บทคัดย่อ

รหัสโครงการ : TRG5780165

ชื่อโครงการ : การสังเคราะห์ วิเคราะห์และควบคุมโครงสร้างของคาร์บอนนาโนทิวบ์ผนังเดี่ยวที่เจือปนด้วย ในโตรเจนด้วยวิธีตกสะสมไอเคมีเพื่อการประยุกต์ใช้ในด้านไฟฟ้าและเชิงกล

ชื่อนักวิจัย : ธีรพล ธุระกิจเสรี มหาวิทยาลัยแม่โจ้

E-mail Address: zoonphysics@gmail.com, theerapol@mju.ac.th

ระยะเวลาโครงการ : 2 ปี

บทคัดย่อ: คาร์บอนนาโนทิวบ์ผนังเดี่ยวเป็นวัสดุระดับนาโนชนิดหนึ่งที่วิเศษและมีสมบัติที่น่าใจอย่างมาก ท่อนาโนคาร์บอนนี้เป็นที่รู้จักกันในแง่ของสมบัติในเชิงหนึ่งมิติ จากการทดลองและวิจัยทำให้เราทราบถึง สมบัติทางกายภาพ แสง และไฟฟ้าที่ยอดเยี่ยม ในปัจจุบันเราสามารถสังเคราะห์ท่อนาโนคาร์บอนที่มีคุณภาพ ในปริมาณมากในเชิงพาณิชย์ได้โดยใช้วัสดุเสริมร่วมกับตัวเร่งปฏิกิริยา การปรับปรุงสมบัติทางแสงและไฟฟ้า สามารถทำได้ได้หลายวิธี อาทิ การควบคุมโครงสร้าง หรือการเจือทางเคมี เนื่องจากสมบัติเฉพาะของท่อนา ้โนคาร์บอน มันจึงได้รับความสนใจเป็นอย่างมากในการประยุกต์ใช้ต่างๆ การปรับปรุงสมบัติทางแสงและ ไฟฟ้าระหว่างการสังเคราะห์ในกระบวนการตกสะสมไอเคมี (CVD) จึงเป็นเป้าหมายในระยะยาว ในการ สังเคราะห์ท่อนาโนคาร์บอนด้วยวิธีการทั่วไป เรามักจะไม่สามารถควบคุมโครงสร้างของท่อ (chirality) ได้มาก นัก อย่างไรก็ตาม เราสามารถควบคุมด้วยวิธีทางอ้อมได้โดยการควบคุมขนาดหรือช่วงของขนาดเส้นผ่าน ศูนย์กลางของท่อ ซึ่งเมื่อลดขนาดหรือช่วงขนาดลง จะส่งผลทำให้จำนวนโครงสร้างลดลงด้วยเหลือเพียงแต่ โครงสร้างที่ต้องการเพียงไม่กี่รูปแบบ อีกหนึ่งวิธีในการควบคุมสมบัติและโครงสร้างคือ การเจือด้วยธาตุอื่น ชึ่งจะส่งผลให้ท่อนาโนคาร์บอนสามารถเป็นได้ทั้งตัวนำหรือสารกึ่งตัวนำ ดังนั้นการจำกัดจำนวนของ โครงสร้างที่เป็นไปได้จึงได้รับความสนใจ ในการศึกษานี้ ผู้วิจัยทำการศึกษาผลกระทบของการเจือท่อนาโน คาร์บอนด้วยในโตรเจนต่อขนาดเส้นผ่านศูนย์กลาง จากการศึกษาพบว่า ขนาดเส้นผ่านศูนย์กลางสามารถทำ ได้โดยการเจือในโตรเจนระหว่างการสังเคราะห์ และพบว่าในกระบวนการ CVD นี้ ในโตรเจนจะเหนี่ยวนำให้ เกิดก๊าซไนโตรเจนขึ้นระหว่างปฏิกิริยาเคมี เมื่อทำการเปลี่ยนลำดับการให้แหล่งกำเนิดคาร์บอนที่มีชนิด ้ ต่างกัน ขนาดของท่อนาโนคาร์บอนสามารถเปลี่ยนแปลงได้ มากไปกว่านี้ผู้วิจัยยังได้ทำการศึกษารอยต่อ ระหว่างท่อที่มีขนาดต่างกันโดยวิธีการติดตามการย้ายผ่านของก๊าซไนโตรเจนระหว่างท่อ และการนำท่อนาโน คาร์บอนไปประยุกต์ใช้ในการเปลี่ยนพลังงานแลงอาทิตย์ให้เป็นพลังงานไฟฟ้าอีกด้วย

คำหลัก: คาร์บอนนาโนทิวบ์ผนังเดี่ยว การเจือด้วยในโตรเจน การควบคุมขนาดเส้นผ่านศูนย์กลาง การลด ขนาดเส้นผ่านศูนย์กลาง การห่อหุ้มก๊าซในโนโตรเจน

Abstract

Project Code: TRG5780165

Project Title: CVD Synthesis, Structure Control and Characterizations of Nitrogen-Doped Single-

Walled Carbon Nanotubes for Electrical and Mechanical Applications

Investigator: Theerapol Thurakitseree, Maejo University

E-mail Address: zoonphysics@gmail.com, theerapol@mju.ac.th

Project Period: 2 years

Abstract: Single-walled carbon (SWNT) has been well known as one of the wonderful nanomaterials, which has very interesting properties. It has been recognized as special onedimensional material fruitful with many promising properties. The experimental and theoretical studies have revealed its great physical, optical, and electrical properties. By utilizing catalyst support, mass production processes on SWNT synthesis have been commercialized, which provide good quality SWNTs for the next step of applications. Modifying electrical and optical properties of SWNTs has been obtained by many methods such as structure controlling, or chemical doping. Because of their intrinsic electrical property, those nanotubes have been given an emphasis on many applications. Tuning of electrical and optical properties of SWNTs during synthesis is a long standing goal in the chemical vapor deposition (CVD) synthesis of SWNTs. The direct synthesized SWNTs by conventional methods are inherently devoid of chirality control. Still, the electronic structures may be controlled indirectly by narrowing the diameter range to confine only the desired chiralities. By doping, SWNT properties can also be modified to be either metallic or semiconducting, depending on desired applications. Confinement of number of possible chirality, as well as, doping effect have consequently drawn intensively attention. In this study, the influence of nitrogen (N) doping on SWNT diameter structure was studied. It was found that nanotube diameter could be reduced by introducing N during synthesis process. By introducing N during CVD synthesis, N₂ molecules could be produced as by-product of chemical process. Upon switching feedstock introduction, SWNTs with different diameters could be obtained. The interface connection between tube-to-tube was investigated by tracing the migration of N₂ along the tube. Furthermore, the application of SWNTs on photovoltaic devices was also demonstrated.

Keywords: Carbon nanotubes, nitrogen doping, diameter control, diameter reduction, encapsulated nitrogen