

รหัสโครงการ: TRG5780151

ชื่อโครงการ: การสืบค้นตัวบ่งชี้ชีวภาพเพื่อประยุกต์ใช้สำหรับการประเมินคุณภาพเซลล์อสุจิของพ่อพันธุ์กุ้งกุลาดำ
ชื่อนักวิจัย ผศ.ดร. จรุณ โรจน์ โชติวิวัฒนกุล

E-mail Address: charoonroj@yahoo.com และ charoonroj.cho@mahidol.ac.th

ระยะเวลาโครงการ 2 ปี

บทคัดย่อ

ปัจจัยสำคัญอย่างหนึ่งในการผลิตลูกกุ้งในโรงเพาะพันธุ์ คือพ่อแม่พันธุ์ที่มีประสิทธิภาพการสืบพันธุ์สูง มีการรายงานว่า อายุของพ่อแม่พันธุ์กุ้งนั้นอาจส่งผลต่อระบบสืบพันธุ์และคุณภาพของไข่และอสุจิ การศึกษาความสัมพันธ์ระหว่างอายุและความสมบูรณ์ของเพศกุ้งพบว่ากุ้งที่อายุมากกว่า 1 ปีขึ้นไป มีอสุจิที่มีคุณภาพดีกว่ากุ้งที่อายุน้อย การศึกษาได้ทำการเปรียบเทียบโปรตีนในอสุจิของกุ้งอายุ 10 และ 14 เดือน เพื่อหาตัวบ่งชี้ถึงความแตกต่างของอสุจิของกุ้งที่มีอายุต่างกันซึ่งอาจเกี่ยวข้องกับความสมบูรณ์เพศของพ่อพันธุ์กุ้ง ผลการทดลองพบว่าโปรตีนที่น้ำหนักโมเลกุล ประมาณ 34 kDa มีการแสดงออกมากขึ้นอย่างเห็นได้ชัดในกลุ่มพ่อพันธุ์กุ้งอายุ 14 เดือน จึงทำการวิเคราะห์โปรตีนนี้ด้วยเทคนิค LC-MS/MS ซึ่งบ่งชี้ว่าคือโปรตีน aldose reductase (AR) ใน aldo-keto reductase (AKR) superfamily จึงได้ทำการหาลำดับเบสที่สมบูรณ์ของยีน *Penaeus monodon* aldose reductase (PmAR) ด้วยเทคนิค 5' และ 3' RACE-PCR พบว่า PmAR มีความยาว 1,505 คู่เบส บรรจุรหัสของกรดอะมิโน 317 กรดอะมิโน น้ำหนักโมเลกุล 35.94 kDa การศึกษาการแสดงออกของยีน PmAR โดยใช้เทคนิค RT-PCR และ in situ hybridization พบการแสดงออกในหลักหลายเนื้อเยื่อรวมถึงในระบบสืบพันธุ์เพศผู้ ได้แก่ อันดะ และท่อน้ำอสุจิ โดยมีการแสดงออกที่เซลล์สืบพันธุ์และเซลล์พื้นที่เยื่องภายในอันดะ และเซลล์เยื่อบุต่อลอดท่อนำอสุจิยื่นด้วย ระดับการแสดงออกของยีน PmAR เห็นได้ชัดเจนในกุ้งอายุ 14 เดือนแต่ไม่ชัดเจนในกุ้งอายุ 4 และ 10 เดือน และด้วยเทคนิค real-time PCR พบระดับการแสดงออกของยีน PmAR มากขึ้นอย่างมีนัยสำคัญในอันดะของกุ้งอายุ 14 เดือน เมื่อเปรียบเทียบกับกุ้งอายุ 10 และ 4 เดือน ตามลำดับ นอกจากนี้การศึกษาด้วยเทคนิคการย้อมด้วยแอนติบอดีจำเพาะยังพบการแสดงออกของโปรตีน PmAR ในของเหลวภายในท่อน้ำอสุจิ และถุงเก็บอสุจิของกุ้งอายุ 10 และ 14 เดือน แต่ไม่พบในกุ้งอายุ 4 เดือน และยังพบโปรตีนชนิดนี้ในส่วน subacrosome ของอสุจิกุ้งอายุ 14 เดือนเพิ่มมากขึ้นอีกด้วย จากผลการศึกษาแสดงให้เห็นว่า ในกุ้งกุลาดำเพศผู้ที่มีอายุต่างกันนั้น จะมีการแสดงออกของ PmAR ในอันดะ, ท่อน้ำอสุจิ และอสุจิ ที่แตกต่างกัน โดยมีแสดงออกมากขึ้นในกุ้งที่มีอายุ 14 เดือน ดังนั้น PmAR อาจมีหน้าที่เกี่ยวข้องกับกระบวนการสร้างอสุจิ และการพัฒนาของอสุจิในกุ้งกุลาดำ อย่างไรก็ตามหน้าที่ของ PmAR และการนำ PmAR ไปใช้เพื่อเป็นตัวบ่งชี้ถึงความสมบูรณ์เพศผู้ยังต้องทำการศึกษาต่อไป

การวิจัยครั้งนี้ยังได้ทำการแยกยีนตัวบ่งชี้โปรตีอสที่เกี่ยวเนื่องกับระบบสืบพันธุ์ชนิดใหม่ (rr-PmSERPIN) โดยได้ทำการหา yin สมบูรณ์ด้วยเทคนิค RACE-PCR พบว่า yin สมบูรณ์ของ rr-PmSERPIN มีความยาว 1404 นิวคลีโอไทด์ ที่ถอดรหัสเป็นกรดอะมิโนได้ 422 ตัวเรียงต่อกัน โครงสร้างปฐมภูมิของโปรตีนชนิดนี้มีค่า pI 6.86 และน้ำหนักโมเลกุล 44.88 กิโลดالتัน และมีไกลโคลซิเลชัน 2 ตำแหน่ง จากการพยากรณ์โครงสร้างจากลำดับนิวคลีโอไทด์พบว่ามีส่วนอนุรักษ์ที่จัดจำแนกโปรตีนกลุ่มครอบครัวเซอพิน เมื่อทำการศึกษาการแสดงออกพบว่า yin นี้พบเฉพาะในระบบสืบพันธุ์ ซึ่งรวมถึง อันดะ ท่อน้ำเซลล์อสุจิ และถุงเก็บกักเซลล์อสุจิ รวมทั้งในช่องเก็บเซลล์อสุจิในเพศเมีย การแสดงออกที่มากของยีน rr-PmSERPIN พบว่ามีความสัมพันธ์กับค่าแอกติวิตีของโปรตีอสที่ลดลงของเซลล์อสุจิ จึงสันนิษฐานว่า rr-PmSERPIN อาจมีบทบาทในการบังคับการทำงานของโปรตีอส จึงได้ทำการผลิตโปรตีน rr-PmSERPIN ขึ้นในเซลล์แบคทีเรียด้วยเทคโนโลยีดัดแปลงพันธุกรรม แล้วทำการทดสอบประสิทธิภาพในการบังคับการทำงานของโปรตีอส พบร่วมกับความสามารถบังคับการทำงานของ ทริปซิน ไคโม่ทริปซิน และ ค่าโปรตีอสของเซลล์อสุจิได้แบบแปรผันกับปริมาณ จากการทดลองแสดงให้เห็นว่าค่าแอกติวิตีของเซลล์อสุจิ อาจถูกควบคุมด้วยตัวบัญชีและมีบทบาทในการกระตุ้นการพัฒนาเซลล์อสุจิ เช่นเดียวกับที่พบในสิ่งมีชีวิตเลี้ยงลูกด้วยน้ำนม

คำหลัก: กุ้งกุลาดำ เซลล์อสุจิ แอล朵ส์รีดักเตส ตัวบัญชีโปรตีอส

Abstract

Project Code : TRG 5780151

Project Title : Identification of male fertility related marker(s) and application use for shrimp sperm fertility assessment in *Penaeus monodon*

Investigator : Asst. Prof. Charoonroj Chotwiwatthanakun

E-mail Address : Charoonroj@yahoo.com and Charoonroj.cho@mahidol.ac.th

Project Period : 2 years

Abstract:

Higher reproductive performance of broodstock is one of the main goals of a shrimp maturation unit. In this study, two reproductive related genes, *Penaeus monodon* aldo-keto reductase (PmAR) and reproductive related *Penaeus monodon* serine type protease inhibitor (rr-PmSERPIN) were identified and characterized. Protein profiles of the whole sperm extracted from the spermatophores of 14-month old male shrimp exhibited the distinct bands at ~ 34 kDa. By LC-MS/MS, this protein was identified as aldose reductase. Using 5' and 3' RACE-PCR, the full sequence of aldose reductase was obtained. The longest open reading frame of PmAR cDNA contained 1,505 bp. The putative protein contained 317 amino acids with the predicted molecular weight of 35.94 kDa. The PmAR gene was expressed in various shrimp tissues, including the male reproductive tissues. By means of in situ hybridization, the PmAR was suggested to be produced from the spermatogenic cells and supportive cells within the seminiferous tubules and the epithelial cells of entire spermatic duct. At protein level, the existence of PmAR was found specifically in the spermatogenic cells as well as the supportive cells within the seminiferous tubules of the shrimp aged 14 months, not the younger one. Moreover, the PmAR could be immuno-detected in the matrix substance surrounding the sperm mass inside the spermatic ducts and the spermatophores of 10- and 14-month old male, not the 4-month old one. The PmAR was also found to be associated with the sperm, particularly in the sperm of 14-month old male at the subacrosomal region. By means of real time PCR, the expression of PmAR was highest in the testis of 14-month old shrimp and it was significantly decreased in the 10- and 4-month old shrimp, respectively. Since differential expression of the PmAR has been shown in the testis and spermatic ducts of different ages of *P. monodon* male, it was hypothesized that the PmAR could be associated with spermatogenesis as well as sperm maturation in this species.

In addition, a novel reproductive related serine protease inhibitor (SERPIN) was identified and characterized. A full cDNA sequence of reproductive-related serine protease inhibitor (rr-PmSERPIN) was cloned by RACE-PCR. The longest open reading frame composing of 1,404 nucleotides encoded for 422 amino acid residues. The putative primary structure of rr-PmSERPIN has pI 6.86 and MW of 44.88 kDa showed signal peptide cleavage site at 17 amino acid residues from N-terminus and contained 2 potential N-glycosylation sites. A conserved reactive loop together with 3D-model homology suggested that this gene was belonged to SERPIN family. The expression of rr-PmSERPIN mRNA was especially found in spermatic tract including testis, vas deferens, spermatophore and thelycum. The relative expression level of rr-PmSERPIN mRNA showed negative correlation with sperm protease enzyme activity during being kept in different part of spermatic ducts and female thelycum. Recombinant rr-PmSERPIN showed inhibitory effects to trypsin, chymotrypsin and trypsin-like sperm protease activities in dose dependent manner. This result suggested that the sperm proteolytic activity was regulated by rr-PmSERPIN and involved in sperm maturation process as found in other mammals.

KEY WORDS: PENAEUS MONODON / SPERM / ALDOSE REDUCTASE / SERPIN