

Abstract (บทคัดย่อ)

Project Code : TRG5780243

(รหัสโครงการ)

Project Title : Development of automatic earthquake hazard and risk assessment system for Thailand

(ชื่อโครงการ): การพัฒนาระบบแจ้งเตือนภัยแผ่นดินไหวสำหรับประเทศไทย

Investigator : Teraphan Ornhammarath Mahidol University

(ชื่อหักวิจัย): ธีรพันธ์ อรธรรมรัตน์ มหาวิทยาลัยมหิดล

E-mail Address : teraphan.orn@mahidol.ac.th

Project Period : 2 Year

(ระยะเวลาโครงการ): 2 ปี

An Mw 6.1 earthquake occurred on 5 May 2014 at 11:08:42 UTC, with a 7.4 km hypocentral depth, near Mae Lao, a rural town of 30,000 inhabitants, Chiang Rai, (northern Thailand). This earthquake was widely felt throughout northern Thailand as well as in high-rise buildings in Bangkok and Hanoi (at epicentral distance of 670 km). The event took place in an area characterized by high seismic hazard; however, the causative fault was previously unrecognized (it is not mapped on the active fault map of Thailand). This event represents the second largest instrumental earthquake in Thailand, after the 1935 Mw 6.3 Nan earthquake. In the first few days following the earthquake, a field investigation was performed. Most damage was found to be localized within Mae Lao; few collapsed buildings, structural damage, liquefaction, lateral spreading, and fractures on the ground surface. In addition, the extensive damage was also reported in surrounding municipalities at 50 km epicentral distance.

Buildings and historical landmarks were damaged by the mainshock and aftershocks. More than 10,000 residential and public buildings were inspected in the aftermath of the event and were preliminarily classified by colors, according to their safety and the

observed damage. The 2014 Mae Lao event caused the largest economic loss from a single inland earthquake in modern Thai history because its epicenter is located within a populated area. The cost of repairing local infrastructure is at least 1,000 million baht (around 30 million USD). There was one fatality and several people were injured by falling debris and collapse of residential and public buildings.

The earthquake was believed to have occurred along the NE-SW left-lateral strike slip Mae Lao fault, located below the town. The mainshock was followed by 12 aftershocks of magnitudes larger than ML 4, the strongest one which occurred on 6 May (Mw 5.0). From the surveys on the spatial distribution of the pattern of damage, four types of buildings in the vicinity of epicentral region have been determined. These observed damaged buildings are mostly low-rise buildings. From surveys and damage reports, localized damage has been identified in the epicentral area correspond to MMI VIII, while patterns of damage states are similar to previous moderate earthquakes in this region. Most extensive and moderate damage are to non-engineered RC frames with masonry in-filled walls, which are not properly connected to the other elements. It was also observed that most structures in the vicinity of the rupture are still intact and local infrastructures could be able to resume operations after being investigated by local authorities. This could be partly explained by the low stress drop of the Mae Lao mainshock.

เหตุการณ์แผ่นดินไหว ขนาด 6.1 เมื่อวันที่ 5 พฤษภาคม 2557 ที่ อำเภอ แม่ลาว จังหวัด เชียงราย ที่ผ่านมาถือเป็นเหตุการณ์แผ่นดินไหวที่ใหญ่ที่สุดในประเทศไทยในรอบ 79 ปี ภายหลังจากเหตุแผ่นดินไหว ขนาด 6.3 ที่ อำเภอ ปัว จังหวัดน่าน เมื่อวันที่ 13 พฤษภาคม 2478 โดยรอยเลื่อนย่อย่างภาคเหนือของประเทศไทยนั้นมีลักษณะการกระจายตัวอยู่เกือบ ทั่วไปในทุกจังหวัดทางภาคเหนือเนื่องจากว่าภูมิสังฐานของภาคเหนือของประเทศไทยนั้นมี ลักษณะเป็นแองดินอ่อนสลับบุบเข้าซึ่งกันและกัน ทำให้เกิดรอยเลื่อนขนาดเล็กเป็นจำนวนมาก โดยรอยเลื่อนย่อย่างเหล่านี้ซึ่งได้รับความสนใจใน การศึกษาน้อยกว่ารอยเลื่อนหลัก เช่นรอยเลื่อนแม่จัน แต่ทว่ารอยเลื่อนย่อย่างเหล่านี้ก็สามารถทำ ให้เกิดแผ่นดินไหวขนาด 6.0 ถึง 6.5 ซึ่งสามารถก่อให้เกิดความเสียหายต่ออาคารและระบบ สาธารณูปโภค เช่น เดียวกันกับที่ทำให้เกิดความเสียหายจากแผ่นดินไหวที่เพิ่งผ่านมา

โดยจากการสำรวจสภาพความเสียหายในพื้นที่จังหวัดเชียงรายเพื่อทำการสำรวจถึงสภาพ ความเสียหายของอาคารที่ได้รับความเสียหายเนื่องมาจากแผ่นดินไหวแม่ลาว เพื่อทำความ เข้าใจถึงลักษณะความเสียหายของโครงสร้างของอาคารที่ได้รับ โดยได้ทำการเก็บข้อมูลความ

เสียหายและทำการตรวจสอบลักษณะการก่อสร้างอาคารลักษณะต่างๆที่ถูกประเมินความเสียหายโดยแบ่งตามประเภท สีคือ สีเขียว เหลือง และ แดง เพื่อเสนอเป็นลักษณะอาคาร โครงสร้างที่ไม่เหมาะสมสำหรับด้านท่านแผ่นดินไหวต่อไป จากการลงสำรวจพบว่าอำเภอแม่ลานนั้นเป็นพื้นที่ที่มีจำนวนอาคารที่ได้รับความเสียหายมากที่สุดและพบว่าบ้านเรือนประชาชน เป็นอาคารประเภทส่วนใหญ่ที่ได้รับความเสียหายประเภทสีแดงมากที่สุดและส่วนใหญ่แล้วเป็นบ้านที่ไม่ได้สร้างตามมาตรฐานวิศวกรรม โดยเสาไม่ได้มีการเสริมเหล็กได้อย่างเพียงพอ และบ้านใช้รากที่มีน้ำหนักมากทำให้เกิดการพังทลายได้ง่าย

และการลงพื้นที่สำรวจของคณะผู้วิจัยเพื่อทำการสำรวจลักษณะความเสียหายของอาคาร จากแผ่นดินไหวในอำเภอแม่ลาวพบว่า การพังทลายโครงสร้างเนื่องมาจากการเสื่อม化 (Corrosion) ที่เกิดขึ้นมาจากการทำด้านข้างของผนังก่ออิฐจะทำให้เกิดแรงในรูปแบบการรับแรงแบบค้ำยัน (Compression strut) โดยทำให้เกิดการพังทลายในแนวนอนแบบ In plane failure และการพังทลายของกำแพงถล่ม (Out of plane failure) นั้นพบได้เป็นปริมาณมากอย่างมีนัยสำคัญ โดย การพังทลายของกำแพงในลักษณะนี้เป็นสาเหตุหลักที่พบได้ทุกครั้งและทำให้มีผู้เสียชีวิตเนื่องมาจากการแผ่นดินไหวทุกครั้ง ตั้งแต่ เหตุการณ์แผ่นดินไหว ท่าเรือ ขนาด 6.8 ที่พรมแดนประเทศไทย เมื่อวันที่ 24 มีนาคม พ.ศ. 2554 และเหตุการณ์แผ่นดินไหวแม่ลาว ขนาด 6.3 เมื่อวันที่ 5 พฤษภาคม พ.ศ. 2557 ดังนั้นการพัฒนาเทคโนโลยีการก่อผนังอิฐก่อเพื่อป้องกันการพังทลายเนื่องจากแรงแผ่นดินไหวนั้นจึงเป็นสิ่งสำคัญ เพื่อที่จะลดการสูญเสียชีวิตจากแผ่นดินไหวในอนาคต

Keywords : Earthquake, Red tag building, Non-engineered structures

(คำหลัก): แผ่นดินไหว, อาคารเสียหายรุนแรง(สีแดง), อาคารที่ไม่ได้อยู่ในกระบวนการควบคุม ทางวิศวกรรม