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EXECUTIVE SUMMARY

Background

The problem of choosing the appropriate regression models from a class of
candidate models to characterize the study data is a key issue. In real life, we may not
know what the true model is, but we hope to find a model that is a reasonably accurate
representation. A model selection criterion represents a useful tool to judge the
propriety of a fitted model, by assessing whether it offers an optimal balance between
goodness of fit and parsimony. The first model selection criterion to gain widespread
acceptance was Akaike information criterion, AIC (Akaike, 1973, 1974; Bedrick and
Tsai, 1994). This serves as an asymptotically unbiased estimator of a variant of
Kullback’s directed divergence between the true model and a fitted approximating
model. The directed divergence, also known as the Kullback-Leibler information, the
I-divergence, or the relative entropy, assesses the dissimilarity between two statistical
models. Other well-known criteria were subsequently introduced and studied such as,
Bayesian information criterion, BIC (Schwarz, 1978; Gorobets, 2005), and Kullback
information criterion, KIC (Cavanaugh, 1999; Hafidi and Mkhadri, 2006). BIC is an
asymptotic approximation to a transformation of Bayesian posterior probability of a
candidate model (Neath and Cavanaugh, 1997). KIC is a symmetric measure, meaning
that an alternate directed divergence may be obtained by reversing the roles of the two
models in the definition of the measure. The sum of two directed divergences is
Kullback’s symmetric divergence, also known as the J-divergence (Cavanaugh, 1999;
Cavanaugh, 2004). Although AIC remains arguably the most widely used model
selection criterion, BIC and KIC are popular competitors. In fact, BIC is often
preferred over AIC by practitioners who find appeal in either its Bayesian justification
or its tendency to choose more parsimonious models than AIC (Neath and Cavanaugh,
1997). Likewise, KIC is a symmetric measure which combines the information in two
related, though distinct measures; its functions as a gauge of model disparity that is
arguably more sensitive than AIC that corresponds to only individual component
(Cavanaugh, 1999; Cavanaugh, 2004). However, AIC, BIC, and KIC still have the



problems of weak signal-to-noise ratios and high probabilities of overfitting when the
sample size is not large enough which both problems have an effect on the frequency
of selection the correct model. With this motivation, the aim of this research is to
propose a model selection criterion to overcome the weak signal-to-noise ratio and to
reduce the probability of over/underfitting by adjusting the penalty term of the model
selection criterion, called adjusted penalty information criterion, denoted by APIC.
The proposed criterion performance is examined by the extensive simulation study
relative to the well-known criteria, AIC, BIC, and KIC, under various circumstances
as follows (McQuarrie, Shumway, and Tsai, 1997; McQuarrie, 1999; Mills and
Prasad, 2007; Rahman and King, 2007).
e Sample sizes (n) are difference,

e Orders of true model ( p,) are difference,
e Regression coefficients ( B) are difference,

e Variances of error terms (o) are difference,

e Distributions of independent variables (Dist. of X) are difference.

The criterion is classified to be the best when it has the strong signal-to-noise
ratio, has the lowest probability of over/underfitting, and has the maximum frequency

of correct order being selected.

Objectives of the Research

The objectives of this research are as follows:

1) To derive the model selection criterion in order to overcome the weak signal-
to-noise ratio and to reduce the probability of over/underfitting in univariate
regression model, called adjusted penalty information criterion (APIC).

2) To examine the performance of APIC, the proposed model selection
criterion, relative to the well-known criteria, AIC, BIC, and KIC, under various
circumstances as follows:

e Sample sizes (n) are difference,

o Orders of true model ( p,) are difference,

¢ Regression coefficients ( ) are difference,



e Variances of error terms (o) are difference,

e Distributions of independent variables (Dist. of X) are difference.

Methodologies

The methodologies of this research are as follows:

1) Derive the model selection criterion in order to overcome the weak signal-to-
noise ratio and to reduce the probability of over/underfitting in univariate regression
model, called adjusted penalty information criterion, denoted by APIC.

2) Use the SAS programming to simulate the univariate regression model under
various circumstances as follows:

e Sample sizes (n) are difference,

e Orders of true model ( p,) are difference,
e Regression coefficients ( B) are difference,

e Variances of error terms (o) are difference,
e Distributions of independent variables (Dist. of X) are difference.
3) Examine the properties of the model must be consistent with step 2.
4) Calculate the values of APIC, the proposed model selection criterion, and
those of well-known criteria, AIC, BIC, and KIC, under various circumstances in step 2.
5) Examine the performance of APIC, the proposed model selection criterion,
relative to the well-known criteria, AIC, BIC, and KIC, under various circumstances in
step 2. The criterion is classified to be the best when it has the strong signal-to-noise
ratio, has the lowest probability of over/underfitting, and has the maximum frequency

of correct order being selected.



Plans of the Research

The plans of the research are as follows:

Activities

Jun
15,
2014

Dec
14,
2014

Dec
15,
2014

Jun
14,
2015

Jun
15,
2015

Dec
14,
2015

Dec
15,
2015

Jun
14,
2016

1) Derive the model selection criterion in order to overcome the weak
signal-to-noise ratio and to reduce the probability of over/underfitting
in univariate regression model, called adjusted penalty information
criterion, denoted by APIC.

2) Use the SAS programming to simulate the univariate regression

model under various circumstances as follows:
e Sample sizes (n) are difference,
e Orders of true model ( p,) are difference,
e Regression coefficients ( B ) are difference,
e Variances of error terms (o?) are difference,

e Distributions of independent variables (Dist. of X ) are
difference.

3) Examine the properties of the model must be consistent with step 2.

4) Calculate the values of APIC, the proposed model selection
criterion, and those of well-known criteria, AIC, BIC, and KIC, under

various circumstances in step 2.

5) Examine the performance of APIC, the proposed model selection
criterion, relative to the well-known criteria, AIC, BIC, and KIC, under
various circumstances in step 2. The criterion is classified to be the
best when it has the strong signal-to-noise ratio, has the lowest
probability of over/underfitting, and has the maximum frequency of

correct order being selected.
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ABSTRACT

This research proposed a model selection criterion in order to overcome the
weak signal-to-noise ratio and to reduce the probability of over/underfitting by

adjusting the penalty term of the well-known model selection criteria (AIC, BIC,
KIC), called adjusted penalty information criterion, APIC=Iog(62)+a(p+l)/n.

Criterion is classified to be the best when it has the strong signal-to-noise ratio, lowest
probability of over/underfitting and maximum probability of correct order being
selected. The theoretical results show that, if the value of « tends to infinity, the
probability of overfitting tends to zero and the signal-to-noise ratio tends to strong,
but the probability of underfitting tends to one. The simulation results show that,
when the true model is difficult to identify, distributions of independent variables are
normal or uniform, the appropriate « is small. But for the independent variables are
normal distributed, sample size increases and variances of error terms are small to
moderate, « should be moderate. If the true model is easily to identify, distribution of
independent variables is normal and variances of error terms are small to moderate,
the appropriate « is large. When the variance of error terms increases, « should be
moderate. If the distribution of independent variables changes to be uniform and

variances of error terms are small to moderate, « should be moderate, otherwise «



should be small. If the variance of error terms increases, the validity of APIC

decreases, but when the sample size increases, the validity of APIC also increases.

Keywords: Kullback’s directed divergence, Kullback’s symmetric divergence, model
selection.
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CHAPTER 1

INTRODUCTION

1.1 Background

The problem of choosing the appropriate regression models from a class of
candidate models to characterize the study data is a key issue. In real life, we may not
know what the true model is, but we hope to find a model that is a reasonably accurate
representation. A model selection criterion represents a useful tool to judge the
propriety of a fitted model, by assessing whether it offers an optimal balance between
goodness of fit and parsimony. The first model selection criterion to gain widespread
acceptance was Akaike information criterion, AIC (Akaike, 1973, 1974; Bedrick and
Tsai, 1994). This serves as an asymptotically unbiased estimator of a variant of
Kullback’s directed divergence between the true model and a fitted approximating
model. The directed divergence, also known as the Kullback-Leibler information, the
I-divergence, or the relative entropy, assesses the dissimilarity between two statistical
models. Other well-known criteria were subsequently introduced and studied such as,
Bayesian information criterion, BIC (Schwarz, 1978; Gorobets, 2005), and Kullback
information criterion, KIC (Cavanaugh, 1999; Hafidi and Mkhadri, 2006). BIC is an
asymptotic approximation to a transformation of Bayesian posterior probability of a
candidate model (Neath and Cavanaugh, 1997). KIC is a symmetric measure, meaning
that an alternate directed divergence may be obtained by reversing the roles of the two
models in the definition of the measure. The sum of two directed divergences is
Kullback’s symmetric divergence, also known as the J-divergence (Cavanaugh, 1999;
Cavanaugh, 2004). Although AIC remains arguably the most widely used model
selection criterion, BIC and KIC are popular competitors. In fact, BIC is often
preferred over AIC by practitioners who find appeal in either its Bayesian justification
or its tendency to choose more parsimonious models than AIC (Neath and Cavanaugh,
1997). Likewise, KIC is a symmetric measure which combines the information in two

related, though distinct measures; its functions as a gauge of model disparity that is



arguably more sensitive than AIC that corresponds to only individual component
(Cavanaugh, 1999; Cavanaugh, 2004). However, AIC, BIC, and KIC still have the
problems of weak signal-to-noise ratios and high probabilities of overfitting when the
sample size is not large enough which both problems have an effect on the frequency
of selection the correct model. With this motivation, the aim of this research is to
propose a model selection criterion to overcome the weak signal-to-noise ratio and to
reduce the probability of over/underfitting by adjusting the penalty term of the model
selection criterion, called adjusted penalty information criterion, denoted by APIC.
The proposed criterion performance is examined by the extensive simulation study
relative to the well-known criteria, AIC, BIC, and KIC, under various circumstances
as follows (McQuarrie, Shumway, and Tsai, 1997; McQuarrie, 1999; Mills and
Prasad, 2007; Rahman and King, 2007).

e Sample sizes (n) are difference,

e Orders of true model ( p,) are difference,
e Regression coefficients ( 4 ) are difference,

e Variances of error terms (o) are difference,

e Distributions of independent variables (Dist. of X) are difference.

The criterion is classified to be the best when it has the strong signal-to-noise
ratio, has the lowest probability of over/underfitting, and has the maximum frequency

of correct order being selected.



1.2 Objectives of the Research

The objectives of this research are as follows:

1) To derive the model selection criterion in order to overcome the weak signal-
to-noise ratio and to reduce the probability of over/underfitting in univariate
regression model, called adjusted penalty information criterion (APIC).

2) To examine the performance of APIC, the proposed model selection
criterion, relative to the well-known criteria, AIC, BIC, and KIC, under various
circumstances as follows:

e Sample sizes (n) are difference,

e Orders of true model ( p,) are difference,
e Regression coefficients ( 4 ) are difference,

e Variances of error terms (o) are difference,

e Distributions of independent variables (Dist. of X) are difference.
1.3 Scope of the Research

In this research, the model selection criterion focuses on the univariate
regression model (Montgomery, Peck, and Vining, 2006),
y=XB+eg, (1.2)
where y is an nx1 dependent random vector of observations, X isa nx p matrix of
independent variables with full-column rank, B is a px1 parameter vector of

regression coefficients, € is an nx1 error vector with zero mean and variance &°l,.

The maximum likelihood estimators of B and o are, respectively,

B=(X'X)" Xy and & :%(y—xﬁ)'(y—xﬁ). (1.2)



CHAPTER 2

LITERATURE REVIEW

The generating or true univariate regression model to consider in this research is

in the form (Montgomery, Peck, and Vining, 2006)

y=XB+&, (2.1)
and the candidate or approximating univariate regression model is in the form
y=XB+eg, (2.2)

where Yy is an nx1 dependent random vector of observations, X, and X are nxp,
and nx p matrices of independent variables with full-column rank, respectively, B,
and B are p,x1 and px1 parameter vectors of regression coefficients, respectively,
g, and ¢ are nx1 error vectors with zero means and variances o1, and &’l,,

respectively. The maximum likelihood estimators of B and o are, respectively,

B=(XX)" Xy and & :%(y—xﬁ)' (y—xﬁ). (2.3)

For each data set, we can construct many fitted candidate models. Nevertheless,
we cannot know which model is the best. Criterion for model selection is a way to
solve this problem. AIC, BIC, and KIC are three well-known criteria to consider in
this research. Many authors usually scale these criteria by 1/n in order to express them

as a rate per observation. The formulae for them are based on the following form,

1
Model Selection Criterion = MSC = Iog(&2)+@. (2.4)

When the values of « in (2.4) are equal to 2, log(n), and 3, MSC becomes AIC
(Akaike, 1973, 1974), BIC (Schwarz, 1978), and KIC (Cavanaugh, 1999),

respectively, i.e.,

AIC = Iog(&2)+ 2 pn+1) : (2.5)

BIC = log(5°) + L 100(1) 2.




KIC = Iog(&2)+3(p+1). 2.7)
n

In this research, the methods used to compare which criterion is the best are the
ratio of signal-to-noise and the probability of over/underfitting. McQuarrie and Tsali
(1998) defined the signal-to-noise ratio as a measurement that is basically a ratio of
the expectation to the standard deviation of the difference in criterion values for two
models. The ratio tends to assess whether the penalty term is sufficiently strong in

relation to the goodness of fit term. From the true model order p, and a candidate
model order p,+1 where | >0, the true model is considered better than a candidate
model if the criterion value of a model of order p, is less than that of order p,+I,
MSCy, <MSCy,.i- Then the signal-to-noise ratio that the true model is selected
compared to a candidate model is

signal  E[MSC,.1—MSCy,

noise sd I:MSC po+l T MSC Po
E Iog(ﬁfw.)+aw°:l+1)—'°9(&2 )‘a(pﬁl)}

sd[log(c}2 )+a(p°:|+1)_|og(52 )_0‘(p0+1)}

Po+l

(2.8)

= " .
sd {Iog [Gp‘{'] + al}
62 ) n

In order to find the signal in (2.8), we apply the second-order of Taylor’s series
expansions as follows. Suppose X ~ z2, expanding log(X) about E(X)=p, we

have
Iog(X)&Iog(p)+%(X - p)—z—tz(x —p)* and E[log(X)]= Iog(p)—%.

(2.9)



Under the assumption of nested models; p> p, and | >0, we have

2
p+l

2
p+l

2
p+l

(2.10)

N(62-62,)~0osxi, N6 ~oey% . and 62 -6, s independent of &

where y? represents the chi-square distribution with k degrees of freedom.

Using the result of Taylor’s series expansions in (2.9) and the assumptions in
(2.10), we have

E{Iog(njj H: E[mg(n&ﬁ)]— E[|og(a§)}i log(n— p)—rlp,

0

then

E[Iog(n&f))]ﬁIog(a§)+log(n— p)—rlp. (2.11)

From (2.11), the signal in (2.8) is approximated by

G2, |
E[ MSC 5.1 —~MSC , | = Ellog(f’—‘;' +£
Gpo n

= E[Iog(n&f,o+I )}— E[Iog(n&ﬁo )}+%I
L W N S O

— n_po_l _ I ZI
"°g( s j (—p(n-py) 1 212

In order to find the noise in (2.8), we use the assumptions in (2.10), then we

have

né 2
Q = P0+| — z“—po" (2.13)

2 2!
Po Z”—Po" T2

the Q-statistic in (2.13) has the Beta distribution

n—p,-I Ij
~Beta| —2—, — |,
Q ea( > >



and the log-distribution is

ng? |

log(Q) =log (#J ~log -Beta(n_%"_', E]' (2.14)
Po

Using the first-order of Taylor’s series expansions when X ~ ;(5, we expand

log(X) about E(X)=p as follows:
Iog(X)iIog(p)+%(X -p). (2.15)

Applying (2.15) to expand log(Q) in (2.14) about

n—p,—I
_ 2 _nh—p, -1
E(Q)_”—F’o—'+'_ n-p, '
2 2
we have
log(Q) = log| "=Pe=l |, N=Po_fo NPl (2.16)
N—P, n—p0—| n—p,

The variance of Iog(Q) in (2.14) is approximated by the variance Iog(Q) in
(2.16) as follows:

var[ log(Q)] = var| log na—‘)g*'ﬂ

n—p,—I
(-n.) -
_ 0
(n_po_|)2 (n_po_l_'_ljz(n_po_l |+1]
2 2 2 2

- (2.17)



Therefore, the standard deviation of log(Q) in (2.17) or the approximate noise

in (2.8) is

A2 n n2
sd [MSC 0+l —MSC p0] =sd {Iog [Gf";*' }Lﬂ} =sd [Iog[ Gf";*' J]
GPO n nUpo

\/ﬁ .
\j(n— Po—1)(N—py+2)

Combined the approximations of signal in (2.12) and noise in (2.18) to be the

(2.18)

=sd[log(Q)]=

approximate signal-to-noise ratio in (2.8) as follows:

signal E[MSC p+1 ~ MSCop,
noise  sd I:MSC [ MSC p0:|

i\/(”_|°o—')(”—I00+2){Iog(n—pO—Ij_( | o

V2l —py ) (n=pe=1)(n=py) N

(2.19)
Replacing the values of «a in (2.19) by 2, Iog(n), and 3, we have the
approximate signal-to-noise ratios for AIC, BIC, and KIC, respectively, i.e.,

E[AIC, , -AIC, |
sd[ AIC, ,, - AIC, ]

iJ(”—po—yzﬂ“p°+2){|og(“‘p°"}( ' +2—'] (2.20)

E[BIC, , -BIC, |
sd[ BIC, , -BIC

N
i\/(n—|oo—l)2(|n—|oo+2){log[n—po—lj_( | +Ilog(n)}




E[KIC, , -KIC, |
sd[KIC, , -KIC, |

N e s | e N |
- & [' 9( ", ] (P -N(n-p) n| &%

The probability of overfitting is the second method used to compare which

criterion is the best. It is defined based on a model that has more parameters than the
optimal model (Seghouane, 2006). The probabilities of the criteria AIC, BIC, and KIC
preferring the overfitted model by | extra variables are analyzed here by comparing
the true model of order p, to a more complex model or overfitted model of order
p, +1, I >0. Hence for finite n, the probability that MSC prefers the overfitted model

is defined by
a(p0+l+1)<log( A
n

6 )+M}

2
Po n

) A2 A2 A2
(o} O o, — O

= P<log| == SAl_p — >exp(—alj =Pt >exp(—alj—l .
O-p0+| n Gp0+l n Gp0+l n

(2.23)
Using the assumptions in (2.10), the probability of overfitting by | extra
variables for MSC in (2.23) becomes

2 |
P{MSC 5,11 <MSCp,} =P ZZ' > eXp(ﬁj—l
Zn—po—l n

= P{E’n_po_, >W{exp(%j—l}} (2.24)

Replacing the values of «a in (2.24) by 2, Iog(n), and 3, we have the

P{MSC po+ <MSC Po} = P{Iog(&§0+| )+

probabilities of overfitting by | extra variables for AIC, BIC, and KIC, respectively,

ie.,

n

P{AIC, ., <AIC, |= P{F > W[exp(z—']—lﬂ, (2.25)
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P{BIC,, <BIC, | = P{F,Yn_po_, >0 TO - {exp(l 'Oi(“)j_l} } (2.26)

P{KIC, , <KIC, }= P{ﬁn_po_, >¥0_I{exp(%j—l}}. (2.27)

From (2.20) until (2.22) and (2.25) until (2.27), we found that the signal-to-
noise ratios and probabilities of overfitting from AIC, BIC, and KIC depend on the
values of « in (2.4). Therefore, any criterion has the value of « is greater than 2

(from AIC), or greater than log(n) (from BIC), or greater than 3 (from KIC), means

that the signal-to-noise ratio tend to strong and the model tends to less overfitting.
However, if the values of « is too large the signal-to-noise ratio becomes weak in the
underfitting case, and the model selection criterion will be prone to underfitting.
McQuarrie and Tsai (1998) concluded that, a strong signal-to-noise ratio refers to a
large positive value (often greater than 2) and then leads to small probability of
overfitting. A weak signal-to-noise ratio usually refers to one that is small (less than
0.5) or negative and then results in high probability of overfitting. The model
selection criterion that has strong signal-to-noise ratio and lowest probability of

overfitting is preferable.



CHAPTER 3

METHODOLOGY

This research attempted to derive the model selection criterion in order to
overcome the weak signal-to-noise ratio and to reduce the probability of
over/underfitting in univariate regression model, called adjusted penalty information
criterion (APIC) and to examine the performance of APIC relative to the well-known
criteria, AIC, BIC, and KIC, under various circumstances as follows:

e Sample sizes (n) are difference,

e Orders of true model ( p,) are difference,

o Regression coefficients ( B) are difference,

e Variances of error terms (o) are difference,

e Distributions of independent variables (Dist. of X) are difference.

Recalled the equation (2.4) in Chapter 2 as

APIC = |og(&2)+@. 3.1)

APIC in (3.1) has the signal-to-noise ratio as shown in the equation (2.19),

signali\/(n—po—|)(n—po+2){log{n—pO—Ij_( ! La]

noise J21 -p n—p,—-1)(n-p,) n
(3.2)

In (3.2), we found that the signal-to-noise ratio of APIC depends on the value of
a as mention earlier. When we replace the values of « by 2, log(n) and 3, we have
the signal-to-noise ratios of AIC, BIC and KIC, respectively. If the value of « tends

to infinity under the same values of the sample size (n), the order of true model ( p, )

and the additional variable (I) , APIC has a strong signal-to-noise ratio. The proof of

the signal-to-noise ratio can be confirmed numerically in Table 3.1. The example of

the calculation for the signal-to-noise ratio of APIC, for n=15, p,=3, | =1 and

a=1, is as follows:



12

sr:grsael . (135(14) {Iog (%j _ (11)1(12) n %} = —0.2450.

From Table 3.1 we found that when the sample size is small (n = 15), KIC has a
strong signal-to-noise ratio than BIC and AIC, respectively, because the value of & in
(3) from KIC is larger than BIC and AIC, respectively (3 > log(15) > 2). Whereas the
sample size are moderate to large (n = 30, 100), BIC has a strong signal-to-noise ratio
than KIC and AIC, respectively, because the value of « in (3) from BIC is larger than
KIC and AIC, respectively (log(30) or log(100) > 3 > 2). Therefore, we can conclude
that, APIC with a much more value of o, make its signal-to-noise to be strong.
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Table 3.1 Signal-to-noise ratio of APIC ¢ for different values of n, p, and .

Criteria
n Po | APIC2 APIC APIC3
APIC1 log(n) APIC4 APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14
(AIC) (BIC) (KIC)
15 3 1 -0.2450 0.3400 0.7542 0.9250 1.5100 2.0950 2.6800  3.2650 3.8500  4.4350 5.0200 5.6050 6.1900 6.7750 7.3600
15 3 2 -0.3884 0.4004 0.9589 1.1892 1.9780 2.7668 35556  4.3444  5.1333 5.9221 6.7109 7.4997 8.2885  9.0773 9.8661
15 3 3 -05291 0.3874 1.0364 1.3039 2.2204 3.1370  4.0535  4.9700 5.8865 6.8030 7.7195 8.6360 9.5526  10.4691  11.3856
15 3 4 -06752 0.3225 1.0290 1.3203 2.3181 3.3159 43136 5.3114  6.3092 7.3070 8.3047 9.3025 10.3003 11.2981  12.2958
15 5 1 -0.3660 0.1239 0.4708 0.6138 1.1037 1.5936 2.0835 25734  3.0633 35532 4.0431  4.5330 5.0229  5.5128 6.0027
15 5 2 -05625 0.0907 0.5532 0.7439 1.3971 2.0503 27035 3.3567 4.0099 4.6631 5.3163 5.9695 6.6227  7.2759 7.9291
APIC2 APIC3 APIC
n Po | APIC1 log(n) APIC4 APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14
(AIC)  (KIC) (BIC)
30 3 1 -0.1132 0.5340 1.1812 1.4409 1.8284 2.4756 3.1229  3.7701  4.4173 5.0645 5.7117 6.3589 7.0062  7.6534 8.3006
30 3 2 -01785 0.7190 1.6166 1.9767 2.5141 34116  4.3092  5.2067 6.1042 7.0017 7.8993 8.7968 9.6943 10.5918  11.4894
30 3 3 -0.2414 0.8356 1.9127 2.3448 2.9897  4.0667 5.1438  6.2208 7.2978 8.3749 94519 10.5289 11.6060 12.6830  13.7600
30 3 4 -03054 0.9120 2.1295 2.6179 3.3470  4.5644 5.7819  6.9994  8.2168 9.4343 10.6518 11.8692 13.0867 14.3041 15.5216
30 5 1 -0.1648 0.4352 1.0352 1.2759 1.6352 2.2352 2.8352 3.4352 4.0352  4.6352 5.2352 5.8352 6.4352  7.0352 7.6352
30 5 2 -02516 0.5791 1.4097 1.7430 2.2404 3.0710 3.9017 47324  5.5630 6.3937 7.2244  8.0550 8.8857  9.7163 10.5470
APIC2  APIC3 APIC
n po | APIC1 APIC4 log(n) APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APICl14
(AIC) (KIC) (BIC)
100 3 1 -0.0324 0.6569 1.3463 2.0356 2.4528 2.7250 3.4143 41037  4.7930 54824  6.1717 6.8611 7.5504  8.2398 8.9291
100 3 2 -0.0510 0.9188 1.8886 2.8584 3.4453 3.8282 47980  5.7678 6.7376 7.7074  8.6772 9.6470 10.6168 11.5866  12.5564
100 3 3 -0.0687 1.1128 2.2942 3.4757 41907  4.6572 5.8387  7.0202 8.2016 9.3831 10.5646 11.7461 12,9276 14.1091  15.2905
100 3 4 -0.0867 1.2703 2.6273 3.9843  4.8055 5.3413 6.6982  8.0552 9.4122 10.7692 12,1262 13.4831 14.8401 16.1971  17.5541
100 5 1 -0.0469 0.6283 1.3035 1.9787 2.3874 2.6539 3.3292 4.0044  4.6796 5.3548 6.0300 6.7052 7.3804  8.0556 8.7308
100 5 2 -0.0714 0.8784 1.8282 2.7780 3.3527 3.7277 46775  5.6273 6.5771 7.5269 8.4767 9.4265 10.3763 11.3261 12.2758
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Similarly, APIC in (3.1) has the probability of overfitting as shown in the
equation (2.24),

- |
P{APIC . < APIC,, | = P{F,,n_po_I > %{exp[%)—l} } (3.3)

In the opposite, the probability of underfitting is defined based on a model with
too few variables compared to the optimal model (Seghouane, 2006). It is defined by

a(p0—|+1) <|og((§$ )+a(p0+l)}
n 0 n

A2 ~2 A2 A2
=P log —Jf"z" <il =P —Gf";" <exp(a—l) =P —Gp""Az o <exp(ﬂj—1
Gy, n o n G n
2 f—
= )2(' < exp(ﬂj—l = P{Fl,n—po < n— P [exp[ﬂj—l}} (3.4)
X, n | n

In (3.3) and (3.4), we found that APIC’s probability of over/underfitting
depends on the value of a same as the signal-to-noise ratio. When we replace the

P{APICDO—| < APIC Po} = P{Iog(&ﬁo‘l )+

values of a by 2, Iog(n) and 3, we have the probabilities of over/underfitting of

AIC, BIC and KIC, respectively. If the value of « tends to infinity under the same
values of n, p, and |, APIC having the low probability of overfitting but it will be
prone to underfitting. The proof of the probability of over/underfitting can be
confirmed numerically in Table 3.2 and 3.3. The example of the calculation for the

probability of overfitting by | extra variables of APIC, for n=15, p,=3, I =1 and
a =1, is as follows:

P{APIC, , <APIC, } =P{F, ,, >0.7583 } =0.4025.

It means that APIC for o =1 would select the model whose order is higher by
one order than true model with a probability of 0.4025. In the same manner, the

probability of underfitting by | variables of APIC for this case is
P{APIC, , <APIC, } =P{F, , <0.8273} =0.6190.

It means that APIC for a =1 would select the model whose order is lower by
one order than true model with a probability of 0.6190. The model selection criterion
that has strong signal-to-noise ratio and lowest probability of over/underfitting is
preferable.
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Table 3.2 Probability of overfitting by | extra variables of APIC & for different values of n, p, and I.

Criteria
n Po | APIC2 APIC APIC3
APIC1 log(n) APIC4 APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14
(AIC) (BIC) (KIC)
15 3 1 04025 0.2363 0.1682 0.1469 0.0939 0.0611 0.0402  0.0266 0.0178 0.0119 0.0080 0.0054  0.0037  0.0025 0.0017
15 3 2 05134 0.2636 0.1644 0.1353 0.0695 0.0357 0.0183  0.0094  0.0048 0.0025 0.0013 0.0007 0.0003  0.0002 0.0001
15 3 3 05947 0.2857 0.1631 0.1287 0.0561 0.0240 0.0101  0.0042 0.0018 0.0007 0.0003 0.0001 0.0001  0.0000 0.0000
15 3 4 06664 0.3143 0.1701 0.1305 0.0508 0.0190 0.0070  0.0025 0.0009 0.0003 0.0001 0.0000 0.0000  0.0000 0.0000
15 5 1 04511 0.2865 0.2148 0.1917 0.1316 0.0918 0.0647  0.0460 0.0329 0.0236 0.0170 0.0123 0.0089  0.0065 0.0047
15 5 2 05866  0.3442 0.2359 0.2019 0.1184 0.0695 0.0408  0.0239 0.0140 0.0082 0.0048 0.0028 0.0017  0.0010 0.0006
APIC2 APIC3 APIC
n Po | APIC1 (AIC) (KIC) I(og(ng APIC4 APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14
BIC
30 3 1 0355 0.1922 0.1102 0.0890 0.0651 0.0392 0.0239  0.0147 0.0091 0.0057 0.0035 0.0022 0.0014  0.0009 0.0006
30 3 2 04346 0.1889 0.0821 0.0588 0.0357 0.0155 0.0067  0.0029 0.0013 0.0006 0.0002 0.0001 0.0000  0.0000 0.0000
30 3 3 04846 0.1795 0.0617 0.0397 0.0204 0.0066 0.0021  0.0007 0.0002 0.0001 0.0000 0.0000 0.0000  0.0000 0.0000
30 3 4 05256 0.1720 0.0482 0.0282 0.0125 0.0031 0.0007  0.0002 0.0000 0.0000 0.0000 0.0000 0.0000  0.0000 0.0000
30 5 1 03761 0.2106 0.1252 0.1026 0.0766 0.0478 0.0301  0.0192 0.0123 0.0079 0.0051 0.0033 0.0022  0.0014 0.0009
30 5 2 04646 0.2158 0.1003 0.0737 0.0466 0.0216 0.0101  0.0047 0.0022 0.0010 0.0005 0.0002 0.0001  0.0000 0.0000
APIC2  APIC3 APIC
n po | APIC1 APIC4 log(n) APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APICl14
(AIC) (KIC) (BIC)
100 3 1 03284 0.1670 0.0905 0.0506 0.0360 0.0289 0.0167  0.0097 0.0057 0.0034  0.0020 0.0012 0.0007  0.0004 0.0003
100 3 2 03867 0.1496 0.0578 0.0224 0.0126 0.0087 0.0033  0.0013 0.0005 0.0002 0.0001 0.0000 0.0000  0.0000 0.0000
100 3 3 04178 0.1288 0.0367 0.0100 0.0045 0.0027 0.0007  0.0002 0.0000 0.0000 0.0000 0.0000 0.0000  0.0000 0.0000
100 3 4 04395 0.1109 0.0236 0.0046 0.0017 0.0009 0.0002  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  0.0000 0.0000
100 5 1 0333 0.1715 0.0940 0.0531 0.0380 0.0306 0.0179  0.0105 0.0062 0.0037 0.0022 0.0013 0.0008  0.0005 0.0003
100 5 2 03946 0.1557 0.0614 0.0242 0.0138 0.0096 0.0038  0.0015 0.0006 0.0002 0.0001 0.0000 0.0000  0.0000 0.0000
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Table 3.3 Probability of underfitting by | variables of APIC o for different values of n, p, and .

Criteria
n Po | APIC2 APIC APIC3
APIC1 log(n) APIC4 APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14
(AIC) (BIC) (KIC)
15 3 1 06190 0.7847 0.8507 0.8709 0.9204 0.9500 0.9682  0.9796 0.9869 0.9915 0.9945 0.9964  0.9976  0.9984 0.9990
15 3 2 05507 0.7981 0.8854 0.9093 0.9592 0.9817 0.9918  0.9963 0.9983 0.9993 0.9997 0.9998 0.9999 1.0000 1.0000
15 3 3 05238 0.8272 0.9197 0.9418 0.9811 0.9940 0.9981  0.9994  0.9998 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000
15 3 4 05146 0.8581 0.9464 0.9646 0.9918 0.9982 0.9996  0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
15 5 1 05743 0.7401 0.8102 0.8324 0.8890 0.9253 0.9491  0.9651 0.9759 0.9833 0.9883 0.9918 0.9943  0.9960 0.9972
15 5 2 04866 0.7364 0.8356 0.8647 0.9305 0.9643 0.9817  0.9906 0.9952 0.9975 0.9987 0.9993 0.9997  0.9998 0.9999
APIC2 APIC3 APIC
n Po | APIC1 (AIC) (KIC) I(og(ng APIC4 APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14
BIC
30 3 1 06528 0.8163 0.8965 0.9170 0.9399 0.9645 0.9787  0.9871 0.9922 0.9952 0.9971 0.9982 0.9989  0.9993 0.9996
30 3 2 05934 0.8347 0.9328 0.9532 0.9727 0.9889 0.9955  0.9982 0.9993 0.9997 0.9999 0.9999 1.0000 1.0000 1.0000
30 3 3 05680 0.8612 0.9588 0.9750 0.9882 0.9967 0.9991  0.9998 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
30 3 4 05561 0.8863 0.9754 0.9870 0.9951 0.9991 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
30 5 1 06339 0.7988 0.8825 0.9045 0.9294 0.9567 0.9732  0.9832 0.9894  0.9933 0.9957 0.9973 0.9983  0.9989 0.9993
30 5 2 05654 0.8111 0.9179 0.9412 0.9643 0.9845 0.9933  0.9971 0.9987 0.9994  0.9998 0.9999 1.0000 1.0000 1.0000
APIC2  APIC3 APIC
n po | APIC1 APIC4 log(n) APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APICl14
(AIC) (KIC) (BIC)
100 3 1 06741 0.8352 0.9111 0.9506 0.9650 0.9720 0.9839  0.9907 0.9945 0.9968 0.9981 0.9989 0.9993  0.9996 0.9998
100 3 2 0.6209 0.8563 0.9455 0.9793 0.9885 0.9922 0.9970  0.9989 0.9996 0.9998 0.9999 1.0000 1.0000 1.0000 1.0000
100 3 3 0597 0.8808 0.9676 0.9915 0.9963 0.9978 0.9995  0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
100 3 4 05830 0.9023 0.9808 0.9965 0.9988 0.9994 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
100 5 1 0.6690 0.8308 0.9078 0.9481 0.9630 0.9703 0.9827  0.9899 0.9940 0.9965 0.9979 0.9987 0.9992  0.9995 0.9997
100 5 2 0.6133 0.8504 0.9422 0.9776 0.9874 0.9913 0.9967  0.9987 0.9995 0.9998 0.9999 1.0000 1.0000 1.0000 1.0000
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From Table 3.2 and 3.3 we found that when the sample size is small (n = 15),
KIC has probability of overfitted less than BIC and AIC, respectively, in the opposite
it has more probability of underfitted because the value of « in the equation (3.1)
from KIC is larger than BIC and AIC, respectively (3 > log(15) > 2). Whereas the
sample size are moderate to large (n = 30, 100), BIC has probability of overfitted less
than KIC and AIC, respectively, in the opposite it has more probability of underfitted
because the value of o in (3) from BIC is larger than KIC and AIC, respectively
(log(30) or log(100) > 3 > 2). Therefore, we can conclude that, APIC with a much
more value of «, make its probability of overfitting to be smaller but make more
probability of underfitting. As a result, the main objective of this research is to find
the appropriate value of «, by proving and verifying the result of study with
simulation data, in order to make the strength of penalty function in the model
selection criterion. The proposed criterion, APIC tries to overcome the weak signal-
to-noise ratio and to reduce the probability of over/underfitting in order to select the
most correct model for univariate regression. Then, the performance of APIC is
examined relative to the well-known criteria, AIC, BIC, and KIC, under various
circumstances such as differences in sample sizes, the orders of true model, the
regression coefficients, the variances of error terms, and the distributions of
independent variables (McQuarrie, Shumway, and Tsai, 1997; McQuarrie, 1999;
Mills and Prasad, 2007; Rahman and King, 2007).



CHAPTER 4

SIMULATION STUDY

In addition to the proofs of signal-to-noise ratio in (3.2) and the probability of
over/underfitting in (3.3) and (3.4), we use the simulation data to find the appropriate
value of o for APIC in (3.1). True multiple regression models in (2.1) are constructed
as follows.

Model 1 (very weakly identifiable true model with the true order p, =5):
y, =1+0.5X, +0.4X, +0.3X, +0.2X, + &,

Model 2 (weakly identifiable true model with the true order p, =3):

y, =1+0.5X,+0.4X, +¢,,

Model 3 (strongly identifiable true model with the true order p, =3):

Y, =14+2X, +2X, + &,

Model 4 (very strongly identifiable true model with the true order p, =5):
Y, =1+2X,+2X,+2X,+2X; +¢&,.

For each model, we consider 1,000 realizations for three levels of the sample

sizes which are n = 15 (small), n = 30 (moderate) and n = 100 (large). The error terms

for all models are assumed to be N (O, 05) where o in (2.1) is assumed equal to

three levels: 0.25, 1, 9. Seven candidate variables, X, to X, are stored in an nx7

matrix X of the candidate model in (2.2). X, is given as a constant which equals 1,
followed by six independent variables which have two distributions: N (0, 1) and
U (a, b). For the uniform distribution, we given
X, ~U(5,10), X, ~U(10, 20), X, ~U(7,9), X, ~U(6,11),
Xs ~U(9,19), X, ~U(4, 8).

Candidate models include the columns of X in a sequentially nested fashion;

i.e., columns 1 to p define the design matrix for the candidate model with dimension
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p. Over 1,000 realizations, we apply APIC in (3.1) with the values of « ranging
from 1 to 14 on the datasets y of four models constructed. The probability of order
selected by APIC is measure and used for examining the effects of weak or strong
penalty function in the proposed criterion. Results are shown in Table 4.1 to Table
4.3. Findings are the following.

[1] In Table 4.1, for the very weakly identifiable situation of true models with
the true orders p, =5, Model 1, the sample size is small (n = 15) and the distribution
of independent variable is normal, the appropriate values of a when the true
variances o = 0.25, 1, 9, are 2, 1 and 1, respectively with the probabilities of correct
order being selected are 29.7%, 15.5% and 11.9%. While, the distribution of
independent variable is changed to be uniform, the appropriate values of « for all
three levels of true variances are 1 with the probabilities are reduced to be 13.2%,
11.3% and 10.6%.

[2] In Table 4.1, for the weakly identifiable situation of true models with the
true orders p, = 3, Model 2, the sample size is small (n = 15) and the distribution of
independent variable is normal, the appropriate values of a when the true variances
o. =0.25,1, 9, are 4, log n and 2, respectively with the probabilities of correct order
being selected are 65.8%, 33.3% and 11.9%. While, the distribution of independent
variable is changed to be uniform, the appropriate values of « for all three levels of
true variances are 2 with the probabilities are reduced to be 17.8%, 12.6% and 13.6%.

[3] InTable 4.1, for the strongly identifiable situation of true models with the
true orders p, = 3, Model 3, the sample size is small (n = 15) and the distribution of
independent variable is normal, the appropriate values of a when the true variances
ol =0.25,1, 9, are 14, 9 and 4, respectively with the probabilities of correct order
being selected are 99.8%, 97.7% and 55.4%. While, the distribution of independent
variable is changed to be uniform, the appropriate values of « for three levels of true
variances are 6, 4 and log n with the probabilities are reduced to be 85.8%, 48.5% and
15.7%.

[4] In Table 4.1, for the very strongly identifiable situation of true models

with the true orders p, = 5, Model 4, the sample size is small (n = 15) and the



20

distribution of independent variable is normal, the appropriate values of « when the
true variances o =0.25, 1, 9, are 13, 7 and log n, respectively with the probabilities
of correct order being selected are 98.5%, 91.6% and 46.6%. While, the distribution
of independent variable is changed to be uniform, the appropriate values of a for
three levels of true variances are 5, log n and 1 with the probabilities are reduced to be
78.2%, 42.3% and 14.8%.
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Table 4.1 Probability of the order selected by APIC for n = 15.

. Criteria
Dist. 2

Model of X 0y Order APIC1 '?E:g)z AP;SIICC’E)’(”) A(‘E:S)B APIC4 APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APICl14
1 Normal  0.25  Underfitted 0.157 0.353 0.472 0.53 0.669 0.785 0.868 0.93 0.958 0.974 0.983 0.99 0.994 0.998 1
very Correct 0.229 0.297 0.293 0.281 0.232 0.165 0.107 0.061 0.038 0.025 0.016 0.009 0.005 0.002 0
weakly Overfitted 0.614 0.35 0.235 0.189 0.099 0.05 0.025 0.009 0.004 0.001 0.001 0.001 0.001 0 0
-5 1 Underfitted 0.269 0.562 0.731 0.79 0.9 0.951 0.978 0.99 0.998 0.999 0.999 0.999 1 1 1
Po= Correct 0.155 0.135 0.104 0.085 0.05 0.025 0.011 0.006 0.001 0 0 0 0 0 0
Overfitted 0.576 0.303 0.165 0.125 0.05 0.024 0.011 0.004 0.001 0.001 0.001 0.001 0 0 0
9 Underfitted 0.367 0.69 0.826 0.863 0.946 0.98 0.993 0.998 1 1 1 1 1 1 1
Correct 0.119 0.097 0.064 0.054 0.03 0.011 0.005 0.001 0 0 0 0 0 0 0
Overfitted 0.514 0.213 0.11 0.083 0.024 0.009 0.002 0.001 0 0 0 0 0 0 0
Uniform  0.25  Underfitted 0.346 0.679 0.82 0.855 0.937 0.971 0.99 0.998 1 1 1 1 1 1 1
Correct 0.132 0.093 0.066 0.053 0.027 0.014 0.004 0.001 0 0 0 0 0 0 0
Overfitted 0.522 0.228 0.114 0.092 0.036 0.015 0.006 0.001 0 0 0 0 0 0 0
1 Underfitted 0.365 0.691 0.838 0.878 0.947 0.98 0.997 0.998 0.999 0.999 1 1 1 1 1
Correct 0.113 0.079 0.052 0.039 0.015 0.007 0.001 0.001 0.001 0.001 0 0 0 0 0
Overfitted 0.522 0.23 0.11 0.083 0.038 0.013 0.002 0.001 0 0 0 0 0 0 0
9 Underfitted 0.359 0.695 0.836 0.868 0.946 0.985 0.995 0.997 0.999 1 1 1 1 1 1
Correct 0.106 0.074 0.041 0.034 0.018 0.007 0.004 0.003 0.001 0 0 0 0 0 0
Overfitted 0.535 0.231 0.123 0.098 0.036 0.008 0.001 0 0 0 0 0 0 0 0
2 Normal  0.25  Underfitted 0.02 0.057 0.112 0.124 0.195 0.274 0.366 0.44 0.522 0.59 0.654 0.722 0.762 0.804 0.844
weakly Correct 0.215 0.465 0.587 0.614 0.658 0.639 0.578 0.528 0.458 0.4 0.34 0.276 0.236 0.194 0.156
-3 Overfitted 0.765 0.478 0.301 0.262 0.147 0.087 0.056 0.032 0.02 0.01 0.006 0.002 0.002 0.002 0
Po= 1 Underfitted 0.091 0.282 0.416 0.464 0.604 0.704 0.779 0.842 0.882 0.915 0.942 0.965 0.97 0.981 0.987
Correct 0.147 0.301 0.333 0.33 0.286 0.237 0.191 0.143 0.11 0.082 0.057 0.034 0.03 0.019 0.013
Overfitted 0.762 0.417 0.251 0.206 0.11 0.059 0.03 0.015 0.008 0.003 0.001 0.001 0 0 0
9 Underfitted 0.181 0.52 0.693 0.739 0.85 0.899 0.943 0.961 0.974 0.98 0.984 0.99 0.992 0.993 0.998
Correct 0.095 0.119 0.104 0.101 0.081 0.065 0.046 0.032 0.023 0.018 0.016 0.01 0.008 0.007 0.002
Overfitted 0.724 0.361 0.203 0.16 0.069 0.036 0.011 0.007 0.003 0.002 0 0 0 0 0
Uniform  0.25  Underfitted 0.152 0.425 0.583 0.644 0.768 0.855 0.896 0.93 0.96 0.972 0.982 0.991 0.995 0.996 0.997
Correct 0.111 0.178 0.173 0.17 0.149 0.11 0.084 0.059 0.036 0.026 0.018 0.009 0.005 0.004 0.003
Overfitted 0.737 0.397 0.244 0.186 0.083 0.035 0.02 0.011 0.004 0.002 0 0 0 0 0
1 Underfitted 0.179 0.478 0.635 0.695 0.841 0.915 0.941 0.961 0.976 0.985 0.991 0.995 0.997 0.999 1
Correct 0.103 0.126 0.119 0.108 0.079 0.054 0.04 0.031 0.02 0.013 0.009 0.005 0.003 0.001 0
Overfitted 0.718 0.396 0.246 0.197 0.08 0.031 0.019 0.008 0.004 0.002 0 0 0 0 0
9 Underfitted 0.189 0.491 0.658 0.717 0.844 0.925 0.957 0.977 0.985 0.993 0.996 0.997 0.998 0.998 0.998
Correct 0.094 0.136 0.132 0.115 0.075 0.04 0.028 0.014 0.009 0.006 0.003 0.003 0.002 0.002 0.002
Overfitted 0.717 0.373 0.21 0.168 0.081 0.035 0.015 0.009 0.006 0.001 0.001 0 0 0 0

Note: Boldface type indicates the maximum probability of correct order being selected.
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Table 4.1 (Continued).

. Criteria
Dist. 2

Model of X 0y Order APIC1 '?E:g)z AP;gllcc)g);(n) A(‘E:S)B APIC4 APIC5 APIC6 APIC7 APIC8 APIC9 APICI0 APIC11 APIC12 APIC13 APICl14
3 Normal  0.25  Underfitted 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
strongly Correct 0.22 0.515 0.654 0.707 0.814 0.891 0.942 0.962 0.971 0.983 0.991 0.992 0.995 0.997 0.998
-3 Overfitted 0.78 0.485 0.346 0.293 0.186 0.109 0.058 0.038 0.029 0.017 0.009 0.008 0.005 0.003 0.002
Po= 1 Underfitted 0 0 0 0 0 0.001 0.001 0.004 0.005 0.01 0.014 0.019 0.029 0.055 0.074
Correct 0.238 0.542 0.683 0.725 0.835 0.902 0.946 0.961 0.975 0.977 0.977 0.977 0.968 0.943 0.924
Overfitted 0.762 0.458 0.317 0.275 0.165 0.097 0.053 0.035 0.02 0.013 0.009 0.004 0.003 0.002 0.002
9 Underfitted 0.025 0.118 0.189 0.213 0.313 0.412 0.516 0.578 0.661 0.714 0.776 0.826 0.864 0.902 0.921
Correct 0.197 0.427 0.518 0.541 0.554 0.514 0.447 0.399 0.323 0.275 0.22 0.171 0.133 0.097 0.078
Overfitted 0.778 0.455 0.293 0.246 0.133 0.074 0.037 0.023 0.016 0.011 0.004 0.003 0.003 0.001 0.001
Uniform  0.25  Underfitted 0.004 0.009 0.016 0.019 0.039 0.063 0.095 0.121 0.158 0.206 0.25 0.316 0.382 0.446 0.511
Correct 0.215 0.52 0.654 0.703 0.799 0.846 0.858 0.854 0.823 0.784 0.745 0.68 0.616 0.552 0.487
Overfitted 0.781 0.471 0.33 0.278 0.162 0.091 0.047 0.025 0.019 0.01 0.005 0.004 0.002 0.002 0.002
1 Underfitted 0.041 0.154 0.237 0.272 0.377 0.473 0.587 0.661 0.713 0.779 0.828 0.87 0.903 0.917 0.942
Correct 0.198 0.389 0.461 0.476 0.485 0.467 0.387 0.322 0.276 0.215 0.169 0.128 0.097 0.083 0.058
Overfitted 0.761 0.457 0.302 0.252 0.138 0.06 0.026 0.017 0.011 0.006 0.003 0.002 0 0 0
9 Underfitted 0.153 0.45 0.611 0.671 0.797 0.876 0.924 0.953 0.972 0.979 0.986 0.993 0.999 0.999 1
Correct 0.112 0.154 0.157 0.149 0.121 0.083 0.054 0.035 0.022 0.02 0.014 0.007 0.001 0.001 0
Overfitted 0.735 0.396 0.232 0.18 0.082 0.041 0.022 0.012 0.006 0.001 0 0 0 0 0
4 Normal  0.25  Underfitted 0 0 0 0 0 0 0 0 0 0 0 0.001 0.004 0.007 0.016
very Correct 0.342 0.55 0.659 0.686 0.804 0.874 0.914 0.94 0.958 0.97 0.978 0.983 0.984 0.985 0.977
strongly Overfitted 0.658 0.45 0.341 0.314 0.196 0.126 0.086 0.06 0.042 0.03 0.022 0.016 0.012 0.008 0.007
po=5 1 Underfitted 0 0.001 0.001 0.001 0.003 0.005 0.011 0.019 0.036 0.061 0.108 0.169 0.248 0.348 0.475
Correct 0.309 0.546 0.669 0.698 0.797 0.851 0.894 0.916 0.913 0.902 0.866 0.813 0.738 0.642 0.518
Overfitted 0.691 0.453 0.33 0.301 0.2 0.144 0.095 0.065 0.051 0.037 0.026 0.018 0.014 0.01 0.007
9 Underfitted 0.052 0.167 0.252 0.292 0.437 0.589 0.728 0.819 0.885 0.934 0.955 0.976 0.989 0.995 0.997
Correct 0.304 0.448 0.466 0.462 0.418 0.328 0.234 0.158 0.103 0.061 0.043 0.023 0.011 0.005 0.003
Overfitted 0.644 0.385 0.282 0.246 0.145 0.083 0.038 0.023 0.012 0.005 0.002 0.001 0 0 0
Uniform  0.25  Underfitted 0.004 0.016 0.026 0.032 0.057 0.109 0.175 0.274 0.414 0.545 0.669 0.761 0.853 0.923 0.959
Correct 0.344 0.569 0.656 0.69 0.764 0.782 0.76 0.684 0.556 0.438 0.323 0.234 0.145 0.077 0.041
Overfitted 0.652 0.415 0.318 0.278 0.179 0.109 0.065 0.042 0.03 0.017 0.008 0.005 0.002 0 0
1 Underfitted 0.078 0.209 0.314 0.363 0.535 0.676 0.798 0.878 0.938 0.966 0.983 0.993 0.998 1 1
Correct 0.298 0.399 0.423 0.415 0.345 0.252 0.162 0.1 0.056 0.031 0.015 0.006 0.002 0 0
Overfitted 0.624 0.392 0.263 0.222 0.12 0.072 0.04 0.022 0.006 0.003 0.002 0.001 0 0 0
9 Underfitted 0.278 0.593 0.755 0.801 0.911 0.965 0.987 0.995 0.998 0.999 0.999 0.999 1 1 1
Correct 0.148 0.127 0.089 0.074 0.043 0.017 0.007 0.004 0.002 0.001 0.001 0.001 0 0 0
Overfitted 0.574 0.28 0.156 0.125 0.046 0.018 0.006 0.001 0 0 0 0 0 0 0

Note: Boldface type indicates the maximum probability of correct order being selected.
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[5] InTable 4.2, for very weakly identifiable situation of true models with the
true orders p, =5, Model 1, the sample size is moderate (n = 30) and the distribution
of independent variable is normal, the appropriate values of a when the true
variances o, =0.25, 1, 9, are 3, 1 and 1, respectively with the probabilities of correct
order being selected are 55%, 24.6% and 13.5%. While, the distribution of
independent variable is changed to be uniform, the appropriate values of « for all
three levels of true variances are 1 with the probabilities are reduced to be 17.5%,
13% and 13.3%.

[6] In Table 4.2, for the weakly identifiable situation of true models with the
true orders p, = 3, Model 2, the sample size is moderate (n = 30) and the distribution
of independent variable is normal, the appropriate values of a when the true
variances ¢ = 0.25, 1, 9, are 5, 3 and 2, respectively with the probabilities of correct
order being selected are 90.8%, 55.5% and 18.5%. While, the distribution of
independent variable is changed to be uniform, the appropriate values of « for all
three levels of true variances are 2 with the probabilities are reduced to be 29.2%,
16.6% and 11.8%.

[7] InTable 4.2, for strongly identifiable situation of true models with the true
orders p, = 3, Model 3, the sample size is moderate (n = 30) and the distribution of
independent variable is normal, the appropriate values of a when the true variances
o, =0.25, 1, 9, are 14, 11 and 5, respectively with the probabilities of correct order
being selected are 100%, 99.9% and 85.5%. While, the distribution of independent
variable is changed to be uniform, the appropriate values of « for three levels of true
variances are 10, 4 and 2 with the probabilities are reduced to be 98.8%, 75.9% and
23.2%.

[8] In Table 4.2, for very strongly identifiable situation of true models with
the true orders p, = 5, Model 4, the sample size is moderate (n = 30) and the
distribution of independent variable is normal, the appropriate values of « when the
true variances o = 0.25, 1, 9, are 14, 14 and 4, respectively with the probabilities of
correct order being selected are 100%, 100% and 79.7%. While, the distribution of
independent variable is changed to be uniform, the appropriate values of « for three

levels of true variances are 8, 3 and 1 with the probabilities are reduced to be 98.6%,
72.3% and 22.3%.
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Table 4.2 Probability of the order selected by APIC for n = 30.

. Criteria
Dist. 2

Model of X 0y Order APIC1 '?E:g)z '?E:gf AP;é:IIcC)g);(n) APIC4 APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14
1 Normal 0.25 Underfitted 0.076 0.199 0.312 0.366 0.446 0.547 0.656 0.745 0.827 0.877 0.927 0.958 0.973 0.985 0.99
very Correct 0.406 0.532 0.55 0.522 0.481 0.41 0.328 0.249 0.171 0.122 0.073 0.042 0.027 0.015 0.01
weakly Overfitted 0.518 0.269 0.138 0.112 0.073 0.043 0.016 0.006 0.002 0.001 0 0 0 0 0
-5 1 Underfitted 0.275 0.55 0.761 0.799 0.855 0.937 0.976 0.985 0.995 0.999 1 1 1 1 1
Po= Correct 0.246 0.237 0.161 0.146 0.108 0.054 0.023 0.015 0.005 0.001 0 0 0 0 0
Overfitted 0.479 0.213 0.078 0.055 0.037 0.009 0.001 0 0 0 0 0 0 0 0

9 Underfitted 0.48 0.804 0.915 0.94 0.974 0.993 0.999 1 1 1 1 1 1 1 1

Correct 0.135 0.075 0.045 0.032 0.017 0.005 0.001 0 0 0 0 0 0 0 0

Overfitted 0.385 0.121 0.04 0.028 0.009 0.002 0 0 0 0 0 0 0 0 0

Uniform  0.25 Underfitted 0.392 0.696 0.871 0.905 0.952 0.982 0.998 0.999 1 1 1 1 1 1 1
Correct 0.175 0.137 0.071 0.056 0.031 0.012 0.002 0.001 0 0 0 0 0 0 0

Overfitted 0.433 0.167 0.058 0.039 0.017 0.006 0 0 0 0 0 0 0 0 0

1 Underfitted 0.48 0.828 0.96 0.976 0.985 0.997 0.999 1 1 1 1 1 1 1 1

Correct 0.13 0.074 0.023 0.016 0.011 0.003 0.001 0 0 0 0 0 0 0 0

Overfitted 0.39 0.098 0.017 0.008 0.004 0 0 0 0 0 0 0 0 0 0

9 Underfitted 0.48 0.818 0.95 0.971 0.988 0.996 0.999 1 1 1 1 1 1 1 1

Correct 0.133 0.063 0.024 0.016 0.007 0.002 0 0 0 0 0 0 0 0 0

Overfitted 0.387 0.119 0.026 0.013 0.005 0.002 0.001 0 0 0 0 0 0 0 0

2 Normal 0.25 Underfitted 0.001 0.003 0.009 0.018 0.025 0.04 0.066 0.093 0.135 0.171 0.224 0.28 0.338 0.392 0.45
weakly Correct 0.321 0.632 0.802 0.837 0.884 0.908 0.906 0.892 0.857 0.824 0.772 0.719 0.661 0.607 0.55
-3 Overfitted 0.678 0.365 0.189 0.145 0.091 0.052 0.028 0.015 0.008 0.005 0.004 0.001 0.001 0.001 0
Po= 1 Underfitted 0.057 0.173 0.305 0.346 0.413 0.514 0.606 0.661 0.742 0.804 0.85 0.875 0.896 0.919 0.935
Correct 0.296 0.514 0.555 0.55 0.522 0.452 0.378 0.328 0.252 0.194 0.15 0.125 0.104 0.081 0.065

Overfitted 0.647 0.313 0.14 0.104 0.065 0.034 0.016 0.011 0.006 0.002 0 0 0 0 0

9 Underfitted 0.236 0.577 0.756 0.792 0.84 0.907 0.938 0.959 0.974 0.982 0.986 0.993 0.995 0.998 0.999

Correct 0.147 0.185 0.154 0.145 0.118 0.077 0.055 0.04 0.026 0.018 0.014 0.007 0.005 0.002 0.001

Overfitted 0.617 0.238 0.09 0.063 0.042 0.016 0.007 0.001 0 0 0 0 0 0 0

Uniform 0.25 Underfitted 0.174 0.437 0.616 0.667 0.734 0.811 0.871 0.904 0.937 0.953 0.972 0.98 0.985 0.991 0.996
Correct 0.21 0.292 0.276 0.254 0.217 0.166 0.115 0.088 0.06 0.045 0.027 0.02 0.015 0.009 0.004

Overfitted 0.616 0.271 0.108 0.079 0.049 0.023 0.014 0.008 0.003 0.002 0.001 0 0 0 0

1 Underfitted 0.257 0.599 0.776 0.826 0.867 0.925 0.952 0.972 0.982 0.988 0.991 0.996 0.999 0.999 1

Correct 0.127 0.166 0.14 0.121 0.103 0.063 0.046 0.028 0.018 0.012 0.009 0.004 0.001 0.001 0

Overfitted 0.616 0.235 0.084 0.053 0.03 0.012 0.002 0 0 0 0 0 0 0 0

9 Underfitted 0.317 0.655 0.83 0.875 0.913 0.953 0.978 0.989 0.994 0.996 0.997 0.999 0.999 0.999 1

Correct 0.107 0.118 0.079 0.069 0.058 0.036 0.019 0.009 0.004 0.003 0.003 0.001 0.001 0.001 0

Overfitted 0.576 0.227 0.091 0.056 0.029 0.011 0.003 0.002 0.002 0.001 0 0 0 0 0

Note: Boldface type indicates the maximum probability of correct order being selected.
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Table 4.2 (Continued).

. Criteria
Dist. 2
Model of X 0y Order APIC1 '?E:g)z A(\E:S)B AP;gllcc)g);(n) APIC4 APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14
3 Normal 0.25 Underfitted 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
strongly Correct 0.317 0.634 0.824 0.861 0.906 0.942 0.972 0.977 0.986 0.99 0.996 0.998 0.998 0.998 1
-3 Overfitted 0.683 0.366 0.176 0.139 0.094 0.058 0.028 0.023 0.014 0.01 0.004 0.002 0.002 0.002 0
Po= 1 Underfitted 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Correct 0.348 0.664 0.832 0.874 0.91 0.96 0.979 0.99 0.995 0.998 0.998 0.999 0.999 0.999 0.999
Overfitted 0.652 0.336 0.168 0.126 0.09 0.04 0.021 0.01 0.005 0.002 0.002 0.001 0.001 0.001 0.001
9 Underfitted 0.003 0.021 0.038 0.044 0.06 0.091 0.137 0.185 0.256 0.304 0.37 0.437 0.485 0.544 0.593
Correct 0.316 0.62 0.765 0.807 0.842 0.855 0.832 0.796 0.735 0.691 0.627 0.56 0.513 0.454 0.406
Overfitted 0.681 0.359 0.197 0.149 0.098 0.054 0.031 0.019 0.009 0.005 0.003 0.003 0.002 0.002 0.001
Uniform  0.25 Underfitted 0 0 0 0 0 0 0 0.001 0.003 0.006 0.007 0.012 0.021 0.03 0.038
Correct 0.308 0.625 0.813 0.862 0.908 0.948 0.968 0.976 0.984 0.985 0.988 0.986 0.978 0.969 0.961
Overfitted 0.692 0.375 0.187 0.138 0.092 0.052 0.032 0.023 0.013 0.009 0.005 0.002 0.001 0.001 0.001
1 Underfitted 0.009 0.044 0.095 0.122 0.155 0.23 0.298 0.374 0.44 0.497 0.566 0.627 0.686 0.734 0.782
Correct 0.331 0.62 0.739 0.756 0.759 0.735 0.68 0.611 0.549 0.496 0.43 0.37 0.312 0.264 0.216
Overfitted 0.66 0.336 0.166 0.122 0.086 0.035 0.022 0.015 0.011 0.007 0.004 0.003 0.002 0.002 0.002
9 Underfitted 0.189 0.504 0.688 0.74 0.797 0.864 0.905 0.934 0.957 0.974 0.982 0.987 0.99 0.992 0.994
Correct 0.196 0.232 0.209 0.198 0.167 0.119 0.087 0.063 0.042 0.026 0.018 0.013 0.01 0.008 0.006
Overfitted 0.615 0.264 0.103 0.062 0.036 0.017 0.008 0.003 0.001 0 0 0 0 0 0
4 Normal 0.25 Underfitted 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
very Correct 0.481 0.713 0.831 0.867 0.903 0.945 0.969 0.979 0.985 0.99 0.993 0.994 0.996 0.998 1
strongly Overfitted 0.519 0.287 0.169 0.133 0.097 0.055 0.031 0.021 0.015 0.01 0.007 0.006 0.004 0.002 0
po=5 1 Underfitted 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Correct 0.454 0.705 0.845 0.881 0.908 0.95 0.971 0.985 0.992 0.996 0.998 0.998 0.998 0.998 1
Overfitted 0.546 0.295 0.155 0.119 0.092 0.05 0.029 0.015 0.008 0.004 0.002 0.002 0.002 0.002 0
9 Underfitted 0.009 0.029 0.064 0.074 0.102 0.172 0.26 0.354 0.457 0.578 0.708 0.801 0.86 0.907 0.947
Correct 0.447 0.675 0.765 0.793 0.797 0.767 0.703 0.623 0.527 0.413 0.287 0.198 0.139 0.093 0.053
Overfitted 0.544 0.296 0.171 0.133 0.101 0.061 0.037 0.023 0.016 0.009 0.005 0.001 0.001 0 0
Uniform 0.25 Underfitted 0 0 0 0 0 0 0 0.001 0.002 0.011 0.024 0.04 0.066 0.12 0.204
Correct 0.419 0.699 0.829 0.869 0.901 0.946 0.971 0.982 0.986 0.981 0.971 0.958 0.934 0.88 0.796
Overfitted 0.581 0.301 0.171 0.131 0.099 0.054 0.029 0.017 0.012 0.008 0.005 0.002 0 0 0
1 Underfitted 0.018 0.053 0.116 0.154 0.214 0.317 0.427 0.544 0.664 0.763 0.844 0.894 0.947 0.967 0.983
Correct 0.445 0.658 0.723 0.719 0.703 0.635 0.554 0.448 0.329 0.234 0.154 0.106 0.053 0.033 0.017
Overfitted 0.537 0.289 0.161 0.127 0.083 0.048 0.019 0.008 0.007 0.003 0.002 0 0 0 0
9 Underfitted 0.323 0.646 0.826 0.87 0.925 0.969 0.992 0.998 0.998 0.999 0.999 1 1 1 1
Correct 0.223 0.175 0.115 0.092 0.055 0.024 0.006 0.001 0.001 0.001 0.001 0 0 0 0
Overfitted 0.454 0.179 0.059 0.038 0.02 0.007 0.002 0.001 0.001 0 0 0 0 0 0

Note: Boldface type indicates the maximum probability of correct order being selected.
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[9] InTable 4.3, for very weakly identifiable situation of true models with the
true orders p, =5, Model 1, the sample size is large (n = 100) and the distribution of
independent variable is normal, the appropriate values of a when the true variances
ol =025, 1,9, are 5, 2 and 1, respectively with the probabilities of correct order
being selected are 91.4%, 53.5% and 17.4%. While, the distribution of independent
variable is changed to be uniform, the appropriate values of « for all three levels of
true variances are 1 with the probabilities are reduced to be 31.3%, 18% and 11.7%.

[10] In Table 4.3, for weakly identifiable situation of true models with the true
orders p, = 3, Model 2, the sample size is large (n = 100) and the distribution of
independent variable is normal, the appropriate values of a when the true variances
o, =0.25,1,9, are 12, 5 and 2, respectively with the probabilities of correct order
being selected are 100%, 92.9% and 33.9%. While, the distribution of independent
variable is changed to be uniform, the appropriate values of « for three levels of true
variances are 3, 2 and 1 with the probabilities are reduced to be 63.5%, 28.7% and
12.5%.

[11] InTable 4.3, for strongly identifiable situation of true models with the true
orders p, = 3, Model 3, the sample size is large (n = 100) and the distribution of
independent variable is normal, the appropriate values of a when the true variances
o, =0.25,1, 9, are 12, 13 and 9, respectively with the probabilities of correct order
being selected are 100%, 100% and 99.3%. While, the distribution of independent
variable is changed to be uniform, the appropriate values of « for three levels of true
variances are 14, 8 and 2 with the probabilities are reduced to be 100%, 99.3% and
50.6%.

[12] In Table 4.3, for very strongly identifiable situation of true models with
the true orders p, = 5, Model 4, the sample size is moderate (n = 100) and the
distribution of independent variable is normal, the appropriate values of a when the
true variances o = 0.25, 1, 9, are 14, 10 and 10, respectively with the probabilities of
correct order being selected are 99.9%, 99.9% and 99.5%. While, the distribution of
independent variable is changed to be uniform, the appropriate values of « for three

levels of true variances are 13, 9 and 2 with the probabilities are reduced to be 100%,
99.3% and 49.2%.
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Table 4.3 Probability of the order selected by APIC for n = 100.

. Criteria
Dist. 2
Model of X 0y Order APIC1 '?E:g)z '?E:CC:; APIC4 AP;gllcc)g);(n) APIC5 APIC6 APIC7 APIC8 APIC9 APICI0O APICI11 APICI12 APICI13 APIC14
1 Normal 0.25 Underfitted 0 0.005 0.016 0.031 0.045 0.05 0.078 0.107 0.144 0.199 0.246 0.293 0.341 0.394 0.458
very Correct 0.537 0.766 0.856 0.904 0.912 0.914 0.898 0.88 0.849 0.798 0.752 0.706 0.658 0.605 0.542
weakly Overfitted 0.463 0.229 0.128 0.065 0.043 0.036 0.024 0.013 0.007 0.003 0.002 0.001 0.001 0.001 0
-5 1 Underfitted 0.115 0.259 0.401 0.505 0.566 0.621 0.704 0.783 0.847 0.893 0.932 0.961 0.977 0.985 0.991
Po= Correct 0.434 0.535 0.502 0.444 0.394 0.351 0.289 0.216 0.153 0.107 0.068 0.039 0.023 0.015 0.009
Overfitted 0.451 0.206 0.097 0.051 0.04 0.028 0.007 0.001 0 0 0 0 0 0 0
9 Underfitted 0.489 0.783 0.916 0.97 0.986 0.988 0.996 0.997 0.999 0.999 0.999 1 1 1 1
Correct 0.174 0.128 0.061 0.027 0.012 0.01 0.004 0.003 0.001 0.001 0.001 0 0 0 0
Overfitted 0.337 0.089 0.023 0.003 0.002 0.002 0 0 0 0 0 0 0 0 0
Uniform 0.25 Underfitted 0.276 0.575 0.763 0.87 0.905 0.922 0.954 0.972 0.985 0.996 0.998 0.999 0.999 1 1
Correct 0.313 0.273 0.201 0.121 0.089 0.074 0.046 0.028 0.015 0.004 0.002 0.001 0.001 0 0
Overfitted 0.411 0.152 0.036 0.009 0.006 0.004 0 0 0 0 0 0 0 0 0
1 Underfitted 0.485 0.808 0.933 0.979 0.986 0.991 0.996 0.999 1 1 1 1 1 1 1
Correct 0.18 0.109 0.055 0.017 0.011 0.008 0.004 0.001 0 0 0 0 0 0 0
Overfitted 0.335 0.083 0.012 0.004 0.003 0.001 0 0 0 0 0 0 0 0 0
9 Underfitted 0.576 0.883 0.958 0.988 0.993 0.998 0.999 1 1 1 1 1 1 1 1
Correct 0.117 0.053 0.024 0.009 0.006 0.002 0.001 0 0 0 0 0 0 0 0
Overfitted 0.307 0.064 0.018 0.003 0.001 0 0 0 0 0 0 0 0 0 0
2 Normal 0.25 Underfitted 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
weakly Correct 0.393 0.712 0.873 0.939 0.958 0.966 0.981 0.99 0.996 0.998 0.999 0.999 1 1 1
-3 Overfitted 0.607 0.288 0.127 0.061 0.042 0.034 0.019 0.01 0.004 0.002 0.001 0.001 0 0 0
Po= 1 Underfitted 0.001 0.002 0.011 0.029 0.036 0.041 0.063 0.092 0.125 0.162 0.212 0.271 0.338 0.381 0.445
Correct 0.377 0.719 0.856 0.905 0.92 0.929 0.918 0.894 0.866 0.832 0.783 0.727 0.661 0.618 0.554
Overfitted 0.622 0.279 0.133 0.066 0.044 0.03 0.019 0.014 0.009 0.006 0.005 0.002 0.001 0.001 0.001
9 Underfitted 0.193 0.438 0.608 0.726 0.773 0.799 0.852 0.887 0.924 0.95 0.967 0.982 0.988 0.991 0.993
Correct 0.24 0.339 0.304 0.236 0.205 0.183 0.139 0.109 0.075 0.049 0.033 0.018 0.012 0.009 0.007
Overfitted 0.567 0.223 0.088 0.038 0.022 0.018 0.009 0.004 0.001 0.001 0 0 0 0 0
Uniform 0.25 Underfitted 0.048 0.161 0.252 0.352 0.404 0.442 0.528 0.625 0.683 0.756 0.805 0.839 0.868 0.893 0.915
Correct 0.351 0.586 0.635 0.599 0.564 0.532 0.456 0.37 0.314 0.244 0.195 0.161 0.132 0.107 0.085
Overfitted 0.601 0.253 0.113 0.049 0.032 0.026 0.016 0.005 0.003 0 0 0 0 0 0
1 Underfitted 0.21 0.511 0.668 0.786 0.83 0.841 0.892 0.926 0.947 0.967 0.98 0.986 0.993 0.997 0.999
Correct 0.243 0.287 0.259 0.186 0.155 0.148 0.103 0.07 0.051 0.033 0.02 0.014 0.007 0.003 0.001
Overfitted 0.547 0.202 0.073 0.028 0.015 0.011 0.005 0.004 0.002 0 0 0 0 0 0
9 Underfitted 0.363 0.723 0.864 0.92 0.936 0.953 0.974 0.99 0.994 0.995 0.997 0.998 0.998 0.999 0.999
Correct 0.125 0.111 0.079 0.063 0.058 0.042 0.025 0.01 0.006 0.005 0.003 0.002 0.002 0.001 0.001
Overfitted 0.512 0.166 0.057 0.017 0.006 0.005 0.001 0 0 0 0 0 0 0 0

Note: Boldface type indicates the maximum probability of correct order being selected.
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Table 4.3 (Continued).

. Criteria

Dist. 2
Model of X Oy Order APIC1 A(\EI' g)z A(E:gf APIC4 AP('SI'CC’E)’(”) APIC5 APIC6 APIC7 APIC8 APIC9 APICI0 APICI11 APICI2 APIC13 APICl4
3 Normal  0.25  Underfitted 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
strongly Correct 0.394 0.717 0.88 0.934 0.954 0.962 0.976 0.991 0.996 0.996 0.998 0.998 1 1 1
_3 Overfitted 0.606 0.283 0.12 0.066 0.046 0.038 0.024 0.009 0.004 0.004 0.002 0.002 0 0 0
Po 1 Underfitted 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Correct 0.376 0.71 0.869 0.939 0.955 0.969 0.98 0.988 0.993 0.996 0.996 0.998 0.999 1 1
Overfitted 0.624 0.29 0.131 0.061 0.045 0.031 0.02 0.012 0.007 0.004 0.004 0.002 0.001 0 0
9 Underfitted 0 0 0 0 0 0 0 0 0 0 0.002 0.003 0.007 0.007 0.008
Correct 0.365 0.704 0.855 0.933 0.95 0.959 0.98 0.985 0.989 0.993 0.993 0.993 0.991 0.992 0.991
Overfitted 0.635 0.296 0.145 0.067 0.05 0.041 0.02 0.015 0.011 0.007 0.005 0.004 0.002 0.001 0.001
Uniform  0.25  Underfitted 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Correct 0.404 0.73 0.873 0.942 0.962 0.975 0.985 0.989 0.995 0.998 0.998 0.999 0.999 0.999 1
Overfitted 0.596 0.27 0.127 0.058 0.038 0.025 0.015 0.011 0.005 0.002 0.002 0.001 0.001 0.001 0
1 Underfitted 0 0 0 0 0 0.001 0.001 0.001 0.002 0.005 0.008 0.014 0.021 0.032 0.042
Correct 0.391 0.721 0.867 0.929 0.949 0.961 0.98 0.99 0.993 0.992 0.989 0.985 0.978 0.967 0.958
Overfitted 0.609 0.279 0.133 0.071 0.051 0.038 0.019 0.009 0.005 0.003 0.003 0.001 0.001 0.001 0
9 Underfitted 0.09 0.237 0.386 0.515 0.567 0.604 0.699 0.757 0.813 0.853 0.882 0.916 0.936 0.961 0.969
Correct 0.324 0.506 0.501 0.442 0.405 0.376 0.294 0.237 0.184 0.146 0.117 0.083 0.063 0.038 0.031
Overfitted 0.586 0.257 0.113 0.043 0.028 0.02 0.007 0.006 0.003 0.001 0.001 0.001 0.001 0.001 0
4 Normal 0.25 Underfitted 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
very Correct 0.516 0.753 0.858 0.922 0.938 0.951 0.971 0.981 0.991 0.992 0.996 0.998 0.998 0.998 0.999
strongly Overfitted 0.484 0.247 0.142 0.078 0.062 0.049 0.029 0.019 0.009 0.008 0.004 0.002 0.002 0.002 0.001
po=5 1 Underfitted 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Correct 0.52 0.776 0.886 0.94 0.965 0.971 0.981 0.986 0.995 0.996 0.999 0.999 0.999 0.999 0.999
Overfitted 0.48 0.224 0.114 0.06 0.035 0.029 0.019 0.014 0.005 0.004 0.001 0.001 0.001 0.001 0.001
9 Underfitted 0 0 0 0 0 0 0 0 0 0.001 0.002 0.004 0.005 0.008 0.012
Correct 0.527 0.762 0.882 0.93 0.959 0.965 0.978 0.987 0.99 0.992 0.995 0.994 0.993 0.991 0.988
Overfitted 0.473 0.238 0.118 0.07 0.041 0.035 0.022 0.013 0.01 0.007 0.003 0.002 0.002 0.001 0
Uniform 0.25 Underfitted 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Correct 0.546 0.797 0.902 0.944 0.957 0.965 0.981 0.986 0.99 0.993 0.998 0.999 0.999 1 1
Overfitted 0.454 0.203 0.098 0.056 0.043 0.035 0.019 0.014 0.01 0.007 0.002 0.001 0.001 0 0
1 Underfitted 0 0.001 0.001 0.001 0.002 0.002 0.002 0.005 0.006 0.006 0.01 0.017 0.024 0.037 0.048
Correct 0.531 0.781 0.886 0.939 0.957 0.962 0.981 0.982 0.988 0.993 0.989 0.983 0.976 0.963 0.952
Overfitted 0.469 0.218 0.113 0.06 0.041 0.036 0.017 0.013 0.006 0.001 0.001 0 0 0 0
9 Underfitted 0.138 0.314 0.504 0.674 0.741 0.776 0.868 0.929 0.965 0.983 0.99 0.996 0.998 0.998 1
Correct 0.406 0.492 0.417 0.294 0.239 0.212 0.127 0.07 0.035 0.017 0.01 0.004 0.002 0.002 0
Overfitted 0.456 0.194 0.079 0.032 0.02 0.012 0.005 0.001 0 0 0 0 0 0 0

Note: Boldface type indicates the maximum probability of correct order being selected.
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From the results in [1] to [12] we can conclude that, the weakly or very weakly

identifiable situations of true models, Model 1 and Model 2, the true orders p, =3, 5
and the distribution of independent variable is normal, the appropriate « is small. If

sample size increases and variances of error terms are small (¢, = 0.25) to moderate

(6, = 1), a should be moderate. For the distribution of independent variable is

changed to be uniform, the appropriate « is small, regardless the sample size or the
variances of error terms. When the true model is very weakly identifiable, the
appropriate a should be smaller than the weakly identifiable situation. The strongly
or very strongly identifiable situations of true models, Model 3 and Model 4, the true
orders p, = 3, 5 and the distribution of independent variable is normal, the
appropriate « is large. If the variance of error terms increases, « should be
moderate. For the distribution of independent variable is changed to be uniform, the
appropriate « is moderate. If the variance of error terms increases, « should be

small. All of these conclusions can be summarized in Table 4.4.

1
Table 4.4 Appropriate value of « in APIC = Iog(&2)+_a( p+1) .

n
X ~Normal X~ Uniform
Model n > > > > > >
c°=025| 0o =1 o° =9 c°=025|0°=1| oc° =9
15 Il
Model 1, 2 >ma
Weakl 30 moderate small small
T
15
Model 3, 4 30 large moderate moderate small
Strongly 100




CHAPTER 5
CONCLUSIONS AND FUTURE WORKS

5.1 Conclusions

In this research, we propose the model selection criteria, called Adjusted
Penalty Information Criterion,

APIC:Iog(&2)+M,
n

when the values of « are equal to 2, log(n) and 3; APIC becomes AIC, BIC and KIC

respectively. Each criterion has a different value due to its penalty function, the
differences in strong or weak penalty affecting the probability of over/underfitting,
including the problem of signal-to-noise ratio being weak. The theoretical results
show that, when the value of « tends to infinity, the probability of overfitting tends
to zero and the signal-to-noise ratio tends to strong. However, the probability of
underfitting tends to one. At the same time, the results of simulation suggest that, the
appropriate « is small when true models are weakly or very weakly identifiable and
distributions of independent variables are normal or uniform. But « should be
moderate, if distribution of independent variables is normal, sample size increases and
variances of error terms are small to moderate. The appropriate « is large, if the true
model is strongly identifiable, distribution of independent variables is normal, and
variance of error terms is small to moderate. But « should be moderate, if the
variance of error terms increases. When the distribution of independent variables
changes to be uniform, the appropriate « is moderate for the case of variance of error
terms is small to moderate. But « should be small, if the variance of error terms
increases. The variance of error terms and sample size affects the validity of APIC.
The variance of error terms increases, the validity of APIC decreases. Whereas the

sample size increases, the validity of APIC also increases.
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5.2 Future Works

In further work, we attempt to construct the model selection criteria to
overcome the weak signal-to-noise ratio and to reduce the probability of

over/underfitting in the multivariate regression and simultaneous equations models.
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Abstract

This paper presents the derivations to unify the justifications of the criteria based on
Kullback’s divergence; AIC, AIC., KIC, KIC.c, KICsg, and KICym. The results show that KIC.c
has the strongest penalty function under some condition, followed, respectively, by KIC¢sg, KICchm,
KIC and AIC. Also, KIC is greater than AIC. under some condition, but AIC, always greater than
AIC. The performances of all model selection criteria are examined by the extensive simulation
study. It can be concluded that, for the small to moderate sample sizes and the true model is
somewhat difficult to identify, the performances of AIC and AIC; are better than others. However,
they can identify the true model actually less accurate. When the sample size is large and the model
is still weakly identifiable, the performances of all model selection criteria are insignificant
difference, but all criteria can identify the true model still less accurate. As a result, we used the
observed L, efficiency to assess model selection criteria performances. On the average, this measure

suggests that in a weakly identifiable true model, whether the sample size is small or large, KIC.c is
the best criterion. For the small sample size and the true model can be specified more easily with
small error variance, every model selection criteria still have the ability to select the correct model.
If the error variance increase, the performances of all model selection criteria are bad. When the
sample sizes are moderate to large and the true model can be specified more easily, KIC. performs
the best, it can identify a lot of true model for small error variance. But, if the error variance
increases and the sample size is not large enough, all model selection criteria can identify a little
true model.

Keywords: Kullback’s directed divergence, Kullback’s symmetric divergence, model selection.

1. INTRODUCTION

The problem of choosing the appropriate regression models from a class of candidate
models to characterize the study data is a key issue. In real life, we may not know what the true
model is, but we hope to find a model that is a reasonably accurate representation. A model
selection criterion represents a useful tool to judge the propriety of a fitted model, by assessing
whether it offers an optimal balance between goodness of fit and parsimony. The first model
selection criterion to gain widespread acceptance was Akaike information criterion, AIC [1-2]. This
serves as an asymptotically unbiased estimator of a variant of Kullback’s directed divergence
between the true and the candidate models. The directed divergence, also known as the I-divergence
or the relative entropy, assesses the dissimilarity between two statistical models. Other well-known
criterion was subsequently introduced and studied such as, Kullback information criterion, KIC [3].
It is a symmetric measure, meaning that an alternate directed divergence may be obtained by
reversing the roles of the two models in the definition of the measure. The sum of two directed
divergences is Kullback’s symmetric divergence, also known as the J-divergence. Although AIC
remains arguably the most widely used model selection criterion, KIC is a popular competitor. In
fact, KIC is a symmetric measure which combines the information in two related, though distinct
measures; its functions as a gauge of model disparity that is arguably more sensitive than AIC that
corresponds to only individual component. However, when the sample size is small or the
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dimension of candidate model is large relative to the sample size, both estimators suffer from a
large negative bias. As a result, they have the problem of high probability of overfitting. In this
setting, Hurvich and Tsai [4] proposed a corrected Akaike information criterion (AIC,), for linear
and non-linear regression and for autoregressive modeling. The AIC_ has been extended in a

number of directions, including autoregressive moving average modeling [5], vector autoregressive
modeling [6], and multivariate regression modeling [7]. Further, the KIC tends to underestimate the
Kullback’s symmetric divergence in small-sample applications, as indicated by Cavanaugh [8],
Seghouane and Bekara [9], and Hafidi and Mkhadri [10]. Therefore, they [8-10] proposed KIC, in
order to correct this problem. Although AIC [1-2], AIC, [4], KIC [3], KIC . [8], KIC; [9], and
KIC,,, [10] share the same fundamental objective, the justifications of the criteria proceed along

different directions, making it difficult to reconcile how the different model selection criteria refine
the approximations used to establish Kullback’s divergence. With this motivation, the aims of this
paper are to unify the derivations of all criteria based on Kullback’s directed divergence, AIC,
AIC_, and Kullback’s symmetric divergence, KIC, KIC ., KIC o, KIC_,,,, in order to link the

justifications of these criteria and the performances of them are then examined by the extensive
simulation study, under the difference various circumstances: sample sizes ( n ), regression

coefficients (B ), and variances of error terms (o) [11-14]. Model selection criteria performances

are examined by a consistent measure which is a measure of counting the frequency of order being
selected. Particularly for the case of true model being weakly identifiable, we use an efficient
measure which is the observed L, efficiency. This is a useful measure when the criteria do not

select the correct model.
The true and the candidate models to consider in this study are, respectively, given by

y:XBo+80180~Nn(O1 Ggln)’ (1)
y=XB+& &~N, (0, &°l,), )
where y is an nx1 dependent random vector of observations, X is an nxp matrix of independent

variables with full-column rank, B, and B are px1 parameter vectors of regression coefficients, g,

and & are nx1 noise vectors. The true model is assumed to be correctly specified or overfitted by
all the candidate models. This means that B, has p, nonzero entries with 0 <p, <p and the rest of

the (p—p, ) entries are equal to zero. The (p+1)x1 vector of parameters is 8, :[Bg GS]' and the

maximum likelihood estimator of ©, is éz[ﬁ’ 62] where

B=(X'X)" Xy and 6 = (y—Xfi) (y—Xﬁ)/n . (3)
The observed L, distance or squared error distance, scaled by 1/n, between the true and the
candidate models is defined as [13-14]

L, (p)=(B,—B) X'X(Bo—ﬁ)/n. )
Observed L, efficiency is defined by the ratio
minlspsP L, (p)
L2 (ps)
where P is the class of all possible candidate models, p is the rank of fitted candidate model, and p,

is the model selected by specific model selection criterion. The closer the selected model is to the
true model, the higher the efficiency. Therefore, the best model selection criterion will select a
model which yields high efficiency even in small samples or if the true model is weakly
identifiable. The remainder of this paper is organized as follows. In Section 2, we show the

Observed L, efficiency =

()
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unifications for the derivations of all criteria based on Kullback’s directed divergence, AIC, AIC_,

and Kullback’s symmetric divergence, KIC, KIC ., KIC ., KIC_,,. Simulation study and results

for 1,000 realizations of multiple regression models to examine the performances of all model
selection criteria are shown in Section 3. Finally, Section 4 is the conclusions, discussion, and
further works.

2. MATERIALS AND METHODS
The minus twice log likelihood of the candidate model in (2) when replacing the dependent
vector y in (1) is defined by
1 1 "y, 2,
—2logL(6]y)=nlog2r+nlogc® t et g([30—[3) XX(BO—B)+?80X(BO—B). (6)

A well-known measure to separate the discrepancy between two models in (1) and (2) is
given by Kullback’s directed divergence or I-divergence [15],

21(6,.6)=E, {Zlog (% |y)}=d(90,6)—d(60,90), @)
L(6ly)

where d(8,,0)=E, {-2logL(8]y)}, d(8,,8,)=E, {-2logL(6,|y)}, 8)

and the expectation E, is taken with respect to the true model in (1). Because d(eo,eo) does not

depend on 0, any ranking of the candidate models according to (7) would be identical to ranking

them according to d(eo,e). Given a set of maximum likelihood estimator @ in (3), the estimated

directed measure d(6,,0) is

!

d(OO,é):Eeo{—2IogL(6|y)}‘ _=nlog2n+nlogé&? +n +—(B0 B) X’X(Bo—ﬁ). (9)

However, the evaluation in (9) is not possible because it requires the knowledge of 6,
Akaike [1-2] proposed an asymptotically unbiased estimator of

A(6,,)=E,,{ d(6,,0) (10)
as
AIC=nlog&® +2(p+1), (11)

ie., Eq { AIC}+0(1)=A(6,,p).
Because of a large negative bias of AIC when the sample size is small or the dimension of

candidate model is large relative to the sample size, Hurvich and Tsai [4] proposed an exactly

unbiased estimator of (10) as follows:

2n(p+1)

AIC_=nlogé&® + :
n-p-2

(12)

ie., Eq {AIC, } = A(6,,p).

Cavanaugh [3], Seghouane and Bekara [9], Seghouane [12] summarized that the Kullback’s
directed divergence produced too underfitted value of model selection, and then it tended to be large
for overparameterized models. An alternate measure to prevent both overfitting and underfitting
problems is obtained by reversing the roles of two models in the definition of the measure, called
Kullback’s symmetric divergence or J-divergence,

21(8,,0)=21(6,,0)+21(6,6,)=[ d(6,,6)—-d(6,.6,)]+[ d(6.6,)—-d(6,6)], (13)
where d(8,,0) and d(8,,8,) are exhibited in (8), d(6,6,)=E,{-2logL(8,]y)}. and d(6,8)=
Eo{—2logL(0]y)}.
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Dropping d(eo,eo), the ranking of the candidate models according to (13) is identical to

ranking them according to
K(6,,0)=d(6,,06)+d(6,08,)—-d(6,0).
Given a set of maximum likelihood estimator 8 in (3), the estimated symmetric measure
K(6,,0) is
K((—)O,é):d(eo,é)+d(é,90)—d(6,é), (14)
where d(eo,é) is exhibited in (9),

2

. 2 1 X'X (B
d(8,6,) =Eq {-2logL (8, |y)}| , =nlog2n-+nlogat+= 6_§<B Bo) X'X(B-B,), (15)

0
and d(é,é) =E, {—2 logL(8y) } Lzé =nlog2n+nlog&® +n. (16)

From (9), (15), and (16), the estimated symmetric measure in (14) can be written as

K(Oo,é) nlog 27+ nlog &2 +nG—62+nGi0 cAjz(BO—[AS)IX'X(BO—[A%)

1 /4 " oro (A 6°
+G_§(B_B°) XX(B—BO)—nIog(G—éj—n (17)
Similarly, the evaluation in (17) requires 8,, Cavanaugh [3] proposed an asymptotically
unbiased estimator of
Q(6,,p) = E,, { K(OO,é)} (18)

as
KIC=nlogé® +3(p+1), (19)

e, Eq {KIC}+0(1)=(6y,p).

Seghouane and Bekara [9] proposed an exactly unbiased estimator of (18) in order to correct
a large negative bias of KIC in (19) as follows:

KIC, :nlog€sz+2n(p+1)—nw(n_p)+nlog(ﬂ),
n-p-2 2 2

ie., Eo { KIC, } =Q(6,,p).
Because the phi (\lf) or digamma function in KIC_ has no closed-form solution, Cavanaugh

[8], Seghouane and Bekara [9], Hafidi and Mkhadri [10] gave the asymptotically unbiased estimators
of (18) called, respectively, in this paper KIC ., KIC g, and KIC,,,

—p)(2p+3)-2
KIC . :nlogéz+nlog( n j+n[(n P)(2p+3) ] (20)
n—p (n—-p-2)(n-p)
KIC,., =n|og62+(p+1)(3n_p_2)+ P_, (21)
¢ n-p-2 n—p
KIC,, =nlogs’+PrHEN=P=2) 22)

n-p-2
To begin the unification of the derivations AIC in (11), AIC, in (12), KIC in (19), KIC_. in
(20), KIC g in (21), and KIC,,,, in (22), we give the following lemmas.
~2
Lemmal. E, {niz} =n-p (23)

Gy
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E,, {o_g(ﬁ By) X'X(B~ Bo)}= (24)
no.|  n’
1 /4 "o (A _np

o | (B ox(B-p) - -2 )

Proof. From the fact that [16], E, {5, } =d.f. and the terms

ncs

b 2 (B-B,) xX(B-B,)

are the independent y* distributions with the degrees of freedom (d.f.) which are, respectively, n — p
and p. Therefore, we obtain (23) and (24). Since, we can write

nc 1
E 0 =n"Eq \—5— (- 27
°°{62} {naz/cg} @
~2

Let Y = niz and we know that Y is the y distribution with n — p degrees of freedom,
Go

_ np,
np., r —1122

1 1] fy? exp(-y/2) [2 j 1
E°°{n62/05}:E°°{7}:£ r(n pj 5 Y= r(n—pjz”z” Tnopz @
2 2

Substituting the results in (28) into (27), we obtain (25). Since, we can write

1 (A 1 no’ 1 /4
E,, {g(ﬁ—ﬁo) XX(B—BO)}—HE% {?}E% {G—é(ﬁ—ﬁo) XX(B—BO)}-

Using the results in (24) and (25), we obtain (26).
Appling Lemma 1 into A(6,,p) in (10) or the expected of the estimated directed measure in

(9), we obtain
A(6,,p) =E, { d(eo,é)}= nlog2m+E, {nlogé’ |+ n—np—2+ n_npp_z

=n(log2n+1)+E, {AIC {, (29)
where AIC, is the corrected version of AIC that was exhibited in (12).

2

Appling Lemma 1 into ©(8,,p) in (18) or the expected of the estimated symmetric measure
in (17), we obtain

2 A2
Q(6,,p) =E,, { K(eo,é)}= nlog2m+E, {nlog&2}+ n—np—2+ n—npp—z_E°° {nlogZ—S}

0
where AIC, is the corrected version of AIC that was exhibited in (12).

It is noteworthy that, in KIC and KIC, derived from K(eo,é) in (17), the differences in all

formulas in (20) to (22) come from the last term of the right-hand side in (30). Therefore, in order to
show the connections of KIC, KIC ., KIC , and KIC_,,, we give the following lemmas.

~2
=n(log2n+1)+E, {AIC } -E, {n Iog%}, (30)
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A2
Lemma2. —-E, <{nlo ° =-nlo B) _n nlo (E) 0] n . 31
e"{ gcﬁ} g( 2 +n—pJr N2)" (n—p)° G

Proof. From [16-17] we have, respectively,

Eq, { 109%5 | =w(%j+l092 and w(x)zlogx—z—lx+o %) as X —» oo, (32)

Applying (23) in Lemma 1 and the facts in (32), we have

A2 ~2
—E,, {n log 6—2} =—E,, {n Iogn%}+n logn=-n [\y(@j+ log 2}+ nlogn
c, o, 2
—-n Iog(n_pj— S > ||-nlog2+nlogn
2.) n=p ((n-p)
——nlog(MJ+L+nlog(ﬂ)+o n
2 ) n-p 2 (n-p)° )

Lemma 3. —nlog(ﬂ}rLJrnlog(EjJro n :p+L+o p_2 +0 n . (33)
2 ) n-p 2) | (n-p) n-p \n) | (n-p)

Proof. Applying the first-order Taylor’s series expansion to expand the term log ((n — p) / 2)

2
about n/2, i.e., Iog(n—;pj: log (%}BH{(BJ J to obtain the approximation in (33).

n n
2
Lemma 4. p+L+o(p—J+o >
n—p \n) {(n-p)

Proof. Rearrange p+n/(n—p) to be (p+1)+p/(n—p). As n—oo and p is held constant, the

Jz(p+1)+o(1). (34)

2
term L+o(p—j+o[ n ZJ is 0(1) which yields the approximation in (34).
n—p n (n—p
Appling Lemma 2 into Q(8,,p) in (30), we obtain

Q(6,,p) =n(log2n+1)+ Es, {AIC,}—nlog (%}rni—pﬂl log (%)+0[(n —np)zj

=n(log2n+1)+E, {KICC(; +0[(n_np)2 ]}

where KIC,. is the corrected version of KIC from Cavanaugh [8] that was exhibited in (20).

Appling Lemmas 2 and 3 into ©(8,,p) in (30), we obtain

Q(6,,p) =n(log2rn+1)+E, {AIC°}+p+nL_;)+O[pF2]+O{(n_np)2]

~n(log2n+1)+E, {chcSB +o(%2}+o£(n_”p)2 }}

where KIC ., is the corrected version of KIC from Seghouane and Bekara [9] that was exhibited in
(21).

Appling Lemmas 2, 3, and 4 into Q(6,,p) in (30), we obtain
Q(6,,p) =n(log2rn+1)+E, {AIC }+(p+1) +0(1)
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=n(log2r+1)+E, {KIC,,, +0(1)},
where KIC,,, is the corrected version of KIC from Hafidi and Mkhadri [10] that was exhibited in
(22).
The connections of AIC, AIC_, KIC, KIC,,,, KIC 4, and KIC_ are given in Lemma 5.

2(p+1)(p+2)

Lemma5. AIC, = AIC+ , (35)
n-p-2
KIC = AIC+(p+1), (36)
kic = Aic,+(PFI(n-%-6) (37)
n-p-2
2(p+1)(p+2
KIC,,, = KIC+ (n—[)a(—Z ), (38)
KIC,, = KIC,,,+ Lp (39)
KIC, = KICCsB+nIog( ”pj—p. (40)
Proof. From AIC in (11) and AIC, in (12),
AIC, = AIC-2(p+1)+ 2n(p+1):AIC+ 2e*Y (i pr24n)
—p- n-p-2
= AIC+ (p+1)(p+ )
n-p-2
From AIC in (11) and KIC in (19),
KIC = AIC-2(p+1)+3(p+1)=AIC+(p+1).
From AIC, in (12) and KIC in (19),
kic = aic, 2P sy aic, + P (a0t 3n-3p—s)
n-p-2 n-p-2
- aic, + P¥U(n=%=6)
n-p-2
From KIC in (19) and KIC_,,, in (22),
KIC,,, = KIC—3(p+1)+(p+1r3(3S_§_2)

= KIC+M(_3n+3p+6+3n_p—2)=K|C+2(p+1)(p+2).
n-p-2 n-p-2

From KIC g, in (21) and KIC,,, in (22), we already have (39). From KIC_. in (20) and
KIC g in (21),

—p- —p)(2p+3)-2
KICCC - KICCSB_(p+1)(3n i 2)_ P +n|og[ n J+n|:(n p)( p+) ]
n-p-2 n-p n—p (n—-p-2)(n-p)
= KICCSB+nIog(nn j

p
—(p+1)(8n—p-2)(n— p) p(n p- 2) n(n-p)(2p+3)-2n




8
no, —n’p+2np® —p® +2np—2p°

= KIC; +nlog
8 n-p (n-p-2)(n-p)
n’-2np+p°-2n+2
= KIC; +nlog n _p( PTP p)
n—p (n—p-2)(n-p)
n
= KIC  +nlog| — |—p.
cSB g n_p p
Consider the connection in (35) and (38), we found that the term
2(p+1 2
(P+1)(p+2) 1)
n-p-2
is at most zero if and only if n—p > 2 and p belongs to the set of [—2, —1]. The connection in (36),
p+1 (42)
is at most zero if and only if p <—1. The connection in (37),
1)(n—3p-6
(P+1)(n-3p-6) 43)

n-p-2
is at least zero if and only if
n—p>2, n>3and p belongs to the set of [-1, n/3-2]. (44)
The connection in (39),
P (45)
n-p
is at most zero if and only if n—p >0 and p belongs to the set of (—oo, O].

Therefore, we can argue that the terms in (41), (42), and (45) have values of at least zero
because p represents the number of regression coefficients which is an integer that has the value of
at least one and all these terms are very close to zero if the ratio of p/n tends to zero. This
conclusion links to AIC<AIC,_, AIC<KIC<KIC,,, <KIC_; whereas KIC is greater than AIC,
when the condition in (44) is true, such as when n equals to 15 and p equals to 2. While the term

nlog (Lj— p (46)
n-p

has the value in the range [—p, o) where it is close to the lower bound —p if the ratio of p/n tends
to zero. If the value of p is fixed, this term is the decreasing function of n, whereas when the value

of n is fixed, it is the increasing function of p. Whenever n—p >0 and the condition
(1-p/n)exp(p/n) <1 (47)
is true, we have the term in (46) being greater than zero. This means that the penalty function of
KIC_. is stronger than other criteria, KIC 5, KIC_,,,, KIC, AIC_, and AIC under the condition in

(47). The strong penalty may cause model selection criteria to have the maximum frequency of the
correct order being selected. However, occasionally it causes them to select underparameterized
models [16]. This confusion is studied by the extensive simulation in the next section.

3. SIMULATION STUDY AND RESULTS
To examine the model selection criteria performances, we generated the true multiple
regression models in (1) as follows.

Model I represents a weakly identifiable true model (p0 =3):
y=1+0.5X, +0.1X, +¢,. (48)
Model I represents a strongly identifiable true model (p, =5):
y=1+X,+X; + X, + X; +¢,. (49)
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A weakly identifiable true model, Model I, means it is not easily identified compared to the
strongly identifiable true models such as Model II. The error terms ¢, in (48) and (49) are assumed

to be normally distributed with zero mean and variances o> equal to three levels: 0.25, 1, and 9. For

both model in (48) and (49), we consider 1,000 realizations for three levels of the sample sizes
which are n = 15 (small), n = 30 (moderate), and n = 100 (large). The steps for simulation and all
results are as follows.

3.1 Use the RAND function of SAS programming to generate the error terms ¢, in (48) and

(49) about 100,000 observations to be normal random variables with zero mean and variances equal
t0 0.25, 1, and 9.

3.2 Split the series of error terms in step 1 into 1,000 samples, each of which consists of three
levels of sample sizes, n = 15, 30, 100 observations.

3.3 Use the RAND function of SAS programming to generate the independent variables X until
X7 about 100,000 observations to be the normal random variables with zero mean and variance
equals to one where the relevant independent variables of Model | are X;, X3 and irrelevant
independent variables are X4, Xs, whereas the relevant independent variables of Model Il are X,
until Xs and irrelevant independent variables are Xg, X5.

3.4 Split the series of independent variables in step 3 into 1,000 samples, each of which consists
of 15, 30, 100 observations. For this study, X is given as a constant which equals one.

3.5 Use the corresponding relevant independent variables obtained in Step 4 and the error terms
obtained in Step 2 to construct the dependent variables described in (48) and (49).

3.6 Use the concept of all possible subsets as potential candidate models. For Model I, we
consider 2* — 1 = 15 subsets, while Model II, we consider 2° — 1 = 63 subsets. For each subset,
calculate AIC in (11), AIC, in (12), KIC in (19), KIC_. in (20), KIC 4, in (21), and KIC_,, in

(22). The subset with the minimum value of model selection criterion can be classified to be the
best model. Due to the large number of subsets, it is impractical to summarize the individual models
chosen. Hence, Tables 1 to 3 summarize p = rank(X) of the selected subset to be three groups: the
selected order less than p is called underfitted order, the selected order equals to p is called correct
order, and the selected order greater than p is called overfitted order. Although p = 3, 5 are,
respectively, the correct orders of Model |1 and Model I, p = 3, 5 may include models with the
correct number of variables but are not the correct model. The “True Order” row summarizes counts
for correctly selecting the true model. Tables 4 display the candidate models that are closest to the
true model in the L, sense. The ave. and S.D. L, rows denote, respectively, the average and standard
deviation of observed L, efficiency in (5) over 1,000 realizations. For 1,000 realizations, the results
of comparing the model selection criteria performances can be concluded as follows.

(1) For the small to moderate sample sizes and the true model is somewhat difficult to

identify (weakly identifiable) as Model | for n = 15, 30, AIC and AIC,_ perform the best, but these
criteria can identify the true model about 15 — 25% of the time for o> = 0.25, about 10 — 15% of the

time for o2 =1, and about 3 — 5% of the time for o = 9.

(2) For the sample size is large and the model is still weakly identifiable as Model | for n =
100, the performances of all model selection criteria are insignificant difference, but all criteria can

identify the true model about 47 — 50% of the time for o = 0.25, about 21 — 24% of the time for
o; =1, and about 3 — 7% of the time for o} = 9.

(3) For the small sample size and the true model can be specified more easily (strongly
identifiable) with small error variance as Model 1l for n = 15, every model selection criteria still

have the ability to select the correct model about 51 — 90% of the time for 5> = 0.25 and about 29 —
45% of the time for o> = 1. Whereas, when the error variance increase as Model Il for n = 15 and
o’ =9, the performances of all model selection criteria are bad.

(4) For the sample sizes are moderate to large and the true model can be specified more
easily (strongly identifiable) as Model Il for n = 30, 100, KIC. performs the best, it can identify the
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true model about 84 — 87% of the time for small error variance o = 0.25, 1. If the error variance

increases (o = 9) and the sample size is moderate as Model 11 for n = 30, all model selection
criteria can identify the true model about 2 — 10% of the time. However, when the sample size
increases (n = 100), the performances of all model selection criteria are insignificant difference. All
criteria can identify the true model about 58 — 61% of the time.

(5) Since the strongly penalty term of KIC family, KIC and KIC, are underfitted more than

AIC and AIC, in AIC family, especially when the true model is very difficult to detect, sample size
is small, and error variance is large.

(6) On the average, the observed L, efficiency in Table 4 suggests that KIC . in KIC family
is the best criterion for all sample sizes of a weakly identifiable true model.

(7) This simulation also found that; when the sample size increases including the regression
coefficient increases or the model can be easily to identify, the frequency of order being selected

and the observed L, efficiency also increase. While, the error variance is effect to the frequency of

order being selected and the observed L, efficiency decrease.

Place Table 1. about here
Place Table 2. about here
Place Table 3. about here
Place Table 4. about here

4. CONCLUSIONS, DISCUSSION, AND FUTURE WORKS

This paper presents the derivations to unify the justifications of the criteria based on
Kullback’s directed and symmetric divergence; Akaike information criterion (AIC) by Akaike [1-2]
and the corrected version; AIC_ by Hurvich and Tsai [4], Kulback information criterion (KIC) by

Cavanaugh [3] and the corrected versions; KIC . by Cavanaugh [8], KIC, by Seghouane and
Bekara [9], and KIC,,, by Hafidi and Mkhadri [10]. The results show that KIC . has the strongest
penalty function under the condition in (47), followed, respectively, by KIC .;, KIC,,,, KIC, and
AIC. If the condition in (44) is true, KIC is greater than AIC_. However, AIC_ always greater than

AIC. The strong penalty may cause model selection criteria to have the maximum frequency of the
correct order being selected. However, sometimes it may cause the underfitted problem. The
performances of all model selection criteria, AIC, AIC_, KIC, KIC., KIC, and KIC_,,, are
examined by the extensive simulation study. Our simulation study indicates that, for the small to
moderate sample sizes and the true model is somewhat difficult to identify, the performances of
AIC and AIC, are better than others. However, they can identify the true model about 10 — 25% of
the time for small error variance and can identify the true model about 3 — 5% of the time for large
error variance. When the sample size is large and the model is still weakly identifiable, the
performances of all model selection criteria are insignificant difference, but all criteria can identify
the true model about 21 — 50% of the time for small error variance and can identify the true model
about 3 — 7% of the time for large error variance. As a result, the frequency of correct order being

selected may not be meaningful. For this reason, we have also used the observed L, efficiency to

assess model selection criteria performances. On the average, this measure suggests that in a weakly
identifiable true model, whether the sample size is small or large, KIC is the best criterion

because it has highest average value of the observed L, efficiency and lowest standard deviation.
The better performance of KIC . may be because its formula is closer to the expected estimated
symmetric discrepancy in (18) than other. But, KIC . is more likely to select an underfitted model
than other criteria which is because its penalty function is strong. Nevertheless, even if KIC . tends

to select underfitted models, these selected models are close to the true model. For the small sample
size and the true model can be specified more easily with small error variance, every model
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selection criteria have the ability to select the correct model about 29 — 90% of the time. Whereas,
the error variance increase, the performances of all model selection criteria are bad. When the
sample sizes are moderate to large and the true model can be specified more easily, KIC, performs
the best, it can identify the true model about 84 — 87% of the time for small error variance. If the
error variance increases and the sample size is moderate, all model selection criteria can identify the
true model about 2 — 10% of the time. However, when the sample size increases, the performances
of all model selection criteria are insignificant difference. All criteria can identify the true model
about 58 — 61% of the time. Since the strongly penalty term of KIC family, they are underfitted
more than the criteria in AIC family, especially when the true model is very difficult to detect,
sample size is small, and error variance is large. This study also found that; when the sample size
increases including the regression coefficient increases or the model can be easily to identify, the
frequency of order being selected and the observed L, efficiency also increase. While, the error

variance is effect to the frequency of order being selected and the observed L, efficiency decrease,

this result is opposite to Kundu and Murali [18] which concluded that the criteria performances did
not change much when the error variance was changed. In future work, we hope to find a model
selection criterion to overcome the probability of over/underfitting by adjusting the penalty term of
the model selection criterion, called adjusted penalty information criterion, denoted by APIC. The
proposed criterion performance is examined by the extensive simulation study relative to the well-
known criteria under various circumstances as follows: sample sizes, orders of true model,
regression coefficients, variances of error terms, distributions of independent variables, and
distributions of error terms.
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Table 1. Frequency of the model order being selected by each criterion for 1,000 realizations:

o’ =0.25.
Model n Counts Criteria
for order p AIC AIC, KIC KIC.xm KIC.sg KIC.c

| 15 order <p 393 686 565 773 786 804
p=3 398 277 326 210 199 185

order > p 209 37 109 17 15 11

True Order 187 139 156 108 102 95
| 30 order <p 409 538 591 681 688 695
p=3 430 384 343 282 278 276

order > p 161 78 66 37 34 29
True Order 246 219 198 172 169 169
| 100 order <p 201 227 334 362 362 364
p0=3 579 585 549 543 545 546

order > p 220 188 117 95 93 90
True Order 493 504 469 468 468 469

1 15 order <p 1 28 5 42 43 53
p=5 516 900 652 910 910 906

order > p 483 72 343 48 47 41
True Order 512 895 646 903 903 899

1 30 order <p 0 0 0 0 0 0
p=5 609 802 762 859 863 874
order > p 391 198 238 141 137 126
True Order 609 802 762 859 863 874

1 100 order<p 0 0 0 0 0 0
p=5 688 722 815 846 847 851
order > p 312 278 185 154 153 149
True Order 688 722 815 846 847 851

Note: Boldface type indicates the maximum frequency of correct order being selected; more than one boldface type is
insignificant difference.
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Table 2. Frequency of the model order being selected by each criterion for 1,000 realizations:

ol =1.
Model n Counts Criteria
for order p AlIC AIC, KIC KICqm KIC.ss KICc

I 15 order<p 534 829 735 902 905 915
p=3 320 156 202 90 87 78

order > p 146 15 63 8 8 7

True Order 104 49 64 36 36 32
I 30 order<p 524 644 703 805 806 814
p=3 342 291 245 175 175 168

order > p 134 65 52 20 19 18

True Order 151 130 110 81 81 78
I 100 order <p 446 465 584 608 609 613
p0=3 410 413 351 334 333 330

order > p 144 122 65 58 58 57
True Order 233 241 219 216 215 214
I 15 order<p 100 530 208 639 649 681
p=5 451 435 510 342 334 307

order > p 450 35 283 19 17 12
True Order 391 395 448 320 314 292

I 30 order<p 3 12 11 22 23 25
p=5 640 789 758 854 856 864
order > p 357 199 231 124 121 111
True Order 638 788 757 852 854 861

I 100 order<p 0 0 0 0 0 0
p=5 674 722 812 842 843 846
order > p 326 278 188 158 157 154
True Order 674 722 812 842 843 846

Note: Boldface type indicates the maximum frequency of correct order being selected; more than one boldface type is
insignificant difference.

Table 3. Frequency of the model order being selected by each criterion for 1,000 realizations:
2
c, =9.

Model n Counts Criteria
for order p AIC AIC, KIC KIChm KICcss KICc
| 15 order <p 705 920 846 960 965 968
p=3 215 74 126 37 32 30
order > p 80 6 28 3 3 2
True Order 47 20 24 11 10 10
| 30 order <p 738 856 887 941 942 945
p=3 202 128 102 56 55 52
order > p 60 16 11 3 3 3
True Order 44 28 24 12 11 9
| 100 order <p 708 749 858 874 876 877
p0=3 239 214 126 118 116 115
order > p 53 37 16 8 8 8
True Order 70 65 38 36 35 35
1 15 order <p 999 1000 1000 1000 1000 1000
p=5 1 0 0 0 0 0
order >p 0 0 0 0 0 0
True Order 0 0 0 0 0 0
1 30 order <p 665 877 857 946 951 957
p=5 244 107 122 50 45 41
order >p 91 16 21 4 4 2
True Order 97 48 52 28 25 24
1 100 order <p 97 117 212 245 246 249
p=5 615 647 645 635 634 637
order > p 288 236 143 120 120 114
True Order 575 606 611 602 602 604

Note: Boldface type indicates the maximum frequency of correct order being selected; more than one boldface type is
insignificant difference.
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Table 4. Average and standard deviation of the observed L, efficiency over 1,000 realizations

i Criteria
Clreumstance 1 Stat. AIC  AICc  KIC  KICcy  KiCcss  KiCcc
Model | 15 Ave. Lpeff 06013 07004 06548 07278 07319  0.73%
Gl =0.25 Rank 6 4 5 3 2 1
SD.L,eff. 03108 02985 03084 02916  0.2907  0.2891
Rank 6 4 5 3 2 1
Model | 30  Ave l,eff 06301 06388 06404 06553  0.6563  0.6578
Gl =0.25 Rank 6 5 4 3 2 1
SD.L,eff. 03076 02950 02917 02827 02822  0.2821
Rank 6 5 4 3 2 1
Model | 100  Ave. Lpeff 07210 07249 06955  0.6927  0.6926  0.6930
ol =0.25 Rank 2 1 3 5 6 4
SD.L,eff. ~ 03182 03195 03313 03330 03331  0.3332
Rank 2 1 3 5 6 4
Model | 15 Ave.L,eff ~ 05483 06517 06195 06808  0.6820  0.6863
ol =1 Rank 6 4 5 3 2 1
SD.L,eff 03421 03603 03610 03563 03562  0.3550
Rank 6 4 5 3 2 1
Model | 30  Ave.l,eff 07103 07372 07458 07703 07705  0.7716
ol =1 Rank 6 5 4 3 2 1
SD.L,eff ~ 03148 03131 03150 03098 03095  0.3094
Rank 6 5 4 3 2 1
Model | 100  Ave.L,eff. ~ 06291 06384 06606 06674  0.6673  0.6681
c; =1 Rank 6 5 4 2 3 1
SD.L,eff. 02993 02986 02891  0.2855  0.2853  0.2847
Rank 6 5 4 2 3 1
Model | 15 Ave.L,eff ~ 03634 03951 03838 04010 04018  0.4026
ol =9 Rank 6 4 5 3 2 1
SD.L,eff. 02806 02913 02879 02913 02914  0.2918
Rank 6 4 5 3 2 1
Model | 30  Ave l,eff. 04534 04768 04829 04946  0.4946  0.4954
ol =9 Rank 6 5 4 2 3 1
SD.L,eff. 03225 03280 03297 03314 03315 03317
Rank 6 5 4 2 3 1
Model | 100  Ave.L,eff. 06115 06251 06622 06717 06721  0.6730
ol =9 Rank 6 5 4 3 2 1
SD.L,eff. 03545 03555 03543 03542 03543  0.3540
Rank 6 5 4 3 2 1

Note: Boldface type indicates the best performance.
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Circumstance n Stat Criteria
' AIC AlCc KIC  KICcuu  KlCcss  KlICcc
Model | 15 Ave Leff 05043 0584 05527 06032 06052  0.6094
Ave.all ¢. Rank 6 4 5 3 2 1
SD.L,eff 03112 03167 03191 03131 03128 03120
Rank 6 4 5 3 2 1
Model | 30 Ave Lyeff 05979 06176 06230 06401 06405  0.6416
Ave.all 6. Rank 6 5 4 3 2 1
SD.L,eff 03150 03120 03122 03080 03077  0.3077
Rank 6 5 4 3 2 1
Model | 100 Ave Lpeff 06539 06628 06728 06773 06773  0.6781
Ave.all 6. Rank 6 5 4 3 2 1
S.D.Lyeff 03240 03246 03249 03242 03242  0.3240
Rank 6 5 4 3 2 1

Note: Boldface type indicates the best performance.



Model Selection Criterion to Overcome the Weak Signal-to-Noise
Ratio and to Reduce the Probability of Over/Underfitting

Warangkhana Keerativibool " and Pachitjanut Siripanich ?

! Department of Mathematics and Statistics, Faculty of Science, Thaksin University, Phatthalung,
Thailand
2 Faculty of Business Administration, Dhurakij Pundit University, Bangkok, Thailand

“Author for correspondence; e-mail: warang27 @gmail.com

Abstract

This paper proposed a model selection criterion in order to overcome the weak signal-to-
noise ratio and to reduce the probability of over/underfitting by adjusting the penalty term of the
well-known model selection criteria (AIC, BIC, KIC), called adjusted penalty information criterion,

APIC = Iog(62)+a( p+1)/n. Criterion is classified to be the best when it has the strong signal-to-

noise ratio, lowest probability of over/underfitting and maximum probability of correct order being
selected. The theoretical results show that, if the value of « tends to infinity, the probability of
overfitting tends to zero and the signal-to-noise ratio tends to strong, but the probability of
underfitting tends to one. The simulation results show that, when the true model is difficult to
identify, distributions of independent variables are normal or uniform, the appropriate « is small.
But for the independent variables are normal distributed, sample size increases and variances of
error terms are small to moderate, « should be moderate. If the true model is easily to identify,
distribution of independent variables is normal and variances of error terms are small to moderate,
the appropriate « is large. When the variance of error terms increases, « should be moderate. If
the distribution of independent variables changes to be uniform and variances of error terms are
small to moderate, & should be moderate, otherwise « should be small. If the variance of error
terms increases, the validity of APIC decreases, but when the sample size increases, the validity of
APIC also increases.

Keywords: Kullback’s directed divergence, Kullback’s symmetric divergence, model selection.
1. INTRODUCTION

In the application of statistics, the statistical modeling is considered a major task of study.
Three statistical processes to guide a model, which has the parsimony, goodness-of-fit and
generalizability properties, are the hypothesis testing of parameters, variable selection algorithms
and model selection criterion. The model selection criterion is a popular tool for selecting the best
model. The first model selection criterion to gain widespread acceptance was Akaike information
criterion, AIC [1-3]. This serves as an asymptotically unbiased estimator of a variant of Kullback’s
directed divergence between the true model and a fitted approximating model. Other well-known
criteria were subsequently introduced and studied such as, Bayesian information criterion, BIC [4]
and Kullback information criterion, KIC [5-6]. BIC is an asymptotic approximation to a
transformation of Bayesian posterior probability of a candidate model [7]. KIC is a symmetric
measure, meaning that an alternate directed divergence may be obtained by reversing the roles of
the two models in the definition of the measure [5, 8]. Although AIC remains arguably the most
widely used model selection criterion, BIC and KIC are popular competitors. In fact, BIC is often
preferred over AIC by practitioners who find appeal in either its Bayesian justification or its
tendency to choose more parsimonious models than AIC [7]. Likewise, KIC is a symmetric measure
which combines the information in two related, though distinct measures; its functions as a gauge of
model disparity that is arguably more sensitive than AIC that corresponds to only individual
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component [5, 8]. However, AIC, BIC and KIC still have the problems of weak signal-to-noise
ratios and high probabilities of overfitting when the sample size is not large enough which both
problems have an effect on the frequency of selection the correct model. With this motivation, the
aim of this paper is to propose a model selection criterion to overcome the weak signal-to-noise
ratio and to reduce the probability of over/underfitting by adjusting the penalty term of the model
selection criterion, called adjusted penalty information criterion, denoted by APIC. The proposed
criterion performance is examined by the extensive simulation study relative to the well-known
criteria, AIC, BIC and KIC, under the difference circumstances [9-12]: sample sizes, orders of true
model, regression coefficients, variances of error terms and distributions of independent variables.
The criterion is classified to be the best when it has the strong signal-to-noise ratio, has the lowest
probability of over/underfitting and has the maximum probability of correct order being selected.
The remainder of this paper is organized as follows. In Section 2, we propose Adjusted Penalty
Information Criterion (APIC) in order to overcome the weak signal-to-noise ratio and to reduce the
probability of over/underfitting. In Section 3, we simulate 1,000 realizations of multiple regression
models in order to examine the performance of APIC relative to AIC, BIC and KIC. Finally, Section
4 is the conclusions, discussion and further study.

2. MATERIALS AND METHODS
The true univariate regression model to consider in this paper is in the form [13]

y=XBo+&, 1)
and the candidate or approximating univariate regression model is in the form
y=XB+e, )

where y is an nx1 dependent random vector of observations, X, and X are nxp, and nxp
matrices of independent variables with full-column rank, respectively, B, and § are p,x1 and
px1 parameter vectors of regression coefficients, respectively, €, and & are nx1 error vectors
with zero means and variance ol and o*l,, respectively. The maximum likelihood estimators of

B and o are, respectively, ﬁ:(X'X)_1 X'y and &° :%(y—xﬁ)’ (y—Xf}).

For each data set, we can construct many fitted candidate models. Nevertheless, we cannot
know which model is the best. Criterion for model selection is a way to solve this problem. AIC,
BIC and KIC are three well-known criteria to consider in this paper. Many authors usually scale
these criteria by 1/n in order to express them as a rate per observation. The formulae for them are
based on the following form,

APIC =log(67) + “(P 1) 3)
n
When the values of « in (3) are equal to 2, log(n) and 3, APIC becomes AIC [1-2], BIC [4]
and KIC [5], respectively. In this paper, the methods used to compare which criterion is the best are
the ratio of signal-to-noise, the probability of over/underfitting and the probability of correct order
being selected. McQuarrie and Tsai [14] defined the signal-to-noise ratio as a measurement that is
basically a ratio of the expectation to the standard deviation of the difference in criterion values for
two models. The ratio tends to assess whether the penalty term is sufficiently strong in relation to
the goodness of fit term. From the true model order p, and a candidate model order p,+I where

I >0, the true model is considered better than a candidate model if APIC, < APIC,, ... Then the
signal-to-noise ratio that the true model is selected compared to a candidate model is

N - al
signal 3 E[AP|CPO+I_APICp0] _ E[IOQ(0;0+|/U§0)+n}

= _ . R 11"
noise sd[APICW. APIC,, Sd[IOQ(Gzﬁl/GEO)JrO;}
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In order to find the signal in (4), we apply the second-order of Taylor’s series expansions as
follows. Suppose X ~ y;, expanding log(X) about E(X)=p, we have

log(X)=log(p)+(X —p)/p—(X —p)’/2p? and E[log(X)]|=log(p)-Yp. (5)
Under the assumption of nested models; p> p, and | >0, we have

N(6%—6%,)~oext, N6a~opx, and 62 -6, is independent of 67,,, (6)

where y/ represents the chi-square distribution with k degrees of freedom.
Using the result of Taylor’s series expansions in (5) and the assumptions in (6), we have

E[Iog(n&ﬁ)}iIog(a§)+log(n—p)—l/(n—p). (7)
From (7), the signal in (4) is approximated by

n—p,—I I I
E[ APIC ;.1 — APIC ,, iIog[ Po j— £ (8)
N—1P, (n_po_l)(n_po) n
In order to find the noise in (4), we use the assumptions in (6), then we have
n n2 2
Q: O-p0+l _ Zn—po—l (9)
A2

no,, Zr?—po—l +a0
the Q-statistic in (9) has the Beta distribution
Q~ Beta((n—p,—1)/2,1/2),
and the log-distribution is
log(Q) =log(ns?, ., /né? )~ log-Beta((n— p, ~1)/2, 1/2). (10)
Applying the first-order of Taylor’s series expansions to log(Q) in (10) about
—o.-1)/2 —p —
£(Q)= (Rol)2 bl
(n—p,—1)/2+1/2  n-p,

we have

. B B n—p,—I n—p, _n—pO—I
09(2) = log[E(@)]+[Q- E(Q)] /E(@) g 2ot PP g Bl

Hence

var| log(Q)] g(nrl— Po j{((n_p a7 (n—p,—1)/2:1/2 ]

P | J2+1/2) ((n=p, —1)/2+1/2+1)
2l
= : (11)
(n—p,—1)(n—p, +2)
Combined the results in (8) and (11) to be the approximate signal-to-noise ratio in (4) as

follows:

signal . J(n—p—1)(n—p,+2)[ (n—p, I | al

= log — +— . (12)
noise J21 n-p, ) (n—p,—1)(n=p,) n

In (12), we found that the signal-to-noise ratio of APIC depends on the value of o as

mention earlier. When we replace the values of « by 2, log (n) and 3, we have the signal-to-noise

ratios of AIC, BIC and KIC, respectively. If the value of o tends to infinity under the same values
of the sample size (n), the order of true model (po) and the additional variable (I), APIC has a
strong signal-to-noise ratio. The proof of the signal-to-noise ratio can be confirmed numerically in
Table 1. The example of the calculation for the signal-to-noise ratio of APIC, for n=15, p, =3,
I =1and =1, is as follows:
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o ol o

Place Table 1. about here

From Table 1 we found that when the sample size is small (n = 15), KIC has a strong signal-
to-noise ratio than BIC and AIC, respectively, because the value of « in (3) from KIC is larger than
BIC and AIC, respectively (3 > log(15) > 2). Whereas the sample size are moderate to large (n = 30,
100), BIC has a strong signal-to-noise ratio than KIC and AIC, respectively, because the value of «
in (3) from BIC is larger than KIC and AIC, respectively (log(30) or log(100) > 3 > 2). Therefore,
we can conclude that, APIC with a much more value of « , make its signal-to-noise to be strong.

The probability of over/underfitting is the second method used to compare which criterion is
the best. Both overfitting and underfitting can lead to problems with the predictive abilities of a
model. An underfitted model may have poor predictive ability due to a lack of detail in the model,
while an overfitted model may be unstable in the sense that repeated samples from the same process
can lead to widely differing predictions due to variability in the extraneous variables. The
probability of overfitting is defined based on a model that has extra variables with more parameters
than the optimal model [15]. The probability of APIC preferring the overfitted model by | extra
variables is analyzed here by comparing the true model of order p, to a more complex model or

overfitted model of order p,+1, 1 >0. Hence for finite n, the probability that APIC prefers the
overfitted model is defined by

| +1 1
P{APICpOH < APICPO} = P{Iog(&;wl)ﬁ—@< |Og(6’,§0)+a(p;+ )}

62 62 62 — 62
= P<log| - Al _p %>exp(ﬂlj =P ""T""”>exp(a—lj—1 . (13)
o-p0-¢—l n Gpo+l n Gpo+l n

Using the assumptions in (6), the probability of overfitting by | extra variables for APIC in
(13) becomes

2 | -p, - |
P{Ap|cp0+, < APIC,,} = P{ZZX—I > exp[%j—l} = P{Fl,n—po—l > %{exp(%j—l} } (14)

n—po-I
In the opposite, the probability of underfitting is defined based on a model with too few
variables compared to the optimal model [15]. It is defined by

+a(p0—|+1)<log( s )+a(p0+1)}

A2 A2 A2 A2
=P/log| 2t Alp Tt <exp(a—lj —p{Ze " Tn <exp[a—l)—1
Oy, n o n o n
2 [—
—pl A exp(“—'j—l _ P{ﬁn_po <D= {exp(i'j—lﬂ. (15)
X, n I n

In (14) and (15), we found that APIC’s probability of over/underfitting depends on the value
of a same as the signal-to-noise ratio. When we replace the values of « by 2, Iog(n) and 3, we
have the probabilities of over/underfitting of AIC, BIC and KIC, respectively. If the value of «
tends to infinity under the same values of n, p, and |, APIC having the low probability of

overfitting but it will be prone to underfitting. The proof of the probability of over/underfitting can
be confirmed numerically in Table 2 and 3. The example of the calculation for the probability of
overfitting by | extra variables of APIC, for n=15, p,=3, | =1 and a =1, is as follows:

P{APIC, , <APIC, | =P{F,, >0.7583} = 0.4025.

P{AP'C Po-! < APIC po} = P{Iog(&f’o')

po+1
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It means that APIC for e =1 would select the model whose order is higher by one order
than true model with a probability of 0.4025. In the same manner, the probability of underfitting by
| variables of APIC for this case is

P{APIC, , <APIC, }=P{F,, <0.8273|=0.6190.

It means that APIC for « =1 would select the model whose order is lower by one order than
true model with a probability of 0.6190. The model selection criterion that has strong signal-to-
noise ratio and lowest probability of over/underfitting is preferable. As a result, the main objective
of this paper is to find the appropriate value of «, by proving and verifying the result of study with
simulation data, in order to make the strength of penalty function in the model selection criterion.
Then, the performance of APIC is examined relative to the well-known criteria, AIC, BIC and KIC,
under various circumstances.

Place Table 2. about here

Place Table 3. about here

From Table 2 and 3 we found that when the sample size is small (n = 15), KIC has
probability of overfitted less than BIC and AIC, respectively, in the opposite it has more probability
of underfitted because the value of « in (3) from KIC is larger than BIC and AIC, respectively (3 >
log(15) > 2). Whereas the sample size are moderate to large (n = 30, 100), BIC has probability of
overfitted less than KIC and AIC, respectively, in the opposite it has more probability of underfitted
because the value of « in (3) from BIC is larger than KIC and AIC, respectively (log(30) or
log(100) > 3 > 2). Therefore, we can conclude that, APIC with a much more value of «, make its
probability of overfitting to be smaller but make more probability of underfitting.

3. SIMULATION STUDY AND RESULTS

In addition to the proofs of signal-to-noise ratio in (12) and the probability of
over/underfitting in (14) and (15), we use the simulation data to find the appropriate value of « for
APIC in (3). True multiple regression models in (1) are constructed as follows.

Model 1 (very weakly identifiable true model with the true order p, =5):

y, =1+0.5X, +0.4X,+0.3X,+0.2X; + &,

Model 2 (weakly identifiable true model with the true order p, =3):

Y, =1+0.5X, +0.4X, +¢,,

Model 3 (strongly identifiable true model with the true order p, =3):

Y, =1+2X, +2X, +&,,

Model 4 (very strongly identifiable true model with the true order p, =5):
Y, =1+2X,+2X,+2X,+2X; +¢,.

For each model, we consider 1,000 realizations for three levels of the sample sizes which are
n =15 (small), n = 30 (moderate) and n = 100 (large). The error terms for all models are assumed to

be N(O, ag) where o in (1) is assumed equal to three levels: 0.25, 1, 9. Seven candidate

variables, X, to X,, are stored inan nx7 matrix X of the candidate model in (2). X, is givenas a

constant which equals 1, followed by six independent variables which have two distributions:

N (0, 1) and U (a, b). For the uniform distribution, we given

X, ~U(5,10), X; ~U(10, 20), X, ~U(7,9), Xy ~U(6,11), X, ~U(9,19), X, ~U (4, 8).

Candidate models include the columns of X in a sequentially nested fashion; i.e., columns 1

to p define the design matrix for the candidate model with dimension p. Over 1,000 realizations,

we apply APIC in (3) with the values of « ranging from 1 to 14 on the datasets y of four models

constructed. The probability of order selected by APIC is measure and used for examining the

effects of weak or strong penalty function in the proposed criterion. Results are shown in Table 4 to
Table 6. Findings are the following.



6

[1] In Table 4, for the very weakly identifiable situation of true models with the true orders
P, = 5, Model 1, the sample size is small (n = 15) and the distribution of independent variable is

normal, the appropriate values of & when the true variances 7 = 0.25, 1, 9, are 2, 1 and 1,
respectively with the probabilities of correct order being selected are 29.7%, 15.5% and 11.9%.
While, the distribution of independent variable is changed to be uniform, the appropriate values of
a for all three levels of true variances are 1 with the probabilities are reduced to be 13.2%, 11.3%
and 10.6%.

[2] In Table 4, for the weakly identifiable situation of true models with the true orders p, =
3, Model 2, the sample size is small (n = 15) and the distribution of independent variable is normal,
the appropriate values of o when the true variances o =0.25, 1, 9, are 4, log n and 2, respectively
with the probabilities of correct order being selected are 65.8%, 33.3% and 11.9%. While, the
distribution of independent variable is changed to be uniform, the appropriate values of « for all
three levels of true variances are 2 with the probabilities are reduced to be 17.8%, 12.6% and
13.6%.

[3] In Table 4, for the strongly identifiable situation of true models with the true orders p,
= 3, Model 3, the sample size is small (n = 15) and the distribution of independent variable is
normal, the appropriate values of « when the true variances o; = 0.25, 1, 9, are 14, 9 and 4,
respectively with the probabilities of correct order being selected are 99.8%, 97.7% and 55.4%.
While, the distribution of independent variable is changed to be uniform, the appropriate values of
a for three levels of true variances are 6, 4 and log n with the probabilities are reduced to be
85.8%, 48.5% and 15.7%.

[4] In Table 4, for the very strongly identifiable situation of true models with the true orders
P, = 5, Model 4, the sample size is small (n = 15) and the distribution of independent variable is

normal, the appropriate values of o when the true variances o = 0.25, 1, 9, are 13, 7 and log n,

respectively with the probabilities of correct order being selected are 98.5%, 91.6% and 46.6%.
While, the distribution of independent variable is changed to be uniform, the appropriate values of
a for three levels of true variances are 5, log n and 1 with the probabilities are reduced to be
78.2%, 42.3% and 14.8%.

[5] In Table 5, for very weakly identifiable situation of true models with the true orders p,
= 5, Model 1, the sample size is moderate (n = 30) and the distribution of independent variable is
normal, the appropriate values of « when the true variances o7 = 0.25, 1, 9, are 3, 1 and 1,

respectively with the probabilities of correct order being selected are 55%, 24.6% and 13.5%.
While, the distribution of independent variable is changed to be uniform, the appropriate values of
a for all three levels of true variances are 1 with the probabilities are reduced to be 17.5%, 13%
and 13.3%.

[6] In Table 5, for the weakly identifiable situation of true models with the true orders p, =
3, Model 2, the sample size is moderate (n = 30) and the distribution of independent variable is
normal, the appropriate values of « when the true variances o = 0.25, 1, 9, are 5, 3 and 2,

respectively with the probabilities of correct order being selected are 90.8%, 55.5% and 18.5%.
While, the distribution of independent variable is changed to be uniform, the appropriate values of
a for all three levels of true variances are 2 with the probabilities are reduced to be 29.2%, 16.6%
and 11.8%.

[7] InTable 5, for strongly identifiable situation of true models with the true orders p, = 3,
Model 3, the sample size is moderate (n = 30) and the distribution of independent variable is
normal, the appropriate values of « when the true variances o7 = 0.25, 1, 9, are 14, 11 and 5,

respectively with the probabilities of correct order being selected are 100%, 99.9% and 85.5%.
While, the distribution of independent variable is changed to be uniform, the appropriate values of
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a for three levels of true variances are 10, 4 and 2 with the probabilities are reduced to be 98.8%,
75.9% and 23.2%.

[8] InTable 5, for very strongly identifiable situation of true models with the true orders p,
= 5, Model 4, the sample size is moderate (n = 30) and the distribution of independent variable is
normal, the appropriate values of o when the true variances o7 = 0.25, 1, 9, are 14, 14 and 4,
respectively with the probabilities of correct order being selected are 100%, 100% and 79.7%.
While, the distribution of independent variable is changed to be uniform, the appropriate values of
a for three levels of true variances are 8, 3 and 1 with the probabilities are reduced to be 98.6%,
72.3% and 22.3%.

[9] In Table 6, for very weakly identifiable situation of true models with the true orders p,
= 5, Model 1, the sample size is large (n = 100) and the distribution of independent variable is
normal, the appropriate values of & when the true variances o7 = 0.25, 1, 9, are 5, 2 and 1,
respectively with the probabilities of correct order being selected are 91.4%, 53.5% and 17.4%.
While, the distribution of independent variable is changed to be uniform, the appropriate values of

a for all three levels of true variances are 1 with the probabilities are reduced to be 31.3%, 18%
and 11.7%.

[10]In Table 6, for weakly identifiable situation of true models with the true orders p, = 3,
Model 2, the sample size is large (n = 100) and the distribution of independent variable is normal,
the appropriate values of o when the true variances o7 = 0.25, 1, 9, are 12, 5 and 2, respectively
with the probabilities of correct order being selected are 100%, 92.9% and 33.9%. While, the
distribution of independent variable is changed to be uniform, the appropriate values of « for three

levels of true variances are 3, 2 and 1 with the probabilities are reduced to be 63.5%, 28.7% and
12.5%.

[11]In Table 6, for strongly identifiable situation of true models with the true orders p, = 3,
Model 3, the sample size is large (n = 100) and the distribution of independent variable is normal,
the appropriate values of & when the true variances o = 0.25, 1, 9, are 12, 13 and 9, respectively
with the probabilities of correct order being selected are 100%, 100% and 99.3%. While, the
distribution of independent variable is changed to be uniform, the appropriate values of « for three

levels of true variances are 14, 8 and 2 with the probabilities are reduced to be 100%, 99.3% and
50.6%.

[12]In Table 6, for very strongly identifiable situation of true models with the true orders p,
= 5, Model 4, the sample size is moderate (n = 100) and the distribution of independent variable is
normal, the appropriate values of a when the true variances o, = 0.25, 1, 9, are 14, 10 and 10,
respectively with the probabilities of correct order being selected are 99.9%, 99.9% and 99.5%.
While, the distribution of independent variable is changed to be uniform, the appropriate values of
a for three levels of true variances are 13, 9 and 2 with the probabilities are reduced to be 100%,
99.3% and 49.2%.

Place Table 4. about here

Place Table 5. about here

Place Table 6. about here

From the results in [1] to [12] we can conclude that, the weakly or very weakly identifiable
situations of true models, Model 1 and Model 2, the true orders p, = 3, 5 and the distribution of

independent variable is normal, the appropriate « is small. If sample size increases and variances
of error terms are small (o7 = 0.25) to moderate (o = 1), a should be moderate. For the

distribution of independent variable is changed to be uniform, the appropriate « is small, regardless
the sample size or the variances of error terms. When the true model is very weakly identifiable, the
appropriate « should be smaller than the weakly identifiable situation. The strongly or very
strongly identifiable situations of true models, Model 3 and Model 4, the true orders p, = 3, 5 and
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the distribution of independent variable is normal, the appropriate « is large. If the variance of
error terms increases, « should be moderate. For the distribution of independent variable is
changed to be uniform, the appropriate « is moderate. If the variance of error terms increases, «
should be small.

4. CONCLUSIONS, DISCUSSION and FUTURE WORKS
In this paper, we propose the model selection criteria, called Adjusted Penalty Information
Criterion,

APIC =log(6%)+a(p+1)/n,
when the values of « are equal to 2, log(n) and 3; APIC becomes AIC, BIC and KIC respectively.

Each criterion has a different value due to its penalty function, the differences in strong or weak
penalty affecting the probability of over/underfitting, including the problem of signal-to-noise ratio
being weak. The theoretical results show that, when the value of « tends to infinity, the probability
of overfitting tends to zero and the signal-to-noise ratio tends to strong. However, the probability of
underfitting tends to one. At the same time, the results of simulation suggest that, the appropriate «
is small when true models are weakly or very weakly identifiable and distributions of independent
variables are normal or uniform. But « should be moderate, if distribution of independent variables
is normal, sample size increases and variances of error terms are small to moderate. The appropriate
a 1S large, if the true model is strongly identifiable, distribution of independent variables is normal,
and variance of error terms is small to moderate. But « should be moderate, if the variance of error
terms increases. When the distribution of independent variables changes to be uniform, the
appropriate « is moderate for the case of variance of error terms is small to moderate. But «
should be small, if the variance of error terms increases. The variance of error terms and sample size
affects the validity of APIC. The variance of error terms increases, the validity of APIC decreases.
Whereas the sample size increases, the validity of APIC also increases. In further work, we attempt
to construct the model selection criteria to overcome the weak signal-to-noise ratio and to reduce
the probability of over/underfitting in the multivariate regression and simultaneous equations
models.
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Table 1. Signal-to-noise ratio of APIC o for different values of n, p, and I.

Criteria

n po | APIC1 ,A(\z:g)z A'Zgiocg()n) A(‘E:g)?’ APIC4 APIC5 APIC6  APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14
15 3 1 -0.2450 0.3400 0.7542 0.9250 1.5100 2.0950 2.6800 3.2650 3.8500 4.4350 5.0200 5.6050 6.1900 6.7750 7.3600
15 3 2 -0.3884 0.4004 0.9589 1.1892 1.9780 2.7668 3.5556 4.3444 5.1333 5.9221 6.7109 7.4997 8.2885 9.0773 9.8661
15 3 3 -05291 0.3874 1.0364 1.3039 2.2204 3.1370 4.0535 4.9700 5.8865 6.8030 7.7195 8.6360 9.5526 10.4691 11.3856
15 3 4 -0.6752 0.3225 1.0290 1.3203 2.3181 3.3159 4.3136 5.3114 6.3092 7.3070 8.3047 9.3025 10.3003 11.2981 12.2958
15 5 1 -0.3660 0.1239 0.4708 0.6138 1.1037 1.5936 2.0835 2.5734 3.0633 3.5532 4.0431 4.5330 5.0229 5.5128 6.0027
15 5 2 -05625 0.0907 0.5532 0.7439 1.3971 2.0503 2.7035 3.3567 4.0099 46631 5.3163 5.9695 6.6227 7.2759 7.9291

n po | APIC1 A(\EIIS)Z A(\Ellg):% A?g;(g()n) APIC4 APIC5 APIC6  APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14
30 3 1 -0.1132 0.5340 1.1812 1.4409 1.8284 2.4756 3.1229 3.7701 44173 5.0645 5.7117 6.3589 7.0062 7.6534 8.3006
30 3 2 -0.1785 0.7190 1.6166 1.9767 2.5141 3.4116 4.3092 5.2067 6.1042 7.0017 7.8993 8.7968 9.6943 10.5918 11.4894
30 3 3 -0.2414 0.8356 1.9127 2.3448 2.9897 4.0667 5.1438 6.2208 7.2978 8.3749 9.4519 10.5289 11.6060 12.6830 13.7600
30 3 4 -0.3054 0.9120 2.1295 2.6179 3.3470 4.5644 5.7819 6.9994 8.2168 9.4343 10.6518 11.8692 13.0867 14.3041 15.5216
30 5 1 -0.1648 0.4352 1.0352 1.2759 1.6352 2.2352 2.8352 3.4352 4.0352 4.6352 5.2352 5.8352 6.4352 7.0352 7.6352
30 5 2 -0.2516 05791 1.4097 1.7430 2.2404 3.0710 3.9017 47324 5.5630 6.3937 7.2244 8.0550 8.8857 9.7163  10.5470

n po | APIC1 A(\EII((:Z)Z A(‘E:S)B APIC4 A?g:‘g()n) APIC5 APIC6  APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14
100 3 1 -0.0324 0.6569 1.3463 2.0356 2.4528 2.7250 3.4143 4.1037 4.7930 5.4824 6.1717 6.8611 7.5504 8.2398 8.9291
100 3 2 -0.0510 0.9188 1.8886 2.8584 3.4453 3.8282 4.7980 5.7678 6.7376 7.7074 8.6772 9.6470 10.6168 11.5866 12.5564
100 3 3 -0.0687 1.1128 2.2942 3.4757 4.1907 4.6572 5.8387 7.0202 8.2016 9.3831 10.5646 11.7461 12.9276 14.1091 15.2905
100 3 4 -0.0867 1.2703 2.6273 3.9843 4.8055 5.3413 6.6982 8.0552 9.4122 10.7692 12.1262 13.4831 14.8401 16.1971 17.5541
100 5 1 -0.0469 0.6283 1.3035 1.9787 2.3874 2.6539 3.3292 4.0044 4.6796 5.3548 6.0300 6.7052 7.3804 8.0556 8.7308
100 5 2 -0.0714 0.8784 1.8282 2.7780 3.3527 3.7277 4.6775 5.6273 6.5771 7.5269 8.4767 9.4265 10.3763 11.3261 12.2758
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Table 2. Probability of overfitting by | extra variables of APIC « for different values of n, p, and I.

Criteria

noopo | APIC2  APiClogm)  APIC3

APIC1 (AIC) (BIC) (KIC) APIC4  APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14

15 3 1 04025 02363 01682 01469 00939 00611 00402 00266 00178 00119 00080 00054 0.0037 0.0025 0.0017
15 3 2 05134 02636 01644 01353 00695 00357 00183 00094 00048 00025 0.0013 00007 0.0003 0.0002  0.0001
15 3 3 05947 02857 0631 01287 00561 00240 00101 00042 00018 00007 0.0003 00001  0.0001  0.0000  0.0000
15 3 4 06664 03143 04701 01305 00508 0.0190 0.0070 00025 0.0009 0.0003 0.0001  0.0000 0.0000  0.0000  0.0000
15 5 1 04511 02865 02148 01917 01316 00918 00647 00460 00329 00236 00170 00123 00089 0.065  0.0047
15 5 2 05866 03442 02359 02019 01184 0.0695 00408 00239 0.0140 00082 0.0048 00028 0.0017  0.0010  0.0006
n p | APICL A(\zl'g)z A(}'Zl'gf "BIQ) APIC4 APICS APIC6 APICT APICS APICO APICI0 APICIL APICI2 APICI3 APIC14
30 3 1 0355 01922 01102 00890 00651 00392 00239 00147 00091 00057 00035 00022 0.0014 0.0009  0.0006
30 3 2 04346 01889 00821 00588 00357 00155 00067 00029 00013  0.0006 0.0002  0.0001 0.000  0.0000  0.0000
30 3 3 04846 01795 00617 00397 00204 00066 00021 00007 00002 00001  0.0000 0.0000 0.000  0.0000  0.0000
30 3 4 05256 01720 00482 0.0282 00125 0.0031  0.0007  0.0002  0.0000  0.0000  0.0000  0.0000  0.0000 _ 0.0000  0.0000
30 5 1 03761 02106 01252 01026 00766 00478 00301 00192 00123 00079 00051 00033 0.0022 0.0014  0.0009
30 5 2 04646 02158 0003 0.0737 0.0466  0.0216 00101 0.0047  0.0022 0.0010 0.005 0.0002  0.0001 _ 0.0000  0.0000

n p | APIC ?EI'(C:)Z A(EI'(C:)B apica “gid)) APICS  APICG  APIC7  APICS  APICY APICIO APICIL APICI2 APICI3 APICL4
100 3 1 03284 01670 00905 00506 00360 00289 00167 0.0097 0.0057 00034 00020 0.0012 0.007 0.0004  0.0003
100 3 2 03867 01496 00578 00224 00126 0.0087 00033 00013 0.0005 0.0002 00001  0.0000  0.0000  0.0000  0.0000
100 3 3 04178 01288 00367 00100 00045 0.0027 00007 0.0002 0.0000 0.0000 00000 0.0000  0.0000  0.0000  0.0000
100 3 4 04395 0.109 00236  0.0046  0.0017  0.009  0.0002  0.0000  0.0000  0.0000  0.0000  0.0000 _ 0.0000 _ 0.0000  0.0000
100 5 1 0333% 01715 00940 00531 00380 00306 00179 00105 0.0062 00037 00022 0.0013 0.0008  0.0005  0.0003
100 5 2 03946 0.557 00614 0.0242 00138  0.0096 0.0038 0.0015 0.0006  0.0002  0.000L  0.0000 _ 0.0000  0.0000  0.0000
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Table 3. Probability of underfitting by | variables of APIC « for different values of n, p, and I.

Criteria

noopo | APIC2  APiClogm)  APIC3

APIC1 (AIC) (BIC) (KIC) APIC4  APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14

15 3 1 06190 07847 08507 08709 09204 09500 09682 09796 0.9869 09915 09945 09964 0.9976 0.9984  0.9990
15 3 2 05507 07981 0.8854 09093 09592 09817 09918 09963 09983 09993 09997 09998  0.9999 ~ 1.0000  1.0000
15 3 3 05238 08272 09197 09418 09811 09940 09981 09994 09998 09999  1.0000  1.0000  1.0000  1.0000  1.0000
15 3 4 05146 08581 09464 09646 09918 0.9982 0.9996 09999  1.0000 1.0000 1.0000  1.0000  1.0000  1.0000  1.0000
15 5 1 05743 07401 08102 08324 08890 09253 09491 09651 09759 09833 09883 09918 09943 0.9960  0.9972
15 5 2 04866 07364 0.8356  0.8647 09305 0.9643 09817 09906 0.9952 09975 0.9987 09993  0.9997  0.9998  0.9999
n p | APICL A(\zl'g)z A(}'Zl'gf "BIQ) APIC4 APICS APICE APICT APIC8 APICO APICI0 APICIL APICI2 APICI3 APIC14
30 3 1 06528 08163 0895 09170 09399 09645 09787 09871 09922 09952 09971 09982 09989 0.9993  0.9996
30 3 2 05934 08347 09328 09532 09727 09889 09955 09982  0.9993 09997  0.9999  0.9999  1.0000  1.0000  1.0000
30 3 3 05680 08612 09588 09750 09882 0.9967 09991 09998  0.9999 10000  1.0000  1.0000  1.0000  1.0000  1.0000
30 3 4 05561 0.8863 09754 09870 09951  0.9991  0.9998  1.0000  1.0000 1.0000  1.0000  1.0000  1.0000  1.0000  1.0000
30 5 1 06339 07988 08825 09045 09294 09567 09732 09832 09894 09933 09957 09973 09983 0.9989  0.9993
30 5 2 05654 08111 09179 09412 09643 0.9845 09933 09971  0.9987  0.9994 0.9998  0.9999  1.0000  1.0000  1.0000
n p | APIC ?EI'(C:)Z A(EI'(C:)B apica “gid)) APICS  APICG  APIC7  APICS  APICY APICIO APICIL APICI2 APICI3 APICL4
100 3 1 06741 08352 09111 09506 09650 09720 09839 09907 09945 09968 09981 0.9989 09993 09996  0.9998
100 3 2 06209 08563 09455 09793 09885 09922 09970 0.9989  0.9996  0.9998 09999 ~ 1.0000  1.0000  1.0000  1.0000
100 3 3 05967 0.8808 09676 0.9915 09963 0.9978 09995 0.9999 ~ 1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000
100 3 4 05830 09023 09808 09965 0.9988  0.9994 09999  1.0000 1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000
100 5 1 06690 08308 09078 09481 09630 09703 09827 09899 09940 09965 09979 0.9987 09992 09995  0.9997
100 5 2 06133 08504 09422 09776  0.9874 09913 09967  0.9987  0.9995 0.9998  0.9999  1.0000  1.0000  1.0000  1.0000
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Table 4. Probability of the order selected by APIC for n = 15.

Criteria
Dist. 2
Model of X Oy Order APIC1 APIC2  APiClogin) - APIC3 APIC4 APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14
(AIC)  (BIC)  (KIC)

1 Normal 0.25 Underfitted 0.157 0.353 0.472 0.53 0.669 0.785  0.868 0.93 0.958 0.974 0.983 0.99 0.994 0.998 1
very Correct 0.229 0.297 0.293 0.281 0.232 0.165 0.107 0.061 0.038 0.025 0.016 0.009 0.005 0.002 0
weakly Overfitted 0.614 0.35 0.235 0.189 0.099 0.05 0.025 0.009 0.004 0.001 0.001 0.001 0.001 0 0
_5 1 Underfitted 0.269 0.562 0.731 0.79 0.9 0.951 0.978 0.99 0.998  0.999 0.999 0.999 1 1 1
Po= Correct 0.155 0.135 0.104 0.085 0.05 0.025 0.011 0.006  0.001 0 0 0 0 0 0
Overfitted 0.576 0.303 0.165 0.125 0.05 0.024 0.011 0.004 0.001 0.001 0.001 0.001 0 0 0

9 Underfitted 0.367 0.69 0.826 0.863 0.946 0.98 0.993  0.998 1 1 1 1 1 1 1

Correct 0.119 0.097 0.064 0.054 0.03 0.011  0.005  0.001 0 0 0 0 0 0 0

Overfitted 0.514 0.213 0.11 0.083 0.024  0.009 0.002 0.001 0 0 0 0 0 0 0

Uniform 0.25 Underfitted 0.346 0.679 0.82 0.855 0.937 0.971 0.99 0.998 1 1 1 1 1 1 1
Correct 0.132 0.093 0.066 0.053 0.027 0.014 0.004 0.001 0 0 0 0 0 0 0

Overfitted 0.522 0.228 0.114 0.092 0.036 0.015 0.006 0.001 0 0 0 0 0 0 0

1 Underfitted 0.365 0.691 0.838 0.878 0.947 0.98 0.997 0998 0.999  0.999 1 1 1 1 1

Correct 0.113 0.079 0.052 0.039 0.015 0.007 0.0010 0.001 0.001 0.001 0 0 0 0 0

Overfitted 0.522 0.23 0.11 0.083 0.038 0.013 0.002 0.001 0 0 0 0 0 0 0

9 Underfitted 0.359 0.695 0.836 0.868 0.946 0.985 0995 0.997 0.999 1 1 1 1 1 1

Correct 0.106 0.074 0.041 0.034 0.018 0.007 0.004 0.003 0.001 0 0 0 0 0 0

Overfitted 0.535 0.231 0.123 0.098 0.036 0.008  0.001 0 0 0 0 0 0 0 0

2 Normal 0.25 Underfitted 0.02 0.057 0.112 0.124 0.195 0.274  0.366 0.44 0.522 0.59 0.654 0.722 0.762 0.804 0.844
weakly Correct 0.215 0.465 0.587 0.614 0.658 0.639 0578 0.528  0.458 0.4 0.34 0.276 0.236 0.194 0.156
_3 Overfitted 0.765 0.478 0.301 0.262 0.147 0.087 0.056  0.032 0.02 0.01 0.006 0.002 0.002 0.002 0
Po= 1 Underfitted 0.091 0.282 0.416 0.464 0.604 0704 0779 0.842 0.882 0.915 0.942 0.965 0.97 0.981 0.987
Correct 0.147 0.301 0.333 0.33 0.286 0.237 0.191  0.143 0.11 0.082 0.057 0.034 0.03 0.019 0.013

Overfitted 0.762 0.417 0.251 0.206 0.11 0.059 0.03 0.015 0.008  0.003 0.001 0.001 0 0 0

9 Underfitted  0.181 0.52 0.693 0.739 0.85 0.899 0943 0961 0.974 0.98 0.984 0.99 0.992 0.993 0.998
Correct 0.095 0.119 0.104 0.101 0.081 0.065 0.046 0.032 0.023 0.018 0.016 0.01 0.008 0.007 0.002
Overfitted 0.724 0.361 0.203 0.16 0.069 0.036 0.011 0.007 0.003  0.002 0 0 0 0 0

Uniform 0.25 Underfitted 0.152 0.425 0.583 0.644 0.768  0.855  0.896 0.93 0.96 0.972 0.982 0.991 0.995 0.996 0.997
Correct 0.111 0.178 0.173 0.17 0.149 0.11 0.084 0.059 0.036  0.026 0.018 0.009 0.005 0.004 0.003

Overfitted 0.737 0.397 0.244 0.186 0.083  0.035 0.02 0.011  0.004  0.002 0 0 0 0 0

1 Underfitted 0.179 0.478 0.635 0.695 0.841 0915 0941 0961 0976  0.985 0.991 0.995 0.997 0.999 1
Correct 0.103 0.126 0.119 0.108 0.079  0.054 0.04 0.031 0.02 0.013 0.009 0.005 0.003 0.001 0
Overfitted 0.718 0.396 0.246 0.197 0.08 0.031 0.019 0.008 0.004 0.002 0 0 0 0 0

9 Underfitted 0.189 0.491 0.658 0.717 0.844 0925 0957 0977 0985  0.993 0.996 0.997 0.998 0.998 0.998
Correct 0.094 0.136 0.132 0.115 0.075 0.04 0.028 0.014 0.009  0.006 0.003 0.003 0.002 0.002 0.002
Overfitted 0.717 0.373 0.21 0.168 0.081 0.035 0.015 0.009 0.006 0.001 0.001 0 0 0 0

Note: Boldface type indicates the maximum probability of correct order being selected.
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Table 4. (Continued).

Criteria
Dist. 2
Model of X Oy Order APIC1 APIC2  APiClogin) - APIC3 APIC4 APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14
(AIC)  (BIC)  (KIC)

3 Normal 0.25 Underfitted 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
strongly Correct 0.22 0.515 0.654 0.707 0.814 0.891 0942 0962 0971 0.983 0.991 0.992 0.995 0.997 0.998
_3 Overfitted 0.78 0.485 0.346 0.293 0.186 0.109 0.058 0.038 0.029 0.017 0.009 0.008 0.005 0.003 0.002
Po= 1 Underfitted 0 0 0 0 0 0.001 0.001 0.004 0.005 0.01 0.014 0.019 0.029 0.055 0.074
Correct 0.238 0.542 0.683 0.725 0.835 0.902 0946 0961 0975 0.977 0.977 0.977 0.968 0.943 0.924
Overfitted 0.762 0.458 0.317 0.275 0.165 0.097 0.053 0.035 0.02 0.013 0.009 0.004 0.003 0.002 0.002
9 Underfitted 0.025 0.118 0.189 0.213 0.313 0412 0516 0578 0661 0.714 0.776 0.826 0.864 0.902 0.921
Correct 0.197 0.427 0.518 0.541 0.554 0514 0447 0399 0.323 0.275 0.22 0.171 0.133 0.097 0.078
Overfitted 0.778 0.455 0.293 0.246 0.133 0.074 0.037 0.023 0.016 0.011 0.004 0.003 0.003 0.001 0.001
Uniform 0.25 Underfitted 0.004 0.009 0.016 0.019 0.039 0.063 0.095 0.121 0.158 0.206 0.25 0.316 0.382 0.446 0.511
Correct 0.215 0.52 0.654 0.703 0.799 0846 0.858 0.854 0.823 0.784 0.745 0.68 0.616 0.552 0.487
Overfitted 0.781 0.471 0.33 0.278 0.162 0.091 0.047 0.025 0.019 0.01 0.005 0.004 0.002 0.002 0.002
1 Underfitted 0.041 0.154 0.237 0.272 0.377 0473 0587 0.661 0713 0.779 0.828 0.87 0.903 0.917 0.942
Correct 0.198 0.389 0.461 0.476 0485 0467 0387 0322 0276 0.215 0.169 0.128 0.097 0.083 0.058

Overfitted 0.761 0.457 0.302 0.252 0.138 0.06 0.026 0.017 0.011  0.006 0.003 0.002 0 0 0

9 Underfitted 0.153 0.45 0.611 0.671 0.797 0.876 0924 0953 0972 0.979 0.986 0.993 0.999 0.999 1

Correct 0.112 0.154 0.157 0.149 0.121  0.083 0.054 0.035 0.022 0.02 0.014 0.007 0.001 0.001 0

Overfitted 0.735 0.396 0.232 0.18 0.082 0.041 0.022 0.012 0.006 0.001 0 0 0 0 0
4 Normal 0.25 Underfitted 0 0 0 0 0 0 0 0 0 0 0 0.001 0.004 0.007 0.016
very Correct 0.342 0.55 0.659 0.686 0.804 0.874 0.914 0.94 0.958 0.97 0.978 0.983 0.984 0.985 0.977
strongly Overfitted 0.658 0.45 0.341 0.314 0.196 0.126  0.086 0.06 0.042 0.03 0.022 0.016 0.012 0.008 0.007
_5 1 Underfitted 0 0.001 0.001 0.001 0.003 0.005 0011 0.019 0.036 0.061 0.108 0.169 0.248 0.348 0.475
Po= Correct 0.309 0.546 0.669 0.698 0.797 0.851 0.894 0916 0913 0.902 0.866 0.813 0.738 0.642 0.518

Overfitted 0.691 0.453 0.33 0.301 0.2 0.144 0.095 0.065 0.051 0.037 0.026 0.018 0.014 0.01 0.007

9 Underfitted 0.052 0.167 0.252 0.292 0.437 058 0728 0819 088 0.934 0.955 0.976 0.989 0.995 0.997
Correct 0.304 0.448 0.466 0.462 0.418 0328 0.234 0158 0.103 0.061 0.043 0.023 0.011 0.005 0.003
Overfitted 0.644 0.385 0.282 0.246 0.145 0.083 0.038 0.023 0.012  0.005 0.002 0.001 0 0 0

Uniform 0.25 Underfitted 0.004 0.016 0.026 0.032 0.057 0109 0.175 0274 0.414 0545 0.669 0.761 0.853 0.923 0.959
Correct 0.344 0.569 0.656 0.69 0.764  0.782 0.76 0.684  0.556  0.438 0.323 0.234 0.145 0.077 0.041
Overfitted 0.652 0.415 0.318 0.278 0.179  0.109  0.065 0.042 0.03 0.017 0.008 0.005 0.002 0 0

1 Underfitted 0.078 0.209 0.314 0.363 0535 0.676 0798 0.878 0.938  0.966 0.983 0.993 0.998 1 1
Correct 0.298 0.399 0.423 0.415 0.345 0.252  0.162 0.1 0.056  0.031 0.015 0.006 0.002 0 0
Overfitted 0.624 0.392 0.263 0.222 0.12 0.072 0.04 0.022  0.006  0.003 0.002 0.001 0 0 0

9 Underfitted 0.278 0.593 0.755 0.801 0911 0965 0987 0.995 0.998  0.999 0.999 0.999 1 1 1
Correct 0.148 0.127 0.089 0.074 0.043 0.017 0.007 0.004 0.002 0.001 0.001 0.001 0 0 0
Overfitted 0.574 0.28 0.156 0.125 0.046  0.018 0.006  0.001 0 0 0 0 0 0 0

Note: Boldface type indicates the maximum probability of correct order being selected.
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Table 5. Probability of the order selected by APIC for n = 30.

Criteria
Dist. 2
Model ¢ Op Order apict  APIC2 APIC3  APiClogm) o o/ Apics  APICE APIC7 APICS APICO APICI0 APICIL APICI2 APICI3 APICL4
(AIC) (KIC) (BIC)
1 Normal 0.25 Underfitted  0.076  0.199 0312 0366 0446 0547 0656 0745 0827 0877 0927 0958 0973 0985 0.99
very Correct 0406 0532 055 0522 0481 041 0328 0249 0171 0122 0073 0042 0027 0015 0.01
weakly Overfited 0518 0269 0138 0112 0073 0043 0016 0006 0.002  0.001 0 0 0 0 0
_s 1 Underfited  0.275 055 0761 0799 0855 0937 0976 0098 00995  0.999 1 1 1 1 1
Po= Correct 0246 0237 0161 0146 0108 0054 0023 0015 0005 0.001 0 0 0 0 0
Overfited 0479 0213 0078 0055  0.037 0.09  0.001 0 0 0 0 0 0 0 0
9 Underfitted  0.48 0.804 0915 094 0974 0993 0.999 1 1 1 1 1 1 1 1
Correct 0135 0075 0045 0032 0017 0.005 0.001 0 0 0 0 0 0 0 0
Overfited 0385  0.121  0.04 0028  0.009 0.002 0 0 0 0 0 0 0 0 0
Uniform  0.25 Underfited  0.392 _ 0.696 _ 0.871 0905 0952 0982 00998  0.999 1 1 1 1 1 1 1
Correct 0175 0137 0071 0056 0031 0.012 0.02  0.001 0 0 0 0 0 0 0
Overfited 0433  0.167 0058  0.039  0.017  0.006 0 0 0 0 0 0 0 0 0
1 Underfited  0.48 0828 09 0976 098 0997  0.999 1 1 1 1 1 1 1 1
Correct 0.13 0074 0023 0016 0011 0.003  0.001 0 0 0 0 0 0 0 0
Overfited  0.39 0098 0017  0.008  0.004 0 0 0 0 0 0 0 0 0 0
9  Underfitted  0.48 0818  0.95 0971 0988 0.996  0.999 1 1 1 1 1 1 1 1
Correct 0133  0.063 0024 0016  0.007 0.002 0 0 0 0 0 0 0 0 0
Overfited 0387  0.119 0026 0013  0.005 0002 0.001 0 0 0 0 0 0 0 0
2 Normal 025 Underfited  0.00L  0.003  0.009 0018 0025 004 0066 0093 0135 0171  0.224 0.28 0338  0.392 0.45
weakly Correct 0321 0632 0.802 0837 088 0908 0906 0892 0857 0824 0772 0719 0661  0.607 0.55
_a Overfited  0.678  0.365 0189 0145 0091 0052 0028 0015 0008 0005 0004 0001 0001  0.001 0
Po= 1 Underfited 0057  0.173  0.305 0346  0.413 0514 0606 0661 0742 0804  0.85 0875  08% 0919  0.935
Correct 0296 0514  0.555 055 0522 0452 0378 0328 025 0194 0.5 0125 0104 008l  0.065
Overfited  0.647  0.313  0.14 004  0.065 0034 0016 0011 0006  0.002 0 0 0 0 0

9 Underfitted 0.236 0.577 0.756 0.792 0.84 0907 0938 0959 0974  0.982 0.986 0.993 0.995 0.998 0.999
Correct 0.147 0.185 0.154 0.145 0.118  0.077  0.055 0.04 0.026  0.018 0.014 0.007 0.005 0.002 0.001

Overfitted 0.617 0.238 0.09 0.063 0.042 0.016 0.007  0.001 0 0 0 0 0 0 0
Uniform 0.25  Underfitted 0.174 0.437 0.616 0.667 0.734 0811 0871 0904 0937 0.953 0.972 0.98 0.985 0.991 0.996
Correct 0.21 0.292 0.276 0.254 0.217 0166 0.115 0.088 0.06 0.045 0.027 0.02 0.015 0.009 0.004

Overfitted 0.616 0.271 0.108 0.079 0.049 0.023 0.014 0.008 0.003 0.002 0.001 0 0 0 0

1 Underfitted 0.257 0.599 0.776 0.826 0.867 0925 0952 0972 0982  0.988 0.991 0.996 0.999 0.999
Correct 0.127 0.166 0.14 0.121 0.103 0.063 0.046 0.028 0.018 0.012 0.009 0.004 0.001 0.001
Overfitted 0.616 0.235 0.084 0.053 0.03 0.012  0.002 0 0 0 0 0 0 0

9 Underfitted 0.317 0.655 0.83 0.875 0913 0953 0978 0989 0994  0.996 0.997 0.999 0.999 0.999
Correct 0.107 0.118 0.079 0.069 0.058 0.036 0.019 0.009 0.004 0.003 0.003 0.001 0.001 0.001
Overfitted 0.576 0.227 0.091 0.056 0.029 0.011 0.003 0.002 0.002 0.001 0 0 0 0

oo oo

Note: Boldface type indicates the maximum probability of correct order being selected.
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Table 5. (Continued).

Criteria
Dist. 2
Model ¢ Op Order apict  APIC2 APIC3  APiClogm) o o/ Apics  APICE APIC7 APICS APICO APICI0 APICIL APICI2 APICI3 APICL4
(AIC) (KIC) (BIC)
3 Normal 0.25 Underfitted 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
strongly Correct 0317 0634 0824 0861 0906 0942 0972 0977 098 099 0996 0998 0998  0.998 1
3 Overfited 0683  0.366 0176  0.139  0.094 0058 0.028 0023 0014 00l 0004 0002 0002  0.002 0
Po= 1 Underfitted 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Correct 0348 0664 0832 0874 091 096 0979 099 0995 0998 0998 0999 0999 0999  0.999
Overfited 0652  0.33 0168 0126 009 004 0021 001 0005 0002 0002 0001 0001 000l  0.001
9  Underfitted  0.003  0.021 0038 0044 006 0091 0137 0185 0256 0304  0.37 0437 0485 0544 0593
Correct 0.316 062 0765 0807 0842 0855 0832 079 0735 0691  0.627 0.56 0513 0454  0.406
Overfited 0681  0.359 0197  0.149  0.098 0.054 0031 0.019 0009 0005 0.003 0003 0002 0002  0.001
Uniform 0.5 Underfitted 0 0 0 0 0 0 0 0001 0003 0006 0007 0012  0.021 0.03 0.038
Correct 0308 0625 0813 0862 0908 0948 0968 0976 098 098 098 098 0978 0969  0.961
Overfited ~ 0.692  0.375 0187  0.38  0.092 0052 0.032 0023 0013 0009 0005 0002 0001 0001  0.001
1 Underfited  0.009  0.044  0.095 0122 0155 023 0298 0374 044 0497 0566 0627 068 0734 0782
Correct 0.331 062 0739 075 0759 0735 068 0611 0549 049 043 0.37 0312 0264 0216
Overfited  0.66 033 0166 0122 008 0035 0022 0015 0011 0007 0004 0003 0002 0002  0.002
9  Underfited 0189 0504  0.688 074 0797 0864 0905 0934 095/ 0974 0982  0.987 0.99 0992  0.99%
Correct 0196 0232 0209 0198 0.167 0119 0087 0063 0042 0026 0018  0.013 0.01 0008  0.006
Overfited  0.615  0.264 0103 0062 003 0017 0008 0003 0.001 0 0 0 0 0 0
4 Normal 0.25 Underfitted 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
very Correct 0481 0713 0.831  0.867 0903 0945 0969 0979 098 099 0993 0994 099  0.998 1
strongly Overfited 0519  0.287 0169 0133 0097 0055 0031 0021 0015 001l 0007 0006  0.004  0.002 0
e 1 Underfitted 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Po= Correct 0454 0705 0.845 0881 0908 095 0971 0985 0992 099 0998 0998 0998  0.998 1
Overfited 0546  0.295 0155 0119 0092 005 0029 0015 0008 0004 0002 0002 0002  0.002 0

9 Underfitted 0.009 0.029 0.064 0.074 0.102  0.172 0.26 0.354 0457 0578 0.708 0.801 0.86 0.907 0.947
Correct 0.447 0.675 0.765 0.793 0.797 0.767 0.703  0.623 0.527  0.413 0.287 0.198 0.139 0.093 0.053

Overfitted 0.544 0.296 0.171 0.133 0101 0.061 0.037 0.023 0.016 0.009 0.005 0.001 0.001 0 0
Uniform 0.25  Underfitted 0 0 0 0 0 0 0 0.001  0.002 0.011 0.024 0.04 0.066 0.12 0.204
Correct 0.419 0.699 0.829 0.869 0901 0946 0971 0982 098  0.981 0.971 0.958 0.934 0.88 0.796

Overfitted 0.581 0.301 0.171 0.131 0.099 0.054 0.029 0.017 0.012 0.008 0.005 0.002 0 0 0

1 Underfitted 0.018 0.053 0.116 0.154 0.214 0317 0427 0544 0664 0.763 0.844 0.894 0.947 0.967 0.983
Correct 0.445 0.658 0.723 0.719 0.703 0.635 0.554 0448 0329 0.234 0.154 0.106 0.053 0.033 0.017

Overfitted 0.537 0.289 0.161 0.127 0.083 0.048 0.019 0.008 0.007 0.003 0.002 0 0 0 0

9 Underfitted 0.323 0.646 0.826 0.87 0925 0969 0992 0998 0998  0.999 0.999 1 1 1 1
Correct 0.223 0.175 0.115 0.092 0.055 0.024 0.006 0.001 0.001 0.001 0.001 0 0 0 0
Overfitted 0.454 0.179 0.059 0.038 0.02 0.007  0.002 0.001 0.001 0 0 0 0 0 0

Note: Boldface type indicates the maximum probability of correct order being selected.
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Table 6. Probability of the order selected by APIC for n = 100.

Criteria
Dist. 2
Model ¢ Op Order apict  APIC2 APIC3 oo, APICGO) o o APICE APICT APICS APICO APICI0 APICIL APICI2 APICI3 APICL4
(AIC)  (KIC) (BIC)

1 Normal 0.25 Underfitted 0 0005 0016 003l 0045 005 0078 0107 0144 0199 0246 0293 0341 0394  0.458
very Correct 0537 0766  0.856 0904 0912 0914 0898 088 0849 0798 0752 0706  0.658  0.605  0.542
weakly Overfited 0463 0229 0128 0065 0043 0036 0024 0013 0007 0003 0002 0001 000l  0.001 0
_s 1 Underfited  0.115  0.259 _ 0.401 0505 0566 0621 0.704 0.783 0847 0893 0932 0961 0977 0985 0991
Po= Correct 0434 0535 0502 0444 0394 0351 0289 0216 0153 0107 0.068 0039 0023 0015  0.009
Overfited 0451 0206 0097 0051  0.04  0.028 0.07 0.001 0 0 0 0 0 0 0

9 Underfitted  0.489  0.783 0916 097 098 098 099 0997 0999 00999  0.999 1 1 1 1

Correct 0174 0128 0061 0027 0012 001 0004 0003 0001 0001  0.001 0 0 0 0

Overfited 0337  0.089 0023 0003 0002  0.002 0 0 0 0 0 0 0 0 0

Uniform  0.25 Underfited  0.276 0575 _ 0.763 _ 0.87 0905 0922 00954 0972 0098 099 0998 0999  0.999 1 1

Correct 0313 0273 0201 0121 0089 0074 0046 0.028 0015 0004 0002 0001  0.001 0 0

Overfited 0411 0152 0036 0.009  0.006  0.004 0 0 0 0 0 0 0 0 0

1 Underfited  0.485  0.808  0.933 0979 098 0991 0996  0.999 1 1 1 1 1 1 1

Correct 0.18 0109 0055 0017 0011  0.008 0.004  0.001 0 0 0 0 0 0 0

Overfited  0.335  0.083  0.012 0004 0003  0.001 0 0 0 0 0 0 0 0 0

9  Underfited 0576  0.883  0.958 0988 0993 0998  0.999 1 1 1 1 1 1 1 1

Correct 0117  0.053  0.024 0009  0.006 0002 0.001 0 0 0 0 0 0 0 0

Overfited  0.307  0.064  0.018  0.003  0.001 0 0 0 0 0 0 0 0 0 0

2 Normal 0.25 Underfitted 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
weakly Correct 0393 0712 0873 0939 0958 0966 0981 099 099 0998 0999  0.999 1 1 1
_a Overfited  0.607  0.288  0.127 0061  0.042 0034 0019 001 0004 0002 0001  0.001 0 0 0
Po= 1 Underfited 0001 _ 0.002 0011 0029 0036 0041 0063 0092 0125 0162 0212 0271 0338 0381 0445

Correct 0.377 0.719 0.856 0.905 0.92 0929 0918 0.894 0.866  0.832 0.783 0.727 0.661 0.618 0.554
Overfitted 0.622 0.279 0.133 0.066 0.044 0.03 0.019 0.014 0.009 0.006 0.005 0.002 0.001 0.001 0.001

9 Underfitted ~ 0.193 0.438 0.608 0.726 0.773 0.799  0.852 0.887 0.924 0.95 0.967 0.982 0.988 0.991 0.993
Correct 0.24 0.339 0.304 0.236 0.205 0.183 0.139 0.109 0.075  0.049 0.033 0.018 0.012 0.009 0.007
Overfitted 0.567 0.223 0.088 0.038 0.022 0.018 0.009 0.004 0.001 0.001 0 0 0 0 0

Uniform 0.25  Underfitted 0.048 0.161 0.252 0.352 0.404 0.442 0528 0.625 0.683 0.756 0.805 0.839 0.868 0.893 0.915
Correct 0.351 0.586 0.635 0.599 0.564 0.532  0.456 0.37 0.314 0.244 0.195 0.161 0.132 0.107 0.085
Overfitted 0.601 0.253 0.113 0.049 0.032 0.026  0.016 0.005  0.003 0 0 0 0 0 0

1 Underfitted 0.21 0.511 0.668 0.786 0.83 0.841 0.892 0926  0.947  0.967 0.98 0.986 0.993 0.997 0.999
Correct 0.243 0.287 0.259 0.186 0.155 0.148  0.103 0.07 0.051  0.033 0.02 0.014 0.007 0.003 0.001
Overfitted 0.547 0.202 0.073 0.028 0.015 0.011 0.005 0.004 0.002 0 0 0 0 0 0

9 Underfitted 0.363 0.723 0.864 0.92 0.936 0.953 0.974 0.99 0.994  0.995 0.997 0.998 0.998 0.999 0.999
Correct 0.125 0.111 0.079 0.063 0.058 0.042  0.025 0.01 0.006  0.005 0.003 0.002 0.002 0.001 0.001
Overfitted 0.512 0.166 0.057 0.017 0.006 0.005  0.001 0 0 0 0 0 0 0 0

Note: Boldface type indicates the maximum probability of correct order being selected.
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Table 6. (Continued).

Criteria

Dist. 2

Model ¢ Op Order apict  APIC2 APIC3 oo, APIClGO) o o APICE APICT APICS APICO APICI0 APICIL APICI2 APICI3 APICL4
(AIC)  (KIC) (BIC)

3 Normal 0.25 Underfitted 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
strongly Correct 0394 0717 088 093 0954 0962 0976 0991 099 0996 00998  0.998 1 1 1
3 Overfited  0.606 0283 012 0066 0046  0.038 0.024 0009 0004 0004 0002  0.002 0 0 0
Po= 1 Underfitted 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Correct 0.376 071 0869 0939 0955 0969 098 0098 0993 0996 099 0998  0.999 1 1
Overfitted  0.624 029 0131 0061 0045 0031 002 0012 0007 0004 0004 0002  0.001 0 0
9 Underfitted 0 0 0 0 0 0 0 0 0 0 0002 0003 0007 0007  0.08
Correct 0365 0704 0.855 0933 095 095 098 0985 098 0993 0993 0993 0991 0992  0.991
Overfited ~ 0.635  0.296 0145 0067 005 0041 002 0015 0011 0007 0005 0004 0002 000l  0.001
Uniform 0.5 Underfitted 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Correct 0.404 073 0873 0942 0962 0975 0985 098 0995 0998 0998 0999 0999  0.999 1
Overfited  0.596 027 0127 0058 0038 0025 0015 0011 0005 0002 0002 000l 0001  0.001 0
1 Underfitted 0 0 0 0 0 0001 0001 0001 0002 0005 0008 0014 0021 0032 0042
Correct 0391 0721 0.867 0929 0949 0961 098 099 0993 0992 0989 098 0978 0967  0.958
Overfited  0.609 0279 0133 007L 0051  0.038 0019 0009 0005 0003 0003 0001  0.001  0.001 0
9  Underfitted  0.09 0237 038 0515 0567 0604 0699 0757 0813 0853 0882 0916 0936 0961  0.969
Correct 0324 0506 0501 0442 0405 0376 0294 0237 018 0146 0117 008 0063  0.038  0.031
Overfited 0586  0.257 0113 0043 0028 002 0007 0006 0003 000l 0001 0001 0001  0.001 0
4 Normal 0.25 Underfitted 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
very Correct 0516  0.753  0.858 0922 0938 0951 0971 0981 0991 0992 0996 0998 00998 0998  0.999
strongly Overfited  0.484 0247 0142 0078 0062 0049 0029 0019 0009 0008 0004 0002 0002 0002  0.001
e 1 Underfitted 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Po= Correct 0.52 0776 088 094 0965 0971 0981 098 0995 0996 0999 0999 0999 0999  0.999
Overfitted  0.48 0224 0114 006 0035 0029 0019 0014 0005 0004 0001 000l 0001 000l  0.001
9 Underfitted 0 0 0 0 0 0 0 0 0 0001 0002 0004 0005 0008 0012
Correct 0527 0762 0.882 093 0959 0965 0978 0987 099 0992 0995 0994 0993 0991  0.988
Overfited 0473 0238 0118 007 0041 0035 0022 0013 001 0007 0003 0002 0002  0.001 0
Uniform 0.25 Underfitted 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Correct 0546  0.797  0.902 0944 0957 00965 0981 098 099 0993 0998 0999  0.999 1 1
Overfitted 0454  0.203  0.098 0056 0043 0035 0019 0014 001 0007 0002 0001  0.001 0 0
1 Underfitted 0 0001  000L 0001 0002 0002 0002 0005 0006 0006 001 0017 0024 0037 0048
Correct 0531 0781 0.88 0939 0957 0962 0981 0982 098 0993 0989 098 0976 0963  0.952
Overfitted 0469 0218 0113 006 0041 0036 0017 0013 0006 0.001  0.001 0 0 0 0
9 Underfited 0138  0.314 0504 0674 0741  0.776 0868 0929 0965 0983  0.99 099 0998 0998 1
Correct 0406 0492 0417 0294 0239 0212 0127 007 0035 0017  0.01 0004 0002  0.002 0
Overfited  0.456  0.194 0079 0032 002 0012 0005 0.001 0 0 0 0 0 0 0

Note: Boldface type indicates the maximum probability of correct order being selected.



