

Abstract

Project Code : TRG5780226

Project Title : On the Boundary Condition at the PCL-mucus Interface

Investigator : Kanognudge Wuttanachamsri

E-mail Address : whychamsri@hotmail.com

Project Period : 1 July 2014 – 30 June 2016

Abstract: ในปอดมนุษย์บนพื้นผิวของเซลล์เส้นขนที่อยู่ในเซลล์เนื้อเยื่อบุผิวในหลอดลมมีเส้นขนที่พัดโบกไปมาที่อยู่ในชั้นที่เรียกว่าเพอร์ิซิลลารีเยกิรีหรือเรียกย่อ ๆ ว่าพีซีแอลและของไหลในชั้นนี้เรียกว่าของไหลพีซีแอล ซึ่งเป็นของไหลที่อัดไม่ได้ และชั้นที่อยู่เหนือชั้นพีซีแอลคือชั้นเมือก ในงานวิจัยนี้ผู้วิจัยทำการหาขอบที่เป็นอิสระที่อยู่บริเวณปลายของเส้นขนเมื่อเส้นขนทำมุ่งระหว่าง 40 ถึง 90 องศากับแนวราบโดยใช้วิธีการที่เรียกว่า แแฟร์ (FLAIR) ซึ่งค่าที่หาได้สามารถนำไปเป็นความเร็วที่ฐานของชั้นเมือกเพื่อหาความเร็วของเมือกเพื่อช่วยในการขับเมือกออกจากร่างกายต่อไป

Keywords : สมการสโตกส์บริงแมน ของแข็งที่เคลื่อนที่ได้ ปัญหาขอบอิสระ แบบจำลองการสร้างพื้นผิวต่อประสาน

Abstract: Cilia on the surface of ciliated cells in the human lungs are organelles that beat backward and forward to generate metachronal waves. The fluid layer containing cilia coating the interior epithelial surface of the bronchi and bronchioles is called periciliary layer (PCL) and the fluid in this layer is named PCL fluid which is considered as an incompressible viscous fluid in this study. Above the PCL is the mucus layer. We seek for a free boundary at the tip of cilia while the cilia make an angle θ , $40^\circ \leq \theta \leq 90^\circ$, with the horizontal plane. The Flux Line-Segment Model for Advection and Interface Reconstruction (FLAIR) method is employed to find the shape of the free boundary based on a mixed finite element method. We use Stokes-Brinkman equations in the PCL to calculate the initial velocity of each angle θ and then apply FLAIR method to determine the free boundary at the tip of cilia so that it can be applied to be a boundary condition at the bottom of the mucus layer to be able to calculate the velocity of mucus moving out the human lungs.

Keywords : Stokes-Brinkman equations, Moving solid phase, Cilia, Free Boundary problem, Flux Line-Segment Model for Advection and Interface Reconstruction.