ABSTRACT

Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) is the causative agent of PRRS, the most economically important disease in swine industries worldwide including Thailand. Due to the safety concern associated with a widely used Modified Live Vaccine (MLV), an alternative vaccine, which is safe and effective, is needed. One of the strategies that has been studied and used to improve immunogenicity of a vaccine is subcellular targeting strategy. The aim of this study was to develop a DNA-based PRRSV vaccine and enhance its immunogenicity by targeting the immunogen to different subcellular compartments involved in antigen processing and presentation. GP5, an immunogen derived from ORF5 of genotype 2 PRRSV, was designed to be targeted to cytoplasm, endoplasmic reticulum, endosome and MHC-I pathway by conjugating to different signal sequences. The immunogen GP5 was vectored by DNA plasmid pTH. Even though reverse transcription PCR (RT-PCR) revealed that GP5 mRNA from all GP5 variants was expressed at a similar level in transfected HEK293A and pig PK-15 cells, Western blot analysis showed that only the original GP5 and the GP5 targeted to cytoplasm and ER could be detected. Immunofluorescence staining confirmed different expression levels and localizations of the original GP5 and its derivatives. Immunogenicity study in BALB/c mice and immune response assessment showed that mice immunized with DNA vaccines that express the original GP5, the GP5 targeted to cytoplasm and the GP5 targeted to endoplasmic reticulum showed endpoint titre of 64. However, CD8 T cell response in all groups of vaccinated mice was very low and not different from that in PBS control group. Further immunogenicity study with improved protocols in immunization and immunoassays is suggested. This study demonstrates the technique of immunogen modification which can be applied in vaccine design and development.

Keywords: PRRSV, GP5, subcellular targeting, DNA vaccine

บทคัดย่อ

โรคพีอาร์อาร์เอส หรือ Porcine Reproductive and Respiratory Syndrome เป็นโรคที่ทำให้เกิดกลุ่ม อาการทางระบบสืบพันธุ์ในแม่พันธุ์สุกร และโรคทางระบบทางเดินหายใจในลูกสุกร สาเหตุของโรคนี้มาจาก เชื้อไวรัสพีอาร์อาร์เอส โรคพีอาร์อาร์เอสมีการระบาดอย่างกว้างขวางไปทั่วโลกรวมถึงประเทศไทย ด้วยวัคซีนชนิด Modified Live Vaccine (MLV) ซึ่งเป็นวัคซีนหลักที่ใช้กันอยู่ปัจจุบันมีความเสี่ยงที่วัคซีนจะ กลายพันธุ์เป็นสายพันธุ์รุนแรงและก่อโรคได้ วัคซีนทางเลือกที่ปลอดภัยและมีประสิทธิภาพดีจึงยังเป็นที่ ต้องการ หนึ่งในวิธีการที่มีการศึกษาและใช้ในการเพิ่มประสิทธิภาพของวัคซีนคือการดัดแปลงแอนติเจนให้ แสดงออกในตำแหน่งที่ต่างกันภายในเซลล์ การศึกษานี้จึงมีวัตถุประสงค์คือการพัฒนาดีเอ็นเอวัคซีนสำหรับ โรคพีอาร์อาร์เอสและเพิ่มประสิทธิภาพของวัคซีนโดยการกำหนดให้อิมมูโนเจนไปอยู่ในตำแหน่งต่างๆของ เซลล์ที่ที่เกี่ยวข้องกับการดำเนินการและนำเสนอแอนติเจน โดยอิมมูโนเจน GP5 ที่ใช้ในการศึกษานี้ ออกแบบมาจาก amino acid sequence ของ ORF5 ของเชื้อไวรัสพีอาร์อาร์เอส จีโนไทป์ 2 และถูกดัดแปลง โดยการต่อเชื่อมกับ signal sequence หลากหลายชนิด เพื่อส่งโปรตีนไปยังตำแหน่งดังต่อไปนี้คือ cytoplasm, endoplasmic reticulum, MHC-I pathway และ endosome โดยใช้ดีเอ็นเอวัคซีนพลาสมิดเป็น เวคเตอร์ในการนำส่งและแสดงออกของยืน GP5 ถึงแม้ว่าการศึกษาการแสดงออกในระดับเอ็มอาร์เอ็นเอด้วย เทคนิค reverse transcription PCR (RT-PCR) จะแสดงว่าการแสดงออกของยืน GP5 ทุกตัวมีระดับที่ ใกล้เคียงกัน แต่ผลของ Western blot analysis ตรวจพบโปรตีน GP5 จากตัวอย่างของ GP5 ต้นแบบ และ ตัวที่ถูกดัดแปลงให้ส่งไปที่ cytoplasm และ endoplasmic reticulum เท่านั้น การศึกษาโดยใช้เทคนิค Immunofluorescence staining ย้อมเซลล์ HEK293A และเซลล์สุกร PK-15 ยืนยันว่าโปรตีน GP5 ที่มีการ ถูกส่งไปในตำแหน่งที่แตกต่างกันในเซลล์และมีระดับโปรตีนที่แตกต่างกันตามที่ ดัดแปลงทั้งห้าแบบนั้น ออกแบบไว้ ผลการศึกษาประสิทธิภาพวัคซีนในการกระตุ้นภูมิคุ้มกันในหนูทดลองพบว่า หนูที่ได้รับดีเอ็น เอวัคซีนที่สร้างโปรตีน GP5 ต้นแบบ และโปรตีน GP5 ที่ดัดแปลงให้ถูกส่งไปที่ไซโทพลาสซึมและเอนโดพ ลาสมิคเรติคิวลัม มีการสร้างแอนติบอดีที่จำเพาะกับโปรตีน GP5 ด้วยระดับ endpoint titre ที่ 64 อย่างไรก็ ตามระดับการตอบสนองของ CD8 T cell ในหนูที่ได้รับวัคซีนทุกกลุ่มอยู่ในระดับต่ำและไม่แตกต่างกลุ่ม ควบคุมที่ถูกฉีดด้วย PBS จึงควรทำการศึกษาซ้ำอีกครั้งโดยปรับปรุงทั้งวิธีการฉีดวัคซีนและวิธีการศึกษา วิเคราะห์ผลการตอบสนองด้วยภูมิคุ้มกัน การศึกษานี้แสดงถึงเทคนิคที่ใช้ในการดัดแปลงอิมมูโนเจนซึ่ง สามารถนำไปประยุกต์ใช้ในการออกแบบและพัฒนาวัคซีน

คำสำคัญ : ไวรัสพีอาร์อาร์เอส, โปรตีน GP5, ตำแหน่งภายในเซลล์, ดีเอ็นเอวัคซีน