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Abstract: ในปอดมนุษยบนพื้นผิวของเซลลเสนขนที่อยูในเซลลเนื้อเยื่อบุผิวในหลอดลมมีเสนขนที่พัดโบก 
ไปมาที่อยูในชั้นที่เรียกวาเพอรริซิเลียรีหรือเรียกยอ ๆ วาพีซีแอลและของไหลในชั้นนี้เรียกวาของไหลพีซีแอล 
ซึ่งเปนของไหลที่อัดไมได และชั้นที่อยูเหนือชั้นพีซีแอลคือชั้นเมือก ในงานวิจัยนี้ผูวิจัยทําการหาขอบที่เปน 
อิสระที่อยูบริเวณปลายของเสนขนเมื่อเสนขนทํามุมระหวาง 40 ถึง 90 องศากับแนวราบโดยใชวิธีการที ่
เรียกวา แฟร (FLAIR) ซึ่งคาที่หาไดสามารถนําไปเปนความเร็วที่ฐานของชั้นเมือกเพื่อหาความเร็วของเมือก 
เพื่อชวยในการขับเมือกออกจากรางกายตอไป 
Keywords : สมการสโตกสบริงแมน ของแข็งที่เคลื่อนที่ได ปญหาขอบอิสระ 
แบบจําลองการสรางพื้นผิวตอประสาน 

 
 

Abstract:  Cilia on the surface of ciliated cells in the human lungs are organelles that beat 
backward and forward to generate metachronal waves. The fluid layer containing cilia coating the 
interior epithelial surface of the bronchi and bronchiolesis is called periciliary layer (PCL) and the 
fluid in this layer is named PCL fluid which is considered as an incompressible viscous fluid in this 
study. Above the PCL is the mucus layer. We seek for a free boundary at the tip of cilia while the 
cilia make an angle θ , 40° ≤ θ ≤ 90° , with the horizontal plane. The Flux Line-Segment Model for 
Advection and Interface Reconstruction (FLAIR) method is employed to find the shape of the free 
boundary based on a mixed finite element method. We use Stokes-Brinkman equations in the PCL 
the calculate the initial velocity of each angle θ  and then apply FLAIR method to determine the free 
boundary at the tip of cilia so that it can be applied to be a boundary condition at the bottom of the 
mucus layer to be able to calculate the velocity of mucus moving out the human lungs. 

 
Keywords : Stokes-Brinkman equations, Moving solid phase, Cilia, Free Boundary problem, Flux 
Line-Segment Model for Advection and Interface Reconstruction. 

 



1. Introduction

Normal breathing with polluted particles is often unavoidable for people

such as dust and bacteria. At the same time, the innate immune system

in our body plays an important role to protect the body by secreting mucus

from goblet cells lining beneath airway epithelium to trap the particles which

are moved out of the body by the beat cycle of cilia. This system is called

muco-ciliary transport studied in several literatures [1, 2, 3, 4, 5, 6, 7, 8, 9].

In the respiratory system, cilia are contained in a layer called periciliary

layer (PCL) in which consists of PCL fluid. Above the PCL is a layer of

viscoelastic mucus.

Figure 1 shows the respiratory system of human beginning from larynx,

trachea through lungs. The cross section of the trachea is demonstrated to

the left Figure 2 where the right figure is a portion of the cross section of

the trachea zoomed in to get a close-up view of the surface of the trachea.

In the epithelial cells, there are goblet cells ,scattered among other cells, to

secrete mucus, a viscous fluid, to trap particulate matter and microorganisms

preventing them from reaching the lungs. After that mucus forms a mucus

blanket floating on a lower viscous fluid layer, PCL, with cilia on the surface

of the epithelial cells. Cilia beat back and forth about 12 times per second

to propel mucus at one millimeter per minute [10] and beat within the same

plane without sweeping sideways [11]. Figure 3 illustrates the domain of in-

terest and free boundary between the PCL and mucous layers. The arrows

show the direction of cilia movement where θ is the angle between cilia and

the horizontal plane. Above the mucous layer is air moving in and out of the

human body. In this study, we find the shape of free boundary at the tips
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of cilia so that it can be used as a boundary condition to find the velocity of

mucus moving toward the throat.

Lungs

Larynx

Trachea

Principal

bronchus

Bronchi

Figure 1: Anatomy of human respiratory system.

Epithelial cells

Submucosa

Seromucous gland

Lymph vessels

Artery Lumen of trachea

Mucosa

Air

Cilia

Mucus

Goblet cell

Figure 2: Patchwork of trachea at the epithelium.

Muco-ciliary clearance is fundamental and essential for the health of hu-

man respiratory system. Muco-ciliary dysfunction causes chronic airway dis-

eases in human such as cystic fibrosis, primary ciliary dyskinesia, asthma

and chronic bronchitis where the deficient mucus clearance is not completely
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AIR

θ

MUCUS MUCUS

PCL PCL

cilia velocity

cilia velocity

AIR

Figure 3: The cartoon picture of the movement of cilia and the free boundary at the tips

of cilia.

understood. Cystic fibrosis is a disease which depletes the PCL volume and

hence it is vital to investigate the effect of changing the depth of PCL and

others. Therefore, the implication could be for drug manufacturers to target

at finding chemicals to enhance cilia beat frequency in order to improve the

muco-ciliary transport.

2. Literature review

The geometry of cilia has been studied in several articles. For instant,

some considered the cilia and flagella bending properties of an axoneme

[12, 13, 14]. Den Toonder and Onck [15] studied and reviewed about ar-

tificial cilia in many aspect such as Bead-spring model for artificial cilia, a

superparamagnetic filament for fulid transport, modeling the interaction of

active cilia with species in solution, electrostatic artificial cilia, microwalkers,

artificial flagellar micro-swimmers, fluid manipulation by artificial cilia and

measurement of fluid flow generated by artificial cilia.

Several literatures modeled and studied about the cilia in both experi-
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mental and numerical aspects. For example, R. Quek et al. [16] simulated

the ciliary flow in a three-dimensional domain using Immersed Boundary

Method. They concluded that the stiffness and the cilia density effected the

slip velocity. Cilia in both high and low densities have low slip velocity and

the wave propagation is not supported by high stiff cilia. P. R. Sears et al.

[9] used video microscopy to record ciliary motion. They converted planar

ciliary motions into an empirical quantitative model, which is easy to use

in examining ciliary function. If the tip of a cilium is modeled to penetrate

the mucous layer, a integral equation can be used for expressing the mean

velocity field in the mucous layer involving the tips of cilia [2]. Fine-tuned

methods of this kind can be found in [17, 18, 19, 20].

To model the problem, since the PCL contains both PCL fluid and solid

phases, cilia, it can be formed as a porous medium. When the cilia bend and

make an angle θ, less than 90◦, with the horizontal plane, the region above

the tips of cilia become a free-fluid layer. With slow flow in the free-fluid

region, we employ Stokes equation in the domain and Brinkman equation in

the porous medium for allowing the matching conditions at the interface as

shown in Figure 4. The left figure illustrates only the porous medium when

cilia are perpendicular to the horizontal plane and the right figure shows the

cilia make an angle θ, θ < 90◦, with the horizontal plane. In this study, we

find the shape of the interface between the porous medium and free-fluid

region.

Literatures numerically studied the fluid flow through domains using the

Stokes-Brinkman equations [21, 22]. For example, Martys et al. [21] used

a finite difference method to study the fluid flow near a free-fluid/porous
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Brinkman PCL

θ

Stokes

Brinkman

Figure 4: A porous medium and free fluid region.

medium interface in a three-dimensional domain. H. Tan and K.M.Pillai [22]

employed a finite element method to solve the system of equations.

There are variety of numerical methods studying on a free boundary prob-

lem such as level-set method(LSM), Immersed Boundary Method, Simple

Line Interface Calculation (SLIC), Flux Line-Segment Model for Advection

and Interface Reconstruction(FLAIR) and Volume-of-Fluid method (VOF).

For example, Ashgriz and Poo [23] initially developed the FLAIR method to

predict the free surfaces of problems where they had the idea from Youngs

[24] using a sloped line in the interface reconstruction. Hirt and Nichols [25]

established the volume-of-fluid method to tract the interface. Mashayek and

Ashgriz [26] claimed that the volume-of-fluid method can handle large surface

deformations. Bugg and Naghashzadegan [27] compared several methods of

interface tracking with different Courant numbers by predicting the motion

of simple shapes. They found that increasing the grid refinement could re-

duce the distortion. For initially circular case, they stated that FLAIR gave

the best performer. For solid body rotation, the FLAIR method was quite

effective and it was preferred for all of the test cases in the literature.

Although, there are several free boundary methods, to author’s knowl-

edge, there have been no studies done on the cilia movement in the PCL

with a free boundary method. In this work, we calculate the shape of the
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free boundary at the tips of cilia by using FLAIR method where a mixed finite

element method is employed to discretize the Stokes-Brinkman equations in

a 3-dimensional domain.

3. Objectives

This research proposes to

• apply a free boundary method to track the shape of the interface at

the tips of cilia using a finite element method and publish a paper with this

inventive approach in a journal having impact factor indexed in ISI.

• seek for appropriate boundary conditions at the tips of cilia. These

original and useful results will be published with a high impact factor in ISI.

4. Mathematical Model

In order to consider the motion of collectively cilia rather than a single

cilium, the governing equation employed in this work is the Stokes-Brinkman

equations in the macroscopic scale. They are upscaled by using the hybrid

mixture theory (HMT) [28, 29, 30, 31] that applies the averaging theorem

to average the microscale field equations to obtain the macroscale equations.

The model is [32, 31]

µk−1 · (εlvl) +∇p− µ

εl
∆(εlvl) = ρg + µk−1 · εlvs + µ

εl
∇f, (1)

∇ · (εlvl) = f, (2)

where εl is the porosity; vl and vs are the velocities of the liquid and solid

phases, respectively; f = −ε̇l/(1−εl)+∇·εlvs; µ is a dynamic viscosity; k−1 is
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the inverse of the permeability tensor; p is pressure; dl = 0.5(∇vl + (∇vl)T )

is the rate of deformation tensor; ρ is fluid density; g is gravity; ε̇l is the

material time derivative of the porosity with respect to the solid phase, ε̇l =

∂εl/∂t+ vs · ∇εl. Equation (1) is called Brinkman equation and without the

permeability term it is the Stokes equation. Therefore equation (1) is named

Stokes-Brinkman equations.

5. Model discretization

In order to find the numerical results, the discretization of the 3-dimensional

Stokes-Brinkman equations is provided this section. Although the model has

been discretized in [33], it is an essential detail in this study. Then, we briefly

introduce them here. Define the Sobolev space

L2
0(Ω) = {q ∈ L2(Ω) :

∫

Ω
qdΩ = 0}. (3)

By using a mixed finite element method, the weak formulation of the gov-

erning equation in indicial notation is to find (v, p) ∈ H1(Ω) × L2
0(Ω) such

that
∫

Ω
µ
[
k−1

ij vj

]
widΩ + µ

εl

∫

Ω

[
∂vi

∂xj

∂wi

∂xj

]
dΩ−

∫

Ω
p
∂wi

∂xi

dΩ

=
∫

Ω

(
ρgi + µεl

[
k−1

ij v
s
j

])
widΩ− µ

εl

∫

Ω
f
∂wi

∂xi

dΩ−
∫

Γ
pwinidΓ

+ µ

εl

∫

Γ

[
∂vi

∂xj

nj

]
widΓ + µ

εl

∫

Γ
fwinidΓ, ∀ wi ∈ H1

0 (Ω), i = 1, 2, 3, (4)

where Ω is our computational domain; H1(Ω) is the Hilbert space; Γ is

the boundary of the domain Ω; the repeated index j, i = 1, 2, 3 indicates

the summation but the repeat index i, i = 1, 2, 3 indicates the number of
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equation, not the summation; wi ∈ H1
0 (Ω) is the test function; ni, i = 1, 2, 3

is the outward unit normal vector and gravity vector g is given by g =

(0, 0,−g). Let Ω and Th be our computational domain and a triangulation

of domain Ω, respectively. Define the finite-dimensional subspaces of the

Hilbert space H1(Ω) and L2
0(Ω) as follows

Vh = {v ∈ H1(Ω) : v|K is quadratic,∀K ∈ Th} (5)

Hh = {q ∈ L2
0(Ω) : q|K is linear,∀K ∈ Th}. (6)

The approximate solutions (vi, p) ∈ Vh ×Hh are

vi(x) =
M∑

m=1
ψm(x)vm

i = ΨT Vi, (7)

p(x) =
L∑

l=1
φl(x)pl = ΦT P. (8)

where Vi and P are vectors of the velocities and pressure, respectively; ψm

and φl are called basis functions; Ψ and Φ are their vector forms and the

integers M and L are determined by the interpolation function. For example,

for a tetrahedral element, M = 10 for quadratic function for the velocity vi

and L = 4 for linear function for the pressure p. The system of equations

(1)-(2) can be written in the matrix form as



µk−1
11 Ã + B̃ µk−1

12 Ã µk−1
13 Ã −Q̃T

1

µk−1
21 Ã µk−1

22 Ã + B̃ µk−1
23 Ã −Q̃T

2

µk−1
31 Ã µk−1

32 Ã µk−1
33 Ã + B̃ −Q̃T

3

−Q̃1 −Q̃2 −Q̃3 0







V1

V2

V3

P




=




F̃1

F̃2

F̃3

F̃4




, (9)
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where

Ã =
∫

Ωe
2

ΨΨTdΩe
2, (10)

K̃ij =
∫

Ωe
2

∂Ψ
∂xi

∂ΨT

∂xj

dΩe
2 (11)

Q̃i =
∫

Ωe
2

Φ∂ΨT

∂xi

dΩe
2, (12)

B̃ = (µ/εl)(K̃jj) (13)

F̃i =
∫

Ωe
2

(
−ρgi + µεlk−1

ij v
s
j

)
ΨdΩe

2 −
µ

εl

∫

Ωe
2

f
∂Ψ
∂xi

dΩe
2

−
(∫

Γe
2

ΨΦTnidΓe
2

)
P + µ

εl

(∫

Γe
2

Ψ∂ΨT

∂xj

njdΓe
2

)
Vi

+ µ

εl

∫

Γe
2

fΨnidΓe
2, (14)

and ni, i = 1, 2, 3 is the outward unit normal vector.

6. FLAIR Method

Ashgiz and Poo [23] initially introduced FLAIR method that employed

the cell volume fraction to track the free surfaces and interfaces. The method

is to find the line-segment orientation by considering the cell volume frac-

tions. The sloped line segments are calculated at the boundary of every

two neighboring cells. Figure 5 shows the two computational cells at the

interface. The most left and right regions in blue color contain liquid and

the white color is gas. The most dark blue color in the middle is the liquid

transferred from donor to acceptor cells with volume Vf in one time step 4t
where u is velocity.
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Donor cell

∆t

Acceptor cell

Vf

u

Figure 5: The volume of liquid transferred with FLAIR method.

7. Numerical Results

The velocity of each angle θ for a fixed domain is provided in [34]. In our

work, to find the free surface, the initial velocity of each angle comes from the

velocity of the previous angle from the fixed domain in the forward stroke.

In this work, we consider the angle θ = 90◦, 80◦, ...., 40◦ where the cilia have

the highest velocity at the angle θ = 90◦ and start for the forward stroke at

this angle. Therefore the velocity of the PCL fluid at the angle θ = 90◦ from

the fixed domain will be the initial velocity of the angle θ = 80◦ to find the

free boundary at this angle and so on. The initial volume fraction f0 ∈ [0, 1]

where f0 is zero and one in an empty cell and a full cell, respectively. At a

cell surface, f0 is between zero and one. In this study, the initial f0 is that

every cell of the numerical domain lower than the tips of cilia when the cilia

make angle θ with the horizontal plane has f0 = 1 and f0 = 0 on the other

cells. Because the cilia length is nondimensionalized to be 1, when the cilia

is perpendicular to the horizontal plane, f0 = 1 for all cell. For the other

angles, for instance, cilia make an angle θ with the horizontal plane. The

hight of the layer that contains cilia is z0 = ξ sin θ where ξ is the cilia length
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as shown in Figures 6. In this work, ξ = 1. From zero to z0, the initial

f0 = 1 and above the z0 value the initial f0 = 0. By using FLAIR approach

to track the free surfaces, the numerical results of each angle θ is illustrated

in Figure 7-9. Figures 7 shows the free surfaces at the tips of cilia in PCL of

the angle θ = 40◦ and θ = 50◦, from top to bottom, respectively. Similarly,

the free surfaces of angles θ = 60◦, 70◦ and 80◦ are shown in Figures 8 and

9, respectively. Because our numerical domain is a unit cube and the tips of

cilia are at the top of domain when cilia is perpendicular to the horizontal

plane. Therefore, the free surface for the 90 degree does not demonstrated.

The free surface will be used as a free boundary at the bottom of the mucous

layer to find the mucus velocity in the future work.

horizontal plane

θ

ξ

oz

cilia

Figure 6: The angle θ between the cilia and the horizontal plane.
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Figure 7: Free surfaces at the tips of cilia of the angle θ = 40◦ and θ = 50◦ from top to

bottom.
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Figure 8: Free surfaces at the tips of cilia of the angle θ = 60◦ and θ = 70◦ from top to

bottom.
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Figure 9: Free surfaces at the tips of cilia of the angle θ = 80◦.

8. Conclusion

We study the fluid flow due to the movement of cilia in a three dimen-

sional domain. To expel move out of the human body, the cilia move back

and forward and make and angle θ with the horizontal plane. Since the ve-

locity of cilia affects the velocity of the PCL fluid, we use Stokes-Brinkman

equations including the velocity of cilia in the external force term in the equa-

tions, which is derived by using an upscaling method named Hybrid Mixture
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Theory. In this work, we focus on the forward stroke where the cilia have

maximum velocity at θ = 90◦, which decreases to zero at θ = 40◦. A mixed

finite element and FLAIR approaches are employed to find the numerical

solutions. The velocity of the PCL fluid of each angle θ for a fixed domain

is calculated in [34] by using the mixed finite element space known as the

Taylor-Hood elements. We use the velocity of the fixed domain to be the

initial velocity to find the free surface at the tips of cilia of each angle θ.

That is the velocity of the angle θ = 90◦ applied to be a initial velocity of

the angle θ = 80◦ and the process is continued to the angle θ = 40◦. The

obtained free surfaces will be employed to be a boundary condition of the

mucous layer to calculate the mucus velocity in our future work.
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Abstract

Cilia on the surface of ciliated cells in the human lungs are organelles

that beat backward and forward to generate metachronal waves. The fluid

layer containing cilia coating the interior epithelial surface of the bronchi

and bronchiolesis is called periciliary layer (PCL) and the fluid in this layer

is named PCL fluid which is considered as an incompressible viscous fluid in

this study. Above the PCL is the mucus layer. We seek for a free boundary

at the tip of cilia while the cilia make an angle θ, 40◦ 6 θ 6 90◦, with the

horizontal plane. The Flux Line-Segment Model for Advection and Interface

Reconstruction (FLAIR) method is employed to find the shape of the free

boundary based on a mixed finite element method. We use Stokes-Brinkman

Email addresses: whychamsri@hotmail.com (Kanognudge Wuttanachamsri),
Lynn.Schreyer@wsu.edu ( Lynn Schreyer), jekjack@gmail.com ( Jack Asavanant )

1Phone number: (666) 1282-4563
2Phone number: (509) 335-3152
3Phone number: (662) 221-3452

Preprint submitted to ”need to add later” May 25, 2019



equations in the PCL the calculate the initial velocity of each angle θ and

then apply FLAIR method to determine the free boundary at the tip of cilia

so that it can be applied to be a boundary condition at the bottom of the

mucus layer to be able to calculate the velocity of mucus moving out the

human lungs.
Keywords: Mixed finite element method, Stokes-Brinkman equations,

Moving solid phase, Cilia, Free Boundary problem, Flux Line-Segment

Model for Advection and Interface Reconstruction

1. Introduction

Normal breathing with polluted particles is often unavoidable for people

such as dust and bacteria. At the same time, the innate immune system

in our body plays an important role to protect the body by secreting mucus

from goblet cells lining beneath airway epithelium to trap the particles which

are moved out of the body by the beat cycle of cilia. This system is called

muco-ciliary transport studied in several literatures [1, 2, 3, 4, 5, 6, 7, 8, 9].

In the respiratory system, cilia are contained in a layer called periciliary

layer (PCL) in which consists of PCL fluid. Above the PCL is a layer of

viscoelastic mucus.

Figure 1 shows the respiratory system of human beginning from larynx,

trachea through lungs. The cross section of the trachea is demonstrated to

the left Figure 2 where the right figure is a portion of the cross section of

the trachea zoomed in to get a close-up view of the surface of the trachea.

In the epithelial cells, there are goblet cells ,scattered among other cells, to

secrete mucus, a viscous fluid, to trap particulate matter and microorganisms
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preventing them from reaching the lungs. After that mucus forms a mucus

blanket floating on a lower viscous fluid layer, PCL, with cilia on the surface

of the epithelial cells. Cilia beat back and forth about 12 times per second

to propel mucus at one millimeter per minute [10] and beat within the same

plane without sweeping sideways [11]. Figure 3 illustrates the domain of in-

terest and free boundary between the PCL and mucous layers. The arrows

show the direction of cilia movement where θ is the angle between cilia and

the horizontal plane. Above the mucous layer is air moving in and out of the

human body. In this study, we find the shape of free boundary at the tip of

cilia so that it can be used as a boundary condition to find the velocity of

mucus moving toward the throat.

Lungs

Larynx

Trachea

Principal

bronchus

Bronchi

Figure 1: Anatomy of human respiratory system.

Muco-ciliary clearance is fundamental and essential for the health of hu-

man respiratory system. Muco-ciliary dysfunction causes chronic airway dis-

eases in human such as cystic fibrosis, primary ciliary dyskinesia, asthma
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Epithelial cells

Submucosa

Seromucous gland

Lymph vessels

Artery Lumen of trachea

Mucosa

Air

Cilia

Mucus

Goblet cell

Figure 2: Patchwork of trachea at the epithelium.

AIR

θ

MUCUS MUCUS

PCL PCL

cilia velocity

cilia velocity

AIR

Figure 3: The cartoon picture of the movement of cilia and the free boundary at the tips

of cilia.

and chronic bronchitis where the deficient mucus clearance is not completely

understood. Cystic fibrosis is a disease which depletes the PCL volume and

hence it is vital to investigate the effect of changing the depth of PCL and

others. Therefore, the implication could be for drug manufacturers to target

at finding chemicals to enhance cilia beat frequency in order to improve the

muco-ciliary transport.

The geometry of cilia has been studied in several articles. For instant,

some considered the cilia and flagella bending properties of an axoneme

[12, 13, 14]. Den Toonder and Onck [15] studied and reviewed about ar-

4



tificial cilia in many aspect such as Bead-spring model for artificial cilia, a

superparamagnetic filament for fulid transport, modeling the interaction of

active cilia with species in solution, electrostatic artificial cilia, microwalkers,

artificial flagellar micro-swimmers, fluid manipulation by artificial cilia and

measurement of fluid flow generated by artificial cilia.

Several literatures modeled and studied about the cilia in both experi-

mental and numerical aspects. For example, R. Quek et al. [16] simulated

the ciliary flow in a three-dimensional domain using Immersed Boundary

Method. They concluded that the stiffness and the cilia density effected the

slip velocity. Cilia in both high and low densities have low slip velocity and

the wave propagation is not supported by high stiff cilia. P. R. Sears et al.

[9] used video microscopy to record ciliary motion. They converted planar

ciliary motions into an empirical quantitative model, which is easy to use

in examining ciliary function. If the tip of a cilium is modeled to penetrate

the mucous layer, a integral equation can be used for expressing the mean

velocity field in the mucous layer involving the tips of cilia [2]. Fine-tuned

methods of this kind can be found in [17, 18, 19, 20].

To model the problem, since the PCL contains both PCL fluid and solid

phases, cilia, it can be formed as a porous medium. When the cilia bend and

make an angle θ, less than 90◦, with the horizontal plane, the region above

the tip of cilia become a free-fluid layer. With slow flow in the free-fluid

region, we employ Stokes equation in the domain and Brinkman equation in

the porous medium for allowing the matching conditions at the interface as

shown in Figure 4. The left figure illustrates only the porous medium when

cilia are perpendicular to the horizontal plane and the right figure shows the

5



cilia make an angle θ, θ < 90◦, with the horizontal plane. In this study, we

find the shape of the interface between the porous medium and free-fluid

region.

Brinkman PCL

θ

Stokes

Brinkman

Figure 4: A porous medium and free fluid region.

Literatures numerically studied the fluid flow through domains using the

Stokes-Brinkman equations [21, 22]. For example, Martys et al. [21] used

a finite difference method to study the fluid flow near a free-fluid/porous

medium interface in a three-dimensional domain. H. Tan and K.M.Pillai [22]

employed a finite element method to solve the system of equations.

There are variety of numerical methods studying on a free boundary prob-

lem such as level-set method(LSM), Immersed Boundary Method, Simple

Line Interface Calculation (SLIC), Flux Line-Segment Model for Advection

and Interface Reconstruction(FLAIR) and Volume-of-Fluid method (VOF).

For example, Ashgriz and Poo [23] initially developed the FLAIR method to

predict the free surfaces of problems where they had the idea from Youngs

[24] using a sloped line in the interface reconstruction. Hirt and Nichols [25]

established the volume-of-fluid method to tract the interface. Mashayek and

Ashgriz [26] claimed that the volume-of-fluid method can handle large surface

deformations. Bugg and Naghashzadegan [27] compared several methods of

interface tracking with different Courant numbers by predicting the motion

of simple shapes. They found that increasing the grid refinement could re-
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duce the distortion. For initially circular case, they stated that FLAIR gave

the best performer. For solid body rotation, the FLAIR method was quite

effective and it was preferred for all of the test cases in the literature.

Although, there are several free boundary methods, to author’s knowl-

edge, there have been no studies done on the cilia movement in the PCL

with a free boundary method. In this work, we calculate the shape of the

free boundary at the tip of cilia by using FLAIR method where a mixed finite

element method is employed to discretize the Stokes-Brinkman equations in

a 3-dimensional domain.

The mathematical model is stated in Section 2 and the model discretiza-

tion using a mixed finite element method is given in Section 3. The FLAIR

method is briefly provided in Section 5. Numerical Validation and Results is

presented in Section 5 and conclusion is drawn in Section 6.

2. Mathematical Model

In order to consider the motion of collectively cilia rather than a single

cilium, the governing equation employed in this work is the Stokes-Brinkman

equations in the macroscopic scale. They are upscaled by using the hybrid

mixture theory (HMT) [28, 29, 30, 31] that applies the averaging theorem

to average the microscale field equations to obtain the macroscale equations.

The model is [32, 31]

µk−1 · (εlvl) +∇p− µ

εl
∆(εlvl) = ρg + µk−1 · εlvs + µ

εl
∇f, (1)

∇ · (εlvl) = f, (2)
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where εl is the porosity; vl and vs are the velocities of the liquid and solid

phases, respectively; f = −ε̇l/(1−εl)+∇·εlvs; µ is a dynamic viscosity; k−1 is

the inverse of the permeability tensor; p is pressure; dl = 0.5(∇vl + (∇vl)T )

is the rate of deformation tensor; ρ is fluid density; g is gravity; ε̇l is the

material time derivative of the porosity with respect to the solid phase, ε̇l =

∂εl/∂t+ vs · ∇εl. Equation (1) is called Brinkman equation and without the

permeability term it is the Stokes equation. Therefore equation (1) is named

Stokes-Brinkman equations.

3. Model discretization

In order to find the numerical results, the discretization of the 3-dimensional

Stokes-Brinkman equations is provided this section. Although the model has

been discretized in [33], it is an essential detail in this study. Then, we briefly

introduce them here. Define the Sobolev space

L2
0(Ω) = {q ∈ L2(Ω) :

∫

Ω
qdΩ = 0}. (3)

By using a mixed finite element method, the weak formulation of the gov-

erning equation in indicial notation is to find (v, p) ∈ H1(Ω) × L2
0(Ω) such

that
∫

Ω
µ
[
k−1

ij vj

]
widΩ + µ

εl

∫

Ω

[
∂vi

∂xj

∂wi

∂xj

]
dΩ−

∫

Ω
p
∂wi

∂xi

dΩ

=
∫

Ω

(
ρgi + µεl

[
k−1

ij v
s
j

])
widΩ− µ

εl

∫

Ω
f
∂wi

∂xi

dΩ−
∫

Γ
pwinidΓ

+ µ

εl

∫

Γ

[
∂vi

∂xj

nj

]
widΓ + µ

εl

∫

Γ
fwinidΓ, ∀ wi ∈ H1

0 (Ω), i = 1, 2, 3, (4)

where Ω is our computational domain; H1(Ω) is the Hilbert space; Γ is

the boundary of the domain Ω; the repeated index j, i = 1, 2, 3 indicates
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the summation but the repeat index i, i = 1, 2, 3 indicates the number of

equation, not the summation; wi ∈ H1
0 (Ω) is the test function; ni, i = 1, 2, 3

is the outward unit normal vector and gravity vector g is given by g =

(0, 0,−g). Let Ω and Th be our computational domain and a triangulation

of domain Ω, respectively. Define the finite-dimensional subspaces of the

Hilbert space H1(Ω) and L2
0(Ω) as follows

Vh = {v ∈ H1(Ω) : v|K is quadratic,∀K ∈ Th} (5)

Hh = {q ∈ L2
0(Ω) : q|K is linear,∀K ∈ Th}. (6)

The approximate solutions (vi, p) ∈ Vh ×Hh are

vi(x) =
M∑

m=1
ψm(x)vm

i = ΨT Vi, (7)

p(x) =
L∑

l=1
φl(x)pl = ΦT P. (8)

where Vi and P are vectors of the velocities and pressure, respectively; ψm

and φl are called basis functions; Ψ and Φ are their vector forms and the

integers M and L are determined by the interpolation function. For example,

for a tetrahedral element, M = 10 for quadratic function for the velocity vi

and L = 4 for linear function for the pressure p. The system of equations

(1)-(2) can be written in the matrix form as



µk−1
11 Ã + B̃ µk−1

12 Ã µk−1
13 Ã −Q̃T

1

µk−1
21 Ã µk−1

22 Ã + B̃ µk−1
23 Ã −Q̃T

2

µk−1
31 Ã µk−1

32 Ã µk−1
33 Ã + B̃ −Q̃T

3

−Q̃1 −Q̃2 −Q̃3 0







V1

V2

V3

P




=




F̃1

F̃2

F̃3

F̃4




, (9)
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where

Ã =
∫

Ωe
2

ΨΨTdΩe
2, (10)

K̃ij =
∫

Ωe
2

∂Ψ
∂xi

∂ΨT

∂xj

dΩe
2 (11)

Q̃i =
∫

Ωe
2

Φ∂ΨT

∂xi

dΩe
2, (12)

B̃ = (µ/εl)(K̃jj) (13)

F̃i =
∫

Ωe
2

(
−ρgi + µεlk−1

ij v
s
j

)
ΨdΩe

2 −
µ

εl

∫

Ωe
2

f
∂Ψ
∂xi

dΩe
2

−
(∫

Γe
2

ΨΦTnidΓe
2

)
P + µ

εl

(∫

Γe
2

Ψ∂ΨT

∂xj

njdΓe
2

)
Vi

+ µ

εl

∫

Γe
2

fΨnidΓe
2, (14)

and ni, i = 1, 2, 3 is the outward unit normal vector.

4. FLAIR Method

Ashgiz and Poo [23] initially introduced FLAIR method that employed

the cell volume fraction to track the free surfaces and interfaces. The method

is to find the line-segment orientation by considering the cell volume frac-

tions. The sloped line segments are calculated at the boundary of every

two neighboring cells. Figure 5 shows the two computational cells at the

interface. The most left and right regions in blue color contain liquid and

the white color is gas. The most dark blue color in the middle is the liquid

transferred from donor to acceptor cells with volume Vf in one time step 4t
where u is velocity.
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Donor cell

∆t

Acceptor cell

Vf

u

Figure 5: The volume of liquid transferred with FLAIR method.

5. Numerical Results

The velocity of each angle θ for a fixed domain is provided in [34]. In our

work, to find the free surface, the initial velocity of each angle comes from the

velocity of the previous angle from the fixed domain in the forward stroke.

In this work, we consider the angle θ = 90◦, 80◦, ...., 40◦ where the cilia have

the highest velocity at the angle θ = 90◦ and start for the forward stroke at

this angle. Therefore the velocity of the PCL fluid at the angle θ = 90◦ from

the fixed domain will be the initial velocity of the angle θ = 80◦ to find the

free boundary at this angle and so on. The initial volume fraction f0 ∈ [0, 1]

where f0 is zero and one in an empty cell and a full cell, respectively. At a

cell surface, f0 is between zero and one. In this study, the initial f0 is that

every cell of the numerical domain lower than the tip of cilia when the cilia

make angle θ with the horizontal plane has f0 = 1 and f0 = 0 on the other

cells. Because the cilia length is nondimensionalized to be 1, when the cilia

is perpendicular to the horizontal plane, f0 = 1 for all cell. For the other

angles, for instance, cilia make an angle θ with the horizontal plane. The

hight of the layer that contains cilia is z0 = ξ sin θ where ξ is the cilia length
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as shown in Figure 10. In this work, ξ = 1. From zero to z0, the initial

f0 = 1 and above the z0 value the initial f0 = 0. By using FLAIR approach

to track the free surfaces, the numerical results of each angle θ is illustrated

in Figure 7-9. Figures 7 shows the free surfaces at the tips of cilia in PCL of

the angle θ = 40◦ and θ = 50◦, from top to bottom, respectively. Similarly,

the free surfaces of angles θ = 60◦, 70◦ and 80◦ are shown in Figures 8 and

9, respectively. Because our numerical domain is a unit cube and the tips of

cilia are at the top of domain when cilia is perpendicular to the horizontal

plane. Therefore, the free surface for the 90 degree does not demonstrated.

The free surface will be used as a free boundary at the bottom of the mucous

layer to find the mucus velocity in the future work.

horizontal plane

θ

ξ

oz

cilia

Figure 6: The angle θ between the cilia and the horizontal plane.
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Figure 7: Free surfaces at the tips of cilia of the angle θ = 40◦ and θ = 50◦ from top to

bottom.
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Figure 8: Free surfaces at the tips of cilia of the angle θ = 60◦ and θ = 70◦ from top to

bottom.
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Figure 9: Free surfaces at the tips of cilia of the angle θ = 80◦.

6. Conclusion

We study the fluid flow due to the movement of cilia in a three dimen-

sional domain. To expel move out of the human body, the cilia move back

and forward and make and angle θ with the horizontal plane. Since the ve-

locity of cilia affects the velocity of the PCL fluid, we use Stokes-Brinkman

equations including the velocity of cilia in the external force term in the equa-

tions, which is derived by using an upscaling method named Hybrid Mixture
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Theory. In this work, we focus on the forward stroke where the cilia have

maximum velocity at θ = 90◦, which decreases to zero at θ = 40◦. A mixed

finite element and FLAIR approaches are employed to find the numerical

solutions. The velocity of the PCL fluid of each angle θ for a fixed domain

is calculated in [34] by using the mixed finite element space known as the

Taylor-Hood elements. We use the velocity of the fixed domain to be the

initial velocity to find the free surface at the tip of cilia of each angle θ. That

is the velocity of the angle θ = 90◦ applied to be a initial velocity of the angle

θ = 80◦ and the process is continued to the angle θ = 40◦. The obtained free

surfaces will be employed to be a boundary condition of the mucous layer to

calculate the mucus velocity in our future work.
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