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Abstract

Project Code: TRG5780202

Project Title: Single Signal Entity Approach for Thai Singing Word Recognition Using

Images of Power Spectrogram and Image Processing Techniques

Investigator: Dr. Peerapol Khunarsa

E-mail Address: peerapol utt@hotmail.com, peerapol@uru.ac.th

Project Period: 2 Years

Singing word recognition is one of the interesting research topics in the area of
Music Information Retrieval (MIR). The first approach to solve this problem used
successful techniques in Automatic Speech Recognition (ASR). Moving from monophonic
to polyphonic audio signal, the problem has become more complex. The background
instrumental accompaniment is regarded as the noise source degrading the performance
of the recognition system. The papers proposed a statistical learning method for
recognition of the word in a singing signal with background music and for classification of

singing voice region in a polyphonic audio signal.

The goal of this paper is to solve singing word recognition without using any
method to separated instrumental from background music. The papers also applied the
concept of image recognition by using a aLﬂJﬂI@liLmi&l(Spectrogram) as an image to
solve the problem. An audio signal that accompanies music was analyzed and
transformed into a aLllﬂI@m,Lﬂiw(Spectrogram). A dimension of ®iUnlaswnyy
(Spectrogram) is very high and time interval of each singing word is not equal. Then we
apply image resizing algorithm to solve both problem. To recognize it, the whole snlay
NIV (Spectrogram) was sliced and formed as a feature vector for a neural classifier.

Several classification functions are compared, such as Fisher classifier, K-nearest


mailto:peerapol_utt@hotmail.com
mailto:peerapol@uru.ac.th

neighbor and Feed-Forward can effectively recognize the word in music with the accuracy

rate more than 90.0% Especially, we can recognize Cross-Language Music Data.

Keyword Spectrogram, Singing voice recognition, Automatic speech recognition (ASR),

Feed-Forward Neural Network.
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TayalWafusnlflunndriasiuazgnianisdisliunin Sony Sound  Forge

program. I@ﬂ@fﬂﬁuﬂamauﬁmmfﬁa Sampling Rate 1 44.2 kHz 28 128/s bit rate.

AN 1 'ﬂs:m‘ﬂLLa:a‘hmuﬁlﬁuiayamﬁ 1

Music Genres Male Singer  Female Singer Total

Pop Rock 1,768 [.545 3,313
hard rock 978 667 1,645
soft rock 2,284 2,100 4,384
dance 1,177 467 [.644
hip-pop 304 160 464
soul 250 108 358
R&B 1,135 652 787
folk 297 162 459
Acoustic 1,288 982 2,270
Total 16324

A o v ° =i o ~
AN319N 2 miadmmvlmLLazmmuﬂiﬁumagmﬁmw 1



Class. Singing word Time duration(min-max) Pronounce (in Thai)

1 au” 0.655-2.955 "kon”
rk] byl

2 Ny 0.26s-0.60s "kwarm”
”» ”

3 bAg 0.335-0.62s "koey”
3 »

4 las 0.335-0.70s "krai”
1”99

5 l 0.44s-1.38s jai”
Ve N

G Wy 0.26s-1.23s " chan”

_ NN " .

7 il 0.26s-0.54s "tee
] n

8 150 0.23s-0.78s "ther”
2930 N )

9 4 0.28s-0.86s "mai”
Ma N

10 N 0.18s-1.48s "luck”
77 2337

11 3 0.285-0.47s 100"
” k)

12 L3 0.265-0.73s "raw”

AN319N 3 ﬂizm'ﬂLLazﬁ‘hmuﬁ‘lﬂuﬁaga"gﬂﬁ 2

Music Genres Male Singer Female Singer Total
Pop Rock 1,105 1,432 2,537
hard rock 1,734 503 2,237
soft rock 4,473 1.466 5,939
dance 1,121 964 2,085
hip-pop 162 149 311
soul 208 358 5606
R&B 1,155 840 1,995
folk 329 355 684
Acoustic 462 940 1,402
Total 17756

a o v @ A o ~
AN319N 4 m‘saamm"lmmmzmmaaﬂquwi"ﬁlmagmg@rn 2



Class. Singing word Time duration(min-max) Pronounce (in Thai)

1 I love you 0.65s-2.95s

2 Love you 0.57s-2.92s

3 Together 1.04s-2.11s

4 Tomorrow 1.07s-6.63s

5 Yesterday 0.81s-5.90s
bk ar 9%

6 AN 0.52s-3.65s "kwarm-luck”
Ve = N

7 AR 0.88s-1.11s "kit-thun”
ne W 9 ~ ) -

8 lpsdnau 0.99s-4.62s krai-sak-kon
7 ! kb

9 Livae 0.41s-1.99s "mai-koey ”
7 Sk

10 Tadd] 0.57s-1.17s "mai-mee”
Y b

11 N5 0.47s-1.93s "luck-ther”
1% s ”

12 Wil 0.73s-1.46s "hua-jai”

4. mwmamuaxﬁﬂwa (EXPERIMENTAL EVALUATION)

fAUSUNNINeaediNanIUszEnTawniInasasnsnualdinulusunsy Matab

2012a WAz UUULATEY Intel Dual Core E6750 2.66 GHz R18ANUS1TUIA 6G LT
A 1 o 1 A dq’d % [ Aa A

WaanuusinduazlinaainfautaINan1Inaaes unaaasiaslanisiadssdnsan
. o P & A A o @ & a )

nutisgateyaluntstinduuaznaseununuiifanldnanniy ialnadasasnfiadu(K-

o y 4 vy Lo edue

Flow Cross validation) laglt K = 5 $922i1n1Inaaadt1ndnua 50 aTILastinHaandgn ba

NIRUAUIPALRRDVIUTZRNTAIN

’iﬂﬂﬁ%’ﬂzﬂizQﬂﬂﬂfLﬂﬂﬁﬂﬁiﬂuﬂ’]iﬁﬁﬁﬁ% annatslsznavulildae Fisher

classifier, K-nearest neighbor, Feed-Forward, Naive Bayes Classifier, Parzen Classifier

uaz Decision tree LiTﬁvLﬂjﬁﬂT GHE

4.1 3 mmiasawnislwlasednalszaniiiaa (Artificial Neural Networks) nu

Usz@nSan lwn1s3dmsalal



Tusuisoitleldlasstnolszamifioy (Arificial Neural Networks) Wiy three-layer

o o Yo A Y A o w 0% A <
feed-forward network #1%un1333dsTinTadTaslutoyananeizan 1 uaz 2 H4m13
l8lave8dsza ey (Artificial Neural Networks) dnwiniiasennslulassinefinany
Urdnimulunisid demwnisduiudasmdwntiveudwnrleinanzauiung

Ta

quﬁ 6 LAY 7 Lfﬂuﬂi’lwLLa@dﬂizaﬂ%ﬂ’]Wluﬂ’lii°7ﬁ1§a@1%°§@fa§aﬁ 1 Uaz 2 N
=

v

nasadlasldirwiniisenaslulasstrafuandrenu deldaiUnlasunsa(Spectrogram)

va

fat1slasldinlad(Windows Length) au1a 512 9@ NMINLFaunn 25% vad
sy Fsandun luudazdnias nwwinmsaaruiaved ainlasunsu(Spectrogram)

IwadNuuwa 128x5 3@ dreinaiia DCT-based compressed ( #1%ILIWIAVRIIBIATN 11

U 9

m3a319 snlasunsu(Spectrogram) azpnatunsludiudaly)

° DB-THS Dataset
8o

70
50

30

20

Recognitino Accuracy (%)

10

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Number of Hidden Neural Unit

tdl a a Yo o v v tﬂl tdl Yo a
El]“/] 6 rmwLLa@oﬂimmmwhmigmm‘saolu*’g@magaw 1 ﬂﬂ@]ﬂ@di@]ﬂl“ﬁﬁ]’]%’]%%’ﬁﬂ

w1 lulaTIT 8 ALANEII N



100

DB-TH-ENG Dataset

30

20

Recognition Accuracy (%)

10

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Number of Hidden Neural Unit

7 ﬂ‘i’]‘NLLﬁ@dﬂizaﬂ%ﬂ’]WIuﬂﬂiiﬁﬂﬁﬂ%@dl%ﬁ@fﬂHaﬁ 2 Anaaaslasltitwiniige

w1l laTIINaNLANE1 9N

ndayafiugainini 6 uaz 7 Jaweaiuladn tmawisnldaidnlasunsy

(Spectrogram) F1uAulATIBUsza By (Artificial Neural Networks) Tun13idndnsas

I slvl,ajmaaLﬁmﬁu%éﬂﬁﬁaLLaﬂﬁﬂi:?m%mwﬁgaﬂ’h 90% Wazs 1 wInihivannylu
=

Tas93in ﬂﬁNaﬁ'uﬂiz?m%mwluﬂﬁfﬁﬁﬁa LLa:ﬁ‘hmuﬁasauﬁ@ﬁq@lumﬂfmmza g’lwﬁad

20-30 #338%

4.2 aw102093wlad(Windows Length) itz lwn1sasreatdnlasunsa

(Spectrogram) finanudszd@nsnin lun133smsalal

a

anfladundmauasainlasunsu(Spectrogram) Nfa Windows Length T9aziing
Austnlasunsu(Spectrogram)lauaTIANNGIRE1IVBINNA 8  AuFAIaNBIULad /1N
A o . Aa , @ o & Ao AR A
1asunINNa31997n Windows Length filanuuandnsny asunluinuidiofidafensma
289 Windows Length lunisnaaasdsznavluee 64, 128, 256, 512, 1024, 2048, 4096

Az 8192 LNBWITWIAUEY Windows Length NlltlszinTnwgega



u W
JEC TN -/ BT a!'l
| o o = wf
| : : f |
0 xo E wmf
. =~ | =
e . e

AMWA 8 ansazed aiUnlasunINAg3I9aNn Windows Length ARANNLANGNINY

a) 64, b) 128, c) 256, d) 512, e) 1024, f) 2048, g) 4096, h) 8192.

. A o o o P P PN o o
luguitldnanasiudayagan 1 uaz 2 Nuaedluan 2 usz 4 lasdmuad
uwniuguie ldmunlasunsufilfazaiisnniulai(Windows Length) w118 1024 512
256 128 90 uarlimaiufauiuvesdouios 25% va9uwaiulad(Windows Length)
A =< & Y & wa &

Mnawn 5 B 12 uesusesdayalasimazmiuwimsliiulad(windows

A LA [ A a oo A o X
Length) Nuaneiduanudszdniawlunisidn sunlasunsufiainenin Windows Length
e mgazlitszaninnlunmaiifigindt snlasunsnfasnswin Windows Length Nidl

YUIALANNG 2 qmﬁaga

aanudsaTdldinwnaswavasiulai(Windows Length) lFlunisaisminlasun

= s a a Yo
JU(Spectrogram) &lwaﬂuﬂi:aﬂ'ﬁﬂ’mluﬂ’ﬁgm

Table 5: Average acenracy of all classes from a feedforward neural network having 25 hidden neurons with DB-TH Data set
using a spectrogram window of 1024 Pixel

Size of the x-axis of spectrogram
Size of the v-axis

of spectrogram 1 (Pixel) 2 (Pixel) 3 (Pixel) | (Pixel) 5 (Pixel) 6 (Pixel) 7 (Pixel) 8 (Pixel) 9 (Pixel) 10 {Pixel)
512 Pixel 52.374 T0.276 *85.865 88374 7.0 *R7.419 *87.036
161 Pixel G1.918 TH.080 *83.941 *82.711 * 2 *R5.649 *87.168
410 Pixel 62,701 72.020 *81.396 *R2.430 *81.327 #5163 FRLTO0
358 Pixel 63,159 T6. 706 *50.801 *81.923 #4407 *83.034 *H4.604
307 Pixel 60,138 T0.115 *81.023 23.163 *83.080 ¥
256 Pixel 58548 *84.782 2 *8 *85.844

205 Pi 60,591 70489 *80.736 hi'>>

154 Pixel 49.714 T2.466 *80.023 *R

102 Pixel 54060 663,522 T8.7¢ T0.056 FR0L256

51 Pixel 47,626 65,250 64.775 T4.640 76460




Table6: Average accuracy of all classes from a feedforward neural network having 25 hidden neurons with DB-TH-ENG Data
set using a spectrogram window of 1024 Pixel

Size of the x-axis of spectrogram

Size of the y-axis
of spectrogram 1 (Pixel) 2 (Pixel) 3 (Pixel) 4 (Pixel) 5 (Pixel) 6 (Pixel) 7 (Pixel) 8 (Pixel) 9 (Pixel) 10 (Pixel)

512 Pixel 67.730 *88.710 *O0.054 *94.062 *94.919 *04.304 *04.378 *04.788 *04.942
461 Pixel T6.162 *RA68T *84.672 *86.425 *RE.AT1 *03.320 *03.212 *94.440 *04.556
410 Pixel T3.869 *84.170 *00.834 *02.811 *92.602 03,266 *94.479 *94.934 *04.792
358 Pixel 75.003 *86.139 *RT.5T9 *02.564 *88.263 03,614 *03.340 *94.734 04,865
307 Pixel T4.255 *84.313 BT.AT *8T.151 *00.626 *92.718 *03.517 *04.776 *04.023 € 4
256 Pixel T4.236 *R3.066 *8T.80T *91.904 *01.857 *92.564 *92.305 *94.961 .47 04409
205 Pixel 69.815 *81.093 *85.250 *80.544 *00.166 *00. 888 *00.336 *01.873 *O2.869 *92.278
154 Pixel 65,568 *83.112 *84.143 *86.413 *80.884 *80.251 *00.830 *91.409 *02.174 *02.938
102 Pixel G9.745 6077 80,027 *8R.104 *8/R.ATH FRE.490 *80.308 *89.510 *80.220 *89.023
51 Pixel 58,382 T6.647 *83.2204 *85.185 FRG.606 *87.216 *37.806 FHT.266 *8T.475 *ER.63T

Table 7: Average acenracy of all classes from a feedforward neural network having 25 hidden nenrons with DB-TH Data set
using a spectrogram window of 512 Pixel

Size of the x-axis of spectrogram

Size of the y-axis
of spectrogram 1 (Pixel) 2 (Pixel) 3 (Pixel) 4 (Pixel) 5 (Pixel) 6 (Pixel) 7 (Pixel) 8 (Pixel) 9 (Pixel) 10 (Pixel)

256 Pixel 50.858 T0.585 T5.490 *R0.651 81062 *R1.368 *81.283 *81L.007 *81.332 *82.337
230 Pixel 50.229 TO407 TR.242 TRI19 TH.O86 FEO.T42 FRO.5EE *80.796 *81.545 **52.111
2005 Pixel 49.250 72,203 T6.007 TT.209 79,339 79,986 *80.690 *80.347 *81.234 *82.861
179 Pixel ARGO0 71.192 3463 77.700 T7.002 79.112 T9.906 *80.114 *80.164 FR1.003
154 Pixel 53.302 62,224 T6.500 79.742 79.329 *80.973 *80.568 *81.748 84711 *85.3401
128 Pixel 46.217 7141 TR.I63 T6.763 TH.a22 *80.:328 *80.878 *81.885 *83.199 *83.802
102 Pixel 50.574 6GT.197 T3.644 T6.343 T6.5821 T6.571 *81.468 T6.76T *82.240 FR2.A36
T7 Pixel 43.628 62732 T3.3099 TTATR T6.551 T6.087 T76.033 TT.615 T7.633 T0.062
51 Pixel 6,725 G4.578 G7.725 GGG T2.526 75507 g TT.039 TT.215 TT.621

26 Pixel 41.04% 62,873 G4.191 67.246 G663 TE050 74,264 75.795 TT.Th8

Table 8 @ Average acenracy of all classes from a feedforward nenral network having 25 hidden neurons with DB-TH-ENG Data
set using a spectrogram window of 512 Pixel

Size of the x-axis of spectrogram

Size of the y-axis
of spectrogram 1 (Pixel) 2 (Pixel) 3 (Pixel) 4 (Pixel) 5 (Pixel) 6 (Pixel) 7 (Pixel) 8 (Pixel) 9 (Pixel) 10 (Pixel)

256 Pixel 59.152 73.542 *51.299 *81.286 FRT.A89 FRT.A05 *88.831 *88.330 *ET.248 *89.124
230 Pixel 60,065 T4.856 *80.699 *81.202 8374 *86.548 *8T.260 *BT.T30 *80.535 *89.439
205 Pixel 64315 T4.974 *80.927 *81.713 *R3AIT *86.500 *86.375 *RT.T00 *RT.165 *ER.160
179 Pixel 62.906 G9.645 *80.722 *82.351 *83.120 *86.101 *86.382 *8/T.264 *8/7.330 *87.855
154 Pixel 60516 68,411 71009 #8977 *82.949 *85.879 *85.795 *87.362 *86.009 *87.018
128 Pixel 62,636 T3.745 78,260 *81.662 *82.366 *84.705 *85.013 *86.826 *86.124 *RT.750
102 Pixel 62876 66.404 T2.636 *81.640 *82.876 *83.976 *85.200 *85.131 *85.867 *86.880
7 Pixel 62.301 69.804 7398 70.197 TO96T *R0.000 *84.801 *85.580 *85.248 *86.037
51 Pixel S4.916 G3.721 73.781 T4.072 80,425 *82.055 *82.398 *82.089 *52.964 *83.507
26 Pixel 47557 59.210 65.170 77574 72.120 TR.030 70.990 T4.886 *82.501 *81.485

Table 9 : Average accuracy of all classes from a feedforward neural network having 25 hidden neurons with DB-TH Data set
using a spectrogram window of 256 Pixel

Size of the x-axis of spectrogram

Size of the yv-axis
of spectrogram 1 (Pixel) 2 (Pixel) 3 (Pixel) 4 (Pixel) 5 (Pixel) 6 (Pixel) 7 (Pixel) 8 (Pixel) 9 (Pixel) 10 (Pixel)

128 Pixel 47.008 61.143 62,7550 TLAGS T8.338 79.954 79.924 *80.026 *80.494
115 Pixel 45491 G069 G2, 146 TO.64T BLAGG T8.200 TH.645 *80.982 *8L.8T0
102 Pixel 45.414 60.154 61.228 70.253 72,309 780982 79.757 *80.458 *82.386
90 Pixel 43.041 63,0987 T0.857 TLA30 78.195 TR.143 78.322 FR0.539 *R1.660
77 Pixel H0.299 64.197 6. 535 649,560 75,033 78,034 70.010 #80.000 *80.598
64 Pixel 34378 54.962 47.842 TT.780 G7.402 T8.235 T1.350 75455 T6.969
3l Pixel A43.685 65.274 71.901 THME 67,396 T0.87T T0.536 69,478 T3.800
38 Pixel 38.023 56.118 T3.498 T0.502 66,102 68,539 69.901 649,130 T2.338
26 Pixel 40420 45.061 52,046 T0.691 66.076 67.199 69.342 69281 T2.146

13 Pixel 38903 0417 8. 765 TLOGT (4,762 60,596 66,660 69,530 T2.558 T2.803




Table 10 Average accuracy of all classes from a feedforward nearal network having 25 hidden nenrons with DB-TH-ENG Data
set using a spectrogram window of 256 Pixel

Size of the y-axis
of spectrogram

1258 Pixel
115 Pixel
102 Pixel
90 Pixel
77 Pixel
6l Pixel
51 Pixel
38 Pixel
26 Pixel
13 Pixel

1 (Pixel)

60100
58479

2 (Pixel)

G116
TL413

64,232
G540
58,116

4 (Pixe

3 (Pixel)

G413
56386

Size of the x-axiz of spectrogram

1) 5 (Pixel)

G (Pixel) 7 (Pixel) & (Pixel) 9 (Pixel) 10 (Pixel)
*84.730 FRG.H2G FAG.046 *AT.THE *SR.34T
TT.869 80,9 ' FRL 066
a7 FRO.286
*81.207

*80.139
73475
T2417
60,015

Ta.042

I[:"l})l[‘ 11: .'\\'I'I'ilgl' acenracy (}l. Il[l l'lil."\‘-\'[‘ﬁ |Il'l.'li|| a II(‘I'IIFEII'\\'-'II'l] I]I"Il['-'l] [I('I\\'(}'I'k Ilii\'i'llg 25 h.lilil('ll nevrons \\'“]l

using a spectrogram window of 128 Pixel

DB-TH Data set

Size of the v-axis

of spectrogram

G Pixel
58 Pixel
51 Pixel
45 Pixel
38 Pixel
32 Pixel
26 Pixel
19 Pixel
13 Pixel
6 Pixel

1 (Pixel)

15.997
44.913
44.624

2 (Pixel)

G3.363
64.158

3 (Pixel) 4 (Pixe

63,215

(8. 716

G0.0TY

69.793 6957
GL.8T8 65.366
MLTTT 61.951
62,837 61.924

Size of the x-axis of spectrogram

1) 5 (Pixel)

G7.002
G4.768
G4.053
75,199
SLGRG
G1.911

6 (Pixel) 7 (Pixel) 8 (Pixel} 9 (Pixel) 10 (Pixel)

47

T1.

GT.08T
59.271
GO.TRO
G604

H7.438 G7.691

Table12 0 Average aceuracy of all classes from a feedforward nearal netwe

set using a spectrogram window of 128 Pixel

wk having 25 hidden nenrons with DB-TH-ENG Data

Size of the yv-axis

Size of the x-axis

of spectrogram

of spectrogram 1 (Pixel) 2 (Pixel) 3 (Pixel) 4 (Pixel) 5 (Pixel) 6 (Pixel) 7 (Pixel) 8 (Pixel) 9 (Pixel) 10 (Pixel)
64 Pixel 43.907 63, 166 *80.471 *85.609 5483

8 Pixel 47,158 T1.243 203

5l Pixel 49,405 T9.205 FR2TRD *RA.660
45 Pixel S.68T *84.139 T9.405 *24.950
38 Pixel 18,610 63,490 T1.452 76.803 #8683
32 Pixel 47.521 T0.703 63.722 TRATE 3656
26 Pixel 68,741 65,6 T2.178

19 Pixel 63.1 T0.633

13 Pixel 65645 T0.564

6 Pixel 65.722 TO20%
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utniuquie IFsnlasunsuiiltazainsandulas(Windows Length) awi@ 1024 512

256 128 90 uaziimariufeunuasdgroudng 25% vasu1a3nlai(Windows Length)

NN Mnadia Image Scaling fa DCT-based compressed algorithms #1711

msaawmavadalnlasunsuliiivwaaaasuazivinnu IWQT]G] Adesvesdayagan 1 uas
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1. aLﬁJﬂImmeﬁaﬁ"ﬂamn%uiaf(wmdows Length) T®19 1024 2:¥INNNIAIUA
fnsultlumInasasasnia 512 , 461, 410, 358, 307, 256, 205,154, 102 LAz
51 'ﬂ]@.

2. mﬂnImunmﬁaﬁ”ﬁaﬁnﬂ%uiﬂf(wmdows Length) 2u1@ 512 2:VINMIRATWHIA
fnsultlumInasasadinia 256, 230, 205, 179, 154, 128, 102, 77, 51 uas 26
’i]IC'].

3. aLﬂﬂImmeﬁaﬁ"nmn%uiﬂf(wmdows Length) au1@ 256 3:VINNMIRATWIG
fniulglummesasaanie 128,115, 102, 90, 77, 64, 51, 38, 26 Uaz 13 19.

4. aLﬂﬂImmeﬁa%’ﬁdﬁnﬂ'iuiﬂf(wmdows Length) au1@ 128 3zVINMIRATWIA

funsultlunInaaadadinia 64, 58, 51, 45, 38, 32, 26, 19, 13 Az 6 30,

A =2 & @ & o A
e 5 8 12 luersusasteyalasisazduwimisliinadia  image
Scaling fia DCT-based compressed algorithms Wvnsaavwevadanlasunsulid
A Aa ' Aa v o oAl
naaaaIrIafiFonimIserweiiddeya aanInlfiuldd lasawimaewiavass
walasunsy launnndn 50% answainlai(Windows Length) Sududné udgsaalw
Usednsamlumsiifiigandy 85% adlunng auwradulad(Windows Length) il

Aaa v

iUl uwaSsudrnsltinaianisaa i G ayamaNInazn a%18ANNET N

ﬁdﬁfuﬁdagﬂvlﬁjﬂfmﬂﬁﬂ Image Scaling WUy DCT-based compressed algorithms
paaninmIaaswasinlasunaulunng Julai(Windows Length) snansaldnulduas

SIRINITDAAVUIA L UINNTT 50% I(ﬂﬂﬁﬂi:ﬁﬂ%mwhmjﬁﬁEl'\'imgaﬂdﬁ 85%

4.4 W3auiiauisz&nEnmlwn133111 Classification technique. 8% ¢)

Tusudspila kilasetnadszaniiiay (Artificial Neural Networks) WUy three-layer
feed-forward network ém%‘umsﬁéwLﬁﬂﬁaaﬁ%aﬁﬁaoluﬁaﬂamaaoﬁg@ﬁ 1 LAY 2 W6k

I a >3 = a d' Yo U a a % % % 5 Aa o n‘rd
anuLduaSedsnaliinafindusg Iuﬂﬂsgmmagaaﬂﬁmm TRAGILNY AIBUITUIVL R
o & o ° A = a A A Yo o . . .
a%ﬂmaommsmaauwaLﬂismmﬂuﬂszammw‘lumigmﬂu Classification technique.
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e K-nearest neighbor (KNN)

e Fisher's linear classifier
e Linear Bayes Normal Classifier

e Naive Bayes Classifier

e Parzen Classifier

® Decision tree

DB-THS Dataset

90.00
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2000 s 1656

- = 5 . l
k-nearest Feed Forward Fisher's linear Linear Bayes Naive Bayes Parzen Decision tree
neighbor classifier Normal Classifier

Classification Technique
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DB-TH-ENG Dataset
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Classification Technique

AMWN 10 iayaﬂsz%w%mwlumsj’ﬁwaaLwiazmﬂﬁﬂuuﬁagamsmaaa"g@ﬁ 2

NN 9 uaz 10 Fuaasdayadsininwlunisiinesudazninafiauudays
nnaaasTafl 1 uaz 2 dwendwinisldlandnodssandion  (Arficial  Neural
Networks) WU three-layer feed-forward network sunInlidszaninmlunisidigenia

nne naila uazinadia K-nearest neighbor (KNN) l#tsznimwluniinududraudan

4.5 Wisuiigulsz&nSnwlunm3sny Automatic Speech Recognition (ASR).

o A
AN )

Yo A . A A A & v o A
M333FLana (Speech Recognition) fia n1sfinanfitaaiaunIniuj 1dusvas
wgwﬂ@ﬂ@yﬁmiuﬁ'@ I@ﬂﬁa"l,ﬂLLﬁa%:mﬁmzquﬂiLmimauﬁaL@laﬁ‘ﬁmmiml,ﬂau%mw“@
(Audio File) \Jutaanuaianss (Text) I@ﬂmmiml,ﬁml,mﬁm“mmG] NSRRI

lalulaslwu Insdwriniegunsniaug uazidhladdwrinndadnigndaiioy 100%

& a Y o een I a d o v
Taunafian133$1FuIna (Speech Recognition) tiluinafiausng Agniiuild
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Abstract

Singing word recognition is one of the interesting research topics in the area of
Music Information Retrieval (MIR). The first approach to solve this problem
used successful techniques in Automatic Speech Recognition (ASR). Moving
from monophonic to polyphonic audio signal, the problem has become more
complex. The background instrumental accompaniment is regarded as the
noise source degrading the performance of the recognition system. The pa-
pers proposed a statistical learning method for recognition of the word in a
singing signal with background music and for classification of singing voice
region in a polyphonic audio signal.

The goal of this paper is to solve singing word recognition without using
any method to separated instrumental from background music . The papers
also applied the concept of image recognition by using a spectrogram feature
as an image to solve the problem. An audio signal that accompanies music
was analyzed and transformed into a spectrogram feature. A dimension of
spectrogram feature is very high and time interval of each singing word is
not equal. Then we apply image resizing algorithm to solve both problem.
To recognize it, the whole spectrogram feature was sliced and formed as a
feature vector for a neural classifier.

Several classification functions are compared, such as Fisher classifier,
K-nearest neighbor and Feed-Forward can effectively recognize the word in
music with the accuracy rate more than 90.0% Especially, we can recognize
Cross-Language Music Data.
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1. Introduction

The problems of recognizing a singing word under some noisy background
has been an interesting topics. In this paper, we are interested in the problem
of Music Information Retrieval (MIR) Cullity (2003) Hayashi et al. (2014)
Vaizman et al. (2014) McVicar et al. (2014) Su et al. (2014) , which is a
particular application of recognizing words under a mixture of several music
instruments. The difficulty of recognition lies at the types of instruments and
their strength. The background instrumental accompaniment is regarded as
the noise source degrading the performance of the recognition system.

During a singing period, the power of a singing voice may be stronger or
weaker than the power of the music instruments. If the power of a singing
voice is stronger than the musical background, then the recognition is rather
simple. On the contrary, it is quite complex when the power of a singing voice
is rather weak. Besides these two factors, the spectrum of each instrument is
unknown a priori for a given song. The spectrum can be varied according to
duration of voice sound, loudness, pitch, vibrato, formant, rhythm and rhyme
Gerhard (2003) Sasou et al. (2005a) Yaguchi and Oka (2005) Gruhne et al.
(2007). So many methods based on the features extracted directly from the
accompanied vocal segments are difficult to achieve good performance when
accompaniment is stronger or singing voice is weaker.

This makes the background filtering process more complicated in terms
of computational cost. There have been several proposed techniques which
may be relevant to the problem of recognizing singing words with complex
musical background. Some interesting techniques are the following.

Hu and Liu (2014) exploited computational auditory scene analysis (CASA)
to segregate singing voice units for each time frame. Those segregated singing
voice units were regarded as reliable components. And then two missing fea-
ture methods were used respectively together with those reliable components
to perform the tasks of singer identication. The reconstruction method was
exploited to obtain a complete singing spectrum which were further used to
extract the features for singer identication, and the marginalization method
was exploited to directly perform the identication task based solely on reliable
components.



Raj (2007) applied Probabilistic Latent Component Decomposition (PLCD)
for separating singing voices from background music in popular songs. The
set of basis vectors described by the frequency marginal were learned for
each component signal from a separated unmixed training recording (vocal
or background music). The spectrograms for the voice-only and music-only
components of the mixed recordings were obtained using PLCD.

Huang et al. (2012) proposed using robust principal component anal-
ysis (RPCA) for singing-voice separation from music accompaniment. By
RPCA, they obtained two output matrices, one is the sparse matrix contain-
ing formant structures which indicates vocal activity, and another is low-rank
matrix which indicates musical notes. It was based on the assumption that
repetition is a core principle in music and the singing voice has more variation
and is relatively sparse within a song.

Ryynanen et al. (2008).used fundamental frequency (F0) to separated ac-
companiment from polyphonic music based on automatic melody transcrip-
tion. This method used sinusoidal modeling to estimate, synthesize, and
remove the lead vocals. In their system, the pitches of singing also needed
to be estimated in advance.

Several techniques concerning to solve the problem of audio recognition
Makeyev et al. (2007b)Lin et al. (2005)Esmaili et al. (2004) Wang et al.
(2008)Yoshii et al. (2007) Toyoda et al. (2004b) Makeyev et al. (2007a)Ajmera
et al. (2003)Toyoda et al. (2004a). Most of the proposed methods consisted
of two processing steps: feature extraction and classification. In the first
step, feature exaction, the redundant information contained in the signal
were transformed into descriptors used as the input of a classifier for recog-
nition in the second step. Shenoy (2005) used the amplitude variation over
time in each sub-band and a threshold method on the energy function such
as the proportion of frames classified as vocals to be equivalent to the pro-
portion of the singing in the entire song. Nwe et al. (2004) used Harmonic
Attenuated LFPCs with Hidden Markov Model HMM models based on three
parameters, e.g. section type (intro, verse, chorus, bridge and outro), tempo,
and loudness. Tsai Tsai et al. (2003) used Mel-frequency cepstral coefficients
(MFCCs) and GMM models to classify vocal from non-vocal signals. Beren-
zweig and Ellis (2001) used vector of posterior probability as a feature and
HMM framework with two states, ”singing” and ”non-singing”. Chou and
Gu (2001) used 4 Hz modulation energy, harmonic coefficient, 4Hz harmonic
coefficient, delta MFCC and delta log energy as features and GMM model
to detect singing voice. Berenzweig (2002) applied 13 PLPCs and MLP.
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Maddage et al. (2003) considered LPC, LPC derived cepstrums (LPCC),
MFCC, spectral power (SP), short time energy (STE), and ZCR as features
and a multi-layer neural network, a SVM, and a GMM for classification.
SVM was found to outperform the other classifiers. Maddage Maddage et al.
(2004) latter tried Twice Iterated Composite Fourier Transform (TICFT) to
each audio frame. Rocamora and Herrera (2007) used different sets of fea-
tures such as MFCCs with their deltas, LFPC with their deltas and double
deltas, PLPCs with their deltas, HC and pitch and different classifiers such
as a SVM, a back propagation NN, a decision tree classifier, and two different
K-nearest neighbors. Tzanetakis (2004) used spectral shape feature, MFCCs,
mean and deviation of pitch , centroid and LPCs for feature extraction and
a naive bayes network, nearest neighbor algorithms, back-propagation ANN,
a decision tree classifier based on the C4.5 algorithm, a SVM classifiers. Kim
(2002) used a harmonic measure, defined as the ratio of the total signal en-
ergy to the maximally harmonically attenuated signal and threshold method
on the harmonic measure to classify the segment.

As compared to other areas in audio such as speech or music, research
on general unstructured audio-based scene recognition has received little at-
tention. To the best of our knowledge, only a few systems (and frameworks)
have been proposed to investigate of singing voice recognition with raw au-
dio. Most of investigations of singing voice recognition deal with recogni-
tion phoneme first and used a speech recognizer for lyrics recognition. Sasou
et al. (2005b) tested an Auto Regressive HMM with pure singing voice signals
from the RWC database. These studies presumed pure monophonic singing
voices without accompaniment, posing additional difficulties for practicable
use with musical audio signals like CD recordings. Suzuki et al. (2007) com-
bined both the melody and the lyrics of the user’s singing voice to retrieve a
song from a database. They also used a large vocabulary speech recognition
system with a HMM as the acoustic model adopted to the singing voice using
the speaker adaptation technology.

Wong et al. (2007) proposed a system for real-time alignment of Cantonese
music, which is a particular tone language. The meaning of a word changes
when pronounced with a different pitch. A MLP was used to segregate the
vocal from the non-vocal segments taking as input the spectral flux, the
HC, the ZCR, the MFCCs, the amplitude level and the 4Hz modulation
energy. DTW algorithm was used to align the two sequences. However,
this method is not consistently effective because the durations of uttered
phonemes depend on locations, even though they are the same phonemes.
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Kan et al. (2008) was probably the first English lyrics sentence level alignment
system for aligning the lyrics to the music signals for a specific structure of
songs. M. Gruhne and Dittmar (2007) implemented a system that performed
automatic classification of 15 voiced sung phonemes in polyphonic audio.
Their procedure was based on harmonics extraction and re-synthesis of a
number of partials as a preprocessing step, in order to reduce influences
from accompanying sounds. Then, low-level features were extracted from
the audio and classified using different classification techniques like SVM,
GMM and MLP. Fujihara et al. (2006) performed automatic synchronization
between lyrics and polyphonic music signals for Japan CD recordings. Their
proposed system included detection of vocal segments, segregation of vocals
and adaptation of a speech recognizer to the segregated vocal signals. During
the first step, harmonics extraction and re-synthesis was performed as in
M. Gruhne and Dittmar (2007). A simple HMM was used in order to keep
only the vocal regions and remove the non-vocal sections. Last, features
were extracted from the audio (MFCCs, delta MFCCs, and delta power)
and the Viterbi algorithm was used to align the segmented vocal parts with
the corresponding lyrics. Zwan et al. (2008) presented an automatic singing
voice recognition using neural network and rough sets. The method also
required and combined many type of feature vector for classification method.
Mesaros and Virtanen (2010) studied the use of n-gram language models in
recognizing phonemes and words in monophonic and polyphonic music. They
considered uni-, bi-, and tri-gram language models for phonemes and bi-
and tri-grams for words. In the recognition, a hidden Markov model based
phonetic recognizer was adapted to singing voice. Their word recognition
system achieved only 24% correct recognition rate.

In this paper, we are interested singing voice recognition in polyphonic
recordings of popular music. Our hypothesis is that, for any song, it is un-
necessary to filter the instrumental background from the singing voice to
recognize the singing words. Since the complexity of musical background in
terms of relevant factors as previously mentioned is too high and uncontrol-
lable, it would be better not to eliminate the musical background from the
singing voice. Our objectives concern two essential issues. The first issue is
the recognition speed. Without filtering the musical background from singing
voice, the processing time is expected to be tremendously reduced. The sec-
ond issue emphasizes on the independence of the following factors: duration
of voice sound, loudness, pitch, vibrato, formant, rhythm and rhyme. These
two issues lead to the problem of which representation domain is the most



suitable for any song so that the highest recognition accuracy of singing words
can be achieved from this representation. In our algorithm, we transformed
the problem of recognizing one dimensional signal of song into the problem of
recognizing a color image. The features of image are extracted and classified.
The details will be discussed in the following sections.

The rest of the paper is organized as follows. Section 2 formulates our
studied problem and constraints. Section 3 reviews related backgrounds.
Section 4 discusses the concept of our proposed algorithm. Section 5 explains
the experimental set-up. Section 6 evaluates the results. Section 7 concludes
the paper. Each song The musical background By following this direction,
we expect to achieve high recognition accuracy.

2. Problem Formulation and Constraints

We considered the following situation. Given a song as a mixture of
musical background and singing voice and recognize them. There are two
procedures involved in this situation. The first procedure concerns the prob-
lem of time interval of each singing word in each song is different and it
depends on depending on the singer and rhythm. Then, how to make time
interval of each singing words are of the same. Audio music with instrumental
interference: In polyphonic music recordings, the instrumental interference
is treated as the noise source that causes degradation to the intelligibility of
the singing voice signal. The second problem is how to recognize the singing
word in music with instrumental. The solutions to these two problems are
independent from each other. In this paper, we concentrate on the both
procedure. Hence, it is assumed that the input to our algorithm an audio
signal was already contains a singing word. The input is in the form of a set
of sampled audio signal values in time domain, i.e. {z(1),...,z(n)}. Our
study is constrained by the following factors and conditions.

Constraints

1. Our system took polyphonic music audio signal as the input sampled
from music CD recording.

2. Different music genres were included in experiment such as Rock jhard
rock, Soft Rock , Dance , Hip-Pop, Soul, R&B ,folk and Acoustic from
different artists.

3. All music genres have man and woman singers.



4. Singing words can be either Thai or English. Only frequently occurred
and composed words, phases, and sentences in most of the sampled
songs were considered. Table 4 summarizes the frequently used Thai
words and their duration. Table 6 summarizes the frequently used Thai
and English words, phases and sentences with their duration.

The problems discussed in this paper are the following. Let S = {z(1),...,z(n)}
be a given interval of sampled signals of a song. Each z(i) may be a mixture
of singing voice with musical background or singing voice alone.

1. How to recognize the singing word in interval S without eliminating
the musical background ?

2. What are the essential features to the recognition rate achieving high
accuracy 7

3. Can the recognizing algorithm be robust to the previously mentioned
constraints 7

3. Proposed Concept
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Figure 1: Examples of four singing words represented in forms of spectrograms. (A) Word
1. (B) Word 2. (C) Word 3. (D) Word 4.

Recognizing a singing word is more complex than recognizing a spoken
word without any musical background. The strength and clearness of a

7



signing word is always deteriorated by several factors such as signing styles,
duration of sing voice, instrumental background signal under uncontrollable
loudness, pitch, vibrato, formant, and rhythm. To effectively eliminating
the musical background, the types of musical instruments must be known
in advance to properly filter the corresponding musical signal frequencies
from the signing word signal. In fact, these frequencies are unknown a priori
to the filtering process. If the musical background cannot be completely
separated from the signing signal, then the percentage of recognition accuracy
is obviously not high. Furthermore, the unpredictable singing duration can
make the recognition process rather complicated in terms of time complexity.

Our solution is based on the following observation and hypothesis. The
hypothesis is that for a singing word, there are various ways to sing the word
with different backgrounds. But if we plot the spectrograms feature of all
different intervals of songs having this words, then we should have similar
spectrograms feature. Figure 1 shows some examples of spectrograms feature
of the same words. There are four words, named A, B, C, and D, and
their spectrograms feature are in rows 1 (top row), 2, 3, and 4 (bottom),
respectively. These four words were sung by different persons with different
musical backgrounds and duration. Observe that the spectrograms feature of
any singing word are similar to each other but different from the spectrograms
feature of the other singing words. Note that each spectrogram feature was
derived from the mixture of singing word and musical background. Therefore,
it is unnecessary to filter any background from the signing word prior to the
recognition. A spectrogram feature can be considered as a color image. In our
approach, the problem of recognizing a singing word with musical background
is transformed into the problem of recognizing a spectrogram feature. Our
recognizing algorithm consists of the following steps.

1. Transform the input audio signals S into a spectrogram feature.
2. Extract the features to represent the spectrogram feature.

3. Eliminate some less informative pixels from the spectrogram feature to
reduce the number of features.

4. Classify the features.

The results from our proposed technique will be compared with automatic
speech Recognition (ASR) algorithm. The detail of each step is given in the
following section.
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3.1. Spectrogram Feature Representation

A spectrogram feature is a visual representation of the distribution of
acoustic energy across frequencies in time domain. The horizontal axis of
a spectrogram feature typically represents the time intervals of audio signal
snapshots. The vertical axis represents the power spectrum of discrete fre-
quency steps. The strength of power detected is represented as the intensity
at each time-frequency pixel.

First, the input audio signal z(n) of each singing word is sliced into a
number of small windows or frames whose size is equal to a power of two.
Each signal window is calculated by using the short-time Fourier transform
(STFT) defined as follows.

=

X(k) = 3 winja(nyerp(~ 2o W

3
Il
=)

for k =0,1,..., N — 1, where k corresponds to the frequency f(k) :(k](;);
fs is the sampling frequency in Hertz; and w(n) is Hamming time-window

given by

w(n) = 0.54 — 0.46 cos (%) 2)
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Figure 3: The process of computing the power spectrum of an input audio signal and
forming the spectrogram feature in our algorithm.
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The power of each X(k), denoted by P(k), is computed by the following
equation.

P(k) = 10logio(X (k)) (3)

Each P(k) and its time interval are plotted to form a spectrogram feature of
each singing word. Figure 3 shows an example of how to create a spectro-
gram feature. This spectrogram feature is used as the features of the song
and used in the classifying process. In this paper, we used a neural net-
work as a classifier whose input must be in the form of a vector. A power
spectrogram feature can be viewed as a collection of columns of power spec-
trums. Therefore, the spectrogram feature can be transformed into a vector
by concatenating these columns of power spectrums as shown in Figure 4.

Row(1) Row(2) Row(M)

Spectrogram Size M*N ‘ ‘ ‘ ........... | ‘

—

Frequency (Hz)

Time (s)

Figure 4: Forming the input vector of neural classifier by concatenating columns of power
spectrums.

3.2. Feature Reduction with Image Scaling Algorithm

To speed up the classification, the less informative features must be elim-
inated. Note that the size of power spectrogram feature of each song may
not be equal due to the length of each song and the sampling rate.

The y-axis or vertical axis represents the frequency of the spectrogram
feature. The size will depend on the size of window that is used to created
a spectrogram feature. As showing in figure 3, an input audio signal z(n)
of each singing word was cut in to small windows. Then, a spectrogram
feature can be obtained from different sizes of windowed segment and size of
windowed segment can be equal a power of two. Figure 5 show a spectrogram
feature obtained from different sizes of windowed segment. From the figure
we can see a different characteristic of a spectrogram feature obtained from
different sizes of windowed segment.

11
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Figure 5: Example of spectrogram feature obtained from different sizes of windowed seg-
ment a) 64, b) 128, ¢) 256, d) 512, e) 1024, f) 2048, g) 4096, h) 8192.
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Figure 6: Example a size of spectrogram feature column obtained from different period of
time .
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The x-axis or horizontal axis represents the time of the spectrogram fea-
ture. The interval of each singing word in each song is different and it depend-
ing on the singer and rhythm. When convert each singing to a spectrogram
feature the size of specture feaure in horizontal axis was not equal. Figure
6 show a spectrogram feature that created from an audio sound with a dif-
ferent period of time. The period of time of each audio sound are 0.5s, 1.0s,
1.5s, 2.0s and 2.5s. From this figure, a spectrogram feature that created
from an audio sound with a different period of time a size of column of each
spectrogram feature was not equal.

Depending on the length of each singing word (x-axis ) and size of win-
dow that is used to created a spectrogram feature ( y-axis ). The size of
spectrogram feature of each singing word is not the same.

Figure 7 shows an example feature reduction and size normalization of
five different words. As showing in figure 7, we apply image resizing method
for resized spectrogram feature. The first reason is to reduce the size of
the spectrogram feature. The second reason is to make the data become
equal in all singing word. Several efficient image scaling techniques such as
nearest neighbour sampling, bilinear interpolation, bicubic interpolation, and
discrete cosine transform-based compression, can be adapted to this problem.
A brief summary of each technique is given in the followings.

Image scaling is the process of resizing a digital image, wherein an image
is converted from one resolution/dimension to another resolution/dimension
without losing the visual content. It has many terminologies in literature such
as Image Interpolation, image re-sampling, digital zooming, image magnifi-
cation or enhancement, etc .

3.2.1. Nearest Neighbor Interpolation

Nearest neighbor interpolation guesses each pixel as having the same vi-
sual quality as its closest neighbor. It is one of the fastest and simplest forms
of interpolation technique. During enlarging (upscaling), the empty spaces
will be replaced with the nearest neighboring pixel. Shrinking, on the other
hand involves reduction of pixels.

3.2.2. Bilinear Interpolation

Bilinear interpolation is slightly more sophisticated and calculates each
new pixel as a linear weighted sum of the 4 closest neighboring pixels. It is an
extension of linear interpolation for interpolating functions of two variables
(x and y) on a regular 2D grid. This algorithm is a combination of two

13
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Figure 7: An example of feature reduction and normalization of spectrogram size. There
are five different words in this example.

linear interpolations. The idea is to perform linear interpolation first in one
direction, and then again in the other direction.

3.2.3. Bicubic Interpolation

The bicubic interpolation is advancement over the cubic interpolation in
two dimensional regulargrid. The interpolated surface is smoother thancor-
responding surfaces obtained by above mentionedmethods bilinear interpola-
tion and nearest-neighbourinterpolation. It uses polynomials, cubic, or cubic
convolution algorithm. The Cubic ConvolutionInterpolation determines the
grey level value from theweighted average of the 16 closest pixels to thes-
pecified input coordinates, and assigns that value tothe output coordinates,
the first four one-dimension.For Bicubic Interpolation (cubic convolutionin-
terpolation in two dimensions), the number of gridpoints needed to evaluate
the interpolation function is 16, two grid points on either side of the point
underconsideration for both horizontal and perpendiculardirection.

3.2.4. Discrete Cosine Transform (DCT)-based compressed
Dugad and Ahuja (2001) have proposed an elegant scheme for changing
the image sizes in the Discrete Cosine Transform(DCT) space. The algorithm

14



while halving an image, from a 8x8 DCT block, 4x4 block in the spatial do-
main is obtained. This is carried out by applying a 4-point inverse DCT
(IDCT) on the 4x4 lower frequency-terms. In the next stage, this image (in
the spatial domain) is once again compressed by 8x8 block DCT encoding
(JPEG standard). For doubling the images, first the DCT encoded image is
transformed to its spatial domain. Then for each 4x4 block, the DCT coeffi-
cients are computed applying a 4-point DCT. These 4x4 DCT coefficients are
directly used as the low frequency components of 8x8 blocks, which are sub-
sequently converted to a 8X8 block in spatial domain by applying a 8-point
inverse DCT (IDCT).

The four techniques described above, we compare the values after halving
and doubling a spectrogram feature using Peak Signal to Noise Ratio (PSNR)
measure.

Table 1: PSNR values after halving and doubling a spectrogram feature that create from
Table 4.

PSNR(dB)

SingingWord Nearest Bilinear Bicubic DCT

7’ 34748 35505  37.406  39.233
T 34.823 35540  37.483  39.390
e’ 34.510 35349  37.219  39.065
las” 34471 35301  37.18%  38.992
"a” 34.635 35455 37.334  39.110
Ty 33.890 35106  36.748  38.340
7k 34551 35571  37.336  39.116
"i50” 34186 35199  36.885  38.604
757 34458 35307 37.120  38.896
7$n” 34.207 35279  36.948  38.617
737 33.912 35005 36720  38.304
"5 34.750  35.315  37.385  39.357
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Table 2: PSNR values after halving and doubling a spectrogram feature that create from
Table 6.

PSNR/(dB)
SingingWord Nearest Bilinear Bicubic DCT

I love you 30.374  32.695 33.374  33.993
Love you 31.240  33.353 34.198  34.945
Together 30.509  32.801 33.496  34.001
Tomorrow 30.383 32.603 33.325  33.941
Yesterday 29.978  32.461 33.018  33.476

29 & )
AN 32.020 33.935  35.036  36.094

TAnfie” 32.444 34383 35613  36.713
Tlasdnen” 51003 33242 34071 34.827
laline” 32.015 34.148  35.153  36.039
e’ 20454  31.953  32.478  32.859
"snise” 32.874 34582  35.873  37.069
7viala” 32.920 34.469  35.810  37.185
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The PSNR is most commonly used as a measure of quality of reconstruc-
tion of lossy compression codecs. The signal in this case is the original data,
and the noise is the error introduced by compression. Typical values for
the PSNR in lossy image and video compression are between 30 and 50 dB,
where higher is better 7 7 7 .

The PSNR values obtained after halving and doubling of spectrogram
feature are shown in the Table 1 and 2 . For spectrogram feature DCT-based
compressed algorithms perform better than another algorithm in most cases
and value of PSNR was over 30 dB. Therefore , we chooses to DCT-based
compressed algorithms reduce a spectrogram feature size for image scaling
algorithm in this research.

4. DATA COLLECTION

Our system take polyphonic music audio signal as input, which are sam-
pled from music CD recording and different music genres are included in
experiment such as Pop Rock ,Hard rock, Soft Rock , Dance , Hip-Pop, Soul,
R&B ,folk and Acoustic. The files are all from different artists. We investi-
gated the performance of a spectrogram feature of audio features to solve the
problem of Singing Voice Recognition and provide an empirical evaluation
on two data set.

The first data set, denoted as DB-THS, was a collection of songs randomly
chosen from Thai popular music CDs. It contains over 1500 Album. All
detail was showing in table 3. The DB-THS data set consists of a 12 Thai
One syllable singing word, 7200 sound samples and 600 for each word. The
12 considered singing word were showing in table 4.

The second database, denoted as DB-TH-ENG, was a collection of songs
randomly chosen from English and Thai popular music CDs. For the second
data set that consists of a greater than equal to two syllables singing word.
It contains over 1600 Album. All detail was showing in table 5. The DB-
TH-ENG data set was consists 12 singing word. We used 5 word in English
and 7 word in Thai. DB-TH-ENG that contains 7200 sound samples and 600
for each word. The 12 considered singing word were showing in table 6. All
singing words in table 4 and 6 was selected from the most frequently in the
all song.

All each singing word audio was selected and cut by manual by using
Sony Sound Forge program. All Sample files in Table4 and 6 was coded in
stereo of frequency 44.2 kHz with 128/s bit rate.
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Table 3: The music used in DB-THS DATASET.
Music Genres Male Singer Female Singer Total

Pop Rock 1,768 1,545 3,313
hard rock 978 667 1,645
soft rock 2,284 2,100 4,384
dance 1,177 467 1,644
hip-pop 304 160 464
soul 250 108 358
R&B 1,135 652 1,787
folk 297 162 459
Acoustic 1,288 982 2,270
Total 16324

Table 4: DATABASES DB-THS USED IN EXPERIMENTS

Class. Singing word Time duration(min-max) Pronounce (in Thai)

29 29

1 AU 0.65s-2.95s "kon”
2 T 0.265-0.60s » kwarm”
3 “ipy” 0.33s-0.62s "koey”
4 "las” 0.335-0.70s "krai”
5 a7 0.44s-1.38s ”jai”

6 73" 0.265-1.23s » chan”
7 ”‘17“'” 0.26s-0.54s "tee”
8 Ti5e” 0.235-0.78s "ther”
9 417 0.285-0.86s ” mai”
o 57 0.185-1.485 " luck”
11 ”in 0.28s-0.47s 7100”
12 "’ 0.265-0.73s "raw”
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Table 5: The music used in DB-THS-ENG DATASET.

Music Genres Male Singer Female Singer Total
Pop Rock 1,105 1,432 2,537
hard rock 1,734 503 2,237
soft rock 4,473 1,466 5,939
dance 1,121 964 2,085
hip-pop 162 149 311
soul 208 358 566
R&B 1,155 840 1,995
folk 329 355 684
Acoustic 462 940 1,402
Total 17756

Table 6: DATABASES DB-TH-ENG USED IN EXPERIMENTS

Class. Singing word Time duration(min-max) Pronounce (in Thai)
1 I love you 0.65s-2.95s
2 Love you 0.57s-2.92s
3 Together 1.04s-2.11s
4 Tomorrow 1.07s-6.63s
5 Yesterday 0.81s-5.90s
29 v 9
6 AIdsn 0.52s-3.65s ” kwarm-luck”
MNVa = 9
7 AR 0.88s-1.11s "kit-thun”
Wi o 7
8 lasdneu 0.99s-4.62s "krai-sak-kon”
M. 79
9 liivpe 0.41s-1.99s "mai-koey ”
29 199
10 laid] 0.57s-1.17s "mai-mee”
Ny 9
11 INL5B 0.47s-1.93s " luck-ther”
9 29
12 Wil 0.735-1.465 » hua-jai”
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5. EXPERIMENTAL EVALUATION

This section discusses the methodology used in our proposed techniques.
It includes the description of the experiment setup, the comparative study
method and the implementation details. All calculations were done using
Matlab 2012a on a Intel Dual Core E6750 2.66 GHz Desktop machine with
6G of RAM.

5.1. Experimental Setup

Our recognizing algorithm perform the following proposed steps in section
3. , all audio signals were converted to mono and down-sampling types at
rate of 11,000 Hz. The experiment consists of tests on DB-THS and DB-TH-
ENG data set. Each singing word in DB-THS and DB-TH-ENG dataset are
randomly divided into four groups of equal sizes. Then, arbitrarily selected
three groups are used for training and the rest is used for testing. For cross-
validation procedure, the same process is repeated 50 times with the different
training and test sets, to ensure that all samples are included at least once
in the test set. The mean recognition rate was calculated based on the error
average for one run on test set.

In this paper, a three-layer feed-forward network was used for sound clas-
sifying into correct type of singing words as showing in Table 4 and 6. A
sigmoid transfer function was used in hidden layer and output layer. The
network will be train with scaled conjugate gradient backpropagation func-
tion. The network consists of 12 outputs corresponding to 12 classes in each
data sets. The value of each output is between [0,1]. The number of hid-
den neurons was adjusted to achieve the high accuracy. Although selecting
a good learning rule can generate a good result, in this paper, we will not
concern the learning rules since the learning rules are not the focus of this
study.

5.2. Selected number of hidden neurons

The number of hidden neurons is also another relevant factor affecting
the accuracy. However, theoretically estimating this number is rather diffi-
cult. To select parameter in number of hidden neurons criterion. We use a
rectangular window of 512 pixels with a 25% overlap This corresponds to the
window size used for all spectrogram feature. After that, all spectrogram of
each singing words was resized to 128 x 5 pixel with DCT-based compressed
algorithms. (We will consider effect of different window size of spectrogram
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Figure 8: Overall recognition accuracy using Feed Forward Neural Network with varying
number of Hidden Neural Unit on DB-THS Dataset
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Figure 9: Overall recognition accuracy using Feed Forward Neural Network with varying
number of Hidden Neural Unit on DB-TH-ENG Dataset
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feature and size of spectrogram feature after resized in the next section). We
examine the results from verity number of hidden neural unit and using the
same for each environment type.

We plot the classification performance in Fig 8 and 9 highest recognition
rate was obtained using 25 hidden neural units, with an average accuracy
of 84.16% for data in Table 4 and 91.904% for data in Table 6. Thus, we
chased 25 hidden neural units for three-layer feed-forward network in our
experiments and used for sound classifying in all experiment.

5.3. Fxperimental Results

The problem of reducing the size of spectrogram feature is suitable size of
spectrogram feature to be used. Then, the size of spectrogram feature consid-
ering both x-axis and y-axis. In this experiment, the size of the spectrogram
considering both the x-axis and y-axis.

This Experimented, we used the data from Table 4 and Table 6. Base on
our experimental setup, we use a window of 1024, 512, 256, 128 pixels with
a 25% overlap for y-axis. The number of frequency components in the y-axis
spectrogram feature output is equal to half window length. To determine the
suitable size of the y-axis, we reduced the size of the y-axis by reducing the
percentage from 100 to 10 by 10 percent each of every windows size.

e By using a window of 1024 to experimented , we reduced the size of
the y-axis of spectrogram feature to 512 , 461, 410, 358, 307, 256, 205,
154, 102 and 51 Pixel.

e By using a window of 512 to experimented , we reduced the size of the
y-axis of spectrogram feature to 256, 230, 205, 179, 154, 128, 102, 77,
51 and 26 Pixel.

e By using a window of 256 to experimented , we reduced the size of the
y-axis of spectrogram feature to 128,115, 102, 90, 77, 64, 51, 38, 26 and
13 Pixel.

e By using a window of 128 to experimented , we reduced the size of the
y-axis of spectrogram feature to 64, 58, 51, 45, 38, 32, 26, 19, 13 and 6
Pixel.

The x-axis is consider reducing the number of columns to suitable size
of spectrogram feature. The number of columns of spectrogram consider on

22



average value of spectrogram that created from data in table 4 and 6. The
average of spectrogram in x-axis is 10. Therefore, we use the average size
of spectrogram as the maximum amount of data in the x-axis. The number
of columns in the x-axis, we expanded the size of the x-axis of spectrogram
feature to 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 Pixel. The overall recognition rate
by use a window of 1024, 512, 256, 128 pixels are given in table 7, 8, 9, 10,
11, 12, 13 and 14.

By using windows of 1024, Performance on DB-TH-ENG data set higher
than DB-THS data set. A recognition accuracy in DB-THS data set shows
in table 7 that 60 out of 100 is higher than 80%. But 88 of 100 from DB-
TH-ENG data set in Table 8 was show classification rate more than than
80%.

When reduced a window size to 512, 256 and 128 jefficiency of recognition
began to decrease. Efficiency of recognition was show in table 9 and 10 was
a spectrogram that used a window of 512. In DB-THS data set 32 out of
100 is higher than 80% and 66 of 100 from DB-TH-ENG data set was show
classification rate more than than 80% .

By using a window size 256, Efficiency of recognition was show in table
11 and 12 for DB-THS and DB-TH-ENG data set. In DB-THS data set 10
out of 100 is higher than 80% and 29 of 100 from DB-TH-ENG data set was
show classification rate more than 80%.

By using a window size 128 was show the lowest performance. Efficiency
of recognition was show in table 13 and 14 for DB-THS and DB-TH-ENG
data set. Any size of spectorgram feature in DB-THS dataset was show
classification rate more than 80% in Table 13 and 29 of 100 from DB-TH-
ENG data set was show classification rate more than 80% in Table 14.

As showing in table 7, 8, 9, 10, 11, 12, 13 and 14. a spectrogram that cre-
ated from a large size of windows segment gives better classification accuracy
than a spectrogram that created from a small size of windows segment.

5.4. Compare with the other classification technique.

The following classification techniques are used for speech /speaker recog-
nition or have, in the past, been used for this paper. They are:

e K nearest neighbor (KNN)
e Fisher’s linear classifier

e Linear Bayes Normal Classifier
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e Naive Bayes Classifier
e Parzen Classifier

e Decision tree

This Experimented, we used the data from Table 4 and Table 6. Base on
our experimental setup, we use a window of 1024 pixels with a 25% overlap.
This corresponds to the window size used for all feature extractions. After
that, we apply DCT-based compressed algorithms for resize a spectrogram
feature to 256 x 4. As showing in table 7 and 8, we selected an spectro-
gram feature size 256 X 4 because it was the smallest size that can provide
performance higher than 80% for DB-THS dataset and higher than 90% for

DB-TH-ENG data set and this size used for all classification technique in
this section.

DB-THS Dataset
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Figure 10: Test classification performance of different classification technique using spec-
trogram feature on DB-THS Dataset.

We compare the overall recognition accuracy using spectrogram feature
and their combination for 12 classes of singing word in DB-THS and DB-
TH-ENG data set with 7 classification technique in Fig 10 and 11. As shown
in figures,by using a spectrogram feature with image resize technique and
feedforward neural network having the highest recognition rate at 84.782%
for DB-THS data set and 91.904% for DB-TH-ENG data set.

In this section we will see that the spectrogram feature and feed forward
neural network to solve the recognition can be achieved. Especially, spectro-
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DB-TH-ENG Dataset

8218

4273
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k-nearest Feed Forward  Fisher'slinear  Llinear Bayes  Naive Bayes
neighbor classifier Normal Classifier

Classification Technique
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Figure 11: Test classification performance of different classification technique using spec-
trogram feature on DB-TH-ENG Dataset.

gram feature can recognize Cross-Language Music Data in Table 6 without
using any method to separated music in background.

5.5. Compare with Automatic speech Recognition (ASR) algorithm.

An interesting benchmark is shown in Fig. 12,13 and 14 | we ran the same
experiments using spectrogram feature feature and compare with Automatic
speech Recognition (ASR) algorithm. With Automatic speech Recognition
(ASR) algorithm, we used Hidden Markov Model (HMM) with the same data
using LPC and MFCC 13 coefficients.

To Compare with Automatic speech Recognition (ASR) algorithm and
our algorithm, each singing word in Tables 4 and 6. are randomly divided into
four groups of equal sizes. Then, arbitrarily selected three groups are used for
training and the rest is used for testing. For cross-validation procedure, the
same process is repeated 50 times with the different training and test sets, to
ensure that all samples are included at least once in the test set. The mean
recognition rate was calculated based on the error average for one run on test
set. For our algorithm, we used windows of 1024 to create a spectrogram
feature and resize to 256 x 4 with DCT-based compressed algorithms . A
spectrogram feature was performed on Feed Forward Neural Network, We
set 25 Hidden Neural Unit for DB-THS dataset and DB-THS-ENG.

To compare the experimental results with Automatic speech Recognition
(ASR) algorithm, we used Hidden Markov Model (HMM) with the same
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data using LPC and MFCC 13 coefficients. Table III shows a results on
ASR experiment, This ASR algorithm gives a lower accuracy result when it
applied to singing voice recognition with background music.

Results presented Fig 12 and 13 was show a detail for 12 classes of singing
word in Tables 4 and 6 by using feed forward neural network. As shown in
this figure, spectrogram features with feed forward neural network tend to
best performance. They perform better than ASR in 11 of the examined
singing words on DB-THS data set and all singing words on DB-TH-ENG
data set.

100

Recognition Accuracy (%)

Word1 Word2 Word3 Wordd Words Wordé Word? Words Wordg Word10 Word11 Word12

B Spectrogram + Feed Forward MFCC+HMM B LPC+HMM

Figure 12: Overall recognition rate 12 classes of DB-THS dataset using spectrogram fea-
ture with Feed Forward Neural Network, spectrogram feature with kNN, MFCC feature
with HMM and LPC feature with HMM.

Results presented Fig 14 was show overall recognition accuracy comparing
spectrogram features with Feed Forward Neural Network for all data set
of sounds and Automatic speech Recognition (ASR) algorithm. As shown
in this figure, spectrogram features having the highest recognition rate at
84.782% for DB-THS data set and 91.904% for DB-TH-ENG data set. They
perform better than Automatic speech Recognition (ASR) algorithm in all
data set. Because, Automatic speech Recognition (ASR) algorithm having
the highest recognition rate at 60.48% for DB-THS data set and 52.64% for
DB-TH-ENG data set for LPC feature and 59.53% for DB-THS data set and
49.99% for DB-TH-ENG data set for MFCC feature.
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100

Recognition Accuracy (%)

Word2 Word3 Wordd Words Words Word10 Word11 Word12

B Spectrogram + Feed Forward MFCC+HMM B LPC+HMM

Figure 13: Overall recognition rate 12 classes of DB-THS-ENG dataset using spectrogram
feature with Feed Forward Neural Network, spectrogram feature with kNN, MFCC feature
with HMM and LPC feature with HMM.
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Figure 14: Overall recognition rate.
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6. Conclusion

In this paper, we propose an algorithm for singing voice recognition in
monaural polyphonic music based on the images of spectrogram with neu-
ral classifier, image resizing algorithm and classification algorithms. But a
spectrogram is also limited. A dimension of spectrogram feature is very
high and time interval of each singing word is not equal. Then we apply
image resizing algorithm to solve both problem. The results show all classi-
fiers can recognize a singing word with background music. The experiment
showed that feed-forward network performed better than Automatic speech
Recognition(ASR) a with accuracy rate 91.904%. Especially, A algorithm
can recognize Cross-Language Music Data.

References

Ajmera, J., McCowan, ., Bourlard, H., May 2003. Speech/music segmenta-
tion using entropy and dynamism features in a hmm classification frame-
work. Speech Commun. 40, 351-363.

URL http://portal.acm.org/citation.cfm?id=781675.781682

Berenzweig, A., Ellis, D., 2001. Locating singing voice segments within music
signals. In: Applications of Signal Processing to Audio and Acoustics, 2001
[EEE Workshop on the. pp. 119 —122.

Berenzweig, Adam L.; Ellis, D. P. W. L. S., 6 2002. Using voice segments
to improve artist classification of music. In: Audio Engineering Society
Conference: 22nd International Conference: Virtual, Synthetic, and En-
tertainment Audio.

Chou, W., Gu, L., 2001. Robust singing detection in speech/music discrimi-
nator design. In: Proceedings of the Acoustics, Speech, and Signal Process-
ing, 200. on IEEE International Conference - Volume 02. IEEE Computer
Society, Washington, DC, USA, pp. 865-868.

URL http://portal.acm.org/citation.cfm?id=1258236.1259164

Cullity, B. D., 2003. Music information retrieval. Vol. 35. Information Today
Books.

Dugad, R., Ahuja, N.; 2001. A fast scheme for image size change in the
compressed domain. IEEE Trans. Circuits Syst. Video Techn. 11 (4), 461
A74.

32



Esmaili, S., Krishnan, S., Raahemifar, K., may 2004. Content based audio
classification and retrieval using joint time-frequency analysis. In: Acous-
tics, Speech, and Signal Processing, 2004. Proceedings. (ICASSP '04).
IEEE International Conference on. Vol. 5. pp. V — 665-8 vol.5.

Fujihara, H., Goto, M., Ogata, J., Komatani, K., Ogata, T., Okuno, H. G.,
2006. Automatic synchronization between lyrics and music cd recordings
based on viterbi alignment of segregated vocal signals. In: Proceedings of
the Eighth IEEE International Symposium on Multimedia. ISM ’06. IEEE
Computer Society, Washington, DC, USA, pp. 257-264.

Gerhard, D. B., 2003. Computationally measurable differences between
speech and song. Ph.D. thesis, Burnaby, BC, Canada, Canada,
aAINQS1587.

Gruhne, M., Schmidt, K., Dittmar, C., Sep 23-27 2007. Phoneme recognition
in pop-pular music. In: 8th International Conference on Music Information
Retrieval. Vienna, Austria, pp. 290-294.

Hayashi, T., Ishii, N., Yamaguchi, M., Sept 2014. Fast music information
retrieval with indirect matching. In: Signal Processing Conference (EU-
SIPCO), 2014 Proceedings of the 22nd European. pp. 1567-1571.

Hu, Y., Liu, G., Jun. 2014. Singer identification based on computational
auditory scene analysis and missing feature methods. J. Intell. Inf. Syst.
42 (3), 333-352.

URL http://dx.doi.org/10.1007/s10844-013-0271-6

Huang, P.-S., Chen, S., Smaragdis, P., Hasegawa-Johnson, M., March 2012.
Singing-voice separation from monaural recordings using robust princi-

pal component analysis. In: Acoustics, Speech and Signal Processing
(ICASSP), 2012 IEEE International Conference on. pp. 57-60.

Kan, M.-Y., Wang, Y., Iskandar, D., Nwe, T. L., Shenoy, A., 2008. Lyrically:
Automatic synchronization of textual lyrics to acoustic music signals. IEEE
Transactions on Audio, Speech & Language Processing 16 (2), 338-349.

Kim, Y. E., 2002. Singer identification in popular music recordings using voice
coding features. In: In Proceedings of the 3rd International Conference on
Music Information Retrieval. pp. 164-169.

33



Lin, C.-C., Chen, S.-H., Truong, T.-K., Chang, Y., sept. 2005. Audio classi-
fication and categorization based on wavelets and support vector machine.
Speech and Audio Processing, IEEE Transactions on 13 (5), 644 — 651.

M. Gruhne, K. S., Dittmar, C., Sep 23-27 2007. Phoneme recognition in
pop-pular music. In: 8th International Conference on Music Information
Retrieval. Vienna, Austria., pp. 2027-2030.

Maddage, N., Wan, K., Xu, C., Wang, Y., june 2004. Singing voice detec-
tion using twice-iterated composite fourier transform. In: Multimedia and
Expo, 2004. ICME ’04. 2004 IEEE International Conference on. Vol. 2. pp.
1347 —1350 Vol.2.

Maddage, N. C., Xu, C., Wang, Y., 2003. An svm-based classification ap-
proach to musical audio. In: ISMIR.

Makeyev, O., Sazonov, E., Schuckers, S., Lopez-Meyer, P., Melanson, E.,
Neuman, M., aug. 2007a. Limited receptive area neural classifier for recog-
nition of swallowing sounds using continuous wavelet transform. In: Engi-
neering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual
International Conference of the IEEE. pp. 3128 —3131.

Makeyev, O., Sazonov, E., Schuckers, S., Melanson, E., Neuman, M., aug.
2007b. Limited receptive area neural classifier for recognition of swallow-
ing sounds using short-time fourier transform. In: Neural Networks, 2007.
IJCNN 2007. International Joint Conference on. pp. 1601 —1606.

McVicar, M., Santos-Rodriguez, R., Ni, Y., Bie, T. D., Feb 2014. Automatic
chord estimation from audio: A review of the state of the art. Audio,
Speech, and Language Processing, IEEE/ACM Transactions on 22 (2),
556-575.

Mesaros, A., Virtanen, T., march 2010. Recognition of phonemes and words
in singing. In: Acoustics Speech and Signal Processing (ICASSP), 2010
IEEE International Conference on. pp. 2146 —2149.

Nwe, T. L., Shenoy, A., Wang, Y., 2004. Singing voice detection in popular
music. In: Proceedings of the 12th annual ACM international conference
on Multimedia. MULTIMEDIA ’04. ACM, New York, NY, USA, pp. 324—
327.

34



Raj, B., 2007. Separating a foreground singer from background music.

Rocamora, M., Herrera, P., sep 2007. Comparing audio descriptors for singing

voice detection in music audio files. In: Brazilian Symposium on Computer
Music, 11th. San Pablo, Brazil.

Ryynanen, M., Virtanen, T., Paulus, J., Klapuri, A., June 2008. Accom-
paniment separation and karaoke application based on automatic melody
transcription. In: Multimedia and Expo, 2008 IEEE International Confer-
ence on. pp. 1417-1420.

Sasou, A., Goto, M., Hayamizu, S., Tanaka, K., 18-23, 2005a. An auto-
regressive, non-stationary excited signal parameter estimation method and
an evaluation of a singing-voice recognition. In: Acoustics, Speech, and
Signal Processing, 2005. Proceedings. (ICASSP ’05). IEEE International
Conference on. Vol. 1. pp. 237 — 240.

Sasou, A., Goto, M., Hayamizu, S., Tanaka, K., 18-23, 2005b. An auto-
regressive, non-stationary excited signal parameter estimation method and
an evaluation of a singing-voice recognition. In: Acoustics, Speech, and
Signal Processing, 2005. Proceedings. (ICASSP ’05). IEEE International
Conference on. Vol. 1. pp. 237 — 240.

Shenoy, A., 2005. Singing voice detection for karaoke application. Proceed-
ings of SPIE 5960, 752-762.
URL http://link.aip.org/link/PSISDG/v5960/11/p596028/s1Agg=doi

Su, L., Yeh, C.-C., Liu, J.-Y., Wang, J.-C., Yang, Y.-H., Aug 2014. A system-
atic evaluation of the bag-of-frames representation for music information
retrieval. Multimedia, IEEE Transactions on 16 (5), 1188-1200.

Suzuki, M., Hosoya, T., Ito, A., Makino, S., January 2007. Music informa-
tion retrieval from a singing voice using lyrics and melody information.
EURASIP J. Appl. Signal Process. 2007, 151-151.

URL http://dx.doi.org/10.1155/2007/38727

Toyoda, Y., Huang, J., Ding, S., Liu, Y., sept. 2004a. Environmental sound
recognition by multilayered neural networks. In: Computer and Informa-
tion Technology, 2004. CIT ’04. The Fourth International Conference on.
pp- 123 — 127.

35



Toyoda, Y., Huang, J., Ding, S., Liu, Y., 2004b. Environmental sound recog-
nition by the instantaneous spectrum combined with the time pattern of
power, 169-172.

Tsai, W.-H., Wang, H.-M., Rodgers, D., Cheng, S.-S., Yu, H.-M., 2003. Blind
clustering of popular music recordings based on singer voice characteristics.
In: ISMIR.

Tzanetakis, G., june 2004. Song-specific bootstrapping of singing voice struc-
ture. In: Multimedia and Expo, 2004. ICME ’04. 2004 TEEE International
Conference on. Vol. 3. pp. 2027 — 2030 Vol.3.

Vaizman, Y., McFee, B., Lanckriet, G., Oct 2014. Codebook-based audio
feature representation for music information retrieval. Audio, Speech, and
Language Processing, IEEE/ACM Transactions on 22 (10), 1483-1493.

Wang, J.-C., Lee, H.-P., Wang, J.-F., Lin, C.-B., jan. 2008. Robust environ-
mental sound recognition for home automation. Automation Science and
Engineering, IEEE Transactions on 5 (1), 25 -31.

Wong, C., Szeto, W., Wong, K., Mar. 2007. Automatic lyrics alignment for
Cantonese popular music. Multimedia Systems 12 (4/5), 307-323.

Yaguchi, Y., Oka, R., 2005. Song wave retrieval based on frame-wise phoneme
recognition. In: Lee, G., Yamada, A., Meng, H., Myaeng, S. (Eds.), In-
formation Retrieval Technology. Vol. 3689 of Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, pp. 503-509.

Yoshii, K., Goto, M., Okuno, H. G., jan. 2007. Drum sound recognition for
polyphonic audio signals by adaptation and matching of spectrogram tem-
plates with harmonic structure suppression. Audio, Speech, and Language
Processing, IEEE Transactions on 15 (1), 333 —345.

Zwan, P., Szczuko, P., Kostek, B., Czyzewski, A., 2008. Transactions on
rough sets ix. Springer-Verlag, Berlin, Heidelberg, Ch. Automatic Singing

Voice Recognition Employing Neural Networks and Rough Sets, pp. 455—
473.

36



	1
	2

