รหัสโครงการ: TRG5780128

ชื่อโครงการ: ผลของสัญญาณเครือข่ายไร้สายต่ออัตราการดูดกลืนพลังงานจำเพาะ

และการถ่ายเทความร้อนในร่างกายมนุษย์ (เชิงทฤษฎีและเชิงประยุกต์)

ชื่อนักวิจัย: ผศ.ดร.ธีรพจน์ เวศพันธุ์

E-mail Address: teerapot@eau.ac.th

ระยะเวลาโครงการ: 2 ปี

บทคัดย่อ

ในช่วงทศวรรษที่ผ่านมาคลื่นแม่เหล็กไฟฟ้าเข้ามามีบทบาท สำคัญต่อชีวิตประจำวันของ มนุษย์ ดังนั้น มนุษย์จึงหลีกเลี่ยงไม่ได้ที่จะต้อง อยู่ภายใต้คลื่นแม่เหล็กไฟฟ้า ที่เกิดจากจาก อุปกรณ์ อิเล็กทรอนิกส์ในบริเวณใกล้เคียงอย่างต่อเนื่อง เช่น สัญญาณเครือข่ายไร้สาย โทรศัพท์มือถือแบบพกพา อุปกรณ์จัดเส้นทางไร้สายและบริการไร้สายอื่น ๆ ดังนั้นวัตถุประสงค์ของงานวิจัย นี้คือเพื่อศึกษาถึง การ กระจายตัวของอัตราการดูดกลื่นพลังงานจำเพาะ การกระจายตัวของอุณหภูมิ และผลกระทบ เชิงความ ร้อนที่เกิดขึ้นที่มีต่อ ร่างกายขณะที่มีการสัมผัสกับ คลื่นแม่เหล็กไฟฟ้าจากสัญญาณเครือข่ายไร้สาย งานวิจัยนี้ได้ทำการศึกษาอย่างเป็นระบบถึงผลของพารามิเตอร์ทางกายภาพต่าง ๆ ที่มีผลต่อการ กระจายตัวของสนามไฟฟ้า อัตราการดูดกลืนจำเพาะ การไหลของของไหลภายในเนื้อเยื่อ และกระจาย ตัวของอุณหภูมิในเนื้อเยื่อระหว่างที่สัมผัสคลื่นแม่เหล็กไฟฟ้า โดยทำการจำลองเชิงตัวเลขของ การแพร่ ของคลื่นแม่เหล็กไฟฟ้า การถ่ายเทความร้อนและ การไหล สำหรับการแพร่ของสนามแม่เหล็กไฟฟ้าใช้ แบบจำลองทางคณิตศาสตร์โดยสมการแมกซ์เวล การถ่ายโอนความร้อน ใช้สมการไบโอฮีท และสมการ การของวัสดุพรุน จากผลการวิจัยพบว่าแบบจำลองบนพื้นฐานของสมการวัสดุพรุนจะแสดง การกระจาย ตัวของอุณหภูมิที่แตกต่างจากแบบจำลองไบโอฮีท โดยอิทธิพลจากการไหลของเลือดในสมการวัสดุพรุน ส่งผลต่อการกระจายตัวของอุณหภูมิอย่างมีนัยสำคัญ ระยะห่างจากแหล่งกำเนิดคลื่น มีอิทธิพลต่อ อัตรา การดูดกลื่นพลังงานจำเพาะ การกระจายตัวของความเร็วเลือดและกระจายตัวของอุณหภูมิ นอกจากนี้ค่า ชึมผ่านเนื้อเยื่อยังมีผลต่อรูปแบบการกระจายตัวของอุณหภูมิภายในเนื้อเยื่อด้วยเช่นกัน ผลที่ได้จากการ วิจัยสามารถนำไปใช้ในการกำหนดขีดจำกัดการสัมผัสคลื่นแม่เหล็กไฟฟ้าจากของเครื่องส่งสัญญาณแบบ ไร้สายรวมถึงระยะห่างที่เหมาะสมที่จะไม่เป็นอันตรายต่อ ร่างกายมนุษย์ ผล ที่ได้ยังสามารถใช้เป็นแนว ทางการวิจัยเชิงคลินิกที่มีความเกี่ยวข้องกับคลื่นแม่เหล็กไฟฟ้าที่ใช้กับร่างกายมนุษย์ นอกจากนี้ผลที่ได้ จากการวิจัยยังใช้เป็นแนวทางในการออกแบบของอุปกรณ์ในระบบเครือข่ายไร้สายเพื่อลดผลกระทบต่อ สุขภาพจากการสัมผัสสัญญาณคลื่นแม่เหล็กไฟฟ้า

คำหลัก: สนามแม่เหล็กไฟฟ้า การกระจายตัวเชิงอุณหภูมิ อัตราการดูดกลืนพลังงานจำเพาะ ร่างกาย มนุษย์ การถ่ายเทความร้อน Project Code: TRG5780128

Project Title: Effects of Wi-Fi Signal on Specific Absorption Rate and Heat Transfer

in the Human Body (Theory and Applications).

Investigator: Asst.Prof.Dr.Teerapot Wessapan

E-mail Address: teerapot@eau.ac.th

Project Period: 2 years

Abstract

Electromagnetic fields (EMF) have been a vital part of our daily life over the past decade. Therefore, people are continuously exposed to electromagnetic (EM) sources in their vicinity generated by electronic devices such as those emitted by Wi-Fi, mobile phones, portable wireless router and other wireless services. Therefore, the aim of this study is to learn more about absorbed power distribution and possible effects upon the body while it is exposed to EM fields-induced temperature distribution. This study systematically investigate the impacts of physical parameters on distributions of electric field induced on the surface, specific absorption rate (SAR), blood flow, and on the temperature profile within the tissue. The specific absorption rate (SAR), fluid flow and the temperature distributions in the tissue during exposure to EM fields are obtained by numerical simulation of EM wave propagation and heat transfer equations. The EM wave propagation is expressed mathematically by Maxwell's equations. The heat transfer model used in this study is developed based on bioheat model and porous media model. By using the porous media model, the distribution patterns of temperature are quite different from the bioheat model by the strong blood dissipation effect of the porous media model. The exposure distance significantly influences the SAR, velocity field and temperature distribution. Moreover, the tissue permeability also affects the temperature distribution patterns within the tissue. The obtained results may be of assistance in determining exposure limits for the power output of the wireless transmitter, and its distance from the human body. The results can also be used as a guideline to clinical practitioners in EM relates the interaction of the radiated waves with the human body. Moreover, the obtained results are expected to provide guidance on the design of Wi-Fi devices to reduce health impact from Wi-Fi signal exposure.

Keywords: Electromagnetic Fields, Temperature distribution, Specific absorption rate, Human body, Heat transfer