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EXECUTIVE SUMMARY 

 

Background  

 

The problem of choosing the appropriate regression models from a class of 

candidate models to characterize the study data is a key issue. In real life, we may not 

know what the true model is, but we hope to find a model that is a reasonably accurate 

representation. A model selection criterion represents a useful tool to judge the 

propriety of a fitted model, by assessing whether it offers an optimal balance between 

goodness of fit and parsimony. The first model selection criterion to gain widespread 

acceptance was Akaike information criterion, AIC (Akaike, 1973, 1974; Bedrick and 

Tsai, 1994). This serves as an asymptotically unbiased estimator of a variant of 

Kullback’s directed divergence between the true model and a fitted approximating 

model. The directed divergence, also known as the Kullback-Leibler information, the 

I-divergence, or the relative entropy, assesses the dissimilarity between two statistical 

models. Other well-known criteria were subsequently introduced and studied such as, 

Bayesian information criterion, BIC (Schwarz, 1978; Gorobets, 2005), and Kullback 

information criterion, KIC (Cavanaugh, 1999; Hafidi and Mkhadri, 2006). BIC is an 

asymptotic approximation to a transformation of Bayesian posterior probability of a 

candidate model (Neath and Cavanaugh, 1997). KIC is a symmetric measure, meaning 

that an alternate directed divergence may be obtained by reversing the roles of the two 

models in the definition of the measure. The sum of two directed divergences is 

Kullback’s symmetric divergence, also known as the J-divergence (Cavanaugh, 1999; 

Cavanaugh, 2004). Although AIC remains arguably the most widely used model 

selection criterion, BIC and KIC are popular competitors. In fact, BIC is often 

preferred over AIC by practitioners who find appeal in either its Bayesian justification 

or its tendency to choose more parsimonious models than AIC (Neath and Cavanaugh, 

1997). Likewise, KIC is a symmetric measure which combines the information in two 

related, though distinct measures; its functions as a gauge of model disparity that is 

arguably more sensitive than AIC that corresponds to only individual component 

(Cavanaugh, 1999; Cavanaugh, 2004). However, AIC, BIC, and KIC still have the 



 

 

 

 

 

problems of weak signal-to-noise ratios and high probabilities of overfitting when the 

sample size is not large enough which both problems have an effect on the frequency 

of selection the correct model. With this motivation, the aim of this research is to 

propose a model selection criterion to overcome the weak signal-to-noise ratio and to 

reduce the probability of over/underfitting by adjusting the penalty term of the model 

selection criterion, called adjusted penalty information criterion, denoted by APIC. 

The proposed criterion performance is examined by the extensive simulation study 

relative to the well-known criteria, AIC, BIC, and KIC, under various circumstances 

as follows (McQuarrie, Shumway, and Tsai, 1997; McQuarrie, 1999; Mills and 

Prasad, 2007; Rahman and King, 2007). 

 Sample sizes ( n ) are difference,  

 Orders of true model ( 0p ) are difference,  

 Regression coefficients (  ) are difference,  

 Variances of error terms ( 2 ) are difference,  

 Distributions of independent variables (Dist. of X ) are difference. 

The criterion is classified to be the best when it has the strong signal-to-noise 

ratio, has the lowest probability of over/underfitting, and has the maximum frequency 

of correct order being selected. 

 

Objectives of the Research 

 

 The objectives of this research are as follows: 

1) To derive the model selection criterion in order to overcome the weak signal-

to-noise ratio and to reduce the probability of over/underfitting in univariate 

regression model, called adjusted penalty information criterion (APIC). 

2) To examine the performance of APIC, the proposed model selection 

criterion, relative to the well-known criteria, AIC, BIC, and KIC, under various 

circumstances as follows: 

 Sample sizes ( n ) are difference,  

 Orders of true model ( 0p ) are difference,  

 Regression coefficients (  ) are difference,  



 

 

 

 

 

 Variances of error terms ( 2 ) are difference,  

 Distributions of independent variables (Dist. of X ) are difference. 

 

Methodologies  

 

The methodologies of this research are as follows:  

1) Derive the model selection criterion in order to overcome the weak signal-to-

noise ratio and to reduce the probability of over/underfitting in univariate regression 

model, called adjusted penalty information criterion, denoted by APIC. 

2) Use the SAS programming to simulate the univariate regression model under 

various circumstances as follows: 

 Sample sizes ( n ) are difference,  

 Orders of true model ( 0p ) are difference,  

 Regression coefficients (  ) are difference,  

 Variances of error terms ( 2 ) are difference,  

 Distributions of independent variables (Dist. of X ) are difference. 

3) Examine the properties of the model must be consistent with step 2. 

4) Calculate the values of APIC, the proposed model selection criterion, and 

those of well-known criteria, AIC, BIC, and KIC, under various circumstances in step 2. 

5) Examine the performance of APIC, the proposed model selection criterion, 

relative to the well-known criteria, AIC, BIC, and KIC, under various circumstances in 

step 2. The criterion is classified to be the best when it has the strong signal-to-noise 

ratio, has the lowest probability of over/underfitting, and has the maximum frequency 

of correct order being selected. 

 

 

 

 

 

 

 



 

 

 

 

 

Plans of the Research  

 

The plans of the research are as follows: 

Activities 

Jun 

15, 

2014  

–  

Dec 

14, 

2014 

Dec 

15, 

2014 

–  
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14, 

2015 
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15, 

2015  

–  

Dec 

14, 

2015 

Dec 

15, 

2015 

–  

Jun 

14, 

2016 

1) Derive the model selection criterion in order to overcome the weak 

signal-to-noise ratio and to reduce the probability of over/underfitting 

in univariate regression model, called adjusted penalty information 

criterion, denoted by APIC. 

    

2) Use the SAS programming to simulate the univariate regression 

model under various circumstances as follows: 

 Sample sizes ( n ) are difference,  

 Orders of true model ( 0p ) are difference,  

 Regression coefficients (  ) are difference,  

 Variances of error terms ( 2 ) are difference,  

 Distributions of independent variables (Dist. of X ) are 

difference. 

    

3) Examine the properties of the model must be consistent with step 2.     

4) Calculate the values of APIC, the proposed model selection 

criterion, and those of well-known criteria, AIC, BIC, and KIC, under 

various circumstances in step 2. 

    

5) Examine the performance of APIC, the proposed model selection 

criterion, relative to the well-known criteria, AIC, BIC, and KIC, under 

various circumstances in step 2. The criterion is classified to be the 

best when it has the strong signal-to-noise ratio, has the lowest 

probability of over/underfitting, and has the maximum frequency of 

correct order being selected.  
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ABSTRACT :  

 

This research proposed a model selection criterion in order to overcome the 

weak signal-to-noise ratio and to reduce the probability of over/underfitting by 

adjusting the penalty term of the well-known model selection criteria (AIC, BIC, 

KIC), called adjusted penalty information criterion,    2ˆlog 1 /  APIC p n  . 

Criterion is classified to be the best when it has the strong signal-to-noise ratio, lowest 

probability of over/underfitting and maximum probability of correct order being 

selected. The theoretical results show that, if the value of   tends to infinity, the 

probability of overfitting tends to zero and the signal-to-noise ratio tends to strong, 

but the probability of underfitting tends to one. The simulation results show that, 

when the true model is difficult to identify, distributions of independent variables are 

normal or uniform, the appropriate   is small. But for the independent variables are 

normal distributed, sample size increases and variances of error terms are small to 

moderate,   should be moderate. If the true model is easily to identify, distribution of 

independent variables is normal and variances of error terms are small to moderate, 

the appropriate   is large. When the variance of error terms increases,   should be 

moderate. If the distribution of independent variables changes to be uniform and 

variances of error terms are small to moderate,   should be moderate, otherwise   



 

 

 

 

 

should be small. If the variance of error terms increases, the validity of APIC 

decreases, but when the sample size increases, the validity of APIC also increases. 

 

Keywords: Kullback’s directed divergence, Kullback’s symmetric divergence, model 

selection. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background 

 

The problem of choosing the appropriate regression models from a class of 

candidate models to characterize the study data is a key issue. In real life, we may not 

know what the true model is, but we hope to find a model that is a reasonably accurate 

representation. A model selection criterion represents a useful tool to judge the 

propriety of a fitted model, by assessing whether it offers an optimal balance between 

goodness of fit and parsimony. The first model selection criterion to gain widespread 

acceptance was Akaike information criterion, AIC (Akaike, 1973, 1974; Bedrick and 

Tsai, 1994). This serves as an asymptotically unbiased estimator of a variant of 

Kullback’s directed divergence between the true model and a fitted approximating 

model. The directed divergence, also known as the Kullback-Leibler information, the 

I-divergence, or the relative entropy, assesses the dissimilarity between two statistical 

models. Other well-known criteria were subsequently introduced and studied such as, 

Bayesian information criterion, BIC (Schwarz, 1978; Gorobets, 2005), and Kullback 

information criterion, KIC (Cavanaugh, 1999; Hafidi and Mkhadri, 2006). BIC is an 

asymptotic approximation to a transformation of Bayesian posterior probability of a 

candidate model (Neath and Cavanaugh, 1997). KIC is a symmetric measure, meaning 

that an alternate directed divergence may be obtained by reversing the roles of the two 

models in the definition of the measure. The sum of two directed divergences is 

Kullback’s symmetric divergence, also known as the J-divergence (Cavanaugh, 1999; 

Cavanaugh, 2004). Although AIC remains arguably the most widely used model 

selection criterion, BIC and KIC are popular competitors. In fact, BIC is often 

preferred over AIC by practitioners who find appeal in either its Bayesian justification 

or its tendency to choose more parsimonious models than AIC (Neath and Cavanaugh, 

1997). Likewise, KIC is a symmetric measure which combines the information in two 

related, though distinct measures; its functions as a gauge of model disparity that is 
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arguably more sensitive than AIC that corresponds to only individual component 

(Cavanaugh, 1999; Cavanaugh, 2004). However, AIC, BIC, and KIC still have the 

problems of weak signal-to-noise ratios and high probabilities of overfitting when the 

sample size is not large enough which both problems have an effect on the frequency 

of selection the correct model. With this motivation, the aim of this research is to 

propose a model selection criterion to overcome the weak signal-to-noise ratio and to 

reduce the probability of over/underfitting by adjusting the penalty term of the model 

selection criterion, called adjusted penalty information criterion, denoted by APIC. 

The proposed criterion performance is examined by the extensive simulation study 

relative to the well-known criteria, AIC, BIC, and KIC, under various circumstances 

as follows (McQuarrie, Shumway, and Tsai, 1997; McQuarrie, 1999; Mills and 

Prasad, 2007; Rahman and King, 2007). 

 Sample sizes ( n ) are difference,  

 Orders of true model ( 0p ) are difference,  

 Regression coefficients (  ) are difference,  

 Variances of error terms ( 2 ) are difference,  

 Distributions of independent variables (Dist. of X ) are difference. 

The criterion is classified to be the best when it has the strong signal-to-noise 

ratio, has the lowest probability of over/underfitting, and has the maximum frequency 

of correct order being selected. 
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1.2 Objectives of the Research 

 

 The objectives of this research are as follows: 

1) To derive the model selection criterion in order to overcome the weak signal-

to-noise ratio and to reduce the probability of over/underfitting in univariate 

regression model, called adjusted penalty information criterion (APIC). 

2) To examine the performance of APIC, the proposed model selection 

criterion, relative to the well-known criteria, AIC, BIC, and KIC, under various 

circumstances as follows: 

 Sample sizes ( n ) are difference,  

 Orders of true model ( 0p ) are difference,  

 Regression coefficients (  ) are difference,  

 Variances of error terms ( 2 ) are difference,  

 Distributions of independent variables (Dist. of X ) are difference. 

 

1.3 Scope of the Research 

 

In this research, the model selection criterion focuses on the univariate 

regression model (Montgomery, Peck, and Vining, 2006), 

  y X  , (1.1) 

where y  is an 1n  dependent random vector of observations, X  is a n p  matrix of 

independent variables with full-column rank,   is a 1p  parameter vector of 

regression coefficients,   is an 1n  error vector with zero mean and variance 2

n I . 

The maximum likelihood estimators of   and 2  are, respectively, 

  
1ˆ 

  X X X y  and    2 1 ˆ ˆˆ
n




  y X y X  . (1.2) 

 

 

 

 



CHAPTER 2 

 

LITERATURE REVIEW 

 

The generating or true univariate regression model to consider in this research is 

in the form (Montgomery, Peck, and Vining, 2006) 

 0 0 0 y X   , (2.1) 

and the candidate or approximating univariate regression model is in the form 

  y X  , (2.2) 

where y  is an 1n  dependent random vector of observations, 0X  and X  are 0n p  

and n p  matrices of independent variables with full-column rank, respectively, 0  

and   are 0 1p   and 1p  parameter vectors of regression coefficients, respectively, 

0  and   are 1n  error vectors with zero means and variances 
2

0 n I  and 
2

n I , 

respectively. The maximum likelihood estimators of   and 2  are, respectively, 

  
1ˆ 

  X X X y  and    2 1 ˆ ˆˆ
n




  y X y X  . (2.3) 

For each data set, we can construct many fitted candidate models. Nevertheless, 

we cannot know which model is the best. Criterion for model selection is a way to 

solve this problem. AIC, BIC, and KIC are three well-known criteria to consider in 

this research. Many authors usually scale these criteria by 1/n in order to express them 

as a rate per observation. The formulae for them are based on the following form, 

 Model Selection Criterion  
 2

1
ˆlog


  

p
MSC

n


 . (2.4) 

When the values of   in (2.4) are equal to 2,  log n , and 3, MSC becomes AIC 

(Akaike, 1973, 1974), BIC (Schwarz, 1978), and KIC (Cavanaugh, 1999), 

respectively, i.e., 

  
 2

2 1
ˆlog

p
AIC

n



  , (2.5) 

  
   2

1 log
ˆlog

p n
BIC

n



  , (2.6) 
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  
 2

3 1
ˆlog

p
KIC

n



  . (2.7) 

In this research, the methods used to compare which criterion is the best are the 

ratio of signal-to-noise and the probability of over/underfitting. McQuarrie and Tsai 

(1998) defined the signal-to-noise ratio as a measurement that is basically a ratio of 

the expectation to the standard deviation of the difference in criterion values for two 

models. The ratio tends to assess whether the penalty term is sufficiently strong in 

relation to the goodness of fit term. From the true model order 0p  and a candidate 

model order 0p l  where 0l  , the true model is considered better than a candidate 

model if the criterion value of a model of order 0p  is less than that of order 0p l , 

0 0p p lMSC MSC  . Then the signal-to-noise ratio that the true model is selected 

compared to a candidate model is  

 
signal

noise
 

0 0

0 0

p l p

p l p

E MSC MSC

sd MSC MSC





  
  

 

 

 
 

 
 

 
 

 
 

0 0

0 0

2 20 0

2 20 0

1 1
ˆ ˆlog log

=
1 1

ˆ ˆlog log

p l p

p l p

p l p
E

n n

p l p
sd

n n

 
 

 
 





   
   

 

   
   

 

 

 

0

0

0

0

2

2

2

2

ˆ
log

ˆ
=

ˆ
log

ˆ

p l

p

p l

p

l
E

n

l
sd

n

 



 







  
  

    

  
  

    

. (2.8) 

In order to find the signal in (2.8), we apply the second-order of Taylor’s series 

expansions as follows. Suppose 
2

pX  , expanding  log X  about  E X p , we 

have  

       
2

2

1 1
log log

2
X p X p X p

p p
     and    

1
log logE X p

p
   . 

 (2.9) 

 

 



 

 

 

 

 

 

6 

Under the assumption of nested models; 
0p p  and 0l  , we have 

 

 2 2 2 2

0
ˆ ˆ

p p l ln     , 
2 2 2

0
ˆ

p n pn    , and 
2 2ˆ ˆ
p p l    is independent of 

2ˆ
p l  , 

 (2.10) 

where 
2

k  represents the chi-square distribution with k  degrees of freedom.   

Using the result of Taylor’s series expansions in (2.9) and the assumptions in 

(2.10), we have 

     
2

2 2

02

0

ˆ 1
ˆlog log log log

p

p

n
E E n E n p

n p


 



  
                 

, 

then

 

 

      2 2

0

1
ˆlog log logpE n n p

n p
     

  
. (2.11) 

From (2.11), the signal in (2.8) is approximated by 

0

0 0

0

2

2

ˆ
log

ˆ

p l

p l p

p

l
E EMSC MSC

n

 







  
            

 

    
0 0

2 2ˆ ˆlog logp l p

l
E n E n

n


 

     
   

 

        2 2

0 0 0 0

0 0

1 1
log log log log

l
n p l n p

n p l n p n


 

   
           

     
 

 
  

0

0 0 0

log
n p l l l

n p n p l n p n

  
   

    
. (2.12) 

In order to find the noise in (2.8), we use the assumptions in (2.10), then we 

have  

 0 0

0 0

2 2

2 2 2

ˆ

ˆ

p l n p l

p n p l l

n
Q

n

 

  

  

 




, (2.13) 

the Q-statistic in (2.13) has the Beta distribution 

0 ,
2 2

  
 
 

n p l l
Q Beta , 
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and the log-distribution is  

   0

0

2

0

2

ˆ
log log log - ,

ˆ 2 2


    

        

p l

p

n n p l l
Q Beta

n




. (2.14) 

Using the first-order of Taylor’s series expansions when 
2

pX  , we expand 

 log X  about  E X p  as follows: 

      
1

log logX p X p
p

  . (2.15) 

 Applying (2.15) to expand  log Q  in (2.14) about  

 

0

0

0 0

2 ,

2 2

n p l
n p l

E Q
n p l l n p

 
 

 
  



 

we have 

   0 0 0

0 0 0

log log
n p l n p n p l

Q Q
n p n p l n p

       
    

      
. (2.16) 

The variance of  log Q  in (2.14) is approximated by the variance  log Q  in 

(2.16) as follows: 

 
 var log  Q  0

0

2

2

ˆ
var log

ˆ


  

   
    

p l

p

n

n




  

 0 0 0

0 0 0

var log
n p l n p n p l

Q
n p n p l n p

        
     

       
 

  
2

0

0

var
n p

Q
n p l

 
  

  
  

 
 

 

02

0

2 2

0 0 0

2 2

1
2 2 2 2

n p l l
n p

n p l n p l n p ll l

  
 
 
         

      
    

 

 
  0 0

2

2

l

n p l n p


   
. (2.17) 
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Therefore,

 

the standard deviation of  log Q  in (2.17) or the approximate noise 

in (2.8) is

 

 

0 0

0 0

0 0

2 2

2 2

ˆ ˆ
log log

ˆ ˆ

p l p l

p l p

p p

nl
sd sd sdMSC MSC

n n

 

 

 



      
                         

  

  
  0 0

2
log

2

l
sd Q

n p l n p
   

   
. (2.18) 

Combined the approximations of signal in (2.12) and noise in (2.18) to be the 

approximate signal-to-noise ratio in (2.8) as follows: 

0 0

0 0

p l p

p l p

E MSC MSCsignal

noise sd MSC MSC





  
  

 

  

  
0 0 0

0 0 0

2
log

2

n p l n p n p l l l

n p n p l n p nl

       
   

     
. 

  (2.19) 

Replacing the values of   in (2.19) by 2,  log n , and 3, we have the 

approximate signal-to-noise ratios for AIC, BIC, and KIC, respectively, i.e., 

0 0

0 0





  

  

p l p

p l p

E AIC AIC

sd AIC AIC
 

 
  

  
0 0 0

0 0 0

2 2
log ,

2

       
   

     

n p l n p n p l l l

n p n p l n p nl
 (2.20) 

0 0

0 0





  

  

p l p

p l p

E BIC BIC

sd BIC BIC
 

 
  

  

 0 0 0

0 0 0

2 log
log ,

2

       
   

     

n p l n p l nn p l l

n p n p l n p nl

  (2.21) 
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0 0

0 0





  

  

p l p

p l p

E KIC KIC

sd KIC KIC
 

 
  

  
0 0 0

0 0 0

2 3
log .

2

       
   

     

n p l n p n p l l l

n p n p l n p nl
 (2.22) 

The probability of overfitting is the second method used to compare which 

criterion is the best. It is defined based on a model that has more parameters than the 

optimal model (Seghouane, 2006). The probabilities of the criteria AIC, BIC, and KIC 

preferring the overfitted model by l  extra variables are analyzed here by comparing 

the true model of order 0p  to a more complex model or overfitted model of order 

0p l , 0l  . Hence for finite n, the probability that MSC prefers the overfitted model 

is defined by 

   
 

 
 

0 0 0 0

0 02 2
1 1

ˆ ˆ= log logp l p p l p

p l p
P PMSC MSC

n n

 
  

   
    

 
  

 0 0 0 0

0 0 0

2 2 2 2

2 2 2

ˆ ˆ ˆ ˆ
= log exp exp 1

ˆ ˆ ˆ

p p p p l

p l p l p l

l l l
P P P

n n n

     

  



  

              
                             

. 

 (2.23) 

Using the assumptions in (2.10), the probability of overfitting by l  extra 

variables for MSC in (2.23) becomes 

 
0 0

0

2

2
exp 1l

p l p

n p l

l
P PMSC MSC

n

 




 

   
     

   

 

 
0

0
, exp 1l n p l

n p l l
P F

l n


 

     
     

   
. (2.24) 

Replacing the values of   in (2.24) by 2,  log n , and 3, we have the 

probabilities of overfitting by l  extra variables for AIC, BIC, and KIC, respectively, 

i.e., 

  
0 0 0

0
,

2
exp 1p l p l n p l

n p l l
P AIC AIC P F

l n
  

     
      

   
, (2.25) 
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  
 

0 0 0

0
,

log
exp 1p l p l n p l

l nn p l
P BIC BIC P F

l n
  

     
      

     

, (2.26) 

  
0 0 0

0
,

3
exp 1p l p l n p l

n p l l
P KIC KIC P F

l n
  

     
      

   
. (2.27) 

From (2.20) until (2.22) and (2.25) until (2.27), we found that the signal-to-

noise ratios and probabilities of overfitting from AIC, BIC, and KIC depend on the 

values of   in (2.4). Therefore, any criterion has the value of   is greater than 2 

(from AIC), or greater than  log n  (from BIC), or greater than 3 (from KIC), means 

that the signal-to-noise ratio tend to strong and the model tends to less overfitting. 

However, if the values of   is too large the signal-to-noise ratio becomes weak in the 

underfitting case, and the model selection criterion will be prone to underfitting. 

McQuarrie and Tsai (1998) concluded that, a strong signal-to-noise ratio refers to a 

large positive value (often greater than 2) and then leads to small probability of 

overfitting. A weak signal-to-noise ratio usually refers to one that is small (less than 

0.5) or negative and then results in high probability of overfitting. The model 

selection criterion that has strong signal-to-noise ratio and lowest probability of 

overfitting is preferable. 

 

 

 

 



CHAPTER 3 

 

METHODOLOGY  

 

This research attempted to derive the model selection criterion in order to 

overcome the weak signal-to-noise ratio and to reduce the probability of 

over/underfitting in univariate regression model, called adjusted penalty information 

criterion (APIC) and to examine the performance of APIC relative to the well-known 

criteria, AIC, BIC, and KIC, under various circumstances as follows: 

 Sample sizes ( n ) are difference,  

 Orders of true model ( 0p ) are difference,  

 Regression coefficients (  ) are difference,  

 Variances of error terms ( 2 ) are difference,  

 Distributions of independent variables (Dist. of X ) are difference. 

Recalled the equation (2.4) in Chapter 2 as 

 
 

 
 2

1
ˆlog


 

p
APIC

n


 . (3.1) 

APIC in (3.1) has the signal-to-noise ratio as shown in the equation (2.19), 

  

  
0 0 0

0 0 0

2
log .

2

       
   

     

n p l n p n p lsignal l l

noise n p n p l n p nl


 

  (3.2) 

In (3.2), we found that the signal-to-noise ratio of APIC depends on the value of 

  as mention earlier. When we replace the values of   by 2,  log n  and 3, we have 

the signal-to-noise ratios of AIC, BIC and KIC, respectively. If the value of   tends 

to infinity under the same values of the sample size  n , the order of true model  0p  

and the additional variable  l , APIC has a strong signal-to-noise ratio. The proof of 

the signal-to-noise ratio can be confirmed numerically in Table 3.1. The example of 

the calculation for the signal-to-noise ratio of APIC, for 15n , 0 3p , 1l  and 

1 , is as follows: 
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  

  

11 14 11 1 1
log 0.2450.

12 11 12 152

  
     

  

signal

noise
 

From Table 3.1 we found that when the sample size is small (n = 15), KIC has a 

strong signal-to-noise ratio than BIC and AIC, respectively, because the value of   in 

(3) from KIC is larger than BIC and AIC, respectively (3 > log(15) > 2). Whereas the 

sample size are moderate to large (n = 30, 100), BIC has a strong signal-to-noise ratio 

than KIC and AIC, respectively, because the value of   in (3) from BIC is larger than 

KIC and AIC, respectively (log(30) or log(100) > 3 > 2). Therefore, we can conclude 

that, APIC with a much more value of  , make its signal-to-noise to be strong. 
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Table 3.1 Signal-to-noise ratio of APIC  for different values of n , 
0p  and l . 

n p0 l 

Criteria 
      

        

APIC1 
APIC2 

(AIC) 

APIC 

log(n) 

(BIC) 

APIC3 

(KIC) 
APIC4 APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14 

15 3 1 -0.2450 0.3400 0.7542 0.9250 1.5100 2.0950 2.6800 3.2650 3.8500 4.4350 5.0200 5.6050 6.1900 6.7750 7.3600 
15 3 2 -0.3884 0.4004 0.9589 1.1892 1.9780 2.7668 3.5556 4.3444 5.1333 5.9221 6.7109 7.4997 8.2885 9.0773 9.8661 
15 3 3 -0.5291 0.3874 1.0364 1.3039 2.2204 3.1370 4.0535 4.9700 5.8865 6.8030 7.7195 8.6360 9.5526 10.4691 11.3856 
15 3 4 -0.6752 0.3225 1.0290 1.3203 2.3181 3.3159 4.3136 5.3114 6.3092 7.3070 8.3047 9.3025 10.3003 11.2981 12.2958 

15 5 1 -0.3660 0.1239 0.4708 0.6138 1.1037 1.5936 2.0835 2.5734 3.0633 3.5532 4.0431 4.5330 5.0229 5.5128 6.0027 

15 5 2 -0.5625 0.0907 0.5532 0.7439 1.3971 2.0503 2.7035 3.3567 4.0099 4.6631 5.3163 5.9695 6.6227 7.2759 7.9291 

n p0 l APIC1 
APIC2 

(AIC) 

APIC3 

(KIC) 

APIC 

log(n) 

(BIC) 

APIC4 APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14 

30 3 1 -0.1132 0.5340 1.1812 1.4409 1.8284 2.4756 3.1229 3.7701 4.4173 5.0645 5.7117 6.3589 7.0062 7.6534 8.3006 
30 3 2 -0.1785 0.7190 1.6166 1.9767 2.5141 3.4116 4.3092 5.2067 6.1042 7.0017 7.8993 8.7968 9.6943 10.5918 11.4894 
30 3 3 -0.2414 0.8356 1.9127 2.3448 2.9897 4.0667 5.1438 6.2208 7.2978 8.3749 9.4519 10.5289 11.6060 12.6830 13.7600 

30 3 4 -0.3054 0.9120 2.1295 2.6179 3.3470 4.5644 5.7819 6.9994 8.2168 9.4343 10.6518 11.8692 13.0867 14.3041 15.5216 

30 5 1 -0.1648 0.4352 1.0352 1.2759 1.6352 2.2352 2.8352 3.4352 4.0352 4.6352 5.2352 5.8352 6.4352 7.0352 7.6352 
30 5 2 -0.2516 0.5791 1.4097 1.7430 2.2404 3.0710 3.9017 4.7324 5.5630 6.3937 7.2244 8.0550 8.8857 9.7163 10.5470 

n p0 l APIC1 
APIC2 

(AIC) 

APIC3 

(KIC) 
APIC4 

APIC 

log(n) 

(BIC) 

APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14 

100 3 1 -0.0324 0.6569 1.3463 2.0356 2.4528 2.7250 3.4143 4.1037 4.7930 5.4824 6.1717 6.8611 7.5504 8.2398 8.9291 
100 3 2 -0.0510 0.9188 1.8886 2.8584 3.4453 3.8282 4.7980 5.7678 6.7376 7.7074 8.6772 9.6470 10.6168 11.5866 12.5564 
100 3 3 -0.0687 1.1128 2.2942 3.4757 4.1907 4.6572 5.8387 7.0202 8.2016 9.3831 10.5646 11.7461 12.9276 14.1091 15.2905 
100 3 4 -0.0867 1.2703 2.6273 3.9843 4.8055 5.3413 6.6982 8.0552 9.4122 10.7692 12.1262 13.4831 14.8401 16.1971 17.5541 

100 5 1 -0.0469 0.6283 1.3035 1.9787 2.3874 2.6539 3.3292 4.0044 4.6796 5.3548 6.0300 6.7052 7.3804 8.0556 8.7308 
100 5 2 -0.0714 0.8784 1.8282 2.7780 3.3527 3.7277 4.6775 5.6273 6.5771 7.5269 8.4767 9.4265 10.3763 11.3261 12.2758 
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Similarly, APIC in (3.1) has the probability of overfitting as shown in the 

equation (2.24), 

  
0 0 0

0
, exp 1 .  

     
      

   
p l p l n p l

n p l l
P P FAPIC APIC

l n


 (3.3) 

In the opposite, the probability of underfitting is defined based on a model with 

too few variables compared to the optimal model (Seghouane, 2006). It is defined by 

    
 

 
 

0 0 0 0

0 02 2
1 1

ˆ ˆ= log log 

   
    

 
p l p p l p

p l p
P PAPIC APIC

n n

 
   

 0 0 0 0

0 0 0

2 2 2 2

2 2 2

ˆ ˆ ˆ ˆ
= log exp exp 1

ˆ ˆ ˆ

  
              

                             

p l p l p l p

p p p

l l l
P P P

n n n

     

  
 

 
0

0

2

0
,2

exp 1 exp 1



         
            

        

l
l n p

n p

n pl l
P P F

n l n

  


. (3.4) 

In (3.3) and (3.4), we found that APIC’s probability of over/underfitting 

depends on the value of   same as the signal-to-noise ratio. When we replace the 

values of   by 2,  log n  and 3, we have the probabilities of over/underfitting of 

AIC, BIC and KIC, respectively. If the value of   tends to infinity under the same 

values of n, 0p  and l , APIC having the low probability of overfitting but it will be 

prone to underfitting. The proof of the probability of over/underfitting can be 

confirmed numerically in Table 3.2 and 3.3. The example of the calculation for the 

probability of overfitting by l  extra variables of APIC, for 15n , 0 3p , 1l  and 

1 , is as follows: 

   
0 01 1, 11 0.7583 0.4025.    p pP APIC APIC P F  

It means that APIC for 1  would select the model whose order is higher by 

one order than true model with a probability of 0.4025. In the same manner, the 

probability of underfitting by l  variables of APIC for this case is  

   
0 01 1, 12 0.8273 0.6190.    p pP APIC APIC P F  

It means that APIC for 1  would select the model whose order is lower by 

one order than true model with a probability of 0.6190. The model selection criterion 

that has strong signal-to-noise ratio and lowest probability of over/underfitting is 

preferable.  
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Table 3.2 Probability of overfitting by l  extra variables of APIC  for different values of n , 
0p  and l . 

n p0 l 

Criteria 
      

        

APIC1 
APIC2 

(AIC) 

APIC 

log(n) 

(BIC) 

APIC3 

(KIC) 
APIC4 APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14 

15 3 1 0.4025 0.2363 0.1682 0.1469 0.0939 0.0611 0.0402 0.0266 0.0178 0.0119 0.0080 0.0054 0.0037 0.0025 0.0017 
15 3 2 0.5134 0.2636 0.1644 0.1353 0.0695 0.0357 0.0183 0.0094 0.0048 0.0025 0.0013 0.0007 0.0003 0.0002 0.0001 
15 3 3 0.5947 0.2857 0.1631 0.1287 0.0561 0.0240 0.0101 0.0042 0.0018 0.0007 0.0003 0.0001 0.0001 0.0000 0.0000 
15 3 4 0.6664 0.3143 0.1701 0.1305 0.0508 0.0190 0.0070 0.0025 0.0009 0.0003 0.0001 0.0000 0.0000 0.0000 0.0000 

15 5 1 0.4511 0.2865 0.2148 0.1917 0.1316 0.0918 0.0647 0.0460 0.0329 0.0236 0.0170 0.0123 0.0089 0.0065 0.0047 

15 5 2 0.5866 0.3442 0.2359 0.2019 0.1184 0.0695 0.0408 0.0239 0.0140 0.0082 0.0048 0.0028 0.0017 0.0010 0.0006 

n p0 l APIC1 
APIC2 

(AIC) 

APIC3 

(KIC) 

APIC 

log(n) 

(BIC) 

APIC4 APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14 

30 3 1 0.3565 0.1922 0.1102 0.0890 0.0651 0.0392 0.0239 0.0147 0.0091 0.0057 0.0035 0.0022 0.0014 0.0009 0.0006 
30 3 2 0.4346 0.1889 0.0821 0.0588 0.0357 0.0155 0.0067 0.0029 0.0013 0.0006 0.0002 0.0001 0.0000 0.0000 0.0000 
30 3 3 0.4846 0.1795 0.0617 0.0397 0.0204 0.0066 0.0021 0.0007 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 

30 3 4 0.5256 0.1720 0.0482 0.0282 0.0125 0.0031 0.0007 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

30 5 1 0.3761 0.2106 0.1252 0.1026 0.0766 0.0478 0.0301 0.0192 0.0123 0.0079 0.0051 0.0033 0.0022 0.0014 0.0009 
30 5 2 0.4646 0.2158 0.1003 0.0737 0.0466 0.0216 0.0101 0.0047 0.0022 0.0010 0.0005 0.0002 0.0001 0.0000 0.0000 

n p0 l APIC1 
APIC2 

(AIC) 

APIC3 

(KIC) 
APIC4 

APIC 

log(n) 

(BIC) 

APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14 

100 3 1 0.3284 0.1670 0.0905 0.0506 0.0360 0.0289 0.0167 0.0097 0.0057 0.0034 0.0020 0.0012 0.0007 0.0004 0.0003 
100 3 2 0.3867 0.1496 0.0578 0.0224 0.0126 0.0087 0.0033 0.0013 0.0005 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 
100 3 3 0.4178 0.1288 0.0367 0.0100 0.0045 0.0027 0.0007 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
100 3 4 0.4395 0.1109 0.0236 0.0046 0.0017 0.0009 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

100 5 1 0.3336 0.1715 0.0940 0.0531 0.0380 0.0306 0.0179 0.0105 0.0062 0.0037 0.0022 0.0013 0.0008 0.0005 0.0003 
100 5 2 0.3946 0.1557 0.0614 0.0242 0.0138 0.0096 0.0038 0.0015 0.0006 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 
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Table 3.3 Probability of underfitting by l  variables of APIC  for different values of n , 
0p  and l . 

n p0 l 

Criteria 
      

        

APIC1 
APIC2 

(AIC) 

APIC 

log(n) 

(BIC) 

APIC3 

(KIC) 
APIC4 APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14 

15 3 1 0.6190 0.7847 0.8507 0.8709 0.9204 0.9500 0.9682 0.9796 0.9869 0.9915 0.9945 0.9964 0.9976 0.9984 0.9990 
15 3 2 0.5507 0.7981 0.8854 0.9093 0.9592 0.9817 0.9918 0.9963 0.9983 0.9993 0.9997 0.9998 0.9999 1.0000 1.0000 
15 3 3 0.5238 0.8272 0.9197 0.9418 0.9811 0.9940 0.9981 0.9994 0.9998 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 
15 3 4 0.5146 0.8581 0.9464 0.9646 0.9918 0.9982 0.9996 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

15 5 1 0.5743 0.7401 0.8102 0.8324 0.8890 0.9253 0.9491 0.9651 0.9759 0.9833 0.9883 0.9918 0.9943 0.9960 0.9972 

15 5 2 0.4866 0.7364 0.8356 0.8647 0.9305 0.9643 0.9817 0.9906 0.9952 0.9975 0.9987 0.9993 0.9997 0.9998 0.9999 

n p0 l APIC1 
APIC2 

(AIC) 

APIC3 

(KIC) 

APIC 

log(n) 

(BIC) 

APIC4 APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14 

30 3 1 0.6528 0.8163 0.8965 0.9170 0.9399 0.9645 0.9787 0.9871 0.9922 0.9952 0.9971 0.9982 0.9989 0.9993 0.9996 
30 3 2 0.5934 0.8347 0.9328 0.9532 0.9727 0.9889 0.9955 0.9982 0.9993 0.9997 0.9999 0.9999 1.0000 1.0000 1.0000 
30 3 3 0.5680 0.8612 0.9588 0.9750 0.9882 0.9967 0.9991 0.9998 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

30 3 4 0.5561 0.8863 0.9754 0.9870 0.9951 0.9991 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

30 5 1 0.6339 0.7988 0.8825 0.9045 0.9294 0.9567 0.9732 0.9832 0.9894 0.9933 0.9957 0.9973 0.9983 0.9989 0.9993 
30 5 2 0.5654 0.8111 0.9179 0.9412 0.9643 0.9845 0.9933 0.9971 0.9987 0.9994 0.9998 0.9999 1.0000 1.0000 1.0000 

n p0 l APIC1 
APIC2 

(AIC) 

APIC3 

(KIC) 
APIC4 

APIC 

log(n) 

(BIC) 

APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14 

100 3 1 0.6741 0.8352 0.9111 0.9506 0.9650 0.9720 0.9839 0.9907 0.9945 0.9968 0.9981 0.9989 0.9993 0.9996 0.9998 
100 3 2 0.6209 0.8563 0.9455 0.9793 0.9885 0.9922 0.9970 0.9989 0.9996 0.9998 0.9999 1.0000 1.0000 1.0000 1.0000 
100 3 3 0.5967 0.8808 0.9676 0.9915 0.9963 0.9978 0.9995 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
100 3 4 0.5830 0.9023 0.9808 0.9965 0.9988 0.9994 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

100 5 1 0.6690 0.8308 0.9078 0.9481 0.9630 0.9703 0.9827 0.9899 0.9940 0.9965 0.9979 0.9987 0.9992 0.9995 0.9997 
100 5 2 0.6133 0.8504 0.9422 0.9776 0.9874 0.9913 0.9967 0.9987 0.9995 0.9998 0.9999 1.0000 1.0000 1.0000 1.0000 
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From Table 3.2 and 3.3 we found that when the sample size is small (n = 15), 

KIC has probability of overfitted less than BIC and AIC, respectively, in the opposite 

it has more probability of underfitted because the value of   in the equation (3.1) 

from KIC is larger than BIC and AIC, respectively (3 > log(15) > 2). Whereas the 

sample size are moderate to large (n = 30, 100), BIC has probability of overfitted less 

than KIC and AIC, respectively, in the opposite it has more probability of underfitted 

because the value of   in (3) from BIC is larger than KIC and AIC, respectively 

(log(30) or log(100) > 3 > 2). Therefore, we can conclude that, APIC with a much 

more value of  , make its probability of overfitting to be smaller but make more 

probability of underfitting. As a result, the main objective of this research is to find 

the appropriate value of  , by proving and verifying the result of study with 

simulation data, in order to make the strength of penalty function in the model 

selection criterion. The proposed criterion, APIC, tries to overcome the weak signal-

to-noise ratio and to reduce the probability of over/underfitting in order to select the 

most correct model for univariate regression. Then, the performance of APIC is 

examined relative to the well-known criteria, AIC, BIC, and KIC, under various 

circumstances such as differences in sample sizes, the orders of true model, the 

regression coefficients, the variances of error terms, and the distributions of 

independent variables (McQuarrie, Shumway, and Tsai, 1997; McQuarrie, 1999; 

Mills and Prasad, 2007; Rahman and King, 2007). 



CHAPTER 4 

 

SIMULATION STUDY 

 

In addition to the proofs of signal-to-noise ratio in (3.2) and the probability of 

over/underfitting in (3.3) and (3.4), we use the simulation data to find the appropriate 

value of   for APIC in (3.1). True multiple regression models in (2.1) are constructed 

as follows.  

Model 1 (very weakly identifiable true model with the true order 0 5p ):  

1 2 3 4 5 11 0.5 0.4 0.3 0.2 ,     y X X X X   

Model 2 (weakly identifiable true model with the true order 0 3p ):  

2 2 3 21 0.5 0.4 ,   y X X   

Model 3 (strongly identifiable true model with the true order 0 3p ): 

3 2 3 31 2 2 ,   y X X   

Model 4 (very strongly identifiable true model with the true order 0 5p ): 

4 2 3 4 5 41 2 2 2 2 .     y X X X X   

For each model, we consider 1,000 realizations for three levels of the sample 

sizes which are n = 15 (small), n = 30 (moderate) and n = 100 (large). The error terms 

for all models are assumed to be  2

00,N   where 
2

0  in (2.1) is assumed equal to 

three levels: 0.25, 1, 9. Seven candidate variables, 1X
 
to 7X , are stored in an 7n  

matrix X  of the candidate model in (2.2). 1X  is given as a constant which equals 1, 

followed by six independent variables which have two distributions:  0, 1N
 
and 

 , .U a b  For the uniform distribution, we given 
 

 2 5, 10 ,X U  3 10, 20 ,X U  4 7, 9 ,X U  5 6, 11 ,X U  

 6 9, 19 ,X U  7 4, 8 .X U  

Candidate models include the columns of X  in a sequentially nested fashion; 

i.e., columns 1 to p  define the design matrix for the candidate model with dimension 
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p . Over 1,000 realizations, we apply APIC in (3.1) with the values of   ranging 

from 1 to 14 on the datasets y of four models constructed. The probability of order 

selected by APIC is measure and used for examining the effects of weak or strong 

penalty function in the proposed criterion. Results are shown in Table 4.1 to Table 

4.3. Findings are the following.
 

[1] In Table 4.1, for the very weakly identifiable situation of true models with 

the true orders 0p  = 5, Model 1, the sample size is small (n = 15) and the distribution 

of independent variable is normal, the appropriate values of   when the true 

variances 
2

0  = 0.25, 1, 9, are 2, 1 and 1, respectively with the probabilities of correct 

order being selected are 29.7%, 15.5% and 11.9%. While, the distribution of 

independent variable is changed to be uniform, the appropriate values of   for all 

three levels of true variances are 1 with the probabilities are reduced to be 13.2%, 

11.3% and 10.6%. 

[2] In Table 4.1, for the weakly identifiable situation of true models with the 

true orders 0p  = 3, Model 2, the sample size is small (n = 15) and the distribution of 

independent variable is normal, the appropriate values of   when the true variances 

2

0  = 0.25, 1, 9, are 4, log n and 2, respectively with the probabilities of correct order 

being selected are 65.8%, 33.3% and 11.9%. While, the distribution of independent 

variable is changed to be uniform, the appropriate values of   for all three levels of 

true variances are 2 with the probabilities are reduced to be 17.8%, 12.6% and 13.6%. 

[3] In Table 4.1, for the strongly identifiable situation of true models with the 

true orders 0p  = 3, Model 3, the sample size is small (n = 15) and the distribution of 

independent variable is normal, the appropriate values of   when the true variances 

2

0  = 0.25, 1, 9, are 14, 9 and 4, respectively with the probabilities of correct order 

being selected are 99.8%, 97.7% and 55.4%. While, the distribution of independent 

variable is changed to be uniform, the appropriate values of   for three levels of true 

variances are 6, 4 and log n with the probabilities are reduced to be 85.8%, 48.5% and 

15.7%. 

[4] In Table 4.1, for the very strongly identifiable situation of true models 

with the true orders 0p  = 5, Model 4, the sample size is small (n = 15) and the 
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distribution of independent variable is normal, the appropriate values of   when the 

true variances 
2

0  = 0.25, 1, 9, are 13, 7 and log n, respectively with the probabilities 

of correct order being selected are 98.5%, 91.6% and 46.6%. While, the distribution 

of independent variable is changed to be uniform, the appropriate values of   for 

three levels of true variances are 5, log n and 1 with the probabilities are reduced to be 

78.2%, 42.3% and 14.8%. 
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Table 4.1 Probability of the order selected by APIC for n = 15. 

Model 
Dist. 

of X 

2

0  Order 

Criteria 
              

APIC1 
APIC2 

(AIC) 

APIClog(n) 

(BIC) 

APIC3 

(KIC) 
APIC4 APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14 

1 Normal 0.25 Underfitted 0.157 0.353 0.472 0.53 0.669 0.785 0.868 0.93 0.958 0.974 0.983 0.99 0.994 0.998 1 

very 
  

Correct 0.229 0.297 0.293 0.281 0.232 0.165 0.107 0.061 0.038 0.025 0.016 0.009 0.005 0.002 0 

weakly 
  

Overfitted 0.614 0.35 0.235 0.189 0.099 0.05 0.025 0.009 0.004 0.001 0.001 0.001 0.001 0 0 

p0 = 5  
1 Underfitted 0.269 0.562 0.731 0.79 0.9 0.951 0.978 0.99 0.998 0.999 0.999 0.999 1 1 1 

  
Correct 0.155 0.135 0.104 0.085 0.05 0.025 0.011 0.006 0.001 0 0 0 0 0 0 

   
Overfitted 0.576 0.303 0.165 0.125 0.05 0.024 0.011 0.004 0.001 0.001 0.001 0.001 0 0 0 

  
9 Underfitted 0.367 0.69 0.826 0.863 0.946 0.98 0.993 0.998 1 1 1 1 1 1 1 

   
Correct 0.119 0.097 0.064 0.054 0.03 0.011 0.005 0.001 0 0 0 0 0 0 0 

   
Overfitted 0.514 0.213 0.11 0.083 0.024 0.009 0.002 0.001 0 0 0 0 0 0 0 

 Uniform 0.25 Underfitted 0.346 0.679 0.82 0.855 0.937 0.971 0.99 0.998 1 1 1 1 1 1 1 

   
Correct 0.132 0.093 0.066 0.053 0.027 0.014 0.004 0.001 0 0 0 0 0 0 0 

   
Overfitted 0.522 0.228 0.114 0.092 0.036 0.015 0.006 0.001 0 0 0 0 0 0 0 

  
1 Underfitted 0.365 0.691 0.838 0.878 0.947 0.98 0.997 0.998 0.999 0.999 1 1 1 1 1 

   
Correct 0.113 0.079 0.052 0.039 0.015 0.007 0.001 0.001 0.001 0.001 0 0 0 0 0 

   
Overfitted 0.522 0.23 0.11 0.083 0.038 0.013 0.002 0.001 0 0 0 0 0 0 0 

  
9 Underfitted 0.359 0.695 0.836 0.868 0.946 0.985 0.995 0.997 0.999 1 1 1 1 1 1 

   
Correct 0.106 0.074 0.041 0.034 0.018 0.007 0.004 0.003 0.001 0 0 0 0 0 0 

   
Overfitted 0.535 0.231 0.123 0.098 0.036 0.008 0.001 0 0 0 0 0 0 0 0 

2 Normal 0.25 Underfitted 0.02 0.057 0.112 0.124 0.195 0.274 0.366 0.44 0.522 0.59 0.654 0.722 0.762 0.804 0.844 

weakly 
  

Correct 0.215 0.465 0.587 0.614 0.658 0.639 0.578 0.528 0.458 0.4 0.34 0.276 0.236 0.194 0.156 

p0 = 3   
Overfitted 0.765 0.478 0.301 0.262 0.147 0.087 0.056 0.032 0.02 0.01 0.006 0.002 0.002 0.002 0 

 
1 Underfitted 0.091 0.282 0.416 0.464 0.604 0.704 0.779 0.842 0.882 0.915 0.942 0.965 0.97 0.981 0.987 

   
Correct 0.147 0.301 0.333 0.33 0.286 0.237 0.191 0.143 0.11 0.082 0.057 0.034 0.03 0.019 0.013 

   
Overfitted 0.762 0.417 0.251 0.206 0.11 0.059 0.03 0.015 0.008 0.003 0.001 0.001 0 0 0 

  
9 Underfitted 0.181 0.52 0.693 0.739 0.85 0.899 0.943 0.961 0.974 0.98 0.984 0.99 0.992 0.993 0.998 

   
Correct 0.095 0.119 0.104 0.101 0.081 0.065 0.046 0.032 0.023 0.018 0.016 0.01 0.008 0.007 0.002 

   
Overfitted 0.724 0.361 0.203 0.16 0.069 0.036 0.011 0.007 0.003 0.002 0 0 0 0 0 

 
Uniform 0.25 Underfitted 0.152 0.425 0.583 0.644 0.768 0.855 0.896 0.93 0.96 0.972 0.982 0.991 0.995 0.996 0.997 

   
Correct 0.111 0.178 0.173 0.17 0.149 0.11 0.084 0.059 0.036 0.026 0.018 0.009 0.005 0.004 0.003 

   
Overfitted 0.737 0.397 0.244 0.186 0.083 0.035 0.02 0.011 0.004 0.002 0 0 0 0 0 

  
1 Underfitted 0.179 0.478 0.635 0.695 0.841 0.915 0.941 0.961 0.976 0.985 0.991 0.995 0.997 0.999 1 

   
Correct 0.103 0.126 0.119 0.108 0.079 0.054 0.04 0.031 0.02 0.013 0.009 0.005 0.003 0.001 0 

   
Overfitted 0.718 0.396 0.246 0.197 0.08 0.031 0.019 0.008 0.004 0.002 0 0 0 0 0 

  
9 Underfitted 0.189 0.491 0.658 0.717 0.844 0.925 0.957 0.977 0.985 0.993 0.996 0.997 0.998 0.998 0.998 

   
Correct 0.094 0.136 0.132 0.115 0.075 0.04 0.028 0.014 0.009 0.006 0.003 0.003 0.002 0.002 0.002 

   
Overfitted 0.717 0.373 0.21 0.168 0.081 0.035 0.015 0.009 0.006 0.001 0.001 0 0 0 0 

Note: Boldface type indicates the maximum probability of correct order being selected. 
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Table 4.1 (Continued). 

Model 
Dist. 

of X 

2

0  Order 

Criteria 
              

APIC1 
APIC2 

(AIC) 

APIClog(n) 

(BIC) 

APIC3 

(KIC) 
APIC4 APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14 

3 Normal 0.25 Underfitted 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

strongly 
  

Correct 0.22 0.515 0.654 0.707 0.814 0.891 0.942 0.962 0.971 0.983 0.991 0.992 0.995 0.997 0.998 

p0 = 3   
Overfitted 0.78 0.485 0.346 0.293 0.186 0.109 0.058 0.038 0.029 0.017 0.009 0.008 0.005 0.003 0.002 

 
1 Underfitted 0 0 0 0 0 0.001 0.001 0.004 0.005 0.01 0.014 0.019 0.029 0.055 0.074 

   
Correct 0.238 0.542 0.683 0.725 0.835 0.902 0.946 0.961 0.975 0.977 0.977 0.977 0.968 0.943 0.924 

   
Overfitted 0.762 0.458 0.317 0.275 0.165 0.097 0.053 0.035 0.02 0.013 0.009 0.004 0.003 0.002 0.002 

  
9 Underfitted 0.025 0.118 0.189 0.213 0.313 0.412 0.516 0.578 0.661 0.714 0.776 0.826 0.864 0.902 0.921 

   
Correct 0.197 0.427 0.518 0.541 0.554 0.514 0.447 0.399 0.323 0.275 0.22 0.171 0.133 0.097 0.078 

   
Overfitted 0.778 0.455 0.293 0.246 0.133 0.074 0.037 0.023 0.016 0.011 0.004 0.003 0.003 0.001 0.001 

 
Uniform 0.25 Underfitted 0.004 0.009 0.016 0.019 0.039 0.063 0.095 0.121 0.158 0.206 0.25 0.316 0.382 0.446 0.511 

   
Correct 0.215 0.52 0.654 0.703 0.799 0.846 0.858 0.854 0.823 0.784 0.745 0.68 0.616 0.552 0.487 

   
Overfitted 0.781 0.471 0.33 0.278 0.162 0.091 0.047 0.025 0.019 0.01 0.005 0.004 0.002 0.002 0.002 

  
1 Underfitted 0.041 0.154 0.237 0.272 0.377 0.473 0.587 0.661 0.713 0.779 0.828 0.87 0.903 0.917 0.942 

   
Correct 0.198 0.389 0.461 0.476 0.485 0.467 0.387 0.322 0.276 0.215 0.169 0.128 0.097 0.083 0.058 

   
Overfitted 0.761 0.457 0.302 0.252 0.138 0.06 0.026 0.017 0.011 0.006 0.003 0.002 0 0 0 

  
9 Underfitted 0.153 0.45 0.611 0.671 0.797 0.876 0.924 0.953 0.972 0.979 0.986 0.993 0.999 0.999 1 

   
Correct 0.112 0.154 0.157 0.149 0.121 0.083 0.054 0.035 0.022 0.02 0.014 0.007 0.001 0.001 0 

   
Overfitted 0.735 0.396 0.232 0.18 0.082 0.041 0.022 0.012 0.006 0.001 0 0 0 0 0 

4 Normal 0.25 Underfitted 0 0 0 0 0 0 0 0 0 0 0 0.001 0.004 0.007 0.016 

very 
  

Correct 0.342 0.55 0.659 0.686 0.804 0.874 0.914 0.94 0.958 0.97 0.978 0.983 0.984 0.985 0.977 

strongly 

p0 = 5 
  

Overfitted 0.658 0.45 0.341 0.314 0.196 0.126 0.086 0.06 0.042 0.03 0.022 0.016 0.012 0.008 0.007 

 
1 Underfitted 0 0.001 0.001 0.001 0.003 0.005 0.011 0.019 0.036 0.061 0.108 0.169 0.248 0.348 0.475 

   
Correct 0.309 0.546 0.669 0.698 0.797 0.851 0.894 0.916 0.913 0.902 0.866 0.813 0.738 0.642 0.518 

   
Overfitted 0.691 0.453 0.33 0.301 0.2 0.144 0.095 0.065 0.051 0.037 0.026 0.018 0.014 0.01 0.007 

  
9 Underfitted 0.052 0.167 0.252 0.292 0.437 0.589 0.728 0.819 0.885 0.934 0.955 0.976 0.989 0.995 0.997 

   
Correct 0.304 0.448 0.466 0.462 0.418 0.328 0.234 0.158 0.103 0.061 0.043 0.023 0.011 0.005 0.003 

   
Overfitted 0.644 0.385 0.282 0.246 0.145 0.083 0.038 0.023 0.012 0.005 0.002 0.001 0 0 0 

 
Uniform 0.25 Underfitted 0.004 0.016 0.026 0.032 0.057 0.109 0.175 0.274 0.414 0.545 0.669 0.761 0.853 0.923 0.959 

   
Correct 0.344 0.569 0.656 0.69 0.764 0.782 0.76 0.684 0.556 0.438 0.323 0.234 0.145 0.077 0.041 

   
Overfitted 0.652 0.415 0.318 0.278 0.179 0.109 0.065 0.042 0.03 0.017 0.008 0.005 0.002 0 0 

  
1 Underfitted 0.078 0.209 0.314 0.363 0.535 0.676 0.798 0.878 0.938 0.966 0.983 0.993 0.998 1 1 

   
Correct 0.298 0.399 0.423 0.415 0.345 0.252 0.162 0.1 0.056 0.031 0.015 0.006 0.002 0 0 

   
Overfitted 0.624 0.392 0.263 0.222 0.12 0.072 0.04 0.022 0.006 0.003 0.002 0.001 0 0 0 

  
9 Underfitted 0.278 0.593 0.755 0.801 0.911 0.965 0.987 0.995 0.998 0.999 0.999 0.999 1 1 1 

   
Correct 0.148 0.127 0.089 0.074 0.043 0.017 0.007 0.004 0.002 0.001 0.001 0.001 0 0 0 

   
Overfitted 0.574 0.28 0.156 0.125 0.046 0.018 0.006 0.001 0 0 0 0 0 0 0 

Note: Boldface type indicates the maximum probability of correct order being selected. 
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[5] In Table 4.2, for very weakly identifiable situation of true models with the 

true orders 0p  = 5, Model 1, the sample size is moderate (n = 30) and the distribution 

of independent variable is normal, the appropriate values of   when the true 

variances 
2

0  = 0.25, 1, 9, are 3, 1 and 1, respectively with the probabilities of correct 

order being selected are 55%, 24.6% and 13.5%. While, the distribution of 

independent variable is changed to be uniform, the appropriate values of   for all 

three levels of true variances are 1 with the probabilities are reduced to be 17.5%, 

13% and 13.3%. 

[6] In Table 4.2, for the weakly identifiable situation of true models with the 

true orders 0p  = 3, Model 2, the sample size is moderate (n = 30) and the distribution 

of independent variable is normal, the appropriate values of   when the true 

variances 
2

0  = 0.25, 1, 9, are 5, 3 and 2, respectively with the probabilities of correct 

order being selected are 90.8%, 55.5% and 18.5%. While, the distribution of 

independent variable is changed to be uniform, the appropriate values of   for all 

three levels of true variances are 2 with the probabilities are reduced to be 29.2%, 

16.6% and 11.8%. 

[7] In Table 4.2, for strongly identifiable situation of true models with the true 

orders 0p  = 3, Model 3, the sample size is moderate (n = 30) and the distribution of 

independent variable is normal, the appropriate values of   when the true variances 

2

0  = 0.25, 1, 9, are 14, 11 and 5, respectively with the probabilities of correct order 

being selected are 100%, 99.9% and 85.5%. While, the distribution of independent 

variable is changed to be uniform, the appropriate values of   for three levels of true 

variances are 10, 4 and 2 with the probabilities are reduced to be 98.8%, 75.9% and 

23.2%. 

[8] In Table 4.2, for very strongly identifiable situation of true models with 

the true orders 0p  = 5, Model 4, the sample size is moderate (n = 30) and the 

distribution of independent variable is normal, the appropriate values of   when the 

true variances 
2

0  = 0.25, 1, 9, are 14, 14 and 4, respectively with the probabilities of 

correct order being selected are 100%, 100% and 79.7%. While, the distribution of 

independent variable is changed to be uniform, the appropriate values of   for three 

levels of true variances are 8, 3 and 1 with the probabilities are reduced to be 98.6%, 

72.3% and 22.3%. 



 

 

 

 

24 

Table 4.2 Probability of the order selected by APIC for n = 30. 

Model 
Dist. 

of X 

2

0  Order 

Criteria 
              

APIC1 
APIC2 

(AIC) 

APIC3 

(KIC) 

APIClog(n) 

(BIC) 
APIC4 APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14 

1 Normal 0.25 Underfitted 0.076 0.199 0.312 0.366 0.446 0.547 0.656 0.745 0.827 0.877 0.927 0.958 0.973 0.985 0.99 

very 
  

Correct 0.406 0.532 0.55 0.522 0.481 0.41 0.328 0.249 0.171 0.122 0.073 0.042 0.027 0.015 0.01 

weakly 
  

Overfitted 0.518 0.269 0.138 0.112 0.073 0.043 0.016 0.006 0.002 0.001 0 0 0 0 0 

p0 = 5  
1 Underfitted 0.275 0.55 0.761 0.799 0.855 0.937 0.976 0.985 0.995 0.999 1 1 1 1 1 

  
Correct 0.246 0.237 0.161 0.146 0.108 0.054 0.023 0.015 0.005 0.001 0 0 0 0 0 

   
Overfitted 0.479 0.213 0.078 0.055 0.037 0.009 0.001 0 0 0 0 0 0 0 0 

  
9 Underfitted 0.48 0.804 0.915 0.94 0.974 0.993 0.999 1 1 1 1 1 1 1 1 

   
Correct 0.135 0.075 0.045 0.032 0.017 0.005 0.001 0 0 0 0 0 0 0 0 

   
Overfitted 0.385 0.121 0.04 0.028 0.009 0.002 0 0 0 0 0 0 0 0 0 

 
Uniform 0.25 Underfitted 0.392 0.696 0.871 0.905 0.952 0.982 0.998 0.999 1 1 1 1 1 1 1 

   
Correct 0.175 0.137 0.071 0.056 0.031 0.012 0.002 0.001 0 0 0 0 0 0 0 

   
Overfitted 0.433 0.167 0.058 0.039 0.017 0.006 0 0 0 0 0 0 0 0 0 

  
1 Underfitted 0.48 0.828 0.96 0.976 0.985 0.997 0.999 1 1 1 1 1 1 1 1 

   
Correct 0.13 0.074 0.023 0.016 0.011 0.003 0.001 0 0 0 0 0 0 0 0 

   
Overfitted 0.39 0.098 0.017 0.008 0.004 0 0 0 0 0 0 0 0 0 0 

  
9 Underfitted 0.48 0.818 0.95 0.971 0.988 0.996 0.999 1 1 1 1 1 1 1 1 

   
Correct 0.133 0.063 0.024 0.016 0.007 0.002 0 0 0 0 0 0 0 0 0 

   
Overfitted 0.387 0.119 0.026 0.013 0.005 0.002 0.001 0 0 0 0 0 0 0 0 

2 Normal 0.25 Underfitted 0.001 0.003 0.009 0.018 0.025 0.04 0.066 0.093 0.135 0.171 0.224 0.28 0.338 0.392 0.45 

weakly 
  

Correct 0.321 0.632 0.802 0.837 0.884 0.908 0.906 0.892 0.857 0.824 0.772 0.719 0.661 0.607 0.55 

p0 = 3   
Overfitted 0.678 0.365 0.189 0.145 0.091 0.052 0.028 0.015 0.008 0.005 0.004 0.001 0.001 0.001 0 

 
1 Underfitted 0.057 0.173 0.305 0.346 0.413 0.514 0.606 0.661 0.742 0.804 0.85 0.875 0.896 0.919 0.935 

   
Correct 0.296 0.514 0.555 0.55 0.522 0.452 0.378 0.328 0.252 0.194 0.15 0.125 0.104 0.081 0.065 

   
Overfitted 0.647 0.313 0.14 0.104 0.065 0.034 0.016 0.011 0.006 0.002 0 0 0 0 0 

  
9 Underfitted 0.236 0.577 0.756 0.792 0.84 0.907 0.938 0.959 0.974 0.982 0.986 0.993 0.995 0.998 0.999 

   
Correct 0.147 0.185 0.154 0.145 0.118 0.077 0.055 0.04 0.026 0.018 0.014 0.007 0.005 0.002 0.001 

   
Overfitted 0.617 0.238 0.09 0.063 0.042 0.016 0.007 0.001 0 0 0 0 0 0 0 

 
Uniform 0.25 Underfitted 0.174 0.437 0.616 0.667 0.734 0.811 0.871 0.904 0.937 0.953 0.972 0.98 0.985 0.991 0.996 

   
Correct 0.21 0.292 0.276 0.254 0.217 0.166 0.115 0.088 0.06 0.045 0.027 0.02 0.015 0.009 0.004 

   
Overfitted 0.616 0.271 0.108 0.079 0.049 0.023 0.014 0.008 0.003 0.002 0.001 0 0 0 0 

  
1 Underfitted 0.257 0.599 0.776 0.826 0.867 0.925 0.952 0.972 0.982 0.988 0.991 0.996 0.999 0.999 1 

   
Correct 0.127 0.166 0.14 0.121 0.103 0.063 0.046 0.028 0.018 0.012 0.009 0.004 0.001 0.001 0 

   
Overfitted 0.616 0.235 0.084 0.053 0.03 0.012 0.002 0 0 0 0 0 0 0 0 

  
9 Underfitted 0.317 0.655 0.83 0.875 0.913 0.953 0.978 0.989 0.994 0.996 0.997 0.999 0.999 0.999 1 

   
Correct 0.107 0.118 0.079 0.069 0.058 0.036 0.019 0.009 0.004 0.003 0.003 0.001 0.001 0.001 0 

   
Overfitted 0.576 0.227 0.091 0.056 0.029 0.011 0.003 0.002 0.002 0.001 0 0 0 0 0 

Note: Boldface type indicates the maximum probability of correct order being selected. 
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Table 4.2 (Continued). 

Model 
Dist. 

of X 

2

0  Order 

Criteria 
              

APIC1 
APIC2 

(AIC) 

APIC3 

(KIC) 

APIClog(n) 

(BIC) 
APIC4 APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14 

3 Normal 0.25 Underfitted 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

strongly 
  

Correct 0.317 0.634 0.824 0.861 0.906 0.942 0.972 0.977 0.986 0.99 0.996 0.998 0.998 0.998 1 

p0 = 3   
Overfitted 0.683 0.366 0.176 0.139 0.094 0.058 0.028 0.023 0.014 0.01 0.004 0.002 0.002 0.002 0 

 
1 Underfitted 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

   
Correct 0.348 0.664 0.832 0.874 0.91 0.96 0.979 0.99 0.995 0.998 0.998 0.999 0.999 0.999 0.999 

   
Overfitted 0.652 0.336 0.168 0.126 0.09 0.04 0.021 0.01 0.005 0.002 0.002 0.001 0.001 0.001 0.001 

  
9 Underfitted 0.003 0.021 0.038 0.044 0.06 0.091 0.137 0.185 0.256 0.304 0.37 0.437 0.485 0.544 0.593 

   
Correct 0.316 0.62 0.765 0.807 0.842 0.855 0.832 0.796 0.735 0.691 0.627 0.56 0.513 0.454 0.406 

   
Overfitted 0.681 0.359 0.197 0.149 0.098 0.054 0.031 0.019 0.009 0.005 0.003 0.003 0.002 0.002 0.001 

 
Uniform 0.25 Underfitted 0 0 0 0 0 0 0 0.001 0.003 0.006 0.007 0.012 0.021 0.03 0.038 

   
Correct 0.308 0.625 0.813 0.862 0.908 0.948 0.968 0.976 0.984 0.985 0.988 0.986 0.978 0.969 0.961 

   
Overfitted 0.692 0.375 0.187 0.138 0.092 0.052 0.032 0.023 0.013 0.009 0.005 0.002 0.001 0.001 0.001 

  
1 Underfitted 0.009 0.044 0.095 0.122 0.155 0.23 0.298 0.374 0.44 0.497 0.566 0.627 0.686 0.734 0.782 

   
Correct 0.331 0.62 0.739 0.756 0.759 0.735 0.68 0.611 0.549 0.496 0.43 0.37 0.312 0.264 0.216 

   
Overfitted 0.66 0.336 0.166 0.122 0.086 0.035 0.022 0.015 0.011 0.007 0.004 0.003 0.002 0.002 0.002 

  
9 Underfitted 0.189 0.504 0.688 0.74 0.797 0.864 0.905 0.934 0.957 0.974 0.982 0.987 0.99 0.992 0.994 

   
Correct 0.196 0.232 0.209 0.198 0.167 0.119 0.087 0.063 0.042 0.026 0.018 0.013 0.01 0.008 0.006 

   
Overfitted 0.615 0.264 0.103 0.062 0.036 0.017 0.008 0.003 0.001 0 0 0 0 0 0 

4 Normal 0.25 Underfitted 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

very 
  

Correct 0.481 0.713 0.831 0.867 0.903 0.945 0.969 0.979 0.985 0.99 0.993 0.994 0.996 0.998 1 

strongly 

p0 = 5 
  

Overfitted 0.519 0.287 0.169 0.133 0.097 0.055 0.031 0.021 0.015 0.01 0.007 0.006 0.004 0.002 0 

 
1 Underfitted 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

   
Correct 0.454 0.705 0.845 0.881 0.908 0.95 0.971 0.985 0.992 0.996 0.998 0.998 0.998 0.998 1 

   
Overfitted 0.546 0.295 0.155 0.119 0.092 0.05 0.029 0.015 0.008 0.004 0.002 0.002 0.002 0.002 0 

  
9 Underfitted 0.009 0.029 0.064 0.074 0.102 0.172 0.26 0.354 0.457 0.578 0.708 0.801 0.86 0.907 0.947 

   
Correct 0.447 0.675 0.765 0.793 0.797 0.767 0.703 0.623 0.527 0.413 0.287 0.198 0.139 0.093 0.053 

   
Overfitted 0.544 0.296 0.171 0.133 0.101 0.061 0.037 0.023 0.016 0.009 0.005 0.001 0.001 0 0 

 
Uniform 0.25 Underfitted 0 0 0 0 0 0 0 0.001 0.002 0.011 0.024 0.04 0.066 0.12 0.204 

   
Correct 0.419 0.699 0.829 0.869 0.901 0.946 0.971 0.982 0.986 0.981 0.971 0.958 0.934 0.88 0.796 

   
Overfitted 0.581 0.301 0.171 0.131 0.099 0.054 0.029 0.017 0.012 0.008 0.005 0.002 0 0 0 

  
1 Underfitted 0.018 0.053 0.116 0.154 0.214 0.317 0.427 0.544 0.664 0.763 0.844 0.894 0.947 0.967 0.983 

   
Correct 0.445 0.658 0.723 0.719 0.703 0.635 0.554 0.448 0.329 0.234 0.154 0.106 0.053 0.033 0.017 

   
Overfitted 0.537 0.289 0.161 0.127 0.083 0.048 0.019 0.008 0.007 0.003 0.002 0 0 0 0 

  
9 Underfitted 0.323 0.646 0.826 0.87 0.925 0.969 0.992 0.998 0.998 0.999 0.999 1 1 1 1 

   
Correct 0.223 0.175 0.115 0.092 0.055 0.024 0.006 0.001 0.001 0.001 0.001 0 0 0 0 

   
Overfitted 0.454 0.179 0.059 0.038 0.02 0.007 0.002 0.001 0.001 0 0 0 0 0 0 

Note: Boldface type indicates the maximum probability of correct order being selected. 
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[9] In Table 4.3, for very weakly identifiable situation of true models with the 

true orders 0p  = 5, Model 1, the sample size is large (n = 100) and the distribution of 

independent variable is normal, the appropriate values of   when the true variances 

2

0  = 0.25, 1, 9, are 5, 2 and 1, respectively with the probabilities of correct order 

being selected are 91.4%, 53.5% and 17.4%. While, the distribution of independent 

variable is changed to be uniform, the appropriate values of   for all three levels of 

true variances are 1 with the probabilities are reduced to be 31.3%, 18% and 11.7%. 

[10] In Table 4.3, for weakly identifiable situation of true models with the true 

orders 0p  = 3, Model 2, the sample size is large (n = 100) and the distribution of 

independent variable is normal, the appropriate values of   when the true variances 

2

0  = 0.25, 1, 9, are 12, 5 and 2, respectively with the probabilities of correct order 

being selected are 100%, 92.9% and 33.9%. While, the distribution of independent 

variable is changed to be uniform, the appropriate values of   for three levels of true 

variances are 3, 2 and 1 with the probabilities are reduced to be 63.5%, 28.7% and 

12.5%. 

[11] In Table 4.3, for strongly identifiable situation of true models with the true 

orders 0p  = 3, Model 3, the sample size is large (n = 100) and the distribution of 

independent variable is normal, the appropriate values of   when the true variances 

2

0  = 0.25, 1, 9, are 12, 13 and 9, respectively with the probabilities of correct order 

being selected are 100%, 100% and 99.3%. While, the distribution of independent 

variable is changed to be uniform, the appropriate values of   for three levels of true 

variances are 14, 8 and 2 with the probabilities are reduced to be 100%, 99.3% and 

50.6%. 

[12] In Table 4.3, for very strongly identifiable situation of true models with 

the true orders 0p  = 5, Model 4, the sample size is moderate (n = 100) and the 

distribution of independent variable is normal, the appropriate values of   when the 

true variances 
2

0  = 0.25, 1, 9, are 14, 10 and 10, respectively with the probabilities of 

correct order being selected are 99.9%, 99.9% and 99.5%. While, the distribution of 

independent variable is changed to be uniform, the appropriate values of   for three 

levels of true variances are 13, 9 and 2 with the probabilities are reduced to be 100%, 

99.3% and 49.2%. 
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Table 4.3 Probability of the order selected by APIC for n = 100. 

Model 
Dist. 

of X 

2

0  Order 

Criteria 
              

APIC1 
APIC2 

(AIC) 

APIC3 

(KIC) 
APIC4 

APIClog(n) 

(BIC) 
APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14 

1 Normal 0.25 Underfitted 0 0.005 0.016 0.031 0.045 0.05 0.078 0.107 0.144 0.199 0.246 0.293 0.341 0.394 0.458 

very 
  

Correct 0.537 0.766 0.856 0.904 0.912 0.914 0.898 0.88 0.849 0.798 0.752 0.706 0.658 0.605 0.542 

weakly 
  

Overfitted 0.463 0.229 0.128 0.065 0.043 0.036 0.024 0.013 0.007 0.003 0.002 0.001 0.001 0.001 0 

p0 = 5  
1 Underfitted 0.115 0.259 0.401 0.505 0.566 0.621 0.704 0.783 0.847 0.893 0.932 0.961 0.977 0.985 0.991 

  
Correct 0.434 0.535 0.502 0.444 0.394 0.351 0.289 0.216 0.153 0.107 0.068 0.039 0.023 0.015 0.009 

   
Overfitted 0.451 0.206 0.097 0.051 0.04 0.028 0.007 0.001 0 0 0 0 0 0 0 

  
9 Underfitted 0.489 0.783 0.916 0.97 0.986 0.988 0.996 0.997 0.999 0.999 0.999 1 1 1 1 

   
Correct 0.174 0.128 0.061 0.027 0.012 0.01 0.004 0.003 0.001 0.001 0.001 0 0 0 0 

   
Overfitted 0.337 0.089 0.023 0.003 0.002 0.002 0 0 0 0 0 0 0 0 0 

 
Uniform 0.25 Underfitted 0.276 0.575 0.763 0.87 0.905 0.922 0.954 0.972 0.985 0.996 0.998 0.999 0.999 1 1 

   
Correct 0.313 0.273 0.201 0.121 0.089 0.074 0.046 0.028 0.015 0.004 0.002 0.001 0.001 0 0 

   
Overfitted 0.411 0.152 0.036 0.009 0.006 0.004 0 0 0 0 0 0 0 0 0 

  
1 Underfitted 0.485 0.808 0.933 0.979 0.986 0.991 0.996 0.999 1 1 1 1 1 1 1 

   
Correct 0.18 0.109 0.055 0.017 0.011 0.008 0.004 0.001 0 0 0 0 0 0 0 

   
Overfitted 0.335 0.083 0.012 0.004 0.003 0.001 0 0 0 0 0 0 0 0 0 

  
9 Underfitted 0.576 0.883 0.958 0.988 0.993 0.998 0.999 1 1 1 1 1 1 1 1 

   
Correct 0.117 0.053 0.024 0.009 0.006 0.002 0.001 0 0 0 0 0 0 0 0 

   
Overfitted 0.307 0.064 0.018 0.003 0.001 0 0 0 0 0 0 0 0 0 0 

2 Normal 0.25 Underfitted 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

weakly 
  

Correct 0.393 0.712 0.873 0.939 0.958 0.966 0.981 0.99 0.996 0.998 0.999 0.999 1 1 1 

p0 = 3   
Overfitted 0.607 0.288 0.127 0.061 0.042 0.034 0.019 0.01 0.004 0.002 0.001 0.001 0 0 0 

 
1 Underfitted 0.001 0.002 0.011 0.029 0.036 0.041 0.063 0.092 0.125 0.162 0.212 0.271 0.338 0.381 0.445 

   
Correct 0.377 0.719 0.856 0.905 0.92 0.929 0.918 0.894 0.866 0.832 0.783 0.727 0.661 0.618 0.554 

   
Overfitted 0.622 0.279 0.133 0.066 0.044 0.03 0.019 0.014 0.009 0.006 0.005 0.002 0.001 0.001 0.001 

  
9 Underfitted 0.193 0.438 0.608 0.726 0.773 0.799 0.852 0.887 0.924 0.95 0.967 0.982 0.988 0.991 0.993 

   
Correct 0.24 0.339 0.304 0.236 0.205 0.183 0.139 0.109 0.075 0.049 0.033 0.018 0.012 0.009 0.007 

   
Overfitted 0.567 0.223 0.088 0.038 0.022 0.018 0.009 0.004 0.001 0.001 0 0 0 0 0 

 
Uniform 0.25 Underfitted 0.048 0.161 0.252 0.352 0.404 0.442 0.528 0.625 0.683 0.756 0.805 0.839 0.868 0.893 0.915 

   
Correct 0.351 0.586 0.635 0.599 0.564 0.532 0.456 0.37 0.314 0.244 0.195 0.161 0.132 0.107 0.085 

   
Overfitted 0.601 0.253 0.113 0.049 0.032 0.026 0.016 0.005 0.003 0 0 0 0 0 0 

  
1 Underfitted 0.21 0.511 0.668 0.786 0.83 0.841 0.892 0.926 0.947 0.967 0.98 0.986 0.993 0.997 0.999 

   
Correct 0.243 0.287 0.259 0.186 0.155 0.148 0.103 0.07 0.051 0.033 0.02 0.014 0.007 0.003 0.001 

   
Overfitted 0.547 0.202 0.073 0.028 0.015 0.011 0.005 0.004 0.002 0 0 0 0 0 0 

  
9 Underfitted 0.363 0.723 0.864 0.92 0.936 0.953 0.974 0.99 0.994 0.995 0.997 0.998 0.998 0.999 0.999 

   
Correct 0.125 0.111 0.079 0.063 0.058 0.042 0.025 0.01 0.006 0.005 0.003 0.002 0.002 0.001 0.001 

   
Overfitted 0.512 0.166 0.057 0.017 0.006 0.005 0.001 0 0 0 0 0 0 0 0 

Note: Boldface type indicates the maximum probability of correct order being selected. 
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Table 4.3 (Continued). 

Model 
Dist. 

of X 

2

0  Order 

Criteria 
              

APIC1 
APIC2 

(AIC) 

APIC3 

(KIC) 
APIC4 

APIClog(n) 

(BIC) 
APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14 

3 Normal 0.25 Underfitted 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

strongly 
  

Correct 0.394 0.717 0.88 0.934 0.954 0.962 0.976 0.991 0.996 0.996 0.998 0.998 1 1 1 

p0 = 3   
Overfitted 0.606 0.283 0.12 0.066 0.046 0.038 0.024 0.009 0.004 0.004 0.002 0.002 0 0 0 

 
1 Underfitted 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

   
Correct 0.376 0.71 0.869 0.939 0.955 0.969 0.98 0.988 0.993 0.996 0.996 0.998 0.999 1 1 

   
Overfitted 0.624 0.29 0.131 0.061 0.045 0.031 0.02 0.012 0.007 0.004 0.004 0.002 0.001 0 0 

  
9 Underfitted 0 0 0 0 0 0 0 0 0 0 0.002 0.003 0.007 0.007 0.008 

   
Correct 0.365 0.704 0.855 0.933 0.95 0.959 0.98 0.985 0.989 0.993 0.993 0.993 0.991 0.992 0.991 

   
Overfitted 0.635 0.296 0.145 0.067 0.05 0.041 0.02 0.015 0.011 0.007 0.005 0.004 0.002 0.001 0.001 

 
Uniform 0.25 Underfitted 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

   
Correct 0.404 0.73 0.873 0.942 0.962 0.975 0.985 0.989 0.995 0.998 0.998 0.999 0.999 0.999 1 

   
Overfitted 0.596 0.27 0.127 0.058 0.038 0.025 0.015 0.011 0.005 0.002 0.002 0.001 0.001 0.001 0 

  
1 Underfitted 0 0 0 0 0 0.001 0.001 0.001 0.002 0.005 0.008 0.014 0.021 0.032 0.042 

   
Correct 0.391 0.721 0.867 0.929 0.949 0.961 0.98 0.99 0.993 0.992 0.989 0.985 0.978 0.967 0.958 

   
Overfitted 0.609 0.279 0.133 0.071 0.051 0.038 0.019 0.009 0.005 0.003 0.003 0.001 0.001 0.001 0 

  
9 Underfitted 0.09 0.237 0.386 0.515 0.567 0.604 0.699 0.757 0.813 0.853 0.882 0.916 0.936 0.961 0.969 

   
Correct 0.324 0.506 0.501 0.442 0.405 0.376 0.294 0.237 0.184 0.146 0.117 0.083 0.063 0.038 0.031 

   
Overfitted 0.586 0.257 0.113 0.043 0.028 0.02 0.007 0.006 0.003 0.001 0.001 0.001 0.001 0.001 0 

4 Normal 0.25 Underfitted 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

very 
  

Correct 0.516 0.753 0.858 0.922 0.938 0.951 0.971 0.981 0.991 0.992 0.996 0.998 0.998 0.998 0.999 

strongly 

p0 = 5 
  

Overfitted 0.484 0.247 0.142 0.078 0.062 0.049 0.029 0.019 0.009 0.008 0.004 0.002 0.002 0.002 0.001 

 
1 Underfitted 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

   
Correct 0.52 0.776 0.886 0.94 0.965 0.971 0.981 0.986 0.995 0.996 0.999 0.999 0.999 0.999 0.999 

   
Overfitted 0.48 0.224 0.114 0.06 0.035 0.029 0.019 0.014 0.005 0.004 0.001 0.001 0.001 0.001 0.001 

  
9 Underfitted 0 0 0 0 0 0 0 0 0 0.001 0.002 0.004 0.005 0.008 0.012 

   
Correct 0.527 0.762 0.882 0.93 0.959 0.965 0.978 0.987 0.99 0.992 0.995 0.994 0.993 0.991 0.988 

   
Overfitted 0.473 0.238 0.118 0.07 0.041 0.035 0.022 0.013 0.01 0.007 0.003 0.002 0.002 0.001 0 

 
Uniform 0.25 Underfitted 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

   
Correct 0.546 0.797 0.902 0.944 0.957 0.965 0.981 0.986 0.99 0.993 0.998 0.999 0.999 1 1 

   
Overfitted 0.454 0.203 0.098 0.056 0.043 0.035 0.019 0.014 0.01 0.007 0.002 0.001 0.001 0 0 

  
1 Underfitted 0 0.001 0.001 0.001 0.002 0.002 0.002 0.005 0.006 0.006 0.01 0.017 0.024 0.037 0.048 

   
Correct 0.531 0.781 0.886 0.939 0.957 0.962 0.981 0.982 0.988 0.993 0.989 0.983 0.976 0.963 0.952 

   
Overfitted 0.469 0.218 0.113 0.06 0.041 0.036 0.017 0.013 0.006 0.001 0.001 0 0 0 0 

  
9 Underfitted 0.138 0.314 0.504 0.674 0.741 0.776 0.868 0.929 0.965 0.983 0.99 0.996 0.998 0.998 1 

   
Correct 0.406 0.492 0.417 0.294 0.239 0.212 0.127 0.07 0.035 0.017 0.01 0.004 0.002 0.002 0 

   
Overfitted 0.456 0.194 0.079 0.032 0.02 0.012 0.005 0.001 0 0 0 0 0 0 0 

Note: Boldface type indicates the maximum probability of correct order being selected. 
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From the results in [1] to [12] we can conclude that, the weakly or very weakly 

identifiable situations of true models, Model 1 and Model 2, the true orders 
0p  = 3, 5 

and the distribution of independent variable is normal, the appropriate   is small. If 

sample size increases and variances of error terms are small (
2

0  = 0.25) to moderate 

(
2

0  = 1),   should be moderate. For the distribution of independent variable is 

changed to be uniform, the appropriate   is small, regardless the sample size or the 

variances of error terms. When the true model is very weakly identifiable, the 

appropriate   should be smaller than the weakly identifiable situation. The strongly 

or very strongly identifiable situations of true models, Model 3 and Model 4, the true 

orders 0p  = 3, 5 and the distribution of independent variable is normal, the 

appropriate   is large. If the variance of error terms increases,   should be 

moderate. For the distribution of independent variable is changed to be uniform, the 

appropriate   is moderate. If the variance of error terms increases,   should be 

small. All of these conclusions can be summarized in Table 4.4. 

 

Table 4.4 Appropriate value of   in APIC
 

 
 2

1
ˆlog

p

n





  . 

Model n 
X Normal X Uniform 

2  = 0.25 
2  = 1 

2  = 9 
2  = 0.25 

2  = 1 
2  = 9 

Model 1, 2  

Weakly 

15 small 

small 30 
moderate small 

100 

Model 3, 4  

Strongly 

15 

large moderate moderate small 30 

100 

 

 

 

 



CHAPTER 5 

 

CONCLUSIONS AND FUTURE WORKS 

 

5.1 Conclusions 
 

In this research, we propose the model selection criteria, called Adjusted 

Penalty Information Criterion,  

 
 2

1
ˆlog ,


 

p
APIC

n


  

when the values of   are equal to 2,  log n  and 3; APIC becomes AIC, BIC and KIC 

respectively. Each criterion has a different value due to its penalty function, the 

differences in strong or weak penalty affecting the probability of over/underfitting, 

including the problem of signal-to-noise ratio being weak. The theoretical results 

show that, when the value of   tends to infinity, the probability of overfitting tends 

to zero and the signal-to-noise ratio tends to strong. However, the probability of 

underfitting tends to one. At the same time, the results of simulation suggest that, the 

appropriate   is small when true models are weakly or very weakly identifiable and 

distributions of independent variables are normal or uniform. But   should be 

moderate, if distribution of independent variables is normal, sample size increases and 

variances of error terms are small to moderate. The appropriate   is large, if the true 

model is strongly identifiable, distribution of independent variables is normal, and 

variance of error terms is small to moderate. But   should be moderate, if the 

variance of error terms increases. When the distribution of independent variables 

changes to be uniform, the appropriate   is moderate for the case of variance of error 

terms is small to moderate. But   should be small, if the variance of error terms 

increases. The variance of error terms and sample size affects the validity of APIC. 

The variance of error terms increases, the validity of APIC decreases. Whereas the 

sample size increases, the validity of APIC also increases.  
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5.2 Future Works 
 

In further work, we attempt to construct the model selection criteria to 

overcome the weak signal-to-noise ratio and to reduce the probability of 

over/underfitting in the multivariate regression and simultaneous equations models. 
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Abstract 

This paper presents the derivations to unify the justifications of the criteria based on 

Kullback’s divergence; AIC, AICc, KIC, KICcC, KICcSB,
 
and KICcHM. The results show that KICcC 

has the strongest penalty function under some condition, followed, respectively, by KICcSB,
 
KICcHM, 

KIC and AIC. Also, KIC is greater than AICc under some condition, but AICc always greater than 

AIC. The performances of all model selection criteria are examined by the extensive simulation 

study. It can be concluded that, for the small to moderate sample sizes and the true model is 

somewhat difficult to identify, the performances of AIC and AICc are better than others. However, 

they can identify the true model actually less accurate. When the sample size is large and the model 

is still weakly identifiable, the performances of all model selection criteria are insignificant 

difference, but all criteria can identify the true model still less accurate. As a result, we used the 

observed 2L  efficiency to assess model selection criteria performances. On the average, this measure 

suggests that in a weakly identifiable true model, whether the sample size is small or large, KICcC is 

the best criterion. For the small sample size and the true model can be specified more easily with 

small error variance, every model selection criteria still have the ability to select the correct model. 

If the error variance increase, the performances of all model selection criteria are bad. When the 

sample sizes are moderate to large and the true model can be specified more easily, KICc performs 

the best, it can identify a lot of true model for small error variance. But, if the error variance 

increases and the sample size is not large enough, all model selection criteria can identify a little 

true model.  

 

Keywords: Kullback’s directed divergence, Kullback’s symmetric divergence, model selection. 

 

1. INTRODUCTION 

The problem of choosing the appropriate regression models from a class of candidate 

models to characterize the study data is a key issue. In real life, we may not know what the true 

model is, but we hope to find a model that is a reasonably accurate representation. A model 

selection criterion represents a useful tool to judge the propriety of a fitted model, by assessing 

whether it offers an optimal balance between goodness of fit and parsimony. The first model 

selection criterion to gain widespread acceptance was Akaike information criterion, AIC [1-2]. This 

serves as an asymptotically unbiased estimator of a variant of Kullback’s directed divergence 

between the true and the candidate models. The directed divergence, also known as the I-divergence 

or the relative entropy, assesses the dissimilarity between two statistical models. Other well-known 

criterion was subsequently introduced and studied such as, Kullback information criterion, KIC [3]. 

It is a symmetric measure, meaning that an alternate directed divergence may be obtained by 

reversing the roles of the two models in the definition of the measure. The sum of two directed 

divergences is Kullback’s symmetric divergence, also known as the J-divergence. Although AIC 

remains arguably the most widely used model selection criterion, KIC is a popular competitor. In 

fact, KIC is a symmetric measure which combines the information in two related, though distinct 

measures; its functions as a gauge of model disparity that is arguably more sensitive than AIC that 

corresponds to only individual component. However, when the sample size is small or the 
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dimension of candidate model is large relative to the sample size, both estimators suffer from a 

large negative bias. As a result, they have the problem of high probability of overfitting. In this 

setting, Hurvich and Tsai [4] proposed a corrected Akaike information criterion ( cAIC ), for linear 

and non-linear regression and for autoregressive modeling. The cAIC  has been extended in a 

number of directions, including autoregressive moving average modeling [5], vector autoregressive 

modeling [6], and multivariate regression modeling [7]. Further, the KIC tends to underestimate the 

Kullback’s symmetric divergence in small-sample applications, as indicated by Cavanaugh [8], 

Seghouane and Bekara [9], and Hafidi and Mkhadri [10]. Therefore, they [8-10] proposed cKIC  in 

order to correct this problem. Although AIC [1-2], cAIC  [4], KIC [3], cCKIC  [8], cSBKIC  [9], and 

cHMKIC  [10] share the same fundamental objective, the justifications of the criteria proceed along 

different directions, making it difficult to reconcile how the different model selection criteria refine 

the approximations used to establish Kullback’s divergence. With this motivation, the aims of this 

paper are to unify the derivations of all criteria based on Kullback’s directed divergence, AIC, 

cAIC ,  and Kullback’s symmetric divergence, KIC, cCKIC , cSBKIC , cHMKIC , in order to link the 

justifications of these criteria and the performances of them are then examined by the extensive 

simulation study, under the difference various circumstances: sample sizes ( n ), regression 

coefficients ( ), and variances of error terms ( 2 ) [11-14]. Model selection criteria performances 

are examined by a consistent measure which is a measure of counting the frequency of order being 

selected. Particularly for the case of true model being weakly identifiable, we use an efficient 

measure which is the observed 2L  efficiency. This is a useful measure when the criteria do not 

select the correct model.  

The true and the candidate models to consider in this study are, respectively, given by 

 0 0 0, y X     2

n 0 n, , 0 I   (1) 

 , y X    2

n n, , 0 I   (2) 

where y  is an n 1  dependent random vector of observations, X  is an n p  matrix of independent 

variables with full-column rank, 0  and   are p 1  parameter vectors of regression coefficients, 0  

and   are n 1  noise vectors. The true model is assumed to be correctly specified or overfitted by 

all the candidate models. This means that 0  has 0p  nonzero entries with 00 p p   and the rest of 

the  0p p  entries are equal to zero. The  p 1 1   vector of parameters is 2

0 0 0

      and the 

maximum likelihood estimator of 0  is 2ˆ ˆ ˆ
  

 
 

 
where

  

   
1ˆ 

  X X X y  and    2 ˆ ˆˆ n


   y X y X  .  (3) 

The observed 2L  distance or squared error distance, scaled by 1 n , between the true and the 

candidate models is defined as [13-14] 

      2 0 0
ˆ ˆL p n.


  X X     (4) 

Observed 2L  efficiency is defined by the ratio 

 
 

 
1 p P 2

2

2 s

min L p
Observed  L efficiency ,

L p

 
  (5) 

where P is the class of all possible candidate models, p is the rank of fitted candidate model, and sp  

is the model selected by specific model selection criterion. The closer the selected model is to the 

true model, the higher the efficiency. Therefore, the best model selection criterion will select a 

model which yields high efficiency even in small samples or if the true model is weakly 

identifiable. The remainder of this paper is organized as follows. In Section 2, we show the 
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unifications for the derivations of all criteria based on Kullback’s directed divergence, AIC, 
cAIC , 

and Kullback’s symmetric divergence, KIC, 
cCKIC , cSBKIC , 

cHMKIC . Simulation study and results 

for 1,000 realizations of multiple regression models to examine the performances of all model 

selection criteria are shown in Section 3. Finally, Section 4 is the conclusions, discussion, and 

further works. 

 

2. MATERIALS AND METHODS  

The minus twice log likelihood of the candidate model in (2) when replacing the dependent 

vector y  in (1) is defined by 

        2

0 0 0 0 0 02 2 2

1 1 2
2log L n log 2 n log .           

  
y X X X            (6) 

A well-known measure to separate the discrepancy between two models in (1) and (2) is 

given by Kullback’s directed divergence or I-divergence [15],  

  
 
 

   
0

0

0 0 0 0

L
2I , E 2log d , d ,

L

  
   

  

y

y



     


, (7) 

where     
00d , E 2log L  y   ,     

00 0 0d , E 2log L  y   , (8) 

and the expectation 
0

E  is taken with respect to the true model in (1). Because  0 0d ,   does not 

depend on  , any ranking of the candidate models according to (7) would be identical to ranking 

them according to  0d ,  . Given a set of maximum likelihood estimator ̂  in (3), the estimated 

directed measure  0d ,   is  

         
0

2
2 0

0 0 02 2ˆ

n 1ˆ ˆ ˆˆd , E 2log L n log 2 n log .
ˆ ˆ

 
        

 
y X X


        (9) 

However, the evaluation in (9) is not possible because it requires the knowledge of 0 , 

Akaike [1-2] proposed an asymptotically unbiased estimator of 
 

     00 0
ˆ,p E d ,       (10) 

as 

  2ˆAIC n log 2 p 1 ,      (11) 

     
0 0i.e., E AIC o 1 ,p .     

Because of a large negative bias of AIC when the sample size is small or the dimension of 

candidate model is large relative to the sample size, Hurvich and Tsai [4] proposed an exactly 

unbiased estimator of (10) as follows: 

 
 2

c

2n p 1
ˆAIC n log ,

n p 2


  

 
  (12) 

   
0 c 0i.e., E AIC ,p .    

Cavanaugh [3], Seghouane and Bekara [9], Seghouane [12] summarized that the Kullback’s 

directed divergence produced too underfitted value of model selection, and then it tended to be large 

for overparameterized models. An alternate measure to prevent both overfitting and underfitting 

problems is obtained by reversing the roles of two models in the definition of the measure, called 

Kullback’s symmetric divergence or J-divergence,  

              0 0 0 0 0 0 02J , 2I , 2I , d , d , d , d , ,                          (13) 

where  0d ,   and  0 0d ,   are exhibited in (8),     0 0d , E 2log L  y   , and  d ,    

  E 2log L . y   
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Dropping  0 0d , ,   the ranking of the candidate models according to (13) is identical to 

ranking them according to  

       0 0 0K , d , d , d , .           

Given a set of maximum likelihood estimator ̂  in (3), the estimated symmetric measure 

 0K ,   is  

         0 0 0
ˆ ˆ ˆ ˆ ˆK , d , d , d , ,            (14) 

where  0
ˆd ,   is exhibited in (9), 

 

         
2

2

0 0 0 0 02 2ˆ
0 0

ˆn 1ˆ ˆ ˆd , E 2log L n log 2 n log ,
 

        
 

y X X


        (15) 

and 
 
     2

ˆ

ˆ ˆ ˆd , E 2log L n log 2 n log n.     y


      (16) 

From (9), (15), and (16), the estimated symmetric measure in (14) can be written as 

   0
ˆK ,      

2 2
2 0

0 02 2 2

0

ˆn n 1 ˆ ˆˆn log 2 n log
ˆ ˆ

  
       

  
X X     

    
2

0 02 2

0 0

ˆ1 ˆ ˆ n log n
 

     
  

X X     (17) 

Similarly, the evaluation in (17) requires 0 , Cavanaugh [3] proposed an asymptotically 

unbiased estimator of 
 

     00 0
ˆ,p E K ,       (18) 

as  

  2ˆKIC n log 3 p 1 ,      (19) 

     
0 0i.e., E KIC o 1 ,p .    

Seghouane and Bekara [9] proposed an exactly unbiased estimator of (18)
 
in order to correct 

a large negative bias of KIC in (19) as follows: 

 2

c

2n p 1 n p n
ˆKIC n log n n log ,

n p 2 2 2

    
        

     
 

   
0 c 0i.e., E KIC ,p .   

Because the phi    or digamma function in cKIC  has no closed-form solution, Cavanaugh 

[8], Seghouane and Bekara [9], Hafidi and Mkhadri [10] gave the asymptotically unbiased estimators 

of (18)
 
called, respectively, in this paper cCKIC , cSBKIC ,

 
and cHMKIC , 

 cCKIC   
  

  
2

n n p 2p 3 2n
ˆn log n log ,

n p n p 2 n p

          
    

 (20) 

 
cSBKIC   

  2
p 1 3n p 2 p

ˆn log ,
n p 2 n p

  
   

  
 (21) 

 cHMKIC   
  2
p 1 3n p 2

ˆn log .
n p 2

  
  

 
 (22) 

To begin the unification of the derivations AIC in (11), cAIC  in (12), KIC in (19), cCKIC  in 

(20), cSBKIC  in (21),
 
and cHMKIC  in (22), we give the following lemmas.  

Lemma 1.  
0

2

2

0

ˆn
E n p

 
  

 
  (23) 
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    
0 0 02

0

1 ˆ ˆE p
 

   
 

X X      (24) 

 
0

2 2

0

2

n n
E

ˆ n p 2

 
 

   
  (25) 

    
0 0 02

1 npˆ ˆE .
ˆ n p 2

 
   

   
X X      (26) 

Proof. From the fact that [16],  
0

2

d.f .E d.f. 
 and the terms  

2

2

0

ˆn


 and    0 02

0

1 ˆ ˆ
 


X X     

are the independent 2  distributions with the degrees of freedom (d.f.) which are, respectively, n – p 

and p. Therefore, we obtain (23) and (24). Since, we can write 

 
0 0

2
20

2 2 2

0

n 1
E n E .

ˆ ˆn /

  
   

     
    (27) 

Let 
2

2

0

ˆn
Y





 and we know that Y is the 2  distribution with n – p degrees of freedom, 

 
 

0 0

n p
1n p 22

2

n p n p2 2

0 0 2 2

n p
1 2

y exp y 21 1 12
E E dy .

ˆn / Y n p 2n p n p
2 2

2 2







 

 
             

              
   

    (28) 

Substituting the results in (28) into (27), we obtain (25). Since, we can write 

       
0 0 0

2

0
0 0 0 02 2 2

0

n1 1 1ˆ ˆ ˆ ˆE E E .
ˆ ˆn

     
          

       
X X X X           

Using the results in (24) and (25), we obtain (26). 

Appling Lemma 1 into  0 , p   in (10) or the expected of the estimated directed measure in 

(9), we obtain 

  0 , p       
0 0

2
2

0

n npˆ ˆE d , n log 2 E n log
n p 2 n p 2

     
   

    

     
0 cn log 2 1 E AIC ,     (29) 

where cAIC  is the corrected version of AIC that was exhibited in (12). 

Appling Lemma 1 into  0 , p   in (18) or the expected of the estimated symmetric measure 

in (17), we obtain 

   0 , p       
0 0 0

2 2
2

0 2

0

ˆn npˆ ˆE K , n log 2 E n log E n log
n p 2 n p 2

 
        

     
     

     
0 0

2

c 2

0

ˆ
n log 2 1 E AIC E n log ,

 
     

 
   (30) 

where cAIC  is the corrected version of AIC that was exhibited in (12). 

It is noteworthy that, in KIC and cKIC  derived from  0
ˆK ,   in (17), the differences in all 

formulas in (20) to (22) come from the last term of the right-hand side in (30). Therefore, in order to 

show the connections of KIC, cCKIC , cSBKIC ,
 
and cHMKIC , we give the following lemmas. 
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Lemma 2.  
 0

2

22

0

ˆ n p n n n
E n log n log n log o .

2 n p 2 n p

      
                      

  (31) 

Proof. From [16-17] we have, respectively, 

    
0

2

d.f . 2

d.f . 1 1
E log log 2 and x log x o as x .

2 2x x

   
           

   
   (32) 

Applying (23) in Lemma 1 and the facts in (32), we have  

 
0

2

2

0

ˆ
E n log

 
  

 
  

0

2

2

0

ˆn n p
E n log n log n n log 2 n log n

2

     
               

  

  
 

2

n p 1 1
n log o n log 2 n log n

2 n p n p

   
               

 

  
 

2

n p n n n
n log n log o .

2 n p 2 n p

    
                

 

Lemma 3. 
   

2

2 2

n p n n n n p n
n log n log o p o o .

2 n p 2 n p nn p n p

       
                            

 (33) 

Proof. Applying the first-order Taylor’s series expansion to expand the term   log n p 2  

about n 2 , i.e., 

2
n p n p p

log log o ,
2 2 n n

      
                

 to obtain the approximation in (33). 

Lemma 4.  
 

   
2

2

n p n
p o o p 1 o 1 .

n p n n p

  
             

 (34) 

Proof. Rearrange  p n n p   to be    p 1 p n p .    As n   and p is held constant, the 

term 
 

2

2

p p n
o o

n p n n p

  
          

 is  o 1  which yields the approximation in (34). 

Appling Lemma 2 into  0 , p   in (30), we obtain 

  0 , p      
 0 c 2

n p n n n
n log 2 1 E AIC n log n log o

2 n p 2 n p

    
                  

  

   
 0 cC 2

n
n log 2 1 E KIC o ,

n p

   
          

  

where cCKIC  is the corrected version of KIC from Cavanaugh [8] that was exhibited in (20). 

Appling Lemmas 2 and 3 into  0 , p   in (30), we obtain 

  0 , p      
 0

2

c 2

n p n
n log 2 1 E AIC p o o

n p n n p

  
               

  

   
 0

2

cSB 2

p n
n log 2 1 E KIC o o ,

n n p

    
              

  

where cSBKIC  is the corrected version of KIC from Seghouane and Bekara [9] that was exhibited in 

(21). 

Appling Lemmas 2, 3, and 4 into  0 , p   in (30), we obtain  

  0 , p          
0 cn log 2 1 E AIC p 1 o 1       
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      
0 cHMn log 2 1 E KIC o 1 ,     

where cHMKIC  is the corrected version of KIC from Hafidi and Mkhadri [10] that was exhibited in 

(22). 

The connections of AIC, cAIC , KIC, cHMKIC , cSBKIC ,
 
and cCKIC  are given in Lemma 5. 

Lemma 5. 
cAIC  =  

  2 p 1 p 2
AIC ,

n p 2

 


 
 (35) 

 KIC  =   AIC p 1 ,   (36) 

 KIC  =  
  

c

p 1 n 3p 6
AIC ,

n p 2

  


 
 (37) 

 
cHMKIC  =  

  2 p 1 p 2
KIC ,

n p 2

 


 
 (38) 

 
cSBKIC  = 

cHM

p
KIC ,

n p



  (39) 

 cCKIC  =  cSB

n
KIC n log p.

n p

 
  

 
  (40) 

Proof. From AIC in (11) and cAIC  in (12), 

 cAIC  =   
   

 
2n p 1 2 p 1

AIC 2 p 1 AIC n p 2 n
n p 2 n p 2

 
        

   
   

  =  
  2 p 1 p 2

AIC .
n p 2

 


 
 

 From AIC in (11) and KIC in (19), 

 KIC  =       AIC 2 p 1 3 p 1 AIC p 1 .         

 From cAIC  in (12) and KIC in (19), 

 KIC  = 
 

 
 

 c c

2n p 1 p 1
AIC 3 p 1 AIC 2n 3n 3p 6

n p 2 n p 2

 
        

   
  

  = 
  

c

p 1 n 3p 6
AIC .

n p 2

  


 
 

 From KIC in (19) and cHMKIC  in (22), 

 cHMKIC   =  
  p 1 3n p 2

KIC 3 p 1
n p 2

  
  

 
  

  = 
 

 
  p 1 2 p 1 p 2

KIC 3n 3p 6 3n p 2 KIC .
n p 2 n p 2

  
        

   
  

 From cSBKIC  in (21) and cHMKIC  in (22), we already have (39). From cCKIC  in (20) and 

cSBKIC  in (21), 

 cCKIC  =  
     

  
cSB

n n p 2p 3 2p 1 3n p 2 p n
KIC n log

n p 2 n p n p n p 2 n p

             
       

 

  =  cSB

n
KIC n log

n p

 
  

 
 

   
        

  

p 1 3n p 2 n p p n p 2 n n p 2p 3 2n

n p 2 n p

           


  
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  =  
  

2 2 3 2

cSB

n n p 2np p 2np 2p
KIC n log

n p n p 2 n p

      
  

    
 

  =  
 

  

2 2

cSB

p n 2np p 2n 2pn
KIC n log

n p n p 2 n p

    
  

    
 

  =  cSB

n
KIC n log p.

n p

 
  

 
 

Consider the connection in (35) and (38), we found that the term 

 
  2 p 1 p 2

n p 2

 

 
 (41) 

is at most zero if and only if n p 2   and p belongs to the set of  2, 1  . The connection in (36),  

 p 1   (42) 

is at most zero if and only if p 1  . The connection in (37), 

 
  p 1 n 3p 6

n p 2

  

 
  (43) 

is at least zero if and only if  

 n p 2, n 3    and p belongs to the set of  1, n 3 2 .    (44) 

The connection in (39), 

 
p

n p
  (45) 

is at most zero if and only if n p 0   and p belongs to the set of  , 0 . 

Therefore, we can argue that the terms in (41), (42), and (45) have values of at least zero 

because p represents the number of regression coefficients which is an integer that has the value of 

at least one and all these terms are very close to zero if the ratio of p n  tends to zero. This 

conclusion links to c cHM cSBAIC AIC , AIC  KIC  KIC KIC     whereas KIC is greater than cAIC  

when the condition in (44) is true, such as when n equals to 15 and p equals to 2. While the term 

 
n

n log p
n p

 
 

 
  (46) 

has the value in the range  p,   where it is close to the lower bound p  if the ratio of p n  tends 

to zero. If the value of p is fixed, this term is the decreasing function of n, whereas when the value 

of n is fixed, it is the increasing function of p. Whenever n p 0   and the condition  

    1 p n exp p n 1    (47) 

is true, we have the term in (46) being greater than zero. This means that the penalty function of 

cCKIC  is stronger than other criteria, cSBKIC , cHMKIC , KIC, cAIC , and AIC under the condition in 

(47). The strong penalty may cause model selection criteria to have the maximum frequency of the 

correct order being selected. However, occasionally it causes them to select underparameterized 

models [16]. This confusion is studied by the extensive simulation in the next section. 

 

3. SIMULATION STUDY AND RESULTS 

To examine the model selection criteria performances, we generated the true multiple 

regression models in (1) as follows.  

Model I represents a weakly identifiable true model  0p 3 : 

 2 3 0y 1 0.5X 0.1X .     (48) 

Model II represents a strongly identifiable true model  0p 5 : 

 2 3 4 5 0y 1 X X X X .        (49) 
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A weakly identifiable true model, Model I, means it is not easily identified compared to the 

strongly identifiable true models such as Model II. The error terms 
0  in (48) and (49) are assumed 

to be normally distributed with zero mean and variances 2

0  equal to three levels: 0.25, 1, and 9. For 

both model in (48) and (49), we consider 1,000 realizations for three levels of the sample sizes 

which are n = 15 (small), n = 30 (moderate), and n = 100 (large). The steps for simulation and all 

results are as follows. 

3.1 Use the RAND function of SAS programming to generate the error terms 0  in (48) and 

(49) about 100,000 observations to be normal random variables with zero mean and variances equal 

to 0.25, 1, and 9. 

3.2 Split the series of error terms in step 1 into 1,000 samples, each of which consists of three 

levels of sample sizes, n = 15, 30, 100 observations.  

3.3 Use the RAND function of SAS programming to generate the independent variables X2 until 

X7 about 100,000 observations to be the normal random variables with zero mean and variance 

equals to one where the relevant independent variables of Model I are X2, X3 and irrelevant 

independent variables are X4, X5, whereas the relevant independent variables of Model II are X2 

until X5 and irrelevant independent variables are X6, X7. 

3.4 Split the series of independent variables in step 3 into 1,000 samples, each of which consists 

of 15, 30, 100 observations. For this study, X1 is given as a constant which equals one.  

3.5 Use the corresponding relevant independent variables obtained in Step 4 and the error terms 

obtained in Step 2 to construct the dependent variables described in (48) and (49).  

3.6 Use the concept of all possible subsets as potential candidate models. For Model I, we 

consider 2
4
 – 1 = 15 subsets, while Model II, we consider 2

6
 – 1 = 63 subsets. For each subset, 

calculate AIC in (11), cAIC  in (12), KIC in (19), cCKIC  in (20), cSBKIC  in (21),
 
and cHMKIC  in 

(22). The subset with the minimum value of model selection criterion can be classified to be the 

best model. Due to the large number of subsets, it is impractical to summarize the individual models 

chosen. Hence, Tables 1 to 3 summarize p = rank(X) of the selected subset to be three groups: the 

selected order less than p is called underfitted order, the selected order equals to p is called correct 

order, and the selected order greater than p is called overfitted order. Although p = 3, 5 are, 

respectively, the correct orders of Model I and Model II, p = 3, 5 may include models with the 

correct number of variables but are not the correct model. The “True Order” row summarizes counts 

for correctly selecting the true model. Tables 4 display the candidate models that are closest to the 

true model in the L2 sense. The ave. and S.D. L2 rows denote, respectively, the average and standard 

deviation of observed L2 efficiency in (5) over 1,000 realizations. For 1,000 realizations, the results 

of comparing the model selection criteria performances can be concluded as follows.  

(1) For the small to moderate sample sizes and the true model is somewhat difficult to 

identify (weakly identifiable) as Model I for n = 15, 30, AIC and cAIC  perform the best, but these 

criteria can identify the true model about 15 – 25% of the time for 2

0  = 0.25, about 10 – 15% of the 

time for 2

0  = 1, and about 3 – 5% of the time for 2

0  = 9.  

(2) For the sample size is large and the model is still weakly identifiable as Model I for n = 

100, the performances of all model selection criteria are insignificant difference, but all criteria can 

identify the true model about 47 – 50% of the time for 2

0  = 0.25, about 21 – 24% of the time for 
2

0  = 1, and about 3 – 7% of the time for 2

0  = 9.  

(3) For the small sample size and the true model can be specified more easily (strongly 

identifiable) with small error variance as Model II for n = 15, every model selection criteria still 

have the ability to select the correct model about 51 – 90% of the time for 2

0  = 0.25 and about 29 – 

45% of the time for 2

0  = 1. Whereas, when the error variance increase as Model II for n = 15 and 
2

0  = 9, the performances of all model selection criteria are bad.  

(4) For the sample sizes are moderate to large and the true model can be specified more 

easily (strongly identifiable) as Model II for n = 30, 100, KICc performs the best, it can identify the 
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true model about 84 – 87% of the time for small error variance 2

0  = 0.25, 1. If the error variance 

increases ( 2

0  = 9) and the sample size is moderate as Model II for n = 30, all model selection 

criteria can identify the true model about 2 – 10% of the time. However, when the sample size 

increases (n = 100), the performances of all model selection criteria are insignificant difference. All 

criteria can identify the true model about 58 – 61% of the time. 

(5) Since the strongly penalty term of KIC family, KIC and KICc are underfitted more than 

AIC and cAIC  in AIC family, especially when the true model is very difficult to detect, sample size 

is small, and error variance is large.  

(6) On the average, the observed 2L  efficiency in Table 4 suggests that cCKIC  in KIC family 

is the best criterion for all sample sizes of a weakly identifiable true model.  

(7) This simulation also found that; when the sample size increases including the regression 

coefficient increases or the model can be easily to identify, the frequency of order being selected 

and the observed 2L  efficiency also increase. While, the error variance is effect to the frequency of 

order being selected and the observed 2L  efficiency decrease. 

 Place Table 1. about here 

 Place Table 2. about here 

 Place Table 3. about here 

 Place Table 4. about here 

 

4. CONCLUSIONS, DISCUSSION, AND FUTURE WORKS 

This paper presents the derivations to unify the justifications of the criteria based on 

Kullback’s directed and symmetric divergence; Akaike information criterion (AIC) by Akaike [1-2] 

and the corrected version; cAIC  by Hurvich and Tsai [4], Kulback information criterion (KIC) by 

Cavanaugh [3] and the corrected versions; cCKIC  by Cavanaugh [8], cSBKIC  by Seghouane and 

Bekara [9], and cHMKIC  by Hafidi and Mkhadri [10]. The results show that cCKIC  has the strongest 

penalty function under the condition in (47), followed, respectively, by cSBKIC ,
 cHMKIC , KIC, and 

AIC. If the condition in (44) is true, KIC is greater than cAIC . However, cAIC  always greater than 

AIC. The strong penalty may cause model selection criteria to have the maximum frequency of the 

correct order being selected. However, sometimes it may cause the underfitted problem. The 

performances of all model selection criteria, AIC, cAIC , KIC, cCKIC , cSBKIC ,
 
and cHMKIC , are 

examined by the extensive simulation study. Our simulation study indicates that, for the small to 

moderate sample sizes and the true model is somewhat difficult to identify, the performances of 

AIC and cAIC  are better than others. However, they can identify the true model about 10 – 25% of 

the time for small error variance and can identify the true model about 3 – 5% of the time for large 

error variance. When the sample size is large and the model is still weakly identifiable, the 

performances of all model selection criteria are insignificant difference, but all criteria can identify 

the true model about 21 – 50% of the time for small error variance and can identify the true model 

about 3 – 7% of the time for large error variance. As a result, the frequency of correct order being 

selected may not be meaningful. For this reason, we have also used the observed 2L  efficiency to 

assess model selection criteria performances. On the average, this measure suggests that in a weakly 

identifiable true model, whether the sample size is small or large, cCKIC  is the best criterion 

because it has highest average value of the observed 2L  efficiency and lowest standard deviation. 

The better performance of cCKIC  may be because its formula is closer to the expected estimated 

symmetric discrepancy in (18) than other. But, cCKIC  is more likely to select an underfitted model 

than other criteria which is because its penalty function is strong. Nevertheless, even if cCKIC  tends 

to select underfitted models, these selected models are close to the true model. For the small sample 

size and the true model can be specified more easily with small error variance, every model 
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selection criteria have the ability to select the correct model about 29 – 90% of the time. Whereas, 

the error variance increase, the performances of all model selection criteria are bad. When the 

sample sizes are moderate to large and the true model can be specified more easily, KICc performs 

the best, it can identify the true model about 84 – 87% of the time for small error variance. If the 

error variance increases and the sample size is moderate, all model selection criteria can identify the 

true model about 2 – 10% of the time. However, when the sample size increases, the performances 

of all model selection criteria are insignificant difference. All criteria can identify the true model 

about 58 – 61% of the time. Since the strongly penalty term of KIC family, they are underfitted 

more than the criteria in AIC family, especially when the true model is very difficult to detect, 

sample size is small, and error variance is large. This study also found that; when the sample size 

increases including the regression coefficient increases or the model can be easily to identify, the 

frequency of order being selected and the observed 2L  efficiency also increase. While, the error 

variance is effect to the frequency of order being selected and the observed 2L  efficiency decrease, 

this result is opposite to Kundu and Murali [18] which concluded that the criteria performances did 

not change much when the error variance was changed. In future work, we hope to find a model 

selection criterion to overcome the probability of over/underfitting by adjusting the penalty term of 

the model selection criterion, called adjusted penalty information criterion, denoted by APIC. The 

proposed criterion performance is examined by the extensive simulation study relative to the well-

known criteria under various circumstances as follows: sample sizes, orders of true model, 

regression coefficients, variances of error terms, distributions of independent variables, and 

distributions of error terms. 
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Table 1. Frequency of the model order being selected by each criterion for 1,000 realizations: 
2

0 0.25.   

Model n 
Counts Criteria 

for order p AIC AICc KIC KICcHM KICcSB KICcC 

I 15 order < p 393 686 565 773 786 804 

  
p = 3 398 277 326 210 199 185 

  
order > p 209 37 109 17 15 11 

  
True Order 187 139 156 108 102 95 

I 30 order < p 409 538 591 681 688 695 

  
p = 3 430 384 343 282 278 276 

  
order > p 161 78 66 37 34 29 

  
True Order 246 219 198 172 169 169 

I 100 order < p 201 227 334 362 362 364 

  
p0 = 3 579 585 549 543 545 546 

  
order > p 220 188 117 95 93 90 

  
True Order 493 504 469 468 468 469 

II 15 order < p 1 28 5 42 43 53 

  
p = 5 516 900 652 910 910 906 

  
order > p 483 72 343 48 47 41 

  
True Order 512 895 646 903 903 899 

II 30 order < p 0 0 0 0 0 0 

  
p = 5 609 802 762 859 863 874 

  
order > p 391 198 238 141 137 126 

  
True Order 609 802 762 859 863 874 

II 100 order < p 0 0 0 0 0 0 

  
p = 5 688 722 815 846 847 851 

  
order > p 312 278 185 154 153 149 

  
True Order 688 722 815 846 847 851 

Note: Boldface type indicates the maximum frequency of correct order being selected; more than one boldface type is 

insignificant difference. 
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Table 2. Frequency of the model order being selected by each criterion for 1,000 realizations: 
2

0 1.   

Model n 
Counts Criteria 

for order p AIC AICc KIC KICcHM KICcSB KICcC 

I 15 order < p 534 829 735 902 905 915 

  
p = 3 320 156 202 90 87 78 

  
order > p 146 15 63 8 8 7 

  
True Order 104 49 64 36 36 32 

I 30 order < p 524 644 703 805 806 814 

  
p = 3 342 291 245 175 175 168 

  
order > p 134 65 52 20 19 18 

  
True Order 151 130 110 81 81 78 

I 100 order < p 446 465 584 608 609 613 

  
p0 = 3 410 413 351 334 333 330 

  
order > p 144 122 65 58 58 57 

  
True Order 233 241 219 216 215 214 

II 15 order < p 100 530 208 639 649 681 

  
p = 5 451 435 510 342 334 307 

  
order > p 450 35 283 19 17 12 

  
True Order 391 395 448 320 314 292 

II 30 order < p 3 12 11 22 23 25 

  
p = 5 640 789 758 854 856 864 

  
order > p 357 199 231 124 121 111 

  
True Order 638 788 757 852 854 861 

II 100 order < p 0 0 0 0 0 0 

  
p = 5 674 722 812 842 843 846 

  
order > p 326 278 188 158 157 154 

  
True Order 674 722 812 842 843 846 

Note: Boldface type indicates the maximum frequency of correct order being selected; more than one boldface type is 

insignificant difference. 

 

Table 3. Frequency of the model order being selected by each criterion for 1,000 realizations: 
2

0 9.   

Model n 
Counts Criteria 

for order p AIC AICc KIC KICcHM KICcSB KICcC 

I 15 order < p 705 920 846 960 965 968 

  
p = 3 215 74 126 37 32 30 

  
order > p 80 6 28 3 3 2 

  
True Order 47 20 24 11 10 10 

I 30 order < p 738 856 887 941 942 945 

  
p = 3 202 128 102 56 55 52 

  
order > p 60 16 11 3 3 3 

  
True Order 44 28 24 12 11 9 

I 100 order < p 708 749 858 874 876 877 

  
p0 = 3 239 214 126 118 116 115 

  
order > p 53 37 16 8 8 8 

  
True Order 70 65 38 36 35 35 

II 15 order < p 999 1000 1000 1000 1000 1000 

  
p = 5 1 0 0 0 0 0 

  
order > p 0 0 0 0 0 0 

  
True Order 0 0 0 0 0 0 

II 30 order < p 665 877 857 946 951 957 

  
p = 5 244 107 122 50 45 41 

  
order > p 91 16 21 4 4 2 

  
True Order 97 48 52 28 25 24 

II 100 order < p 97 117 212 245 246 249 

  
p = 5 615 647 645 635 634 637 

  
order > p 288 236 143 120 120 114 

  
True Order 575 606 611 602 602 604 

Note: Boldface type indicates the maximum frequency of correct order being selected; more than one boldface type is 

insignificant difference. 
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Table 4. Average and standard deviation of the observed 2L  efficiency over 1,000 realizations  

Circumstance n Stat. 
Criteria 

AIC AICc KIC KICcHM KICcSB KICcC 

Model I 15 Ave. L2 eff. 0.6013 0.7004 0.6548 0.7278 0.7319 0.7394 

2

0  = 0.25 
 

Rank 6 4 5 3 2 1 

 
 

S.D. L2 eff. 0.3108 0.2985 0.3084 0.2916 0.2907 0.2891 

 
 

Rank 6 4 5 3 2 1 

Model I 30 Ave. L2 eff. 0.6301 0.6388 0.6404 0.6553 0.6563 0.6578 

2

0  = 0.25 
 

Rank 6 5 4 3 2 1 

 
 

S.D. L2 eff. 0.3076 0.2950 0.2917 0.2827 0.2822 0.2821 

 
 

Rank 6 5 4 3 2 1 

Model I 100 Ave. L2 eff. 0.7210 0.7249 0.6955 0.6927 0.6926 0.6930 

2

0  = 0.25 
 

Rank 2 1 3 5 6 4 

 
 

S.D. L2 eff. 0.3182 0.3195 0.3313 0.3330 0.3331 0.3332 

 
 

Rank 2 1 3 5 6 4 

Model I 15 Ave. L2 eff. 0.5483 0.6517 0.6195 0.6808 0.6820 0.6863 

2

0  = 1 
 

Rank 6 4 5 3 2 1 

 
 

S.D. L2 eff. 0.3421 0.3603 0.3610 0.3563 0.3562 0.3550 

 
 

Rank 6 4 5 3 2 1 

Model I 30 Ave. L2 eff. 0.7103 0.7372 0.7458 0.7703 0.7705 0.7716 

2

0  = 1 
 

Rank 6 5 4 3 2 1 

 
 

S.D. L2 eff. 0.3148 0.3131 0.3150 0.3098 0.3095 0.3094 

 
 

Rank 6 5 4 3 2 1 

Model I 100 Ave. L2 eff. 0.6291 0.6384 0.6606 0.6674 0.6673 0.6681 

2

0  = 1 
 

Rank 6 5 4 2 3 1 

 
 

S.D. L2 eff. 0.2993 0.2986 0.2891 0.2855 0.2853 0.2847 

 
 

Rank 6 5 4 2 3 1 

Model I 15 Ave. L2 eff. 0.3634 0.3951 0.3838 0.4010 0.4018 0.4026 

2

0  = 9 
 

Rank 6 4 5 3 2 1 

 
 

S.D. L2 eff. 0.2806 0.2913 0.2879 0.2913 0.2914 0.2918 

 
 

Rank 6 4 5 3 2 1 

Model I 30 Ave. L2 eff. 0.4534 0.4768 0.4829 0.4946 0.4946 0.4954 

2

0  = 9 
 

Rank 6 5 4 2 3 1 

 
 

S.D. L2 eff. 0.3225 0.3280 0.3297 0.3314 0.3315 0.3317 

 
 

Rank 6 5 4 2 3 1 

Model I 100 Ave. L2 eff. 0.6115 0.6251 0.6622 0.6717 0.6721 0.6730 

2

0  = 9 
 

Rank 6 5 4 3 2 1 

 
 

S.D. L2 eff. 0.3545 0.3555 0.3543 0.3542 0.3543 0.3540 

 
 

Rank 6 5 4 3 2 1 

Note: Boldface type indicates the best performance. 
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Table 4. (Continued.)  

Circumstance n Stat. 
Criteria 

AIC AICc KIC KICcHM KICcSB KICcC 

Model I 15 Ave. L2 eff. 0.5043 0.5824 0.5527 0.6032 0.6052 0.6094 

Ave. all 
2

0  
 

Rank 6 4 5 3 2 1 

 
 

S.D. L2 eff. 0.3112 0.3167 0.3191 0.3131 0.3128 0.3120 

 
 

Rank 6 4 5 3 2 1 

Model I 30 Ave. L2 eff. 0.5979 0.6176 0.6230 0.6401 0.6405 0.6416 

Ave. all 
2

0  
 

Rank 6 5 4 3 2 1 

 
 

S.D. L2 eff. 0.3150 0.3120 0.3122 0.3080 0.3077 0.3077 

 
 

Rank 6 5 4 3 2 1 

Model I 100 Ave. L2 eff. 0.6539 0.6628 0.6728 0.6773 0.6773 0.6781 

Ave. all 
2

0  
 

Rank 6 5 4 3 2 1 

 
 

S.D. L2 eff. 0.3240 0.3246 0.3249 0.3242 0.3242 0.3240 

 
 

Rank 6 5 4 3 2 1 

Note: Boldface type indicates the best performance. 
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Abstract 

This paper proposed a model selection criterion in order to overcome the weak signal-to-

noise ratio and to reduce the probability of over/underfitting by adjusting the penalty term of the 

well-known model selection criteria (AIC, BIC, KIC), called adjusted penalty information criterion, 

   2ˆlog 1 /  APIC p n  . Criterion is classified to be the best when it has the strong signal-to-

noise ratio, lowest probability of over/underfitting and maximum probability of correct order being 

selected. The theoretical results show that, if the value of   tends to infinity, the probability of 

overfitting tends to zero and the signal-to-noise ratio tends to strong, but the probability of 

underfitting tends to one. The simulation results show that, when the true model is difficult to 

identify, distributions of independent variables are normal or uniform, the appropriate   is small. 

But for the independent variables are normal distributed, sample size increases and variances of 

error terms are small to moderate,   should be moderate. If the true model is easily to identify, 

distribution of independent variables is normal and variances of error terms are small to moderate, 

the appropriate   is large. When the variance of error terms increases,   should be moderate. If 

the distribution of independent variables changes to be uniform and variances of error terms are 

small to moderate,   should be moderate, otherwise   should be small. If the variance of error 

terms increases, the validity of APIC decreases, but when the sample size increases, the validity of 

APIC also increases. 

 

Keywords: Kullback’s directed divergence, Kullback’s symmetric divergence, model selection. 

 

1. INTRODUCTION 

 

In the application of statistics, the statistical modeling is considered a major task of study. 

Three statistical processes to guide a model, which has the parsimony, goodness-of-fit and 

generalizability properties, are the hypothesis testing of parameters, variable selection algorithms 

and model selection criterion. The model selection criterion is a popular tool for selecting the best 

model. The first model selection criterion to gain widespread acceptance was Akaike information 

criterion, AIC [1-3]. This serves as an asymptotically unbiased estimator of a variant of Kullback’s 

directed divergence between the true model and a fitted approximating model. Other well-known 

criteria were subsequently introduced and studied such as, Bayesian information criterion, BIC [4] 

and Kullback information criterion, KIC [5-6]. BIC is an asymptotic approximation to a 

transformation of Bayesian posterior probability of a candidate model [7]. KIC is a symmetric 

measure, meaning that an alternate directed divergence may be obtained by reversing the roles of 

the two models in the definition of the measure [5, 8]. Although AIC remains arguably the most 

widely used model selection criterion, BIC and KIC are popular competitors. In fact, BIC is often 

preferred over AIC by practitioners who find appeal in either its Bayesian justification or its 

tendency to choose more parsimonious models than AIC [7]. Likewise, KIC is a symmetric measure 

which combines the information in two related, though distinct measures; its functions as a gauge of 

model disparity that is arguably more sensitive than AIC that corresponds to only individual 
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component [5, 8]. However, AIC, BIC and KIC still have the problems of weak signal-to-noise 

ratios and high probabilities of overfitting when the sample size is not large enough which both 

problems have an effect on the frequency of selection the correct model. With this motivation, the 

aim of this paper is to propose a model selection criterion to overcome the weak signal-to-noise 

ratio and to reduce the probability of over/underfitting by adjusting the penalty term of the model 

selection criterion, called adjusted penalty information criterion, denoted by APIC. The proposed 

criterion performance is examined by the extensive simulation study relative to the well-known 

criteria, AIC, BIC and KIC, under the difference circumstances [9-12]: sample sizes, orders of true 

model, regression coefficients, variances of error terms and distributions of independent variables. 

The criterion is classified to be the best when it has the strong signal-to-noise ratio, has the lowest 

probability of over/underfitting and has the maximum probability of correct order being selected. 

The remainder of this paper is organized as follows. In Section 2, we propose Adjusted Penalty 

Information Criterion (APIC) in order to overcome the weak signal-to-noise ratio and to reduce the 

probability of over/underfitting. In Section 3, we simulate 1,000 realizations of multiple regression 

models in order to examine the performance of APIC relative to AIC, BIC and KIC. Finally, Section 

4 is the conclusions, discussion and further study.  

 

2. MATERIALS AND METHODS  

The true univariate regression model to consider in this paper is in the form [13] 

 0 0 0 y X   , (1) 

and the candidate or approximating univariate regression model is in the form 

  y X  , (2) 

where y  is an 1n  dependent random vector of observations, 0X  and X  are 0n p  and n p  

matrices of independent variables with full-column rank, respectively, 0  and   are 0 1p  and 

1p  parameter vectors of regression coefficients, respectively, 0  and   are 1n  error vectors 

with zero means and variance 2

0 n I  and 2

n I , respectively. The maximum likelihood estimators of 

  and 2  are, respectively,  
1ˆ 

  X X X y  and    2 1 ˆ ˆˆ


  
n

 y X y X  . 

For each data set, we can construct many fitted candidate models. Nevertheless, we cannot 

know which model is the best. Criterion for model selection is a way to solve this problem. AIC, 

BIC and KIC are three well-known criteria to consider in this paper. Many authors usually scale 

these criteria by 1/n in order to express them as a rate per observation. The formulae for them are 

based on the following form, 

  
 2

1
ˆlog


 

p
APIC

n


 . (3) 

When the values of   in (3) are equal to 2,  log n  and 3, APIC becomes AIC [1-2], BIC [4] 

and KIC [5], respectively. In this paper, the methods used to compare which criterion is the best are 

the ratio of signal-to-noise, the probability of over/underfitting and the probability of correct order 

being selected. McQuarrie and Tsai [14] defined the signal-to-noise ratio as a measurement that is 

basically a ratio of the expectation to the standard deviation of the difference in criterion values for 

two models. The ratio tends to assess whether the penalty term is sufficiently strong in relation to 

the goodness of fit term. From the true model order 0p  and a candidate model order 0 p l  where 

0l , the true model is considered better than a candidate model if 
0 0
p p lAPIC APIC . Then the 

signal-to-noise ratio that the true model is selected compared to a candidate model is  

 

 

 

0 0
0 0

0 0

0 0

2 2

2 2

ˆ ˆlog

=

ˆ ˆlog







 
     

      
 

p l p
p l p

p l p
p l p

l
E

E APIC APICsignal n

lnoise sd APIC APIC sd
n


 


 

. (4) 
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In order to find the signal in (4), we apply the second-order of Taylor’s series expansions as 

follows. Suppose 2

pX  , expanding  log X  about   E X p , we have  

        
2 2log log 2   X p X p p X p p  and    log log 1  E X p p . (5) 

Under the assumption of nested models; 
0p p  and 0l , we have 

 
  2 2 2 2

0
ˆ ˆ

p p l ln     , 2 2 2

0
ˆ

p n pn    and 2 2ˆ ˆ
p p l   is independent of 2ˆ

p l , (6) 

where 2

k  represents the chi-square distribution with k  degrees of freedom.   

Using the result of Taylor’s series expansions in (5) and the assumptions in (6), we have 

        2 2

0
ˆlog log log 1     

 pE n n p n p  . (7) 

From (7), the signal in (4) is approximated by 

 
  0 0

0

0 0 0

log

  
           

p l p

n p l l l
E APIC APIC

n p n p l n p n


. (8) 

 In order to find the noise in (4), we use the assumptions in (6), then we have  

 0 0

0 0

2 2

2 2 2

ˆ

ˆ

  

 




p l n p l

p n p l l

n
Q

n

 

  
, (9) 

the Q-statistic in (9) has the Beta distribution 

  0 2, 2 Q Beta n p l l , 

and the log-distribution is  

       
0 0

2 2

0
ˆ ˆlog log log- 2, 2  p l pQ n n Beta n p l l  . (10) 

Applying the first-order of Taylor’s series expansions to log(Q) in (10) about  

 
 

 
0 0

0 0

2
,

2 2

   
 

   

n p l n p l
E Q

n p l l n p
 

we have 

      0 0 0

0 0 0

log log ( ) ( ) ( ) log
       

       
      

n p l n p n p l
Q E Q Q E Q E Q Q

n p n p l n p
. 

Hence 

  var log  Q  
 

     

2

00

2

0 0 0

2 2

2 2 2 2 1

    
  

            

n p l ln p

n p l n p l l n p l l
 

  
  0 0

2

2


   

l

n p l n p
. (11) 

 Combined the results in (8) and (11) to be the approximate signal-to-noise ratio in (4) as 

follows: 

 
  

  
0 0 0

0 0 0

2
log

2

       
   

     

n p l n p n p lsignal l l

noise n p n p l n p nl


. (12) 

In (12), we found that the signal-to-noise ratio of APIC depends on the value of   as 

mention earlier. When we replace the values of   by 2,  log n  and 3, we have the signal-to-noise 

ratios of AIC, BIC and KIC, respectively. If the value of   tends to infinity under the same values 

of the sample size  n , the order of true model  0p  and the additional variable  l , APIC has a 

strong signal-to-noise ratio. The proof of the signal-to-noise ratio can be confirmed numerically in 

Table 1. The example of the calculation for the signal-to-noise ratio of APIC, for 15n , 0 3p , 

1l  and 1 , is as follows: 
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  

  

11 14 11 1 1
log 0.2450.

12 11 12 152

  
     

  

signal

noise
 

 Place Table 1. about here 

 From Table 1 we found that when the sample size is small (n = 15), KIC has a strong signal-

to-noise ratio than BIC and AIC, respectively, because the value of   in (3) from KIC is larger than 

BIC and AIC, respectively (3 > log(15) > 2). Whereas the sample size are moderate to large (n = 30, 

100), BIC has a strong signal-to-noise ratio than KIC and AIC, respectively, because the value of   

in (3) from BIC is larger than KIC and AIC, respectively (log(30) or log(100) > 3 > 2). Therefore, 

we can conclude that, APIC with a much more value of  , make its signal-to-noise to be strong. 

The probability of over/underfitting is the second method used to compare which criterion is 

the best. Both overfitting and underfitting can lead to problems with the predictive abilities of a 

model. An underfitted model may have poor predictive ability due to a lack of detail in the model, 

while an overfitted model may be unstable in the sense that repeated samples from the same process 

can lead to widely differing predictions due to variability in the extraneous variables. The 

probability of overfitting is defined based on a model that has extra variables with more parameters 

than the optimal model [15]. The probability of APIC preferring the overfitted model by l  extra 

variables is analyzed here by comparing the true model of order 0p  to a more complex model or 

overfitted model of order 0 p l , 0l . Hence for finite n, the probability that APIC prefers the 

overfitted model is defined by 

   
 

 
 

0 0 0 0

0 02 2
1 1

ˆ ˆ= log log 

   
    

 
p l p p l p

p l p
P PAPIC APIC

n n

 
    

 0 0 0 0

0 0 0

2 2 2 2

2 2 2

ˆ ˆ ˆ ˆ
= log exp exp 1

ˆ ˆ ˆ



  

              
                             

p p p p l

p l p l p l

l l l
P P P

n n n

     

  
. (13) 

Using the assumptions in (6), the probability of overfitting by l  extra variables for APIC in 

(13) becomes 

 
0 0 0

0

2

0
,2

exp 1 exp 1  

 

          
             

        

l
p l p l n p l

n p l

n p ll l
P P P FAPIC APIC

n l n

  


. (14) 

In the opposite, the probability of underfitting is defined based on a model with too few 

variables compared to the optimal model [15]. It is defined by 

   
 

 
 

0 0 0 0

0 02 2
1 1

ˆ ˆ= log log 

   
    

 
p l p p l p

p l p
P PAPIC APIC

n n

 
    

 0 0 0 0

0 0 0

2 2 2 2

2 2 2

ˆ ˆ ˆ ˆ
= log exp exp 1

ˆ ˆ ˆ

  
              

                             

p l p l p l p

p p p

l l l
P P P

n n n

     

  
 

 
0

0

2

0
,2

exp 1 exp 1



         
            

        

l
l n p

n p

n pl l
P P F

n l n

  


. (15) 

In (14) and (15), we found that APIC’s probability of over/underfitting depends on the value 

of   same as the signal-to-noise ratio. When we replace the values of   by 2,  log n  and 3, we 

have the probabilities of over/underfitting of AIC , BIC  and KIC , respectively. If the value of   

tends to infinity under the same values of n, 0p  and l , APIC having the low probability of 

overfitting but it will be prone to underfitting. The proof of the probability of over/underfitting can 

be confirmed numerically in Table 2 and 3. The example of the calculation for the probability of 

overfitting by l  extra variables of APIC, for 15n , 0 3p , 1l  and 1 , is as follows: 

   
0 01 1, 11 0.7583 0.4025.    p pP APIC APIC P F  
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It means that APIC for 1  would select the model whose order is higher by one order 

than true model with a probability of 0.4025. In the same manner, the probability of underfitting by 

l  variables of APIC for this case is  

   
0 01 1, 12 0.8273 0.6190.    p pP APIC APIC P F  

It means that APIC for 1  would select the model whose order is lower by one order than 

true model with a probability of 0.6190. The model selection criterion that has strong signal-to-

noise ratio and lowest probability of over/underfitting is preferable. As a result, the main objective 

of this paper is to find the appropriate value of  , by proving and verifying the result of study with 

simulation data, in order to make the strength of penalty function in the model selection criterion. 

Then, the performance of APIC is examined relative to the well-known criteria, AIC, BIC and KIC, 

under various circumstances. 

 Place Table 2. about here 

 Place Table 3. about here 

 From Table 2 and 3 we found that when the sample size is small (n = 15), KIC has 

probability of overfitted less than BIC and AIC, respectively, in the opposite it has more probability 

of underfitted because the value of   in (3) from KIC is larger than BIC and AIC, respectively (3 > 

log(15) > 2). Whereas the sample size are moderate to large (n = 30, 100), BIC has probability of 

overfitted less than KIC and AIC, respectively, in the opposite it has more probability of underfitted 

because the value of   in (3) from BIC is larger than KIC and AIC, respectively (log(30) or 

log(100) > 3 > 2). Therefore, we can conclude that, APIC with a much more value of  , make its 

probability of overfitting to be smaller but make more probability of underfitting. 

 
3. SIMULATION STUDY AND RESULTS 

In addition to the proofs of signal-to-noise ratio in (12) and the probability of 

over/underfitting in (14) and (15), we use the simulation data to find the appropriate value of   for 

APIC in (3). True multiple regression models in (1) are constructed as follows.  

Model 1 (very weakly identifiable true model with the true order 0 5p ):  

1 2 3 4 5 11 0.5 0.4 0.3 0.2 ,     y X X X X   

Model 2 (weakly identifiable true model with the true order 0 3p ):  

2 2 3 21 0.5 0.4 ,   y X X   

Model 3 (strongly identifiable true model with the true order 0 3p ): 

3 2 3 31 2 2 ,   y X X   

Model 4 (very strongly identifiable true model with the true order 0 5p ): 

4 2 3 4 5 41 2 2 2 2 .     y X X X X   

For each model, we consider 1,000 realizations for three levels of the sample sizes which are 

n = 15 (small), n = 30 (moderate) and n = 100 (large). The error terms for all models are assumed to 

be  2

00,N   where 2

0  in (1) is assumed equal to three levels: 0.25, 1, 9. Seven candidate 

variables, 1X
 
to 7X , are stored in an 7n  matrix X  of the candidate model in (2). 1X  is given as a 

constant which equals 1, followed by six independent variables which have two distributions: 

 0, 1N
 
and  , .U a b  For the uniform distribution, we given 

 

 2 5, 10 ,X U  3 10, 20 ,X U  4 7, 9 ,X U  5 6, 11 ,X U  6 9, 19 ,X U  7 4, 8 .X U  

Candidate models include the columns of X  in a sequentially nested fashion; i.e., columns 1 

to p  define the design matrix for the candidate model with dimension p . Over 1,000 realizations, 

we apply APIC in (3) with the values of   ranging from 1 to 14 on the datasets y of four models 

constructed. The probability of order selected by APIC is measure and used for examining the 

effects of weak or strong penalty function in the proposed criterion. Results are shown in Table 4 to 

Table 6. Findings are the following.
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[1] In Table 4, for the very weakly identifiable situation of true models with the true orders 

0p  = 5, Model 1, the sample size is small (n = 15) and the distribution of independent variable is 

normal, the appropriate values of   when the true variances 2

0  = 0.25, 1, 9, are 2, 1 and 1, 

respectively with the probabilities of correct order being selected are 29.7%, 15.5% and 11.9%. 

While, the distribution of independent variable is changed to be uniform, the appropriate values of 

  for all three levels of true variances are 1 with the probabilities are reduced to be 13.2%, 11.3% 

and 10.6%. 

[2] In Table 4, for the weakly identifiable situation of true models with the true orders 
0p  = 

3, Model 2, the sample size is small (n = 15) and the distribution of independent variable is normal, 

the appropriate values of   when the true variances 2

0  = 0.25, 1, 9, are 4, log n and 2, respectively 

with the probabilities of correct order being selected are 65.8%, 33.3% and 11.9%. While, the 

distribution of independent variable is changed to be uniform, the appropriate values of   for all 

three levels of true variances are 2 with the probabilities are reduced to be 17.8%, 12.6% and 

13.6%. 

[3] In Table 4, for the strongly identifiable situation of true models with the true orders 0p  

= 3, Model 3, the sample size is small (n = 15) and the distribution of independent variable is 

normal, the appropriate values of   when the true variances 2

0  = 0.25, 1, 9, are 14, 9 and 4, 

respectively with the probabilities of correct order being selected are 99.8%, 97.7% and 55.4%. 

While, the distribution of independent variable is changed to be uniform, the appropriate values of 

  for three levels of true variances are 6, 4 and log n with the probabilities are reduced to be 

85.8%, 48.5% and 15.7%. 

[4] In Table 4, for the very strongly identifiable situation of true models with the true orders 

0p  = 5, Model 4, the sample size is small (n = 15) and the distribution of independent variable is 

normal, the appropriate values of   when the true variances 2

0  = 0.25, 1, 9, are 13, 7 and log n, 

respectively with the probabilities of correct order being selected are 98.5%, 91.6% and 46.6%. 

While, the distribution of independent variable is changed to be uniform, the appropriate values of 

  for three levels of true variances are 5, log n and 1 with the probabilities are reduced to be 

78.2%, 42.3% and 14.8%. 

[5] In Table 5, for very weakly identifiable situation of true models with the true orders 0p  

= 5, Model 1, the sample size is moderate (n = 30) and the distribution of independent variable is 

normal, the appropriate values of   when the true variances 2

0  = 0.25, 1, 9, are 3, 1 and 1, 

respectively with the probabilities of correct order being selected are 55%, 24.6% and 13.5%. 

While, the distribution of independent variable is changed to be uniform, the appropriate values of 

  for all three levels of true variances are 1 with the probabilities are reduced to be 17.5%, 13% 

and 13.3%. 

[6] In Table 5, for the weakly identifiable situation of true models with the true orders 0p  = 

3, Model 2, the sample size is moderate (n = 30) and the distribution of independent variable is 

normal, the appropriate values of   when the true variances 2

0  = 0.25, 1, 9, are 5, 3 and 2, 

respectively with the probabilities of correct order being selected are 90.8%, 55.5% and 18.5%. 

While, the distribution of independent variable is changed to be uniform, the appropriate values of 

  for all three levels of true variances are 2 with the probabilities are reduced to be 29.2%, 16.6% 

and 11.8%. 

[7] In Table 5, for strongly identifiable situation of true models with the true orders 0p  = 3, 

Model 3, the sample size is moderate (n = 30) and the distribution of independent variable is 

normal, the appropriate values of   when the true variances 
2

0  = 0.25, 1, 9, are 14, 11 and 5, 

respectively with the probabilities of correct order being selected are 100%, 99.9% and 85.5%. 

While, the distribution of independent variable is changed to be uniform, the appropriate values of 
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  for three levels of true variances are 10, 4 and 2 with the probabilities are reduced to be 98.8%, 

75.9% and 23.2%. 

[8] In Table 5, for very strongly identifiable situation of true models with the true orders 
0p  

= 5, Model 4, the sample size is moderate (n = 30) and the distribution of independent variable is 

normal, the appropriate values of   when the true variances 2

0  = 0.25, 1, 9, are 14, 14 and 4, 

respectively with the probabilities of correct order being selected are 100%, 100% and 79.7%. 

While, the distribution of independent variable is changed to be uniform, the appropriate values of 

  for three levels of true variances are 8, 3 and 1 with the probabilities are reduced to be 98.6%, 

72.3% and 22.3%. 

[9] In Table 6, for very weakly identifiable situation of true models with the true orders 
0p  

= 5, Model 1, the sample size is large (n = 100) and the distribution of independent variable is 

normal, the appropriate values of   when the true variances 2

0  = 0.25, 1, 9, are 5, 2 and 1, 

respectively with the probabilities of correct order being selected are 91.4%, 53.5% and 17.4%. 

While, the distribution of independent variable is changed to be uniform, the appropriate values of 

  for all three levels of true variances are 1 with the probabilities are reduced to be 31.3%, 18% 

and 11.7%. 

[10] In Table 6, for weakly identifiable situation of true models with the true orders 0p  = 3, 

Model 2, the sample size is large (n = 100) and the distribution of independent variable is normal, 

the appropriate values of   when the true variances 2

0  = 0.25, 1, 9, are 12, 5 and 2, respectively 

with the probabilities of correct order being selected are 100%, 92.9% and 33.9%. While, the 

distribution of independent variable is changed to be uniform, the appropriate values of   for three 

levels of true variances are 3, 2 and 1 with the probabilities are reduced to be 63.5%, 28.7% and 

12.5%. 

[11] In Table 6, for strongly identifiable situation of true models with the true orders 0p  = 3, 

Model 3, the sample size is large (n = 100) and the distribution of independent variable is normal, 

the appropriate values of   when the true variances 2

0  = 0.25, 1, 9, are 12, 13 and 9, respectively 

with the probabilities of correct order being selected are 100%, 100% and 99.3%. While, the 

distribution of independent variable is changed to be uniform, the appropriate values of   for three 

levels of true variances are 14, 8 and 2 with the probabilities are reduced to be 100%, 99.3% and 

50.6%. 

[12] In Table 6, for very strongly identifiable situation of true models with the true orders 0p  

= 5, Model 4, the sample size is moderate (n = 100) and the distribution of independent variable is 

normal, the appropriate values of   when the true variances 2

0  = 0.25, 1, 9, are 14, 10 and 10, 

respectively with the probabilities of correct order being selected are 99.9%, 99.9% and 99.5%. 

While, the distribution of independent variable is changed to be uniform, the appropriate values of 

  for three levels of true variances are 13, 9 and 2 with the probabilities are reduced to be 100%, 

99.3% and 49.2%. 

 Place Table 4. about here 

 Place Table 5. about here 

 Place Table 6. about here 

From the results in [1] to [12] we can conclude that, the weakly or very weakly identifiable 

situations of true models, Model 1 and Model 2, the true orders 0p  = 3, 5 and the distribution of 

independent variable is normal, the appropriate   is small. If sample size increases and variances 

of error terms are small (
2

0  = 0.25) to moderate (
2

0  = 1),   should be moderate. For the 

distribution of independent variable is changed to be uniform, the appropriate   is small, regardless 

the sample size or the variances of error terms. When the true model is very weakly identifiable, the 

appropriate   should be smaller than the weakly identifiable situation. The strongly or very 

strongly identifiable situations of true models, Model 3 and Model 4, the true orders 0p  = 3, 5 and 
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the distribution of independent variable is normal, the appropriate   is large. If the variance of 

error terms increases,   should be moderate. For the distribution of independent variable is 

changed to be uniform, the appropriate   is moderate. If the variance of error terms increases,   

should be small.  

 

4. CONCLUSIONS, DISCUSSION and FUTURE WORKS 

In this paper, we propose the model selection criteria, called Adjusted Penalty Information 

Criterion,  

   2ˆlog 1 / ,  APIC p n   

when the values of   are equal to 2,  log n  and 3; APIC becomes AIC, BIC and KIC respectively. 

Each criterion has a different value due to its penalty function, the differences in strong or weak 

penalty affecting the probability of over/underfitting, including the problem of signal-to-noise ratio 

being weak. The theoretical results show that, when the value of   tends to infinity, the probability 

of overfitting tends to zero and the signal-to-noise ratio tends to strong. However, the probability of 

underfitting tends to one. At the same time, the results of simulation suggest that, the appropriate   

is small when true models are weakly or very weakly identifiable and distributions of independent 

variables are normal or uniform. But   should be moderate, if distribution of independent variables 

is normal, sample size increases and variances of error terms are small to moderate. The appropriate 

  is large, if the true model is strongly identifiable, distribution of independent variables is normal, 

and variance of error terms is small to moderate. But   should be moderate, if the variance of error 

terms increases. When the distribution of independent variables changes to be uniform, the 

appropriate   is moderate for the case of variance of error terms is small to moderate. But   

should be small, if the variance of error terms increases. The variance of error terms and sample size 

affects the validity of APIC. The variance of error terms increases, the validity of APIC decreases. 

Whereas the sample size increases, the validity of APIC also increases. In further work, we attempt 

to construct the model selection criteria to overcome the weak signal-to-noise ratio and to reduce 

the probability of over/underfitting in the multivariate regression and simultaneous equations 

models. 
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Table 1. Signal-to-noise ratio of APIC  for different values of n , 
0p  and l . 

n p0 l 

Criteria 
      

        

APIC1 
APIC2 

(AIC) 

APIClog(n) 

(BIC) 
APIC3 

(KIC) 
APIC4 APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14 

15 3 1 -0.2450 0.3400 0.7542 0.9250 1.5100 2.0950 2.6800 3.2650 3.8500 4.4350 5.0200 5.6050 6.1900 6.7750 7.3600 

15 3 2 -0.3884 0.4004 0.9589 1.1892 1.9780 2.7668 3.5556 4.3444 5.1333 5.9221 6.7109 7.4997 8.2885 9.0773 9.8661 

15 3 3 -0.5291 0.3874 1.0364 1.3039 2.2204 3.1370 4.0535 4.9700 5.8865 6.8030 7.7195 8.6360 9.5526 10.4691 11.3856 

15 3 4 -0.6752 0.3225 1.0290 1.3203 2.3181 3.3159 4.3136 5.3114 6.3092 7.3070 8.3047 9.3025 10.3003 11.2981 12.2958 

15 5 1 -0.3660 0.1239 0.4708 0.6138 1.1037 1.5936 2.0835 2.5734 3.0633 3.5532 4.0431 4.5330 5.0229 5.5128 6.0027 

15 5 2 -0.5625 0.0907 0.5532 0.7439 1.3971 2.0503 2.7035 3.3567 4.0099 4.6631 5.3163 5.9695 6.6227 7.2759 7.9291 

n p0 l APIC1 
APIC2 

(AIC) 

APIC3 

(KIC) 

APIClog(n) 

(BIC) APIC4 APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14 

30 3 1 -0.1132 0.5340 1.1812 1.4409 1.8284 2.4756 3.1229 3.7701 4.4173 5.0645 5.7117 6.3589 7.0062 7.6534 8.3006 

30 3 2 -0.1785 0.7190 1.6166 1.9767 2.5141 3.4116 4.3092 5.2067 6.1042 7.0017 7.8993 8.7968 9.6943 10.5918 11.4894 

30 3 3 -0.2414 0.8356 1.9127 2.3448 2.9897 4.0667 5.1438 6.2208 7.2978 8.3749 9.4519 10.5289 11.6060 12.6830 13.7600 

30 3 4 -0.3054 0.9120 2.1295 2.6179 3.3470 4.5644 5.7819 6.9994 8.2168 9.4343 10.6518 11.8692 13.0867 14.3041 15.5216 

30 5 1 -0.1648 0.4352 1.0352 1.2759 1.6352 2.2352 2.8352 3.4352 4.0352 4.6352 5.2352 5.8352 6.4352 7.0352 7.6352 
30 5 2 -0.2516 0.5791 1.4097 1.7430 2.2404 3.0710 3.9017 4.7324 5.5630 6.3937 7.2244 8.0550 8.8857 9.7163 10.5470 

n p0 l APIC1 
APIC2 

(AIC) 

APIC3 

(KIC) 
APIC4 

APIClog(n) 

(BIC) APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14 

100 3 1 -0.0324 0.6569 1.3463 2.0356 2.4528 2.7250 3.4143 4.1037 4.7930 5.4824 6.1717 6.8611 7.5504 8.2398 8.9291 

100 3 2 -0.0510 0.9188 1.8886 2.8584 3.4453 3.8282 4.7980 5.7678 6.7376 7.7074 8.6772 9.6470 10.6168 11.5866 12.5564 

100 3 3 -0.0687 1.1128 2.2942 3.4757 4.1907 4.6572 5.8387 7.0202 8.2016 9.3831 10.5646 11.7461 12.9276 14.1091 15.2905 

100 3 4 -0.0867 1.2703 2.6273 3.9843 4.8055 5.3413 6.6982 8.0552 9.4122 10.7692 12.1262 13.4831 14.8401 16.1971 17.5541 

100 5 1 -0.0469 0.6283 1.3035 1.9787 2.3874 2.6539 3.3292 4.0044 4.6796 5.3548 6.0300 6.7052 7.3804 8.0556 8.7308 

100 5 2 -0.0714 0.8784 1.8282 2.7780 3.3527 3.7277 4.6775 5.6273 6.5771 7.5269 8.4767 9.4265 10.3763 11.3261 12.2758 
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Table 2. Probability of overfitting by l  extra variables of APIC  for different values of n , 
0p  and l . 

n p0 l 

Criteria 
      

        

APIC1 
APIC2 

(AIC) 

APIClog(n) 

(BIC) 
APIC3 

(KIC) 
APIC4 APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14 

15 3 1 0.4025 0.2363 0.1682 0.1469 0.0939 0.0611 0.0402 0.0266 0.0178 0.0119 0.0080 0.0054 0.0037 0.0025 0.0017 

15 3 2 0.5134 0.2636 0.1644 0.1353 0.0695 0.0357 0.0183 0.0094 0.0048 0.0025 0.0013 0.0007 0.0003 0.0002 0.0001 

15 3 3 0.5947 0.2857 0.1631 0.1287 0.0561 0.0240 0.0101 0.0042 0.0018 0.0007 0.0003 0.0001 0.0001 0.0000 0.0000 

15 3 4 0.6664 0.3143 0.1701 0.1305 0.0508 0.0190 0.0070 0.0025 0.0009 0.0003 0.0001 0.0000 0.0000 0.0000 0.0000 

15 5 1 0.4511 0.2865 0.2148 0.1917 0.1316 0.0918 0.0647 0.0460 0.0329 0.0236 0.0170 0.0123 0.0089 0.0065 0.0047 

15 5 2 0.5866 0.3442 0.2359 0.2019 0.1184 0.0695 0.0408 0.0239 0.0140 0.0082 0.0048 0.0028 0.0017 0.0010 0.0006 

n p0 l APIC1 
APIC2 

(AIC) 

APIC3 

(KIC) 

APIClog(n) 

(BIC) APIC4 APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14 

30 3 1 0.3565 0.1922 0.1102 0.0890 0.0651 0.0392 0.0239 0.0147 0.0091 0.0057 0.0035 0.0022 0.0014 0.0009 0.0006 

30 3 2 0.4346 0.1889 0.0821 0.0588 0.0357 0.0155 0.0067 0.0029 0.0013 0.0006 0.0002 0.0001 0.0000 0.0000 0.0000 

30 3 3 0.4846 0.1795 0.0617 0.0397 0.0204 0.0066 0.0021 0.0007 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 

30 3 4 0.5256 0.1720 0.0482 0.0282 0.0125 0.0031 0.0007 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

30 5 1 0.3761 0.2106 0.1252 0.1026 0.0766 0.0478 0.0301 0.0192 0.0123 0.0079 0.0051 0.0033 0.0022 0.0014 0.0009 
30 5 2 0.4646 0.2158 0.1003 0.0737 0.0466 0.0216 0.0101 0.0047 0.0022 0.0010 0.0005 0.0002 0.0001 0.0000 0.0000 

n p0 l APIC1 
APIC2 

(AIC) 

APIC3 

(KIC) 
APIC4 

APIClog(n) 

(BIC) APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14 

100 3 1 0.3284 0.1670 0.0905 0.0506 0.0360 0.0289 0.0167 0.0097 0.0057 0.0034 0.0020 0.0012 0.0007 0.0004 0.0003 

100 3 2 0.3867 0.1496 0.0578 0.0224 0.0126 0.0087 0.0033 0.0013 0.0005 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 

100 3 3 0.4178 0.1288 0.0367 0.0100 0.0045 0.0027 0.0007 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

100 3 4 0.4395 0.1109 0.0236 0.0046 0.0017 0.0009 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

100 5 1 0.3336 0.1715 0.0940 0.0531 0.0380 0.0306 0.0179 0.0105 0.0062 0.0037 0.0022 0.0013 0.0008 0.0005 0.0003 

100 5 2 0.3946 0.1557 0.0614 0.0242 0.0138 0.0096 0.0038 0.0015 0.0006 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 
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Table 3. Probability of underfitting by l  variables of APIC  for different values of n , 
0p  and l . 

n p0 l 

Criteria 
      

        

APIC1 
APIC2 

(AIC) 

APIClog(n) 

(BIC) 
APIC3 

(KIC) 
APIC4 APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14 

15 3 1 0.6190 0.7847 0.8507 0.8709 0.9204 0.9500 0.9682 0.9796 0.9869 0.9915 0.9945 0.9964 0.9976 0.9984 0.9990 

15 3 2 0.5507 0.7981 0.8854 0.9093 0.9592 0.9817 0.9918 0.9963 0.9983 0.9993 0.9997 0.9998 0.9999 1.0000 1.0000 

15 3 3 0.5238 0.8272 0.9197 0.9418 0.9811 0.9940 0.9981 0.9994 0.9998 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 

15 3 4 0.5146 0.8581 0.9464 0.9646 0.9918 0.9982 0.9996 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

15 5 1 0.5743 0.7401 0.8102 0.8324 0.8890 0.9253 0.9491 0.9651 0.9759 0.9833 0.9883 0.9918 0.9943 0.9960 0.9972 

15 5 2 0.4866 0.7364 0.8356 0.8647 0.9305 0.9643 0.9817 0.9906 0.9952 0.9975 0.9987 0.9993 0.9997 0.9998 0.9999 

n p0 l APIC1 
APIC2 

(AIC) 

APIC3 

(KIC) 

APIClog(n) 

(BIC) APIC4 APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14 

30 3 1 0.6528 0.8163 0.8965 0.9170 0.9399 0.9645 0.9787 0.9871 0.9922 0.9952 0.9971 0.9982 0.9989 0.9993 0.9996 

30 3 2 0.5934 0.8347 0.9328 0.9532 0.9727 0.9889 0.9955 0.9982 0.9993 0.9997 0.9999 0.9999 1.0000 1.0000 1.0000 

30 3 3 0.5680 0.8612 0.9588 0.9750 0.9882 0.9967 0.9991 0.9998 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

30 3 4 0.5561 0.8863 0.9754 0.9870 0.9951 0.9991 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

30 5 1 0.6339 0.7988 0.8825 0.9045 0.9294 0.9567 0.9732 0.9832 0.9894 0.9933 0.9957 0.9973 0.9983 0.9989 0.9993 
30 5 2 0.5654 0.8111 0.9179 0.9412 0.9643 0.9845 0.9933 0.9971 0.9987 0.9994 0.9998 0.9999 1.0000 1.0000 1.0000 

n p0 l APIC1 
APIC2 

(AIC) 

APIC3 

(KIC) 
APIC4 

APIClog(n) 

(BIC) APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14 

100 3 1 0.6741 0.8352 0.9111 0.9506 0.9650 0.9720 0.9839 0.9907 0.9945 0.9968 0.9981 0.9989 0.9993 0.9996 0.9998 

100 3 2 0.6209 0.8563 0.9455 0.9793 0.9885 0.9922 0.9970 0.9989 0.9996 0.9998 0.9999 1.0000 1.0000 1.0000 1.0000 

100 3 3 0.5967 0.8808 0.9676 0.9915 0.9963 0.9978 0.9995 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

100 3 4 0.5830 0.9023 0.9808 0.9965 0.9988 0.9994 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

100 5 1 0.6690 0.8308 0.9078 0.9481 0.9630 0.9703 0.9827 0.9899 0.9940 0.9965 0.9979 0.9987 0.9992 0.9995 0.9997 

100 5 2 0.6133 0.8504 0.9422 0.9776 0.9874 0.9913 0.9967 0.9987 0.9995 0.9998 0.9999 1.0000 1.0000 1.0000 1.0000 
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Table 4. Probability of the order selected by APIC for n = 15. 

Model 
Dist. 

of X 
2

0  Order 

Criteria 
              

APIC1 
APIC2 

(AIC) 

APIClog(n) 

(BIC) 
APIC3 

(KIC) 
APIC4 APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14 

1 Normal 0.25 Underfitted 0.157 0.353 0.472 0.53 0.669 0.785 0.868 0.93 0.958 0.974 0.983 0.99 0.994 0.998 1 
very 

  
Correct 0.229 0.297 0.293 0.281 0.232 0.165 0.107 0.061 0.038 0.025 0.016 0.009 0.005 0.002 0 

weakly 
  

Overfitted 0.614 0.35 0.235 0.189 0.099 0.05 0.025 0.009 0.004 0.001 0.001 0.001 0.001 0 0 

p0 = 5  
1 Underfitted 0.269 0.562 0.731 0.79 0.9 0.951 0.978 0.99 0.998 0.999 0.999 0.999 1 1 1 

  
Correct 0.155 0.135 0.104 0.085 0.05 0.025 0.011 0.006 0.001 0 0 0 0 0 0 

   
Overfitted 0.576 0.303 0.165 0.125 0.05 0.024 0.011 0.004 0.001 0.001 0.001 0.001 0 0 0 

  
9 Underfitted 0.367 0.69 0.826 0.863 0.946 0.98 0.993 0.998 1 1 1 1 1 1 1 

   
Correct 0.119 0.097 0.064 0.054 0.03 0.011 0.005 0.001 0 0 0 0 0 0 0 

   
Overfitted 0.514 0.213 0.11 0.083 0.024 0.009 0.002 0.001 0 0 0 0 0 0 0 

 
Uniform 0.25 Underfitted 0.346 0.679 0.82 0.855 0.937 0.971 0.99 0.998 1 1 1 1 1 1 1 

   
Correct 0.132 0.093 0.066 0.053 0.027 0.014 0.004 0.001 0 0 0 0 0 0 0 

   
Overfitted 0.522 0.228 0.114 0.092 0.036 0.015 0.006 0.001 0 0 0 0 0 0 0 

  
1 Underfitted 0.365 0.691 0.838 0.878 0.947 0.98 0.997 0.998 0.999 0.999 1 1 1 1 1 

   
Correct 0.113 0.079 0.052 0.039 0.015 0.007 0.001 0.001 0.001 0.001 0 0 0 0 0 

   
Overfitted 0.522 0.23 0.11 0.083 0.038 0.013 0.002 0.001 0 0 0 0 0 0 0 

  
9 Underfitted 0.359 0.695 0.836 0.868 0.946 0.985 0.995 0.997 0.999 1 1 1 1 1 1 

   
Correct 0.106 0.074 0.041 0.034 0.018 0.007 0.004 0.003 0.001 0 0 0 0 0 0 

   
Overfitted 0.535 0.231 0.123 0.098 0.036 0.008 0.001 0 0 0 0 0 0 0 0 

2 Normal 0.25 Underfitted 0.02 0.057 0.112 0.124 0.195 0.274 0.366 0.44 0.522 0.59 0.654 0.722 0.762 0.804 0.844 
weakly 

  
Correct 0.215 0.465 0.587 0.614 0.658 0.639 0.578 0.528 0.458 0.4 0.34 0.276 0.236 0.194 0.156 

p0 = 3   
Overfitted 0.765 0.478 0.301 0.262 0.147 0.087 0.056 0.032 0.02 0.01 0.006 0.002 0.002 0.002 0 

 
1 Underfitted 0.091 0.282 0.416 0.464 0.604 0.704 0.779 0.842 0.882 0.915 0.942 0.965 0.97 0.981 0.987 

   
Correct 0.147 0.301 0.333 0.33 0.286 0.237 0.191 0.143 0.11 0.082 0.057 0.034 0.03 0.019 0.013 

   
Overfitted 0.762 0.417 0.251 0.206 0.11 0.059 0.03 0.015 0.008 0.003 0.001 0.001 0 0 0 

  
9 Underfitted 0.181 0.52 0.693 0.739 0.85 0.899 0.943 0.961 0.974 0.98 0.984 0.99 0.992 0.993 0.998 

   
Correct 0.095 0.119 0.104 0.101 0.081 0.065 0.046 0.032 0.023 0.018 0.016 0.01 0.008 0.007 0.002 

   
Overfitted 0.724 0.361 0.203 0.16 0.069 0.036 0.011 0.007 0.003 0.002 0 0 0 0 0 

 
Uniform 0.25 Underfitted 0.152 0.425 0.583 0.644 0.768 0.855 0.896 0.93 0.96 0.972 0.982 0.991 0.995 0.996 0.997 

   
Correct 0.111 0.178 0.173 0.17 0.149 0.11 0.084 0.059 0.036 0.026 0.018 0.009 0.005 0.004 0.003 

   
Overfitted 0.737 0.397 0.244 0.186 0.083 0.035 0.02 0.011 0.004 0.002 0 0 0 0 0 

  
1 Underfitted 0.179 0.478 0.635 0.695 0.841 0.915 0.941 0.961 0.976 0.985 0.991 0.995 0.997 0.999 1 

   
Correct 0.103 0.126 0.119 0.108 0.079 0.054 0.04 0.031 0.02 0.013 0.009 0.005 0.003 0.001 0 

   
Overfitted 0.718 0.396 0.246 0.197 0.08 0.031 0.019 0.008 0.004 0.002 0 0 0 0 0 

  
9 Underfitted 0.189 0.491 0.658 0.717 0.844 0.925 0.957 0.977 0.985 0.993 0.996 0.997 0.998 0.998 0.998 

   
Correct 0.094 0.136 0.132 0.115 0.075 0.04 0.028 0.014 0.009 0.006 0.003 0.003 0.002 0.002 0.002 

   
Overfitted 0.717 0.373 0.21 0.168 0.081 0.035 0.015 0.009 0.006 0.001 0.001 0 0 0 0 

Note: Boldface type indicates the maximum probability of correct order being selected. 
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Table 4. (Continued). 

Model 
Dist. 

of X 
2

0  Order 

Criteria 
              

APIC1 
APIC2 

(AIC) 

APIClog(n) 

(BIC) 
APIC3 

(KIC) 
APIC4 APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14 

3 Normal 0.25 Underfitted 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
strongly 

  
Correct 0.22 0.515 0.654 0.707 0.814 0.891 0.942 0.962 0.971 0.983 0.991 0.992 0.995 0.997 0.998 

p0 = 3   
Overfitted 0.78 0.485 0.346 0.293 0.186 0.109 0.058 0.038 0.029 0.017 0.009 0.008 0.005 0.003 0.002 

 
1 Underfitted 0 0 0 0 0 0.001 0.001 0.004 0.005 0.01 0.014 0.019 0.029 0.055 0.074 

   
Correct 0.238 0.542 0.683 0.725 0.835 0.902 0.946 0.961 0.975 0.977 0.977 0.977 0.968 0.943 0.924 

   
Overfitted 0.762 0.458 0.317 0.275 0.165 0.097 0.053 0.035 0.02 0.013 0.009 0.004 0.003 0.002 0.002 

  
9 Underfitted 0.025 0.118 0.189 0.213 0.313 0.412 0.516 0.578 0.661 0.714 0.776 0.826 0.864 0.902 0.921 

   
Correct 0.197 0.427 0.518 0.541 0.554 0.514 0.447 0.399 0.323 0.275 0.22 0.171 0.133 0.097 0.078 

   
Overfitted 0.778 0.455 0.293 0.246 0.133 0.074 0.037 0.023 0.016 0.011 0.004 0.003 0.003 0.001 0.001 

 
Uniform 0.25 Underfitted 0.004 0.009 0.016 0.019 0.039 0.063 0.095 0.121 0.158 0.206 0.25 0.316 0.382 0.446 0.511 

   
Correct 0.215 0.52 0.654 0.703 0.799 0.846 0.858 0.854 0.823 0.784 0.745 0.68 0.616 0.552 0.487 

   
Overfitted 0.781 0.471 0.33 0.278 0.162 0.091 0.047 0.025 0.019 0.01 0.005 0.004 0.002 0.002 0.002 

  
1 Underfitted 0.041 0.154 0.237 0.272 0.377 0.473 0.587 0.661 0.713 0.779 0.828 0.87 0.903 0.917 0.942 

   
Correct 0.198 0.389 0.461 0.476 0.485 0.467 0.387 0.322 0.276 0.215 0.169 0.128 0.097 0.083 0.058 

   
Overfitted 0.761 0.457 0.302 0.252 0.138 0.06 0.026 0.017 0.011 0.006 0.003 0.002 0 0 0 

  
9 Underfitted 0.153 0.45 0.611 0.671 0.797 0.876 0.924 0.953 0.972 0.979 0.986 0.993 0.999 0.999 1 

   
Correct 0.112 0.154 0.157 0.149 0.121 0.083 0.054 0.035 0.022 0.02 0.014 0.007 0.001 0.001 0 

   
Overfitted 0.735 0.396 0.232 0.18 0.082 0.041 0.022 0.012 0.006 0.001 0 0 0 0 0 

4 Normal 0.25 Underfitted 0 0 0 0 0 0 0 0 0 0 0 0.001 0.004 0.007 0.016 
very 

  
Correct 0.342 0.55 0.659 0.686 0.804 0.874 0.914 0.94 0.958 0.97 0.978 0.983 0.984 0.985 0.977 

strongly 
  

Overfitted 0.658 0.45 0.341 0.314 0.196 0.126 0.086 0.06 0.042 0.03 0.022 0.016 0.012 0.008 0.007 

p0 = 5  
1 Underfitted 0 0.001 0.001 0.001 0.003 0.005 0.011 0.019 0.036 0.061 0.108 0.169 0.248 0.348 0.475 

  
Correct 0.309 0.546 0.669 0.698 0.797 0.851 0.894 0.916 0.913 0.902 0.866 0.813 0.738 0.642 0.518 

   
Overfitted 0.691 0.453 0.33 0.301 0.2 0.144 0.095 0.065 0.051 0.037 0.026 0.018 0.014 0.01 0.007 

  
9 Underfitted 0.052 0.167 0.252 0.292 0.437 0.589 0.728 0.819 0.885 0.934 0.955 0.976 0.989 0.995 0.997 

   
Correct 0.304 0.448 0.466 0.462 0.418 0.328 0.234 0.158 0.103 0.061 0.043 0.023 0.011 0.005 0.003 

   
Overfitted 0.644 0.385 0.282 0.246 0.145 0.083 0.038 0.023 0.012 0.005 0.002 0.001 0 0 0 

 
Uniform 0.25 Underfitted 0.004 0.016 0.026 0.032 0.057 0.109 0.175 0.274 0.414 0.545 0.669 0.761 0.853 0.923 0.959 

   
Correct 0.344 0.569 0.656 0.69 0.764 0.782 0.76 0.684 0.556 0.438 0.323 0.234 0.145 0.077 0.041 

   
Overfitted 0.652 0.415 0.318 0.278 0.179 0.109 0.065 0.042 0.03 0.017 0.008 0.005 0.002 0 0 

  
1 Underfitted 0.078 0.209 0.314 0.363 0.535 0.676 0.798 0.878 0.938 0.966 0.983 0.993 0.998 1 1 

   
Correct 0.298 0.399 0.423 0.415 0.345 0.252 0.162 0.1 0.056 0.031 0.015 0.006 0.002 0 0 

   
Overfitted 0.624 0.392 0.263 0.222 0.12 0.072 0.04 0.022 0.006 0.003 0.002 0.001 0 0 0 

  
9 Underfitted 0.278 0.593 0.755 0.801 0.911 0.965 0.987 0.995 0.998 0.999 0.999 0.999 1 1 1 

   
Correct 0.148 0.127 0.089 0.074 0.043 0.017 0.007 0.004 0.002 0.001 0.001 0.001 0 0 0 

   
Overfitted 0.574 0.28 0.156 0.125 0.046 0.018 0.006 0.001 0 0 0 0 0 0 0 

Note: Boldface type indicates the maximum probability of correct order being selected. 
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Table 5. Probability of the order selected by APIC for n = 30. 

Model 
Dist. 

of X 
2

0  Order 

Criteria 
              

APIC1 
APIC2 

(AIC) 

APIC3 

(KIC) 

APIClog(n) 

(BIC) APIC4 APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14 

1 Normal 0.25 Underfitted 0.076 0.199 0.312 0.366 0.446 0.547 0.656 0.745 0.827 0.877 0.927 0.958 0.973 0.985 0.99 
very 

  
Correct 0.406 0.532 0.55 0.522 0.481 0.41 0.328 0.249 0.171 0.122 0.073 0.042 0.027 0.015 0.01 

weakly 
  

Overfitted 0.518 0.269 0.138 0.112 0.073 0.043 0.016 0.006 0.002 0.001 0 0 0 0 0 

p0 = 5  
1 Underfitted 0.275 0.55 0.761 0.799 0.855 0.937 0.976 0.985 0.995 0.999 1 1 1 1 1 

  
Correct 0.246 0.237 0.161 0.146 0.108 0.054 0.023 0.015 0.005 0.001 0 0 0 0 0 

   
Overfitted 0.479 0.213 0.078 0.055 0.037 0.009 0.001 0 0 0 0 0 0 0 0 

  
9 Underfitted 0.48 0.804 0.915 0.94 0.974 0.993 0.999 1 1 1 1 1 1 1 1 

   
Correct 0.135 0.075 0.045 0.032 0.017 0.005 0.001 0 0 0 0 0 0 0 0 

   
Overfitted 0.385 0.121 0.04 0.028 0.009 0.002 0 0 0 0 0 0 0 0 0 

 
Uniform 0.25 Underfitted 0.392 0.696 0.871 0.905 0.952 0.982 0.998 0.999 1 1 1 1 1 1 1 

   
Correct 0.175 0.137 0.071 0.056 0.031 0.012 0.002 0.001 0 0 0 0 0 0 0 

   
Overfitted 0.433 0.167 0.058 0.039 0.017 0.006 0 0 0 0 0 0 0 0 0 

  
1 Underfitted 0.48 0.828 0.96 0.976 0.985 0.997 0.999 1 1 1 1 1 1 1 1 

   
Correct 0.13 0.074 0.023 0.016 0.011 0.003 0.001 0 0 0 0 0 0 0 0 

   
Overfitted 0.39 0.098 0.017 0.008 0.004 0 0 0 0 0 0 0 0 0 0 

  
9 Underfitted 0.48 0.818 0.95 0.971 0.988 0.996 0.999 1 1 1 1 1 1 1 1 

   
Correct 0.133 0.063 0.024 0.016 0.007 0.002 0 0 0 0 0 0 0 0 0 

   
Overfitted 0.387 0.119 0.026 0.013 0.005 0.002 0.001 0 0 0 0 0 0 0 0 

2 Normal 0.25 Underfitted 0.001 0.003 0.009 0.018 0.025 0.04 0.066 0.093 0.135 0.171 0.224 0.28 0.338 0.392 0.45 
weakly 

  
Correct 0.321 0.632 0.802 0.837 0.884 0.908 0.906 0.892 0.857 0.824 0.772 0.719 0.661 0.607 0.55 

p0 = 3   
Overfitted 0.678 0.365 0.189 0.145 0.091 0.052 0.028 0.015 0.008 0.005 0.004 0.001 0.001 0.001 0 

 
1 Underfitted 0.057 0.173 0.305 0.346 0.413 0.514 0.606 0.661 0.742 0.804 0.85 0.875 0.896 0.919 0.935 

   
Correct 0.296 0.514 0.555 0.55 0.522 0.452 0.378 0.328 0.252 0.194 0.15 0.125 0.104 0.081 0.065 

   
Overfitted 0.647 0.313 0.14 0.104 0.065 0.034 0.016 0.011 0.006 0.002 0 0 0 0 0 

  
9 Underfitted 0.236 0.577 0.756 0.792 0.84 0.907 0.938 0.959 0.974 0.982 0.986 0.993 0.995 0.998 0.999 

   
Correct 0.147 0.185 0.154 0.145 0.118 0.077 0.055 0.04 0.026 0.018 0.014 0.007 0.005 0.002 0.001 

   
Overfitted 0.617 0.238 0.09 0.063 0.042 0.016 0.007 0.001 0 0 0 0 0 0 0 

 
Uniform 0.25 Underfitted 0.174 0.437 0.616 0.667 0.734 0.811 0.871 0.904 0.937 0.953 0.972 0.98 0.985 0.991 0.996 

   
Correct 0.21 0.292 0.276 0.254 0.217 0.166 0.115 0.088 0.06 0.045 0.027 0.02 0.015 0.009 0.004 

   
Overfitted 0.616 0.271 0.108 0.079 0.049 0.023 0.014 0.008 0.003 0.002 0.001 0 0 0 0 

  
1 Underfitted 0.257 0.599 0.776 0.826 0.867 0.925 0.952 0.972 0.982 0.988 0.991 0.996 0.999 0.999 1 

   
Correct 0.127 0.166 0.14 0.121 0.103 0.063 0.046 0.028 0.018 0.012 0.009 0.004 0.001 0.001 0 

   
Overfitted 0.616 0.235 0.084 0.053 0.03 0.012 0.002 0 0 0 0 0 0 0 0 

  
9 Underfitted 0.317 0.655 0.83 0.875 0.913 0.953 0.978 0.989 0.994 0.996 0.997 0.999 0.999 0.999 1 

   
Correct 0.107 0.118 0.079 0.069 0.058 0.036 0.019 0.009 0.004 0.003 0.003 0.001 0.001 0.001 0 

   
Overfitted 0.576 0.227 0.091 0.056 0.029 0.011 0.003 0.002 0.002 0.001 0 0 0 0 0 

Note: Boldface type indicates the maximum probability of correct order being selected. 
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Table 5. (Continued). 

Model 
Dist. 

of X 
2

0  Order 

Criteria 
              

APIC1 
APIC2 

(AIC) 

APIC3 

(KIC) 

APIClog(n) 

(BIC) APIC4 APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14 

3 Normal 0.25 Underfitted 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
strongly 

  
Correct 0.317 0.634 0.824 0.861 0.906 0.942 0.972 0.977 0.986 0.99 0.996 0.998 0.998 0.998 1 

p0 = 3   
Overfitted 0.683 0.366 0.176 0.139 0.094 0.058 0.028 0.023 0.014 0.01 0.004 0.002 0.002 0.002 0 

 
1 Underfitted 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

   
Correct 0.348 0.664 0.832 0.874 0.91 0.96 0.979 0.99 0.995 0.998 0.998 0.999 0.999 0.999 0.999 

   
Overfitted 0.652 0.336 0.168 0.126 0.09 0.04 0.021 0.01 0.005 0.002 0.002 0.001 0.001 0.001 0.001 

  
9 Underfitted 0.003 0.021 0.038 0.044 0.06 0.091 0.137 0.185 0.256 0.304 0.37 0.437 0.485 0.544 0.593 

   
Correct 0.316 0.62 0.765 0.807 0.842 0.855 0.832 0.796 0.735 0.691 0.627 0.56 0.513 0.454 0.406 

   
Overfitted 0.681 0.359 0.197 0.149 0.098 0.054 0.031 0.019 0.009 0.005 0.003 0.003 0.002 0.002 0.001 

 
Uniform 0.25 Underfitted 0 0 0 0 0 0 0 0.001 0.003 0.006 0.007 0.012 0.021 0.03 0.038 

   
Correct 0.308 0.625 0.813 0.862 0.908 0.948 0.968 0.976 0.984 0.985 0.988 0.986 0.978 0.969 0.961 

   
Overfitted 0.692 0.375 0.187 0.138 0.092 0.052 0.032 0.023 0.013 0.009 0.005 0.002 0.001 0.001 0.001 

  
1 Underfitted 0.009 0.044 0.095 0.122 0.155 0.23 0.298 0.374 0.44 0.497 0.566 0.627 0.686 0.734 0.782 

   
Correct 0.331 0.62 0.739 0.756 0.759 0.735 0.68 0.611 0.549 0.496 0.43 0.37 0.312 0.264 0.216 

   
Overfitted 0.66 0.336 0.166 0.122 0.086 0.035 0.022 0.015 0.011 0.007 0.004 0.003 0.002 0.002 0.002 

  
9 Underfitted 0.189 0.504 0.688 0.74 0.797 0.864 0.905 0.934 0.957 0.974 0.982 0.987 0.99 0.992 0.994 

   
Correct 0.196 0.232 0.209 0.198 0.167 0.119 0.087 0.063 0.042 0.026 0.018 0.013 0.01 0.008 0.006 

   
Overfitted 0.615 0.264 0.103 0.062 0.036 0.017 0.008 0.003 0.001 0 0 0 0 0 0 

4 Normal 0.25 Underfitted 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
very 

  
Correct 0.481 0.713 0.831 0.867 0.903 0.945 0.969 0.979 0.985 0.99 0.993 0.994 0.996 0.998 1 

strongly 
  

Overfitted 0.519 0.287 0.169 0.133 0.097 0.055 0.031 0.021 0.015 0.01 0.007 0.006 0.004 0.002 0 

p0 = 5  
1 Underfitted 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  
Correct 0.454 0.705 0.845 0.881 0.908 0.95 0.971 0.985 0.992 0.996 0.998 0.998 0.998 0.998 1 

   
Overfitted 0.546 0.295 0.155 0.119 0.092 0.05 0.029 0.015 0.008 0.004 0.002 0.002 0.002 0.002 0 

  
9 Underfitted 0.009 0.029 0.064 0.074 0.102 0.172 0.26 0.354 0.457 0.578 0.708 0.801 0.86 0.907 0.947 

   
Correct 0.447 0.675 0.765 0.793 0.797 0.767 0.703 0.623 0.527 0.413 0.287 0.198 0.139 0.093 0.053 

   
Overfitted 0.544 0.296 0.171 0.133 0.101 0.061 0.037 0.023 0.016 0.009 0.005 0.001 0.001 0 0 

 
Uniform 0.25 Underfitted 0 0 0 0 0 0 0 0.001 0.002 0.011 0.024 0.04 0.066 0.12 0.204 

   
Correct 0.419 0.699 0.829 0.869 0.901 0.946 0.971 0.982 0.986 0.981 0.971 0.958 0.934 0.88 0.796 

   
Overfitted 0.581 0.301 0.171 0.131 0.099 0.054 0.029 0.017 0.012 0.008 0.005 0.002 0 0 0 

  
1 Underfitted 0.018 0.053 0.116 0.154 0.214 0.317 0.427 0.544 0.664 0.763 0.844 0.894 0.947 0.967 0.983 

   
Correct 0.445 0.658 0.723 0.719 0.703 0.635 0.554 0.448 0.329 0.234 0.154 0.106 0.053 0.033 0.017 

   
Overfitted 0.537 0.289 0.161 0.127 0.083 0.048 0.019 0.008 0.007 0.003 0.002 0 0 0 0 

  
9 Underfitted 0.323 0.646 0.826 0.87 0.925 0.969 0.992 0.998 0.998 0.999 0.999 1 1 1 1 

   
Correct 0.223 0.175 0.115 0.092 0.055 0.024 0.006 0.001 0.001 0.001 0.001 0 0 0 0 

   
Overfitted 0.454 0.179 0.059 0.038 0.02 0.007 0.002 0.001 0.001 0 0 0 0 0 0 

Note: Boldface type indicates the maximum probability of correct order being selected. 
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Table 6. Probability of the order selected by APIC for n = 100. 

Model 
Dist. 

of X 
2

0  Order 

Criteria 
              

APIC1 
APIC2 

(AIC) 

APIC3 

(KIC) 
APIC4 

APIClog(n) 

(BIC) APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14 

1 Normal 0.25 Underfitted 0 0.005 0.016 0.031 0.045 0.05 0.078 0.107 0.144 0.199 0.246 0.293 0.341 0.394 0.458 
very 

  
Correct 0.537 0.766 0.856 0.904 0.912 0.914 0.898 0.88 0.849 0.798 0.752 0.706 0.658 0.605 0.542 

weakly 
  

Overfitted 0.463 0.229 0.128 0.065 0.043 0.036 0.024 0.013 0.007 0.003 0.002 0.001 0.001 0.001 0 

p0 = 5  
1 Underfitted 0.115 0.259 0.401 0.505 0.566 0.621 0.704 0.783 0.847 0.893 0.932 0.961 0.977 0.985 0.991 

  
Correct 0.434 0.535 0.502 0.444 0.394 0.351 0.289 0.216 0.153 0.107 0.068 0.039 0.023 0.015 0.009 

   
Overfitted 0.451 0.206 0.097 0.051 0.04 0.028 0.007 0.001 0 0 0 0 0 0 0 

  
9 Underfitted 0.489 0.783 0.916 0.97 0.986 0.988 0.996 0.997 0.999 0.999 0.999 1 1 1 1 

   
Correct 0.174 0.128 0.061 0.027 0.012 0.01 0.004 0.003 0.001 0.001 0.001 0 0 0 0 

   
Overfitted 0.337 0.089 0.023 0.003 0.002 0.002 0 0 0 0 0 0 0 0 0 

 
Uniform 0.25 Underfitted 0.276 0.575 0.763 0.87 0.905 0.922 0.954 0.972 0.985 0.996 0.998 0.999 0.999 1 1 

   
Correct 0.313 0.273 0.201 0.121 0.089 0.074 0.046 0.028 0.015 0.004 0.002 0.001 0.001 0 0 

   
Overfitted 0.411 0.152 0.036 0.009 0.006 0.004 0 0 0 0 0 0 0 0 0 

  
1 Underfitted 0.485 0.808 0.933 0.979 0.986 0.991 0.996 0.999 1 1 1 1 1 1 1 

   
Correct 0.18 0.109 0.055 0.017 0.011 0.008 0.004 0.001 0 0 0 0 0 0 0 

   
Overfitted 0.335 0.083 0.012 0.004 0.003 0.001 0 0 0 0 0 0 0 0 0 

  
9 Underfitted 0.576 0.883 0.958 0.988 0.993 0.998 0.999 1 1 1 1 1 1 1 1 

   
Correct 0.117 0.053 0.024 0.009 0.006 0.002 0.001 0 0 0 0 0 0 0 0 

   
Overfitted 0.307 0.064 0.018 0.003 0.001 0 0 0 0 0 0 0 0 0 0 

2 Normal 0.25 Underfitted 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
weakly 

  
Correct 0.393 0.712 0.873 0.939 0.958 0.966 0.981 0.99 0.996 0.998 0.999 0.999 1 1 1 

p0 = 3   
Overfitted 0.607 0.288 0.127 0.061 0.042 0.034 0.019 0.01 0.004 0.002 0.001 0.001 0 0 0 

 
1 Underfitted 0.001 0.002 0.011 0.029 0.036 0.041 0.063 0.092 0.125 0.162 0.212 0.271 0.338 0.381 0.445 

   
Correct 0.377 0.719 0.856 0.905 0.92 0.929 0.918 0.894 0.866 0.832 0.783 0.727 0.661 0.618 0.554 

   
Overfitted 0.622 0.279 0.133 0.066 0.044 0.03 0.019 0.014 0.009 0.006 0.005 0.002 0.001 0.001 0.001 

  
9 Underfitted 0.193 0.438 0.608 0.726 0.773 0.799 0.852 0.887 0.924 0.95 0.967 0.982 0.988 0.991 0.993 

   
Correct 0.24 0.339 0.304 0.236 0.205 0.183 0.139 0.109 0.075 0.049 0.033 0.018 0.012 0.009 0.007 

   
Overfitted 0.567 0.223 0.088 0.038 0.022 0.018 0.009 0.004 0.001 0.001 0 0 0 0 0 

 
Uniform 0.25 Underfitted 0.048 0.161 0.252 0.352 0.404 0.442 0.528 0.625 0.683 0.756 0.805 0.839 0.868 0.893 0.915 

   
Correct 0.351 0.586 0.635 0.599 0.564 0.532 0.456 0.37 0.314 0.244 0.195 0.161 0.132 0.107 0.085 

   
Overfitted 0.601 0.253 0.113 0.049 0.032 0.026 0.016 0.005 0.003 0 0 0 0 0 0 

  
1 Underfitted 0.21 0.511 0.668 0.786 0.83 0.841 0.892 0.926 0.947 0.967 0.98 0.986 0.993 0.997 0.999 

   
Correct 0.243 0.287 0.259 0.186 0.155 0.148 0.103 0.07 0.051 0.033 0.02 0.014 0.007 0.003 0.001 

   
Overfitted 0.547 0.202 0.073 0.028 0.015 0.011 0.005 0.004 0.002 0 0 0 0 0 0 

  
9 Underfitted 0.363 0.723 0.864 0.92 0.936 0.953 0.974 0.99 0.994 0.995 0.997 0.998 0.998 0.999 0.999 

   
Correct 0.125 0.111 0.079 0.063 0.058 0.042 0.025 0.01 0.006 0.005 0.003 0.002 0.002 0.001 0.001 

   
Overfitted 0.512 0.166 0.057 0.017 0.006 0.005 0.001 0 0 0 0 0 0 0 0 

Note: Boldface type indicates the maximum probability of correct order being selected. 
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Table 6. (Continued). 

Model 
Dist. 

of X 
2

0  Order 

Criteria 
              

APIC1 
APIC2 

(AIC) 

APIC3 

(KIC) 
APIC4 

APIClog(n) 

(BIC) APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14 

3 Normal 0.25 Underfitted 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
strongly 

  
Correct 0.394 0.717 0.88 0.934 0.954 0.962 0.976 0.991 0.996 0.996 0.998 0.998 1 1 1 

p0 = 3   
Overfitted 0.606 0.283 0.12 0.066 0.046 0.038 0.024 0.009 0.004 0.004 0.002 0.002 0 0 0 

 
1 Underfitted 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

   
Correct 0.376 0.71 0.869 0.939 0.955 0.969 0.98 0.988 0.993 0.996 0.996 0.998 0.999 1 1 

   
Overfitted 0.624 0.29 0.131 0.061 0.045 0.031 0.02 0.012 0.007 0.004 0.004 0.002 0.001 0 0 

  
9 Underfitted 0 0 0 0 0 0 0 0 0 0 0.002 0.003 0.007 0.007 0.008 

   
Correct 0.365 0.704 0.855 0.933 0.95 0.959 0.98 0.985 0.989 0.993 0.993 0.993 0.991 0.992 0.991 

   
Overfitted 0.635 0.296 0.145 0.067 0.05 0.041 0.02 0.015 0.011 0.007 0.005 0.004 0.002 0.001 0.001 

 
Uniform 0.25 Underfitted 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

   
Correct 0.404 0.73 0.873 0.942 0.962 0.975 0.985 0.989 0.995 0.998 0.998 0.999 0.999 0.999 1 

   
Overfitted 0.596 0.27 0.127 0.058 0.038 0.025 0.015 0.011 0.005 0.002 0.002 0.001 0.001 0.001 0 

  
1 Underfitted 0 0 0 0 0 0.001 0.001 0.001 0.002 0.005 0.008 0.014 0.021 0.032 0.042 

   
Correct 0.391 0.721 0.867 0.929 0.949 0.961 0.98 0.99 0.993 0.992 0.989 0.985 0.978 0.967 0.958 

   
Overfitted 0.609 0.279 0.133 0.071 0.051 0.038 0.019 0.009 0.005 0.003 0.003 0.001 0.001 0.001 0 

  
9 Underfitted 0.09 0.237 0.386 0.515 0.567 0.604 0.699 0.757 0.813 0.853 0.882 0.916 0.936 0.961 0.969 

   
Correct 0.324 0.506 0.501 0.442 0.405 0.376 0.294 0.237 0.184 0.146 0.117 0.083 0.063 0.038 0.031 

   
Overfitted 0.586 0.257 0.113 0.043 0.028 0.02 0.007 0.006 0.003 0.001 0.001 0.001 0.001 0.001 0 

4 Normal 0.25 Underfitted 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
very 

  
Correct 0.516 0.753 0.858 0.922 0.938 0.951 0.971 0.981 0.991 0.992 0.996 0.998 0.998 0.998 0.999 

strongly 
  

Overfitted 0.484 0.247 0.142 0.078 0.062 0.049 0.029 0.019 0.009 0.008 0.004 0.002 0.002 0.002 0.001 

p0 = 5  
1 Underfitted 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  
Correct 0.52 0.776 0.886 0.94 0.965 0.971 0.981 0.986 0.995 0.996 0.999 0.999 0.999 0.999 0.999 

   
Overfitted 0.48 0.224 0.114 0.06 0.035 0.029 0.019 0.014 0.005 0.004 0.001 0.001 0.001 0.001 0.001 

  
9 Underfitted 0 0 0 0 0 0 0 0 0 0.001 0.002 0.004 0.005 0.008 0.012 

   
Correct 0.527 0.762 0.882 0.93 0.959 0.965 0.978 0.987 0.99 0.992 0.995 0.994 0.993 0.991 0.988 

   
Overfitted 0.473 0.238 0.118 0.07 0.041 0.035 0.022 0.013 0.01 0.007 0.003 0.002 0.002 0.001 0 

 
Uniform 0.25 Underfitted 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

   
Correct 0.546 0.797 0.902 0.944 0.957 0.965 0.981 0.986 0.99 0.993 0.998 0.999 0.999 1 1 

   
Overfitted 0.454 0.203 0.098 0.056 0.043 0.035 0.019 0.014 0.01 0.007 0.002 0.001 0.001 0 0 

  
1 Underfitted 0 0.001 0.001 0.001 0.002 0.002 0.002 0.005 0.006 0.006 0.01 0.017 0.024 0.037 0.048 

   
Correct 0.531 0.781 0.886 0.939 0.957 0.962 0.981 0.982 0.988 0.993 0.989 0.983 0.976 0.963 0.952 

   
Overfitted 0.469 0.218 0.113 0.06 0.041 0.036 0.017 0.013 0.006 0.001 0.001 0 0 0 0 

  
9 Underfitted 0.138 0.314 0.504 0.674 0.741 0.776 0.868 0.929 0.965 0.983 0.99 0.996 0.998 0.998 1 

   
Correct 0.406 0.492 0.417 0.294 0.239 0.212 0.127 0.07 0.035 0.017 0.01 0.004 0.002 0.002 0 

   
Overfitted 0.456 0.194 0.079 0.032 0.02 0.012 0.005 0.001 0 0 0 0 0 0 0 

Note: Boldface type indicates the maximum probability of correct order being selected. 

 

 


