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1. Abstract:  
Strongyloidiasis, hookworm infection and opisthorchiasis are public health problem Thailand 

caused by soil-transmitted helminthes: Strongyloides stercoralis, Necator americanus, and 
carcinogenic liver fluke: Opisthorchis viverrini respectively. The correctly defining disease distribution 
and disease risk map is an important step in the control and prevention of diseases. This study use 
geographical information systems (GIS) and remote sensing (RS) technologies within the MaxEnt 
ecological niche modeling program to determine the climatic and environmental factors (Bioclim, 
NDVI, NDWI, LST, precipitation, tmin, tmax, tmean, altitude, Land cover, soil texture and soil pH) on 
transmission patterns of strongyloidiasis, hookworm infection and opisthorchiasis. Disease case 
occurrence points are from the literature reviews. Climatic and environmental data are compiled from 
MODIS satellite imagery, and WorldClim data for Thailand. A range of climate variables was used: 
the Hadley Global Environment Model 2 - Earth System (HadGEM2-ES) climate change model and 
also the IPCC scenarios A2a for 2050 and 2070.  

The MaxEnt model’s internal jackknife analyses of variable importance indicated that land 
cover had the highest percent contribution (22.5%). Maximum temperature in October (12.2%), Mean 
temperature of driest quarter (9.6%), precipitation of coldest quarter (9.6%) and normalized 
difference vegetation index (8.9%) were the most important individual variables influencing 
distribution of S. stercoralis in Thailand. The current distribution predicted for S. stercoralis in 
Thailand are primarily in southern and some parts of central, northern and northeastern Thailand. 
For hookworm infection, land cover had the highest percent contribution (24.1%). Altitude (15.1%), 
Minimum temperature in October (13.2%), Mean temperature of driest quarter (9.3%), were the most 
important individual variables influencing distribution of hookworm in Thailand.  Suitable climatic and 
environmental conditions for hookworm are mainly in southern and some parts of central, northern 
and northeastern Thailand.  

The current distribution of O. viverrini is significantly affected by precipitation and minimum 
temperature. According to current conditions, parts of Thailand climatically suitable for O. viverrini 
are mostly in the northeast and north, but the parasite is largely absent from southern Thailand. 
Under future climate change scenarios, the distribution of O. viverrini in 2050 should be significantly 
affected by precipitation, maximum temperature and mean temperature of the wettest quarter, 
whereas in 2070, significant factors are likely to be precipitation during the coldest quarter, maximum 
and minimum temperatures. Maps of predicted future distribution revealed a drastic decrease in 
presence of O. viverrini in the northeast region.  

The information gained from this study should be a useful reference for implementing long-
term prevention and control strategies for S. stercoralis, hookworm and O. viverrini in Thailand.   
Keywords : S. stercoralis, hookworm, O. viverrini, ecological niche modeling, climate change 



2. Introduction 
Human strongyloidiasis and hookworm infection are neglected tropical diseases (NTDs) 

caused by soil-transmitted helminthes infections (Strongyloides stercoralis, Necator americanus and 
Ancylostoma duodenale, respectively). These diseases cause public health problem in the worldwide 
especially developing countries of Asia, Africa and Latin America [1]. S. stercoralis is able to 
maintain itself for decades within its host and may cause a lethal hyperinfection syndrome among 
immunosuppressed patients [2] [3], whereas hookworm infection is a leading cause of anemia and 
potentially result  in growth retardation as well as intellectual and cognitive impairments especially in 
child [4]. Strongyloidiasis and hookworm infection have been extensively studied in Thailand 
especially in Northeast Thailand where the prevalence of S. stercoralis and hookworm was 28.9% % 
and 12.7%, respectively [5] . In Thailand, most of strongyloidiasis and hookworm infection patients 
were infected by walking barefoot over contaminated soil. The larvae of S. stercoralis and hookworm 
become infective only under favorable conditions, socio-economic and environmental factors are key 
to S. stercoralis and hookworm development and therefore to possible transmission to humans.  

Opisthorchiasis, a food-borne trematode infection caused by the liver fluke                      
Opisthorchis viverrini remains a major public health threat in many parts of Southeast Asia including 
Thailand, Lao PDR, Cambodia and some villages in South Vietnam [6,7]. O. viverrini has been 
extensively studied in Thailand where an estimated 8 million people are infected with the liver fluke 
[8]. Opisthorchis viverrini is classified as a group 1 biological carcinogen and can induce several 
biliary diseases including the most fatal bile-duct cancer, cholangiocarcinoma (CCA), [9,10]. Thailand 
has the highest incidence of CCA in the world. This liver fluke is transmitted by eating raw, 
fermented or insufficiently cooked cyprinoid fish caught from natural water bodies. Cyprinoid fish are 
frequently infected with metacercaria, the infective stage of O. viverrini, by contact with cercariae 
released from the first intermediate snail host, Bithynia spp.   

It has long been known that climatic conditions affect epidemic diseases. Climate change is 
a significant driver of change in spatial patterns of parasitism and disease, as parasite distributions 
are directly influenced by environmental conditions such as temperature and precipitation. These 
changes may impact parasite survival and reproduction, as well as the availability of their 
transmission environment and any required intermediate hosts [11,12,13]. The Intergovernmental 
Panel on Climate Change (IPCC) estimates that there will be a 0.2 °C increase in temperature for 
each future decade [14]. Any temperature increase can greatly affect the prevalence of vector-borne 
parasitic diseases [15], while precipitation affects the dissemination of water-borne disease [13]. 
Climate change projections show increasing temperature across Thailand [16].  

The correctly understanding epidemiology and spatial distribution is an important step in the 
control and prevention of diseases. Recent studies have used ecological niche modeling (ENMs) as 



a tool to predict risk areas and distribution patterns of diseases such as blastomyosis [17],  malaria 
[18], leishmaniasis [19,20,21]. Maximum Entropy software (MaxEnt) is a general-purpose ecologic 
niche modeling software that is able to predicted species geographic distribution when only 
occurrence data is available for analysis [22,23,24]. Climate and environmental conditions affect 
epidemic diseases and significant driver to alter spatial patterns of parasitism and disease, as 
parasite distributions are directly influenced by environmental conditions such as temperature and 
precipitation. These changes may impact the survival, reproduction, as well as the availability and 
means of their transmission environment.   

 
3. Objectives 

The specific objectives of this study are to (1) determine the environmental and climate 
factors (Bioclim, NDVI, NDWI, LST, precipitation, tmin, tmax, tmean, altitude, Land cover, soil texture 
and soil pH) on distribution patterns of strongyloidiasis and hookworm infection in Thailand, (2)  
develop a risk map modeling for strongyloidiasis, hookworm infection and opisthorchiasis based on 
environmental and climate factors (3) investigate potential distributions of opisthorchiasis under 
projected climate conditions for 2050 and 2070. 
 
4. Research methodology  
4.1 Strongyloides stercoralis , hookworm and O. viverrini occurrence data records 
 Thailand is located is located in the latitudes 5° 37′ and 20° 27′ N and longitudes 97° 22′ and 
105° 37′ E, which has been known as a main endemic area of STHs. A systematic literature review 
of S. stercoralis and hookworm infection was conducted to review all of research articles which 
published between 1970 and 2014. The publications were identified in PubMed, endnote, google and 
Thai-TCI by using the search terms “Thailand* AND helminth (OR Hookworms*, OR Strongyloides*)” 
both in English and Thai languages.   
 Occurrence data records of O. viverrini infections were obtained from two national surveys 
which conducted in 2009 and 2014 by the Department of Disease Control, Ministry of Public Health, 
Thailand, identified 426 villages and other sites where infections of O. viverrini occurred. These 
surveys were carried out in 77 provinces of Thailand [25,26]. There are 237 occurrence points of              
S. stercoralis, 822 points of hookworm and 426 points of O. viverrini  were geocoded and then 
transformed into geographic coordinates (Global Coordinate System, WGS84) using ArcGIS version 
10.4 (ESRI Inc., Redlands, CA, USA) (Figure 1). 
 
 
 



 
 
 
 
 
 
 
 
 
         
 
 
 
 
 
 
         

 
Figure 1 Occurrence point records of S. stercoralis (A), hookworm (B) and O. viverrini (C) 

in Thailand as baseline data. 
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4.2 Environmental and climate data layers 
 MODIS earth observing satellite time series data were used to investigate regional remote 
sensing features that may influence S. stercoralis, hookworm and O. viverrini distribution in Thailand. 
MODIS is a multispectral sensor on board the Terra satellite designed for regional scale studies with 
36 bands at 250, 500 or 1000 m spatial resolution. The United States Geological Survey (USGS) 
generates a number of data products available free via the Internet from the USGS EROS Data 
Center. MODIS data products on land surface temperature (LST), normalized difference vegetation 
index (NDVI), normalized difference water index (NDWI). These data were obtained for the time 
period 1 January 2001 through 31 December, 2014 at a resolution of 0.25 km2 and were processed 
to produce a mosaic covering the study area in Thailand using ArcGIS 10.4 (ESRI Inc., Redlands, 
CA, USA).  Nearly cloud-free scenes were available during the dry season and late cold season. 
Altitude data were obtained from WorldClim database (www.worldclim.org). Similarity, soil pH and 
soil texture were obtained from https://soilgrids.org and land cover was obtained from 
http://www.iscgm.org/. 
 Current and future climatic data including 19 bioclimatic variables, precipitation, monthly 
minimum, maximum and mean temperatures, were downloaded from the WorldClim database 
(http://www.worldclim.org/), available at approximately 1 km2 (30 arc-seconds) spatial resolution 
(Table 1). Future climate scenario data for 2050 and 2070 (A2a emission scenario) from the global 
climate model of the Hadley Global Environment Model 2 - Earth System (HadGEM2-ES) was used 
to assess the effects of climate change. These future climate projections are based on IPCC 5AR 
assessment data and were calibrated and statistically downscaled using the data for ‘current’ 
conditions. Projections, grid cell size and spatial extent were processed to ensure consistency in 
ASCII format for MaxEnt analysis for all environmental and climatic data layers using ArcGIS 10.4 All 
files were projected and geo-referenced in the same system re-sampled to a grid cell size of 1 km2 
spatial resolution at earth surface and converted to ASCII format.   
 
4.3 Ecological Niche Models 
 MaxEnt software was used for model construction (version 3.3.3k, Available from 
https://www.cs.princeton.edu/~schapire/maxent/). Variables initially considered included Worldclim 
data (19 BioClim variables, altitude), MODIS environmental data (LST, NDVI, NDWI), land cover, soil 
texture and soil pH (Table 1).  Data layers represented the main factors that were hypothesized to 
be important determinants of the distribution range of S. stercoralis, hookworm and O. viverrini in 
Thailand. MaxEnt analysis was run using 75% of records as training data to construct the model and 
the remaining 25% for testing the model. MaxEnt was initially run including all environmental and 
climatic variables. Of all variables, the top 12 significantly correlated environmental variables were 



identified and selected based on percent contribution to the model.  MaxEnt was then re-run 
including only the top 12 variables to develop the final model. The MaxEnt modeling procedure 
assessed the importance of the variables contributing to S. stercoralis, hookworm and O. viverrini 
distribution through jackknife analysis of contribution of environmental and climatic variables to the 
model, the average values of area under the curve (AUC) of 10 model iterations and the average 
percentage contribution of each variable to the model. The performance of the model was evaluated 
by deriving the AUC values of the receiver operator characteristic (ROC) plot analysis within MaxEnt 
[22,23,27]. AUC values range from 0.5 to 1, where the former value indicates a model no different 
from chance and the latter gives increasingly good discrimination as it approaches 1, i.e. 0.5-0.6 = 
no discrimination; 0.6-0.7 = discrimination; 0.7-0.8 = acceptable; 0.8-0.9 = excellent; 0.9-1.0 = 
outstanding [22,23,24]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 1.  Environmental and climate variables used for the construction of the S. stercoralis,                  
hookworm and O. viverrini distribution niche model. 
 

Variable Explanation Data source 
BIO1 Annual mean temperature WorldClim 
BIO2 Mean diurnal range  WorldClim 
BIO3 Isothermality WorldClim 
BIO4 Temperature seasonality WorldClim 
BIO5 Maximum temperature of warmest month WorldClim 
BIO6 Minimum temperature of coldest month WorldClim 
BIO7 Temperature annual range WorldClim 
BIO8 Mean temperature of wettest quarter WorldClim 
BIO9 Mean temperature of driest quarter WorldClim 
BIO10 Mean temperature of warmest quarter WorldClim 
BIO11 Mean temperature of coldest quarter WorldClim 
BIO12 Annual precipitation WorldClim 
BIO13 Precipitation of wettest month WorldClim 
BIO14 Precipitation of driest month WorldClim 
BIO15 Precipitation seasonality WorldClim 
BIO16 Precipitation of wettest quarter WorldClim 
BIO17 Precipitation of driest quarter WorldClim 
BIO18 Precipitation of warmest quarter WorldClim 
BIO19 Precipitation of coldest quarter WorldClim 
Tmin Minimum temperature WorldClim 
Tmax Maximum temperature WorldClim 
Tmean Mean temperature WorldClim 
Alt Altitude WorldClim 
Lu Land cover  ISCGM 
Soil tex Soil texture Soilgrids 
Soil pH Soil pH Soilgrids 
LST Land surface temperature MODIS 
NDVI Normalized difference vegetation index MODIS 
NDWI Normalized difference water index MODIS 



5. Results 
5.1 Ecological niche modelling of strongyloidiasis and hookworm infection in Thailand 

In Figure 3 the receiver operating curve (ROC) of both training and test data, are shown. The 
red (training) line shows the “fit” of the model to the training data. The blue (testing) line indicates the 
“fit” of the model to the testing data, and is the real test of the models predictive power. 

For strongyloidiasis, the AUC is 0.82 (Figure 2) which indicates a model of 82% validity. The 
MaxEnt model’s internal jackknife analyses of variable importance indicated that land cover had the 
highest percent contribution (22.5%). Maximum temperature in October (12.2%), Mean temperature 
of driest quarter (9.6%), precipitation of coldest quarter (9.6%) and normalized difference vegetation 
index (8.9%) were the most important individual variables influencing distribution of S. stercoralis in 
Thailand (Table 2). Figure 3A shows the current distribution predicted by MaxEnt for S. stercoralis in 
Thailand. Suitable climatic and environmental conditions are primarily in southern and some parts of 
central, northern and northeastern Thailand. The jackknife evaluation procedure indicated that land 
cover was the strongest predictor for the presence of S. stercoralis (Figure 4A). 

For hookworm infection, the AUC is 0.78 (Figure 2) which indicates a model of 78% validity. 
The MaxEnt model’s internal jackknife analyses of variable importance indicated that land cover had 
the highest percent contribution (24.1%). Altitude (15.1%), Minimum temperature in October (13.2%), 
Mean temperature of driest quarter (9.3%), were the most important individual variables influencing 
distribution of hookworm in Thailand (Table 2, Figure 3). Figure 3B shows the current distribution 
predicted by MaxEnt for hookworm in Thailand. Suitable climatic and environmental conditions are 
mainly in southern and some parts of central, northern and northeastern Thailand. The jackknife 
evaluation procedure indicated that land cover was the strongest predictor for the presence of 
hookworm (Figure 4B). 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 The average area under the curve (AUC) for 10 MaxEnt runs. The red line is the mean 
value for the 10 MaxEnt runs and the blue bar represents ± 1 standard deviation. The mean AUC 
value of 0.82 indicates an excellent model for S. stercoralis (A) and mean AUC value of 0.78 
indicates acceptable model for hookworm (B). 
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Table 2 Percent contributions of the climatic and environmental variables in the MaxEnt model 
for STHs distribution 
 

Variables 
Percent contribution 

S. stercoralis Hookworms 
Land cover (LC) 27 24.1 
Prec11 Precipitation in November  3.5 8.1 
Normalized difference water index (NDWI) - 5 
Prec8 Precipitation in August  - 1.2 
Tmax5 Maximum temperature in May  2.8 - 
Bio16 Precipitation of wettest quarter  4.2 4.9 
Prec12 Precipitation in December  - 1.7 
Altitude (Alt) - 15.1 
Tmin10 Minimum temperature in October  - 13.2 
Bio9 Mean temperature of driest quarter 9.6 9.3 
Tmin11 Minimum temperature in November - 8.9 
Bio13 Precipitation of wettest month  - 5.1 
Normalized difference vegetation index (NDVI) 8.9 3.4 
Tmax10 Maximum temperature in October  12.2 - 
Bio19 Precipitation of coldest quarter 9.6 - 
Bio18 Precipitation of warmest quarter  7.7 - 
Land surface temperature (LST) 5.7 - 
Prec7 Precipitation in July  5.3 - 
Prec1 Precipitation in January  3.5 - 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 Predicted suitable distributions for S. stercoralis (A) and hookworm (B). 
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Figure 4 Relative predictive power of different bioclimatic variables based on the jackknife of 
regularized training gain in Maxent models for S. stercoralis (A) and hookworm (B).  
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5.2 Climatic niches of O. viverrini distribution under current climate 
 Based on known occurrences of O. viverrini and current climate data, we generated 
geographic distribution maps predicting areas where the parasite might occur. Predictive models 
performed better than random. The training AUC values were greater than 0.8 for O. viverrini under 
the current and future climatic conditions (Figure 5). These modeling results were considered to be 
of an excellent standard. The current distributions of O. viverrini were significantly affected by 
precipitation and minimum temperature, especially the precipitation in October (35.8%), minimum 
temperature in July (18.8%) and precipitation of coldest quarter (Bio19, 15%)(Table 3). The liver 
fluke could tolerate a broad range of precipitation in October, varying from a minimum of 41 mm to a 
maximum of 356 mm (Appendix C).  
     Figure 6A shows the current distribution predicted by MaxEnt for O. viverrini in Thailand. Suitable 
climatic conditions are primarily in northeastern and some parts of northern Thailand, but the 
parasite is largely absent from the southern part of the country. The jackknife evaluation procedure 
indicated that the precipitation in October was the strongest predictor for the presence of O. viverrini 
(Figure 7). Using the response curve (Figure 8A), the probability of O. viverrini presence decreased 
with an increase in precipitation in October, but increased with increasing minimum temperature in 
July.   
 
 
 



 
Figure 5 The average area under the curve (AUC) for 10 MaxEnt runs. The red line is the mean 
value for the 10 MaxEnt runs and the blue bar represents ± 1 standard deviation. The mean AUC 
value of 0.81 indicates a very good model. 
 



 

 
Figure 6 Predicted current (A) and future (2050 (B), 2070 (C) suitable distributions for O. viverrini 

 



5.3 Consensus projections of the geographic distribution of the climatic niches for future 
periods  
 The predicted distribution of O. viverrini in 2050 was significantly affected by precipitation in 
October (32.3%), maximum temperature in May (29%) and mean temperature of the wettest quarter 
(6.7%), whereas in 2070, predicted distribution was largely affected by precipitation of coldest 
quarter (28.8%), maximum temperature in May (24.1%) and minimum temperature in July 
(14.8%)(Figure 7, Table 3). The climatic profiles for O. viverrini distribution in 2050 and 2070 are 
shown in Appendices D and E, respectively. The future distribution map revealed a drastic decrease 
in suitability in northeastern Thailand (Figure 6B and 6C). By 2050, the presence of  O. viverrini is 
predicted to decrease with an increase in precipitation in October, but to increase with increasing 
maximum temperature in May and mean temperature of the wettest quarter (Figure 8B). By 2070, 
presence of O. viverrini is likely to decrease with increasing precipitation in the coldest quarter, but to 
increase with maximum temperature in May and minimum temperature in July (Figure 8C).   
 



 
Figure 7 Relative predictive power of different bioclimatic variables based on the jackknife of 
regularized training gain in Maxent models for O. viverrini in current (A), 2050 (B) and 2070 (C) 



 
Figure 8 Response curves showing the relationships between the probability of presence and three 
top climatic predictors of O. viverrini in current (A), 2050 (B) and 2070 (C) 
 
6. Conclusion and Discussion 
 We present the first to use MaxEnt model-based estimates of suitable distribution for           
S. stercoralis, hookworm and O. viverrini based on climatic and environmental factors in Thailand at 
high spatial resolution. Model validation recommended excellent predictive ability of our final models.  
 Our results indicate that several climatic and environmental predictors are significantly 
associated with S. stercoralis and hookworm infections. Land cover, altitude temperature and 
precipitation were identified as important predictors explaining the geographical distribution of               
S. stercoralis and hookworms, suggesting these factors are important driver of hookworm survival 
and transmission [28,29,30].   
 Land cover with paddy field, cropland and other vegetation mosaic are the most suitable for 
S. stercoralis distribution in Thailand, similar with the study of Khieu et al. (2014) show that land 
cover class corresponding to paddy field or croplands was associated with an increased risk for             
S. stercoralis infection [31]. Previous research established a relationship between land cover and the 



occurrence of hookworm transmission [32]. The result shows that land cover with were significantly 
associated with the spatial distribution of hookworm infection.  
 Hookworm distribution is negative affected by altitudes, hookworm prevalence were found to 
decrease with increasing altitude [33]. Our result finding that suitable area for hookworm mostly 
areas are in southern part of Thailand with low altitude. High prevalence of hookworm diseases are 
confined to the coastal plain below 150 m above sea level [34,35,36], but higher altitudes (above 
500 m) have low prevalence of hookworm infections [37]. 
 High or low humidity is depended by rainfall or precipitation, relationship between rainfall and 
S. stercoralis and hookworm prevalence is well-established [29]. Infection prevalence of S. stercoralis 
was significantly decreased with increasing rainfall [31]. Strongyloidiasis is prevalent in southern part 
of Thailand with low altitude and long rainy season resulting in stool submersion in water inhibiting 
growth and development of S. stercoralis filariform larva in the environment [38]. With rainfall being 
important in the transmission of hookworm infection, heavy rainfall might cause wash out hookworm 
eggs from the soil [39,40,41]. The water retaining properties of the soil to maintain hookworm larvae 
is associated with amount of rainfall. This water is restricted to the thin film around individual soil 
particles when the soil dries out [42]. The hookworm infective larval stage remains inactive in the 
moisture film until it responds to the necessary stimuli which facilitate contact with its human host 
[36]. Critical low and high temperatures effect to development, hatching and survival of                        
S. stercoralis and hookworm eggs and larvae. Suitable temperatures for development of                        
S. stercoralis and hookworm eggs to be infective stages are 20-30 °C [28,43,44].  
 Climate change will alter the spatial patterns of parasites worldwide [45]. In Thailand, clear 
evidence exists that temperatures have already increased and that rainfall patterns have changed 
[16]. Our analyses demonstrated that the current distribution of O. viverrini is significantly affected by 
precipitation and minimum temperature. Under the future climate-change scenarios, the distribution 
of O. viverrini in 2050 was affected by precipitation, maximum temperature and mean temperature of 
the wettest quarter, whereas in 2070, precipitation of the coldest quarter, maximum and minimum 
temperatures are the most important variables. Warmer temperatures, in particular, should support 
faster reproduction and longer transmission seasons of parasites with environmental reservoirs and 
stages; therefore, one would expect higher parasite species richness and infection rates with 
increasing temperature [46,47,48]. The distribution of human bacteria and helminths exhibit a 
positive correlation with monthly temperature ranges [12].  Precipitation is also important to consider. 
Guernier et al. (2004) found that the maximum annual range of precipitation corresponded positively 
with human parasite richness, indicating that regions with distinct dry and wet seasons may harbor 
more parasites. Many parasites require water or humid conditions to complete their life cycle [12], 
and will respond to increasing precipitation. Many helminths produce fragile eggs that cannot 



withstand harsh arid conditions [49], therefore drier climates can interfere with egg development. The 
results of this study identify the importance of climatic factors in explaining national geographical 
distribution of O. viverrini and indicate that MaxEnt is a useful tool for defining such distributions in 
endemic areas and for predicting distributions in areas with similar climatic conditions. Climate 
models are therefore suitable for assisting health planning decisions and monitoring progress on a 
national level. This is particularly important in data-scarce regions where resources and health data 
are limited, and effective resource allocation and planning are needed to have a significant impact 
on sustained disease control programmes. 
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7.   Appendix  
 
Appendix A Climatic and environment profile of S. stercoralis based on its current occurrence 

Variables Max. Min. Mean SD 

Land cover 

Paddy field 
Cropland / 

Other 
Vegetation 

Mosaic 

- - - 

Tmax10 Maximum temperature in October (°C) 32.40 28.10 30.95 0.65 

Bio19 Precipitation of coldest quarter (mm) 1204.00 10.00 200.97 330.56 

Tmin11 Minimum temperature in November (°C) 23.30 15.70 20.47 1.94 

Normalized difference vegetation index 0.87 0.09 0.51 0.15 

Bio18 Precipitation of warmest quarter (mm) 836.00 196.00 371.29 109.48 

Land surface temperature 30.20 19.64 25.13 1.78 

Prec7 Precipitation in July (mm) 553.00 94.00 202.01 82.90 

Bio16 Precipitation of wettest quarter (mm) 1648.00 457.00 816.14 235.41 

Prec1 Precipitation in January (mm) 196.00 1.00 29.51 49.52 

Prec11 Precipitation in November (mm) 518.00 5.00 108.33 155.87 

Tmax5 Maximum temperature in May (°C) 35.60 30.80 33.79 0.94 

 
 
 
 
 
 
 
 
 



Appendix B Climatic and environment profile of hookworm based on its current occurrence 
 

Variables Max. Min. Mean SD 

Land cover 

Paddy field 
Cropland / 

Other 
Vegetation 

Mosaic 

- - - 

Altitude 1255.00 2.00 128.78 180.94 

Tmin10 Minimum temperature in October (°C) 24.50 15.50 22.51 1.28 

Bio9 Mean temperature of driest quarter (°C) 27.90 16.60 25.03 2.09 

Tmin11 Minimum temperature in November (°C) 23.70 12.70 20.72 2.01 

Prec11 Precipitation in November (mm) 540.00 3.00 135.24 168.93 

Bio13 Precipitation of wettest month (mm) 635.00 187.00 330.60 87.08 

Normalized difference water index 0.67 0.06 0.42 0.12 

Bio16 Precipitation of wettest quarter (mm) 1776.00 442.00 824.95 240.11 

Normalized difference vegetation index 0.89 -0.09 0.56 0.15 

Prec12 Precipitation in December (mm) 510.00 1.00 83.83 137.62 

Prec8 Precipitation in August (mm) 619.00 87.00 218.88 92.18 

 
 
 
 
 
 
 
 
 
 



Appendix C Climatic profile of O. viverrini based on its current occurrence  

Variable Mean Suitable range* 

Prec10 Precipitation in October (mm) 111.60 41-356 
Tmin7 Minimum temperature in July (°C) 23.70 19.20-24.70 
Bio19 Precipitation of coldest quarter (mm) 32.45 8-604 
Bio8 Mean temperature of wettest quarter (°C) 27.35 22.7-28.40 
Prec6 Precipitation in June (mm) 201.65 80-592 
Bio15 Precipitation seasonality (mm) 86.84 51-104 
Tmax9 Maximum temperature in September (°C) 30.98 26.50-32.30 
Tmax4 Maximum temperature in April (°C) 35.52 31.80-38.10 
Prec11  Precipitation in November (mm) 22.88 3-324 
Prec7  Precipitation in July (mm) 223.67 97-660 
Prec3 Precipitation in March (mm) 35.63 10-83 
Tmax1 Maximum temperature in January (°C) 29.95 24.90-32.30 
*Suitable range: The range of environmental factors which allow O. viverrini distribution. 
 
 
Appendix D Climatic profile of O. viverrini based on its occurrence data in 2050 

Variable Mean Suitable range* 

Prec10 Precipitation in October (mm) 114.89 40-397 
Tmax5 Maximum temperature in May (°C) 38.59 33.60-40.10 
Bio8 Mean temperature of wettest quarter (°C) 30.27 25.30-31.30 
Prec6  Precipitation in June (mm) 181.75 75-546 
Tmax4 Maximum temperature in April (°C) 38.23 34.70-40.90 
Bio16 Precipitation of wettest quarter  (mm) 710.93 461-1747 
Bio15 Precipitation seasonality (Coefficient of Variation)  91.66 62-106 
Tmin7 Minimum temperature in July (°C) 26.54 21.80-27.70 
Bio13 Precipitation of wettest month (mm) 303.34 203-676 
Prec3 Precipitation in March (mm) 35.04 10-69 
Prec11 Precipitation in November (mm) 22.50 2-364 
Tmin11 Minimum temperature in November (°C) 22.41 17.70-26.30 
* Suitable range: The range of environmental factors which allow O. viverrini distribution. 



Appendix E Climatic profile of O. viverrini based on its occurrence data in 2070 

Variable (unit) Mean Suitable range* 

Bio19 Precipitation of coldest quarter (mm) 35.21 9-675 
Tmax5 Maximum temperature in May (°C) 40.05 34.90-41.40 
Tmin7 Minimum temperature in July (°C) 27.87 23.10-28.90 
Prec6  Precipitation in June (mm) 169.22 74-567 
Prec11 Precipitation in October (mm) 142.24 55-457 
Bio13 Precipitation of wettest month (mm) 289.79 209-698 
Bio5 Maximum temperature of warmest month (°C)  40.17 36-42.10 
Tmax8 Maximum temperature in August (°C) 36.45 30.40-37.80 
Tmin11 Minimum temperature in November (°C) 23.98 19.40-27.90 
Prec3 Precipitation in March (mm)   43.78 10-107 
Prec11 Precipitation in November (mm) 24.33 3-379 
Tmin8 Minimum temperature in August (°C) 27.73 22.70-29 
* Suitable range: The range of environmental factors which allow O. viverrini distribution. 
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Abstract Global climate change is now regarded as imposing
a significant threat of enhancing transmission of parasitic dis-
eases. Maximum entropy species distribution modeling
(MaxEnt) was used to explore how projected climate change
could affect the potential distribution of the carcinogenic liver
fluke, Opisthorchis viverrini, in Thailand. A range of climate
variables was used: the Hadley Global Environment Model
2—Earth System (HadGEM2-ES) climate change model and
also the IPCC scenarios A2a for 2050 and 2070. Occurrence
data from surveys conducted in 2009 and 2014 were obtained
from the Department of Disease Control, Ministry of Public
Health, Thailand. The MaxEnt model performed better than

random forO. viverriniwith training AUC values greater than
0.8 under current and future climatic conditions. The current
distribution of O. viverrini is significantly affected by precip-
itation and minimum temperature. According to current
conditions, parts of Thailand climatically suitable for
O. viverrini are mostly in the northeast and north, but the
parasite is largely absent from southern Thailand. Under
future climate change scenarios, the distribution of
O. viverrini in 2050 should be significantly affected by
precipitation, maximum temperature, and mean temperature
of the wettest quarter, whereas in 2070, significant factors are
likely to be precipitation during the coldest quarter, maximum,
and minimum temperatures. Maps of predicted future distri-
bution revealed a drastic decrease in presence of O. viverrini
in the northeast region. The information gained from this
study should be a useful reference for implementing long-
term prevention and control strategies for O. viverrini in
Thailand.

Keywords Opisthorchis viverrini . Climate change .

MaxEnt . Modeling . Distribution . Thailand

Introduction

It has long been known that climatic conditions affect epidemic
diseases. Climate change is a significant driver of change in
spatial patterns of parasitism and disease, as parasite distribu-
tions are directly influenced by environmental conditions such
as temperature and precipitation. These changes may impact
parasite survival and reproduction, as well as the availability of
their transmission environment and any required intermediate
hosts (Brooker et al. 2006; Guernier et al. 2004; Wu et al.
2016). The Intergovernmental Panel on Climate Change
(IPCC) estimates that there will be a 0.2 °C increase in
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temperature for each future decade (IPCC 2007). Any tempera-
ture increase can greatly affect the prevalence of vector-borne
parasitic diseases (Houghton et al. 1990), while precipitation
affects the dissemination of water-borne disease (Wu et al.
2016). Climate change projections show increasing temperature
across Thailand (Marks 2011).

The liver fluke,Opisthorchis viverrini, causes opisthorchiasis,
which has a key public health impact in Thailand, Lao P.D.R.,
Cambodia and southern Vietnam (Keiser and Utzinger 2005;
Sithithaworn et al. 2012). More infected people (an estimated 8
million) live in Thailand than in any other country (Sripa et al.
2011).O. viverrini is classified as a group 1 biological carcinogen
and can induce several biliary diseases including the most
fatal bile-duct cancer, cholangiocarcinoma (CCA) (Brindley
et al. 2015; IARC 1994). Thailand has the highest incidence of
CCA in the world. This liver fluke is transmitted by eating
raw, fermented or insufficiently cooked cyprinoid fish caught
from natural water bodies. Cyprinoid fish are frequently in-
fected with metacercaria, the infective stage ofO. viverrini, by
contact with cercariae released from the first intermediate snail
host, Bithynia spp.

To further opisthorchiasis control and elimination in
Thailand, it is necessary to understand the climate niche of
O. viverrini and define distribution of this disease under cur-
rent and future climate conditions. Species distributionmodels
(SDMs), which predict the relationship between species re-
cords at sites and the environmental and/or spatial character-
istics of those sites, have been frequently used to define and
predict disease distribution (Franklin 2009). Maximum entro-
py algorithm software (MaxEnt) has been developed for
modeling species distributions from presence-only species re-
cords and has shown a high predictive power for both large
and very small sample sizes (Elith et al. 2011; Hernandez et al.
2006; Phillips et al. 2006). In this study, the MaxEnt model
was used to define the current distribution of O. viverrini in
Thailand and to investigate potential distributions under
projected climate conditions for 2050 and 2070.

Materials and methods

Study area and climate

Thailand (513,115 km2 of land area) is located in the
tropics between latitudes 5° 37′ and 20° 27′ N and longitudes
97° 22′ and 105° 37′ E. The Thai climate is controlled by trop-
ical monsoons, and the weather is generally hot and humid
across most of the country throughout most of the year. While
Thailand’s seasons are generally divided into the dry season
(March toMay), cold season (November to February), and rainy
season (June toOctober), in reality, it is relatively hot most of the
year. Theweather in central, northern, and northeastern Thailand
is determined by these three seasons, whereas the southern,

coastal regions of Thailand feature only rainy and dry
seasons. During the dry season, day temperatures may
reach 42 °C, whereas during the cold season, the daytime
temperature may drop to 0–10 °C. However, the average
temperature of the whole country all the year round
ranges from 24 to 34 °C, and the annual rainfall is about
1000–4000 mm (Thai Meteorological Department 2015).

Occurrence data records

Data obtaining from two national surveys conducted in 2009
and 2014 by the Department of Disease Control, Ministry of
Public Health, Thailand identified 426 villages and other sites
where infections ofO. viverrini occurred. These surveys were
carried out in 77 provinces of Thailand (MOPH 2009; MOPH
2014) (Fig. 1). The O. viverrini occurrence points were
geocoded and then transformed into geographic coordinates
(Global Coordinate System, WGS84) using ArcGIS (ESRI
Inc., Redlands, CA, USA).

Climatic data

The WorldClim data are derived from measurements of
altitude, temperature and rainfall from weather stations across
the globe (period 1950–2000). Current and future climatic

Fig. 1 Opisthorchis viverrini occurrence point records in Thailand in
2009 and 2014 as baseline data
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data including 19 bioclimatic variables, precipitation, and
monthly minimum, maximum, and mean temperatures were
downloaded from the WorldClim database (http://www.
worldclim.org/), available at approximately 1 km2 (30 arc-
seconds) spatial resolution (Hijmans et al. 2005) (Table 1).
Future climate scenario data for 2050 and 2070 (A2a emission
scenario) from the global climate model of the Hadley Global
Environment Model 2—Earth System (HadGEM2-ES) was
used to assess the effects of climate change. These future
climate projections are based on IPCC 5AR assessment data
and were calibrated and statistically downscaled using the data
for ‘current’ conditions.

Climatic niche modeling

Climatic niche modeling (CNM) was developed to define the
relationship between the geographic distribution of
O. viverrini and those climate factors that may be related to
the disease. MaxEnt (version 3.3.3k; http://www.cs.princeton.
edu/wschapire/maxent/) was employed to model present and
future potential distributions of O. viverrini. The MaxEnt
modeling procedure assessed the importance of the variables
contributing toO. viverrini distribution through the following:
(i) the average percentage contribution of each climatic vari-
able to the model, (ii) jackknife analysis of contribution of
each variable to the model, and (iii) the average values of area
under the curve (AUC) of 10 model iterations (Mischler et al.
2012).

MaxEnt statistical analysis was done to develop a proba-
bility surface for O. viverrini human prevalence points based
on 2009 and 2014 baseline data. Ten iterations of the model
were run including all climatic variables, with 75 % of the
points used as training data and the 25 % of the points set
aside to test the model. Of all variables, the top 12 significantly
correlated climatic variables were identified and selected based
on percent contribution to the model. MaxEnt was then re-run

including only these 12 variables to develop the final model. The
AUC values of the receiver operator characteristic (ROC) plot
analysis withinMaxEnt were used to evaluate the accuracy of the
model (Hernandez et al. 2006; Phillips et al. 2006; Phillips and
Dudík 2008). AUC values range between 0.5 and 1, which the
former value indicates a model no different from chance and the
latter gives increasingly good discrimination as it approaches 1,
for example: 0.5–0.6 = no discrimination, 0.6–0.7 = unaccept-
able, 0.7–0.8 = acceptable, 0.8–0.9 = excellent, 0.9–1.0 = out-
standing, 1 = perfect (Mischler et al. 2012; Phillips et al. 2006).

Results

Climatic niches of O. viverrini distribution under current
climate

Based on known occurrences of O. viverrini and current cli-
mate data, we generated geographic distribution maps
predicting areas where the parasite might occur. Predictive
models performed better than random. The training AUC
values were greater than 0.8 for O. viverrini under the current
and future climatic conditions (Fig. 2). These modeling results
were considered to be of an excellent standard. The current
distributions ofO. viverriniwere significantly affected by pre-
cipitation and minimum temperature, especially the precipita-
tion in October (35.8 %), minimum temperature in July
(18.8 %), and precipitation of coldest quarter (Bio19, 15 %)
(Table 2). The liver fluke could tolerate a broad range of pre-
cipitation in October, varying from a minimum of 41 mm to a
maximum of 356 mm (Appendix A).

Figure 3a shows the current distribution predicted by
MaxEnt for O. viverrini in Thailand. Suitable climatic condi-
tions are primarily in northeastern and some parts of northern
Thailand, but the parasite is largely absent from the southern
part of the country. The jackknife evaluation procedure

Table 1 Climatic data used in
this study Annual mean temperature (BIO1) Precipitation of wettest month (BIO13)

Mean diurnal range (BIO2) Precipitation of driest month (BIO14)

Isothermality (BIO3) Precipitation seasonality (BIO15)

Temperature seasonality (BIO4) Precipitation of wettest quarter (BIO16)

Max temperature of warmest month (BIO5) Precipitation of driest quarter (BIO17)

Min temperature of coldest month (BIO6) Precipitation of warmest quarter (BIO18)

Temperature annual range (BIO7) Precipitation of coldest quarter (BIO19)

Mean temperature of wettest quarter (BIO8) Monthly precipitation (Prec)

Mean temperature of driest quarter (BIO9) Monthly minimum temperature (Tmin)

Mean Temperature of warmest quarter (BIO10) Monthly mean temperature (Tmean)

Mean temperature of coldest quarter (BIO11) Monthly maximum temperature (Tmax)

Annual precipitation (BIO12)
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indicated that the precipitation in October was the strongest
predictor for the presence of O. viverrini (Fig. 4). Using the
response curve (Fig. 5a), the probability of O. viverrini pres-
ence decreased with an increase in precipitation in October but
increased with increasing minimum temperature in July.

Consensus projections of the geographic distribution
of the climatic niches for future periods

The predicted distribution ofO. viverrini in 2050 was significantly
affected by precipitation in October (32.3 %), maximum

Fig. 2 The average area under
the curve (AUC) for 10 MaxEnt
runs. The red line is the mean
value for the 10MaxEnt runs, and
the blue line represents ±1
standard deviation. The mean
AUC value of 0.81 indicates an
excellent model
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temperature in May (29 %), and mean temperature of the
wettest quarter (6.7 %), whereas in 2070, predicted distribution
was largely affected by precipitation of coldest quarter (28.8 %),

maximum temperature in May (24.1 %), and minimum temper-
ature in July (14.8 %) (Table 2). The climatic profiles for
O. viverrini distribution in 2050 and 2070 are shown in

Table 2 Percent contributions of
the climatic variables in the
MaxEnt model for Opisthorchis
viverrini distribution

Variables Percent contribution

Current 2050 2070

Prec10 Precipitation in October 35.8 32.3 5.8

Tmin7 Minimum temperature in July 18.8 4.3 14.8

Bio19 Precipitation of coldest quarter 15 – 28.8

Bio8 Mean temperature of wettest quarter 5.2 6.7 –

Prec6 Precipitation in June 4.9 6.6 10.3

Bio15 Precipitation seasonality (coefficient of variation) 4.6 4.8 –

Tmax9 Maximum temperature in September 3.9 – –

Tmax4 Maximum temperature in April 3.7 5.1 –

Prec11 Precipitation in November 3.1 1.1 1.3

Prec7 Precipitation in July 2.4 – –

Prec3 Precipitation in March 1.6 1.8 1.3

Tmax1 Maximum temperature in January 1 – –

Tmax5 Maximum temperature in May – 29 24.1

Bio16 Precipitation of wettest quarter – 4.8 –

Bio13 Precipitation of wettest month – 2.5 4.1

Tmin11 Minimum temperature in November – 0.8 1.5

Bio5 Maximum temperature of warmest month – – 3.6

Tmax8 Maximum temperature in August – – 3.5

Tmin8 Minimum temperature in August – – 0.9

Fig. 3 Predicted current and future (2050, 2070) suitable distributions for Opisthorchis viverrini
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Appendices B and C, respectively. The future distributionmap
revealed a drastic decrease in suitability in northeastern
Thailand (Fig. 3b, c). By 2050, the presence of O. viverrini
is predicted to decrease with an increase in precipitation in
October but to increase with increasingmaximum temperature
in May and mean temperature of the wettest quarter (Fig. 5b).
By 2070, the presence ofO. viverrini is likely to decrease with
increasing precipitation in the coldest quarter but to increase

with maximum temperature in May and minimum tempera-
ture in July (Fig. 5c).

Discussion

Climate change will alter the spatial patterns of parasites
worldwide (Costello et al. 2009). In Thailand, clear evidence

Fig. 4 Relative predictive power
of different bioclimatic variables
based on the jackknife of
regularized training gain in
MaxEnt models for Opisthorchis
viverrini
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exists that temperatures have already increased and that rain-
fall patterns have changed (Marks 2011). Our analyses dem-
onstrated that the current distribution of O. viverrini is signif-
icantly affected by precipitation and minimum temperature.
Under the future climate change scenarios, the distribution
of O. viverrini in 2050 should be affected by precipitation,
maximum temperature, and mean temperature of the wettest
quarter, whereas for 2070, precipitation of the coldest quarter
and maximum and minimum temperatures are the most im-
portant variables. Parasite reproduction rate should increase
(shorter generation times) as temperatures rise. Similarly,
transmission seasons are likely to lengthen. Given that distri-
butions of many human pathogens are positively correlated
with monthly temperature ranges (Guernier et al. 2004), these
effects will probably lead to increasing parasite species rich-
ness and prevalences in the years ahead (Allen et al. 2002;
Hoberg et al. 2008; Larsen and Roepstorff 1999). Precipitation
is another major environmental variable. Many parasites re-
quire moist or wet conditions at some point in their life-cycles.
Guernier et al. (2004) presented evidence that regions of the
world with distinct wet and dry seasons may be home to
greater numbers of human parasites. In contrast, regions with
persistent arid conditions are less suitable for survival of par-
asites and their fragile eggs and other transmission stages
(Roberts and Janovy 2000). The results of this study identify
the importance of climatic factors in explaining national

geographical distribution of O. viverrini and indicate that
MaxEnt is a useful tool for defining such distributions in en-
demic areas and for predicting distributions in areas with sim-
ilar climatic conditions. Therefore, climate models are neces-
sary tools for national level policy decisions regarding health
planning and progress monitoring. These models become es-
pecially powerful in data-scarce regions for effective resource
allocation and planning for sustained disease control.
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