpr1 = (I = Bu)Anyn) + ﬂnJrBl)’n» n>1

converge strongly to a solution point x* of 2, where x* is the minimum-norm solution of
4.5).
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Proof Let § = J,B1 and T = J,F‘. Then, we have S and T are nonexpansive and hence
O-demicontractive. We obtain the desired conclusion by following the proof line in
Theorem 3.1. O

Remark 4.2 If A = I in the problem (1.6), then (1.6) reduces to the CFP for demicontrac-
tive (quasi-nonexpansive) operators which the results in the papers [1,7,8,16,19,30] can be
applied to solve. Furthermore, if S = Pc and T = Py, then the problem (1.6) reduces
to the SFP (1.1) which the results in [27] can applied to solve. Based on this remark, our
results complement those of [1,7,8,16,19,27,30]. Moreover, our results can be used to solve
the fixed point problem for demicontractive (quasi-nonexpansive) operators considered in
[1,7,8,16,19,30] and also the SFP considered in [27].

Remark 4.3 In conclusion, we make the following comments which highlight our contribu-

tions in this paper.

(1) Theorem 4.1 complements Theorems 4.3 and 4.4 of [6]. In other words, Theorem 4.1
is another new strong convergence result for the split common null point problem in
real Hilbert spaces. Furthermore, since the SCNPP(p, r) generalizes the SVIP, then
Theorem 4.1 includes all the applications to which SVIP applies (see Section 7 of [10]).
In particular, it includes the SFP and the CFP.

(2) In this paper, we obtain strong convergence results for the split common fixed problems
for demicontractive mappings without any extra conditions (such as demi-compactness
or semi-compactness) on the operators or on the space (see, for example [12]).

(3) Our results extend the class of operators for the SCFPP considered in those of Moudafi
[21,23], and Zhao and He [38] to a wider class of operators.

(4) On page 272 of [35], Yao and Cho made the following remark:“It is a very inter-
esting topic of constructing some algorithms such that the strong convergence of
proposed algorithms are guaranteed. For this purpose, in this article we present a
modified Krasnoselskii-Mann method x,+1 = o, (Ayy,) + (1 — )Ty, for non-
expansive mappings in Hilbert spaces and show that the proposed method x,+1 =
an(Apyn) + (1 — a,)Ty, has strong convergence. However, we note that in order to
obtain the main result of Theorem 3, we have imposed some additional conditions
>0 o — o] <00, D02 |Ay — 1] < 0oand > o2 (1 — Ay)ay, = co. Hence
this brings us a nature problem: could we weaken or drop these additional assumptions?”
In our results here, the conditions > 02 | |ty —oty—1| < coand > 2 [Ay — Ay—1| < 00
imposed in the results of Yao and Cho [35] are dispensed with even for a class of
demicontractive mappings which are larger than the class of nonexpansive mappings
considered in [35]. Thus, our results improve and extend those of Yao and Cho [35].

(5) Intheresults of Moudafi [22], Tang et al. [25], and Wang and Cui [26], weak convergence
results were given concerning the SCFPP for demicontractive mappings while in this
paper, we give strong convergence results for the SCFPP for demicontractive mappings.

(6) Since demicontractive operators include directed operators (an operator 7: H — H is
called directed if (z — Tx,x — Tx) <0,Vz € F(T),x € H), then all the results in this
paper hold if S and T are directed operators. Please see, for example, Cui et al. [14] and
Bauschke and Combettes [2] for more details.

Remark 4.4 The prototype for the iteration parameters are as follows:

1 1
e Bi=ed+—[(1—k) —€], ¥n> 1.
Jn+1 +1'8” Jn+1 +1[( 1)~ el

It is easy to check that these choices satisfy all the conditions of Theorem 3.1.

Iy =1—
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S Numerical example

In this section, we give a numerical example to demonstrate the convergence of our algorithm.

a a
Let Hy = (R, || - |}2) = Hp. Let T: R} — R3 be definedby T (b | = 4 [ b
c c
a 0
and let § : R> — R3 be defined by S| b | = | a |. It is clear that both T and S are
c b

0-demicontractive mappings. Choose A, = 1 — ‘/ﬁ and B, = %(l + ﬁ) foralln > 1.

The stopping criterion for our testing method is taken as: ||x,4+1 — x,||> < 107° where

ay 5 =5-7

X, = | by |. Let us assume that A = | —4 2 —4 |, then the iterative scheme (3.1)
Cn -7 -4 5

becomes

Table 1 Table for Case 1

n dan by Cn [|xXn41 — Xnll2
2 0.33500 —0.23876 0.80418 4.5988115
4 0.04455 0.03399 0.06614 0.1472707
6 0.00758 0.01515 0.01864 0.0196816
8 0.00186 0.00490 0.00675 0.0060833
10 0.00059 0.00162 0.00242 0.0020533
26 0.00000 0.00000 0.00000 0.0000008
002 . . . :

1 -
0016~ B
0014 B
0012 B

o
& ool A -
B \
0008~ \ -
\
\
0006 | N B
\
\
0004 \ i
\
N\
S
0002 o N
\\~\
0 L e & | L
5 10 15 20 25 30

Fig. 1 Figure for Case 1
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Table 2 Table for Case 2

n dap by Cn HXn-H —xnll2
2 0.27125 —0.32486 0.91888 4.4713265
4 0.03607 0.00803 0.07237 0.1752988
6 0.00615 0.00986 0.01610 0.0168615
8 0.00125 0.00357 0.00601 0.0046967
10 0.00031 0.00113 0.00229 0.0017221
25 0.00000 0.00000 0.00000 0.0000007
0.02 T T T T
0018 _
0016 B
0014 B
0012 B
o
(o]
@ 001 B
o
w
0008 1\ B
\
\
0.006 \ -
\
\
0.004 \ B
\
N
0002 \\\\ B
o .l\\ —————————— 4o L

Fig. 2 Figure for Case 2

[yn:xn'i'VAT(T_])Axn 5.1)
_(1_ 1 _ 1 1 1 :
s = (3= i) (1= 7)o+ 3 (14 i) o = 1.
aj 1
In this example, we start with the initial point x; = | by | = | —2 | and consider various
cl 5

choices of y to see how our iterative scheme depends on the choice of y . In the graphs below,
we plot the number of iterations against ||x,+1 — X»||2-

Case 1 Take y = 0.004. Then using (5.1), we have the Table 1 and Fig. 1 below.
Case 2 Take y = 0.001. Then using (5.1), we have the Table 2 and Fig. 2 below.
Case 3 Take y = 0.0001. Then using (5.1), we have the Table 3 and Fig. 3 below.

Remark 5.1 We see that the smaller the choice of y > 0 chosen, the less the number of
iterations required.
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Table 3 Table for Case 3

ERROR

n dap bn Cn Hxn+1 7an2

2 0.25213 —0.35068 0.95328 4.4334495

4 0.03178 —0.00232 0.07504 0.1859462

6 0.00532 0.00706 0.01449 0.0165695

8 0.00101 0.00279 0.00516 0.0039471

10 0.00021 0.00086 0.00198 0.0014463

24 0.00000 0.00000 0.00000 0.0000006
002 T T T T
0.018 —
0.016 —
0.014 .
0.012 —
0.01 —
0.008 —
0.006 —
0.004 -
0.002 -

0 1‘5 2‘0 2‘5 30

Fig. 3 Figure for Case 3
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