Abstract

This work presents the results from a study on firing some Thai biomass fuels (rubber wood sawdust, eucalyptus bark, teak sawdust, rice husk, and cassava rhizome) in a pelletized form in a conical fluidized-bed combustor using silica sand as the bed material. During the combustion tests, all fuels were burned at an identical heat input (~200 kW_{th}), while ranging excess air from ~20% to ~80%. Under fixed operating conditions, temperature, O2, CO, and NO were measured along the reactor centerline for each biomass. As revealed by the experimental results, the temperature and the major pollutants, CO and NO, showed fair similarity of their axial profiles inside the reactor. Models for predicting dimensionless axial profiles, CO/CO_{max} and NO/NO_{max} (all as a function of the dimensionless axial distance from the air distributor, X/X_{Tbed} , $X_{\rm CO}/X_{\rm COmax}$ and $X_{\rm NO}/X_{\rm NOmax}$, respectively) were derived via statistical treatment of experimental results. Supporting semi-empirical equations for quantifying CO_{max} and NO_{max}, including the effects of fuel properties and operating conditions, were proposed for the selected biomass fuels. With the proposed models, CO and NO can be estimated for any arbitrary level above the air distributor in the conical FBC for individual firing of biomasses with similar properties at typical values of excess air. For firing all the selected types of fuel, CO emission mainly depends on air-fuel ratio (excess air), however, the NO emission mainly influenced by the fuel-N for different types of fuel. In this experimental study, CO and NO emissions can be secured below the Thai's emission standard and achievable combustion efficiency (over 99%) for all biomass fuels.

Keywords: pelletized biomass fuels; fluidized-bed combustion; operating conditions; similarity of CO and NO; modeling axial profiles; emissions; combustion efficiency.

บทคัดย่อ

งานวิจัยนี้แสดงถึงผลการทดลองในการเผาไหม้เชื้อเพลิงชีวมวลอัดเม็ดหลากชนิดในเตาเผาฟลูอิไดซ์ เบดแบบทรงกรวย (ขี้เลื่อยไม้ยางพารา เปลือกไม้ยูคาลิปตัส เปลือกไม้สัก ชานอ้อย และ เหง้ามัน สำปะหลัง) โดยใช้ทรายซิลิกาเป็นวัสดุเบด ในการทดลองได้มีการให้อัตราความร้อนที่ป้อนสู่เตาเผา เท่ากันในทุกชนิดเชื้อเพลิงที่ ~200 kW_{th} และมีการปรับอากาศส่วนเกินให้อยู่ในช่วงระหว่าง~20% ถึง \sim 80% ในการทดลองได้มีการวัดค่าอุณหภูมิ ก๊าซ O_2 ก๊าซ CO และ ก๊าซ NO ที่บริเวณกึ่งกลางตาม ช่วงแนวความสูงต่างๆของเตา จากผลการทดลองพบว่า อุณหภูมิ และ ก๊าซมลพิษหลัก CO และ NO ของแต่ละชนิดเชื้อเพลิงมีค่าใกล้เคียงกันมากจึงสามารถนำข้อมูลมาสร้างสมการทำนายค่า CO_{max} และ NO_{max} รวมถึงสมการไร้หน่วยของ CO/CO_{max} เทียบกับ X/X_{COmax} และ NO/NO_{max} เทียบกับ ในช่วงของการทดลองและองค์ประกอบทางเคมีของเชื้อเพลิงชีวมวลอัดเม็ดซึ่งสามารถใช้ ทำนายการก่อตัวและการลดลงได้ในช่วงการทดลอง เมื่อใช้อากาศส่วนเกินสูงการปล่อยก๊าซ สามารถควบคุมได้อย่างมีประสิทธิภาพ ในทางกลับกัน NO จากเตาเผาจ^ะเพิ่มขึ้นเมื่อเพิ่มอากาศ ส่วนเกินโดยกลไกการก่อตัวสอดคล้องกับปริมาณในโตรเจน ประสิทธิภาพในการเผาไหม้เชื้อเพลิง อัดเม็ดเหล่านี้ค่อนข้างสูง (มากกว่า 99%) โดยค่าอากาศส่วนเกินระหว่าง 40–60% จะเป็นสภาวะที่ เหมาะสมที่สุดที่ทำให้ได้ประสิทธิภาพในการเผาไหม้ที่สูงและมีค่ามลพิษต่ำกว่าระดับมาตราฐานของ ประเทศไทย

คำสำคัญ: เชื้อเพลิงชีวมวลอัดเม็ด; เตาเผาฟลูอิไดซ์เบด; สภาวะการเผาไหม้; ความเหมือนของ CO และ NO; การ สร้างสมการทำนายค่า; มลพิษ; ประสิทธิภาพในการเผาไหม้.

Project Code: TRG5780164

Project Title: โครงการศึกษาประสิทธิภาพในการเผาไหม้และมลภาวะที่เกิดขึ้นในการใช้เชื้อเพลิง

ชีวมวลอัดเม็ดหลากชนิดในเตาเผาฟลูอิไดซ์เบดแบบทรงกรวย

Investigator: นาย ปรเมศร์ อารมย์ดี ภาควิชาวิศวกรรมเครื่องกล คณะวิศวกรรมศาสตร์และ

เทคโนโลยีอุตสาหกรรม มหาวิทยาลัยศิลปากร E-mail Address: porametr@gmail.com

Project Period: 2 มิถุนายน 2559