

รายงานวิจัยฉบับสมบูรณ์

โครงการ ระบบกำจัดพ่อฟอร์สแบบใช้แสงโดยไชยano
แบบที่เรียกว่าพันธุ์กลายแบบเส้นสาย

โดย นายสุรเชษฐ์ บุรุษอชาไนย

มีนาคม ๒๕๕๙ ที่เสร็จโครงการ

ສັນນູມາເລີກທີ TRGແລ້ວລັບສິນ

รายงานວິຈัยລັບສິນບຸຮົນ

ໂຄຮງການ ຮະບບກຳຈັດພອສໂຟຣັສແບບໃຊ້ແສງໂດຍໄຊຍາໂນ
ແບດທີເຮືອສາຍພັນນົກລາຍແບບເສັ້ນສາຍ

ຜູ້ວິຈัย ນາຍສຸຮ່າເໜັງ ບຸຮົນ ອາຈານ ສັງກັດ
ສູນຍົງພັນນົກວິສາກຮຽມແລະເທັກໂນໂລຢີຂຶ້ວກາພແໜ່ງໝາດ

ສັນນູມາເລີກທີ TRGແລ້ວສິນ
ສັນນູມາເລີກທີ TRGແລ້ວສິນ
ສັນນູມາເລີກທີ TRGແລ້ວສິນ

(ຄວາມເຫັນໃນรายงานນີ້ເປັນຂອງຜູ້ວິຈัย
ສກວ.ແລະຕັ້ນສັງກັດໄມ່ຈໍາເປັນຕ້ອງເຫັນດ້ວຍເສມອ່ໄປ)

รูปแบบ **Abstract** (บทคัดย่อ)

Project Code : TRG5780094

(รหัสโครงการ) TRG๕๗๘๐๐๙๔

Project Title : A photosynthetic phosphorus removal system using a genetic modified filamentous cyanobacterium

(ชื่อโครงการ) ระบบกำจัดฟอสฟอรัสแบบใช้แสงโดยไชยาโนแบคทีเรียสายพันธุ์กล้ายแบบเส้น
สาย

Investigator : Surachet Burut-Archanai, National Center for Genetic Engineering and Biotechnology

(ชื่อนักวิจัย) สุรเชษฐ์ บุรุษอาชาไนย ศูนย์พันธุ์วิศวกรรมและเทคโนโลยีชีวภาพแห่งชาติ

E-mail Address : surachet.bur@biotec.or.th

Project Period : 2 years 6 months

(ระยะเวลาโครงการ) ๒ ปี ๖ เดือน

Phosphorus (P) removal from recirculating aquaculture system wastewater was successful in this study. A five-liter photobioreactor was simply operated as bubbling column for this process. A filamentous cyanobacterium *Anabaena* sp. PCC 7120 strain $\Delta all4501$ was effective for this removal over the wild type strain. The $all4501$ was identified here as the negative regulator for phosphate-sensing system. Inactivation of the $all4501$ gene resulted in constitutive expression of Pho regulon genes indicated by activities of alkaline phosphatase and phosphate-specific transport system. Growth curves of wild type and $\Delta all4501$ strains were similar, however, the $\Delta all4501$ strain took up phosphate in the growth medium faster than the wild type. The initial rate of phosphate uptake of the $\Delta all4501$ strain was 8-times higher than the wild type. In addition, the cellular P concentration of the $\Delta all4501$ was 2-times higher than the wild type by storing in form of polyphosphate granules. After cells inoculation, the

photobioreactor could be repeatedly used for phosphorus removal up to 10 cycles with the average phosphorus removal efficiency of 57.4 % and 96.9 % for wild type and $\Delta all4501$ strains, respectively.

การทดลองนี้ประสบความสำเร็จในการกำจัดฟอสฟอรัสจากน้ำเสียจากระบบเลี้ยงสัตว์ น้ำแบบหมุนเวียนได้ โดย ทำการทดลองในถังปฏิกรณ์แบบใช้แสงขนาด 5 ลิตร เดินระบบแบบ คอลัมน์ให้อากาศ โดยใช้ไซาโนแบคทีเรียแบบเส้นสาย *Anabaena* sp. PCC 7120 สายพันธุ์ $\Delta all4501$ ซึ่งมีประสิทธิภาพเหนือกว่าสายพันธุ์ดั้งเดิม การทดลองนี้ได้ยืนยันแล้วว่า ยีน $all4501$ เป็นตัวควบคุมการตอบสนองเชิงลบ ในระบบตรวจจับฟอสเฟต การยับยั้งการทำงานของยีน $all4501$ นี้ ส่งผลให้มีการแสดงออกของยีนใน โฟ เรคคุลอนตตลอดเวลา โดยตรวจจับกิจกรรมของเอนไซม์ อลคาไลน์ ฟอสฟาเตส และระบบขันส่งฟอสเฟตแบบจำเพาะ การเติบโตของสายพันธุ์กล้าย $\Delta all4501$ และสายพันธุ์ดั้งเดิมนั้นเหมือนกัน แต่สายพันธุ์กล้าย $\Delta all4501$ นั้นลดปริมาณฟอสเฟตในอาหารได้รวดเร็วกว่าสายพันธุ์ดั้งเดิม โดยศึกษาอัตราการขันส่งฟอสเฟตเริ่มต้นพบว่า สายพันธุ์ $\Delta all4501$ นั้นขันส่งฟอสเฟตได้เร็วกว่าสายพันธุ์ดั้งเดิมถึง 8 เท่า และสายพันธุ์ $\Delta all4501$ ยังสะสมฟอสฟอรัสในเซลล์ได้มากกว่าสายพันธุ์ดั้งเดิม 2 เท่า โดยสะสมอยู่ในรูปของ พอลิฟอสเฟต การกำจัดฟอสฟอรัสโดยในถังปฏิกรณ์แบบใช้แสงนี้ สามารถใช้ช้าได้ถึง 10 รอบจากการลงเชื้อเริ่มต้นเพียงครั้งเดียว โดยประสิทธิภาพการกำจัดฟอสฟอรัสโดยเฉลี่ยของสายพันธุ์ $\Delta all4501$ ได้สูงถึง 96.9 % ในขณะที่สายพันธุ์ดั้งเดิมได้เพียง 57.4 %

Keywords : cyanobacteria, *Anabaena* sp. PCC 7120, negative regulator, phosphorus removal

(คำหลัก) ไซาโนแบคทีเรีย, *Anabaena* sp. PCC 7120, ตัวควบคุมการตอบสนองเชิงลบ, การกำจัดฟอสฟอรัส

Executive Summary

Recirculating aquaculture systems (RASs) are the environmental friendly and sustainable aquaculture systems. Without water exchange, most nutrients are accumulated in the RAS at very high concentrations, including nitrogen (N) and phosphorus (P). Discharge of the nutrients rich water to water reservoirs results in eutrophication. With our in-house technology, N can be removed out of the RASs via integrating of nitrification and denitrification reactors. By contrast, P is still accumulated in the RASs at very high concentrations which its removal is more complicated. The accumulated P in RAS was mainly in form of soluble inorganic phosphates (Burut-Archanai et al., 2013). Biological P removal using photosynthetic organisms have been widely studied, however, P removal efficiencies were low. Most of them were not able to decrease P concentrations in the wastewater to 0.5 mg P/L which is standard concentration of wastewater allowing for discharge to water resources. A previous study in cyanobacterium *Synechocystis* sp. PCC 6803 strain Δ SphU, lacking negative regulator for phosphate-sensing system, showed that the Δ SphU strain could remove phosphorus in wastewater up to 96%. Removal of P by *Synechocystis* sp. PCC 6803 strain Δ SphU was effective, however, the separation between the cyanobacterial cells and treated water was the main problem. Centrifugation or flocculation induced by chitosan were not practical for large scale wastewater treatment.

Negative regulator for phosphate-sensing system in cyanobacteria and gram-negative bacteria is important for regulation of the Pho regulon gene expression. The Pho regulon genes, such as alkaline phosphatase (*phoA*) and phosphate-specific-transport system (*pstSCAB*), are involved in P metabolism. Under phosphate-sufficient conditions, the Pho regulon expression was repressed. The Pho regulon was highly expressed under phosphate-limiting conditions. These could explain the low efficiency of P removal of cyanobacteria in wastewater containing high concentrations of phosphate. Inactivation of negative regulator resulted in constitutive expression of the Pho regulon. On the other hand, the Pho regulon was still highly expressed at high concentrations of phosphate when negative regulator was inactivated.

Anabaena sp. PCC 7120 is more attractive since the *Anabaena* cells are filamentous and large cell size. Autoflocculation property of the *Anabaena* sp. PCC 7120 could overcome the cell harvesting or separation problem. With simple settle

down method, the *Anabaena* cells were aggregated and settled down to the bottom completely within 1 h. In addition, genome sequence of the *Anabaena* sp. PCC 7120 is also available. Homology analysis of the *Anabaena* sp. PCC 7120 genome revealed that an open reading frame (ORF) “*all4501*” was highly similar (77% similarity) to the negative regulator, *sphU* (*slr0741*), of *Synechocystis* sp. PCC 6803. The *all4501* was target gene in this study to delete out. The deleted *all4501* DNA fragment ($\Delta all4501$) was constructed and transformed into *Anabaena* sp. PCC 7120 via triparental conjugative method. The $\Delta all4501$ fragment was completely segregated into all chromosomal DNA copies of *Anabaena* transformant, yielding *Anabaena* sp. PCC 7120 strain $\Delta all4501$. Inactivation of the *all4501* gene did not alter photoautotrophic growth. The growth curves of *Anabaena* sp. PCC 7120 wild type and $\Delta all4501$ strains were very similar. The *Anabaena* sp. PCC 7120 strain $\Delta all4501$, however, decreased phosphate in the BG-11 medium faster than the wild type strain. From the equal initial cell inoculation $OD_{730\text{ nm}}$ of 0.05 ± 0.01 , the *Anabaena* sp. PCC 7120 strain $\Delta all4501$ took 3 days for decreasing phosphate concentrations of 5.51 ± 0.17 mg P/L down to 0.51 ± 0.33 mg P/L, while the wild type strain spent 6 days. Rapid decreasing of the phosphate concentrations in the medium of the *Anabaena* sp. PCC 7120 strain $\Delta all4501$ was co-related with rapid increasing of cellular P content. The cellular P content was measured as total P in whole cells. The *Anabaena* sp. PCC 7120 strain $\Delta all4501$ could increased cellular P capacity up to 13.4 ± 2.2 mg P/g DW, while the wild type strain accumulated P at the average of 6.3 ± 0.6 mg P/g DW. However, the cellular P content of the $\Delta all4501$ strain was decreased to 9.1 ± 2.4 mg P/g DW on day 4. This decreasing might reflect the phosphate in the medium as during that time the phosphate concentration was only 0.18 ± 0.39 mg P/L. Fluorescence microscopy showed that cellular P in the *Anabaena* sp. PCC 7120 strain $\Delta all4501$ was mainly in form of polyphosphate. There were polyphosphate granules accumulated in every cell of *Anabaena* sp. PCC 7120 strain $\Delta all4501$. These results clearly showed that phosphate in the medium was taken up and stored inside the cells as polyphosphate.

High activities of alkaline phosphatase and phosphate-specific transport system of *Anabaena* sp. PCC 7120 strain $\Delta all4501$ even grown in phosphate-sufficient BG-11 medium also confirmed that the *All4501* was negative regulator for phosphate-sensing system.

Wastewater treatment using *Anabaena* sp. PCC 7120 strain Δ all4501 was performed in 5 L photobioreactor. The concentration of phosphate in recirculating aquaculture system wastewater in this study was 7.9 ± 0.6 mg P/L. The *Anabaena* sp. PCC 7120 strain Δ all4501 could decrease phosphate efficiently down to 0.2 ± 0.1 mg P/L or 97% removal within 1 day of treatment. In contrast, the *Anabaena* sp. PCC 7120 wild type strain could remove phosphate only 57%. Separation of the *Anabaena* cells and treated water was simply done by settle down for 1 h. After draining the treated water out the *Anabaena* cells were reused for treatment repeatedly. Removal efficiencies of the *Anabaena* sp. PCC 7120 Δ all4501 strain were very high at every cycle of the treatment; at least 94% of phosphate was removed. By contrast, the *Anabaena* sp. PCC 7120 wild type strain could show the best removal only 67% The average of phosphate removal rate of the *Anabaena* sp. PCC 7120 wild type and Δ all4501 strain was 4.5 mg P/L/d and 7.7 mg P/L/d, respectively.

Objectives

To modify a new strain of filamentous cyanobacterium with high phosphorus uptake capability.

To develop the phosphorus removal system using filamentous cyanobacteria in photobioreactor for phosphorus treatment in the recirculating aquaculture systems.

Methodology

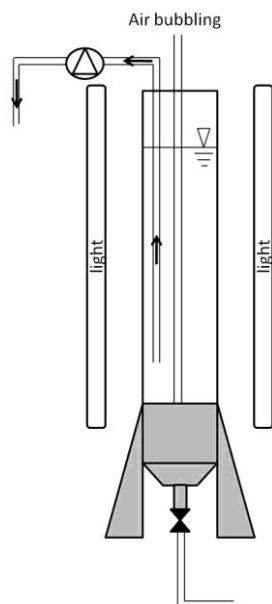
1. Cyanobacterial growth conditions

Anabaena sp. PCC 7120 was grown in BG-11 medium at 30 ± 3 °C under constant illumination of 6000 lux. Liquid cultures were grown photoautotrophically in BG-11 aerating with filtered air or shaking 120 rpm on a shaker. For *Anabaena* sp. PCC 7120 strain Δ al4501, cells were grown as above with the addition of 25 μ g/mL neomycin. The phosphate-limiting BG-11 medium was prepared by replacing of 175 μ M KCl instead of 175 μ M K_2HPO_4 (Hirani et al, 2001). Cell growth was measured spectrophotometrically at an optical density of 730. Total chlorophyll a was extracted by 90% methanol and measured the absorbance at 663 nm (MacKinney, 1941). Cell dry weight was determined by collecting cells on the pre weighted 0.45 μ m membrane filter. The cell paste was then dried at 80 °C 24 h before weight determination.

2. Plasmids and Mutant construction

The genome data of cyanobacteria, including *Anabaena* sp. PCC 7120 is available online from CyanoBase (<http://genome.microbedb.jp/cyanobase/Anabaena>). A target gene for inactivation is negative regulator for phosphate-sensing system encoded in an open reading frame (ORF) “*al*4501”. The *al*4501 was deleted between 1 bp upstream of the GTG start codon and 9 bp downstream of the TAA stop codon as described below. The upstream and downstream regions of *al*4501 were amplified by PCR using primers shown in table 1. The PCR products were ligated with pGEM-T easy vector. The 1.2 kb of neomycin-resistance (Nm^R) cassette was inserted in pGEM- containing upstream region vector at the *Spe* I site. The DNA fragment of upstream region and Nm^R was cut with *Eco* RI and then inserted at the *Sph* I site in pGEM- containing downstream region vector, yielding upstream region- Nm^R -downstream region vector or p Δ al4501. The Δ al4501 fragment was then cut with *Pvu* II and inserted to pRL271 at the *Pst* I site, yielding pRL Δ al4501 vector or cargo vector. The

pRLΔall4501 was transformed into *Escherichia coli* HB101 producing *E.coli* cargo strain. The *pRLΔall4501* was further transformed into *Anabeana* sp. PCC 7120 via triparental conjugative method (Elhai and Wolk, 1988). Briefly, the *E. coli* cargo strain was mixed with the *E. coli* helper strain (*E. coli* HB101 strain containing pRL623 helper vector). The *Anabaena* cells were then added into the *E. coli* mixture and incubated at 30 °C under light illumination for 1 h. The mixture was spread on 0.45 µm membrane filter on BG-11 plate without antibiotic and put in the cyanobacterial growth chamber. After 3 days, the filter was transferred on a new BG-11 plate containing 25 µg/mL of neomycin. After the green colonies of transformants were observed, single colony was restreaked on a new BG-11 plate containing 25 µg/mL of neomycin. The *Anabaena* transformants were restreaked until the transformed gene of Δ all4501 was complete segregation. To confirm complete segregation, colony PCR using “check” primer pairs as shown in table 1 was done.


Table 1 Oligonucleotide sequences for PCR amplification

name	sequence
f Upstream	TCAAAATCTGTCTCTCTCCT
r Upstream	CTTGTAGTCTCAAACGTGAA
f Downstream	GAGTATTTTAAGCTCATCCCA
r Downstream	GGTAGCTATTTCAAACATGAG
f Check	AGCTCACGGAGGTTCCATC
r Check	GGGAGGGATGGATGAGCTT

3. Photobioreactor operation for phosphorus removal

A photobioreactor (PBR) in this study was a clear acrylic cylinder with working volume of 5 L (12 cm diameter and 60 cm height) under 8000 lux continuous illumination on both sides at 30 ± 2 °C as shown in fig. 1. For P removal, the PBR was operated manually as a bubbling column mode with 22.5 h of continuous aeration, 1 h for settle down, and 0.5 h for water draining and refilling. The treated water was drained out using peristaltic pump (Masterflex C/L 60, USA). The wastewater in this study was

water from a 4000 L recirculating aquaculture system (RAS) indoor tilapia tank operated with bioflocs procedure (Nootong et al., 2011).

Figure 1. Diagram of a photobioreactor for photosynthetic phosphorus removal

4. Measurement of phosphate and total phosphorus

Phosphate concentration was measured spectrophotometrically via ascorbic acid method (APAH, 1998). The mixed reagent of ammonium molybdate, sulfuric acid, ascorbic acid and potassium antimonyl-tartrate was prepared followed by the protocol. The water sample was filtered through GF-C membrane filter (Whatman, USA). The filtrate was added with mixed reagent and incubated at room temperature for 30 min before measured the absorbance at 885 nm. Total phosphorus was digested to phosphate by persulfate autoclave digestion method and analyzed as phosphate (Gross and Boyd 1998). For cellular P content, the *Anabaena* cells were washed twice with phosphate-limiting BG-11 and resuspended in sterile water. The cell suspension was then digested as total phosphorus before measuring as above.

5. Alkaline phosphatase assay

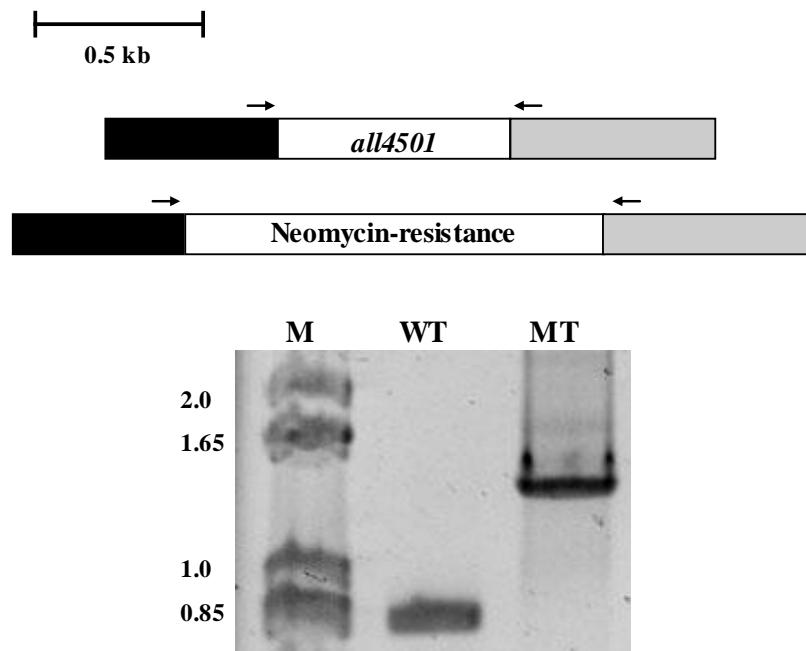
Culture was harvested and resuspended in phosphate-limiting BG-11. The assay buffer of 0.2 M Tris/HCl and 2 mM MgCl₂ was prepared at 940 μ L and mixed with 30 μ L of 120 mM p-nitrophenyl phosphate and 30 μ L of cell suspension. The mixture was then incubated at 37 °C for 20 min. After that, the 150 μ L of 4 M NaOH was added to stop the reaction. The mixture was centrifuged at 12000 g for 5 min to remove cell debries. The presence of p-nitrophenol was measured at the absorbance of 400 nm (Hirani et al., 2001).

6. Phosphate uptake assay

Culture in either BG-11 or phosphate-limiting BG-11 was harvested and washed twice with phosphate-free Tris/HCl buffer pH 7.5. The cell concentration was adjusted to an $OD_{730\text{ nm}}$ of 0.3. The uptake experiment was initiated by the addition of K_2HPO_4 solution to the cell suspension under continuous illumination of 6000 lux at room temperature. The residual phosphate was measured in the filtrate through 0.45 μm membrane filter (Burut-Archanai et al., 2011).

7. Detection of polyphosphate

Intracellular polyphosphate granules were detected under fluorescence microscopy, staining with 4'6-diamidino-2-phenylindole (DAPI) (Aschar-Sobbi et al., 2008; Burut-Archanai et al., 2013). The DAPI stock solution was prepared at 10 mM. For cell staining, the DAPI solution was added to the cell suspension making the final concentration of 10 μM and incubated in the dark for 5 min. Under the UV light excitation, the complex of DAPI-DNA shows blue fluorescence, while the complex of DAPI-polyphosphate is green.


Results

Characterization of the *Anabaena* sp. PCC 7120 strain $\Delta all4501$

Homozygosity of the *Anabaena* sp. PCC 7120 strain $\Delta all4501$ was shown in Fig. 2. A single band of 1.4 kb PCR fragment of *Anabaena* sp. PCC 7120 strain $\Delta all4501$ (MT) indicated complete segregation of the $\Delta all4501$ gene into all chromosomal copies of the *Anabaena* sp. PCC 7120 strain $\Delta all4501$, while the wild type strain showed a 0.85 kb PCR fragment of the native gene.

The absence of the $all4501$ gene was not affected the photoautotrophic growth in BG-11 medium as shown in Fig. 3. The growth curves of $\Delta all4501$ and wild type strains were similar at every time points. However, the $\Delta all4501$ strain exhibited higher phosphate removal efficiency and storing higher cellular P content than the wild type as shown in Fig. 4. The $\Delta all4501$ strain could decrease phosphate concentration in BG-11 medium to 0.5 mg P/L within 3 days, while the wild type strain took longer time of 6 days (Fig. 4A). The cellular P content was analyzed by digesting of the whole cells

shown in Fig. 3B. The cellular phosphorus content of Δ all4501 strain was fluctuated, initial content of 7.9 ± 1.1 mg P/g DW and increased up to 13.4 ± 2.2 mg P/g DW or 1.7 times increased at day 3 and decreased to 9.1 ± 2.4 mg P/g DW afterward. Decreasing of the cellular P content reflected on the phosphate concentrations in the medium. By contrast, the wild type strain showed very low fluctuated phosphorus content at each growth phase with the average of 6.3 mg P/g cell dry weight.

Figure 2. PCR demonstrating complete segregation of the neomycin-resistance cassette in the *Anabaena* sp. PCC 7120 strain Δ all4501 (MT) comparing with the wild type (WT) strain. Diagram above shows *all4501* gene in WT and neomycin-resistance cassette in MT strain which black and gray boxes represent upstream and downstream regions of *all4501*. Arrows indicate the position of the PCR primers. Lower panel shows agarose gel electrophoresis of colony PCR of the *Anabaena* sp. PCC 7120 strain wild type (WT) and Δ all4501 (MT), with 1 kb Plus DNA ladder (lane M).

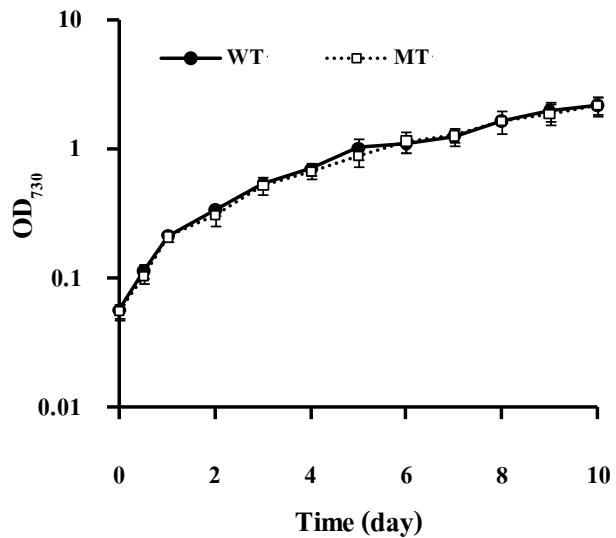


Figure 3. Photoautotrophic growth of the *Anabaena* sp. PCC 7120 wild type (WT, black circles) and Δ all4501 (MT, white squares) strains.

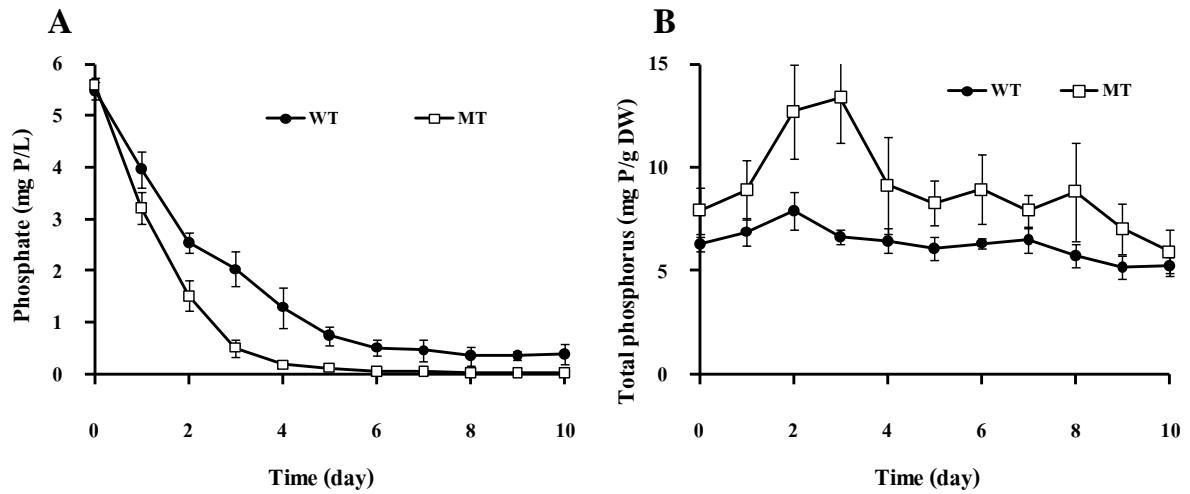
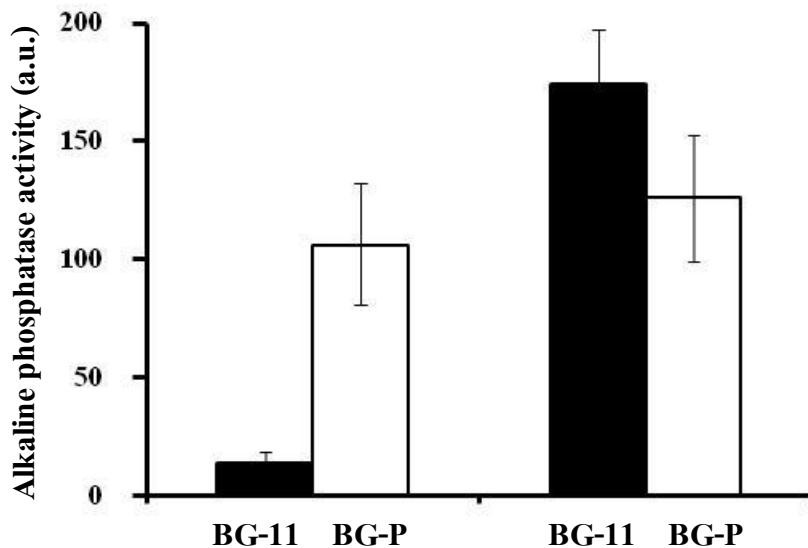
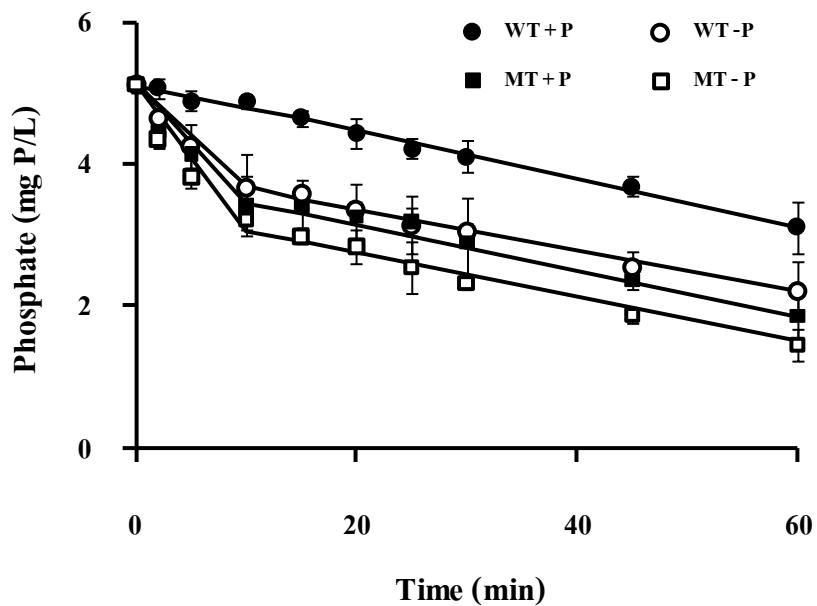


Figure 4. Concentrations of phosphate in the growth medium (A) and cellular phosphorus concentrations (B) of the *Anabaena* sp. PCC 7120 wild type (WT, black circles) and Δ all4501 (MT, white squares) strains.


After 2 days cultivation, the *Anabaena* sp. PCC 7120 wild type and Δ all4501 strains were stained with DAPI and observed under fluorescence microscopy for polyphosphate content detection. The DAPI-staining results clearly showed that the Δ all4501 strain stored large amount of phosphate in form of intracellular polyphosphate granules as shown in Fig. 5. The green fluorescence of DAPI-polyphosphate complex was found at all cells of the Δ all4501, whereas it was absent in the wild type strain. Only blue fluorescence of DAPI-DNA complex was found in the wild type strain.


Figure 5. Microscopic images of *Anabaena* sp. PCC 7120 wild type (WT, upper panel) and Δ all4501 (MT, lower panel) strains with DAPI staining under visible light (left panel) and UV light (right panel). Green fluorescence indicates intracellular polyphosphate granules in the *Anabaena* sp. PCC 7120 strain Δ all4501.

The Pho regulon, including alkaline phosphatase (PhoA) and phosphate-specific transport (Pst) system, expression was also determined in the *Anabaena* sp. PCC 7120 wild type and $\Delta all4501$ strains. For wild type strain, the Pho regulon expression is repressed under phosphate-sufficient conditions, and highly expressed under phosphate-limiting conditions (Hirani et al., 2001; Suzuki et al., 2004; Juntarajumnong et al., 2007). Both strains of *Anabaena* were grown in either BG-11 or phosphate-limiting BG-11 for 2 days before measuring of alkaline phosphatase activity. Figure 6 shows the activities of alkaline phosphatase of both strains. The wild type strain well regulated the alkaline phosphatase as mentioned above. In contrast, the *Anabaena* sp. PCC 7120 strain $\Delta all4501$ were constitutively expressed alkaline phosphatase, a member of Pho regulon, even cells were in phosphate-sufficient condition.

The activity of Pst system was also measured and shown in Fig. 7. Under phosphate-sufficient condition, phosphate uptake of wild type was monophasic with very low activity. The biphasic phosphate uptake curve was found when cells grown under phosphate-limiting condition with high rate of phosphate uptake during 10 min of experiment and lower rate of phosphate uptake afterward, indicating the different activities of 2 phosphate transport systems. In contrast, the $\Delta all4501$ strain had similar biphasic phosphate uptake pattern under either phosphate-sufficient or phosphate-limiting conditions. These results clearly showed that the Pho regulon genes were constitutively expressed in the $\Delta all4501$ strain. On the other hand, the *all4501* functions as negative regulator for phosphate-sensing system in *Anabaena* sp. PCC 7120.

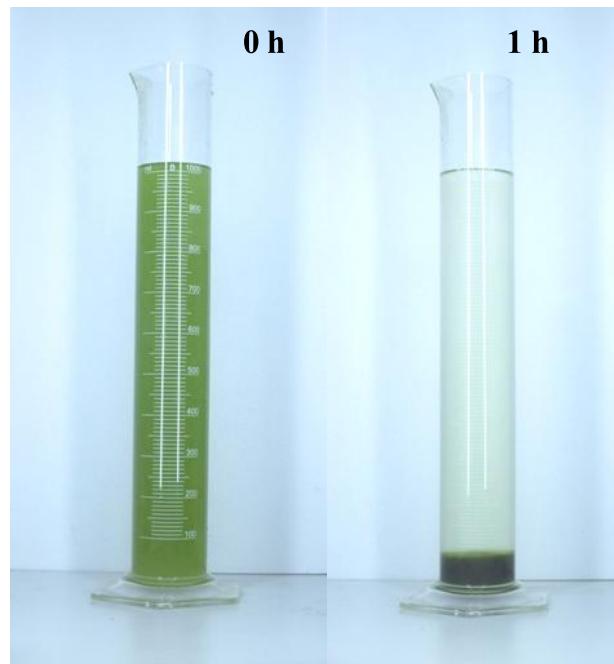

Figure 6. Alkaline phosphatase activity of *Anabaena* sp. PCC 7120 wild type (WT) and Δ all4501 (MT) strains under phosphate-sufficient (BG-11, black bars) and phosphate-limiting (BG-P, white bars) conditions.

Figure 7. Phosphate uptake activity of *Anabaena* sp. PCC 7120 wild type (WT, circles) and Δ all4501 (MT, squares) strains under phosphate-sufficient (black symbols) and phosphate-limiting (white symbols) conditions.

Autoflocculation property of the Anabaena sp. PCC 7120

The main problem in algal/cyanobacterial biotechnology is separation of the biomass and water body. Using *Anabaena* sp. PCC 7120 could overcome this problem as the *Anabaena* cells are large with the diameter of 3-4 μm and filamentous (Flores and Herrero, 2010; Chen et al., 2014). With simple settle down method, the filaments were aggregated and down to bottom completely within 1 h as shown in Fig. 8.

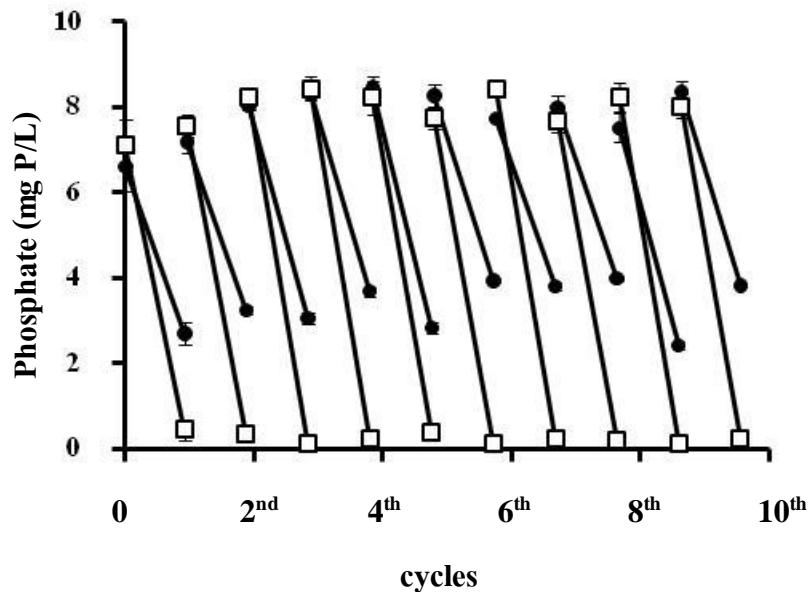


Figure 8. Autoflocculation process of the *Anabaena* sp. PCC 7120

Wastewater treatment by Anabaena sp. PCC 7120 Δall4501 strain in photobioreactor

The *Anabaena* sp. PCC 7120 wild type and Δ all4501 strains were initially grown in the photobioreactor (PBR) with BG-11 medium until the cell concentration of 5 mg chl a/L (\sim OD_{730nm} of 0.4). After that, the medium was drained out of the PBR and refilled with wastewater. The wastewater in this experiment was water from 4000 L recirculating aquaculture tank. The treatment result was shown in Fig. 9 which clearly showed that the *Anabaena* sp. PCC 7120 Δ all4501 strain could efficiently remove phosphate from average of 7.9 mg P/L to lower than 0.25 mg P/L within 1 day. The wild type strain also showed the activity of phosphate removal but at the lower extent. Both strains could be reused for phosphate treatment up to 10 cycles, after that the cells became yellow-brown attaching on the photobioreactor wall. The average of phosphate removal of the wild type and Δ all4501 strain was 57.4 % and 96.9 %, respectively. On the other hand, the wild type could decrease phosphate concentrations down to 3.3 ± 0.6 mg P/L, while the Δ all4501 strain did 0.2 ± 0.1 mg P/L.

Total phosphorus removal from single inoculation of the *Anabaena* sp. PCC 7120 wild type and Δ all4501 strain in the photobioreactor was 2.0 g P and 3.5 g P, respectively. The average of phosphate removal rate of the wild type and Δ all4501 strain was 4.5 mg P/L/d and 7.7 mg P/L/d, respectively.

Figure 9. The concentrations of residual phosphate in photobioreactor during phosphate treatment by *Anabaena* sp. PCC 7120 wild type (black circles) and Δ all4501 (white squares) strains.

Discussion

A target gene for deletion mutagenesis of the *Anabaena* sp. PCC 7120 in this study was *all4501*, which was replaced with the 1.2 kb of neomycin-resistance cassette. The *all4501* gene of *Anabaena* sp. PCC 7120 shares strong similarity with the *slr0741* (*sphU*) of *Synechocystis* sp. PCC 6803 to 77% in deduced amino acid sequences (64% identity). The *sphU* gene was previously identified as a negative regulator for two-component phosphate sensing system (Juntarajumnong et al., 2007). Inactivation of this gene results in constitutive expression of the genes in Pho regulon, including alkaline phosphatase (*phoA*), phosphate specific transport system (*pstSCAB*), either *in Escherichia coli* or *Synechocystis* sp. PCC 6803 (Juntarajumnong et al., 2007; Lamarche et al., 2008; Burut-Archanai et al., 2009). In this study, it was shown that the *all4501* is the negative regulator for phosphate sensing system in *Anabaena* sp. PCC 7120. Inactivation of the *all4501* in *Anabaena* sp. PCC 7120 strain Δ all4501 resulted in constitutive expression of the Pho regulon genes, alkaline phosphatase (*phoA*) and phosphate specific transport system (*pstSCAB*), detected by their activities, without any effect on the growth (Fig. 2-7). The Δ all4501 strain was also capable to store phosphate 2 times higher than the wild type, in form of intracellular polyphosphate (Fig. 4 and 5). It might be explained that the genes for polyphosphate metabolism, *ack* and

pta, were constitutively expressed in the Δ all4501 strain (Juntarajumnong et al., 2007; Burut-Archanai et al., 2013).

Phosphorus removal using photosynthetic organisms have been widely studies (Chevalier et al., 2000; Martinez et al., 2000; Hernandez et al., 2006; Fierro et al., 2008; Zhang et al., 2008; Burut-Archanai et al., 2013). They performed high phosphorus removal efficiency at low concentrations of phosphate (\sim 1 mg P/L). At high phosphate concentration (over 5 mg P/L), none of the wild type strain could remove phosphate down to 0.5 mg P/L. This manner was a result of phosphate specific transport system (*pstSCAB*), a member of *Pho* regulon, was repressed under high concentration of phosphate (Suzuki et al., 2004; Lamarcheet al., 2008). High performance phosphate removal have been shown in *Synechocystis* sp. PCC 6803 strain Δ SphU (Burut-Archanai et al., 2013) and the *Anabaena* sp. PCC 7120 strain Δ all4501 (Fig. 4A and 9). Comparing the cell capacity for phosphate storing, the *Anabaena* sp. PCC 7120 strain Δ all4501 could store phosphate 20 times higher than the *Synechocystis* sp. PCC 6803 strain Δ SphU (Burut-Archanai et al., 2013). In addition, cell harvesting and separation between *Anabaena* biomass and water medium were able to perform spontaneously by gravitational settle down, so called “auto-flocculation process” (Chen et al., 2014). For these reasons, the *Anabaena* sp. PCC 7120 strain Δ all4501 are very interesting for developing large scale photobioreactor with simple sedimentation for cell harvesting. Phosphorus removal form RAS using *Anabaena* in this study was able to repeat 10 cycles of the treatment (Fig. 9). After that, the *Anabaena* cells were aggregated and unable to be resuspended homogeneously. This event reflected RAS pond, which was operated with bioflocs technology. The microorganisms in bioflocs produced various flocculating agents into the water medium (De Schryver et al, 2008). The presence of flocculating agents in RAS water might induce floc formation of *Anabaena* cells in the photobioreactor.

Future perspectives

Negative regulator for phosphate-sensing system is an ideal target gene for developing biological phosphorus removal system. Inactivation of this gene enhanced phosphate uptake activity and capacity for P storage without negative effect on cell growth. This P removal photobioreactor was simply designed and operated which was economic and laborless. The further study might integrate this photobioreactor with the recirculating aquaculture system. In addition, this knowledge might be applied to others

cyanobacteria those are able to grow under desired conditions for wastewater treatment. Inactivation of the negative regulator also increased P content of biomass, which might be used for high P feed or fertilizer. Using this cyanobacterium as feed could recycle the nutrients back to aquatic organisms.

References

APHA (American Public Health Association). (1998) American Water Works Association, Water Environment Federation, Standard Methods for the Examination of Water and Wastewater, 20th ed, American Public Health Association, Washington, DC.

Burut-Archanai S, Eaton-Rye JJ, Incharoensakdi A (2011) Na^+ -stimulated phosphate uptake system in *Synechocystis* sp. PCC 6803 with Pst1 as a main transporter. *BMC Microbiol* 11: 255

Burut-Archanai S, Eaton-Rye JJ, Incharoensakdi A, Powtongsook S (2013) Phosphorus removal in a closed recirculating aquaculture system using the cyanobacterium *Synechocystis* sp. PCC 6803 strain lacking the SphU regulator of the Pho regulon. *Biochem Eng J* 74: 69-75

Burut-Archanai S, Incharoensakdi A, Eaton-Rye JJ (2009) The extended N-terminal region of SphS is required for detection of external phosphate levels in *Synechocystis* sp. PCC 6803. *Biochem Biophys Res Commun* 378: 383-388.

Chen M, Li J, Zhang L, Chang S, Liu C, Wang J, Li S (2014) Auto-flotation of heterocyst enables the efficient production of renewable energy in cyanobacteria. *Sci Rep* 4: 03998.

Chevalier P, Proulx D, Lessard P, Vincent WF, de la Noue J (2000) Nitrogen and phosphorus removal by high latitude mat-forming cyanobacteria for potential use in tertiary wastewater treatment. *J Appl Phycol* 12: 105–112.

De Schryver P, Crab R, Defoirdt T, Boon N, Verstraete W (2008) The basics of bio-flocs technology: The added value for aquaculture. *Aquaculture* 227: 125-137.

Elhai J, Wolk CP (1988) Conjugal transfer of DNA to cyanobacteria. *Methods Enzymol* 167:747–754.

Fierro S, del Pilar Sanchez-Saavedra M, Copalcua C (2008) Nitrate and phosphate removal by chitosan immobilized *Scenedesmus*. *Bioresour Technol* 99: 1247–1249.

Flores E, Herrero A (2010) Compartmentalized function through cell differentiation in filamentous cyanobacteria. *Nat Rev Microbiol*. 8(1): 39-50.

Gross A, Boyd CE (1998) A digestion procedure for the simultaneous determination of total nitrogen and total phosphorus in pond water. *J World Aquacult Soc* 29: 300–303.

Hernandez JP, de-Bashan LE, Bashan Y (2006) Starvation enhances phosphorus removal from wastewater by the microalga *Chlorella* spp. co-immobilized with *Azospirillum brasilense*. *Enzyme Microb Technol* 38: 190–198.

Hirani TA, Suzuki I, Hayashi H, Murata N & Eaton-Rye JJ (2001) Characterization of a two-component signal transduction system involved in the induction of alkaline phosphatase under phosphate-limiting conditions in *Synechocystis* sp. PCC 6803. *Plant Mol Biol* 45: 133–144.

Juntarajumnong W, Hirani TA, Simpson JM, Incharoensakdi A, Eaton-Rye JJ (2007) Phosphate sensing in *Synechocystis* sp. PCC 6803: SphU and the SphS-SphR two-component regulatory system. *Arch Microbiol* 188: 389–402

Lamarche MG, Wanner BL, Crepin S, Harel J (2008) The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis. *FEMS Microbiol Rev* 32: 461–473.

MacKinney G (1941). Absorption of light by chlorophyll solutions. *J Biol Chem* 140: 315–322.

Martinez ME, Sanchez S, Jimenez JM, El Yousfi F, Munoz L (2000) Nitrogen and phosphorus removal from urban wastewater by the microalga *Scenedesmus obliquus*. *Bioresour Technol* 73: 263–272.

Nootong K, Pavasant P, Powtongsook S (2011) Effect of organic carbon addition in controlling inorganic nitrogen concentrations in a biofloc system. *J World Aquacult Soc* 42: 339–346.

Suzuki S, Ferjani A, Suzuki I, Murata N (2004) The SphS–SphR two-component system is the exclusive sensor for the induction of gene expression in response to phosphate limitation in *Synechocystis*. *J Biol Chem* 279: 13234–13240

Zhang E, Wang B, Wang Q, Zhang S, Zhao B (2008) Ammonia–nitrogen and orthophosphate removal by immobilized *Scenedesmus* sp. isolated from municipal wastewater for potential use in tertiary treatment. *Bioresour Technol* 99: 3787–3793.

เอกสารแนบท้ายเลข 3

Output จากโครงการวิจัยที่ได้รับทุนจาก สกอ.

- 1 Submitting manuscript: Burut-Archanai S, Powtongsook S, "Identification of negative regulator for phosphate-sensing system in *Anabaena* sp. PCC 7120: A target gene for developing phosphorus removal" at Biochemical Engineering Journal (revised)
- 1 Oral presentation in The 9th Asia-Pacific Conference on Algal Biotechnology (APCAB) 15-18 November, 2016 at the Century Park Hotel, Bangkok Thailand

ภาคผนวก

Elsevier Editorial System(tm) for
Biochemical Engineering Journal
Manuscript Draft

Manuscript Number:

Title: Identification of negative regulator for phosphate-sensing system in *Anabaena* sp. PCC 7120: A target gene for developing phosphorus removal

Article Type: Short Communication

Section/Category: Environmental Bioengineering

Keywords: recirculating aquaculture system; phosphorus removal; cyanobacteria; negative regulator

Corresponding Author: Dr. Surachet Burt-Archanai, Ph.D.

Corresponding Author's Institution: Chulalongkorn University

First Author: Surachet Burt-Archanai, Ph.D.

Order of Authors: Surachet Burt-Archanai, Ph.D.; Sorawit Powtongsook, Ph.D.

Abstract: A negative regulator for phosphate-sensing system in *Anabaena* sp. PCC 7120 is encoded by *all14501*. The phosphorus availability and total cellular phosphorus content were enhanced in the (Δ)*all14501* strain lacking this negative regulator, while, growth curve was similar to the wild type. The initial rate of phosphate uptake and cellular phosphorus content of the (Δ)*all14501* strain were 8-times and 2-times higher than the wild type strain. Increasing of cellular phosphorus content was clearly shown that phosphorus was stored as polyphosphate granules. Phosphorus removal from recirculating aquaculture system using the *Anabaena* sp. PCC 7120 strain (Δ)*all14501* was performed in a 5 L photobioreactor. Separation of treated water and cyanobacterial cells could be achieved spontaneously via simple settle down method. With single starter cell inoculation, the photobioreactor could be repeatedly used for phosphorus removal up to 10 cycles with the average phosphorus removal efficiency of 57.4 % and 96.9 % for wild type and (Δ)*all14501* strains, respectively.

October 12, 2016

Dear Editor

Please find attached the electronic submission of our manuscript entitled “Identification of negative regulator for phosphate-sensing system in *Anabaena* sp. PCC 7120: A target gene for developing phosphorus removal” for the consideration of publication as a short communication. Surachet Burut-Archanai and Sorawit Powtongsook mutually agree for submitting this manuscript to “Biochemical Engineering Journal” under classification of “40.090: other environmental bioengineering”. Data from this manuscript is our original work and it has never been published elsewhere.

The paper demonstrates that an open-reading frame *all4501* of *Anabaena* sp. PCC 7120 is a negative regulator for phosphate-sensing system. Inactivation of the *all4501*, yielding the Δ *all4501* strain, results in constitutive expression of Pho regulon genes, indicated by alkaline phosphatase and phosphate uptake activities. The Δ *all4501* strain removes phosphate effectively by taking up phosphate and storing as intracellular polyphosphate granules. The Δ *all4501* strain shows high potential for phosphate removal as the phosphate concentration of water from aquaculture system could be decreased down to 0.2 mg P/L by this strain or 13-times lower than the wild type strain. In addition, separation between treated water and cyanobacterial cells which is the main problem in microalgae utilization, could simply achieve via settle down method. With single inoculation of the cells into a 5 liters photobioreactor, the phosphate removal could be repeatedly performed up to 10 cycles. The concentrations of phosphate from aquaculture system water could be removed 96.9 % by the Δ *all4501* strain.

Sincerely,

Surachet Burut-Archanai

HIGHLIGHT

- The ORF *all4501* encodes negative regulator for phosphate-sensing system.
- Inactivation of *all4501* resulted in constitutive expression of Pho regulon genes.
- Phosphate uptake and cellular phosphorus content were increased in Δ *all4501* strain.
- The Δ *all4501* strain could remove phosphate from raw RAS water repeatedly.

2

3

4

5

6 **Identification of negative regulator for phosphate-sensing system in *Anabaena* sp. PCC**

7

8

9

10 **7120: A target gene for developing phosphorus removal**

11

12

13

14 Surachet Burut-Archanai^{a,b,*}, Sorawit Powtongsook^{a,b}

15

16

17

18

19

20

21

22 ^aCenter of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science,

23

24

25

26 Chulalongkorn University, Bangkok, 10330, Thailand.

27

28

29

30 ^bNational Center of Genetic Engineering and Biotechnology, National Science and Technology

31

32

33

34 Development Agency, Pathum Thani, 12120, Thailand.

35

36

37

38

39

40

41

42

43

44

45 *Address correspondence to Surachet Burut-Archanai, surachet.bur@biotec.or.th

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

1
2
3
4
5
6 ABSTRACT
7
8
9
10 A negative regulator for phosphate-sensing system in *Anabaena* sp. PCC 7120 is encoded by *all4501*.
11
12
13 The phosphorus availability and total cellular phosphorus content were enhanced in the Δ all4501 strain
14
15
16 lacking this negative regulator, while, growth curve was similar to the wild type. The initial rate of
17
18 phosphate uptake and cellular phosphorus content of the Δ all4501 strain were 8-times and 2-times
19
20
21 higher than the wild type strain. Increasing of cellular phosphorus content was clearly shown that
22
23
24 phosphorus was stored as polyphosphate granules. Phosphorus removal from recirculating aquaculture
25
26 system using the *Anabaena* sp. PCC 7120 strain Δ all4501 was performed in a 5 L photobioreactor.
27
28
29 Separation of treated water and cyanobacterial cells could be achieved spontaneously via simple settle
30
31
32 down method. With single starter cell inoculation, the photobioreactor could be repeatedly used for
33
34
35 phosphorus removal up to 10 cycles with the average phosphorus removal efficiency of 57.4 % and 96.9
36
37
38 % for wild type and Δ all4501 strains, respectively.
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56 **Keywords;** recirculating aquaculture system; phosphorus removal; cyanobacteria; negative regulator
57
58
59
60
61
62
63
64
65

2

1. Introduction

10 Recirculating aquaculture systems (RASs) are environmental friendly with high production
11
12 yield and less water demand. Without water exchange, RAS technology requires the appropriate
13
14 technology to minimize solids and nutrients accumulation in the water [1-3]. The removals of either
15
16 solids or nitrogenous compounds in the RASs have been achieved via several treatment technologies [1-
17
18 24]. In contrast, removal of phosphorus from the RAS is more complex, the practical phosphorus
19
20 removal technology is not yet available [2]. Phosphorus is the major nutrient causing eutrophication
21
22 [5]. Discharge of phosphorus into the natural water resources must be well regulated. Previous study
23
24 on phosphorus accumulation in the RAS shown that over 94% of phosphorus was in form of inorganic
25
26 phosphates [6]. Traditional chemical phosphorus removal process is not suitable with the RAS due to
27
28 high toxicity of heavy metal for chemical precipitation processes that may harm to fish. Biological
29
30 phosphorus removal using heterotrophic polyphosphate accumulating organisms (PAOs) have been
31
32 extensively studied [7, 8]. They require a closed reactor for anaerobic process incorporating with
33
34 organic carbon addition. Although, the removal efficiency is not stable as the microorganisms
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1 responsible for PAOs are uncultured, and the whole mechanisms of phosphorus removal especially
2
3
4
5
6 ecology of microbial populations are still unclear [9, 10].
7
8
9
10

11 Alternatively, phototrophic organisms such as algae and cyanobacteria are more attractive for
12
13 phosphorus removal [6, 11, 12]. The photosynthetic phosphate removal process requires neither
14
15 addition of carbon source, nor enclosed system for anaerobic condition. They take up phosphate
16
17 directly and massively store in the cells as polyphosphate granules. The cyanobacterial phosphate
18
19
20 specific transport system (Pst system) was previously studied and clearly shown that this process was
21
22
23 energy-dependent requiring only light energy [13]. In addition, the affinity for phosphate of Pst system
24
25
26 was very high with the transport constant (K_s) of 4 $\mu\text{g P/L}$ [13]. In prokaryotic organisms, two-
27
28
29 component phosphate sensing system is used for monitoring the extracellular phosphate concentration
30
31
32 [14]. Inactivation of a negative regulator for phosphate sensing system (PhoU or SphU) resulted in
33
34
35 constitutive expression of genes involving in phosphorus metabolism, for example, alkaline phosphatase
36
37
38 and phosphate specific transport system [14, 15]. A previous study has shown that the cyanobacterium
39
40
41 *Synechocystis* sp. PCC 6803 strain ΔSphU efficiently removed phosphate in the RAS [6]. However,
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

the separation of the treated water and cyanobacterial cells with less than 2 μm in size was complicated as it cannot be separated by regular filtration device. In this study, the filamentous *Anabaena* sp. PCC 7120 was selected to overcome the cell separation problem of the unicellular cyanobacterium. With the auto-flocculation property of the *Anabaena* sp. PCC 7120, cell separation was able to simply perform via settle down method [16]. The *Anabaena* genome also shares very high sequence similarity in phosphate sensing system with the well studied *Synechocystis* sp. PCC 6803. An open reading frame of *all4501*, sharing strong similarity with the *slr0741 (sphU)* of *Synechocystis* sp. PCC 6803 to 77% in deduced amino acid sequences (64% identity), was a target for mutagenesis in this study.

2. Materials and Methods

2.1 Culture conditions and strain construction

Anabaena sp. PCC 7120 was grown in 250 mL flask containing 100 mL BG-11 medium under continuous shaking at 120 rpm and white light illumination at 6000 lux under room temperature 30 ± 3 $^{\circ}\text{C}$. Cell density was measured at an optical density of 730 nm (OD_{730}), and total chlorophyll *a*

concentration was determined by spectrophotometer after extracted with 90% methanol [17]. The target

gene for deletion mutagenesis was *all4501* encoding a putative negative regulator for phosphate sensing

system. The 1.2 kb of neomycin-resistance cassette was replaced between 1 bp upstream of the GTG

start codon and 9 bp downstream of the TAA stop codon of the 0.67 kb of *all4501* gene via ligation of

neomycin-resistance cassette with upstream and downstream regions of *all4501*. Both upstream and

downstream regions of *all4501* were amplified by PCR using primers shown in table 1. The

Δall4501:Nm was then transformed into *Anabaena* sp. PCC 7120 via triparental conjugation [18]. The

transformants were screened on BG-11 plate containing 20 µg/mL neomycin. The complete segregation

of the *Δall4501* gene in genomic DNA was confirmed by colony PCR with specific primers shown in

table 1. For phosphate-limiting BG-11 medium, K₂HPO₄ was replaced by KCl at the same

concentration [15, 19].

2.2 Analytical methods

1
2
3
4
5
6 Phosphate concentration was measured spectrophotometrically via ascorbic acid method [20].
7
8
9
10
11
12
13
14 Total phosphorus was digested to phosphate by persulfate autoclave digestion method and analyzed as
15
16
17 phosphate [21]. Intracellular polyphosphate granules were detected under fluorescence microscopy,
18
19
20 staining with 4'6-diamidino-2-phenylindole (DAPI) [6, 22]. Alkaline phosphatase activity was
21
22 determined by the hydrolysis of *p*-nitrophenyl phosphate [15, 19]. Phosphate uptake study was done
23
24 according to Burut-Archanai et al. [13].
25
26
27
28
29
30
31
32
33 *2.3 Phosphate removal in a photobioreactor*
34
35
36 A photobioreactor in this study was a clear acrylic cylinder with working volume of 5 L (12 cm
37
38 diameter and 60 cm height) operated under 6000 lux continuous illumination at 30 ± 2 °C. Starter
40
41
42
43 culture of *Anabaena* in BG-11 medium was inoculated to the initial concentration of 1.8 mg Chl *a*/L.
44
45
46
47 The photobioreactor was operated manually as a bubble column mode with 23 h of continuous aeration.
48
49
50
51 Once a day, the aeration was paused for 1 h allowing 45 min of cell settling and 15 min of water
52
53
54
55 draining and refilling with the water from RAS. The RAS in this study was a 4000 L indoor tilapia tank
56
57
58
59
60
61
62
63
64
65

6 operated with bioflocs procedure [23]. To evaluate phosphate removal efficiency, 7 L of the raw water
7

8 containing high phosphate concentration from the RAS was withdraw to 10 L settling tank and left for
9

10 1 hour settlement. Water from upper layer was then transferred into the photobioreactor. The cells
11

12 density and phosphate concentration in the photobioreactor was measured using water sampling from
13

14 the center of the reactor. The residual phosphate in the water was measured after the sample filtration
15

16 through 0.45 μ m membrane filter.
17

3. Results and discussion

3.1 Growth and cellular phosphorus content of the *Anabaena* sp. PCC 7120 strain Δ all4501

40 Complete segregation of the Δ all4501:Nm gene in the genomic DNA of *Anabaena* sp. PCC
41

42 7120 was demonstrated by colony PCR using “Check” primer pairs shown in table 1. In Fig. 1A, a
43

44 single band of 1.4 kb PCR fragment of *Anabaena* sp. PCC 7120 strain Δ all4501 (MT) indicated
45

46 homozygous genotype of this strain, while the wild type strain showed a 0.85 kb PCR fragment. The
47

48 absence of the *all4501* gene was not affected the photoautotrophic growth in BG-11 medium as shown
49

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1 in Fig. 1B. Inactivation of the negative regulator for phosphate sensing system (sphU) in *Synechocystis*
2

3 sp. PCC 6803 also had no negative effect on photoautotrophic growth [6, 15]. However, the Δ all4501
4

5 strain exhibited higher phosphate removal efficiency and capacity as shown in Fig. 1C and 1D,
6

7 respectively. To decrease the phosphate concentration in BG-11 medium to 0.5 mg P/L, the Δ all4501
8

9 strain took 3 days while the wild type strain took longer time of 6 days. Total phosphorus concentration
10

11 was analyzed in whole cells to indicate the cellular phosphorus content of each strain. The wild type
12

13 strain showed very low fluctuated phosphorus content at each growth phase with the average of 6.3 mg
14

15 P/g cell dry weight. In contrast, the cellular phosphorus content of Δ all4501 strain was more fluctuated
16

17 with an initial concentration of 7.9 mg P//g cell dry weight and increased up to of 13.4 mg P/g cell dry
18

19 weight within 3 days. Afterward, the phosphorus content was decreased to an average of 8.0 mg P/g
20

21 cell dry weight. Decreasing of the phosphorus content of the Δ all4501 strain after 3 days might reflect
22

23 the phosphorus availability in the medium as the phosphate concentrations were lower than 0.17 mg
24

25 P/L. Noted that, the maximum capacity for cellular phosphate storing of the *Anabaena* sp. PCC 7120
26

27 strain Δ all4501 was 20 times higher than the *Synechocystis* sp. PCC 6803 strain Δ SphU [6].
28

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4
5
6
7
8
9
10 *3.2 Detection of polyphosphate, alkaline phosphatase and phosphate uptake*11
12
13 After 2 days cultivation, the *Anabaena* sp. PCC 7120 wild type and Δ all4501 strains were
14
15
16 stained with DAPI and observed under fluorescence microscopy as shown in Fig. 2. The results clearly
17
18 showed that the Δ all4501 strain stored large amount of phosphate in form of intracellular
19
20 polyphosphate granules. The green fluorescence of polyphosphate-DAPI complex was found at all cells
21
22
23
24
25 of the Δ all4501, whereas it was absent in the wild type strain. This result clearly supported the above
26
27
28
29 result that higher phosphorus content of the Δ all4501 over wild type strain. It might be explained that
30
31
32
33 the genes for polyphosphate metabolism were constitutively expressed in the Δ all4501 strain [15, 24].
34
35
36
37
38
39
40
41 The phosphate uptake and alkaline phosphatase activities were observed in both strains under
42
43
44 either phosphate-sufficient or phosphate-limiting conditions and shown in Fig. 3A. The activity of
45
46
47 phosphate uptake of wild type strain under phosphate-sufficient condition was monophasic with very
48
49
50 low activity. The biphasic phosphate uptake curve was found when cells grown under phosphate-
51
52
53
54
55
56 limiting condition with high rate of phosphate uptake during 10 min of experiment and lower rate of
57
58
59
60
61
62
63
64
65

1 phosphate uptake afterward, indicating the different activities of 2 phosphate transport systems. In
2
3
4
5
6 contrast, the Δ all4501 strain had similar biphasic phosphate uptake pattern under either phosphate-
7
8 sufficient or phosphate-limiting conditions. These results suggested that the high affinity phosphate-
9
10 transport system, a member of Pho regulon, was constitutively expressed in the Δ all4501 strain. The
11
12 constitutive expression of the Pho regulon of the Δ all4501 strain was also confirmed by the alkaline
13
14 phosphatase activity. The alkaline phosphatase activity of the Δ all4501 strain was found under either
15
16 phosphate-sufficient or phosphate-limiting conditions, while it was repressed in the wild type strain
17
18
19 grown under phosphate-sufficient conditions (Fig. 3B). These results indicated that all genes in Pho
20
21 regulon, such as, alkaline phosphatase, phosphate specific transport system, and polyphosphate kinase
22
23
24 were constitutively expressed in the Δ all4501 strain.

25
26
27
28
29
30
31
32
33 *3.3 Removal of phosphate from aquaculture water*

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48 The *Anabaena* cells were initially grown in the photobioreactor with BG-11 medium until the cell
49
50
51
52 concentration reached 5 mg chl *a*/L (~OD_{730nm} of 0.4). After cells sedimentation, the medium was
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4
5
6 drained out and the photobioreactor was refilled with RAS water. The treatment result was shown in
7
8
9
10 Fig. 4 which clearly showed that the *Anabaena* sp. PCC 7120 Δ all4501 strain could efficiently remove
11
12
13 phosphate from average of 7.9 mg P/L to lower than 0.25 mg P/L within 23 h. The wild type strain also
14
15
16 showed the activity of phosphate removal but at the lower extent. With simple settle down method,
17
18
19 over 95% of the cells could be retained in the photobioreactor as similar to previous report [16]. The
20
21 phosphate removal using photobioreactor could be performed up to 10 cycles from single inoculation
22
23
24
25 with the average of phosphate removal efficiency of 57.4 % and 96.9 % via wild type and Δ all4501,
26
27
28
29 respectively. Total phosphorus removal of the *Anabaena* sp. PCC 7120 wild type and Δ all4501 strain
30
31
32
33 in the photobioreactor was 2.0 g P and 3.5 g P, respectively. Both strains could be reused for phosphate
34
35
36 treatment up to 10 cycles, after that the cells were aggregated, attaching on the photobioreactor wall and
37
38
39 unable to be resuspended homogeneously. This finding might be related with the RAS with bioflocs
40
41
42
43
44 procedure. The microorganisms in bioflocs produced various natural flocculating agents into the water
45
46
47
48 medium [25] which might induce flocculation of *Anabaena* cells in the photobioreactor.
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4. Conclusion

Inactivation of *all4501* resulted in constitutive expression of the Pho regulon genes without negative effect on photoautotrophic growth, suggesting the *all4501* encoding for a negative regulator for phosphate sensing system. The Δ *all4501* strain removed phosphate 2 times faster and stored cellular phosphorus 2 times higher than the wild type strain. The Δ *all4501* strain removed phosphate from raw RAS water from 7.9 mg P/L to lower than 0.25 mg P/L within 23 h which equivalent to 96.9 % removal efficiency. In contrast, the wild type strain performed only 57.4 % phosphate removal.

Acknowledgments

This work was supported by the Thailand Research Fund (TRF) through (TRG 5780094). We also thank the partial and in kind support from the National Science and Technology Development Agency (NSTDA) and Center of Excellence for Marine Biotechnology, Chulalongkorn University.

References

1
2
3
4
5
6 [1] T. Sesuk, S. Powtongsook, K. Nootong, Inorganic nitrogen control in a novel zero-water
7
8 exchanged aquaculture system integrated with airlift-submerged fibrous nitrifying biofilters,
9
10
11
12
13 Bioresour. Technol. 100 (2009) 2088–2094.
14
15
16
17 [2] C.I.M. Martins, E.H. Eding, M.C.J. Verdegem, L.T.N. Heinsbroek, O. Schneider, J.P.
18
19
20 Blancheton, E.R. d'Orbcastel, J.A.J. Verreth, New developments in recirculating aquaculture
21
22
23 systems in Europe: A perspective on environmental sustainability, Aquac. Eng. 43 (2010) 83–
24
25
26
27
28 93.
29
30
31
32 [3] J. van Rijn, Waste treatment in recirculating aquaculture systems, Aquac. Eng. 53 (2013) 49–56.
33
34
35
36 [4] K. Nootong, S. Nurit, S. Powtongsook, Control of inorganic nitrogen and suspended solids
37
38 concentrations in a land-based recirculating aquaculture system, Eng. J. 17 (2013) 49–59.
39
40
41
42
43
44 [5] D.W. Schindler, R.E. Hecky, D.L. Findlay, M.P. Stainton, B.R. Parker, M.J. Paterson, K.G.
45
46
47 Beaty, M. Lyng, S.E.M. Kasian, Eutrophication of lakes cannot be controlled by reducing
48
49
50 nitrogen input: Results of a 37-year whole-ecosystem experiment, Proc. Natl. Acad. Sci. 105
51
52
53
54
55 (2008) 11254–11258.
56
57
58
59
60
61
62
63
64
65

1
2
3
4
5
6 [6] S. Burut-Archanai, J.J. Eaton-Rye, A. Incharoensakdi, S. Powtongsook, Phosphorus removal in
7
8
9 a closed recirculating aquaculture system using the cyanobacterium *Synechocystis* sp. PCC 6803
10
11
12 strain lacking the SphU regulator of the Pho regulon, Biochem. Eng. J. 74 (2013) 69–75.
13
14
15 [7] D.F. Toerien, A. Gerber, L.H. Lotter, T.E. Cloete, Enhanced biological phosphorus removal in
16
17 activated sludge systems, in: K.C. Marshall (Ed.), Advances in Microbial Ecology, vol. 11,
18
19
20 Plenum, New York, 1990, pp. 173–219.
21
22
23
24
25
26
27
28 [8] Z. Hu, M.C. Wentzel, G.A. Ekama, Modelling biological nutrient removal activated sludge
29
30
31 systems—a review, Water Res. 37 (2003) 3430–3444.
32
33
34
35 [9] L.L. Blackall, G.R. Crocetti, A.M. Saunders, P.L. Bond, A review and update of the
36
37
38
39
40
41
42
43
44
45
46
47
48 [10] H. Garcia Martin, N. Ivanova, V. Kunin, F. Warnecke, K.W. Barry, A.C. McHardy, C. Yeates,
49
50
51
52
53
54
55
56 S. He, A.A. Salamov, E. Szeto, E. Dalin, N.H. Putnam, H.J. Shapiro, J.L. Pangilinan, I.
57
58
59
60
61
62
63
64
65 Rigoutsos, N.C. Kyrpides, L.L. Blackall, K.D. McMahon, P. Hugenholtz, Metagenomic analysis

1
2
3
4
5
6 of two enhanced biological phosphorus removal (EBPR) sludge communities, *Nat Biotechnol.*
7
8
9
10 24 (2006) 1263–1269.

11
12
13
14 [11] P. Chevalier, D. Proulx, P. Lessard, W.F. Vincent, J. de la Noue, *Nitrogen and phosphorus*
15
16
17 removal by high latitude mat-forming cyanobacteria for potential use in tertiary wastewater
18
19
20 treatment, *J. Appl. Phycol.* 12 (2000) 105–112.

21
22
23
24
25 [12] E. Zhang, B. Wang, Q. Wang, S. Zhang, B. Zhao, *Ammonia–nitrogen and orthophosphate*
26
27
28 removal by immobilized *Scenedesmus* sp. isolated from municipal wastewater for potential use
29
30
31 in tertiary treatment, *Bioresour. Technol.* 99 (2008) 3787–3793.

32
33
34
35
36 [13] S. Burut-Archanai, J.J. Eaton-Rye, A. Incharoensakdi, Na^+ -stimulated phosphate uptake system
37
38
39 in *Synechocystis* sp. PCC 6803 with Pst1 as a main transporter, *BMC Microbiol.* 11 (2011) 225.

40
41
42
43
44 [14] M.G. Lamarche, B.L. Wanner, S. Crepin, J. Harel, *The phosphate regulon and bacterial*
45
46
47 virulence: a regulatory network connecting phosphate homeostasis and pathogenesis, *FEMS*
48
49
50
51
52 Microbiol. Rev. 32 (2008) 461–473.

53
54
55
56 [15] W. Juntarajumnong, T.A. Hirani, J.M. Simpson, A. Incharoensakdi, J.J. Eaton-Rye, *Phosphate*
57
58
59
60
61
62
63
64
65

1
2
3
4
5
6 sensing in *Synechocystis* sp. PCC 6803: SphU and the SphS–SphR two-component regulatory
7
8
9 system, Arch. Microbiol. 188 (2007) 389–402.
10
11
12
13
14 [16] M. Chen, J. Li, L. Zhang, S. Chang, C. Liu, J. Wang, S. Li, Auto-flotation of heterocyst enables
15
16 the efficient production of renewable energy in cyanobacteria., Sci. Rep. 4 (2014) 3998.
17
18
19
20
21 [17] G. MacKinney, Absorption of light by chlorophyll solutions, J. Biol. Chem. 140 (1941) 315–
22
23
24 322.
25
26
27
28
29 [18] J. Elhai, C.P. Wolk, Conjugal transfer of DNA to cyanobacteria. Methods Enzymol. 167 (1988)
30
31
32 747–754.
33
34
35
36 [19] S. Burut-Archanai, A. Incharoensakdi, J.J. Eaton-Rye, The extended N-terminal region of SphS
37
38
39 is required for detection of external phosphate levels in *Synechocystis* sp. PCC 6803, Biochem.
40
41
42
43 Biophys. Res. Commun. 378 (2009) 383–388.
44
45
46
47 [20] APHA, Standard Methods for the Examination of Water and Wastewater, 20th ed., A.P.H.
48
49
50
51
52 Association, Washington, DC, 1998.
53
54
55 [21] A. Gross, C.E. Boyd, A digestion procedure for the simultaneous determination of total nitrogen
56
57
58
59
60
61
62
63
64
65

1
2
3
4
5
6 and total phosphorus in pond water, J. World Aquacult. Soc. 29 (1998) 300–303.
7
8
9
10 [22] R. Aschar-Sobbi, A.Y. Abramov, C. Diao, M.E. Kargacin, G.J. Kargacin, R.J. French, E.
11
12 Pavlov, High sensitivity, quantitative measurements of polyphosphate using a new DAPI-based
13
14 approach, J. Fluoresc. 18 (2008) 859–866.
15
16
17
18 [23] K. Nootong, P. Pavasant, S. Powtongsook, Effects of Organic Carbon Addition in Controlling
19
20 Inorganic Nitrogen Concentrations in a Biofloc System, J. World Aquac. Soc. 42 (2011) 339–
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48 [24] M.R. Gomez-Garcia, M. Losada, A. Serrano, Concurrent transcriptional activation of *ppa* and
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
55510
55511
55512
55513
55514
55515
55516
55517
55518
55519
55520
55521
55522
55523
55524
55525
55526
55527
55528
55529
55530
55531
55532
55533
55534
55535
55536
55537
55538
55539
55540
55541
55542
55543
55544
55545
55546
55547
55548
55549
55550
55551
55552
55553
55554
55555
55556
55557
55558
55559
555510
555511
555512
555513
555514
555515
555516
555517
555518
555519
555520
555521
555522
555523
555524
555525
555526
555527
555528
555529
555530
555531
555532
555533
555534
555535
555536
555537
555538
555539
555540
555541
555542
555543
555544
555545
555546
555547
555548
555549
555550
555551
555552
555553
555554
555555
555556
555557
555558
555559
5555510
5555511
5555512
5555513
5555514
5555515
5555516
5555517
5555518
5555519
5555520
5555521
5555522
5555523
5555524
5555525
5555526
5555527
5555528
5555529
5555530
5555531
5555532
5555533
5555534
5555535
5555536
5555537
5555538
5555539
5555540
5555541
5555542
5555543
5555544
5555545
5555546
5555547
5555548
5555549
5555550
5555551
5555552
5555553
5555554
5555555
5555556
5555557
5555558
5555559
55555510
55555511
55555512
55555513
55555514
55555515
55555516
55555517
55555518
55555519
55555520
55555521
55555522
55555523
55555524
55555525
55555526
55555527
55555528
55555529
55555530
55555531
55555532
55555533
55555534
55555535
55555536
55555537
55555538
55555539
55555540
55555541
55555542
55555543
55555544
55555545
55555546
55555547
55555548
55555549
55555550
55555551
55555552
55555553
55555554
55555555
55555556
55555557
55555558
55555559
555555510
555555511
555555512
555555513
555555514
555555515
555555516
555555517
555555518
555555519
555555520
555555521
555555522
555555523
555555524
555555525
555555526
555555527
555555528
555555529
555555530
555555531
555555532
555555533
555555534
555555535
555555536
555555537
555555538
555555539
555555540
555555541
555555542
555555543
555555544
555555545
555555546
555555547
555555548
555555549
555555550
555555551
555555552
555555553
555555554
555555555
555555556
555555557
555555558
555555559
5555555510
5555555511
5555555512
5555555513
5555555514
5555555515
5555555516
5555555517
5555555518
5555555519
5555555520
5555555521
5555555522
5555555523
5555555524
5555555525
5555555526
5555555527
5555555528
5555555529
5555555530
5555555531
5555555532
5555555533
5555555534
5555555535
5555555536
5555555537
5555555538
5555555539
5555555540
5555555541
5555555542
5555555543
5555555544
5555555545
5555555546
5555555547
5555555548
5555555549
5555555550
5555555551
5555555552
5555555553
5555555554
5555555555
5555555556
5555555557
5555555558
5555555559
55555555510
55555555511
55555555512
55555555513
55555555514
55555555515
55555555516
55555555517
55555555518
55555555519
55555555520
55555555521
55555555522
55555555523
55555555524
55555555525
55555555526
55555555527
55555555528
55555555529
55555555530
55555555531
55555555532
55555555533
55555555534
55555555535
55555555536
55555555537
55555555538
55555555539
55555555540
55555555541
55555555542
55555555543
55555555544
55555555545
55555555546
55555555547
55555555548
55555555549
55555555550
55555555551
55555555552
55555555553
55555555554
55555555555
55555555556
55555555557
55555555558
55555555559
555555555510
555555555511
555555555512
555555555513
555555555514
555555555515
555555555516
555555555517
555555555518
555555555519
555555555520
555555555521
555555555522
555555555523
555555555524
555555555525
555555555526
555555555527
555555555528
555555555529
555555555530
555555555531
555555555532
555555555533
555555555534
555555555535
555555555536
555555555537
555555555538
555555555539
555555555540
555555555541
555555555542
555555555543
555555555544
555555555545
555555555546
555555555547
555555555548
555555555549
555555555550
555555555551
555555555552
555555555553
555555555554
555555555555
555555555556
555555555557
555555555558
555555555559
5555555555510
5555555555511
5555555555512
5555555555513
5555555555514
5555555555515
5555555555516
5555555555517
5555555555518
5555555555519
5555555555520
5555555555521
5555555555522
5555555555523
5555555555524
5555555555525
5555555555526
5555555555527
5555555555528
5555555555529
5555555555530
5555555555531
5555555555532
5555555555533
5555555555534
5555555555535
5555555555536
5555555555537
5555555555538
5555555555539
5555555555540
5555555555541
5555555555542
5555555555543
5555555555544
5555555555545
5555555555546
5555555555547
5555555555548
5555555555549
5555555555550
5555555555551
5555555555552
5555555555553
5555555555554
5555555555555
5555555555556
5555555555557
5555555555558
5555555555559
55555555555510
55555555555511
55555555555512
55555555555513
55555555555514
55555555555515
55555555555516
55555555555517
55555555555518
55555555555519
55555555555520
55555555555521
55555555555522
55555555555523
55555555555524
55555555555525
55555555555526
55555555555527
55555555555528
55555555555529
55555555555530
55555555555531
55555555555532
55555555555533
55555555555534
55555555555535
55555555555536
55555555555537
55555555555538
55555555555539
55555555555540
55555555555541
55555555555542
55555555555543
55555555555544
55555555555545
55555555555546
55555555555547
55555555555548
55555555555549
55555555555550
55555555555551
55555555555552
55555555555553
55555555555554
55555555555555
55555555555556
55555555555557
55555555555558
55555555555559
555555555555510
555555555555511
555555555555512
555555555555513
555555555555514
555555555555515
555555555555516
555555555555517
555555555555518
555555555555519
555555555555520
555555555555521
555555555555522
555555555555523
555555555555524
555555555555525
555555555555526
555555555555527
555555555555528
555555555555529
555555555555530
555555555555531
555555555555532
555555555555533
555555555555534
555555555555535
555555555555536
555555555555537
555555555555538
555555555555539
555555555555540
555555555555541
555555555555542
555555555555543
555555555555544
555555555555545
555555555555546
555555555555547
555555555555548
555555555555549
555555555555550
555555555555551
555555555555552
555555555555553
555555555555554
555555555555555
555555555555556
555555555555557
555555555555558
555555555555559
5555555555555510
5555555555555511
5555555555555512
5555555555555513
5555555555555514
5555555555555515
5555555555555516
5555555555555517
5555555555555518
5555555555555519
5555555555555520
5555555555555521
5555555555555522
5555555555555523
5555555555555524
5555555555555525
5555555555555526
5555555555555527
5555555555555528
5555555555555529
5555555555555530
5555555555555531
5555555555555532
5555555555555533
5555555555555534
5555555555555535
5555555555555536
5555555555555537
5555555555555538
5555555555555539
5555555555555540
5555555555555541
5555555555555542
5555555555555543
5555555555555544
5555555555555545
5555555555555546
5555555555555547
5555555555555548
5555555555555549
5555555555555550
5555555555555551
5555555555555552
5555555555555553
5555555555555554
5555555555555555
5555555555555556
5555555555555557
5555555555555558
5555555555555559
55555555555555510
55555555555555511
55555555555555512
55555555555555513
55555555555555514
55555555555555515
55555555555555516
55555555555555517
55555555555555518
55555555555555519
55555555555555520
55555555555555521
55555555555555522
55555555555555523
55555555555555524
55555555555555525
55555555555555526
55555555555555527
55555555555555528
55555555555555529
55555555555555530
55555555555555531
55555555555555532
55555555555555533
55555555555555534
55555555555555535
55555555555555536
55555555555555537
55555555555555538
55555555555555539
55555555555555540
55555555555555541
55555555

1
2
3
4
5
6 Fig 1. Characterization of *Anabaena* sp. PCC 7120 wild type (WT) and Δ all4501 (MT) strains. (A)

7
8
9 PCR demonstrating complete segregation of the neomycin-resistance cassette in the MT strain

10
11
12 comparing with WT strain. Diagram above shows *all4501* gene in WT and neomycin-resistance

13
14 cassette in MT strain which black and gray boxes represent upstream and downstream regions of

15
16
17 *all4501*. Arrows indicate the position of the PCR primers. (B) Photoautotrophic growth, (C) the

18
19 concentrations of residual phosphate in the medium, and (D) the cellular phosphorus content of WT

20
21
22 concentrations of residual phosphate in the medium, and (D) the cellular phosphorus content of WT

23
24
25 (black circle symbols) and MT (white square symbols) strains grown in BG-11 medium.

26
27
28
29 Fig 2. Microscopic images of *Anabaena* sp. PCC 7120 wild type (WT) and Δ all4501 (MT) strains with

30
31
32 DAPI staining under visible light (left panel) and UV light (right panel). Green fluorescence indicates

33
34
35
36 intracellular polyphosphate granules in the mutant strain.

37
38
39
40 Fig 3. Phosphate uptake and alkaline phosphatase activity of *Anabaena* sp. PCC 7120 wild type and

41
42
43
44 Δ all4501 strains under phosphate-sufficient and phosphate-limiting conditions. (A) Phosphate uptake

1 of wild type (circle symbols) and Δ all4501 (square symbols) strains grown under phosphate-sufficient
2
3
4
5
6 (black symbols) and phosphate-limiting (white symbols) conditions. (B) Alkaline phosphatase activity
7
8
9
10 of wild type (WT) and Δ all4501 (MT) strains grown under phosphate-sufficient (black bars) and
11
12
13 phosphate-limiting (white bars) conditions.
14
15
16
17
18

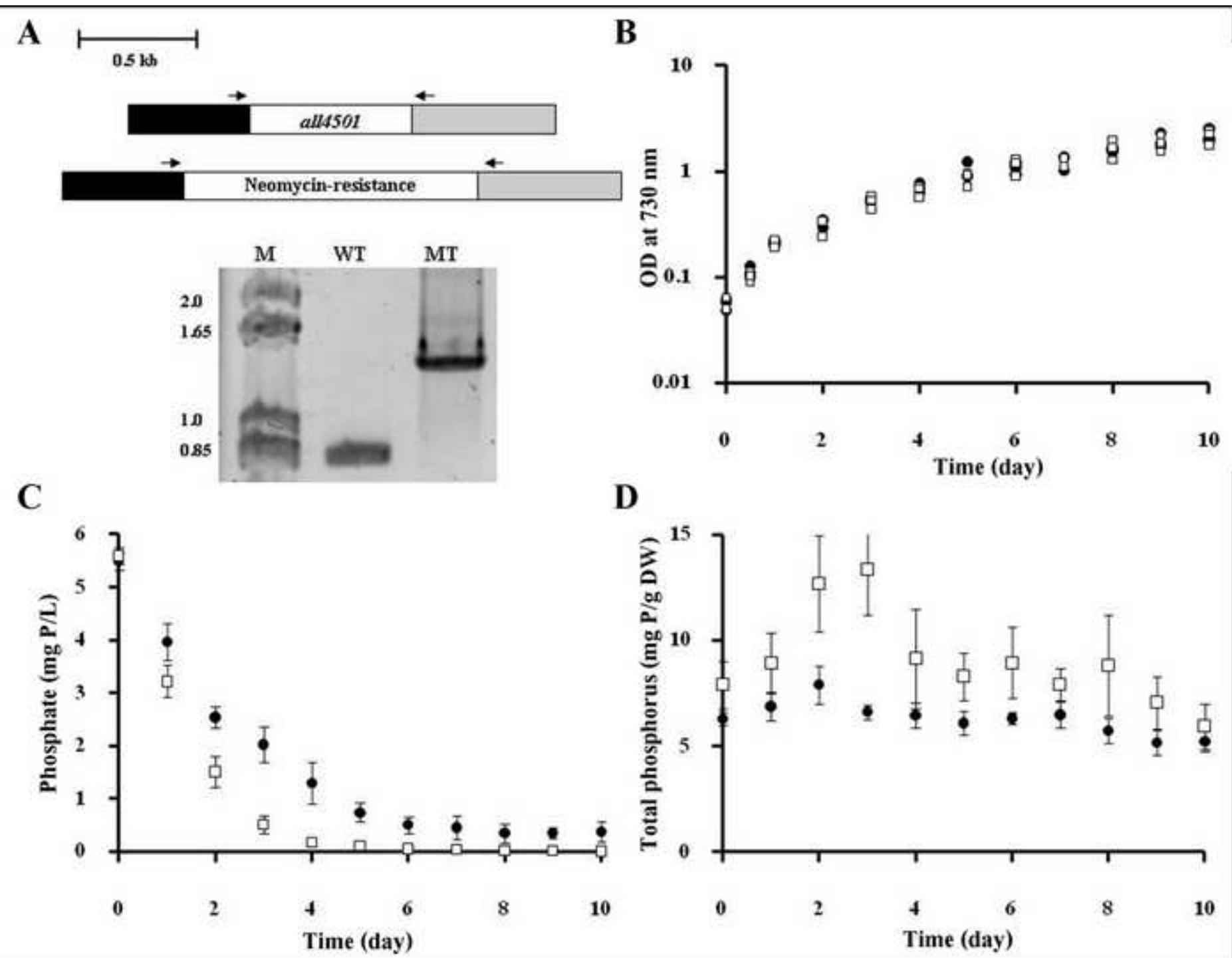
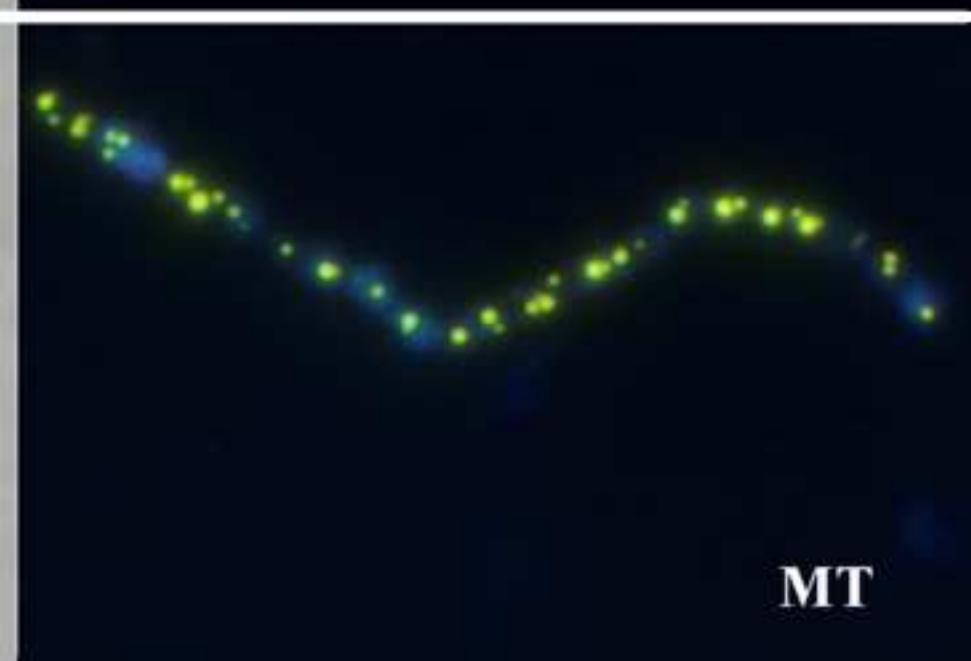
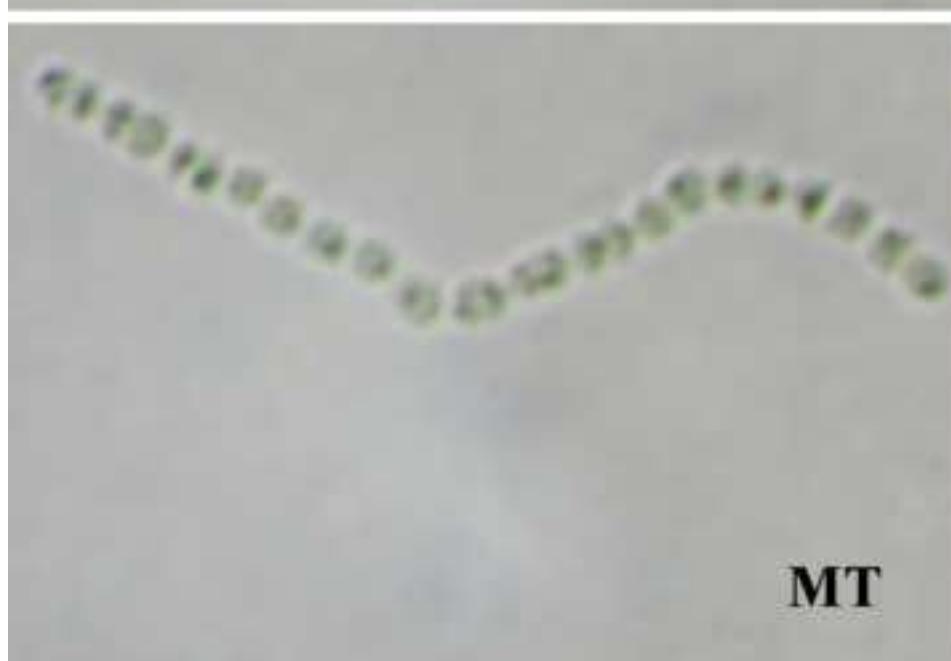
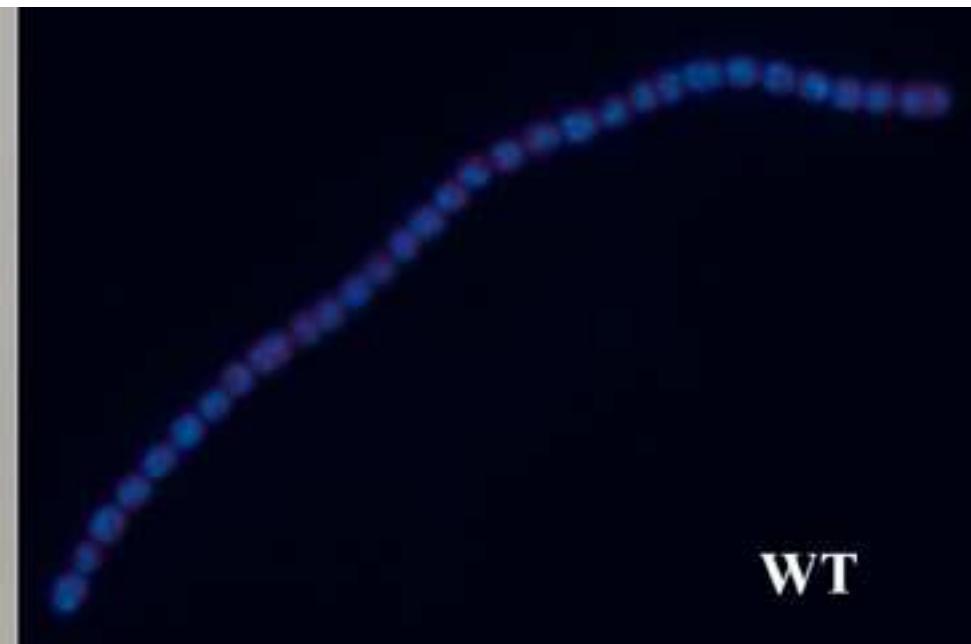

19
20
21
22
23
24
25 Fig 4. The concentrations of residual phosphate in photobioreactor during phosphate treatment by
26
27
28
29 *Anabaena* sp. PCC 7120 wild type (black circle symbols) and Δ all4501 (white square symbols) strains.
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

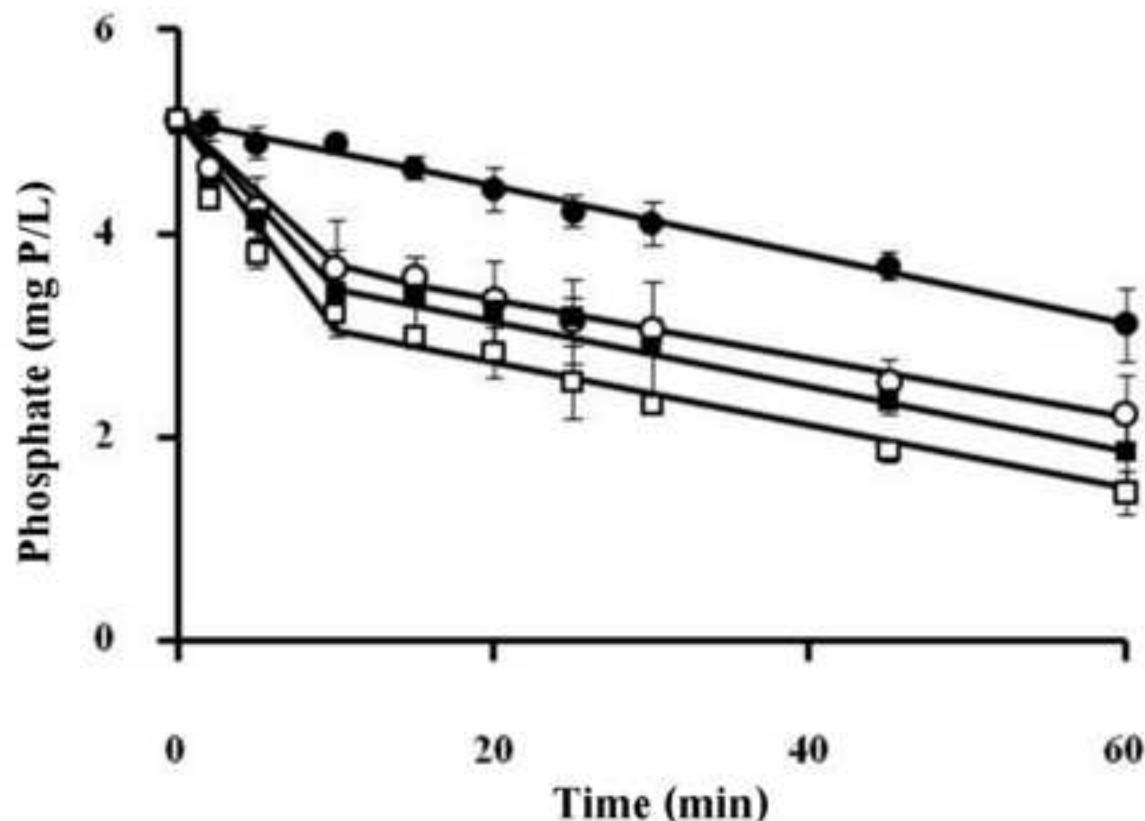
Table 1 Oligonucleotide sequences for PCR amplification

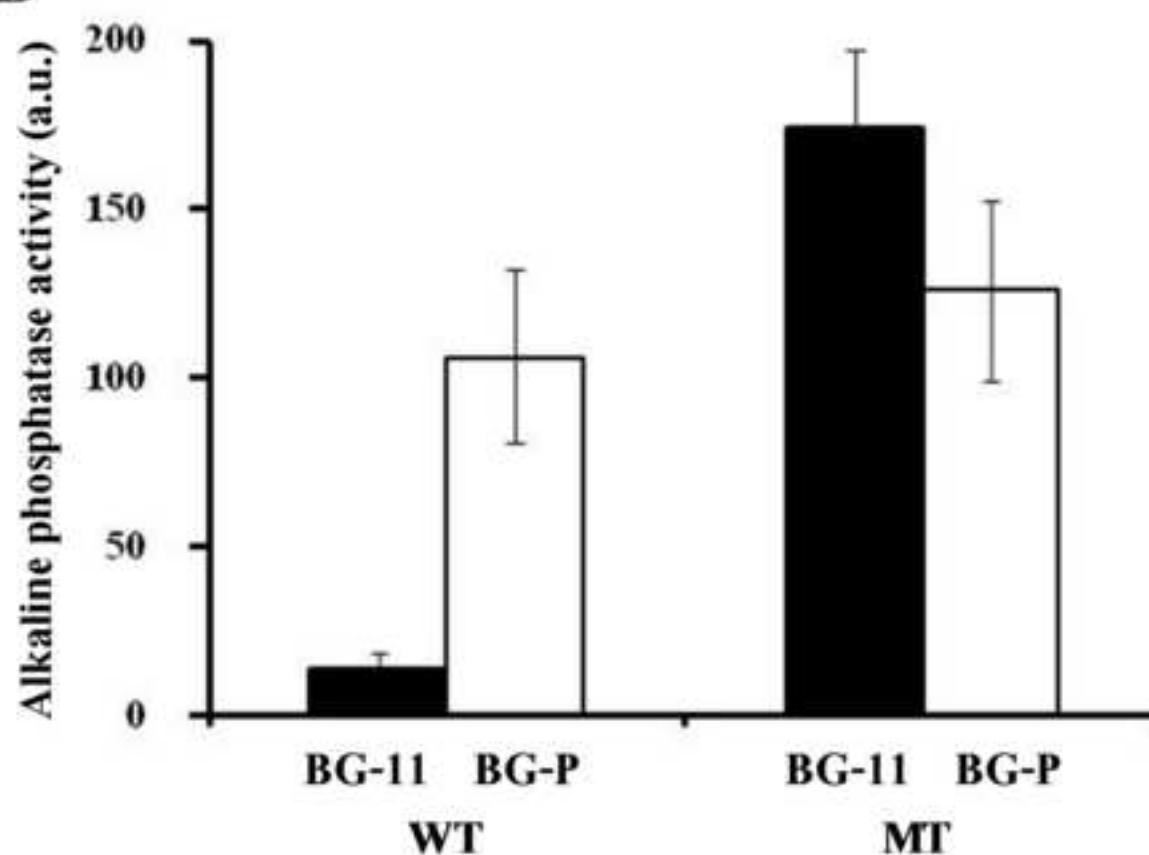
name	sequence
f Upstream	TCAAAATCTGTCTCTCTCCT
r Upstream	CTTGTAGTCTCAAACGTGAA
f Downstream	GAGTATTTAAGCTCATCCCA
r Downstream	GGTAGCTATTTCAAACATGAG
f Check	AGCTCACGGAGGTTCCATC
r Check	GGGAGGGATGGATGAGCTT




Figure

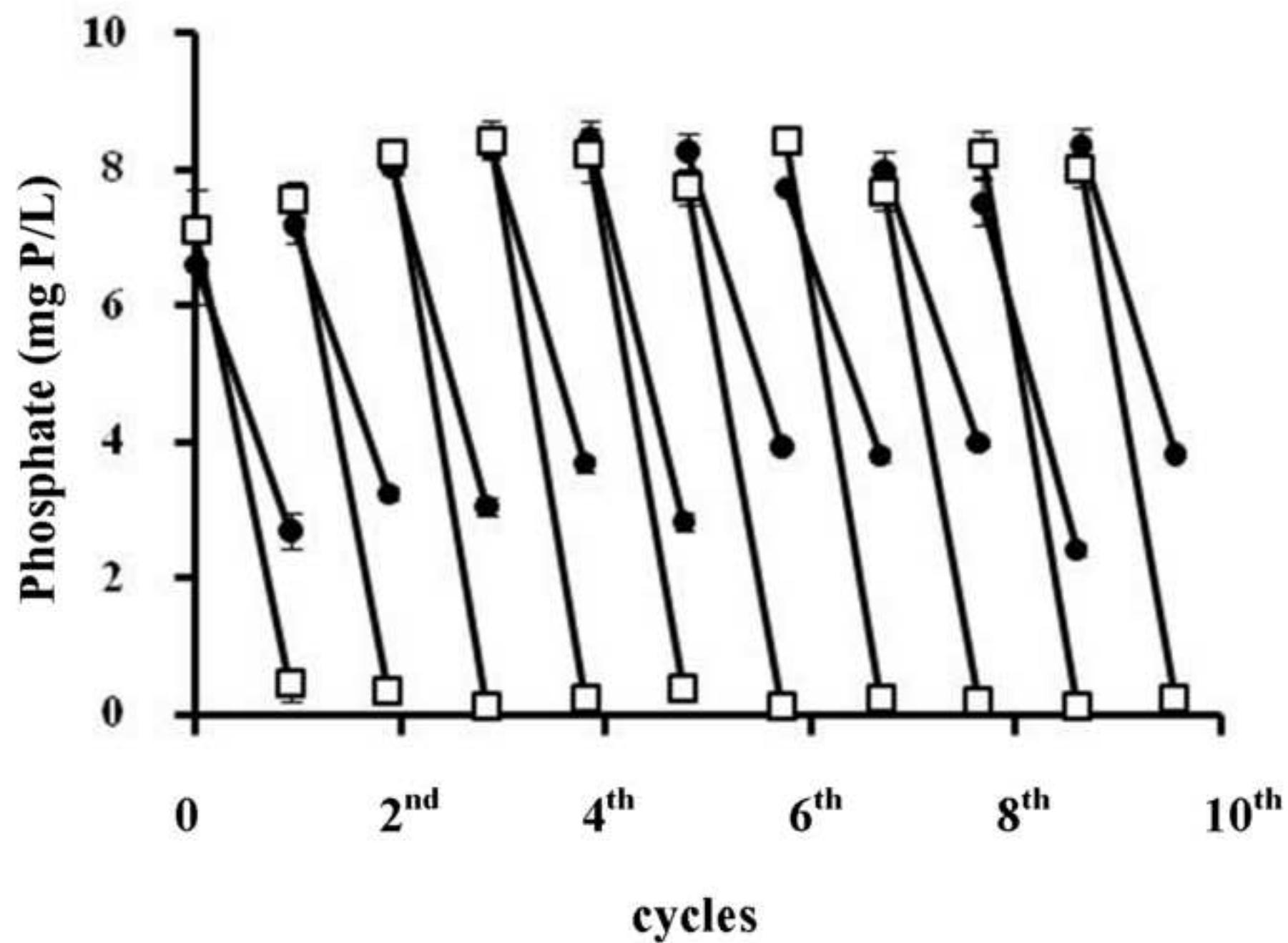
[Click here to download high resolution image](#)

Figure


[Click here to download high resolution image](#)


Figure

[Click here to download high resolution image](#)


A

B

Figure

[Click here to download high resolution image](#)