บทคัดย่อ

รหัสโครงการ: TRG5780119

ชื่อโครงการ: การบำบัดสารมลพิษเสี่ยงอันตรายที่ตกค้างยาวนานโดยกระบวนการฟลูอิดไดซ์เบดเฟนตอนแบบ

ไหลต่อเนื่อง

ชื่อนักวิจัย และสถาบัน:

ดร.นงลักษณ์ บุญรัตนกิจ ภาควิชาวิศวกรรมสิ่งแวดล้อม คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี

อีเมล์: nonglak.boo@kmutt.ac.th

ระยะเวลาโครงการ: 2 ปี

งานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาหาค่าคงที่อัตราจลนพลศาสตร์ระหว่างอนุมูลอิสระไฮดรอกซิลกับ ไดเมทิลฟีนิลคาร์บินอลและอะซิโตฟีโนนซึ่งเป็นสารอนุพันธ์หลักอันดับแรกของการเปลี่ยนรูปของไดเมทิลฟีนิล คาร์บินอลโดยใช้กระบวนการเฟนตอนและกระบวนการฟลูอิดไดช์เบดเฟนตอน ผลการวิจัยพบว่าภายใต้การ แปรเปลี่ยนสภาวะการทดลองไม่ว่าจะเป็นรูปแบบของการดำเนินการ (แบบกะและแบบต่อเนื่อง) รูปแบบของ ปฏิกรณ์ (ปฏิกรณ์แบบกวนสมบูรณ์และปฏิกรณ์ฟลูอิดไดช์เบด) ความเข้มข้นของสารทำปฏิกิริยา (ความ เข้มข้นอนุมูลเฟอร์รัสและไฮโดรเจนเปอร์ออกไซด์) และความเข้มข้นของสารอินทรีย์ (สารอินทรีย์เป้าหมาย และสารอ้างอิง) ไม่ทำให้ค่าคงที่อัตราปฏิกิริยาอันดับที่สองระหว่างไดเมทิลฟีนิลคาร์บินอลและอะซิโตฟีโนนกับ อนุมูลอิสระไฮดรอกซิลเปลี่ยนแปลงแต่อย่างใด โดยมีค่าเฉลี่ยเท่ากับ 1.05×10¹0 และ 9.87×10² โมล่าร์¹วินาที¹ ตามลำดับ ทั้งนี้สารกลางอะโรมาติคที่เกิดจากการย่อยสลายไดเมทิลฟีนิลคาร์บินอลโดยอนุมูลอิสระไฮ ดรอกซิลที่ตรวจพบได้จากงานวิจัยนี้ได้แก่ อะซิโตฟีโนน, ไดคิวมิวเปอร์ออกไซด์, ไฮดรอกซีอะซิโตฟีโนน, กรดไฮดรอกซีเบนโซอิค, กรดไฮดรอกซีเบนโซอิค, กรดไฮดรอกซีเบนโซอิค, กรดฟีนิลไกลออกซาลิค, กรดเบนโซอิค, 2-ไฮดรอกซี-1-ฟีนิลเอทาโนน และ 4-4¹-ไดอะซิติลไบฟีนิล กลไกปฏิกิริยาที่เกิดขึ้นสามารถ จำแนกได้เป็น 5 ทางเดินปฏิกิริยา ส่วนสารกลางประเภทกรดคาร์บอกซิลิคที่ตรวจพบได้แก่กรดมาเลอิค, กรด ทาร์ทาลิค, กรดมาลิค, กรดซาซินิคนิลคารดพอร์มิค

นอกจากนี้งานวิจัยนี้ยังได้ทำการศึกษากลไกการตกผลึกเหล็กบนผิวของตัวกลางในกระบวนการฟลูอิด ไดซ์เบดเฟนตอนรวมไปถึงปัจจัยต่างๆที่ส่งผลกระทบต่อการตกผลึกเหล็ก ผลการวิจัยพบว่าพีเอชที่เหมาะสมใน การตกผลึกเหล็กในกระบวนการฟลูอิดไดซ์เบดเฟนตอนมีค่าเท่ากับ 3.0 ปริมาณตัวกลางที่มากขึ้นจะทำให้ ประสิทธิภาพในการกำจัดเหล็กสูงขึ้นตามไปด้วย และตัวกลางที่มีขนาดเล็กจะสามารถเพิ่มประสิทธิภาพในการ กำจัดเหล็กได้อันเนื่องจากพื้นที่ผิวจำเพาะที่สูงขึ้น การขยายตัวของชั้นตัวกลางที่เพิ่มขึ้นไม่ส่งผลต่อ ประสิทธิภาพในการกำจัดเหล็กอย่างมีนัยสำคัญ นอกจากนี้ยังพบว่าเพื่อให้กระบวนการฟลูอิดไดซ์เบดเฟนตอน

มีประสิทธิภาพสูงในการกำจัดสารมลพิษอินทรีย์และเหล็กไปพร้อมๆกันควรดำเนินการภายใต้รูปแบบกะ มากกว่าแบบต่อเนื่อง ทั้งนี้เนื่องจากรูปแบบกะจะให้ประสิทธิภาพในการกำจัดสารอินทรีย์ที่สูงกว่าระบบ แบบต่อเนื่อง ส่งผลให้ความเข้มข้นของสารอินทรีย์ที่รบกวนการตกผลึกเหล็กในระบบลดต่ำลง ทำให้ ประสิทธิภาพในการกำจัดเหล็กดีขึ้น ระยะเวลากักเก็บชลศาสตร์ที่ยาวนานขึ้นสามารถเพิ่มประสิทธิภาพในการ กำจัดสารอินทรีย์เป้าหมายและเหล็กได้

คำหลัก: ไดเมทิลฟีนิลคาร์บินอล; อะซิโตฟีโนน; เทคนิคจลนพลศาสตร์การแข่งขัน; กลไกปฏิกิริยา; การตก ผลึกเหล็ก

Abstract

Project Code: TRG5780119

Project Title: Persistent hazardous pollutant treatment by continuous-flow fluidized-bed

Fenton process

Investigator: Dr. Nonglak Boonrattanakij

Department of Environmental Engineering, Faculty of Engineering,

King Mongkut's University of Technology Thonburi

Email Address: nonglak.boo@kmutt.ac.th

Project Period: 2 years

This research aimed to investigate the kinetic rate constants between hydroxyl radicals and dimethylphenylcarbinol and acetophenone which was the main first-generation intermediate of the dimethylphenylcarbinol transformation by using Fenton and fluidizedbed Fenton processes. Results revealed that, under various conditions regardless of operation type (batch vs continuous), reactor type (complete mix vs fluidized-bed), concentrations of Fenton reagent (ferrous and hydrogen peroxide), and organic concentrations (target and reference compounds), the second-order reaction rate constants between dimethylphenylcarbinol and acetophenone with hydroxyl radicals were unchanged with the average of 1.05×10^{10} and 9.87×10^{9} $\text{M}^{-1}\text{s}^{-1}$, respectively. Aromatic intermediates derived from the dimethylphenylcarbinol oxidation by hydroxyl radicals which could be identified in this study were acetophenone, dicumylperoxide, hydroxy-acetophenone, hydroxybenzoic acid, dihydroxybenzoic acid, phenylglyoxalic acid, hydroxyphenylglyoxalic acid, benzoic acid, 2-hydroxy-1-phynylethanone, and 4-4'-diacetylbiphenyl. Reaction mechanism occurred could be classified into 5 reaction pathways. Carboxylic acid intermediates found were maleic acid, tartalic acid, malic acid, succinic acid, fumaric acid, malonic acid, oxalic acid, acetic acid, and formic acid.

Additionally, this research also investigated the mechanism of iron crystallization onto the media surface in the fluidized-bed Fenton process as well as the factors affecting the iron crystallization. The results indicated that optimum pH for iron crystallization in the fluidized-bed Fenton process was 3.0. Increasing the quantity of the media could increase

the iron removal efficiency. Smaller medium side could enhance the iron removal efficiency due to the higher specific surface area. Increasing bed expansion did not have any significant impact on the iron removal efficiency. Nonetheless, it was found that, in order to increase removal efficiency of both organic pollutant and iron removals, the fluidized-bed Fenton process should be operated under a batch mode rather than a continuous mode. This was because the batch reactor could provide higher organic removal efficiency than the continuous-flow reactor. As a result, the concentrations of the organics which interfered with the iron crystallization became lower leading to a better iron removal efficiency. Increasing hydraulic retention time could increase the removal efficiencies of both targeted organic and iron.

Keywords: Dimethylphenylcarbinol; Acetophenone; Competitive Kinetic Technique; Reaction Mechanism; Iron Crystallization