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CHAPTER I

INTRODUCTION

In optimization theory, one of the most important and interesting problems

in the theory of maximal monotone operators is to find zeroes of maximal mono-

tone operators. To be more precise, many problems that involve convexity can

be expressed as the variational inclusion problem of maximal monotone operators.

These problems include convex minimization, min-max problems, complementarity

problems and variational inequalities as special cases. The regularization is one of

the most important techniques in handling ill-posed problems and inverse prob-

lems. The Tikhonov regularization and proximal point methods are widely used to

deal with one maximal monotone operator. The proximal point algorithm (PPA)

initiated by Martinet in 1970 and subsequently studied by Rockafellar in 1976 is

often referred. However, since the PPA does not necessarily converges strongly,

many researchers have conducted worthwhile work on modifying the PPA so that

the strong convergence is guaranteed, for examples, the relaxed proximal point

algorithm (RPPA) and the contraction-proximal point algorithm (CPPA). The

Tikhonov regularization is another method commonly used for solving this prob-

lem. In general, many practical nonlinear problems arising in applied areas such as

inverse problems especially signal processing, image recovery, and machine learning

can be formulated as finding the zeroes of the operator decomposed as the sum of

two maximal monotone operators. The splitting methods play a central role in the

analysis and the numerical solution of such problems. The Forward-Backward and

Douglas-Rachford splitting algorithms are classical methods for computing those

reliable solutions. Due to its applications, there have been several modifications

and generalizations of these methods suggested and invented independently for

solving the problem in many different contexts.

It is therefore the main objective in this research to study the modified



forward-backward splitting methods and also to investigate strong convergence

theorems for solving variational inclusion problems and to give some optimization

problem including its numerical experiments. The main results can improve and

extend the corresponding results in this area and, of course, can be applied to

solve major problems existed in science, engineering, economics and other related

branches. To be more precise, we apply our main results to the minimization

optimization problem and the linear inverse problem.



CHAPTER II

LITERATURE REVIEW

Let H be a real Hilbert space and let T : H → 2H be a maximal monotone

operator. A fundamental problem of monotone operators is that of finding an

x ∈ D(A) such that

0 ∈ Tx. (2.1)

where D(T ) denotes the domain of T . Denote by JT
r = (I + rT )−1, r > 0 the

resolvent of a maximal monotone operator T .

A classical method for solving this problem introduced by Martinet [33] is

the well-known proximal point algorithm (PPA), which generates, for any initial

guess x0 ∈ H, an iterative sequence as

xn ∈ xn+1 + rnTxn+1, n ≥ 1 (2.2)

where {rn} is a positive real sequence. Note that (2.2) is equivalent to

xn+1 = JT
rn

xn, n ≥ 1 (2.3)

where {rn} is a positive real sequence. It was shown, in a real Hilbert space, that

the sequence generated by (2.3) converges weakly to a zero of T . As pointed in

Eckstein [15], the ideal form of the method is often impractical since, in many

cases the exact iteration (2.3) may require a computation as difficult as solving the

original problem (2.1). Rockafellar [39] has given a more practical method which

is an inexact variant of the method: x0 ∈ H

xn + en ∈ xn+1 + rnTxn+1, n ≥ 1 (2.4)

where {en} is an error sequence. Note that the algorithm (2.4) can be rewritten as

xn+1 = JT
rn

(xn + en), n ≥ 1 (2.5)

This is an inexact proximal point algorithm. It was shown that, if
∑∞

n=1 ‖en‖ < ∞,

then the sequence {xn} defined by (2.5) converges weakly to a zero of T .



Eckstein and Bertsekas [16] constructed the relaxed proximal point algo-

rithm (RPPA):

xn+1 = αnxn + (1− αn)JT
rn

xn + en, n ≥ 1 (2.6)

where {αn} is a real sequence in (0, 1) and {en} is an error sequence. The weak

convergence of (2.6) is guaranteed provided that {αn} and {en} satisfy some mild

conditions. It is noted that Guler [17] obtained an example to show that Rockafel-

lar’s proximal point algorithm does not converge strongly, in general. Since then,

there are many modifications on the PPA.

Theorem 2.1.1. Let K be a bounded closed convex subset of a Hilbert space H

and T : K → K be a nonexpansive mapping. Let u ∈ K be arbitrary. Define a real

sequence {αn} in [0, 1] by αn = n−θ, θ ∈ (0, 1). Deine a sequence {xn} in K by

x1 ∈ K,

xn+1 = αnu + (1− αn)Txn, n ≥ 1. (2.7)

Then, {xn} converges strongly to the element of F (T ) := {x ∈ K : Tx = x}

nearest to u.

This method is called Halpern’s iteration process. Employing the Halpern’s

iteration, to obtain the strong convergence, in 2004, Marino and Xu [32] proposed

the contraction-proximal point algorithm (CPPA): x0, u ∈ H and

xn+1 = αnu + (1− αn)JT
rn

xn + en, n ≥ 1 (2.8)

where {αn} is a real sequence in (0, 1) and {en} is an error sequence. Under suitable

conditions, the CPPA (2.8) converges strongly to a zero of T .

Yao and Noor [55] extended the CPPA to the following form:

xn+1 = αnu + βnxn + γnJ
T
rn

xn + en, n ≥ 1 (2.9)

where {αn}, {βn} and {γn} are a real sequence in (0, 1) and {en} is an error se-

quence. It was proved that the sequence {xn} generated by (2.9) strongly converges

to a zero of T .



In recent years, many researchers attempt to construct new algorithms and

study convergence of the sequence and also to generalize and improve the works on

this direction (see, for instance, [4, 6, 7, 19, 21, 37, 45, 46]).

Another powerful and successful technique to obtain strong convergence is

the Tikhonov regularization method which is generated a sequence{xn} by the

following manner:

xn+1 = JT
rn

u, n ≥ 1, (2.10)

where u ∈ H and rn > 0 such that rn → ∞. The strong convergence was investi-

gated in Hilbert spaces.

In [26], Lehdili and Moudafi combined the technique of the proximal map-

ping and the Tikhonov regularization to introduce the prox-Tikhonov method

which generates the sequence {xn} by the algorithm

xn+1 = JTn
rn

xn, n ≥ 1 (2.11)

where Tn = unI + T, un > 0 is viewed as a Tikhonov regularization of T . Using

the concept of variational distance, the strong convergence is obtained under some

mild conditions.

Subsequently, algorithm (2.11) was extended by Xu [52] in the following:

x0, u ∈ H

xn+1 = JT
rn

(αnu + (1− αn)xn + en), n ≥ 1 (2.12)

where {αn} is a real sequence in (0, 1) and {en} is an error sequence. The strong

convergence was proved in a Hilbert space. Some modifications and generalizations

of the Tikhonov regularization can also be found in [44, 41, 46, 50].

The problems can be solved via the proximal point algorithm. But one of

the major drawbacks of this algorithm is the need to evaluate the resolvent

JT
rn

= (I + rnT )−1. (2.13)



However, in some cases, the operator T can be decomposed into the sum of

two maximal monotone operators A and B whose resolvents JA
rn

and JB
rn

are easier

to evaluate than JT
rn

. In this case, the strategy is to find a zero of T by using only

JA
rn

and JB
rn

rather than JT
rn

. Such a method is called an operator splitting method.

In 1955-1956, Peaceman and Rachford [35] and Douglas and Rachford [13]

introduced the splitting methods for linear equations.

In 1969-1991, Kellogg [25] and Lions and Mercier [27] (see also [34, 48, 8])

extend this method to nonlinear equations in Hilbert spaces.

The central problem is to iteratively find a zero of the sum of two monotone

operators A and B in a Hilbert space H, namely, a solution to inclusion problem:

find x ∈ H such that

0 ∈ (A + B)x. (2.14)

where A : H → H is an operator and B : H → 2H is a set-valued operator. This

problem includes, as special cases, convex programming, variational inequalities,

split feasibility problem and minimization problem. To be more precise, some con-

crete problems in machine learning, image processing and linear inverse problem.

A splitting method for (2.14) means an iterative method for which each

iteration involves only with the individual operators A and B, but not the sum A+

B. To solve (2.14), Peaceman and Rachford [35] introduced the Forward-Backward

Splitting Method (FBSM) which generate a sequence {xn} by the recursion

xn+1 = (2JA
rn
− I)(2JB

rn
− I)xn, n ≥ 1 (2.15)

where JA
rn

, JB
rn

are resolvents of A, B. It was shown that {xn} defined by (2.15)

converges to the zeroes of A + B. In 1956, Douglas and Rachford [13] introduced

Douglas-Rachford Splitting Method (DRSM) as follows: x0 ∈ H and

xn+1 = JA
rn

(2JB
rn
− I)xn + (I − JB

rn
)xn, n ≥ 1 (2.16)

where JA
rn

, JB
rn

are resolvents of A, B. It was shown that {xn} defined by (2.16)

converges to the zeroes of A + B.



The nonlinear Peaceman-Rachford algorithm (2.15) fails, in general, to con-

verge (even in the weak topology in the infinite-dimensional setting). This is due to

the fact that the generating operator (2JA
rn
− I)(2JB

rn
− I) for the algorithm (2.15)

is merely nonexpansive. However, the mean averages of {un} can be weakly con-

vergent [34]. The nonlinear Douglas-Rachford algorithm (2.16) always converges in

the weak topology to a point u and u = JB
rn

v is a solution to (2.14), since the gen-

erating operator JA
rn

(2JA
rn
− I)+(I−JB

rn
) for this algorithm is firmly nonexpansive,

namely, the operator is of the form (I+T )
2

, where T is nonexpansive.

In 2012, Takahashi et al. [47] proved some strong convergence theorems of

Halpern’s type in a Hilbert spacec H, which is defined by the following manner:

x1 ∈ H and

xn+1 = βnxn + (1− βn)(αnu + (1− αn)JB
rn

(xn − rnAxn)), (2.17)

wher u ∈ H is a fixed and A is an α-inverse strongly monotone mapping on H and B

is an maximal monotone operator on H. They proved that if {rn} ⊆ (0,∞), {βn} ⊆

(0, 1) and {αn} ⊆ (0, 1) satisfy

1. 0 < a ≤ rn ≤ 2α,

2. limn→∞(rn − rn+1) = 0,

3. 0 < c ≤ βn ≤ d < 1,

4. limn→∞ αn = 0 and
∑∞

n=1 αn = ∞,

then {xn} generated by (2.17) converges strongly to a solution of A + B.

Let X be a Banach space. It shold be noted that there is a few works

concerning the split method established in a Banach space setting.

Recently, López et al. [28] introduced the following Halpern-type forward-

backward method: x1 ∈ X and

xn+1 = αnu + (1− αn)(JB
rn

(xn − rn(Axn + an)) + bn), n ≥ 1, (2.18)

where u ∈ X, A is an α-inverse strongly accretive mapping on X and B is an

m-accretive operator on X, {rn} ⊆ (0,∞), {αn} ⊆ (0, 1] and {an}, {bn} are error



sequences in X. It was proved that the sequence {xn} generated by (2.18) strongly

converges to a zero point of the sum of A and B under some appropriate conditions.

There have been many works concerning the problem of finding zero points of the

sum of two monotone operators (in Hilbert spaces) and accretive operators (in

Banach spaces); see [11, 42, 43, 47, 49, 56].

In our research, we aim to study the forward-backward splitting methods

for solving (2.14) for nonlinear operators in a certain Banach space. Furthermore,

we establish the strong convergence theorem under suitable conditions. Also, we

discuss a results to the minimization optimization problem and related problems

including the numerical experiments. Our results generalize and improve some

known others appeared in the literature.



CHAPTER III

PRELIMINARIES

3.1 Preliminaries and lemmas

In this section, we provide some basic concepts, definitions and lemmas

which will be used in the sequel.

Definition 3.1.1. (Fixed point)

Let X be a nonempty set and T : X → X a self-mapping. We say that

x ∈ X is a fixed point of T if

T (x) = x (3.19)

and denote by Fix(T ) the set of all fixed points of T .

Example 3.1.2. 1. If X = R and T (x) = x2 + 5x + 4, then Fix(T ) = {−2};

2. If X = R and T (x) = x2 − x, then Fix(T ) = {0, 2};

3. If X = R and T (x) = x + 5, then Fix(T ) = ∅;

4. If X = R and T (x) = x, then Fix(T ) = R;.

Definition 3.1.3. (Metric space)

Let X be a nonempty set and d : X × X → [0,∞) a function. Then d is

called a metric on X if the following properties hold:

1. d(x, y) ≥ 0 for all x, y ∈ X;

2. d(x, y) = 0 if and only if x = y for all x, y ∈ X;

3. d(x, y) = d(y, x) for all x, y ∈ X;

4. d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

The value of metric d at (x, y) is called distance between x and y, and the ordered

pair (X, d) is called a metric space.

Example 3.1.4. The real line R and define

d(x, y) = |x− y| for all x, y ∈ R. (3.20)



Then (R, d) is a metric space.

Example 3.1.5. The Euclidean plane R2 and define

d(x, y) =
√

(ξ1 − η1)2 + (ξ2 − η2)2 (3.21)

where x = (ξ1, ξ2), y = (η1, η2) ∈ R2. Then (R2, d) is a metric space.

Example 3.1.6. The Euclidean space Rn and define

d(x, y) =
√

(ξ1 − η1)2 + (ξ2 − η2)2 + (ξ3 − η3)2 + ... + (ξn − ηn)2 (3.22)

where x = (ξ1, ξ2, ξ3, ..., ξn), y = (η1, η2, η3, ..., ηn) ∈ Rn. Then (Rn, d) is a metric

space.

Example 3.1.7. Let X be the set of all bounded sequences of complex numbers;

that is every element of X is a complex sequence

x = (ξ1, ξ2, ...)

such that |ξj| ≤ cx for all j = 1, 2, ... and cx is a real number which may depend on

x, but does not depend on j and define

d(x, y) = sup
j∈N

|ξj − ηj| (3.23)

where y = (ηj) ∈ X and N = 1, 2, .... Then (X, d) is a metric space.

Definition 3.1.8. (Closed set)

Let (X, d) be a metric space. A subset U ⊆ X is open if for every x ∈ X

there exists r > 0 such that B(x, r) ⊆ U . A set U is closed if its complement X \U

is open.

Theorem 3.1.9. Let M be a nonempty subset of a metric space X. Then M is

closed if and only if there exists a sequence {xn} ⊆ M and xn → x implies that

x ∈ M .

Definition 3.1.10. (Convergent sequence)

A sequence {xn} in a metric space X is said to be convergent to x ∈ R if

for all ε > 0 there exists N ∈ N if n > N then d(x, y) < ε. In this case, we write

xn → x



Definition 3.1.11. (Cauchy sequence)

A sequence {xn} in a metric space X is said to be Cauchy if for all ε > 0

there exists N ∈ N if m,n > N then d(xm, xn) < ε.

Definition 3.1.12. (Bounded sequence)

A sequence {xn} in X is bounded if there exists M > 0 such that ‖xn‖ ≤ M

for all n ∈ N.

Definition 3.1.13. (Lipschitzian mapping)

Let (X, d) be a metric space. Then a map T : X → X is called a lipschitzian

mapping on X if there exists L > 0 such that

d(T (x), T (y)) ≤ Ld(x, y) for all x, y ∈ X.

Definition 3.1.14. (Nonexpansive mapping)

Let (X, d) be a metric space. Then a map T : X → X is called a nonex-

pansive mapping on X if

d(T (x), T (y)) ≤ d(x, y) for all x, y ∈ X.

Definition 3.1.15. (Contraction mapping)

Let (X, d) be a metric space. Then a map T : X → X is called a contraction

mapping on X if there exists q ∈ [0, 1) such that

d(T (x), T (y)) ≤ qd(x, y) for all x, y ∈ X.

Theorem 3.1.16. (The Banach contraction principle)

Let X be a complete metric space and let T be a contraction of X into itself.

Then T has a unique fixed point.

Definition 3.1.17. (Vector space)

A vector space or linear space X over the field K (R or C) is a set X together

with an internal binary operation ”+” called addition and a scalar multiplication

carrying (α, x) in K×X to αx in X satisfying the following for all x, y, z ∈ X and

α, β ∈ K:



1. x + y = y + x;

2. (x + y) + z = x + (y + z);

3. there exists an element 0 ∈ X call the zero vector of X such that x+0 = x

for all x ∈ X;

4. for every element x ∈ X, there exists an element −x ∈ X called the

additive inverse or the negative of x such that x + (−x) = 0;

5. α(x + y) = αx + αy;

6. (α + β)x = αx + βy;

7. (αβ)x = α(βx);

8. 1 · x = x.

The elements of a vector space X are called vectors, and the elements of K are

called scalars.

Example 3.1.18. The Euclidean space Rn and define

x + y = (ξ1 + η1, ξ2 + η2, ξ3 + η3, ..., ξn + ηn)

αx = (αξ1, αξ2, αξ3, ..., αξn)

where x = (ξ1, ξ2, ξ3, ..., ξn), y = (η1, η2, η3, ..., ηn) ∈ Rn and α ∈ R. Then, space Rn

is a real vector space.

Definition 3.1.19. (Convex set)

Let C be a subset of a linear space X. Then C is said to be convex if

(1− λ)x + λy ∈ C for all x, y and all scalar λ ∈ [0, 1].

Example 3.1.20. 1. Every subspace of vector space is convex set.

2. B(x; r) = {x : ‖x‖ ≤ r} is convex set.

3. [0, 1]N = [1, 0]× [1, 0]× ...× [1, 0] is convex set in RN .

Proposition 3.1.21. Let C be a subset of a linear space X. Then C is convex if

and only if λ1x1 + λ2x2 + ... + λnxn ∈ C for any finite set {x1, x2, ..., xn} ⊆ C and

scalars λi ≥ 0 with λ1 + λ2 + ... + λn = 1.



Definition 3.1.22. (Convex function)

Let X be a linear space and f : X → (−∞,∞] a function. Then f is said to

be convex if f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y) for all x, y ∈ X and λ ∈ [0, 1].

Example 3.1.23. 1. F (x) = |x|p where p ≥ 1 is convex function in R.

2. F (x) = x3 − x2 is convex function in [1
3
,∞).

3. F (x) = x log x where p ≥ 1 is convex function in R+.

Definition 3.1.24. (Normed space)

let X be a norm linear space over field K (R or C) and ‖ · ‖ : X → R+ a

function. Then ‖ · ‖ is said to be a norm if the following properties hold:

1. ‖x‖ ≥ 0, and ‖x‖ = 0 ⇔ x = 0;

2. ‖αx‖ = |α|‖x‖ for all x ∈ X and α ∈ K;

3. ‖x + y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X.

The ordered pair (X, ‖ · ‖) is called a normed space.

Example 3.1.25. Rn is a normed space with the following norms:

‖x‖1 =
n∑

i=1

|xi| for all x = (x1, x2, .., xn) ∈ Rn;

‖x‖p =
( n∑

i=1

|xi|p
)1/p

for all x = (x1, x2, .., xn) ∈ Rn and p ∈ (1,∞);

‖x‖∞ = max
1≤i≤n

|xi| for all x = (x1, x2, .., xn) ∈ Rn.

Remark 3.1.26. 1. Rn equipped with the norm defined by ‖x‖p =
( ∑n

i=1 |xi|p
)1/p

is denoted by lnq for all 1 ≤ p < ∞.

2. Rn equipped with the norm defined by ‖x‖∞ = max1≤i≤n |xi| is denoted by ln∞.

Example 3.1.27. Let X = l1, the linear space whose elements consist of all abso-

lutely convergent sequences (x1, x2, ..., xi, ...) of scalars (R or C),

l1 = {x : x = (x1, x2, ..., xi, ...) and

∞∑
i=1

|xi| < ∞}.

Then l1 is a normed space with the norm defined by ‖x‖1 =
∑∞

i=1 |xi|.



Example 3.1.28. let X = lp (1 < p < ∞), the linear space whose elements consist

of all p-summable sequences (x1, x2, ..., xi, ...) of scalars (R or C),

lp = {x : x = (x1, x2, ..., xi, ...) and
∞∑
i=1

|xi|p < ∞}.

Then lp is a normed space with the norm defined by ‖x‖p = (
∑∞

i=1 |xi|p)1/p.

Example 3.1.29. let X = l∞, the linear space whose elements consist of all

bounded sequences (x1, x2, ..., xi, ...) of scalars (R or C),

l∞ = {x : x = (x1, x2, ..., xi, ...) and {xi}∞i=1 is bounded}.

Then l∞ is a normed space with the norm defined by ‖x‖∞ = supi∈N |xi|.

Definition 3.1.30. (Completeness)

The space X is said to be complete if every Cauchy sequence in X converges.

Example 3.1.31. The Euclidean space Rn is complete with

d(x, y) =
√

(ξ1 − η1)2 + (ξ2 − η2)2 + (ξ3 − η3)2 + ... + (ξn − ηn)2 (3.24)

where x = (ξ1, ξ2, ξ3, ..., ξn), y = (η1, η2, η3, ..., ηn) ∈ Rn.

Example 3.1.32. The sequence space l∞ is complete.

Example 3.1.33. The sequence space lp is complete.

Definition 3.1.34. (Banach space)

A normed space which is complete with respect to the metric induced by

the norm is called a Banach space.

Example 3.1.35. The Euclidean space Rn is a Banach space with the norm defined

by

‖x‖ =
( n∑

i=1

|xi|2
)1/2

,

where x = (x1, x2, ..., xn) ∈ Rn.



Example 3.1.36. The space lp, 1 ≤ p < ∞ is a Banach space with the norm

defined by

‖x‖p =
( ∞∑

i=1

|xi|p
)1/p

,

where x = (x1, x2, ..., xn, ...) and
∑∞

n=1 |xn|p < ∞.

Example 3.1.37. The space l∞ of all bounded sequence x = (x1, x2, ..., xn, ...) is a

Banach space with the norm defined by

‖x‖ = sup
i
|xi|.

Definition 3.1.38. (Inner product space)

An inner product space is a vector space X with an inner product defined

on X. Here, an inner product on X is a mapping of X ×X into the scalar field K

of X; that is, with every pair of vectors x and y there is associated a scalar which

is written

〈x, y〉 (3.25)

and is called the inner product of x and y, such that for all vectors x, y, z and

scalars a we have

(IP1) 〈x, x〉 ≥ 0;

(IP2) 〈x, x〉 = 0 ⇔ x = 0;

(IP3) 〈αx, y〉 = α〈x, y〉;

(IP4) 〈x, y〉 = 〈y, x〉;

(IP5) 〈x + y, z〉 = 〈x, z〉+ 〈z, y〉.

Example 3.1.39. The function 〈·, ·〉 : Rn × Rn → R defined by

〈x, y〉 =
n∑

i=1

xiyi for all x = (x1, x2, ..., xn), y = (y1, y2, ..., yn) ∈ Rn (3.26)

is an inner product on Rn. In this case Rn with this inner product is called real

Euclidean n-space.

Example 3.1.40. Let Cn be the set of n-tuples of complex numbers. Then the

function 〈·, ·〉 : Rn × Rn → R defined by

〈x, y〉 =
n∑

i=1

xiyi for all x = (x1, x2, ..., xn), y = (y1, y2, ..., yn) ∈ Cn (3.27)



is an inner product on Cn. In this case Cn with this inner product is called complex

Euclidean n-space.

Example 3.1.41. Let l2 be the set of all sequences of complex numbers

(a1, a2, . . . , ai, . . .) with
∑∞

i=1 |ai|2 < ∞. Then the function 〈·, ·〉 : l2 × l2 → C

defined by

〈x, y〉 =
∞∑
i=1

xiyi for all x = {xi}∞i=1, y = {yi}∞i=1 ∈ l2 (3.28)

is an inner product on l2.

Proposition 3.1.42. (The Cauchy-Schwarz inequality)

Let X be an inner product space. Then the following holds:

|〈x, y〉|2 ≤ 〈x, x〉〈y, y〉 for all x, y ∈ X, (3.29)

i.e.,

|〈x, y〉| ≤ ‖x‖‖y‖ for all x, y ∈ X. (3.30)

Definition 3.1.43. (Hilbert space)

An inner product space which is complete with respect to the induced norm

is called a Hilbert space.

Example 3.1.44. The Euclidean space Rn is a Hilbert space with inner product

defined by

〈x, y〉 = x1y1 + x2y2 + ... + xnyn

where x = (x1, x2, ..., xn), y = (y1, y2, ..., yn) ∈ Rn

Example 3.1.45. The space l2 is a Hilbert space with inner product defined by

〈x, y〉 =
∞∑

j=1

xjyj,

where x, y ∈ l2.

Definition 3.1.46. (Proper function)

Let function f : X → (−∞,∞]. Then f is said to be proper if there exists

x ∈ X with f(x) < ∞.



Definition 3.1.47. (Lower semicontinuous function)

Let X be a linear space and f : X → (−∞,∞] a proper function. Then f

is said to be lower semicontinuous (l.s.c.) at x0 ∈ X if

f(x0) ≤ lim inf
x→x0

f(x0) = sup
V ∈Ux0

inf
x∈V

f(x), (3.31)

where Ux0 is a base of neighborhoods of the point x0 ∈ X. f is said to be lower

semicontinuous on X if it is lower semicontinuous on each point of X, i.e., for each

x ∈ X,

x → x0 ⇒ f(x) ≤ lim inf
n→∞

f(xn). (3.32)

Example 3.1.48. Let (X, ‖ · ‖) be normed space. If F (x) = ‖x‖ for all x ∈ X

then F is lower semicontinuous function.

Definition 3.1.49. (Bounded linear operator)

Let X and Y be normed spaces and T : X → Y a linear operator. The

operator T is said to be bounded if there is a real number c such that for all x ∈ X,

‖Tx‖ ≤ c‖x‖. (3.33)

Definition 3.1.50. (Strict convexity)

A Banach space X is said to be strictly convex if

x, y ∈ SX with x 6= y ⇒ ‖(1− λ)x + λy‖ < 1 for all λ ∈ (0, 1). (3.34)

This says that the midpoint (x + y)/2 of two distinct points x and y in the unit

sphere SX of X does not lie on SX . In other words, if x, y ∈ SX with ‖x‖ = ‖y‖ =

‖(x + y)/2‖, then x = y.

Example 3.1.51. Let X = Rn, n ≥ 2 with norm ‖x‖2 defined by

‖x‖2 =
( n∑

i=1

x2
i

)1/2

, x = (x1, x2, ..., xn) ∈ Rn. (3.35)

Then X is strictly convex.



The modulus of convexity of a Banach space X is the function δX(ε) :

(0, 2] → [0, 1] defined by

δX(ε) = inf
{

1− ‖x + y‖
2

: ‖x‖ = ‖y‖ = 1, ‖x− y‖ ≥ ε
}

.

Then X is said to be uniformly convex if δX(ε) > 0 for any ε ∈ (0, 2].

Example 3.1.52. Every Hilbert space H is a uniformly convex space. In fact, the

parallelogram law gives us

‖x + y‖2 = 2(‖x‖2 + ‖y‖2)− ‖x− y‖2 for all x, y ∈ H. (3.36)

Suppose x, y ∈ BH with x 6= y and ‖x− y‖ ≥ ε. Then

‖x + y‖2 ≤ 4− ε2,

so it follows that

‖(x + y)/2‖2 ≤ 1− δ(ε),

where δ(ε) = 1−
√

1− ε2/4. Therefore, H is uniformly convex.

The modulus of smoothness of X is the function ρX(t) : R+ → R+ defined

by

ρX(t) = sup
{‖x + ty‖+ ‖x− ty‖

2
− 1 : ‖x‖ = 1, ‖y‖ = 1

}
.

Then X is said to be uniformly smooth if ρ′X(0) = lim
t→0

ρX(t)

t
= 0. For any q ∈ (1, 2],

a Banach space X is said to be q-uniformly smooth if there exists a constant cq > 0

such that ρX(t) > cqt
q for any t > 0.

Example 3.1.53. The lp spaces (1 < p ≤ 2) are uniformly smooth. In fact,

lim
t→0

ρlp(t)

t
= lim

t→0

(1 + tp)1/p − 1

t
= 0.

The subdifferential of a proper convex function f : X → (−∞, +∞] is the

set-valued operator ∂f : X → 2X defined as

∂f(x) = {x∗ ∈ X∗ : 〈x∗, y − x〉+ f(x) ≤ f(y)}.



If f is proper convex and lower semicontinuous, then the subdifferential ∂f(x) 6= ∅

for any x ∈ intD(f), the interior of the domain of f .

The generalized duality mapping Jq : X → 2X∗
is defined by

Jq(x) = {j(x) ∈ X∗ : 〈jq(x), x〉 = ‖x‖q, ‖jq(x)‖ = ‖x‖q−1}.

If q = 2, then the corresponding duality mapping is called the normalized

duality mapping and denoted by J . We know that the following subdifferential

inequality holds: for any x, y ∈ X,

‖x + y‖q ≤ ‖x‖q + q〈y, jq(x + y)〉, jq(x + y) ∈ Jq(x + y). (3.37)

In particular, it follows that, for all x, y ∈ X,

‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x + y)〉, j(x + y) ∈ J(x + y). (3.38)

Lemma 3.1.54. [[53], Corollary 1
′
] Let 1 < q ≤ 2 and X be a smooth Banach

space. Then the following statements are equivalent:

(i) X is q-uniformly smooth.

(ii) There is a constant kq > 0 such that for all x, y ∈ X

‖x + y‖q ≤ ‖x‖q + q〈y, jq(x)〉+ kq‖y‖q. (3.39)

The best constant kq will be called the q-uniform smoothness coefficient of

X.

Theorem 3.1.55. Let E be a Banach space and let J be the duality mapping of

E. Then:

1. For x ∈ E, J(x) is nonempty, bounded, closed and convex;

2. J(0)={0};

3. for x ∈ E and a real α, J(αx) = αJ(x);

4. for x, y ∈ E, f ∈ J(x) and g ∈ J(y), 〈x− y, f − g〉 ≥ 0;

5. for x, y ∈ E, f ∈ J(y), ‖x‖2 − ‖y‖2 ≥ 2〈x− y, f〉.



Proposition 3.1.56. ([10]) Let 1 < q < ∞. Then we have the following:

1. The Banach space X is smooth if and only if the duality mapping Jq is

single valued.

2. The Banach space X is uniformly smooth if and only if the duality mapping

Jq is single valued and norm-to-norm uniformly continuous on bounded sets of X.

A set-valued operator A : X → 2X with the domain D(A) and the range

R(A) is said to be accretive if, for all t > 0 and x, y ∈ D(A),

‖x− y‖ ≤ ‖x− y + t(u− v)‖ (3.40)

for all u ∈ Ax and v ∈ Ay.

Recall that A is accretive if and only if, for each x, y ∈ D(A), there exists

j(x− y) ∈ J(x− y) such that

〈u− v, j(x− y)〉 ≥ 0 (3.41)

for all u ∈ Ax and v ∈ Ay. An accretive operator A is said to be m-accretive if the

range

R(I + λA) = X

for some λ > 0. It can be shown that an accretive operator A is m-accretive if and

only if

R(I + λA) = X

for all λ > 0.

For any α > 0 and q ∈ (1,∞), we say that an accretive operator A is α-

inverse strongly accretive (shortly, α-isa) of order q if, for each x, y ∈ D(A), there

exists jq(x− y) ∈ Jq(x− y) such that

〈u− v, jq(x− y)〉 ≥ α‖u− v‖q (3.42)

for all u ∈ Ax and v ∈ Ay.



Let C be a nonempty closed and convex subset of a real Banach space X

and K be a nonempty subset of C. A mapping T : C → K is called a retraction

of C onto K if Tx = x for all x ∈ K. We say that T is sunny if, for each x ∈ C

and t ≥ 0,

T (tx + (1− t)Tx) = Tx, (3.43)

whenever tx+(1−t)Tx ∈ C. A sunny nonexpansive retraction is a sunny retraction

which is also nonexpansive.

Theorem 3.1.57. ([38]) Let X be a uniformly smooth Banach space and T : C →

C be a nonexpansive mapping with a fixed point. For each fixed u ∈ C and t ∈

(0, 1), the unique fixed point xt ∈ C of the contraction C 3 x 7→ tu + (1 − t)Tx

converges strongly as t → 0 to a fixed point of T . Define a mapping Q : C → D

by Qu = s − limt→0 xt. Then Q is the unique sunny nonexpansive retract from C

onto D.

Lemma 3.1.58. ([29], Lemma 3.1) Let {an}, {cn} ⊂ R+, {αn} ⊂ (0, 1) and {bn} ⊂

R be the sequences such that

an+1 ≤ (1− αn)an + bn + cn

for all n ≥ 1. Assume that
∑∞

n=1 cn < ∞. Then the following results hold:

1. If bn ≤ αnM where M ≥ 0, then {an} is a bounded sequence.

2. If
∑∞

n=1 αn = ∞ and lim supn→∞
bn

αn
≤ 0, then limn→∞ an = 0.

Lemma 3.1.59. ([20]) Let {sn} be a sequence of nonnegative real numbers such

that

sn+1 ≤ (1− γn)sn + γnτn

and

sn+1 ≤ sn − ηn + ρn

for all n ≥ 1, where {γn} is a sequence in (0, 1), {ηn} is a sequence of nonnegative

real numbers, {τn} and {ρn} are real sequences such that



1.
∑∞

n=1 γn = ∞;

2. limn→∞ ρn = 0;

3. limk→∞ ηnk
= 0 implies lim supk→∞ τnk

≤ 0 for any subsequence {nk} ⊂

{n}.

Then limn→∞ sn = 0.

Lemma 3.1.60. [[31], p.63] Let q > 1. Then the following inequality holds:

ab ≤ 1

q
aq +

q − 1

q
b

q
q−1 (3.44)

for arbitrary positive real numbers a and b.

Lemma 3.1.61. ([28], Lemma 3.1) For any r > 0, if

Tr := JB
r (I − rA) = (I + rB)−1(I − rAx),

then Fix(Tr) = (A + B)−1(0).

Lemma 3.1.62. ([28], Lemma 3.2) For any s ∈ (0, r] and x ∈ X, we have

‖x− Tsx‖ ≤ 2‖x− Trx‖.

Lemma 3.1.63. ([28], Lemma 3.3) Let X be a uniformly convex and q-uniformly

smooth Banach space for some q ∈ (1, 2]. Assume that A is a single-valued α-isa

of order q in X. Then, for any s > 0, there exists a continuous, strictly increasing

and convex function φq : R+ → R+ with φq(0) = 0 such that, for all x, y ∈ Br,

‖Trx− Try‖q ≤ ‖x− y‖q − r(αq − rq−1κq)‖Ax− Ay‖q

− φq(‖(I − Jr)(I − rA)x− (I − Jr)(I − rA)y‖), (3.45)

where κq is the q-uniform smoothness coefficient of X.

Remark 3.1.64. For any p ∈ [2,∞), Lp is 2-uniformly smooth with κ2 = p − 1

and, for any p ∈ (1, 2], Lp is p-uniformly smooth with κp = (1 + tp−1
p )(1 + tp)

1−p,

where tp is the unique solution to the equation

(p− 2)tp−1 + (p− 1)tp−2 − 1 = 0

for any t ∈ (0, 1).



CHAPTER IV

MAIN RESULTS

4.1 The modified forward-backward splitting method for solving quasi

inclusion problem

In this section, we first establish some crucial propositions and then prove our

main theorem.

Proposition 4.1.1. Let q > 1 and let X be a real smooth Banach space with the

generalized duality mapping jq. Let m ∈ N be fixed. Let {xi}m
i=1 ⊂ X and ti ≥ 0

for all i = 1, 2, ...,m with
∑m

i=1 ti ≤ 1. Then we have

‖
m∑

i=1

tixi‖q ≤
∑m

i=1 ti‖xi‖q

q − (q − 1)(
∑m

i=1 ti)
. (4.46)

Proof. By definition of the generalized duality mapping jq and Lemma 3.1.60, we

can estimate the following:

‖
m∑

i=1

tixi‖q =
〈 m∑

i=1

tixi, jq(
m∑

i=1

tixi)
〉

=
m∑

i=1

ti
〈
xi, jq(

m∑
i=1

tixi)
〉

≤
m∑

i=1

ti‖xi‖‖
m∑

i=1

tixi‖q−1

≤
m∑

i=1

ti(
1

q
‖xi‖q +

q − 1

q
‖

m∑
i=1

tixi‖q)

=
1

q

m∑
i=1

ti‖xi‖q +
q − 1

q
‖

m∑
i=1

tixi‖q(
m∑

i=1

ti),

which implies that (
1− q − 1

q

m∑
i=1

ti
)
‖

m∑
i=1

tixi‖q ≤ 1

q

m∑
i=1

ti‖xi‖q.

We see that 1− q−1
q

∑m
i=1 ti is positive since q > 1 and

∑m
i=1 ti ≤ 1. It follows that

‖
m∑

i=1

tixi‖q ≤
∑m

i=1 ti‖xi‖q

q − (q − 1)(
∑m

i=1 ti)
.



Proposition 4.1.2. Let X be a uniformly convex and q-uniformly smooth Banach

space. Let A : X → X be an α-isa of order q and B : X → 2X an m-accretive

operator such that Ω := (A + B)−1(0) 6= ∅. Let {en} be a sequence in X. Let {xn}

be generated by u, x1 ∈ X and

xn+1 = αnu + λnxn + δnJ
B
rn

(xn − rnAxn) + en, n ≥ 1, (4.47)

where JB
rn

= (I + rnB)−1, 0 < rn ≤ (αq/kq)
1/(q−1) and {αn}, {λn}, and {δn} are

sequences in [0, 1] with αn+λn+δn = 1. If
∑∞

n=1 ‖en‖ < ∞ or limn→∞ ‖en‖/αn = 0,

then {xn} is bounded.

Proof. For each n ∈ N, we put Tn = JB
rn

(I − rnA) and let {yn} be defined by

yn+1 = αnu + λnyn + δnTnyn. (4.48)

Firstly, we compute the following:

‖xn+1 − yn+1‖ = ‖λn(xn − yn) + δn(Tnxn − Tnyn) + en‖

≤ λn‖xn − yn‖+ δn‖Tnxn − Tnyn‖+ ‖en‖

≤ λn‖xn − yn‖+ δn‖xn − yn‖+ ‖en‖

= (1− αn)‖xn − yn‖+ ‖en‖.

By the assumptions and Lemma 3.1.58 (2), we conclude that limn→∞ ‖xn−yn‖ = 0.

Let z = Qu, where Q is a sunny nonexpansive retraction of X onto Ω.

We next show that {yn} is bounded. Indeed

‖yn+1 − z‖ = ‖αn(u− z) + λn(yn − z) + δn(Tnyn − z)‖

≤ αn‖u− z‖+ λn‖yn − z‖+ δn‖Tnyn − z‖

≤ αn‖u− z‖+ λn‖yn − z‖+ δn‖yn − z‖

= αn‖u− z‖+ (1− αn)‖yn − z‖.

This shows that {yn} is bounded by Lemma 3.1.58 (1) and hence {xn} is also

bounded.



Theorem 4.1.3. Let X be a uniformly convex and q-uniformly smooth Banach

space. Let A : X → X be an α-isa of order q and B : X → 2X an m-accretive

operator such that Ω := (A + B)−1(0) 6= ∅. Let {en} be a sequence in X. Let {xn}

be generated by u, x1 ∈ X and

xn+1 = αnu + λnxn + δnJ
B
rn

(xn − rnAxn) + en, n ≥ 1, (4.49)

where JB
rn

= (I + rnB)−1, {rn} ⊂ (0,∞) and {αn}, {λn}, and {δn} are sequences

in [0, 1] with αn + λn + δn = 1. Assume that

(i) limn→∞ αn = 0,
∑∞

n=1 αn = ∞;

(ii) 0 < lim infn→∞ rn ≤ lim supn→∞ rn < (αq/kq)
1/(q−1);

(iii) lim infn→∞ δn > 0;

(iv)
∑∞

n=1 ‖en‖ < ∞ or limn→∞ ‖en‖/αn = 0.

Then {xn} strongly converges to z = Qu, where Q is a sunny nonexpansive

retraction of X onto Ω.

Proof. Since, by Proposition 4.1.2, limn→∞ ‖xn − yn‖ = 0, it suffices to show that

limn→∞ yn = z = Qu. From (3.37), we have

‖yn+1 − z‖q = ‖αn(u− z) + λn(yn − z) + δn(Tnyn − z)‖q

≤ ‖λn(yn − z) + δn(Tnyn − z)‖q

+ qαn

〈
u− z, jq(yn+1 − z)

〉
. (4.50)

On the other hand, by Proposition 4.1.1 and Lemma 3.1.63, we obtain

‖λn(yn − z) + δn(Tnyn − z)‖q

≤ 1

q − (q − 1)(1− αn)
(λn‖yn − z‖q + δn‖Tnyn − z‖q)

≤ 1

q − (q − 1)(1− αn)

(
λn‖yn − z‖q

+δn

(
‖yn − z‖q − rn(αq − rq−1

n kq)‖Ayn − Az‖q



−φq(‖yn − rnAyn − Tnyn + rnAz‖)
))

=
1− αn

q − (q − 1)(1− αn)
‖yn − z‖q − δnrn(αq − rq−1

n kq)

q − (q − 1)(1− αn)
‖Ayn − Az‖q

− δn

q − (q − 1)(1− αn)
φq(‖yn − rnAyn − Tnyn + rnAz‖). (4.51)

Replacing (4.51) into (4.50), it follows that

‖yn+1 − z‖q ≤
(
1− αnq

q − (q − 1)(1− αn)

)
‖yn − z‖q

− δnrn(αq − rq−1
n kq)

q − (q − 1)(1− αn)
‖Ayn − Az‖q

− δn

q − (q − 1)(1− αn)
φq(‖yn − rnAyn − Tnyn + rnAz‖)

+qαn

〈
u− z, jq(yn+1 − z)

〉
. (4.52)

We can check that αnq
q−(q−1)(1−αn)

is in (0, 1) since {αn} ⊂ (0, 1) and 1 < q ≤ 2.

Moreover, by condition (ii), δnrn(αq−rq−1
n kq)

q−(q−1)(1−αn)
and δn

q−(q−1)(1−αn)
are positive. From

(4.52), we then have

‖yn+1−z‖q ≤
(
1− αnq

q − (q − 1)(1− αn)

)
‖yn−z‖q +qαn

〈
u−z, jq(yn+1−z)

〉
(4.53)

and also

‖yn+1 − z‖q ≤ ‖yn − z‖q − δnrn(αq − rq−1
n kq)

q − (q − 1)(1− αn)
‖Ayn − Az‖q

− δn

q − (q − 1)(1− αn)
φq(‖yn − rnAyn − Tnyn + rnAz‖)

+ qαn

〈
u− z, jq(yn+1 − z)

〉
. (4.54)

For each n ≥ 1, we set

sn = ‖yn − z‖q, γn =
αnq

q − (q − 1)(1− αn)
,

τn =
(
q − (q − 1)(1− αn)

)〈
u− z, jq(yn+1 − z)

〉
,

ηn =
δnrn(αq − rq−1

n kq)

q − (q − 1)(1− αn)
‖Ayn − Az‖q

+
δn

q − (q − 1)(1− αn)
φq(‖yn − rnAyn − Tnyn + rnAz‖),

ρn = qαn

〈
u− z, jq(yn+1 − z)

〉
. (4.55)

Then (4.53) and (4.54) are reduced to the following:

sn+1 ≤ (1− γn)sn + γnτn, n ≥ 1



and

sn+1 ≤ sn − ηn + ρn, n ≥ 1.

Since
∑∞

n=1 αn = ∞, it follows that
∑∞

n=1 γn = ∞. By the boundedness of {yn} and

limn→∞ αn = 0, we see that limn→∞ ρn = 0. In order to complete the proof, using

Lemma 3.1.59, it remains to show that limk→∞ ηnk
= 0 implies lim supk→∞ τnk

≤ 0

for any subsequence {nk} ⊂ {n}.

Let {nk} be a subsequence of {n} such that limk→∞ ηnk
= 0. So, by our

assumptions and the property of φq, we can deduce that

lim
k→∞

‖Aynk
− Az‖ = lim

k→∞
‖ynk

− rnk
Aynk

− Tnk
ynk

+ rnk
Az‖ = 0.

This gives, by the triangle inequality, that

lim
k→∞

‖Tnk
ynk

− ynk
‖ = 0. (4.56)

Since lim infn→∞ rn > 0, there is r > 0 such that rn ≥ r for all n ≥ 1. In particular,

rnk
≥ r for all k ≥ 1. Lemma 3.1.62 yields that

‖TA,B
r ynk

− ynk
‖ ≤ 2‖Tnk

ynk
− ynk

‖.

Then, by (4.56), we obtain

lim sup
k→∞

‖TA,B
r ynk

− ynk
‖ ≤ 2 lim

k→∞
‖Tnk

ynk
− ynk

‖ = 0.

It follows that

lim
k→∞

‖TA,B
r ynk

− ynk
‖ = 0. (4.57)

Let zt = tu + TA,B
r zt, t ∈ (0, 1). Employing Theorem 3.1.57, we have zt → Qu = z

as t → 0. So we obtain

‖zt − ynk
‖q = ‖t(u− ynk

) + (1− t)(TA,B
r zt − ynk

)‖q

≤ (1− t)q‖TA,B
r zt − ynk

‖q + qt
〈
u− ynk

, jq(zt − ynk
)
〉

= (1− t)q‖TA,B
r zt − ynk

‖q + qt
〈
u− zt, jq(zt − ynk

)
〉

+ qt
〈
zt − ynk

, jq(zt − ynk
)
〉



≤ (1− t)q(‖TA,B
r zt − TA,B

r ynk
‖+ ‖TA,B

r ynk
− ynk

‖)q

+qt
〈
u− zt, jq(zt − ynk

)
〉

+ qt‖zt − ynk
‖q

≤ (1− t)q(‖zt − ynk
‖+ ‖TA,B

r ynk
− ynk

‖)q

+qt
〈
u− zt, jq(zt − ynk

)
〉

+ qt‖zt − ynk
‖q.

This shows that

〈
zt−u, jq(zt−ynk

)
〉
≤ (1− t)q

qt
(‖zt−ynk

‖+‖TA,B
r ynk

−ynk
‖)q +

(qt− 1)

qt
‖zt−ynk

‖q.

(4.58)

From (4.58) and (4.57), we obtain

lim sup
k→∞

〈
zt − u, jq(zt − ynk

)
〉
≤ (1− t)q

qt
M q +

(qt− 1)

qt
M q

=
((1− t)q + qt− 1

qt

)
M q, (4.59)

where M = lim supk→∞ ‖zt− ynk
‖, t ∈ (0, 1). We see that (1−t)q+qt−1

qt
→ 0 as t → 0.

From Proposition 3.1.56 (2), we know that jq is norm-to-norm uniformly continuous

on bounded subsets of X. Since zt → z as t → 0, we have ‖jq(zt − ynk
) − jq(z −

ynk
)‖ → 0 as t → 0. Observe that

|〈zt − u, jq(zt − ynk
)〉 − 〈z − u, jq(z − ynk

)〉|

≤ |〈zt − z, jq(zt − ynk
)〉|+ |〈z − u, jq(zt − ynk

)− jq(z − ynk
)〉|

≤ ‖zt − z‖‖zt − ynk
‖q−1 + ‖z − u‖‖jq(zt − ynk

)− jq(z − ynk
)‖.

So, as t → 0, we get

〈zt − u, jq(zt − ynk
)〉 → 〈z − u, jq(z − ynk

)〉.

From (4.59), as t → 0, it follows that

lim sup
k→∞

〈
z − u, jq(z − ynk

)
〉
≤ 0. (4.60)

On the other hand, by (4.48) and (4.56), we see that

‖ynk+1 − ynk
‖ ≤ αnk

‖u− ynk
‖+ δnk

‖Tnk
ynk

− ynk
‖ → 0, (4.61)



as k →∞. Combining (4.60) and (4.61), we get that

lim sup
k→∞

〈
z − u, jq(z − ynk+1)

〉
≤ 0.

It also follows that lim supk→∞ τnk
≤ 0. We conclude that limn→∞ sn = 0 by

Lemma 3.1.59. Hence yn → z as n →∞. We thus complete the proof.

By setting λn = 0 for all n ≥ 1, we obtain the following result:

Corollary 4.1.4. Let X be a uniformly convex and q-uniformly smooth Banach

space. Let A : X → X be an α-isa of order q and B : X → 2X an m-accretive

operator such that Ω := (A + B)−1(0) 6= ∅. Let {en} be a sequence in X. Let {xn}

be generated by u, x1 ∈ X and

xn+1 = αnu + (1− αn)JB
rn

(xn − rnAxn) + en, n ≥ 1, (4.62)

where JB
rn

= (I + rnB)−1, {rn} ⊂ (0,∞) and {αn} is a sequence in [0, 1]. Assume

that

(i) limn→∞ αn = 0,
∑∞

n=1 αn = ∞;

(ii) 0 < lim infn→∞ rn ≤ lim supn→∞ rn < (αq/kq)
1/(q−1);

(iii)
∑∞

n=1 ‖en‖ < ∞ or limn→∞ ‖en‖/αn = 0.

Then {xn} strongly converges to z = Qu, where Q is a sunny nonexpansive

retraction of X onto Ω.

Remark 4.1.5. (1) Our results extend those of [3, 21, 32, 51, 54, 55] from Hilbert

spaces to Banach spaces.

(2) We remove the conditions that limn→∞ |rn+1−rn| = 0 and 0 < lim infn→∞ λn ≤

lim supn→∞ λn < 1 in Theorem 3.3 of Yao-Noor [55] and the conditions that∑∞
n=1 λn < ∞, limn→∞

(
1

rn+1
− 1

rn

)
= 0 and

∑∞
n=1

|αn+1−αn|
rn+1

< ∞ in Theorem 1

of Boikanyo-Moroşanu [3].



We now give an example in `3 space which is a uniformly convex and 2-

uniformly smooth Banach space but not a Hilbert space.

Example 4.1.6. Let A : `3 → `3 be defined by Ax = 2x + (1, 1, 1, 0, 0, 0, 0, ...) and

let B : `3 → `3 be defined by Bx = 5x where x = (x1, x2, x3, ...) ∈ `3.

We see that A is a 1/2-isa of order 2 and B is an m-accretive operator.

Indeed, let x, y ∈ `3, then

〈Ax− Ay, j2(x− y)〉 = 〈2x− 2y, j2(x− y)〉

= 2‖x− y‖2
`3

=
1

2
‖Ax− Ay‖2

`3
.

We also have

〈Bx−By, j2(x− y)〉 = 5‖x− y‖2
`3
≥ 0

and R(I + rB) = `3 for all r > 0. By a direct calculation, we have for s > 0

JB
s (x− sAx) = (I + sB)−1(x− sAx)

=
1− 2s

1 + 5s
x− s

1 + 5s
(1, 1, 1, 0, 0, 0, 0, ...),

where x = (x1, x2, x3, ...) ∈ `3. Since, in `3, q = 2, k2 = 2 and α = 1/2, we

can choose rn = 0.1 for all n ∈ N. Let αn = 1
1000n+1

, λn = 1
10n

and δn = (1 −
1

10n
− 1

1000n+1
). Let u = (−0.05,−0.08,−0.06, 0, 0, 0, 0, ...) and en = (0, 0, 0, ...).

Starting x1 = (1.2, 2.5, 3.4, 0, 0, 0, 0, ...) and computing iteratively algorithm (4.49)

in Theorem 4.1.3, we obtain the following numerical results.



n xn ‖xn+1 − xn‖`3

1 (1.2000000,2.5000000,3.4000000,0.0000000,0.0000000,...) 1.6937789E+00

10 (-0.1368743, -0.1311181, -0.1271209,0.0000000,0.0000000,...) 8.2573797E-03

20 (-0.1428340, -0.1428263, -0.1428159,0.0000000,0.0000000,...) 1.7112628E-05

30 (-0.1428499, -0.1428522, -0.1428507,0.0000000,0.0000000,...) 3.4600332E-07

40 (-0.1428519, -0.1428536, -0.1428524,0.0000000,0.0000000,...) 1.7301589E-07

50 (-0.1428530, -0.1428543, -0.1428534,0.0000000,0.0000000,...) 1.0843686E-07

60 (-0.1428537, -0.1428548, -0.1428541,0.0000000,0.0000000,...) 7.4310792E-08

70 (-0.1428542, -0.1428552, -0.1428545,0.0000000,0.0000000,...) 5.4092528E-08

80 (-0.1428546, -0.1428554, -0.1428549,0.0000000,0.0000000,...) 4.1132625E-08

90 (-0.1428549, -0.1428556, -0.1428551,0.0000000,0.0000000,...) 3.2329686E-08

100 (-0.1428551, -0.1428558, -0.1428553,0.0000000,0.0000000,...) 2.6078314E-08
...

...
...

200 (-0.1428561, -0.1428565, -0.1428562,0.0000000,0.0000000,...) 6.4012505E-09

250 (-0.1428563, -0.1428566, -0.1428564,0.0000000,0.0000000,...) 4.0821310E-09

300 (-0.1428565, -0.1428567, -0.1428565,0.0000000,0.0000000,...) 2.8280803E-09

350 (-0.1428566, -0.1428568, -0.1428566,0.0000000,0.0000000,...) 2.0742607E-09

400 (-0.1428566, -0.1428568, -0.1428567,0.0000000,0.0000000,...) 1.5860974E-09

450 (-0.1428567, -0.1428568, -0.1428567,0.0000000,0.0000000,...) 1.2519825E-09

500 (-0.1428567, -0.1428569, -0.1428568,0.0000000,0.0000000,...) 1.0133107E-09

550 (-0.1428568, -0.1428569, -0.1428568,0.0000000,0.0000000,...) 8.3691026E-10

600 (-0.1428568, -0.1428569, -0.1428568,0.0000000,0.0000000,...) 7.0286201E-10

650 (-0.1428568, -0.1428569, -0.1428569,0.0000000,0.0000000,...) 5.9861825E-10

Table 1 Numerical results of Example 4.1.6 for iteration process (4.49)

From Table 1, the solution is (−0.142857,−0.142857,−0.142857, 0, 0, 0, 0, ...).



4.2 Applications and numerical examples

In this section, we discuss some concrete examples as well as the numerical

results for supporting the main theorem.

4.2.1 Minimization Problem

In this subsection, we apply Theorem 4.1.3 to the convex minimization problem.

Let H be a real Hilbert space. Let F : H → R be a convex smooth function and

G : H → R be a convex, lower-semicontinuous and nonsmooth function. We

consider the problem of finding x̂ ∈ H such that

F (x̂) + G(x̂) ≤ F (x) + G(x)

for all x ∈ H. This problem is equivalent, by Fermat’s rule, to the problem of

finding x̂ ∈ H such that

0 ∈ ∇F (x̂) + ∂G(x̂),

where ∇F is a gradient of F and ∂G is a subdifferential of G. In this point of view,

we can set A = ∇F and B = ∂G in Theorem 4.1.3. This is because if ∇F is (1/L)-

Lipschitz continuous, then it is L-inverse strongly monotone [[1], Corollary 10].

Moreover, ∂G is maximal monotone [[40], Theorem A]. So we obtain the following

result.

Theorem 4.2.1. Let H be real Hilbert space. Let F : H → R be a convex and

differentiable function with (1/L)-Lipschitz continuous gradient ∇F and G : H →

R be a convex and lower semi-continuous function which F +G attains a minimizer.

Let {en} be a sequence in H. Let {xn} be generated by u, x1 ∈ H and

xn+1 = αnu + λnxn + δnJrn

(
xn − rn∇F (xn)

)
+ en, n ≥ 1, (4.63)

where Jrn = (I + rn∂G)−1, {rn} ⊂ (0,∞) and {αn}, {λn}, and {δn} are sequences

in [0, 1] with αn + λn + δn = 1. Assume that



(i) limn→∞ αn = 0,
∑∞

n=1 αn = ∞;

(ii) 0 < lim infn→∞ rn ≤ lim supn→∞ rn < 2L;

(iii) lim infn→∞ δn > 0;

(iv)
∑∞

n=1 ‖en‖ < ∞ or limn→∞ ‖en‖/αn = 0.

Then {xn} strongly converges to a minimizer of F + G.

Example 4.2.2. Solve the following minimization problem:

min
x∈R3

‖x‖2
2 + (3, 5,−1)x + 9 + ‖x‖1, (4.64)

where x = (y1, y2, y3) ∈ R3.

For each x ∈ R3, we set F (x) = ‖x‖2
2 + (3, 5,−1)x + 9 and G(x) = ‖x‖1.

Then ∇F (x) = 2x + (3, 5,−1). We can check that F is convex and differentiable

on R3 with 2-Lipschitz continuous gradient ∇F . Moreover, G is convex and lower

semi-continuous but not differentiable on R3. From [?] we know that, for r > 0,

(I + r∂G)−1(x) = (max{|y1| − r, 0}sign(y1), ..., max{|y3| − r, 0}sign(y3)).

We choose αn = 1
100n+1

, λn = 99n
(n+1)(100n+1)

, δn = n
n+1

and rn = 0.2. Let en =

( 1
n2 ,

1
n2 ,

1
n2 ), u = (2.553479, 5.187352, 1.903486) and x1 = (3.425859, 8.231258, 1.430561).

Using algorithm (4.63) in Theorem 4.2.1, we obtain the following numerical results.



n xn = (yn
1 , yn

2 , yn
3 ) F (xn) + G(xn) ‖xn+1 − xn‖2

1 (3.425859,8.231258,1.430561) 153.6276069 1.4677578E+00

2 (3.332050, 6.954869, 2.149131) 128.1489310 2.7041086E+00

3 (2.156296, 4.541443, 1.824807) 73.4780908 2.4690302E+00

4 (1.021838, 2.392267, 1.388738) 36.1366456 1.8578516E+00

5 (0.270687, 0.736212, 1.008125) 16.1316179 9.8758376E-01

6 (-0.108319, -0.126974, 0.713871) 8.8129329 6.9838132E-01

7 (-0.381831, -0.732534, 0.498872) 6.2374757 4.8162425E-01

8 (-0.573595, -1.147294, 0.346679) 5.0291149 3.2683581E-01

9 (-0.705677, -1.426945, 0.240984) 4.4730915 2.1951923E-01

10 (-0.795670, -1.613558, 0.168420) 4.2194535 1.4654722E-01
...

...
...

...

654 (-0.999858, -1.999718, 0.000079) 4.0000001 5.1403155E-07

655 (-0.999858, -1.999718, 0.000079) 4.0000001 5.1241306E-07

656 (-0.999858, -1.999719, 0.000079) 4.0000001 5.1080220E-07

657 (-0.999858, -1.999719, 0.000079) 4.0000001 5.0919892E-07

658 (-0.999858, -1.999720, 0.000079) 4.0000001 5.0760317E-07

659 (-0.999859, -1.999720, 0.000078) 4.0000001 5.0601491E-07

660 (-0.999859, -1.999721, 0.000078) 4.0000001 5.0443408E-07

661 (-0.999859, -1.999721, 0.000078) 4.0000001 5.0286064E-07

662 (-0.999859, -1.999721, 0.000078) 4.0000001 5.0129456E-07

663 (-0.999860, -1.999722, 0.000078) 4.0000001 4.9973577E-07

Table 2 Numerical results of Example 4.2.2 for iteration process (4.63)

From Table 2, we see that x663 = (−0.999860,−1.999722, 0.000078) is an approxi-

mation of the minimizer of F +G with an error 4.9973577E− 07 and its minimum

value is approximately 4.0000001. In fact, the minimizer of F + G is (−1,−2, 0)

and (F + G)(−1,−2, 0) = 4.



Figure 1 The error plotting of ‖xn+1 − xn‖2 in Table 2

4.2.2 Linear Inverse Problem

In this subsection, we apply Theorem 4.1.3 to solve the unconstrained linear

system

Cx = d (4.65)

where C is a bounded linear operator on H and d ∈ H. For each x ∈ H, we define

F : H → R by

F (x) =
1

2
‖Cx− d‖2. (4.66)

From [?] we know that ∇F (x) = CT (Cx − d) and ∇F is K-Lipschitz continuous

with K the largest eigenvalue of CT C. So we obtain the following result.

Theorem 4.2.3. Let H be real Hilbert space. Let C : H → H be a bounded linear

operator and d ∈ H with K the largest eigenvalue of CT C. Let {en} be a sequence

in H. Let {xn} be generated by u, x1 ∈ H and

xn+1 = αnu + λnxn + δn

(
xn − rnC

T (Cxn − d)
)

+ en, n ≥ 1, (4.67)

where {rn} ⊂ (0,∞) and {αn}, {λn}, and {δn} are sequences in [0, 1] with αn +

λn + δn = 1. Assume that

(i) limn→∞ αn = 0,
∑∞

n=1 αn = ∞;

(ii) 0 < lim infn→∞ rn ≤ lim supn→∞ rn < 2/K;



(iii) lim infn→∞ δn > 0;

(iv)
∑∞

n=1 ‖en‖ < ∞ or limn→∞ ‖en‖/αn = 0.

If (4.65) is consistent, then {xn} strongly converges to a solution of a linear

system.

Example 4.2.4. Solve the following linear system:

2y1 + y2 − 3y3 + 2y4 = 13

y1 − 2y2 + 3y3 + 5y4 = 9

−3y1 + 5y2 + 4y3 − 2y4 = −3 (4.68)

4y1 + 2y2 − y3 − y4 = 6.

Let C =


2 1 −3 2

1 −2 3 5

−3 5 4 −2

4 2 −1 −1


, x =


y1

y2

y3

y4


and d =


13

9

−3

6


. Then

CT C =


30 −7 −19 11

−7 34 9 −20

−19 9 35 2

11 −20 2 34


.

The largest eigenvalue of CT C is 65.5033. This allows us to choose the upper bound

of {rn}. We also note that since CT C is symmetric, the largest eigenvalue K is

less than mb, where m is the dimension of the matrix CT C and b is its maximal

element; see [[57], Theorem 1].

We choose αn = 1
50n+1

, λn = 49n
(n+1)(50n+1)

, δn = n
n+1

and rn = 0.03 for all

n ≥ 1. Let en = ( 1
n3 ,

1
n3 ,

1
n3 ,

1
n3 )

T , u = (3, 1, 1, 4)T and x1 = (−1, 3, 2, 5)T . Using

algorithm (4.67) in Theorem 4.2.3, we obtain the following numerical results.



n xn = (yn
1 , yn

2 , yn
3 , yn

4 )T ‖xn+1 − xn‖2

1 (-1.000000,3.000000,2.000000,5.000000) 3.0154184E+00

2 (1.608431,3.435784,0.640392,5.500392) 1.7095286E+00

3 (1.626720,3.340500,-0.516476,4.245509) 8.4386757E-01

4 (1.339520,2.891206,-0.916370,3.727969) 5.0556755E-01

5 (1.099700,2.553623,-1.039057,3.465156) 2.9280323E-01
...

...
...

238 (1.000364,1.999292,-0.999491,2.999184) 5.3648214E-06

239 (1.000363,1.999295,-0.999493,2.999188) 5.3189260E-06

240 (1.000361,1.999298,-0.999496,2.999191) 5.2735040E-06

241 (1.000359,1.999301,-0.999498,2.999195) 5.2287703E-06

242 (1.000358,1.999304,-0.999500,2.999198) 5.1844999E-06

243 (1.000356,1.999307,-0.999502,2.999202) 5.1408891E-06

244 (1.000355,1.999310,-0.999504,2.999205) 5.0977315E-06

245 (1.000353,1.999313,-0.999506,2.999208) 5.0552065E-06

246 (1.000352,1.999316,-0.999508,2.999212) 5.0131244E-06

247 (1.000350,1.999319,-0.999510,2.999215) 4.9716496E-06

Table 3 Numerical results of Example 4.2.4 for iteration process (4.67)

From Table 3 we see that the solution of a linear system (4.68) is (1, 2,−1, 3).

Figure 2 The error plotting of ‖xn+1 − xn‖2 in Table 3

Remark 4.2.5. We remark that Theorem 4.1.3 can be further applied to the



variational inequality problem, the split feasibility problem and the fixed point

problem. See also [28, 47].

We next prove another strong convergence theorem which mainly extends

and improves the results obtained by Takahashi et al. [47].

Theorem 4.2.6. Let X be a uniformly convex and q-uniformly smooth Banach

space. Let A : X → X be an α-isa of order q and B : X → 2X be an m-accretive

operator. Assume that S = (A + B)−1(0) 6= ∅. We define a sequence {xn} by the

iterative scheme: for any x1 ∈ X,

xn+1 = βnxn + (1− βn)(αnu + (1− αn)JB
rn

(xn − rnAxn)) (4.69)

for each n ≥ 1, where u ∈ X, JB
rn

= (I + rnB)−1, {αn} ⊂ (0, 1), {βn} ⊂ [0, 1) and

{rn} ⊂ (0, +∞). Assume that the following conditions are satisfied:

(a) limn→∞ αn = 0,
∑∞

n=1 αn = ∞;

(b) lim supn→∞ βn < 1;

(c) 0 < lim infn→∞ rn ≤ lim supn→∞ rn < (αq
κq

)
1

q−1 .

Then the sequence {xn} converges strongly to a point z = Q(u), where Q is

the sunny nonexpansive retraction of X onto S.

Proof. Let z = Q(u). Let Tn = JB
rn

(I−rnA) and zn = αnu+(1−αn)JB
rn

(xn−rnAxn)

for each n ≥ 1. Then we obtain, by Lemma 3.1.61,

‖zn − z‖ = ‖αnu + (1− αn)JB
rn

(xn − rnAxn)− z‖

= ‖αn(u− z) + (1− αn)(Tnxn − z)‖

≤ αn‖u− z‖+ (1− αn)‖xn − z‖. (4.70)

It follows from (4.70) that

‖xn+1 − z‖ = ‖βn(xn − z) + (1− βn)(zn − z)‖



≤ βn‖xn − z‖+ (1− βn)‖zn − z‖

≤ βn‖xn − z‖+ (1− βn)(αn‖u− z‖+ (1− αn)‖xn − z‖)

= βn‖xn − z‖+ (1− βn)αn‖u− z‖+ (1− βn)(1− αn)‖xn − z‖

= (1− αn(1− βn))‖xn − z‖+ (1− βn)αn‖u− z‖.

Hence we can apply Lemma 3.1.58 to claim that {xn} is bounded. Using the

inequality (3.37) and Lemma 3.1.63, we derive that

‖zn − z‖q = ‖αn(u− z) + (1− αn)(JB
rn

(xn − rnAxn)− JB
rn

(z − rnAz))‖q

≤ (1− αn)q‖JB
rn

(xn − rnAxn)− JB
rn

(z − rnAz)‖q

+qαn〈u− z, Jq(zn − z)〉

= (1− αn)q‖Tnxn − Tnz‖q + qαn〈u− z, Jq(zn − z)〉

≤ (1− αn)q
[
‖xn − z‖q − rn(αq − rq−1

n κq)‖Axn − Az‖q

−φq(‖(I − JB
rn

)(I − rnA)xn − (I − JB
rn

)(I − rnA)z‖)
]

+qαn〈u− z, Jq(zn − z)〉

= (1− αn)q‖xn − z‖q − (1− αn)qrn(αq − rq−1
n κq)‖Axn − Az‖q

−(1− αn)qφq(‖(xn − rnAxn − Tnxn)− (z − rnAz − Tnz)‖)

+qαn〈u− z, Jq(zn − z)〉

= (1− αn)q‖xn − z‖q − (1− αn)qrn(αq − rq−1
n κq)‖Axn − Az‖q

−(1− αn)qφq(‖xn − rnAxn − Tnxn + rnAz‖)

+qαn〈u− z, Jq(zn − z)〉. (4.71)

It follows from (4.71) that

‖xn+1 − z‖q = ‖βn(xn − z) + (1− βn)(zn − z)‖q

≤ βq
n‖xn − z‖q + (1− βn)q‖zn − z‖q

= βq
n‖xn − z‖q + (1− βn)q

[
(1− αn)q‖xn − z‖q

−(1− αn)qrn(αq − rq−1
n κq)‖Axn − Az‖q

−(1− αn)qφq(‖xn − rnAxn − Tnxn + rnAz‖)

+qαn〈u− z, Jq(zn − z)〉
]



= βq
n‖xn − z‖q + (1− βn)q(1− αn)q‖xn − z‖q

−(1− βn)q(1− αn)qrn(αq − rq−1
n κq)‖Axn − Az‖q

−(1− βn)q(1− αn)qφq(‖xn − rnAxn − Tnxn + rnAz‖)

+(1− βn)qqαn〈u− z, Jq(zn − z)〉

≤ (βn + (1− βn)(1− αn))‖xn − z‖q

−(1− βn)q(1− αn)qrn(αq − rq−1
n κq)‖Axn − Az‖q

−(1− βn)q(1− αn)qφq(‖xn − rnAxn − Tnxn + rnAz‖)

+(1− βn)qqαn〈u− z, Jq(zn − z)〉

= (1− (1− βn)αn)‖xn − z‖q

−(1− βn)q(1− αn)qrn(αq − rq−1
n κq)‖Axn − Az‖q

−(1− βn)q(1− αn)qφq(‖xn − rnAxn − Tnxn + rnAz‖)

+(1− βn)qqαn〈u− z, Jq(zn − z)〉. (4.72)

We know that (1 − βn)αn is in (0, 1) and (1 − βn)q(1 − αn)q are positive since

{αn}, {βn} ⊆ (0, 1). Moreover, by the condition (c) and 1 < q ≤ 2, we can show

that (1 − βn)q(1 − αn)qrn(αq − rq−1
n κq) is positive. Then, from (4.72), it follows

that

‖xn+1 − z‖q ≤ (1− (1− βn)αn)‖xn − z‖q

+(1− βn)qqαn〈u− z, Jq(zn − z)〉 (4.73)

and also

‖xn+1 − z‖q ≤ ‖xn − z‖q − (1− βn)q(1− αn)qrn(αq − rq−1
n κq)‖Axn − Az‖q

−(1− βn)q(1− αn)qφq(‖xn − rnAxn − Tnxn + rnAz‖)

+(1− βn)qqαn〈u− z, Jq(zn − z)〉. (4.74)

For each n ≥ 1, set

sn = ‖xn − z‖q,

γn = (1− βn)αn,



τn = (1− βn)q−1q〈u− z, Jq(zn − z)〉,

ηn = (1− βn)q(1− αn)qrn(αq − rq−1
n κq)‖Axn − Az‖q

+(1− βn)q(1− αn)qφq(‖xn − rnAxn − Tnxn + rnAz‖),

ρn = (1− βn)qqαn〈u− z, Jq(zn − z)〉.

Then it follows from (4.73) and (4.74) that

sn+1 ≤ (1− γn)sn + γnτn

and

sn+1 ≤ sn − ηn + ρn

for each n ≥ 1. Since
∑∞

n=1 αn = ∞, it follows that
∑∞

n=1 γn = ∞. By the

boundedness of {zn} and limn→∞ αn = 0, we see that limn→∞ ρn = 0.

In order to complete the proof, using Lemma 3.1.59, it remains to show that

limk→∞ ηnk
= 0 implies lim supk→∞ τnk

≤ 0 for any subsequence {nk} ⊂ {n}. Let

{nk} be a subsequence of {n} such that limk→∞ ηnk
= 0. So, by our assumptions

and the property of φq, we can deduce that

lim
k→∞

‖Axnk
− Az‖ = lim

k→∞
‖xnk

− rnk
Axnk

− Tnk
xnk

+ rnk
Az‖ = 0,

which gives, by the triangle inequality, that

lim
k→∞

‖Tnk
xnk

− xnk
‖ = 0.

By the condition (c), there exists ε > 0 such that rn ≥ ε for all n > 0. Then, by

Lemma 3.1.62, we have

‖Tεxnk
− xnk

‖ ≤ 2‖Tnk
xnk

− xnk
‖.

It follows that

lim sup
k→∞

‖Tεxnk
− xnk

‖ ≤ 2 lim sup
k→∞

‖Tnk
xnk

− xnk
‖ = 0 (4.75)

and so

lim sup
k→∞

‖Tεxnk
− xnk

‖ = 0. (4.76)



Let zt = tu + (1 − t)Tεzt for any t ∈ (0, 1). Employing Theorem 3.1.57, we have

zt → Qu = z as t → 0. So we obtain

‖zt − znk
‖q = ‖t(u− znk

) + (1− t)(Trnk
zt − znk

)‖q

≤ (1− t)q‖Trnk
zt − znk

‖q + qt〈u− znk
, Jq(zt − znk

)〉

= (1− t)q‖Trnk
zt − znk

‖q + qt〈u− zt, Jq(zt − znk
)〉

+qt〈zt − znk
, Jq(zt − znk

)〉

= (1− t)q‖Trnk
zt − Trnk

znk
+ Trnk

znk
− znk

‖q

+qt〈u− zt, Jq(zt − znk
)〉+ qt‖zt − znk

‖q

≤ (1− t)q
[
‖Trnk

zt − Trnk
znk
‖+ ‖Trnk

znk
− znk

‖
]q

+qt〈u− zt, Jq(zt − znk
)〉+ qt‖zt − znk

‖q

≤ (1− t)q
[
‖zt − znk

‖+ ‖Trnk
znk

− znk
‖
]q

+qt〈u− zt, Jq(zt − znk
)〉+ qt‖zt − znk

‖q.

This shows that

〈zt − u, Jq(zt − znk
)〉 ≤ (1− t)q

qt

[
‖zt − znk

‖+ ‖Trnk
znk

− znk
‖
]q

+
(qt− 1)

qt
‖zt − znk

‖q. (4.77)

So we have

lim sup
k→∞

〈zt − u, Jq(zt − znk
)〉

≤ lim sup
k→∞

(1− t)q

qt

[
‖zt − znk

‖+ ‖Trnk
znk

− znk
‖
]q

+ lim sup
k→∞

(qt− 1)

qt
‖zt − znk

‖q

=
(1− t)q

qt
M q +

(qt− 1)

qt
M q

=
((1− t)q + qt− 1

qt

)
M q, (4.78)

where M = lim supk→∞ ‖zt − znk
‖, t ∈ (0, 1). We see that (1−t)q+qt−1

qt
→ 0 as

t → 0. From Proposition 3.1.56 (2), we know that Jq is norm-to-norm uniformly

continuous on bounded subset of X. Since zt → z as t → 0, we have ‖Jq(zt−xnk
)−

Jq(z − xnk
)‖ → 0 as t → 0. We see that∣∣∣〈zt − u, Jq(zt − znk

)〉 − 〈z − u, Jq(z − znk
)〉

∣∣∣



=
∣∣∣〈(zt − z) + (z − u), Jq(zt − znk

)〉 − 〈z − u, Jq(z − znk
)〉

∣∣∣
≤

∣∣∣〈zt − z, Jq(zt − znk
)〉

∣∣∣ +
∣∣∣〈z − u, Jq(zt − znk

)〉 − 〈z − u, Jq(z − znk
)〉

∣∣∣
≤ ‖zt − z‖‖zt − xnk

‖q−1 + ‖z − u‖‖Jq(zt − znk
)− Jq(z − znk

)‖.

So, as t → 0, we get

〈zt − u, Jq(zt − znk
)〉 → 〈z − u, Jq(z − znk

)〉. (4.79)

From (4.78), as t → 0, we see that

lim sup
k→∞

〈z − u, Jq(z − znk
)〉 ≤ 0.

This shows that lim supk→∞ τnk
≤ 0. We conclude that limn→∞ sn = 0 by Lemma

3.1.59 (iii). Hence xn → z as n →∞. This completes the proof.

We finally discuss some concrete examples as well as the numerical results

for supporting the main theorem.

Theorem 4.2.7. Let H be real Hilbert space. Let F : H → R be a bounded

linear operator with K-Lipschitz continuous gradient ∇F and G : H → R be a

convex and lower semi-continuous function which F + G attains a minimizer. Let

J∂G
rn

= (I + rn∂G)−1 and {xn} be a sequence generated by u, x1 ∈ H and

xn+1 = βnxn + (1− βn)(αnu + (1− αn)J∂G
rn

(xn − rn∇F (xn))) (4.80)

for each n ≥ 1, where {αn} ⊂ (0, 1), {βn} ⊂ [0, 1) and {rn} ⊂ (0, +∞). Assume

that the following conditions are satisfied:

(a) limn→∞ αn = 0,
∑∞

n=1 αn = ∞;

(b) lim supn→∞ βn < 1;

(c) 0 < lim infn→∞ rn ≤ lim supn→∞ rn < 2
K

.

Then the sequence {xn} converges strongly to a minimizer of F + G.



Example 4.2.8. Solve the following minimization:

min
x∈R4

1

2
‖Cx− d‖2

2 + ‖x‖1

where

C =


2 1 8 5

3 −7 −3 −6

−1 5 −3 9

7 −1 −4 2


, x =


y1

y2

y3

y4


, d =


26

−6

7

−6


.

We set F (x) = 1
2
‖Cx− d‖2

2 and G(x) = ‖x‖1. Then ∇F (x) = CT (Cx− d)

and ∇F (x) is K-Lipschitz continuous by [4]. From [18], for any r > 0,

J∂G
r (x) =

[
max{|y1 − r|, 0}sign(y1), ..., max{|y4 − r|, 0}sign(y4)

]
.

We see that

CT C =


63 −31 −18 −3

−31 76 18 90

−18 18 98 23

−3 90 23 146


and the largest eigenvalue of CT C is 0.00915.

We choose αn = 1
4000n+1

, βn = 1
1500n

, rn = 0.009, x1 = (3,−5, 1, 3)T and

u = (1,−1,−1,−2)T . Using algorithm (4.80) in Theorem 4.2.7, we obtain the

following numerical results.



n xn F (xn) + G(xn) ‖xn+1 − xn‖2

1 (3.000000, -5.000000, 1.000000, 3.000000) 1073.000000 4.806639E+00

50 (-0.926970, -2.533429, 2.102770, 3.138152) 24.821487 7.558257E-01

100 (-0.857996, -2.666656, 2.025993, 2.870673) 9.253030 1.423229E-01

150 (-0.845881, -2.693438, 2.011434, 2.821389) 8.701192 2.681196E-02

200 (-0.843740, -2.698758, 2.008675, 2.812280) 8.681616 5.052011E-03

250 (-0.843365, -2.699816, 2.008152, 2.810599) 8.680922 9.520138E-04

300 (-0.843304, -2.700034, 2.008053, 2.810294) 8.680898 1.794090E-04
...

...
...

...

700 (-0.843312, -2.700130, 2.008028, 2.810253) 8.680897 6.302689E-08

750 (-0.843314, -2.700132, 2.008028, 2.810254) 8.680897 5.458308E-08

800 (-0.843315, -2.700134, 2.008028, 2.810256) 8.680897 4.773015E-08

850 (-0.843315, -2.700136, 2.008028, 2.810257) 8.680897 4.209251E-08

900 (-0.843316, -2.700138, 2.008028, 2.810258) 8.680897 3.739877E-08

950 (-0.843317, -2.700139, 2.008028, 2.810259) 8.680897 3.344924E-08

1000 (-0.843318, -2.700140, 2.008028, 2.810259) 8.680897 3.009437E-08

Table 4

Form Table 4 we see that x1000 = (−0.843318,−2.700140, 2.008028, 2.810259) is an

approximation of the minimizer of F + G with an error 3.009437E − 08 and its

minimum value is approximately 8.680897.

Figure 3



Example 4.2.9. Solve the following minimization:

min
x∈R3

‖Ax + c‖2 +
1

2
xT x + dT x + 9 (4.81)

where

A =


−1 3 4

2 −7 9

−2 −5 −3

 , x = (y1, y2, y3)
T , c = (11, 9, 6)T , d = (7, 6, 8)T .

For each x ∈ R3, we set F (x) = 1
2
xT x + dT x + 9 and G(x) = ‖Ax + c‖2. Then

∇F (x) = x+(7, 6, 8)T . We can check that F is convex and differentiable on R3 with

1-Lipschitz continuous gradient ∇F and G is convex and lower semi-continuous.

We choose αn = 1
10n+1

, βn = 1
5n

, rn = 0.1, x1 = (8,−2, 6)T and u = (−2, 3, 5)T .

We have that, for r > 0,

(I + r∂G)−1(x) =


(

1−r
‖x‖2

)
x, if ‖x‖2 ≥ r,

0, otherwise.

Using algorithm (4.80) in Theorem 4.2.7, we obtain the following numerical results:

n xn F (xn) + G(xn) ‖xn+1 − xn‖2

1 (8.000000, -2.000000, 6.000000) 161.316850 7.460748E+00

50 (-0.524837, -0.433635, -0.574738) 0.545773 3.947994E-04

100 (-0.520385, -0.438070, -0.582402) 0.497188 9.656413E-05

150 (-0.518942, -0.439522, -0.584907) 0.481252 4.261886E-05

200 (-0.518229, -0.440242, -0.586151) 0.473332 2.389088E-05

250 (-0.517803, -0.440673, -0.586894) 0.468594 1.525893E-05

300 (-0.517520, -0.440960, -0.587389) 0.465442 1.058212E-05
...

...
...

...

800 (-0.516640, -0.441852, -0.588928) 0.455624 1.481869E-06

850 (-0.516609, -0.441884, -0.588982) 0.455278 1.312465E-06

900 (-0.516582, -0.441911, -0.589030) 0.454971 1.170533E-06

950 (-0.516557, -0.441936, -0.589073) 0.454696 1.050439E-06

1000 (-0.516535, -0.441959, -0.589112) 0.454449 9.479211E-07



Table 5

Form Table 5, we see that x1000 = (−0.516535,−0.441959,−0.589112) is an approx-

imation of the minimizer of F + G with an error 9.479211E − 07 and its minimum

value is approximately 0.454449.

Figure 4
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1 Introduction

Let X be a real Banach space. We study the following inclusion problem: find x̂ ∈ X

such that

0 ∈ Ax̂ + Bx̂ (1.1)

where A : X → X is an operator and B : X → 2X is a set-valued operator.
This problem includes, as special cases, convex programming, variational inequali-
ties, split feasibility problem and minimization problem. To be more precise, some
concrete problems in machine learning, image processing and linear inverse problem
can be modeled mathematically as this form.
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A classical method for solving problem (1.1) is the forward-backward splitting
method [10, 17, 24, 30] which is defined by the following manner: x1 ∈ X and

xn+1 = (I + rB)−1(xn − rAxn), n ≥ 1, (1.2)

where r > 0. We see that each step of iterates involves only with A as the forward
step and B as the backward step, but not the sum of B. This method includes, in
particular, the proximal point algorithm [5, 6, 13, 22, 27] and the gradient method [2,
12]. Lions-Mercier [17] introduced the following splitting iterative methods in a real
Hilbert space:

xn+1 = (2JA
r − I )(2JB

r − I )xn, n ≥ 1 (1.3)

and
xn+1 = JA

r (2JB
r − I )xn + (I − JB

r )xn, n ≥ 1, (1.4)

where J T
r = (I + rT )−1. The first one is often called Peaceman-Rachford algorithm

[25] and the second one is called Douglas-Rachford algorithm [11]. We note that
both algorithms can be weakly convergent in general [24].

Recently, López et al. [18] introduced the following Halpern-type forward-
backward method: x1 ∈ X and

xn+1 = αnu + (1 − αn)(J
B
rn

(xn − rn(Axn + an)) + bn), (1.5)

where JB
r is the resolvent of B, {rn} ⊂ (0, ∞), {αn} ⊂ (0, 1] and {an}, {bn} are error

sequences in X. It was proved that the sequence {xn} generated by (1.5) strongly
converges to a zero point of the sum of A and B under some appropriate conditions.
There have been many works concerning the problem of finding zero points of the
sum of two monotone operators (in Hilbert spaces) and accretive operators (in Banach
spaces); see [9, 29–31, 35].

In this work, we study a generalized forward-backward method for solving the
inclusion problem (1.1) for an accretive and m-accretive operators in the framework
of Banach spaces. We then prove its strong convergence under some mild conditions.
Finally, we provide some numerical examples to support our main results.

2 Preliminaries and lemmas

In this section, we provide some basic concepts, definitions and lemmas which
will be used in the sequel.

The modulus of convexity of X is the function δ : (0, 2] → [0, 1] defined by

δ(ε) = inf

{
1 − l

∥∥∥∥x + y

2

∥∥∥∥ : x, y ∈ X, ‖x‖ = ‖y‖ = 1, ‖x − y‖ ≥ ε

}
. (2.1)

Then X is uniformly convex if δ(ε) > 0 for all ε ∈ (0, 2].
The modulus of smoothness of X is the function ρ : R+ → R

+ defined by

ρ(t) = sup

{‖x + ty‖ + ‖x − ty‖
2

− 1 : x, y ∈ X, ‖x‖ = ‖y‖ = 1

}
. (2.2)

Then X is uniformly smooth if limt→0 ρ(t)/t = 0. For 1 < q ≤ 2, a Banach space
X is said to be q-uniformly smooth if there exists a constant cq > 0 such that ρ(t) ≤
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cqtq for t > 0. We see that if X is q-uniformly smooth, then it is uniformly smooth.
Let X∗ be the dual space of X. Let Jq(q > 1) denote the generalized duality mapping
from X into 2X∗

given by Jq(x) = {jq(x) ∈ X∗ : 〈x, jq(x)〉 = ‖x‖q, ‖jq(x)‖ =
‖x‖q−1}, ∀x ∈ X, where 〈·, ·〉 denotes the duality pairing between X and X∗. In
particular, J2 := J is called the normalized duality mapping on X. It is also known
(e.g., [[32], p.1128]) that

Jq(x) = ‖x‖q−2J (x), x 
= 0. (2.3)

We next provide some properties of the duality mapping.

Proposition 2.1. (Cioranescu [8]) Let 1 < q < ∞.

(i) The Banach space X is smooth if and only if the duality mapping Jq is single-
valued.

(ii) The Banach space X is uniformly smooth if and only if the duality mapping Jq

is single-valued and norm-to-norm uniformly continuous on bounded subsets of
X.

Using the concept of sub-differentials, we know the following inequality:

Lemma 2.2. [[7], p.33] Let q > 1 andX be a real normed space with the generalized
duality mapping Jq . Then, for any x, y ∈ X, we have

‖x + y‖q ≤ ‖x‖q + q〈y, jq(x + y)〉 (2.4)

for all jq(x + y) ∈ Jq(x + y).

Lemma 2.3. [[32], Corollary 1
′ ] Let 1 < q ≤ 2 and X be a smooth Banach space.

Then the following statements are equivalent:

(i) X is q-uniformly smooth.
(ii) There is a constant kq > 0 such that for all x, y ∈ X

‖x + y‖q ≤ ‖x‖q + q〈y, jq(x)〉 + kq‖y‖q . (2.5)

The best constant kq will be called the q-uniform smoothness coefficient of X.
We define the domain and the range of an operator A : X → 2X by D(A) =

{x ∈ X : Ax 
= ∅} and R(A) = ⋃{Az : z ∈ D(A)}, respectively. The inverse of A,
denoted by A−1, is defined by x ∈ A−1y if and only if y ∈ Ax. A set-valued operator
A is said to be accretive if, for each x, y ∈ D(A), there exists j (x − y) ∈ J (x − y)

such that 〈
u − v, j (x − y)

〉 ≥ 0, u ∈ Ax, v ∈ Ay. (2.6)
An accretive operator A is said to be m-accretive if R(I + rA) = X for all r > 0.

Given α > 0 and q ∈ (1, ∞), we say that an accretive operator A is α-inverse
strongly accretive (α-isa) of order q if, for each x, y ∈ D(A), there exists jq(x−y) ∈
Jq(x − y) such that

〈u − v, jq(x − y)〉 ≥ α‖u − v‖q, u ∈ Ax, v ∈ Ay. (2.7)
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Let C be a nonempty subset of a real Banach space X. Let T : C → C be a
nonlinear mapping. We denote the fixed point set of T by Fix(T ), that is, Fix(T ) =
{x ∈ C : x = T x}.

Let C be a nonempty, closed and convex subset of a real Banach space X and let
D be a nonempty subset of C. A retraction from C to D is a mapping Q : C → D

such that Qx = x for all x ∈ D. A retraction Q from C to D is nonexpansive if
‖Qx − Qy‖ ≤ ‖x − y‖ for all x, y ∈ C. A retraction Q from C to D is sunny if , for
each x ∈ C and t ≥ 0, we have

Q
(
tx + (1 − t)Qx

) = Qx, (2.8)

whenever tx + (1− t)Qx ∈ C. A sunny nonexpansive retraction is a sunny retraction
which is also nonexpansive. Reich [26] showed that if X is uniformly smooth and if
D is the fixed point set of a nonexpansive mapping from C into itself, then there is
a unique sunny nonexpansive retraction from C onto D and it can be constructed as
follows.

Theorem 2.4. [[26], Corollary 1] Let X be a uniformly smooth Banach space and
let T : C → C be a nonexpansive mapping with a fixed point. For each fixed u ∈ C

and every t ∈ (0, 1), the unique fixed point xt ∈ C of the contraction C � x �→
tu+ (1− t)T x converges strongly as t → 0 to a fixed point of T . Define Q : C → D

by Qu = s − limt→0xt . Then Q is the unique sunny nonexpansive retract from C

onto D.

In what follows, we shall use the following notation:

T A,B
r = JB

r (I − rA) = (I + rB)−1(I − rA), r > 0. (2.9)

Lemma 2.5. [[18], Lemma 3.1 and Lemma 3.2] Let X be a Banach space. Let A :
X → X be an α-isa of order q and B : X → 2X an m-accretive operator. Then we
have

(i) For r > 0, Fix(T
A,B
r ) = (A + B)−1(0).

(ii) For 0 < s ≤ r and x ∈ X, ‖x − T
A,B
s x‖ ≤ 2‖x − T

A,B
r x‖.

Lemma 2.6. [[18], Lemma 3.3] Let X be a uniformly convex and q-uniformly
smooth Banach space for some q ∈ (1, 2]. Assume that A is a single-valued α-isa of
order q in X. Then, given r > 0, there exists a continuous, strictly increasing and
convex function φq : R+ → R

+ with φq(0) = 0 such that, for all x, y ∈ Br ,

‖T A,B
r x − T A,B

r y‖q ≤ ‖x − y‖q − r(αq − rq−1kq)‖Ax − Ay‖q (2.10)

−φq(‖(I − JB
r )(I − rA)x − (I − JB

r )(I − rA)y‖),
where kq is the q-uniform smoothness coefficient of X.

Lemma 2.7. [[20], Lemma 3.1] Let {an} and {cn} are sequences of nonnegative real
numbers such that

an+1 ≤ (1 − δn)an + bn + cn, n ≥ 1, (2.11)
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where {δn} is a sequence in (0, 1) and {bn} is a real sequence. Assume∑∞
n=1 cn < ∞.

Then the following results hold:

(i) If bn ≤ δnM for some M ≥ 0, then {an} is a bounded sequence.
(ii) If

∑∞
n=1 δn = ∞ and lim supn→∞ bn/δn ≤ 0, then limn→∞ an = 0.

Employing the technique of Maingé [19], He-Yang [15] proved the following
lemma.

Lemma 2.8. [[15], Lemma 8] Assume {sn} is a sequence of nonnegative real
numbers such that

sn+1 ≤ (1 − γn)sn + γnτn, n ≥ 1

and

sn+1 ≤ sn − ηn + ρn, n ≥ 1,

where {γn} is a sequence in (0, 1), {ηn} is a sequence of nonnegative real numbers
and {τn}, and {ρn} are real sequences such that

(i)
∑∞

n=1 γn = ∞,
(ii) limn→∞ ρn = 0,
(iii) limk→∞ ηnk

= 0 implies lim supk→∞ τnk
≤ 0 for any subsequence {nk} ⊂

{n}. Then limn→∞ sn = 0.

Lemma 2.9. [[23], p.63] Let q > 1. Then the following inequality holds:

ab ≤ 1

q
aq + q − 1

q
b

q
q−1 (2.12)

for arbitrary positive real numbers a and b.

3 Main results

In this section, we first establish some crucial propositions and then prove our
main theorem.

Proposition 3.1. Let q > 1 and let X be a real smooth Banach space with the
generalized duality mapping jq . Let m ∈ N be fixed. Let {xi}mi=1 ⊂ X and ti ≥ 0 for
all i = 1, 2, ..., m with

∑m
i=1 ti ≤ 1. Then we have

‖
m∑

i=1

tixi‖q ≤
∑m

i=1 ti‖xi‖q

q − (q − 1)(
∑m

i=1 ti )
. (3.1)
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Proof By definition of the generalized duality mapping jq and Lemma 2.9., we can
estimate the following:

‖
m∑

i=1

tixi‖q = 〈 m∑
i=1

tixi, jq(

m∑
i=1

tixi)
〉

(3.2)

=
m∑

i=1

ti
〈
xi, jq(

m∑
i=1

tixi)
〉

(3.3)

≤
m∑

i=1

ti‖xi‖‖
m∑

i=1

tixi‖q−1 (3.4)

≤
m∑

i=1

ti (
1

q
‖xi‖q + q − 1

q
‖

m∑
i=1

tixi‖q) (3.5)

= 1

q

m∑
i=1

ti‖xi‖q + q − 1

q
‖

m∑
i=1

tixi‖q(

m∑
i=1

ti ), (3.6)

which implies that

(
1 − q − 1

q

m∑
i=1

ti
)‖

m∑
i=1

tixi‖q ≤ 1

q

m∑
i=1

ti‖xi‖q . (3.7)

We see that 1 − q−1
q

∑m
i=1 ti is positive since q > 1 and

∑m
i=1 ti ≤ 1. It follows that

‖
m∑

i=1

tixi‖q ≤
∑m

i=1 ti‖xi‖q

q − (q − 1)(
∑m

i=1 ti )
. (3.8)

Proposition 3.2. Let X be a uniformly convex and q-uniformly smooth Banach
space. Let A : X → X be an α-isa of order q and B : X → 2X an m-accretive
operator such that 
 := (A + B)−1(0) 
= ∅. Let {en} be a sequence in X. Let {xn}
be generated by u, x1 ∈ X and

xn+1 = αnu + λnxn + δnJ
B
rn

(xn − rnAxn) + en, n ≥ 1, (3.9)

where JB
rn

= (I + rnB)−1, 0 < rn ≤ (αq/kq)1/(q−1) and {αn}, {λn}, and {δn} are
sequences in [0, 1] with αn+λn+δn = 1. If

∑∞
n=1 ‖en‖ < ∞ or limn→∞ ‖en‖/αn =

0, then {xn} is bounded.

Proof For each n ∈ N, we put Tn = JB
rn

(I − rnA) and let {yn} be defined by

yn+1 = αnu + λnyn + δnTnyn. (3.10)
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Firstly, using Lemma 2.6, we compute the following:

‖xn+1 − yn+1‖ = ‖λn(xn − yn) + δn(Tnxn − Tnyn) + en‖ (3.11)

≤ λn‖xn − yn‖ + δn‖Tnxn − Tnyn‖ + ‖en‖ (3.12)

≤ λn‖xn − yn‖ + δn‖xn − yn‖ + ‖en‖ (3.13)

= (1 − αn)‖xn − yn‖ + ‖en‖. (3.14)

By the assumptions and Lemma 2.7 (ii), we conclude that limn→∞ ‖xn − yn‖ = 0.
Let z = Qu, where Q is a sunny nonexpansive retraction of X onto 
.

We next show that {yn} is bounded. Indeed

‖yn+1 − z‖ = ‖αn(u − z) + λn(yn − z) + δn(Tnyn − z)‖ (3.15)

≤ αn‖u − z‖ + λn‖yn − z‖ + δn‖Tnyn − z‖ (3.16)

≤ αn‖u − z‖ + λn‖yn − z‖ + δn‖yn − z‖ (3.17)

= αn‖u − z‖ + (1 − αn)‖yn − z‖. (3.18)

This shows that {yn} is bounded by Lemma 2.7 (i) and hence {xn} is also bounded.

Theorem 3.3. Let X be a uniformly convex and q-uniformly smooth Banach space.
Let A : X → X be an α-isa of order q and B : X → 2X an m-accretive operator
such that
 := (A+B)−1(0) 
= ∅. Let {en} be a sequence inX. Let {xn} be generated
by u, x1 ∈ X and

xn+1 = αnu + λnxn + δnJ
B
rn

(xn − rnAxn) + en, n ≥ 1, (3.19)

where JB
rn

= (I + rnB)−1, {rn} ⊂ (0, ∞) and {αn}, {λn}, and {δn} are sequences in
[0, 1] with αn + λn + δn = 1. Assume that

(i) limn→∞ αn = 0,
∑∞

n=1 αn = ∞;
(ii) 0 < lim infn→∞ rn ≤ lim supn→∞ rn < (αq/kq)1/(q−1);
(iii) lim infn→∞ δn > 0;
(iv)

∑∞
n=1 ‖en‖ < ∞ or limn→∞ ‖en‖/αn = 0.

Then {xn} strongly converges to z = Qu, where Q is a sunny nonexpansive
retraction of X onto 
.

Proof Since, by Proposition 3.2, limn→∞ ‖xn − yn‖ = 0, it suffices to show that
limn→∞ yn = z = Qu. From Lemma 2.2, we have

‖yn+1 − z‖q = ‖αn(u − z) + λn(yn − z) + δn(Tnyn − z)‖q (3.20)

≤ ‖λn(yn − z) + δn(Tnyn − z)‖q

+ qαn

〈
u − z, jq(yn+1 − z)

〉
. (3.21)
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On the other hand, by Proposition 3.1 and Lemma 2.6, we obtain

‖λn(yn − z) + δn(Tnyn − z)‖q ≤ 1

q − (q − 1)(1 − αn)
(λn‖yn − z‖q

+ δn‖Tnyn − z‖q) (3.22)

≤ 1

q − (q − 1)(1 − αn)

(
λn‖yn − z‖q

+δn

(‖yn − z‖q − rn(αq − r
q−1
n kq)‖Ayn − Az‖q

−φq(‖yn − rnAyn − Tnyn + rnAz‖))) (3.23)

= 1 − αn

q − (q − 1)(1 − αn)
‖yn − z‖q

− δnrn(αq − r
q−1
n kq)

q − (q − 1)(1 − αn)
‖Ayn − Az‖q (3.24)

− δn

q − (q − 1)(1 − αn)
φq(‖yn − rnAyn − Tnyn + rnAz‖).

Replacing (3.24) into (3.21), it follows that

‖yn+1 − z‖q ≤
(

1 − αnq

q − (q − 1)(1 − αn)

)
‖yn − z‖q

− δnrn(αq − r
q−1
n kq)

q − (q − 1)(1 − αn)
‖Ayn − Az‖q

− δn

q − (q − 1)(1 − αn)
φq(‖yn − rnAyn − Tnyn + rnAz‖)

+qαn

〈
u − z, jq(yn+1 − z)

〉
. (3.25)

We can check that αnq
q−(q−1)(1−αn)

is in (0, 1) since {αn} ⊂ (0, 1) and 1 < q ≤
2. Moreover, by condition (ii), δnrn(αq−r

q−1
n kq )

q−(q−1)(1−αn)
and δn

q−(q−1)(1−αn)
are positive. From

(3.25), we then have

‖yn+1 − z‖q ≤
(

1 − αnq

q − (q − 1)(1 − αn)

)
‖yn − z‖q + qαn

〈
u − z, jq(yn+1 − z)

〉
(3.26)

and also

‖yn+1 − z‖q ≤ ‖yn − z‖q − δnrn(αq − r
q−1
n kq)

q − (q − 1)(1 − αn)
‖Ayn − Az‖q

− δn

q − (q − 1)(1 − αn)
φq(‖yn − rnAyn − Tnyn + rnAz‖)

+ qαn

〈
u − z, jq(yn+1 − z)

〉
. (3.27)
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For each n ≥ 1, we set

sn = ‖yn − z‖q, γn = αnq

q − (q − 1)(1 − αn)
,

τn = (
q − (q − 1)(1 − αn)

)〈
u − z, jq(yn+1 − z)

〉
,

ηn = δnrn(αq − r
q−1
n kq)

q − (q − 1)(1 − αn)
‖Ayn − Az‖q

+ δn

q − (q − 1)(1 − αn)
φq(‖yn − rnAyn − Tnyn + rnAz‖),

ρn = qαn

〈
u − z, jq(yn+1 − z)

〉
. (3.28)

Then (3.26) and (3.27) are reduced to the following:

sn+1 ≤ (1 − γn)sn + γnτn, n ≥ 1

and

sn+1 ≤ sn − ηn + ρn, n ≥ 1.

Since
∑∞

n=1 αn = ∞, it follows that
∑∞

n=1 γn = ∞. By the boundedness of {yn} and
limn→∞ αn = 0, we see that limn→∞ ρn = 0. In order to complete the proof, using
Lemma 2.8, it remains to show that limk→∞ ηnk

= 0 implies lim supk→∞ τnk
≤ 0

for any subsequence {nk} ⊂ {n}.
Let {nk} be a subsequence of {n} such that limk→∞ ηnk

= 0. So, by our
assumptions and the property of φq , we can deduce that

lim
k→∞ ‖Aynk

− Az‖ = lim
k→∞ ‖ynk

− rnk
Aynk

− Tnk
ynk

+ rnk
Az‖ = 0. (3.29)

This gives, by the triangle inequality, that

lim
k→∞ ‖Tnk

ynk
− ynk

‖ = 0. (3.30)

Since lim infn→∞ rn > 0, there is r > 0 such that rn ≥ r for all n ≥ 1. In particular,
rnk

≥ r for all k ≥ 1. Lemma 2.5 (ii) yields that

‖T A,B
r ynk

− ynk
‖ ≤ 2‖Tnk

ynk
− ynk

‖. (3.31)

Then, by (3.30), we obtain

lim sup
k→∞

‖T A,B
r ynk

− ynk
‖ ≤ 2 lim

k→∞ ‖Tnk
ynk

− ynk
‖ = 0. (3.32)

It follows that

lim
k→∞ ‖T A,B

r ynk
− ynk

‖ = 0. (3.33)
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Let zt = tu + T
A,B
r zt , t ∈ (0, 1). Employing Theorem 2.4, we have zt → Qu = z

as t → 0. So we obtain

‖zt − ynk
‖q = ‖t (u − ynk

) + (1 − t)(T A,B
r zt − ynk

)‖q (3.34)

≤ (1 − t)q‖T A,B
r zt − ynk

‖q + qt
〈
u − ynk

, jq(zt − ynk
)
〉

(3.35)

= (1 − t)q‖T A,B
r zt − ynk

‖q + qt
〈
u − zt , jq(zt − ynk

)
〉

+ qt
〈
zt − ynk

, jq(zt − ynk
)
〉

(3.36)

≤ (1 − t)q(‖T A,B
r zt − T A,B

r ynk
‖ + ‖T A,B

r ynk
− ynk

‖)q
+qt

〈
u − zt , jq(zt − ynk

)
〉 + qt‖zt − ynk

‖q (3.37)

≤ (1 − t)q(‖zt − ynk
‖ + ‖T A,B

r ynk
− ynk

‖)q
+qt

〈
u − zt , jq(zt − ynk

)
〉 + qt‖zt − ynk

‖q . (3.38)

This shows that
〈
zt−u, jq(zt−ynk

)
〉≤ (1 − t)q

qt
(‖zt−ynk

‖+‖T A,B
r ynk

−ynk
‖)q+ (qt − 1)

qt
‖zt−ynk

‖q .

(3.39)
From (3.39) and (3.33), we obtain

lim sup
k→∞

〈
zt − u, jq(zt − ynk

)
〉 ≤ (1 − t)q

qt
Mq + (qt − 1)

qt
Mq (3.40)

=
(

(1 − t)q + qt − 1

qt

)
Mq, (3.41)

where M = lim supk→∞ ‖zt −ynk
‖, t ∈ (0, 1). We see that (1−t)q+qt−1

qt
→ 0 as t →

0. From Proposition 2.1 (ii), we know that jq is norm-to-norm uniformly continuous
on bounded subsets of X. Since zt → z as t → 0, we have ‖jq(zt − ynk

) − jq(z −
ynk

)‖ → 0 as t → 0. Observe that
|〈zt − u, jq(zt − ynk

)〉 − 〈z − u, jq(z − ynk
)〉|

≤ |〈zt − z, jq(zt − ynk
)〉| + |〈z − u, jq(zt − ynk

) − jq(z − ynk
)〉| (3.42)

≤ ‖zt − z‖‖zt − ynk
‖q−1 + ‖z − u‖‖jq(zt − ynk

) − jq(z − ynk
)‖. (3.43)

So, as t → 0, we get

〈zt − u, jq(zt − ynk
)〉 → 〈z − u, jq(z − ynk

)〉. (3.44)

From (3.41), as t → 0, it follows that

lim sup
k→∞

〈
z − u, jq(z − ynk

)
〉 ≤ 0. (3.45)

On the other hand, by (3.10) and (3.30), we see that

‖ynk+1 − ynk
‖ ≤ αnk

‖u − ynk
‖ + δnk

‖Tnk
ynk

− ynk
‖ → 0, (3.46)

as k → ∞. Combining (3.45) and (3.46), we get that

lim sup
k→∞

〈
z − u, jq(z − ynk+1)

〉 ≤ 0. (3.47)



Numer Algor (2016) 71:915–932 925

It also follows that lim supk→∞ τnk
≤ 0. We conclude that limn→∞ sn = 0 by

Lemma 2.8. Hence yn → z as n → ∞. We thus complete the proof.

By setting λn = 0 for all n ≥ 1, we obtain the following result:

Corollary 3.4. Let X be a uniformly convex and q-uniformly smooth Banach space.
Let A : X → X be an α-isa of order q and B : X → 2X an m-accretive operator
such that
 := (A+B)−1(0) 
= ∅. Let {en} be a sequence inX. Let {xn} be generated
by u, x1 ∈ X and

xn+1 = αnu + (1 − αn)J
B
rn

(xn − rnAxn) + en, n ≥ 1, (3.48)

where JB
rn

= (I + rnB)−1, {rn} ⊂ (0, ∞) and {αn} is a sequence in [0, 1]. Assume
that

(i) limn→∞ αn = 0,
∑∞

n=1 αn = ∞;
(ii) 0 < lim infn→∞ rn ≤ lim supn→∞ rn < (αq/kq)1/(q−1);
(iii)

∑∞
n=1 ‖en‖ < ∞ or limn→∞ ‖en‖/αn = 0.

Then {xn} strongly converges to z = Qu, whereQ is a sunny nonexpansive retraction
of X onto 
.

Remark 3.5. (1) Our results extend those of [3, 16, 21, 31, 33, 34] from Hilbert spaces
to Banach spaces.

(2) We remove the conditions that limn→∞ |rn+1 − rn| = 0 and 0 <

lim infn→∞ λn ≤ lim supn→∞ λn < 1 in Theorem 3.3 of Yao-Noor [34] and the con-
ditions that

∑∞
n=1 λn < ∞, limn→∞

( 1
rn+1

− 1
rn

) = 0 and
∑∞

n=1
|αn+1−αn|

rn+1
< ∞ in

Theorem 1 of Boikanyo-Moroşanu [3].

We now give an example in �3 space which is a uniformly convex and 2-uniformly
smooth Banach space but not a Hilbert space.

Example 3.6. Let A : �3 → �3 be defined by Ax = 2x + (1, 1, 1, 0, 0, 0, 0, ...) and
let B : �3 → �3 be defined by Bx = 5x where x = (x1, x2, x3, ...) ∈ �3.

We see that A is a 1/2-isa of order 2 and B is an m-accretive operator. Indeed, let
x, y ∈ �3, then

〈Ax − Ay, j2(x − y)〉 = 〈2x − 2y, j2(x − y)〉
= 2‖x − y‖2

�3

= 1

2
‖Ax − Ay‖2

�3
. (3.49)

We also have

〈Bx − By, j2(x − y)〉 = 5‖x − y‖2
�3

≥ 0 (3.50)
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and R(I + rB) = �3 for all r > 0. By a direct calculation, we have for s > 0

JB
s (x − sAx) = (I + sB)−1(x − sAx)

= 1 − 2s

1 + 5s
x − s

1 + 5s
(1, 1, 1, 0, 0, 0, 0, ...), (3.51)

where x = (x1, x2, x3, ...) ∈ �3. Since, in �3, q = 2, k2 = 2 and α = 1/2, we
can choose rn = 0.1 for all n ∈ N. Let αn = 1

1000n+1 , λn = 1
10n

and δn = (1 −
1

10n
− 1

1000n+1 ). Let u = (−0.05, −0.08, −0.06, 0, 0, 0, 0, ...) and en = (0, 0, 0, ...).
Starting x1 = (1.2, 2.5, 3.4, 0, 0, 0, 0, ...) and computing iteratively algorithm (3.19)
in Theorem 3.3, we obtain the following numerical results.

From Table 1, the solution is (−0.142857, −0.142857, −0.142857, 0, 0, 0, 0, ...).

4 Applications and numerical examples

In this section, we discuss some concrete examples as well as the numerical
results for supporting the main theorem.

Table 1 Numerical results of Example 3.6 for iteration process (3.19)

n xn ‖xn+1 − xn‖�3

1 (1.2000000,2.5000000,3.4000000,0.0000000,0.0000000,0.0000000,...) 1.6937789E+00

10 (−0.1368743, −0.1311181, −0.1271209,0.0000000,0.0000000,0.0000000,...) 8.2573797E-03

20 (−0.1428340, −0.1428263, −0.1428159,0.0000000,0.0000000,0.0000000,...) 1.7112628E-05

30 (−0.1428499, −0.1428522, −0.1428507,0.0000000,0.0000000,0.0000000,...) 3.4600332E-07

40 (−0.1428519, −0.1428536, −0.1428524,0.0000000,0.0000000,0.0000000,...) 1.7301589E-07

50 (−0.1428530, −0.1428543, −0.1428534,0.0000000,0.0000000,0.0000000,...) 1.0843686E-07

60 (−0.1428537, −0.1428548, −0.1428541,0.0000000,0.0000000,0.0000000,...) 7.4310792E-08

70 (−0.1428542, −0.1428552, −0.1428545,0.0000000,0.0000000,0.0000000,...) 5.4092528E-08

80 (−0.1428546, −0.1428554, −0.1428549,0.0000000,0.0000000,0.0000000,...) 4.1132625E-08

90 (−0.1428549, −0.1428556, −0.1428551,0.0000000,0.0000000,0.0000000,...) 3.2329686E-08

100 (−0.1428551, −0.1428558, −0.1428553,0.0000000,0.0000000,0.0000000,...) 2.6078314E-08
.
.
.

.

.

.
.
.
.

200 (−0.1428561, −0.1428565, −0.1428562,0.0000000,0.0000000,0.0000000,...) 6.4012505E-09

250 (−0.1428563, −0.1428566, −0.1428564,0.0000000,0.0000000,0.0000000,...) 4.0821310E-09

300 (−0.1428565, −0.1428567, −0.1428565,0.0000000,0.0000000,0.0000000,...) 2.8280803E-09

350 (−0.1428566, −0.1428568, −0.1428566,0.0000000,0.0000000,0.0000000,...) 2.0742607E-09

400 (−0.1428566, −0.1428568, −0.1428567,0.0000000,0.0000000,0.0000000,...) 1.5860974E-09

450 (−0.1428567, −0.1428568, −0.1428567,0.0000000,0.0000000,0.0000000,...) 1.2519825E-09

500 (−0.1428567, −0.1428569, −0.1428568,0.0000000,0.0000000,0.0000000,...) 1.0133107E-09

550 (−0.1428568, −0.1428569, −0.1428568,0.0000000,0.0000000,0.0000000,...) 8.3691026E-10

600 (−0.1428568, −0.1428569, −0.1428568,0.0000000,0.0000000,0.0000000,...) 7.0286201E-10

650 (−0.1428568, −0.1428569, −0.1428569,0.0000000,0.0000000,0.0000000,...) 5.9861825E-10
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4.1 Minimization problem

In this subsection, we apply Theorem 3.3 to the convex minimization problem.
Let H be a real Hilbert space. Let F : H → R be a convex smooth function and G :
H → R be a convex, lower-semicontinuous and nonsmooth function. We consider
the problem of finding x̂ ∈ H such that

F(x̂) + G(x̂) ≤ F(x) + G(x) (4.1)

for all x ∈ H . This problem (4.1) is equivalent, by Fermat’s rule, to the problem of
finding x̂ ∈ H such that

0 ∈ ∇F(x̂) + ∂G(x̂), (4.2)

where ∇F is a gradient of F and ∂G is a subdifferential of G. In this point of view,
we can set A = ∇F and B = ∂G in Theorem 3.3. This is because if ∇F is (1/L)-
Lipschitz continuous, then it is L-inverse strongly monotone [[1], Corollary 10].
Moreover, ∂G is maximal monotone [[28], Theorem A]. So we obtain the following
result.

Theorem 4.1. Let H be real Hilbert space. Let F : H → R be a convex and differ-
entiable function with (1/L)-Lipschitz continuous gradient ∇F and G : H → R be
a convex and lower semi-continuous function which F + G attains a minimizer. Let
{en} be a sequence in H . Let {xn} be generated by u, x1 ∈ H and

xn+1 = αnu + λnxn + δnJrn

(
xn − rn∇F(xn)

) + en, n ≥ 1, (4.3)

where Jrn = (I + rn∂G)−1, {rn} ⊂ (0, ∞) and {αn}, {λn}, and {δn} are sequences in
[0, 1] with αn + λn + δn = 1. Assume that

(i) limn→∞ αn = 0,
∑∞

n=1 αn = ∞;
(ii) 0 < lim infn→∞ rn ≤ lim supn→∞ rn < 2L;
(iii) lim infn→∞ δn > 0;
(iv)

∑∞
n=1 ‖en‖ < ∞ or limn→∞ ‖en‖/αn = 0.

Then {xn} strongly converges to a minimizer of F + G.

Example 4.2. Solve the following minimization problem:

min
x∈R3

‖x‖2
2 + (3, 5, −1)x + 9 + ‖x‖1, (4.4)

where x = (y1, y2, y3) ∈ R
3.

For each x ∈ R
3, we set F(x) = ‖x‖2

2 + (3, 5, −1)x + 9 and G(x) = ‖x‖1.
Then ∇F(x) = 2x + (3, 5, −1). We can check that F is convex and differen-
tiable on R

3 with 2-Lipschitz continuous gradient ∇F . Moreover, G is convex
and lower semi-continuous but not differentiable on R

3. From [14] we know that,
for r > 0,

(I +r∂G)−1(x) = (max{|y1|−r, 0}sign(y1), max{|y2|−r, 0}sign(y2), max{|y3|−r, 0}sign(y3)).
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We choose αn = 1
100n+1 , λn = 99n

(n+1)(100n+1)
, δn = n

n+1 and rn =
0.2. Let en = ( 1

n2 , 1
n2 , 1

n2 ), u = (2.553479, 5.187352, 1.903486) and x1 =
(3.425859, 8.231258, 1.430561). Using algorithm (4.3) in Theorem 4.1, we obtain
the following numerical results.

From Table 2, we see that x663 = (−0.999860, −1.999722, 0.000078) is an
approximation of the minimizer of F + G with an error 4.9973577E − 07 and its
minimum value is approximately 4.0000001. In fact, the minimizer of F + G is
(−1, −2, 0) and (F + G)(−1, −2, 0) = 4 (Figs. 1 and 2).

4.2 Linear inverse problem

In this subsection, we apply Theorem 3.3 to solve the unconstrained linear
system

Cx = d (4.5)

where C is a bounded linear operator on H and d ∈ H . For each x ∈ H , we define
F : H → R by

F(x) = 1

2
‖Cx − d‖2. (4.6)

Table 2 Numerical results of Example 4.2 for iteration process (4.3)

n xn = (yn
1 , yn

2 , yn
3 ) F (xn) + G(xn) ‖xn+1 − xn‖2

1 (3.425859,8.231258,1.430561) 153.6276069 1.4677578E+00

2 (3.332050, 6.954869, 2.149131) 128.1489310 2.7041086E+00

3 (2.156296, 4.541443, 1.824807) 73.4780908 2.4690302E+00

4 (1.021838, 2.392267, 1.388738) 36.1366456 1.8578516E+00

5 (0.270687, 0.736212, 1.008125) 16.1316179 9.8758376E−01

6 (−0.108319, −0.126974, 0.713871) 8.8129329 6.9838132E−01

7 (−0.381831, −0.732534, 0.498872) 6.2374757 4.8162425E−01

8 (−0.573595, −1.147294, 0.346679) 5.0291149 3.2683581E−01

9 (−0.705677, −1.426945, 0.240984) 4.4730915 2.1951923E−01

10 (−0.795670, −1.613558, 0.168420) 4.2194535 1.4654722E−01
.
.
.

.

.

.
.
.
.

.

.

.

654 (−0.999858, −1.999718, 0.000079) 4.0000001 5.1403155E−07

655 (−0.999858, −1.999718, 0.000079) 4.0000001 5.1241306E−07

656 (−0.999858, −1.999719, 0.000079) 4.0000001 5.1080220E−07

657 (−0.999858, −1.999719, 0.000079) 4.0000001 5.0919892E−07

658 (−0.999858, −1.999720, 0.000079) 4.0000001 5.0760317E−07

659 (−0.999859, −1.999720, 0.000078) 4.0000001 5.0601491E−07

660 (−0.999859, −1.999721, 0.000078) 4.0000001 5.0443408E−07

661 (−0.999859, −1.999721, 0.000078) 4.0000001 5.0286064E−07

662 (−0.999859, −1.999721, 0.000078) 4.0000001 5.0129456E−07

663 (−0.999860, −1.999722, 0.000078) 4.0000001 4.9973577E−07
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Fig. 1 The error plotting of ‖xn+1 − xn‖2 in Table 2

From [4] we know that ∇F(x) = CT (Cx − d) and ∇F is K-Lipschitz continuous
with K the largest eigenvalue of CT C. So we obtain the following result.

Theorem 4.3. Let H be real Hilbert space. Let C : H → H be a bounded linear
operator and d ∈ H with K the largest eigenvalue of CT C. Let {en} be a sequence
in H . Let {xn} be generated by u, x1 ∈ H and

xn+1 = αnu + λnxn + δn

(
xn − rnC

T (Cxn − d)
) + en, n ≥ 1, (4.7)

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−3

Iteration Number (n)

E
rr

or
s

Fig. 2 The error plotting of ‖xn+1 − xn‖2 in Table 3
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where {rn} ⊂ (0, ∞) and {αn}, {λn}, and {δn} are sequences in [0, 1] with αn + λn +
δn = 1. Assume that

(i) limn→∞ αn = 0,
∑∞

n=1 αn = ∞;
(ii) 0 < lim infn→∞ rn ≤ lim supn→∞ rn < 2/K;
(iii) lim infn→∞ δn > 0;
(iv)

∑∞
n=1 ‖en‖ < ∞ or limn→∞ ‖en‖/αn = 0.

If (4.5) is consistent, then {xn} strongly converges to a solution of a linear system.
Example 4.4. Solve the following linear system:

2y1 + y2 − 3y3 + 2y4 = 13

y1 − 2y2 + 3y3 + 5y4 = 9

−3y1 + 5y2 + 4y3 − 2y4 = −3 (4.8)

4y1 + 2y2 − y3 − y4 = 6.

Let C =

⎛
⎜⎜⎝

2 1 −3 2
1 −2 3 5

−3 5 4 −2
4 2 −1 −1

⎞
⎟⎟⎠, x =

⎛
⎜⎜⎝

y1
y2
y3
y4

⎞
⎟⎟⎠ and d =

⎛
⎜⎜⎝

13
9

−3
6

⎞
⎟⎟⎠.

Table 3 Numerical results of Example 4.4 for iteration process (4.7)

n xn = (yn
1 , yn

2 , yn
3 , yn

4 )T ‖xn+1 − xn‖2

1 (−1.000000,3.000000,2.000000,5.000000) 3.0154184E+00

2 (1.608431,3.435784,0.640392,5.500392) 1.7095286E+00

3 (1.626720,3.340500, −0.516476,4.245509) 8.4386757E-01

4 (1.339520,2.891206, −0.916370,3.727969) 5.0556755E-01

5 (1.099700,2.553623, −1.039057,3.465156) 2.9280323E-01
.
.
.

.

.

.
.
.
.

238 (1.000364,1.999292,−0.999491,2.999184) 5.3648214E-06

239 (1.000363,1.999295,−0.999493,2.999188) 5.3189260E-06

240 (1.000361,1.999298,−0.999496,2.999191) 5.2735040E-06

241 (1.000359,1.999301,−0.999498,2.999195) 5.2287703E-06

242 (1.000358,1.999304,−0.999500,2.999198) 5.1844999E-06

243 (1.000356,1.999307,−0.999502,2.999202) 5.1408891E-06

244 (1.000355,1.999310,−0.999504,2.999205) 5.0977315E-06

245 (1.000353,1.999313,−0.999506,2.999208) 5.0552065E-06

246 (1.000352,1.999316,−0.999508,2.999212) 5.0131244E-06

247 (1.000350,1.999319,−0.999510,2.999215) 4.9716496E-06
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Then

CT C =

⎛
⎜⎜⎝

30 −7 −19 11
−7 34 9 −20
−19 9 35 2
11 −20 2 34

⎞
⎟⎟⎠ .

The largest eigenvalue of CT C is 65.5033. This allows us to choose the upper
bound of {rn}. We also note that since CT C is symmetric, the largest eigenvalue K

is less than mb, where m is the dimension of the matrix CT C and b is its maximal
element; see [[36], Theorem 1].

We choose αn = 1
50n+1 , λn = 49n

(n+1)(50n+1)
, δn = n

n+1 and rn = 0.03 for all

n ≥ 1. Let en = ( 1
n3 , 1

n3 , 1
n3 , 1

n3 )T , u = (3, 1, 1, 4)T and x1 = (−1, 3, 2, 5)T . Using
algorithm (4.7) in Theorem 4.3, we obtain the following numerical results.

From Table 3 we see that the solution of a linear system (4.8) is (1, 2, −1, 3).

Remark 4.5. We remark that Theorem 3.3 can be further applied to the variational
inequality problem, the split feasibility problem and the fixed point problem. See also
[18, 29].
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20. Maingé, P.E.: Approximation method for common fixed points of nonexpansive mappings in Hilbert
spaces. J. Math. Anal. Appl. 325, 469–479 (2007)

21. Marino, G., Xu, H.K.: Convergence of generalized proximal point algorithm. Comm. Pure Appl. Anal.
3, 791–808 (2004)

22. Martinet, B.: Régularisation d’inéquations variationnelles par approximations successives. Rev.
Française Informat. Recherche. Opérationnelle 4, 154–158 (1970)
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Abstract In this article, we take a look at the recent results of Moudafi (Inverse Probl
26:587–600, 2010), Tang et al. (Math Model Anal 17:457–466, 2012) and Wang and Cui
(Math Model Anal 18:537–542, 2013), which weak convergence results were obtained for
the split common fixed point problem for demicontractive mappings. We introduce a new
algorithm for solving the split common fixed point problem for demicontractive mappings
and then prove strong convergence of the sequence in real Hilbert spaces. We also apply
our results to the split common null point problem in real Hilbert spaces. Finally, we give
numerical results to demonstrate its convergence.

Keywords Demicontractive mappings · Split common fixed point problems ·
Iterative scheme · Strong convergence · Hilbert spaces
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1 Introduction

In this paper, we shall assume that H is a real Hilbert space with inner product 〈·, ·〉 and norm
|| · ||. Let I denote the identity operator on H . Let C and Q be nonempty, closed and convex
subsets of real Hilbert spaces H1 and H2, respectively. The split feasibility problem (SFP) is
to find a point

x ∈ C such that Ax ∈ Q, (1.1)
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where A : H1 → H2 is a bounded linear operator. The SFP in finite-dimensional Hilbert
spaces was introduced by Censor and Elfving [9] for modeling inverse problems which arise
from phase retrievals and in medical image reconstruction [4]. The SFP attracts the attention
of many authors due to its application in signal processing. Various algorithms have been
invented to solve it (see, for example [5,18,24,28,31,32,36] and the references therein).

Note that the SFP (1.1) can be formulated as a fixed point equation by using the following
fact:

PC (I − γ A∗(I − PQ)A)x∗ = x∗; (1.2)

that is, x∗ is a solution of the SFP (1.1) if and only if x∗ is a solution of the fixed point Eq. (1.2)
(see [27] for the details). This suggests that we can use fixed point algorithms (see [33,34,37])
to solve SFP. A well known algorithm used to solve the SFP (1.1) is Byrne’s CQ algorithm
[4] which is found to be a gradient projection method (GPM) in a convex minimization.
Subsequently, Byrne [5] applied Krasnoselskii–Mann iteration to the CQ algorithm. Zhao
and Yang [39] applied Krasnoselskii–Mann iteration to the perturbed CQ algorithm to solve
the SFP. It is well known that the CQ algorithm and the Krasnoselskii–Mann algorithm for
the SFP do not necessarily converge strongly in the infinite-dimensional Hilbert spaces.

We next provide some definitions which will be used in the sequel.
Let T : H → H be a mapping. A point x ∈ H is said to be a fixed point of T provided

that T x = x . In this paper, we denote F(T ) by the fixed point set. The symbols → and ⇀

mean the strong convergence and the weak convergence, respectively.

Definition 1.1 The mapping T : H → H is said to be

(a) nonexpansive if

||T x − T y|| ≤ ||x − y||, ∀x, y ∈ H.

(b) quasi-nonexpansive if

||T x − T p|| ≤ ||x − p||, ∀x ∈ H, p ∈ F(T ).

(c) firmly nonexpansive mapping if

||T x − T y||2 ≤ ||x − y||2 − ||(x − y) − (T x − T y)||2, ∀x, y ∈ H.

(d) quasi-firmly nonexpansive mapping if

||T x − T p||2 ≤ ||x − p||2 − ||x − T x ||2, ∀x ∈ H, p ∈ F(T ).

(e) strictly pseudocontractive mapping if there exists a constant k ∈ [0, 1) such that

||T x − T y||2 ≤ ||x − y||2 + k||(x − y) − (T x − T y)||2, ∀x, y ∈ H.

(f) pseudocontractive mapping if

||T x − T y||2 ≤ ||x − y||2 + ||(x − y) − (T x − T y)||2, ∀x, y ∈ H.

(g) demicontractive (or k-demicontractive) if there exists k < 1 such that

||T x − T p||2 ≤ ||x − p||2 + k||x − T x ||2, ∀x ∈ H, p ∈ F(T ). (1.3)

Remark 1.2 It is clear that, in a real Hilbert space H , (1.3) is equivalent to

〈T x − p, x − p〉||x − p||2 ≥ 1 − k1
2

||x − T x ||2, ∀x ∈ H, p ∈ F(T ). (1.4)
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We denote by 
N ,
QN ,
FN ,
QF ,
S,
P ,
D (with k ≥ 0) the classes of nonexpansive,
quasi-nonexpansive, firmly-nonexpansive, quasi-firmly nonexpansive, strictly pseudocon-
tractive, pseudocontractive and demicontractive mappings, respectively. It is easily seen that

FN � 
N � 
QN � 
D , 
FN � 
QF � 
QN � 
D and 
FN � 
N � 
S � 
D by the
following examples.

The following example is the demicontractive mapping which is not pseudocontractive and
also is not strictly pseudocontractive.

Example 1.3 [15] Let H be the real line and C = [−1, 1]. Define T on C by

T x =
{ 2

3 x sin
( 1
x

)
, x �= 0

0, x = 0.
(1.5)

The following example is the demicontractive mapping which is not quasi-nonexpansive and
also is not pseudocontractive.

Example 1.4 [13] f : [−2, 1] → [−2, 1], f (x) = −x2 − x .

Furthermore,
FN is well known to include the resolvent operator and the projection operator,
while 
QF contains the subgradient projection operator (see, e.g., [20] and the reference
therein).

In this paper, we shall focus our attention on the following split common fixed point
problem (SCFPP) for two operators:

find x ∈ C such that Ax ∈ Q, (1.6)

where A : H1 → H2 is a bounded linear operator, S : H1 → H1 and T : H2 → H2 are two
demicontractive operators with nonempty fixed point sets F(S) = C and F(T ) = Q. We
denote the solution set of the SCFPP by

� := {y ∈ C : Ay ∈ Q} = C ∩ A−1(Q). (1.7)

Recall that F(S) and F(T ) are nonempty, closed and convex subsets of H1 and H2, respec-
tively. If � �= ∅, then � is a closed and convex subset of H1. The SCFPP is a generalization
of the SFP and the convex feasibility problem (CFP) (see [4,11]).

In order to solve (1.6), Censor and Segal [11] studied, in finite-dimensional spaces, the
convergence of the following algorithm:

xn+1 = S(xn + γ At (T − I )Axn), n ≥ 1, (1.8)

where γ ∈
(
0, 2

λ

)
, with λ being the largest eigenvalue of the matrix At A (At stands for

matrix transposition). In 2011, Moudafi [21] introduced the following relaxed algorithm:

xn+1 = (1 − αn)yn + αn Syn, n ≥ 1, (1.9)

where yn = xn+γ A∗(T− I )Axn, β ∈ (0, 1), αn ∈ (0, 1), and γ ∈
(
0, 1

λβ

)
, withλ being the

spectral radius of the operator A∗A.Moudafi provedweak convergence result of the algorithm
(1.9) in Hilbert spaces where S and T are quasi-nonexpansive operators. We observe that
strong convergence result can be obtained in the results of Moudafi [21] if a compactness
type condition like demicompactness is imposed on the operator S. Furthermore, we can also
obtain strong convergence result by suitably modifying the algorithm (1.9). Recently, Zhao
and He [38] introduced the following viscosity approximation algorithm:

xn+1 = αn f (xn)+(1−αn)((1−wn)xn+wn S(xn + γ A∗(T − I )Axn)), n ≥ 1, (1.10)
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where f : H1 → H1 is a contraction of modulus ρ > 0, wn ∈
(
0, 1

2

)
, γ ∈

(
0, 1

λ

)
, with

λ being the spectral radius of the operator A∗A. They proved strong convergence theorems
concerning (1.6) for quasi-nonexpansive operators S and T in real Hilbert spaces. Inspired
by the work of Zhao and He [38], Moudafi [23] quite recently revisited the viscosity-type
approximation method. In fact, Moudafi gave a simple proof of the strong convergence of
the iterative sequence {xn} defined by (1.10) based on attracting operator properties, then
proposed its modification and finally proved its strong convergence (see Theorem 2.1 of
[23]).

In 2010, Moudafi [22] proposed an algorithm to solve the two-operator SCFPP (1.6)
where S and T are demicontractive operators. The class of demicontractive operators is
fundamental since many common types of operators arising in optimization belong to this
class (see Remark 2 of Tang et al. [25]).Moudafi [22] proved that the sequence {xn} generated
by Algorithm 1 converges weakly to the solution of (1.6).

Algorithm 1 [22] Let x0 ∈ H1 be arbitrary and let the sequence {xn} be defined by:
xn+1 = (1 − αn)un + αn Sun, n ≥ 0, (1.11)

where un = xn + γ A∗(T − I )Axn, γ ∈
(
0, 1−μ

λ

)
with λ being the spectral radius of the

operator A∗A and {αn} ⊂ (0, 1).

Theorem 1.5 [22] Given a bounded linear operator A : H1 → H2, let S : H1 → H1 and
T : H2 → H2 be demicontractive (with constants β,μ, respectively) with nonempty F(S)

and F(T ). Assume that S − I and T − I are demiclosed at 0. If the two sets of SCFPP (1.6)
is nonempty, then any sequence {xn} generated by Algorithm 1 converges to a split common

fixed point x∗ of (1.6), provided γ ∈
(
0, 1−μ

λ

)
and αn ∈ (δ, 1 − β − δ) for a small enough

δ > 0.

Recently, inspired and motivated by the result of Moudafi [22], Tang et al. [25] proposed
a cyclic algorithm (Algorithm 2 below) to solve the SCFPP for demicontractive operators
{Si }pi=1 and {Tj }rj=1. Then they proved that the sequence generated by the proposed algorithm
converges weakly to the solution of (SCFPP). Their work extends those of Moudafi [22],
Censor and Segal [11] and others.

Algorithm 2 [25] Let x0 ∈ H1 be arbitrary and let the sequence {xn} be defined by:
xn+1 = (1 − αn)un + αn Si(n)un, n ≥ 0, (1.12)

where un = xn + γ A∗(Tj (n) − I )Axn, i(n) = n(mod p)+ 1 and j (n) = n(mod r)+ 1, γ ∈(
0, 1−μ

λ

)
with λ being the spectral radius of the operator A∗A and {αn} ⊂ (0, 1).

Quite recently, Wang and Cui [26] presented a simple proof of the result of Tang et al. [25]
and removed the continuity of the mapping. They obtained the weak convergence of the
Algorithm 2 above.

We comment on the results of Moudafi [22], Tang et al. [25] and Wang and Cui [26] as
follows:

(1) Theorem 1.5 gives a weak convergence result for two-operator SCFPP (1.6) when the
operators S and T are demicontractive. In order to get strong convergence, one must
impose a compactness type condition (demi-compactness) on the mapping S. But this
compactness condition appears strong.
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(2) Similarly, in order to obtain strong convergence result in those of Moudafi [22], Tang et
al. [25] and Wang and Cui [26] without compactness type condition on the mappings
S, a modification of (1.11) and (1.12) is necessary. This modification could be implicit
iterative scheme or explicit iterative scheme. In the implicit iterative scheme, the com-
putation of the next iteration xn+1 involves solving a nonlinear equation at every step
of the iteration, a task which may pose the same difficulty level as the initial problem.
Therefore, in order to get strong convergence result for two-operator SCFPP (1.6) when
the operators S and T are demicontractive in infinitely dimensional Hilbert spaces with-
out compactness type condition, a modification of (1.11) and (1.12) which is an explicit
iterative scheme is necessary. This leads to this natural question.

Question Can we modify the iterative schemes (1.11) and (1.12) so that strong convergence
is guaranteed without any further condition of compactness type on the operator?

Our aim in this work is to answer the above question. Thus, we propose a new algorithm to
solve the two-operator SCFPP (1.6) when the operators S and T are demicontractive. Then
we prove that the sequence generated by the proposed algorithm converges strongly to the
solution of (1.6). Our work extends the results of Zhao and He [38], Moudafi [21,23], Censor
and Segal [11] to the SCFPP when the operators S and T are demicontractive. Furthermore,
our work improves the recent works of Moudafi [22], Tang et al. [25] andWang and Cui [26].

2 Preliminaries

Definition 2.1 Amapping T : H → H is called demiclosed at 0 if any sequence {xn}weakly
converges to x , and if the sequence {T xn} strongly converges to 0, then T x = 0.

Next, we state the following well-known lemmas which will be used in the sequel.

Lemma 2.2 Let H be a real Hilbert space. Then the following results hold:

(i) ||x + y||2 = ||x ||2 + 2〈x, y〉 + ||y||2, ∀x, y ∈ H.

(i i) ||x + y||2 ≤ ||x ||2 + 2〈y, x + y〉, ∀x, y ∈ H.

Lemma 2.3 (Xu [29]) Let {an} be a sequence of nonnegative real numbers satisfying the
following relation:

an+1 ≤ (1 − αn)an + αnσn + γn, n ≥ 0,

where

(i) {αn} ⊂ [0, 1],∑∞
n=0 αn = ∞;

(ii) lim supn→∞ σn ≤ 0;
(iii) γn ≥ 0,

∑∞
n=0 γn < ∞.

Then, an → 0 as n → ∞.

3 Main results

In this section, we propose a newmodification of (1.11) and then prove its strong convergence
under some mild conditions.
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Theorem 3.1 Let H1 and H2 be two real Hilbert spaces, A : H1 → H2 be a bounded
linear operator and A∗ : H2 → H1 be a adjoint operator of A. Let S : H1 → H1 be a
k1-demicontractive mapping such that S − I is demi-closed at 0 and C := F(S) �= ∅. Let
T : H2 → H2 be a k2-demicontractive mapping such that T − I is demi-closed at 0 and
Q := F(T ) �= ∅. Suppose that SCFPP (1.6) has a nonempty solution set �. Let {βn} and
{λn} be two real sequences in (0, 1) and γ ∈

(
0, 1−k2

||A||2
)
. Let {yn} and {xn} be generated by

x1 ∈ H1 and {
yn = xn + γ A∗(T − I )Axn
xn+1 = (1 − βn)(λn yn) + βn Syn, n ≥ 1.

(3.1)

Suppose the following conditions are satisfied:

(a) limn→∞ λn = 1;
(b)

∑∞
n=1(1 − λn) = ∞;

(c) βn ∈
[
ε,

λn(1−k1)
1−(1−k1)(1−λn)

)
, for some ε > 0 and lim supn→∞ βn < 1 − k1.

Then {xn} converges strongly to an element x∗ of �, where x∗ is the minimum-norm solution
of (1.6).

Proof Let x∗ ∈ �. From (3.1) and Lemma 2.2(i), we have

||yn − x∗||2 = ||xn − x∗ + γ A∗(T − I )Axn ||2
= ||xn − x∗||2 + 2γ 〈xn − x∗, A∗(T − I )Axn〉 + γ 2||A∗(T − I )Axn ||2.

(3.2)

We see that

γ 2||A∗(T − I )Axn ||2 = γ 2〈A∗(T − I )Axn, A
∗(T − I )Axn〉

= γ 2〈AA∗(T − I )Axn, (T − I )Axn〉
≤ γ 2||A||2||(T − I )Axn ||2. (3.3)

Since T is a demicontractive mapping and Ax∗ ∈ Q = F(T ), we obtain

〈xn − x∗, A∗(T − I )Axn〉 = 〈A(xn − x∗), (T − I )Axn〉
= 〈A(xn − x∗) + (T − I )Axn − (T − I )Axn, (T − I )Axn〉
= 〈T Axn − Ax∗, (T − I )Axn〉 − ||(T − I )Axn ||2

= 1

2

[
||T Axn − Ax∗||2 + ||(T − I )Axn ||2 − ||Axn − Ax∗||2

]

− ||(T − I )Axn ||2

≤ 1

2

[
||Axn − Ax∗||2 + k2||(T − I )Axn ||2

]

+ 1

2

[
||(T − I )Axn ||2 − ||Axn − Ax∗||2

]

− ||(T − I )Axn ||2

= k2 − 1

2
||(T − I )Axn ||2. (3.4)

Substituting (3.4) and (3.3) into (3.2), we have

||yn − x∗||2 ≤ ||xn − x∗||2 − γ (1 − k2 − γ ||A||2)||(T − I )Axn ||2. (3.5)
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From (3.1), we see that

||xn+1 − x∗|| = ||(1 − βn − (1 − βn)(1 − λn))(yn − x∗)
+ βn(Syn − x∗) − (1 − βn)(1 − λn)x

∗||
≤ ||(1 − βn − (1 − βn)(1 − λn))(yn − x∗)

+ βn(Syn − x∗)|| + (1 − βn)(1 − λn)||x∗||. (3.6)

Using condition (c), we also have

βn <
λn(1 − k1)

1 − (1 − k1)(1 − λn)
⇔ βn[1 − (1 − k1)(1 − λn)] < λn(1 − k1)

⇔ βn − βn(1 − k1)(1 − λn) < λn(1 − k1)

⇔ βn < λn(1 − k1) + βn(1 − k1)(1 − λn)

⇔ βn < (1 − (1 − λn))(1 − k1) + βn(1 − k1)(1 − λn)

⇔ βn < (1 − k1) − (1 − λn)(1 − k1) + βn(1 − k1)(1 − λn)

⇔ βn < (1 − k1) − (1 − k1)(1 − βn)(1 − λn)

⇔ βn < (1 − k1)(1 − (1 − βn)(1 − λn))

⇔ βn − (1 − k1)(1 − (1 − βn)(1 − λn)) < 0. (3.7)

Using Lemma 2.2(i), (1.3), (1.4) and (3.7), we obtain

||(1 − βn − (1 − βn)(1 − λn))(yn − x∗) + βn(Syn − x∗)||2
= (1 − βn − (1 − βn)(1 − λn))

2||yn − x∗||2
+ β2

n ||Syn − x∗||2 + 2(1 − βn − (1 − βn)(1 − λn))βn〈Syn − x∗, yn − x∗〉
≤ (1 − βn − (1 − βn)(1 − λn))

2||yn − x∗||2 + β2
n [||yn − x∗||2 + k1||yn − Syn ||2]

+ 2(1 − βn − (1 − βn)(1 − λn))βn

[
||yn − x∗||2 − 1 − k1

2
||yn − Syn ||2

]

= (1 − (1 − βn)(1 − λn))
2||yn − x∗||2

+ [k1β2
n − (1 − k1)(1 − βn − (1 − βn)(1 − λn))βn]||yn − Syn ||2

= (1 − (1 − βn)(1 − λn))
2||yn − x∗||2

+ βn[βn − (1 − k1)(1 − (1 − βn)(1 − λn))]||yn − Syn ||2
≤ (1 − (1 − βn)(1 − λn))

2||yn − x∗||2, (3.8)

which implies

||(1 − βn − (1 − βn)(1 − λn))(yn − x∗) + βn(Syn − x∗)||
≤ (1 − (1 − βn)(1 − λn))||yn − x∗||. (3.9)

From (3.5), (3.6) and (3.9), we get that

||xn+1 − x∗|| ≤ (1 − (1 − βn)(1 − λn))||yn − x∗|| + (1 − βn)(1 − λn)||x∗||
≤ (1 − (1 − βn)(1 − λn))||xn − x∗|| + (1 − βn)(1 − λn)||x∗||
≤ max{||xn − x∗||, ||x∗||}
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≤ ...

≤ max{||x1 − x∗||, ||x∗||}. (3.10)

Therefore, {xn} and {yn} are bounded.
Now, for any x ∈ H1, we have

||Sx − x∗||2 ≤ ||x − x∗||2 + k1||x − Sx ||2
⇒ 〈Sx − x∗, Sx − x∗〉 ≤ 〈x − x∗, x − Sx〉 + 〈x − x∗, Sx − x∗〉 + k1||x − Sx ||2
⇒ 〈Sx − x∗, Sx − x〉 ≤ 〈x − x∗, x − Sx〉 + k1||x − Sx ||2
⇒ 〈Sx − x, Sx − x〉 + 〈x − x∗, Sx − x〉 ≤ 〈x − x∗, x − Sx〉 + k1||x − Sx ||2
⇒ (1 − k1)||x − Sx ||2 ≤ 2〈x − x∗, x − Sx〉. (3.11)

Since βn <
λn(1−k1)

1−(1−k1)(1−λn)
, it follows that βn < 1 − k1. Furthermore, by (3.5) and (3.11),

we have

||yn+1 − x∗||2 ≤ ||xn+1 − x∗||2 = ||(1 − βn)λn yn + βn Syn − x∗||2
= ||(1 − (1 − βn)(1 − λn) − βn)yn + βn Syn − x∗||2
= ||(yn − x∗) − βn(yn − Syn) − (1 − βn)(1 − λn)yn ||2
≤ ||(yn − x∗) − βn(yn − Syn)||2 − 2(1 − βn)(1 − λn)〈yn, xn+1 − x∗〉
= ||yn − x∗||2 − 2βn〈yn − Syn, yn − x∗〉 + β2

n ||yn − Syn ||2
− 2(1 − βn)(1 − λn)〈yn, xn+1 − x∗〉

≤ ||yn − x∗||2 − βn(1 − k1)||yn − Syn ||2 + β2
n ||yn − Syn ||2

− 2(1 − βn)(1 − λn)〈yn, xn+1 − x∗〉
= ||yn − x∗||2 − βn[(1 − k1) − βn]||yn − Syn ||2

− 2(1 − βn)(1 − λn)〈yn, xn+1 − x∗〉
≤ ||xn − x∗||2 − βn[(1 − k1) − βn]||yn − Syn ||2

− 2(1 − βn)(1 − λn)〈yn, xn+1 − x∗〉. (3.12)

Since {yn} and {xn} are bounded, there existsM > 0 such that−2(1−βn)〈yn, xn+1−x∗〉 ≤ M
for all n ≥ 0. Hence, by (3.12), we have

||yn+1 − x∗||2 − ||yn − x∗||2 + βn[(1 − k1) − βn]||yn − Syn ||2 ≤ (1 − λn)M. (3.13)

The rest of the proof will be divided into two cases.

Case 1 Suppose that there exists n0 ∈ N such that {||yn − x∗||}∞n=n0 is nonincreasing. Then
{||yn − x∗||}∞n=1 converges and ||yn − x∗||2 − ||yn+1 − x∗||2 → 0 as n → ∞. From (3.13)
and since λn → 1, we have

||yn − Syn || → 0 (3.14)
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as n → ∞. From (3.5) and (3.10), we have

γ (1 − k2 − γ ||A||2)||(T − I )Axn ||2
≤ ||xn − x∗||2 − ||yn − x∗||2
≤ (||yn−1 − x∗|| + (1 − βn−1)(1 − λn−1)||x∗||)2 − ||yn − x∗||2
= ||yn−1 − x∗||2 − ||yn − x∗||2 + 2(1 − βn−1)(1 − λn−1)||x∗||||yn−1 − x∗||

+ ((1 − βn−1)(1 − λn−1))
2||x∗||2

≤ ||yn−1 − x∗||2 − ||yn − x∗||2 + 2(1 − λn−1)||x∗||||yn−1 − x∗|| + (1 − λn−1)
2||x∗||2.

Using condition (a), we get that

γ (1 − k2 − γ ||A||2)||(T − I )Axn ||2 → 0,

as n → ∞. This shows that

||(T − I )Axn || → 0, (3.15)

as n → ∞. Also, we observe that

||yn − xn || = γ ||A∗(T − I )Axn || ≤ γ ||A∗||||(T − I )Axn || → 0,

as n → ∞. Since ||yn − xn || → 0 and ||yn − Syn || → 0 as n → ∞, we have

||xn − Syn || ≤ ||yn − xn || + ||yn − Syn || → 0,

as n → ∞. Moreover, we also have

||λn yn − Syn || = ||λn yn − yn + yn − Syn ||
≤ ||(λn − 1)yn || + ||yn − Syn ||
= (1 − λn)||yn || + ||yn − Syn || → 0,

as n → ∞. So, from (3.1), we have

||xn+1 − Syn || = (1 − βn)||λn yn − Syn || → 0,

as n → ∞. This implies that

||xn+1 − xn || ≤ ||xn+1 − Syn || + ||xn − Syn || → 0,

as n → ∞. Since {xn} is bounded, there exists a subsequence {xn j } of {xn} such that
xn j ⇀ z ∈ H1. Using the fact that xn j ⇀ z ∈ H1 and ||yn − xn || → 0, we conclude that
yn j ⇀ z ∈ H1. By the demiclosedness principle of S − I at zero and (3.14), we have that
z ∈ F(S) = C . On the other hand, since A is a linear bounded operator and xn j ⇀ z ∈ H1,
we have Axn j ⇀ Az ∈ H2. Hence, by (3.15), we obtain

||T Axn j − Axn j || = ||T Axn j − Axn j || → 0,

as j → ∞. Since T − I is demiclosed at zero, we get that Az ∈ F(T ) = Q. Hence z ∈ �.
Next,weprove that {xn} converges strongly to x∗. Settingwn = (1−βn)yn+βn Syn, n ≥ 1,

then from (3.1) we have that

xn+1 = wn − (1 − βn)(1 − λn)yn .
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It then follows that

xn+1 = (1 − (1 − βn)(1 − λn))wn − (1 − βn)(1 − λn)(yn − wn)

= (1 − (1 − βn)(1 − λn))wn + (1 − βn)(1 − λn)βn(yn − Syn). (3.16)

Also we have

||wn − x∗||2 = ||yn − x∗ − βn(yn − Syn)||2
= ||yn − x∗||2 − 2βn〈yn − Syn, yn − x∗〉 + β2

n ||yn − Syn ||2
≤ ||yn − x∗||2 − βn[(1 − k1) − βn]||yn − Syn ||2
≤ ||yn − x∗||2. (3.17)

Applying Lemma 2.2(ii) to (3.16), we have

||yn+1 − x∗||2 ≤ ||xn+1 − x∗||2
= ||(1−(1−βn)(1−λn))(wn−x∗)+(1−βn)(1−λn)βn(yn−Syn)−(1−βn)(1−λn)x

∗||2
≤ (1−(1−βn)(1−λn))

2||wn−x∗||2+2(1−βn)(1−λn)〈βn(yn − Syn) − x∗, xn+1 − x∗〉
= (1 − (1 − βn)(1 − λn))

2||wn − x∗||2 + 2(1 − βn)(1 − λn)βn〈yn − Syn, xn+1 − x∗〉
− 2(1 − βn)(1 − λn)〈x∗, xn+1 − x∗〉

≤ (1 − (1 − βn)(1 − λn))
2||yn − x∗||2 + 2(1 − βn)(1 − λn)βn〈yn − Syn, xn+1 − x∗〉

− 2(1 − βn)(1 − λn)〈x∗, xn+1 − x∗〉
≤ (1 − (1 − βn)(1 − λn))||yn − x∗||2 + (1 − βn)(1 − λn)[2βn〈yn − Syn, xn+1 − x∗〉
− 2〈x∗, xn+1 − x∗〉]. (3.18)

Clearly, 2βn〈yn−Syn, xn+1−x∗〉 → 0 as n → ∞ and lim supn→∞
{
−2〈x∗, xn+1−x∗〉

}
≤

−2 lim sup j→∞〈x∗, xn j −x∗〉 = −2〈x∗, z−x∗〉 ≤ 0 (here x∗ is theminimum-norm solution
of (1.6)). Now, using (3.18) and Lemma 2.3, we have ||yn − x∗|| → 0. Thus ||xn − x∗|| → 0
and xn → x∗ as n → ∞.

Case 2Assume that {||yn − x∗||} is not monotonically decreasing. Set �n = ||yn − x∗||2 and
let τ : N → N be defined by

τ(n) := max{k ∈ N : k ≤ n, �k ≤ �k+1}
for all n ≥ n0 (for some n0 large enough). Clearly, τ is a nondecreasing sequence such that
τ(n) → ∞ as n → ∞ and

�τ(n)+1 − �τ(n) ≥ 0, ∀n ≥ n0.

From (3.13), it is easy to see that

||yτ(n) − Syτ(n)||2 ≤ (1 − λτ(n))M

βτ(n)[(1 − k1) − βτ(n)] → 0,

as n → ∞. Thus,

||yτ(n) − Syτ(n)|| → 0,

as n → ∞. Furthermore, we can show that

||(T − I )Axτ(n)|| → 0,

||yτ(n) − xτ(n)|| = γ ||A∗(T − I )Axτ(n)|| ≤ γ ||A∗||||(T − I )Axτ(n)|| → 0,
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and

||xτ(n)+1 − xτ(n)|| → 0,

as n → ∞. Since {yτ(n)} is bounded, there exists a subsequence of {yτ(n)}, still denoted by
{yτ(n)}, which converges weakly to z ∈ H1. Observe that since limn→∞ ||xτ(n) − yτ(n)|| = 0,
we also have xτ(n) ⇀ z. Using the demiclosedness of S − I at the origin and the fact
that ||yτ(n) − Syτ(n)|| → 0, we have that z ∈ F(S) = C . Similarly, we can show that
z ∈ F(T ) = Q. Hence z ∈ �. We note that, for all n ≥ n0,

0 ≤ ||yτ(n)+1 − x∗||2 − ||yτ(n) − x∗||2
≤ (1 − βτ(n))(1 − λτ(n))[2〈βτ(n)(yτ(n) − Syτ(n)), xτ(n)+1 − x∗〉

− 2〈x∗, xτ(n)+1 − x∗〉 − ||yτ(n) − x∗||2].
This implies that

||yτ(n) − x∗||2 ≤ 2〈βτ(n)(yτ(n) − Syτ(n)), xτ(n)+1 − x∗〉 − 2〈x∗, xτ(n)+1 − x∗〉. (3.19)
Since ||yτ(n) − Syτ(n)|| → 0 and ||xτ(n)+1 − xτ(n)|| → 0, by (3.19), it follows that

lim sup
n→∞

||yτ(n) − x∗||2 ≤ −2〈x∗, z − x∗〉 ≤ 0,

which also implies that

lim
n→∞||yτ(n) − x∗|| = 0.

Therefore

lim
n→∞ �τ(n) = lim

n→∞ �τ(n)+1 = 0.

Moreover, for n ≥ n0, it is easy to see that �τ(n) ≤ �τ(n)+1 if n �= τ(n) (that is τ(n) < n),
because � j ≥ � j+1 for τ(n) + 1 ≤ j ≤ n. As a consequence, we obtain, for all n ≥ n0,

0 ≤ �n ≤ max{�τ(n), �τ(n)+1} = �τ(n)+1.

So limn→∞ �n = 0 and {yn} converges strongly to x∗. Hence {xn} converges strongly to x∗.
This completes the proof. ��

Corollary 3.2 Let H1 and H2 be two real Hilbert spaces, A : H1 → H2 be a bounded
linear operator and A∗ : H2 → H1 be the adjoint operator of A. Let S : H1 → H1 be a
quasi-nonexpansive mapping such that S − I is demi-closed at 0 and C := F(S) �= ∅. Let
T : H2 → H2 be a quasi-nonexpansive mapping such that T − I is demi-closed at 0 and
Q := F(T ) �= ∅. Suppose that SCFPP (1.6) has a nonempty solution set �. Let {βn} and
{λn} be two real sequences in (0, 1) and γ ∈

(
0, 1

||A||2
)
. Let {yn} and {xn} be generated by

(3.1). Suppose the following conditions are satisfied:

(a) limn→∞ λn = 1;
(b)

∑∞
n=1(1 − λn) = ∞;

(c) 0 < ε ≤ βn ≤ b < 1.

Then {xn} converges strongly to an element x∗ of �, where x∗ is the minimum-norm solution
of (1.6).
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Following the proof line in Theorems 3.1 and 2 of Tang et al. [25], we can easily prove
the following theorem for multiple-set split feasibility problem (MSSFP) of demicontractive
operators. The MSSFP is formulated as:

find x ∈ ∩p
i=1Ci such that Ax ∈ ∩r

j=1Q j , (3.20)

where A : H1 → H2 is a bounded linear operator,Ci (i = 1, 2, . . . , p) is a nonempty, closed
and convex subset of a Hilbert space H1 and Q j ( j = 1, 2, . . . , r) is a nonempty, closed and
convex subset of a Hilbert space H2.

Theorem 3.3 Let H1 and H2 be two real Hilbert spaces, A : H1 → H2 be a bounded
linear operator and A∗ : H2 → H1 be the adjoint operator of A. For each i = 1, 2, . . . , p
let Si : H1 → H1 be a ρi -demicontractive mapping such that Si − I is demi-closed at
0 and C := ∩p

i=1F(Si ) �= ∅. For each j = 1, 2, . . . , r let Tj : H2 → H2 be a μ j -
demicontractive mapping such that Tj − I is demi-closed at 0 and Q := ∩r

j=1F(Tj ) �= ∅.
Let k1 := max{ρi : i = 1, 2, . . . , p} and k2 := max{μ j : j = 1, 2, . . . , r}. Suppose that
(MSSFP) (3.20) has a nonempty solution set �. Let {βn} and {λn} be two real sequences in

(0, 1) and γ ∈
(
0, 1−k2

||A||2
)
. Let {yn} and {xn} be generated by x1 ∈ H1 and

{
yn = xn + γ A∗(Tj (n) − I )Axn
xn+1 = (1 − βn)(λn yn) + βn Si(n)yn, n ≥ 1,

(3.21)

where i(n) = n(mod p) + 1 and j (n) = n(mod r) + 1. Suppose the following conditions
are satisfied:

(a) limn→∞ λn = 1;
(b)

∑∞
n=1(1 − λn) = ∞;

(c) βn ∈
[
ε,

λn(1−k1)
1−(1−k1)(1−λn)

)
, for some ε > 0 and lim supn→∞ βn < 1 − k1.

Then {xn}∞n=1 converges strongly to an element x∗ of �, where x∗ is the minimum-norm
solution of (3.20).

4 An application

4.1 The split common null point problem

We now apply Theorem 3.1 to solve the split common null point problem (see, for example
[6]) for set-valued mappings in Hilbert spaces. Let H1 and H2 be two real Hilbert spaces.
Let Bi : H1 → 2H1 (1 ≤ i ≤ p) and Fj : H2 → 2H2 (1 ≤ j ≤ r) and let A j : H1 → H2

(1 ≤ j ≤ r) be a bounded linear operator. This problem is formulated as follows: find a
point x∗ ∈ H1 such that

0 ∈ ∩p
i=1Bi (x

∗) (4.1)

and such that the point y∗
j = A j x∗ ∈ H2 and solves

0 ∈ ∩r
j=1Fj (y

∗
j ). (4.2)

We denote by SCNPP(p, r) the solution set of (4.1). Special case of SCNPP(p, r) includes
the split variational inequality problem (SVIP) in a real Hilbert space.

Let H1 and H2 be two real Hilbert spaces. Let f : H1 → H1 and g : H2 → H2. Let
A : H1 → H2 be a bounded linear operator. Let C and Q be nonempty, closed and convex



Another look at the split common fixed point problem… 213

subsets of H1 and H2, respectively. The SVIP (see, for example [10]) is formulated as follows:
find a point x∗ ∈ C such that

〈 f (x∗), x − x∗〉 ≥ 0 ∀x ∈ C (4.3)

and such that the point y∗ = Ax∗ ∈ Q and solves

〈g(y∗), y − y∗〉 ≥ 0 ∀y ∈ Q. (4.4)

We note that (4.3) is the classical variational Inequality problem (VIP) and also denote its
solution set by SOL(C, f ). The SVIP is quite general and should enable split minimization
between two spaces so that the image of a solution point of one minimization problem, under
a given bounded linear operator, is a solution point of another minimization problem.

In this section, we prove strong convergence theorem for solving the split common null
point problem (4.1)–(4.2) for the case when p = r = 1. That is, given two set-valued
mappings B1 : H1 → 2H1 , and F1 : H2 → 2H2 and a bounded linear operator A : H1 → H2,
we find a point x∗ ∈ H1 such that

0 ∈ B1(x
∗) and 0 ∈ F1(A(x∗)). (4.5)

We denote by � the solution set of (4.5).
A set-valued mapping M : H → 2H is called monotone if for all x, y ∈ H, f ∈ M(x)

and g ∈ M(y) imply 〈x − y, f − g〉 ≥ 0. A monotone mapping M is said to be maximal if
the graph G(M) is not properly contained in the graph of any other monotone map, where
G(M) := {(x, y) ∈ H × H : y ∈ Mx} for a multi-valued mapping M . It is also known
that M is maximal if and only if for (x, f ) ∈ H × H, 〈x − y, f − g〉 ≥ 0 for every
(y, g) ∈ G(M) implies f ∈ Mx . The resolvent operator Jr associated with M and r is the
mapping Jr : H → H defined by

Jr (u) = (I + rM)−1(u), u ∈ H, r > 0. (4.6)

It is known that the resolvent operator Jr is single-valued and nonexpansive (see, for example
[3]) and that a solution of the problem: find u ∈ H such that 0 ∈ M(u) is a fixed point of
Jr , ∀r > 0 (see, for example [17]).

Wenowprove the following convergence theorem for the split commonnull point problem.

Theorem 4.1 Let H1 and H2 be realHilbert spaces and let A : H1 → H2 be abounded linear
operator. Given set-valued maximal monotone mappings B1 : H1 → 2H1 , and F1 : H2 →
2H2 , respectively. Assume that γ ∈

(
0, 1

||A||2
)
. Assume that � �= ∅. Let {βn} and {λn} be two

real sequences in (0, 1) satisfying:

(a) limn→∞ λn = 1;
(b)

∑∞
n=1(1 − λn) = ∞;

(b) 0 < ε ≤ βn ≤ b < 1.

Let r > 0. Then {yn} and {xn} generated by x1 ∈ H1 and{
yn = xn + γ A∗(J F1

r − I )Axn
xn+1 = (1 − βn)(λn yn) + βn J

B1
r yn, n ≥ 1

(4.7)

converge strongly to a solution point x∗ of �, where x∗ is the minimum-norm solution of
(4.5).
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Proof Let S = J B1
r and T = J F1

r . Then, we have S and T are nonexpansive and hence
0-demicontractive. We obtain the desired conclusion by following the proof line in
Theorem 3.1. ��
Remark 4.2 If A = I in the problem (1.6), then (1.6) reduces to the CFP for demicontrac-
tive (quasi-nonexpansive) operators which the results in the papers [1,7,8,16,19,30] can be
applied to solve. Furthermore, if S = PC and T = PQ , then the problem (1.6) reduces
to the SFP (1.1) which the results in [27] can applied to solve. Based on this remark, our
results complement those of [1,7,8,16,19,27,30]. Moreover, our results can be used to solve
the fixed point problem for demicontractive (quasi-nonexpansive) operators considered in
[1,7,8,16,19,30] and also the SFP considered in [27].

Remark 4.3 In conclusion, we make the following comments which highlight our contribu-
tions in this paper.

(1) Theorem 4.1 complements Theorems 4.3 and 4.4 of [6]. In other words, Theorem 4.1
is another new strong convergence result for the split common null point problem in
real Hilbert spaces. Furthermore, since the SCNPP(p, r) generalizes the SVIP, then
Theorem 4.1 includes all the applications to which SVIP applies (see Section 7 of [10]).
In particular, it includes the SFP and the CFP.

(2) In this paper, we obtain strong convergence results for the split common fixed problems
for demicontractive mappings without any extra conditions (such as demi-compactness
or semi-compactness) on the operators or on the space (see, for example [12]).

(3) Our results extend the class of operators for the SCFPP considered in those of Moudafi
[21,23], and Zhao and He [38] to a wider class of operators.

(4) On page 272 of [35], Yao and Cho made the following remark:“It is a very inter-
esting topic of constructing some algorithms such that the strong convergence of
proposed algorithms are guaranteed. For this purpose, in this article we present a
modified Krasnoselskii–Mann method xn+1 = αn(λn yn) + (1 − αn)T yn for non-
expansive mappings in Hilbert spaces and show that the proposed method xn+1 =
αn(λn yn) + (1 − αn)T yn has strong convergence. However, we note that in order to
obtain the main result of Theorem 3, we have imposed some additional conditions∑∞

n=1 |αn − αn−1| < ∞,
∑∞

n=1 |λn − λn−1| < ∞ and
∑∞

n=1(1 − λn)αn = ∞. Hence
this brings us a nature problem: could weweaken or drop these additional assumptions?”
In our results here, the conditions

∑∞
n=1 |αn −αn−1| < ∞ and

∑∞
n=1 |λn −λn−1| < ∞

imposed in the results of Yao and Cho [35] are dispensed with even for a class of
demicontractive mappings which are larger than the class of nonexpansive mappings
considered in [35]. Thus, our results improve and extend those of Yao and Cho [35].

(5) In the results ofMoudafi [22], Tang et al. [25], andWang andCui [26], weak convergence
results were given concerning the SCFPP for demicontractive mappings while in this
paper, we give strong convergence results for the SCFPP for demicontractive mappings.

(6) Since demicontractive operators include directed operators (an operator T : H → H is
called directed if 〈z − T x, x − T x〉 ≤ 0,∀z ∈ F(T ), x ∈ H ), then all the results in this
paper hold if S and T are directed operators. Please see, for example, Cui et al. [14] and
Bauschke and Combettes [2] for more details.

Remark 4.4 The prototype for the iteration parameters are as follows:

λn = 1 − 1√
n + 1

, βn = ε + 1√
n + 1

[(1 − k1) − ε], ∀n ≥ 1.

It is easy to check that these choices satisfy all the conditions of Theorem 3.1.
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5 Numerical example

In this section, we give a numerical example to demonstrate the convergence of our algorithm.

Let H1 = (R3, || · ||2) = H2. Let T : R3 → R3 be defined by T

⎛
⎝ a
b
c

⎞
⎠ = 1

2

⎛
⎝ a
b
c

⎞
⎠

and let S : R3 → R3 be defined by S

⎛
⎝ a
b
c

⎞
⎠ =

⎛
⎝ 0
a
b

⎞
⎠. It is clear that both T and S are

0-demicontractive mappings. Choose λn = 1− 1√
n+1

and βn = 1
2

(
1+ 1√

n+1

)
for all n ≥ 1.

The stopping criterion for our testing method is taken as: ||xn+1 − xn ||2 < 10−6 where

xn =
⎛
⎝ an
bn
cn

⎞
⎠. Let us assume that A =

⎛
⎝ 5 −5 −7

−4 2 −4
−7 −4 5

⎞
⎠, then the iterative scheme (3.1)

becomes

Table 1 Table for Case 1 n an bn cn ||xn+1 − xn ||2
2 0.33500 −0.23876 0.80418 4.5988115

4 0.04455 0.03399 0.06614 0.1472707

6 0.00758 0.01515 0.01864 0.0196816

8 0.00186 0.00490 0.00675 0.0060833

10 0.00059 0.00162 0.00242 0.0020533

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

26 0.00000 0.00000 0.00000 0.0000008

Fig. 1 Figure for Case 1
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Table 2 Table for Case 2 n an bn cn ||xn+1 − xn ||2
2 0.27125 −0.32486 0.91888 4.4713265

4 0.03607 0.00803 0.07237 0.1752988

6 0.00615 0.00986 0.01610 0.0168615

8 0.00125 0.00357 0.00601 0.0046967

10 0.00031 0.00113 0.00229 0.0017221

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

25 0.00000 0.00000 0.00000 0.0000007

Fig. 2 Figure for Case 2

{
yn = xn + γ AT (T − I )Axn
xn+1 =

(
1
2 − 1√

n+1

) (
1 − 1√

n+1

)
yn + 1

2

(
1 + 1√

n+1

)
Syn, n ≥ 1.

(5.1)

In this example, we start with the initial point x1 =
⎛
⎝ a1
b1
c1

⎞
⎠ =

⎛
⎝ 1

−2
5

⎞
⎠ and consider various

choices of γ to see how our iterative scheme depends on the choice of γ . In the graphs below,
we plot the number of iterations against ||xn+1 − xn ||2.
Case 1 Take γ = 0.004. Then using (5.1), we have the Table 1 and Fig. 1 below.

Case 2 Take γ = 0.001. Then using (5.1), we have the Table 2 and Fig. 2 below.

Case 3 Take γ = 0.0001. Then using (5.1), we have the Table 3 and Fig. 3 below.

Remark 5.1 We see that the smaller the choice of γ > 0 chosen, the less the number of
iterations required.
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Table 3 Table for Case 3 n an bn cn ||xn+1 − xn ||2
2 0.25213 −0.35068 0.95328 4.4334495

4 0.03178 −0.00232 0.07504 0.1859462

6 0.00532 0.00706 0.01449 0.0165695

8 0.00101 0.00279 0.00516 0.0039471

10 0.00021 0.00086 0.00198 0.0014463

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

24 0.00000 0.00000 0.00000 0.0000006

Fig. 3 Figure for Case 3
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