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Abstract
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Abstract : Fast switching mechanism and the low switching energy become the main point
for developing the principles of spin transfer torque (STT) magnetic random access memory
(MRAM) based on the magnetic tunnel junction (MTJ) device. Recently, there are the many
reports to present the dependence of the magnetic properties on the initial temperature
alteration in the MTJ devices. However, the temperature increment in the STT-MRAM during
the switching process is not considered with the initial temperature alteration. Therefore, in
this work, the temperature effect on the magnetic properties of the MTJ device in the STT-
MRAM was explored with the factors of the thermal stability and the STT efficiency. The
results present that the increment of the initial temperature is a reason of the low switching
energy, the low switching time and the low temperature increment during the switching
process in the MTJ device. This is due to the reduction of the saturation magnetization and
the anisotropy field. However, the initial temperature increment is limited to the temperature
below the blocking temperature with disappear of the exchange bias interaction in the
antiferromagnetic/ferromagnetic bilayer. Moreover, this affects the undesirable reduction of

the thermal stability and the STT efficiency in the STT-MRAM.
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Executive Summary

1. Motivation

Magnetization switching process by the current-induced spin transfer torque (STT) in
nanostructures based on magnetic tunnel junction (MTJ) has already been utilized for memory
devices [1,2]. One of the technology challenges for magnetic recording is the continual increment
of the data storage density [3]. This leads to the reduced size of a bit cell. Meanwhile, the high
current density of the order of several MA/cmZ, which is required to operate the current-induced
magnetization switching (CIMS), is a cause of the temperature increment [4,5]. The heat
increment during CIMS affects to the reliability of MTJ device such as thermal stability factor [6,7].
Thus, it is difficult to reduce device size. This is limit of application for STT obtained from the
electric current for switching process in magnetic memory technology [3].

Recently, there is a growing interest in thermal STT driven by heat flow in order to increase
the efficient switching mechanism [8-12]. In 2010, Yuan et al. reported that the temperature
differences of 1 K generate spin torque more than STT induced by the electric current [13]. Thus,
the STT obtained from thermal transport in MTJ cell is expected to apply in the future magnetic
memory [14]. However, the previous reports only explained the results of the thermal STT
comparing with the STT by current by ab initio calculation [14]. This calculation cannot explain the
magnetic dynamics during the switching process by the thermal STT.

In this work, the switching mechanism with magnetization dynamics by thermal transport
generating spin torque is studied with results of the heat energy and thermal stability factor at the
switching temperature. Simulations are based on the magnetic model and the thermal model by
the micromagnetic calculation with finite different method [12, 15]. Also, the results can be

utilized for designing the future magnetic recording technology.
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2. Objective

2.1 To analyze the switching process in a MTJ cell by thermal spin transfer torque.

2.2 To study the mechanism of magnetic dynamics driven by thermal spin transfer torque in
the switching layer (free layer) of the MTJ device with aspects of the heat energy input.

2.3 To analyze the thermal stability at the switching temperature during the switching
process by thermal spin transfer torque.

2.4 To publish international journals in ISI/ SCOPUS data base with impact factor.

3. Research methodology

3.1 To study principle of thermal spin transfer torque for magnetization reversal in MTJ cell.

3.2 To model the magnetization switching in MTJ cell by thermal transport.

3.3 To analyze effect of the switching process in MTJ cell by thermal transport due to the
heat energy input.

3.4 To analyze the magnetization dynamics driven by thermal STT in the switching layer of
MTJ cell by magnetic model with thermal model.

3.5 To analyze the thermal stability in MTJ device during the switching process due to the
switching temperature.

3.6 To analyze all simulation results.

3.7 To publish research papers.

3.8 To submit a final report.

4. Results

The reduction of the Ms and the H, ¢ with increasing the temperature in the MTJ devices is
presented in Fig. 1 [1*]. The inset of Fig. 1 also indicates the CoFeB magnetic properties
disappeared when the T, (Initial temperature) in MTJ cell exceeds to T¢ (Curie temperature)
[1*]. This leads to the storage instability in STT-MRAM due to the magnetic degradation of the
ferromagnetic material [1*]. Likewise, the initial magnetic damage appears at the AFM/FM
bilayers at the temperature of Tz (blocking temperature) which is lower than the Ty (Neel
temperature) and the T [1*]. Thus, the magnetic parameters for analysis of the switching
mechanism by the analytical solution are considered at the T, below Tg. The Ty for the

PtMn/CoFe bilayers is 573 K [1*].
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Fig. 1. Dependence of (a) Ms and (b) Hy . for the CoFeB FL material on the initial temperature.
The inset of (a) shows the reduced magnetization Mg(T)/Mg(0) as function of

the reduced temperature Tiiaf Tc [17]-

Fig. 2 indicates the results of the 7y, (switching time) and the Esw/Rury (Esw is the
switching energy and Ry, is the MTJ resistance) depending on the Mg (Saturation Magnetization)
at the various Ic (Critical current or switching current) [1*]. It is found that the low g, (switching
time) occurs at the low Mg for the same I and at the large current for the same Mg [1*]. This
indicates that although the temperature increment might result the storage stability, the fast
switching process can be achieved by decreasing the Mg, as clearly shown in Fig. 2(a) [1*]. This is
because the temperature increment affecting the reduction of Ms and H, ¢ is a cause of decrease

in the Igp, as presented in Fig. 3 [17].
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Besides, in case of the very low /c of about 3.5><1O_4 A, the decreasing Mg becomes
significant to change the time duration for the reversal process in the STT-MRAM [1*]. When the
Tinita reaches the Tg, the switching time duration slightly decreases with increasing the current at
the Ms of about 1050 emu/cm’ [1*]. Fig. 2(b) displays that the low Egy occurs because of the
decrease in the I for the Mg below ~1200 emu/cm3 [1*]. In the meanwhile, when the Mg is more
than 1200 emu/cm3, there is the discontinuous decrease in the energy for increasing the current
during the switching process. This is similar to the results of the lowest Egy at the I¢/lcq of 2, as
reported in the previous work [1*]. It can be concluded that the decreasing Mg depending on the
initial temperature in the MTJ nanopillar can improve the speed and the altered temperature for
the writing process in the STT-MRAM devices [1*]. On the other hand, the initial thermal
fluctuation in the devices generally affects the stability. In order to consider the thermal stability
and the spin torque efficiency during the switching process for the various T, the temperature
results in the MgO insulator layer and the magnetic layers in the MTJ nanopillar are reported in
Fig. 4 [1*]. The maximum temperature appears at the MgO barrier layer because the electrical
conductivity is extremely low in comparison to the other layers [1*]. Also, the AT (the difference
of the temperature during the switching process and the Ti,a) in these layers depends on the Mg
and the Ig,. Although the AT decreases at the Ms magnitude reduction, the high Tg during the
switching process affects the thermal stability factor, as presented in Fig. 5 [1*]. Consequently,
the STT efficiency decreases with the increase of the T, @s shown in Fig. 6 [1*]. Therefore, in
order to remain the storage stability in the STT-MRAM with the A of above 40, the Ms is over
1190 emu/cm3 and the T,ia is below 400 K [1*]. All of the reported results indicate that the
change of the magnetic properties varying the T, increment can enhance the writing process
with the aspects of the fast switching mechanism and the energy consumption for the STT-MRAM

technology [17].
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5. Conclusion and Discussion

Effect of the magnetic properties at the initial temperature variation on the magnetic storage
stability in the STT-MRAM based on the CoFeB/MgO/CoFeB MTJ structure is investigates by the
3-D finite element thermal simulation with the analytical solution [1*]. The simulation results show
that the fast magnetization reversal and the low energy consumption can be achieved by
increasing the T, in the MTJ nanopillar [1*]. However, this affects the decrease of the thermal
stability and the STT efficiency because of the temperature increment in the device [1%].
Therefore, the switching process improvement by the alteration of the magnetic properties with
changing the T, is limited by the thermal stability factor above 40 [1*]. Hence, the thermal
stability analysis during the switching process is important to develop the future STT-MRAM
technology [17].
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Abstract. Recently, there has been a growing interest in the thermal stability in magnetic tunnel
junction (MTJ) devices with an aspect of the temperature increment during current-induced
magnetization switching (CIMS) process. In this work, the temperature increment is explored with
factors of the tile of the initial magnetization direction in free layer, 6, , and the MgO layer

thickness for different pulse durations, 7,. The results show that the highest temperature in MTJ

nanopillar is significant at the 6, of 1'-5" and the pulse duration z,< 0.4 ns. Moreover, the
temperature results with decreasing the MgO layer thickness are not considerable difference at 6, of

1°-5° for the same 7,

Introduction

CIMS based on spin transfer torque effect is a physical phenomenon which can be applied to
change the direction of magnetization in free layer (FL) of MTJ devices [1]. During switching
process, the large current density of several MA/cm® required for CIMS is the cause of the
unavoidable Joule heating with high temperature increment in MTJ devices [2]. This might affect
the thermal stability factor which is an interesting issue for the pulse duration, 7, of less than 1 ns

[3]. In order to maintain the stability of the device during read/write operations, the current research
focuses on the aspect of the switching current reduction with increasing writing speed by tilting the
initial direction of FL magnetization in the MTJ cell [4]. Recently, Sun presented an analytical
solution for estimating the critical current for magnetization reversal in the MTJ cell [5]. Moreover,
the previous research indicates that the highest temperature during switching process occurs in the
MgO barrier layer because of the lowest electrical conductivity [6]. Therefore, the MgO barrier
thickness is an important factor for temperature increment in the MTJ cell. The goal of this work is
to explore the effect of the MgO barrier thickness with tilting the initial magnetization direction in
FL of the MT]J cell on temperature increase in MTJ cell during switching process.

Materials and Methods

Thermal Calculation. The temperature increment in the MTJ nanostructure caused by switching
current was calculated by three dimensional (3D) finite element method (FEM), which is part of a
commercial program package (multiphysics finite-element method COMSOL). The thermal analysis
is based on calculation of heat conduction and Joule heating. The multilayer structure consists of
two Cu electrodes divided by Si0O; insulator and MTJ nanopillar, which is similar to the geometry
reported by S. S. Ha et al. [7], as shown in Fig. 1. The top and bottom rectangular electrodes have
the thickness of 0.1 um with the optimal size of 1.43 um x 0.8 um . The MTJ nanopillar structure has

All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of Trans
Tech Publications, www.ttp.net. (ID: 202.28.119.95-01/06/15,06:07:06)
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a lateral size of 130nm x50 nm and a resistance area for parallel state of 4.3 Q-pm?. The initial
temperature was assumed to be room temperature.

Free layer (CoFeB 1.8 nm)

Cu top electrode
Tunneling barrier (MgO)
SiO, . SiO,
insulat. MTJ nanopillar |3 Tat -
, |imsulator insulator Pinned layer
I Cu bottom electrode (CoFeB 2.4 nm/Ru 0.85 nm/CoFe 2.5 nm)
X Pinning layer (PtMn 15 nm)

Fig. 1 Schematic diagram of the MTJ nanopillar system.

CIMS Analysis with Tilt of FL. Magnetization. The model assumes that the current flows from
bottom electrode to top electrode, which relates a transition from parallel to anti-parallel magnetic
state of the two ferromagnetic layers. This is because the switching current for this transition is
more than the opposite case. In switching process, the FL magnetization could be reversed when a
current is applied with a sufficient 7,,. The critical current, Ic, as function of the initial angle of

magnetization in the FL with different 7, was estimated from the analytical solution which is given
as follows [4]:

T T
I =Te| 1+ nl 2|, 1
C COI: Tp (290):| ()

where Ico, 7,4, represent the intrinsic critical current and the relaxation time, respectively. The

initial angle between the magnetization vector and the easy axis in the FL (angle in radians) is
represented by 6,. For this work, the values of an intrinsic critical currrent density and = are

relax

24.14 MA/m* and 1.11 ns, respectively. The values were calculated by the magnetic and physical
properties of of CoFeB thin films as the FM layers in MTJ devices.

To estimate the thermal effect during the switching process with the tilt of the initial
magnetization angle in the FL for variation of the MgO barrier thickness, the /- was varied with
pulse duration.

Results and Discussions
Fig. 2 shows the dependence of Ic on 6, with, for different pulse durations z,, which is

calculated by Eq. 1. The results present the significant Ic at ¢, of 1" - 40" with 7z, of 0.1 - 0.5 ns.

Therefore, in this work, the temperature increment in MTJ nanopillar due to the switching current
flow is considered at this condition.

In order to examine the effect of the increased temperature in during CIMS with varying the
initial magnetization angle 6, in the FL and the thickness of MgO layer, the maximum temperature,

AT,

max

results are considered at MgO barrier layer. This is because of the highest temperature in the
» 0f 0.1 - 0.5 ns for the MgO layer

thickness, tmg0, 0f 0.6 -1.2 nm is shown in Fig. 3. At the same pulse duration, the AT, for each

MgO layer. The AT, depending on the various 6, with 7

tvgo value decreases with increasing 6, because of the increase of the spin torque which leads to

reduction in critical current. The results in Fig. 3 indicate the high AT, at the 7,< 0.4 ns for

different fygo0. The AT, at the same 7, significantly decreases in range of @, of 1°-5for the

ax

different tvy0 because of the high /c. Additionally, the AT decreases with decreasing fvgo When

max

considering at the same 7z, and 6,. This is because the increment of temperature is directly

p
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proportional to the MTJ resistance. The MT]J resistance is estimated to equal the MgO resistance

which depends on its thickness.
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Therefore, based on the considered structure, the thermal stability in MTJ nanopillar should
be focused on the aspect of with aspect of the initial magnetization 6§, of 1°-5" and the pulse
duration 7,< 0.4 ns. Besides the instability in MTJ nanopillar caused by the increased temperature

during CIMS process is relevant for improving the future MTJ devices.

Summary

The influence of the temperature increase caused by the switching current during CIMS process
with titling initial magnetization direction in FL, 6,, for the different of MgO thicknesses is

investigated by 3D FEM. The results indicate that the highest temperature in MTJ nanopillar is
significant at the ¢, of 1"-5" and the pulse duration 7,< 0.4 ns. Moreover, the temperature results

with variation of MgO layer thickness are not considerable difference at g, of 1"-5° for the same
7,. The instability in MTJ nanopillar caused by the temperature heat during CIMS process is

relevant for improving the future memory devices.
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A new alternative data storage technology of nonvolatile memory, thermoelectric spin-
transfer torque MRAM (TSTT-MRAM), is discussed in this paper. In principle, in the
TSTT-MRAM mechanism the current is applied in the thermoelectric cell and the mag-
netic tunnel junction (MTJ) cell. The finite-element method and micromagnetic model
were used to explore the magnetic degradation and switching mechanism in the TSTT-
MRAM with temperature increases caused by a Peltier effect. The results showed that
the temperature in the MTJ magnetic layers increased with increasing bias current into
the thermoelectric device. For the switching process, the increased temperature affected
the fluctuation of the saturation magnetization and lead to a decrease in the switching
time when considering the same critical current. Thus, the fast switching process with
TSTT-MRAM devices is interesting for the development of the future memory technology.

Keywords Thermoelectric spin-transfer torque MRAM; Peltier effect; thermal
analysis; current induced magnetization switching; micromagnetic model

1. Introduction

Nowadays, the trend toward increased adoption of embedded memory to increase the band-
width of high-performance processors and mobile system-on-chips has resulted in recent
research about novel memory technologies [1-3]. Additionally, spin-transfer torque mag-
netic random access memories (STT-MRAMs) technology combined with high tunneling
magnetoresistance (TMR) enabled by MgO based on the magnetic tunnel junctions (MTJs)
[4, 5] provides a promising path to realize a future universal memory with nonvolatility, low
power consumption, high density, fast write/read speed (a few ns), unlimited endurance,
simpler cell architecture, reduced manufacturing cost, high integration density, and excel-
lent scalability to small technology nodes [6-9]. However, there remain some challenges on
the road toward the development of high density STT-MRAM. Recently, the thermoelec-
tric effect has been extremely interesting as new experimental data has become available
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[10-12]. The Peltier effect describes the heat transfer accompanying the current flow and
the opposite is the Seebeck effect (SSE) that describes the thermo-electromotive force
induced by temperature gradients. The field of the thermal spin transport occurred when
the researcher demonstrated the spin Seebeck effect [13] and the spin Peltier effect (SPE)
[14, 15]. The SPE bears a fundamental thermodynamic relation with the SSE. This opens
up new possibilities for developing solid-state heat pumps and temperature control devices.
The Peltier and Seebeck thermoelectric effects as well as the thermoelectric spin-transfer
torque (STT) have been studied in multilayer magnetic nanostructures [16, 17]. The domain
wall motion induced by heat currents was observed and discussed by Berger [18]. Thermal
STT may soon be employed in the next generation of nonvolatile data elements for reversal
of magnetization. Thermoelectric nano-coolers can be applied in the nanoelectronic circuits
and devices [19]. Lately, Slonczewski proposed the initiation of spin-transfer torque using
thermal transport via magnons [20]. This potential technique uncovered a new spintronic
regime with low power and high-speed operation [21]. It is evident that the reliability of the
devices in such a regime depends significantly on the thermal factors. Due to some limita-
tions, it is impracticable to accumulate all the data experimentally. The cell reliability was
also analyzed to investigate the thermoelectric and self-heating effects in TSTT-MRAM.
[22, 23]. Additionally, the magnetization dynamics and current induced magnetization
switching (CIMS) based on the STT effect can be explored by micromagnetic simulations
based on the Landau-Lifshitz-Gilbert (LLG) equation of motion including the STT term
[24].

The purpose of this work was to examine the Peltier effect induced temperature dis-
tribution in the magnetic layer when increasing the bias current into the thermoelectric
device. Also, the temperature increase generated by the thermoelectric transient currents
affecting the magnetic properties of the individual layers of the MTJ was investigated with
the CIMS mechanism.

2. Model and Calculations

2.1 Thermal Calculation

The TSTT-MRAM structure for this work consisted of the thermoelectric cell and the MTJ
cell, as shown in Fig. 1.

For the geometry of the TSTT-MRAM cell, the copper straps were used as electrodes
in the structure. These strap layers functioned as a heat source and a heat sink between the
thermoelectric and MTJ cells. The SrTiOj3 layer in the thermoelectric structure was used as
a semiconductor layer. The MTJ structure consisted of a capping layer (Ta 10 nm)/free layer
(CoFe 4 nm)/tunneling layer (MgO 1 nm)/pinned layer (CoFe 10 nm)/pinning layer (IrMn
15 nm)/buffer layer (Ta 15 nm), and the diameter of the circular MTJ pillar was 100 nm,
which is similar to that reported by Harnsoongnoen et al. [23]. For details of each layer
in MTJ cell, capping layer and buffer layer are extensively made by Ta material because
of its high adhesion [25]. For the two ferromagnetic layers, the magnetization of a free
layer can be changed by spin-polarized current injection [24]. Meanwhile, the direction
of magnetization in a pinned layer is fixed by interaction between an antiferromagnetic-
ferromagnetic bilayers, which is also known as exchange bias phenomenon [26]. The
antiferromagnetic layer and the ferromagnetic layer are called as the pinning layer and the
pined layer, respectively. The MgO tunneling layer in MTJ cell is used due to result of high
sensibility concerning the high TMR ratio [27]. The values of the electrical conductivity
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Figure 1. Cross-section diagram of the TSTT-MRAM structure.

o, density p, heat capacity Cp, thermal conductivity K, and Seebeck coefficient « of the
various materials are given in Table I. These values were used for the thermal calculation
and the heat conduction equation. In this work, it was assumed that the thermoelectric
transient current flowed from the middle copper electrode to the top copper electrode. The
initial temperature (ambient temperature) was assumed to be room temperature.

Table 1
Material properties used for thermal analysis [22]
Parameters a(V/K) o (S/m) k(W/m/K) ,o(kg/m3) Cp(J/kg/K)
SrTiO3 —850 x 1076 14 x 10° 12 5130 377
(P-type)
SrTiO; 850 x 107° 14 x 10° 12 5130 377
(N-type)
Copper (Cu) 6.5 x 1076 5.9 x 107 350 8920 385
Insulating 1 x 10710 1 x 1071 0.1 2300 740
spacer
(5i0,)
Ferromagnetic 1 x 10710 1.6 x 107 100 8900 421
(CoFe)
Tunnel barrier 1 x 10710 180 30 3580 877
(MgO)
IrMn 1 x 10710 6.8 x 10 35.6 2000 4438

Ta 1 x 10710 6.5 x 10° 58 16690 144
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To investigate the thermoelectric phenomenon, the thermal and electrical models were
considered using the heat conduction equation, as shown in Eq. 1 [28]:

C 8T _ v vT / " 1
— =V - &VT)+ q0ue + 97HOMSON (D

ot
where C is the volumetric heat capacity, T is the absolute temperature, ¢ is the time, and
k is the thermal conductivity. The first term is the net loss from the non-uniform thermal
conduction. The second term is the conventional Joule heating, which can be described by:

Q}OULE = :sz (2)

where ¢, s the generated heat that is proportional to the power, p is the electrical
resistivity, and j is the current density. The third term is the Thomson heating (or cooling)
tnomson depending on the direction of the current within a homogenous material, as
shown in Eq. 3:

drgomson = —Hr VT 3)

where 7 is the Thomson coefficient. Equations (2) and (3) are coupled with the Laplace
equation (—V - (cVV)) = 0, where V is electrical potential. The temperature profile has
been simulated using conditions based on the Peltier heating, ¢,z 77z, Which is calculated
by:

CIZJELTIER =TASj 4

The junction between the materials exhibits a large Seebeck coefficient difference AS.
Therefore, high heat absorption or dissipation occurred at the junctions. This phenomenon
is known as the Peltier effect.

2.2 Analysis for CIMS with Magnetic Instability Caused by Peltier Effect

To explore the CIMS mechanism with magnetic fluctuation due to the Peltier effect, a sim-
ulation of the magnetization dynamic was performed using the micromagnetic calculation.
Numerical calculation was based on a three dimensional finite difference method using the
Matlab based micromagnetic code M3 [29] with the LLG equation including the STT term
given by [24, 30]:

M M xHa—"Y M xMxHa) - 2L M x M 5
o - v M o s x (M x eff)—m' x (M xmp) (5)
where M is the magnetization vector, H is the effective field, y is the gyromagnetic ratio
(y =2.211 x 10°m/(A - s) for a free electron), Mg is the saturation magnetization, and o
is the damping factor. M and H g are functions of space and time, ¢. For the STT term, g;
is the spin torque factor, which is related to the applied current, mp, which is a unit vector
along the electron polarization direction.

The parameters used for the simulation were considered with the CoFe thin film
properties, which is the material of the free layer [31, 32]. The values of the magnetic
properties were o of 0.01, an exchange stiffness constant A of 3 x 10~!! J/m, and M, of
1.9 x 10° A/m at room temperature, which is represented by Ms . In theory, the dependence
of Mg for the ferromagnetic material on the temperature factor can be described by the
Brillouin function [33]. In this work, the temperature increment in the MTJ structure caused
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Figure 2. Currrent density direction and temperature contour of TSTT-MRAM structure for
(a) Peltier effect and (b) Joule heating effect.

by the thermoelectric heat transfer was a reason to change the My in the ferromagnetic layers
of MT]J. Thus, to study the CIMS analysis with Peltier effect, the Mg parameter was varied
to examine the effect of the magnetization reversal mechanism.

3. Results and Discussion

The electrical current was injected into a thermoelectric cell from the middle copper
electrode to the SrTiOj layer and ended at the top copper electrode. The direction of the
electrical currrent density is define with white arrows as shown in Fig. 2. Fig. 2(a) and 2(b)
show the direction of the electrical current and temperature contour of the TSTT-MRAM
under the Peltier effect and Joule heating effect, respectively. In the case of the Peltier effect,
the results revealed that the maximum temperature in the TSTT-MRAM was located at the
middle copper electrode and it diffuses to the MTJ element. Meanwhile, the Joule heating
effect caused the maximum temperature to form at the SrTiOs layer. The profile of the
temperature and the heat flux distribution for both effects is shown in Fig. 3. The direction
of heat flux is defined by white arrows. The heat flux was generated from the Peltier effect

Top copper Top copper

~ Bottom copper
| GRS | TaaaReESe— |
max Temperature (K) min max Temperature (K) min
(a) (b)

Figure 3. Thermal and heat flux distributions in TSTT-MRAM structure for (a) Peltier effect and
(b) Joule heating effect.
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Figure 4. Temperature profiles along thickness-axis for TSTT-MRAM structure.

and Joule heating of the thermoelectric cell and its distribution to the MTJ element. The
temperature increase due to the Peltier effect in the thermoelectric device was twice that in
the case of the Joule heating effect. To consider the effect of thickness on the temperature
increase in MT]J cell, the temperature significantly decreases with reducing the thickness
of MgO tunneling layer. This is because, during switching process, the temperature in MTJ
cell depends on the cell resistance assumed to be the MgO resistance.

In summary, the thermal distribution of both effects is shown in Fig. 4. The simulation
results indicated that the maximum temperature in the TSTT-MRAM cell occurred in the
middle copper region for the Peltier effect and the middle StTiO; layer for the Joule heating
effect.

The maximum temperature in the TSTT-MRAM cell with various bias currents is
displayed in Fig. 5. It can be clearly seen that the temperature in each layer of the MTJ cell
can be estimated to be the same value. The correlation between the maximum temperature
T and the current bias / is defined by:

T=278.86¢"% (6)

Moreover, the magnetization stability at the free layer of the MTJ cell with various bias
currents in the thermoelectric cell was carefully investigated to optimize the bias current.
In this context, the magnetic degradation will occur when the temperature in the MTJ cell
exceeds the Néel temperature 7'y of the IrMn thin film material. The results in Fig. 5 show
that the thermoelectric current should be less than 10 mA to maintain the magnetic stability
in the MTJ cell.

As mentioned above, heat dissipation while the current flows through the thermoelec-
tric device causes the temperature increment in the MTJ structure. This affects the switching
behavior in the device. The switching results are reported with different saturation mag-
netization levels depending on the temperature Mg 1. Fig. 6 shows the switching time tgw
as a function of the critical current /¢ for different Mg /Ms values. It was found that the
tsw decreases with decreasing Ms /Mg at the same /c. In addition, the decrease in the
saturation magnetization affected the reduction of the /¢ when considering at the same Tgw.
This was because the initial temperature increment in the MTJ device by the Peltier effect
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Figure 5. Maximum temperature in each layer of MTJ cell for different thermoelectric bias currents

under Peltier effect.

caused a decrease in the saturation magnetization of the free layer. This caused a reduction
in the intrinsic critical current, which is the parameter that depends on the physical and
magnetic properties of the free layer material. Moreover, the switching energy Esw with
the MTJ resistance Ry ry resulted in a decreasing /¢ due to the Peltier effect. Fig. 7 presents
the Esw/Rvty depending on the /¢ with different Mg t/Ms . The Esw/Ryty decreased with
decreasing Mg 1/Ms at the same Ic. Thus, the low heat energy in the MTJ device during
the switching process occurred with decreasing Ms1t/Ms . This clearly indicates that the
initial increased temperature in the MTJ cell due to the Peltier effect can improve the CIMS
mechanism for fast switching speed in the future in STT-MRAM.

Switching Time, 7, (ns)

- Ms.T"MS.O =1
—a— MS.TIMS,O =0.8
08} = Ms1iMsg=0.6 |
—4— MS.T;MS,O =04
~#r- Ms1/Mso = 0.2
0.6 s.1ii¥is 0
04+ .
e M |
0 1 : L ) M 1
4 5 6 7 8 9 10

Critical Current, Ic (mA)

Figure 6. Dependence of tsw on /¢ with various Ms1/Ms .
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Figure 7. Dependence of Esy/Ryr; on Ic with various Ms /Mg .

4. Conclusion

The thermal effect and switching mechanism in a TSTT-MRAM due to the temperature
increase caused by the Peltier effect were investigated and analyzed using the finite-element
method and micromagnetic simulation. The results indicated that the highest temperature
occurred in the middle copper region of the TSTT-MRAM cell for the Peltier effect and the
middle SrTiOj; layer for the Joule heating effect. The temperature increase due to the Peltier
effect was more than twice the Joule heating effect. In addition, the temperature increment in
the MTJ element occurred due to the heat distribution caused by both effects. The increased
temperature in the MTJ cell was a reason for the decreased saturation magnetization of the
free layer. This can improve the switching mechanism by reducing the switching time at
the same critical current, as long as the temperature is not lower than 7. Therefore, the fast
switching speed with TSTT-MRAM devices is interesting for future memory technology.
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Magnetic Storage Reliability of
CoFeB/MgO/CoFeB Magnetic Tunnel Junction
Devices at Different Initial Temperatures

C. Surawanitkun, A. Siritaratiwat, A. Kaewrawang, A. Kruesubthaworn, N. Jutong, N. Mueanrit,
S. Sainon, C.K.A. Mewes and T. Mewes, Member, I[EEE

Abstract—Fast switching mechanism with the low energy
consumption for the MgO-based magnetic tunnel junction
(MTJ) devices used for the spin transfer torque magnetic
random access memory (STT-MRAM) is receiving increased
attention recently on an aspect of the dependence of the
magnetic properties on the temperature. In this work, the
analysis of the switching efficiency and the thermal stability of
the MTJ devices at the initial temperature, Tinita, variation was
achieved by the 3D finite element thermal simulation and the
analytical solution of the magnetization reversal. The results
show the switching time and the switching energy decreasing
with the temperature increase for the Tiiia below the blocking
temperature in the exchange coupled PtMn/CoFe bilayers in the
MTJ. However, this leads to the reduction of the storage
stability in the STT-MRAM because of the low thermal stability
factor and the low STT efficiency. Therefore, the storage
stability with the switching mechanism improvement by the
temperature alteration limited by the factors of the thermal
stability and the STT efficiency is the challenge for the future
STT-MRAM technology.

Index Terms—Magnetic tunnel junction, Spin transfer
torque, Magnetic random access memory, Thermal analysis,
Thermal stability

I. INTRODUCTION

AGNETIC tunnel junction (MTJ) devices are
extensively applied for both magnetic recording head in
the hard disk drive and bit cell in the magnetic random access
memory (MRAM) [1]-[5]. The nanoscale MTJ structure
consists of the three main layers which are the thin film
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insulator layer between the two ferromagnetic layers (pinned
layer and free layer) [1]-[5]. The magnetization of the pinned
layer is fixed by the ferromagnetic (FM)/antiferromagnetic
(AFM) exchange biasing interaction while the magnetization
of the free layer (FL) can be flipped by applying a spin-
polarized current or the magnetic field [6]-[10]. Moreover,
the “1” bit and “0” bit can be stored or detected by the
different magnetic states with the resistance values of the
MT]J cell due to the magnetoresistance effect [11]. The largest
resistance and the smallest resistance occur when the
magnetization of the two FM layers is an antiparallel
alignment and parallel alignment, respectively [11]. In order
to enhance the efficiency of the storage process, the high MR
ratio can be achieved with the CoFeB/MgO/CoFeB MTJ
structures [1], [12], [13].

Spin transfer torque (STT) leading to current induced
magnetization switching (CIMS) is a novel physical
phenomenon, which can utilized for bit change in the writing
process of the MRAM based on the MTJ bits [1], [2], [4],
[10]-[14]. A simple analytical solution of Sun is a popular
way to accurately calculate the switching current with the
suitable time duration [15]. The large current density about
several MA/cm” required for CIMS is a leading cause of the
temperature increment with the reduced thermal stability in
the MTJ structure [16]-[19]. Therefore, numerous theoretical
and experimental studies are focusing on the efficiency
improvement of the switching mechanism with aspects of the
low switching current density, the fast switching process, and
the low switching energy [10], [17], [20]. One is the initial
temperature influencing the magnetic properties in the MTJ
cell [21], [22]. This is because the saturation magnetization
and the effective anisotropy field of the magnetic materials
depend on temperature in devices [22]. However, the
temperature increment in the MTJ cell is limited by Curie
temperature, 7c, and Néel temperature, Ty, for the FM and
AFM layers, respectively. In addition, the initial magnetic
degradation can arise from the disappearance of the exchange
bias at blocking temperature, 73, of the FM/AFM bilayers [7],
[22]-[24]. Therefore, for analysis of the magnetic storage
efficiency, the factors of the thermal stability, the magnetic
properties, and the switching energy, Esw, will be considered
with temperature in the MTJ device during the switching
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process.

The purpose of this work is to explore the temperature
effect on the magnetic properties of the CoFeB/MgO/CoFeB
MT]J device with the Egw. Meanwhile, the reliability of the
data storage in the MTJ device for STT-MRAM is examined
with the factors of the thermal stability and the STT
efficiency.

II. MODEL AND CALCULATIONS

A. Analysis for Temperature Dependence of Magnetic
Properties with Switching Energy in MTJ Devices

The writing energy consumption for the current-driven
magnetization reversal in the CoFeB/MgO/CoFeB MTJ
devices is an important factor for analysis of the storage
effectiveness for STT-MRAM. The Esy can be defined by

Egy, = ]éRMTJTSW (1)

where Ic, Ryt and 7, are the critical current, the MTJ

resistance, and the switching time, respectively. The pulse
duration with a sufficient current for the STT switching
process is calculated by the analytical solution with using the
Matlab based micromagnetic code M3 [25], as given below
[15], [26]

. _nn(z/(26,)) @)
W ([C/[CO)_l

where, O is the initial angle between the FL magnetization
with the major axis. The relaxation time, 7, and the intrinsic

critical current, /oo, can be approximated as follows:

. 1+a? 3)
0=
ayH o
2eauMVH
ICO — 0°"S eff (4)
nPh

where ¢ is the damping parameter, ¥ is the gyromagnetic

ratio, H. is the effective field, e is the electron charge, V is the
FL volume, # =h/(2r), h is Planck's constant, 7 is the spin

torque efficiency and P is the spin polarizing factor of the free
layer.

To explore the temperature effect on the magnetic
properties for the FL ferromagnetic material in a MTJ
nanopillar, the saturation magnetization, Ms, and the
effective anisotropy field, Hy.s as a function of the initial
temperature, T, are considered in the range from the room
temperature to the blocking temperature, 7. This is due to
the initial magnetic degradation caused with the vanished

exchange bias [7], [9] ,[23], [24], [27]. The M5 values can be
calculated under Bloch’s law as follows [22]:

3/2
Tz"nitiul (5)
T

M(T) =Ms(0)(1—
C

where Ms(T) and Mg(0) are the Mg varying the initial

temperature in the MTJ cell and the Ms at the temperature of

0 K, respectively. The Hy . is defined by [28]

2K 6)

4rM

where K. is the effective anisotropy constant depending on

the structural and magnetic properties of the FL in MT]J cell.
Based on the CoFeB ferromagnetic material and the in-

keff —

plane magnetization behaviors for the FL in the MTJ devices,
the parameters used for this study are the 0 of 1°, the Ms(0)
of 1457 emu/cm’, the « of 0.01, an exchange stiffness

constant of 1.05x10°° erg/cm, and the T¢ of 1313 K [17],
[22], [29].

B. Thermal Calculation

Simulation of the altered temperature in the MTJ structures
during the current flow for the writing process was performed
by 3-D finite element method with a commercial program
package (COMSOL Multiphysics software). The principles of
Joule heating and heat conduction were used for calculating
the temperature increment, A7 in the multilayer structure.
The pulse current calculated with (2) was assumed to flow
from the bottom electrode to the top electrode.

The structural system consists of the bottom and top Cu
electrodes separated by the MTJ nanopillar which is
surrounded by the SiO, insulator layer, as shown in Fig 1.
The electrodes are modeled with area of 1.43 pm x 0.8 pm
and thickness of 0.1 pm, which is suitable for the real size of
electrodes [23], [30]. For the typical STT-MRAM structure,
the MTJ nanopillar is the elliptical shape with a major axis of
125 nm and a minor axis of 50 nm [22]. The elliptical
multilayer  stack composes PtMn  pinning layer,
CoFe/Ru/CoFeB pinned layer, MgO insulating barrier layer,
CoFeB free layer, and Ta capping layer, from bottom
electrode to top electrode [22]. The MTIJ resistance area is
approximated to be the MgO layer resistance area of ~100
Qum?’ for the thickness of 1.3 nm [11].

FIG.1 HERE
For the thermal calculation, the electrical and thermal
parameters based on the various materials in the multilayer
stack are electrical conductivity, o, density, p, heat capacity,

¢p, and thermal conductivity, K, as given in Table 1.

TABLE I HERE
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In order to examine the switching efficiency, the STT
efficiency factor, k, and the thermal stability factor, A, can be
estimated as follows [10]:

A — KeffV (7)
kBT;-‘L

where kg and Ty are the Boltzmann constant and the FL
temperature, respectively. The storage instability arises
whenever the FL temperature produces the A of below 40
[10]. The STT efficiency factor is defined as the ratio of the
thermal stability factor and the intrinsic critical current [37].

In this study, we are interested to estimate the magnetic
storage reliability with the efficiency of switching process by
investigating the effect of the magnetic properties at the
different initial temperatures on the switching energy and the
thermal stability for the MTJ devices.

III. RESULTS AND DISCUSSION

The reduction of the Mg and the H . with increasing the
temperature in the MTJ devices is presented in Fig. 2(a) and
2(b), respectively. The inset of Fig. 2(a) also indicates the
CoFeB magnetic properties disappeared when the Tipa in
MTI cell exceeds to Tc. This leads to the storage instability in
STT-MRAM due to the magnetic degradation of the
ferromagnetic material. Likewise, as presented in [23], [24],
the initial magnetic damage appears at the AFM/FM bilayers
at the temperature of 75 which is lower than the 7y and the
Tc.  Thus, the magnetic parameters for analysis of the
switching mechanism by the analytical solution are
considered at the Tyjia below Ti. From the MTJ structure
modeled in Fig. 1, the Ty for the PtMn/CoFe bilayers is 573 K
(71, [38].

FIG. 2 HERE

Fig. 3 indicates the results of the g, and the Esw/Ry

depending on the Ms at the various /c. It is found that the low
Ty occurs at the low Mg for the same /¢ and at the large

current for the same Ms. This indicates that although the
temperature increment might result the storage stability, the
fast switching process can be achieved by decreasing the M,
as clearly shown in Fig. 3(a). This is because the temperature
increment affecting the reduction of Mg and Hj .« is a cause of
decrease in the Ic, as presented in Fig. 4.

FIG. 3 HERE

FIG. 4 HERE
Besides, in case of the very low /¢ of about 3.5% 10* A, the
decreasing Mg becomes significant to change the time

duration for the reversal process in the STT-MRAM. When
the Tini reaches the Tp, the switching time duration slightly

decreases with increasing the current at the My of about 1050
emu/cm’. Fig. 3(b) displays that the low Esy occurs because
of the decrease in the Ic for the Mg below ~1200 emu/cm®. In
the meanwhile, when the Ms is more than 1200 emu/cm’,
there is the discontinuous decrease in the energy for
increasing the current during the switching process. This is
similar to the results of the lowest Egw at the Ic/Icy of 2, as
reported in the previous work [17]. It can be concluded that
the decreasing Mg depending on the initial temperature in the
MTIJ nanopillar can improve the speed and the altered
temperature for the writing process in the STT-MRAM
devices. On the other hand, the initial thermal fluctuation in
the devices generally affects the stability. In order to consider
the thermal stability and the spin torque efficiency during the
switching process for the various Tia, the temperature
results in the MgO insulator layer and the magnetic layers in
the MTJ nanopillar are reported in Fig. 5. The maximum
temperature appears at the MgO barrier layer because the
electrical conductivity is extremely low in comparison to the
other layers. Also, the AT in these layers depends on the Mg
and the Ico. Although the AT decreases at the Mg magnitude
reduction, the high 7r_ during the switching process affects
the thermal stability factor, as presented in Fig. 6.
Consequently, the STT efficiency decreases with the increase
of the Tiyiwi, @8 shown in Fig. 7. Therefore, in order to remain
the storage stability in the STT-MRAM with the A of above
40, the My is over 1190 emu/cm® and the Ty is below 400
K. All of the reported results indicate that the change of the
magnetic properties varying the Tiiia increment can enhance
the writing process with the aspects of the fast switching
mechanism and the energy consumption for the STT-MRAM
technology.

IV. CONCLUSION

Effect of the magnetic properties at the initial temperature
variation on the magnetic storage stability in the STT-MRAM
based on the CoFeB/MgO/CoFeB MTJ structure is
investigates by the 3-D finite element thermal simulation with
the analytical solution. The simulation results show that the
fast magnetization reversal and the low energy consumption
can be achieved by increasing the Tia in the MTJ
nanopillar. However, this affects the decrease of the thermal
stability and the STT efficiency because of the temperature
increment in the device. Therefore, the switching process
improvement by the alteration of the magnetic properties with
changing the T is limited by the thermal stability factor
above 40. Hence, the thermal stability analysis during the
switching process is important to develop the future STT-
MRAM technology.
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TABLEI
ELECTRICAL AND THERMAL PROPERTIES FOR THERMAL SIMULATION

[31]-[36]

Materials o (Q-m)”! K (W/(m-K)) c, (J/(kg-K)) p(kg/rrf)

Ta 6.50x10° 58.0 153 16700
PtMn 5.18x10° 4.9 247 12479
CoFe 5.83x10° 20.0 423 8150
Ru 1.39%107 116.0 240 10960
CoFeB 5.85x10 88.0 405 9140
MgO 1.30x10° 45.0 935 3580
Si0, 1.43x10™™ 1.4 730 2200

Cu 5.88x107 398.0 385 8930
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