

รายงานวิจัยฉบับสมบูรณ์

โครงการ การย่อส่วนระบบการวิเคราะห์ทางเคมีด้วย ปรากฏการณ์ทางเคมีและฟิสิกส์ที่เกี่ยวข้องกับ หยดสารละลาย

โดย.ดร.ทินกร กันยานี และคณะ

พฤษภาคม 2559

สัญญาเลขที่ TRG5780246

รายงานวิจัยฉบับสมบูรณ์

โครงการ การย่อส่วนระบบการวิเคราะห์ทางเคมีด้วย ปรากฏการณ์ทางเคมีและฟิสิกส์ที่เกี่ยวข้องกับ หยดสารละลาย

ผู้วิจัย

ผู้ช่วยศาสตราจารย์ ดร. ทินกร กันยานี้ ศาสตราจารย์ ดร. เกตุ กรุดพันธ์ สังกัด

มหาวิทยาลัยเชียงใหม่ มหาวิทยาลัยเชียงใหม่

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกว.ไม่จำเป็นต้องเห็นด้วยเสมอไป)

าเทคัดย่อ

รหัสโครงการ : TRG5780246

ชื่อโครงการ : การย่อส่วนระบบการวิเคราะห์ทางเคมีด้วยปรากฏการณ์ทางเคมีและฟิสิกส์ที่

เกี่ยวข้องกับหยดสารละลาย

ชื่อนักวิจัย : ดร.ทินกร กันยานี

อีเมลล์ : <u>tkanyanee@gmail.com</u>, <u>tinakorn.kanyanee@cmu.ac.th</u>

ระยะเวลาโครงการ : 2 ปี

บทคัดย่อ

งานวิจัยนี้ได้นำเสนอระบบวิเคราะห์ที่ย่อส่วนและการประยุกต์ใช้งานของหยดของเหลวเคลื่อน ที่ที่เกี่ยวข้องกับการใช้เซ็นเซอร์วัดค่าการนำไฟฟ้าขนาดเล็ก โพรบการวัดค่าการนำไฟฟ้าขนาดเล็กถูก ติดตั้งในระบบของหยดของเหลวเคลื่อนที่สำหรับการวัดสารละลายกรดซัลฟิวริกที่เจือจางซึ่งทำหน้าที่ เป็นสารจับแก๊สขนาดเล็ก (micro gas absorber) โดยแก๊สแอมโมเนียถูกนำขึ้นมาจากสารละลาย ตัวอย่างและถูกเป่าลงสู่หยดสารละลาย โปรตอนในสารละลายที่จับแก๊สจะเปลี่ยนเป็นแอมโมเนียม โอออนและทำให้ค่าการนำไฟฟ้าลดลง อัตราการลดลงของค่าการนำไฟฟ้าขึ้นกับความเข้มข้นของ แอมโมเนียมในสารละลายตัวอย่าง ระบบดังกล่าวนี้ได้ถูกประยุกต์ใช้ในการหาปริมาณแอมโมเนียม โอออนในน้ำธรรมชาติโดยไม่ต้องมีการกรองสารละลายก่อนการวิเคราะห์ต่ำสุด (LOD) 5 µM และ Relative standard deviation (RSD) น้อยกว่า 5% หยดสารละลายเคลื่อนที่ทำให้มีปริมาตรที่คงที่และใช้ เป็นระบบที่ใช้จับแก๊สที่ทำให้เป็นแพลทฟอร์มสำหรับวิเคราะห์ที่มีราคาถูกและง่ายสำหรับทำเป็นระบบ เก็บตัวอย่างและวิเคราะห์เก๊ส

คำหลัก: Liquid drop, Conductometric detection, Micro analysis, Ammonium determination

Abstract

Project Code : TRG5780246

Project Title : Down-scaling chemical analysis via physical and chemical phenomena in

connection with liquid drop

Investigator : Dr. TINAKORN KANYANEE

E-mail Address : tkanyanee@gmail.com, tkanyanee@gmail.com, tkanyanee@cmu.ac.th

Project Period : 2 years

Abstract:

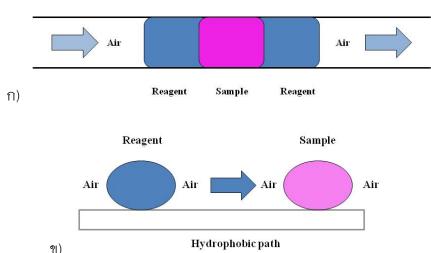
In this work, the down-scaling chemical analysis system via moving liquid drop (mobile drop) coupled with micro conductometric sensor has been demonstrated. The micro conductivity probe has been installed for diluted H_2SO_4 measurement in moving liquid drop. A dilute sulfuric acid drop functioned as a micro gas absorber. Gaseous NH_3 was liberated and purged to flow over the absorber drop. As H^{\dagger} in the absorber drop was converted to NH_4^{\dagger} , the conductivity decreased. The rate of the conductivity decrease depended on the NH_4^{\dagger} concentration in the sample. The system was applied for the determination of NH_4^{\dagger} in some natural waters without prior filtration. The results agreed well with those from standard method. The approach exhibited a limit of detection (LOD) of 5 μ M and a relative standard deviation (RSD) of < 5%. The mobile drop provides a constant volume of the gas absorbing solution and provided a cost-effective and simple analytical platform for gas sampling and analysis.

Keyword: Liquid drop, Conductometric detection, Micro analysis, Ammonium determination

บทสรุปผู้บริหาร (Executive Summary)

เคมีสะอาด (Green chemistry) กำลังเป็นคำสำคัญในแนวทางงานวิจัยในโลกอนาคต สำหรับ เคมีวิเคราะห์การย่อส่วนระบบวิเคราะห์ลง (Down-scaling chemical analysis) เป็นส่วนหนึ่งของแนว ทางการพัฒนาแบบเคมีสะอาด ซึ่งทำให้มีข้อดีคือวิเคราะห์ได้รวดเร็ว มีกากสารเคมีเหลือน้อย ใช้ พลังงานที่น้อยและสามารถนำไปวิเคราะห์ภาคสนามได้ เคมีสะอาดหรือกระบวนการทางเคมีแบบ zero emission เป็นที่ต้องการในการวิเคราะห์แนวใหม่ การวิเคราะห์ด้วยระบบ Lab-at-valve เป็นตัวอย่าง หนึ่งที่ลดการใช้สารเคมีและทำให้ลดเวลาในการวิเคราะห์ ลดการใช้เครื่องแก้วลง ดังนั้นระบบเครื่องมือ ที่เล็กลงยังทำให้ค่าใช้จ่ายที่น้อยลงอีกด้วย โครงการวิจัยที่ผ่านมาได้พัฒนาระบบ moving liquid drop หรือ mobile drop ที่ใช้ในการวิเคราะห์ด้วยเทคนิคคูลอมเมตริกไทเทรชั่นในหยดสารละลาย ซึ่งระบบ moving liquid drop นี้มีลักษณะเฉพาะที่คล้ายกับระบบ mono-segmented flow ในการวิเคราะห์ด้วย ระบบการไหล (flow analysis system) แต่การใช้ moving liquid drop/ mobile drop ใช้การ manipulate สารละลายระบบไมโครลิตรด้วยแรงใน้มถ่วงแบบง่ายๆแต่อุปกรณ์และค่าใช้จ่ายต่างๆราคาถูกกว่าและ ง่ายกว่ามากๆ

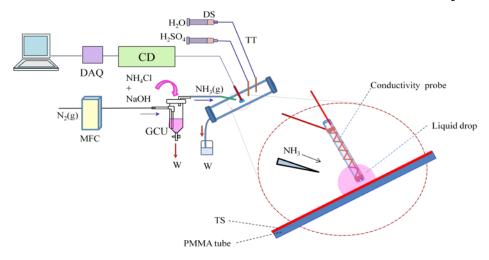
งานวิจัยนี้ได้ศึกษาต่อยอดจากโครงการที่ผ่านมาและเน้นศึกษาปรากฏการณ์ทางฟิสิกส์และ เคมีของหยดของเหลวเนื่องจากสารเคมีภายนอกอื่นๆโดยใช้พื้นฐานจากงานวิจัยก่อนหน้านี้ เทคนิคทาง ์ ไฟฟ้าเคมีได้ถูกพัฒนาขึ้นสำหรับตรวจวัดโดยใช้วิธี batch injection ร่วมด้วยเพื่อให้การวิเคราะห์ง่ายและ ซึ่งถูกประยุกต์ใช้กับระบบการเก็บตัวอย่างแก๊สหรือสารระเหยและวิเคราะห์ด้วย รวดเร็วขึ้น ปรากฎการณ์ทางฟิสิกส์/เคมีสำหรับการวิเคราะห์แอมโมเนียมไอออนและประยุกต์ใช้ในทางสิ่งแวดล้อม โดยได้ศึกษาการวัดค่าการนำไฟฟ้าของสารละลายกรดซัลฟิวริกเจือจางที่ใช้เป็นสารละลายที่จับแก๊ส แอมโมเนียซึ่งมาจากการเปลี่ยนของแอมโมเนียมไอออนในสารละลายตัวอย่าง ทำให้สามารถวิเคราะห์ ปริมาณของแอมโมเนียมไอออนในตัวอย่างที่ซับซ้อนได้ด้วยเทคนิคการวัดค่าการนำไฟฟ้าแบบง่ายๆ อีกทั้งยังอาจต่อยอดพัฒนาไปเป็นระบบวิเคราะห์แก๊สแอมโมเนียในอากาศได้อีกด้วย ประยุกต์ใช้ในการวิเคราะห์แอมโมเนียในบรรยากาศและยังอาจใช้สำหรับวิเคราะห์แก๊สแอมโมเนียใน ลมหายใจ (Exhale breath analysis) ได้อีกด้วย นอกจากนี้ระบบการวิเคราะห์แอมโมเนียมในหยด สารละลายด้วย electrochemical detection นี้สามารถพัฒนาต่อยอดสำหรับการวิเคราะห์ไอออนอื่นๆใน น้ำได้ด้วยแนวทางคล้ายๆกัน เช่น ระบบของ $SO_3^-/SO_2(g)$, $HCO_3^-/CO_2(g)$, $S^{2-}/H_2S(g)$, $CN^-/HCN(g)$ และอื่นๆ ระบบวิเคราะห์ที่ย่อส่วนที่พัฒนาขึ้นนี้ทำให้ลดกากสารเคมี ลดเวลาในการวิเคราะห์ ให้การ ตอบสนองสัญญาณที่เร็วและอุปกรณ์การวิเคราะห์ที่เล็กลงอีกด้วย


วัตถุประสงค์งานวิจัย

เพื่อพัฒนาระบบวิเคราะห์แบบย่อส่วนด้วยปรากฏการณ์ทางฟิสิกส์และเคมีในหยดของเหลวที่ ถูกกระทำด้วยสปีชีย์ทางเคมีภายนอกที่ตรวจวัดด้วยระบบไฟฟ้าเคมีเพื่อนำไปสู่การวิเคราะห์ที่ง่ายและ รวดเร็ว

1.ที่มาและความสำคัญ

ในปัจจุบันกระบวนการต่างๆทางเคมี ทำให้เกิดสารเคมีที่เป็นของเสีย (chemical waste) เป็น จำนวนมาก เป็นภาระของหน่วยงานต่างๆที่เกี่ยวข้องในการกำจัดกากของเสียดังกล่าว ซึ่งนักเคมีทั่ว โลกได้ตระหนักถึงความสำคัญของการเกิดของเสียจากสารเคมีและได้มีความพยายามในการปรับ - เปลี่ยนกระบวนต่างๆในทางเคมีให้ใช้สารเคมีน้อยลงหรือการใช้สารจากผลิตภัณฑ์จากธรรมชาติมาก ขึ้น การปรับหรือย่อขนาดของการทดลองหรืออุปกรณ์ในกระบวนการทางเคมีให้มีขนาดเล็กลงในระดับ โมโครสเกลล์ (micro scale chemistry) จึงเป็นทางออกหนึ่งที่ช่วยลดปริมาณการใช้สารเคมีและกากของ เสียจากสารเคมีลงได้ นอกจากนั้นการทดลองในห้องปฏิบัติการระดับ micro scale ยังช่วยลดอันตราย จากปฏิกิริยาเคมีที่ให้ผลรุนแรงได้อีกด้วย


โครงการวิจัยที่ผ่านมาได้ประสบความสำเร็จในการพัฒนาระบบ moving liquid drop หรือ mobile drop ขึ้นแบบง่ายๆโดยใช้การเคลื่อนที่ของหยดสารละลายบน hydrophobic path ที่ลาดเอียง ด้วยของแรง gravity force ทำให้สามารถควบคุมหยดสารละลายให้หยุดและ/ หรือเคลื่อนที่เข้า/ ออก จากขั้วไฟฟ้าได้ เป็นแนวทางการวิเคราะห์แบบใหม่ที่ไม่ต้องใช้อุปกรณ์ manipulate สารละลายเข้าและ ออกจากระบบวิเคราะห์ที่มีราคาแพงเหมือนการวิเคราะห์ในระบบการไหลโดยทั่วไป เช่น ปั้ม (peristaltic pump, syringe pump) หรือวาล์ว (selection valve, 6-port-2-position injection valve) และเมื่อพิจารณาระบบการเคลื่อนตัวของหยดสารละลายไปตามพื้นเอียงและการผสมกันของหยด สารละลายต่างชนิดกัน จึงมีความคล้ายคลึงกับระบบการไหลแบบ mono-segmented flow ซึ่งจะเป็น ลักษณะการไหลของสารละลายในท่อที่มีโซนของอากาศมาคั่นระหว่างกระแสการไหลของสารละลาย เพื่อทำให้มีข้อดีที่สามารถลดการกระจายตัวของโซนสารตัวอย่างในกระแสการไหลของสารละลายใน การวิเคราะห์ในระบบการไหลได้ ดังนั้นระบบ moving liquid drop หรือ mobile drop จึงเป็นระบบ mono-segmented flow แบบง่ายๆได้ เนื่องจากการเคลื่อนที่ของหยดสารละลายบน hydrophobic tile path ที่มีลักษณะที่คล้ายกับการไหลของสารละลายในระบบ mono-segmented flow ในระบบ sequential injection แต่ระบบ Moving Liquid Drop ใช้อุปกรณ์ต่างๆที่ง่ายและค่าใช้จ่ายที่ถูกกว่า ระบบ อุปกรณ์เล็กกว่า ดังแสดงการเปรียบเทียบทั้งสองระบบในรูป 1. ทำให้สามารถพัฒนาเป็นระบบ sequential manually operation แบบง่ายๆ และประยุกต์ใช้ในการวิเคราะห์ด้วยเทคนิคทางไฟฟ้าเคมีเป็น ระบบ microcoulometric titration ในหยดสารละลาย [1] โครงการวิจัยนี้จึงมุ่งเน้นต่อยอดใช้ระบบการ manipulate สารละลายด้วย moving liquid drop หรือ mobile drop มาศึกษาปรากฏการณ์ทางเคมีและ ฟิสิกส์ในหยดสารละลายเพื่อพัฒนาเป็นระบบวิเคราะห์ที่ย่อส่วน

รูป 1. เปรียบเทียบระบบการไหล ก) แบบ mono-segmented flow โซนสารละลายที่ไหลในท่อโดยมีโซน ของอากาศมาคั่นซึ่งใช้การ manipulation ด้วย syringe pump + selection valve ข) แบบ moving liquid drop ที่มีการเคลื่อนที่ของหยดสารละลายไปบน hydrophobic path

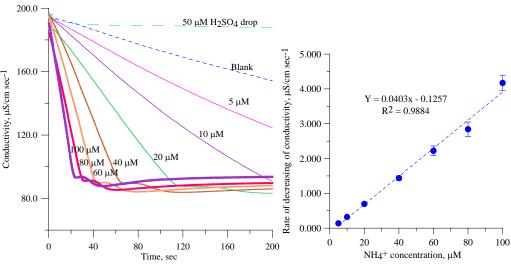
2. ระบบ Micro conductometric sensor with mobile drop

ได้พัฒนาระบบ moving liquid drop หรือ mobile drop เข้ามาใช้กับการวัดค่าการนำไฟฟ้าใน หยดสารละลายสำหรับวิเคราะห์ $\mathrm{NH_3}$ (gas) ที่มาจากตัวอย่าง $\mathrm{NH_4}^+$ ในน้ำธรรมชาติ โดยการประดิษฐ์ ขั้วไฟฟ้า micro conductometric sensor สำหรับวัดค่าการนำไฟฟ้าของสารละลายกรดซัลฟิวริกที่ไหลมา ตาม hydrophobic tile path และมาหยุดที่ขั้วไฟฟ้า เมื่อ flow แก๊สแอมโมเนียที่มาจากการเปลี่ยนสถานะ ที่มาจาก gas conversion chamber ที่มาจากตัวอย่างแอมโมเนียมไอออน ดังแสดงในรูป 2

รูป 2 การทดลองสารละลายที่เคลื่อนที่บนพื้นผิว hydrophobic ที่ใช้งานร่วมกับการวัดค่าการนำไฟฟ้า สำหรับการวิเคราะห์ $\mathrm{NH_4}^+/\mathrm{NH_3}$, MFC= Mass flow controller, GCU=Gas Conversion Unit, HN=hypodermic needle, CD= conductivity detector, DAQ= Data acquisition, TS=Teflon sheet, DS=Disposable syringe, W=waste.

จากรูป 2 แก๊สแอมโมเนียที่ขึ้นมาจากตัวอย่าง $\mathrm{NH_4}^+$ ปริมาตร 5 mL ถูกเติมลงใน gas conversion chamber ที่ทำจากหลอด centrifuge ขนาด 50 mL ซึ่งเมื่อเติมสารละลาย NaOH ให้มี สภาวะที่เป็นเบส (pH >10) แก๊ส $\mathrm{NH_3}$ จะถูกเป่าและพาขึ้นมาจาก gas conversion chamber ด้วยแก๊ส ในโตรเจนและเป่าลงไปที่หยดสารละลายกรด $\mathrm{H_2SO_4}$ เจือจาง (ปริมาตรประมาณ 25 $\mathrm{\mu L}$ ความเข้มข้น ประมาณ 50–200 $\mathrm{\mu M}$) เมื่อทำการวัดค่าการนำไฟฟ้าด้วยเครื่องวัดการนำไฟฟ้ายี่ห้อ Metrohm รุ่น 712 ค่าสัญญาณการนำไฟฟ้าจะถูกแปลงไปบันทึกด้วยโปรแกรมคอมพิวเตอร์ผ่านระบบ data acquisition ด้วยซอฟต์แวร์ที่พัฒนาขึ้นเอง ข้อมูลของค่าการนำไฟฟ้าของกรด $\mathrm{H_2SO_4}$ ที่ลดลงจะสัมพันธ์ กับความเข้มข้นของแอมโมเนียมไอออนมาตรฐาน เพื่อประยุกต์ใช้ในการวิเคราะห์แอมโมเนียมใน ตัวอย่างน้ำธรรมชาติ ทั้งนี้ได้ศึกษาพารามิเตอร์อื่นๆที่เกี่ยวข้องด้วยเพื่อให้ผลการวิเคราะห์ให้ผลดีที่สุด

-การเตรียมตัวอย่าง $\mathrm{NH_4}^\dagger$ ในกรด $\mathrm{H_2SO_4}$: เนื่องจากในสารละลายมาตรฐาน/สารละลาย ตัวอย่างถูกละลายใน 0.1 M $\mathrm{H_2SO_4}$ ซึ่งมากพอที่จะทำให้ $\mathrm{NH_4}^\dagger$ ไอออนสามารถอยู่ตัวในสารละลายได้ และเพื่อให้ระบบที่พัฒนาขึ้นนี้สามารถใช้งานได้กับการวิเคราะห์ $\mathrm{NH_4}^\dagger$ จากการย่อยด้วยวิธี Kjedahl method ได้ด้วยซึ่งจะถูกย่อยในสภาวะกรด


-ความเข้มข้นของสารละลาย NaOH ที่ใช้เปลี่ยนแก๊สแอมโมเนีย: $\mathrm{NH_4}^+$ สามารถเปลี่ยนเป็น $\mathrm{NH_3}$ ได้ดีในช่วง pH ที่เป็นเบส (10–14) โดยการเติมสารละลาย NaOH ความเข้มข้น 0.1–6 M ลงไปใน gas conversion chamber โดยที่สารละลาย NaOH ที่เติมลงไปจะต้องมากพอที่ neutralized สารละลาย ตัวอย่าง $\mathrm{NH_4}^+$ ที่ละลายในกรด 0.1 M $\mathrm{H_2SO_4}$ และปรับ pH ของสารละลายให้สูงขึ้นจน $\mathrm{NH_4}^+$ เปลี่ยนเป็น แก๊ส $\mathrm{NH_3}$

-ความเข้มข้นของกรด H_2SO_4 ที่ใช้ในการจับแก๊สแอมโมเนีย: ความเข้มข้นของกรดจะมีผลต่อ การเปลี่ยนช่วง standard calibration graph ของการวิเคราะห์ $\mathrm{NH_4}^+$ ด้วย

-ปริมาตรของสารละลายตัวอย่างแอมโมเนียม: โดยใช้ transfer pipet ซึ่งเป็นอุปกรณ์การวัด ปริมาตรของสารละลาย NH₄[†] ที่มีความถูกต้องสูงในการศึกษาผลของปริมาตรสารละลายตัวอย่าง โดย ศึกษาในช่วง 4.80-5.20 mL พบว่าสัญญาณการลดลงของค่าการนำไฟฟ้าเปลี่ยนแปลงน้อยมาก ซึ่ง แสดงว่าสามารถใช้อุปกรณ์การวัดปริมาตรอื่นๆที่ให้ความถูกต้องไม่มากนัก แต่ใช้งานในภาคสนามได้ สะดวกกว่ามาใช้แทนได้ เช่น disposable syringe ทั่วไป

-อัตราการไหลของแก๊สไนโตรเจนที่พาแก๊ส NH3 เข้าสู่หยดสารละลาย ซึ่งถ้าใช้อัตราการไหล ที่สูงเกินไปจะทำให้การจับแก๊สแอมโมเนียในหยดสารละลายได้ประสิทธิภาพที่น้อยลงแต่ถ้าใช้อัตราการ ไหลของแก๊ส N2 ที่ต่ำเกินไปจะทำให้เวลาการวิเคราะห์ใช้เวลานาน อัตราการไหลของ N2 ที่เหมาะสม คือ 200 mL/min

-ปริมาตรของหยดสารละลายที่ใช้ในการจับแก๊ส NH₃: ซึ่งผลการศึกษาพบว่าหยดสารละลาย ขนาดเล็กทำให้อัตราการเปลี่ยนแปลงของสัญญาณที่ดีกว่า และมีแนวโน้มที่ทำให้ sensitivity การ วิเคราะห์ที่ดีกว่า

됩니 3. Typical temporal profile of conductivity signals decreased due to 5–100 μ M NH $_4^+$. 50 μ M NaOH and N $_2$ flow rate 200 mL/min were employed to convert NH $_4^+$ to NH $_3$.

3. ข้อดีของระบบที่พัฒนาขึ้น

ระบบที่พัฒนาขึ้นใช้ measuring volumetric glassware ที่น้อยลง สามารถใช้ disposable syringe แทนการใช้ปิเปตได้ และสามารถ manipulate สารละลายด้วยแรงโน้มถ่วงของโลกโดยไม่ต้องใช้ ปั๊มที่ใช้ในระบบการไหลทั่วไป เช่น peristaltic pump หรือ syringe pump ที่มีราคาแพงและต้องควบคุม ด้วยคอมพิวเตอร์ ระบบเครื่องมือที่ใช้ต้องการแค่ระบบบันทึกสัญญาณเข้าคอมพิวเตอร์ เท่านั้น ซึ่งใน อนาคตสามารถพัฒนาระบบบันทึกสัญญาณดังกล่าวด้วยโทรศัพท์มือถือหรือแทปเลตได้ ทำให้มี แนวโน้มที่สามารถใช้งานในภาคสนามได้ ใช้สารละลายรีเอเจนต์ที่น้อยลง แม้ว่าจะใช้สารละลาย ตัวอย่างที่ค่อนข้างมาก (5 mL) แต่การวิเคราะห์ตัวอย่างน้ำในสิ่งแวดล้อมโดยทั่วไปที่มีปริมาตรของ ตัวอย่างที่มากพอก็ยังถือว่าใช้งานได้เป็นอย่างดี ทำให้ค่าใช้จ่ายโดยรวมของระบบที่พัฒนาขึ้นมีราคาถูก มากๆ แต่สมรรถณะการวิเคราะห์ที่ดีเทียบเคียงได้กับเทคนิคการวิเคราะห์แอมโมเนียมโดยวิธีอื่นๆ ดัง แสดงในตาราง 1.

4. ข้อเสนอแนะสำหรับงานวิจัยในอนาคต

ระบบวิเคราะห์ที่พัฒนาขึ้นเป็นพื้นฐานที่จะนำไปต่อยอดในการวิเคราะห์สารหรือไอออนที่ สามารถเปลี่ยนเป็นแก๊สได้ เช่น HCO_3 / CO_2 สำหรับหาปริมาณ dissolve inorganic carbon ในน้ำหรือ SO_3 / SO_2 สำหรับการหาปริมาณ sulfite ในน้ำหรืออาหาร, S^2 / H_2S สำหรับการหาปริมาณ sulfide ใน น้ำ เป็นต้น นอกจากนี้ยังสามารถพัฒนาต่อยอดระบบ mobile drop เข้ากับเทคนิคอื่นๆ เช่น เทคนิคการ วิเคราะห์เชิงแสง (optical/ colorimetric measurement) หรือเทคนิคการแยก เช่น capillary electrophoresis ซึ่งอยู่ในระหว่างการดำเนินงานวิจัยไปแล้วบางส่วน

ตาราง 1. เปรียบเทียบการวิเคราะห์แอมโมเนียมไอออนด้วยระบบ mobile drop ที่ใช้การวัดค่าการนำ ไฟฟ้ากับระบบ gas diffusion/ pervaporation Flow analysis อื่นๆ

Method	Sample	Calibration range,	Limit of	Sample	Equipment required	Relatively	Ref
		NH ₄ ⁺	detection	throughput (hr ⁻¹)		cost	
GD-FIA-potentiometry	Waste water with	55µM – 10 mM	8 µM	30	peristaltic pump/ injection	Low	[2]
	high content of				valve		
	surfactant						
GD-FIA-conductometry	from Kjedahl	0.58-5.8 mM	58 µM	35	peristaltic pump/ injection	Low	[3]
	digestion				valve		
GD-FIA-conduct(C4D)	Rain water	2–100 μΜ	0.8 μΜ	35	peristaltic pump/ injection	Low	[4]
					valve/ special detector		
GD-SIA-spectrometry	coastal water with	5.8-290 μM	1.5 µM	-	Syringe pump/ selection valve/	High	[5]
	wide salinity range				computer control and		
					programming		
Membraneless-multi syringe	Waste water	0.58 -2.9 mM	130 μΜ	11	Multiple syringe pump/	High	[6]
spectrometry					selection valve/ computer		
					control and programming		
Multi Commuted flow-	Surface/ tap water	2.9-58 μΜ	2.5 μΜ	20	Solenoid Valve pump /	Moderate	[7]
adsorption spectrometry					computer control and		
					programming		
Proposed method	Natural water	5–100 μM	5 μΜ	10	Data acquisition system/	Extremely	[8]
					no need of conventional	low	
					pump/ vale and computer		
					control		

เอกสารอ้างอิง

- [1] T. Kanyanee, Pongwasin Fuekhad, Kate Grudpan, Talanta 15 (2013) 258-262.
- [2] H. Shen, T.J. Cardwell, R.W. Cattrall, Anal. Chim. Acta 367 (1998) 193-199.
- [3] J. Junsomboon, J. Jakmunee, Anal. Chim. Acta 627 (2008) 232-238.
- [4] H. L. Braz, D. T. Ito, J.A. F. Silva, C. L. Lago, J. J. Pedrotti, *Electroanal* 23 (2011) 2594–2600.
- [5] R. A. Segundo, R. B. R. Mesquita, M. T. S. O. B. Ferreira, C. F. C. P. Teixeira, A. A. Bordalo, A.O. S. S. Rangel, *Anal. Method* 3 (2011) 2049–2055.
- [6] M. I. G.S. Almeida, J. M. Estela, M. A. Segundo, V. Cerdà, *Talanta* 84 (2011) 1244-1252.
- [7] S. M. Oliveira, T. I.M.S. Lopes, I. V. Toth, A. O. S. S. Rangel, *Anal. Chim. Acta* 600 (2007) 29–34.
- [8] P. Jaikang, K. Grudpan, T. Kanyanee, *Talanta*, 132 (2015) 884-888.

Output ที่ได้จากโครงการวิจัย

International publication

P. Jaikang, K. Grudpan, **T. Kanyanee***, Conductometric Determination of Ammonium Ion with a Mobile Drop, Talanta, 132 (2015) 884–888 (doi.10.1016/j.talanta.2014.10.046).

International conference

1. Tinakorn Kanyanee, and Kate Grudpan, Figure of merit of moving liquid drop as flow manipulation, Pure and Applied Chemistry International Conference (PACCON 2015), January 21–23, 2015, Bangkok, Thailand.

National conferences

- 1. Tinakorn Kanyanee, Tanapong Yaprasert, and kate Grudpan, Time-based micro titration with moving liquid drop, การประชุมสัมมนาวิจัยพื้นฐาน สกว. ครั้งที่ 108: TRF Seminar Series in Basic Research CVIII: Analytical Science: Past, Present and Future, ณ ห้องสัมมนา ชั้น 2 อาคาร 40 ปี คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่ วันที่ 14 มกราคม 2558.
- 2. Pheeraya Jaikang, Kate Grudpan, Tinakorn Kanyanee, Moving liquid drop with conductometric detection for determination of ammonium in water, การประชุมสัมมนาวิจัยพื้นฐาน สกว. ครั้งที่ 108: TRF Seminar Series in Basic Research CVIII: Analytical Science: Past, Present and Future, ณ ห้องสัมมนา ชั้น 2 อาคาร 40 ปี คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่ วันที่ 14 มกราคม 2558.
- 3. Down-scaling of Chemical Analysis via Moving Liquid Drop coupled with some Electrochemical Sensor Tinakorn Kanyanee, Chonnatee Tinala, Pheeraya Jaikang, and Kate Grudpan, การประชมนักวิจัยรุ่นใหม่พบ เมธีวิจัยอาวุโส สกว. ครั้งที่ 15, วันที่ 6-8 มกราคม 2559, โรงแรมเดอะรีเจนท์ ชะอำ บีช รีสอร์ท จังหวัด เพชรบรี

ภาคผนวก

FISEVIER

Contents lists available at ScienceDirect

Talanta

journal homepage: www.elsevier.com/locate/talanta

Conductometric determination of ammonium ion with a mobile drop

Pheeraya Jaikang a,b, Kate Grudpan a,b, Tinakorn Kanyanee a,b,*

- ^a Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- ^b Center of Excellence for Innovation in Analytical Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand

ARTICLE INFO

Article history:
Received 2 September 2014
Received in revised form
19 October 2014
Accepted 20 October 2014
Available online 29 October 2014

Keywords: Mobile drop Conductometry Ammonium determination

ABSTRACT

A mobile drop based approach was utilized for the conductometric determination of aqueous ammonium ion. A liquid drop was manipulated by gravity to remain or move out of a conductivity measurement zone located on a hydrophobic path. A dilute sulfuric acid drop functioned as a micro gas absorber. Gaseous NH $_3$ was liberated from a sample containing NH $_4^+$ by adding NaOH and purged to flow over the absorber drop. As H $^+$ in the absorber drop was converted to NH $_4^+$, the conductivity decreased. The rate of the conductivity decrease thus ultimately depended on the NH $_4^+$ concentration in the sample. While the sample could be complex, the liberation of NH $_3$ gas essentially freed the analyte of interest from the matrix and allowed the use of an otherwise nonselective detector. The system was applied to the determination of NH $_4^+$ in some natural waters without prior filtration; the results agreed well with those from a manual indophenol blue method. The approach exhibited a limit of detection (LOD) of 5 μ M and a relative standard deviation (RSD) of < 5%. The mobile drop gave a constant volume of the gas absorbing solution and provided a cost-effective and simple analytical platform.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Ammonium (NH $_4^+$) is a globally important micronutrient. High NH $_4^+$ levels in natural waters indicate deteriorated water quality, generally from anthropogenic sources. Analyses for NH $_4^+$ are routine in agriculture, soil science and environmental studies. The most widely used method for NH $_3$ /NH $_4^+$ determination is the spectrophotometric indophenol blue method [1], based on the Berthelot reaction.

One successful approach to NH₄⁺ determination has been to convert aqueous NH₄⁺ to gaseous NH₃ by adding base and collecting the produced gas for quantitation; this has the further virtue of removing matrix interferences. In flow analysis systems, NH₄⁺ has been commonly converted inline to unionized NH₃ in the donor stream and letting the NH₃ thus formed diffuse through a gas diffusion unit (GDU) into an acceptor stream for measurement. The GDU may be fabricated with or without a membrane. Different detectors have been used with a GDU in a flow system for NH₄⁺ determination. Frenzel et al. used flow injection (FI) with a GDU prior to potentiometric measurement of NH₄⁺ [2–4]. Conductometry, normally a nonselective technique, has been used with a FI-GDU system for measuring Kjeldahl Nitrogen in milk and chicken digests [5]. Contactless conductometry works particularly

well with small bore tubing; this has also been used for NH_4^+ determination with a FI-GDU system [6]. Other automated flow methods, e.g., sequential injection [7], multi syringe FI [8,9], and multi-commutation FI [10,11] have all been used with a GDU and spectrophotometric NH_4^+ determination. Fluorometric detection, a more sensitive technique has also been similarly used, for both sea water [12] and fresh water [13].

The conversion of an aqueous analyte species of interest to the gaseous state (and thus liberating it from a matrix potentially containing interferents) is not unique to the NH_4^+/NH_3 system, the same principle is used in hydride generation atomic spectroscopy. Hydride generation coupled with chemiluminescence detection (HG-CL) permitted a portable sensitive system for measuring arsenic in drinking water [14]. Generation of H₂S from an aqueous sample and measurement with a micro gas analysis system was used for the determination of sulfide in natural waters [15]. Cyanide in a blood sample was converted to gaseous HCN and collected in a porous membrane containing a chromogenic reagent to permit measurement using disposable platforms [16]. A membraneless setup avoids membrane fouling problems [17,18]. The flow analysis coupled with membraneless format has been developed [17-19]. Air segmentation in such systems can have advantages [20]; this has been applied to ethanol determination [21].

A liquid drop represents a small volume that has no membranes and a large surface/volume ratio, well suited for gas sampling without involving any membranes. A soluble gas can be scavenged by a drop and the product concentration can accumulate rapidly. The product can then be measured in-situ, often with a short overall analytical

^{*} Corresponding author at: Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand. Tel./fax: +66 53 941910.

E-mail address: tinakorn.kanyanee@cmu.ac.th (T. Kanyanee).

cycle. Liquid drops are easily manipulated, represent very low reagent consumption and waste generation and provide for low-cost methods [22]. Liquid drops/films have been extensively used for gas collection and analysis, e.g., for many different gases at a time with a capillary electrophoresis (CE) system [23–25], or by simple LED-based photometry for NO₂ [26], NH₃ [27], H₂S [28], SO₂ [29], etc. Although conductometry is non-selective, it can provide highly sensitive measurements with simple instrumentation. Toda et al. [30] used a renewable hemispherical drop of dilute acid atop the tip of an annular tubular electrode assembly that monitored the conductivity of the drop. As breath ammonia flowed over the drop it reduced the conductance by neutralizing the acid; the rate of conductivity decrease was a direct measure of the breath ammonia concentration. Although a liquid film/bubble [31] can provide an even greater surface/volume ratio than a drop, a liquid drop based system is simpler to set up.

Drops moving by gravity have the added advantage of incorporating both flow and transient examination capabilities. An inclined platform on which a drop falls and moves is particularly conducive to this; Liu and Dasgupta [32] introduced transient electrokinetic injection in CE based on this principle. Recently, we have refined the ability to control drop movement by using a hydrophobic inclined path for drop movement and a suspended probe with a hydrophilic exterior in the transit path to stop the drop by adhesion, and then allow it to move down again by allowing additional drop(s) to merge whence the gravitational force overcomes adhesion forces [33]. The use of this system was then demonstrated for microcoulometric titrations of analytes in the drop.

In this paper we demonstrate another application of this inexpensive versatile platform using the moving drop for (NH_3) gas collection, quantitating the collected gas conductometrically by momentarily stopping the drop at a measurement probe and then transmitting all to waste by sending a merging wash drop. Ammonia gas was liberated from a NH_4^+ -containing solution by alkalinization and purging and directed to the drop. Results from real samples are compared with spectrophotometric determination by the indophenol blue method, which often requires sample pretreatment [34].

2. Experimental

2.1. Reagents and solution

All reagents were of analytical reagent grade. Sulfuric acid $(0.1\ M)$ was used as the gas absorbing liquid drop; this was prepared by

dilution from 98% H_2SO_4 . The NH_4^+ stock standard solution (10 mM) was freshly prepared by dissolving 0.1593 g of NH_4Cl (www.merck-millipore.com) in 0.1 M H_2SO_4 and adjusting the volume to 100.00 mL with 0.1 M H_2SO_4 . Diluted standards were prepared daily using 0.1 M H_2SO_4 . Because the H_2SO_4 may itself contain traces of NH_4^+ , the exact concentration of NH_4^+ in the standards were determined by the Indophenol Blue method [34], the requisite reagents were prepared as instructed therein. For liberating gaseous NH_3 from NH_4^+ bearing samples, 4 M NaOH was prepared by dissolved 24 g NaOH in 150 mL deionized water.

Water samples for analysis consisted of surface water from the Ping River and local ponds in the Chiang Mai area, Thailand. Sulfuric acid (2 mL 98% acid per 500 mL Sample) was added to the samples before storage at $4\,^{\circ}$ C in the dark in polyethylene bottles [2].

2.2. Experimental setup

The system is schematically depicted in Fig. 1. A polymethylmethacrylate (PMMA) tube (2.0 cm i.d., 2.4 cm o.d., 20.0 cm length), equipped with end-caps, is used as the incline; normal inclination angle was $\sim 23^\circ$ from the horizontal plane. The bottom cap was connected by a drain tube to a waste container. A length of Polytetrafluoroethylene (PTFE) tape (plumber's tape) was placed lengthwise inside the PMMA tube to provide a hydrophobic path. A PEEK tube segment $(0.5 \times 1.6 \times 10.0 \text{ mm} \text{ i.d.} \times \text{o.d.} \times \text{length})$ www.upchurch.com) was affixed through a hole in the PMMA tube as shown and functioned as the drop head. A second drop head was similarly located, \sim 2 cm behind the first one. Disposable syringes were employed for manually dispensing H₂SO₄ and deionized water through the first and second drop heads, respectively. The drop size largely depends on both the i.d. and o.d. of the drop head terminus and the material. For the present case, drop volume was $\sim 25 \,\mu$ L [33]. The liquid drop moves by gravity and is stopped through adhesion at the conductivity probe. In this position the drop is exposed to the gas generated from the sample. After the gas exposure and conductivity measurement step, a drop of DI water is dispensed on the path, merges with the extant drop and together flows down to waste. Relatively little residual liquid adheres to the conductivity probe. Because this becomes part of the measurement and calibration process and there is no residual free NH₃ in this liquid and the measurement is based on the rate of conductivity decrease and not absolute values, the residual adherence causes no perceptible error.

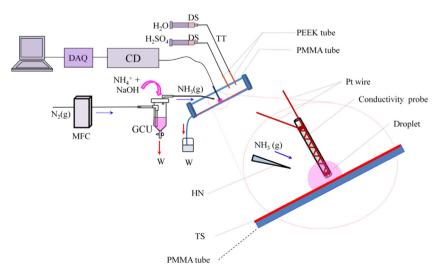


Fig. 1. The experimental setup: the mobile drop on the hydrophobic path with conductivity measurement for NH_4^+/NH_3 determination, MFC=Mass flow controller, GCU=Gas Conversion Unit, HN=hypodermic needle, CD=conductivity detector, DAQ=Data acquisition, TS=Teflon sheet, DS=Disposable syringe, TT=Teflon tube, W=waste.

The conductivity probe was made from a glass tube $(1 \times 1.5 \times 65 \text{ mm} \text{ i.d.} \times \text{o.d.} \times \text{length})$. One platinum wire (0.3 mm dia.) was inserted through the tube and affixed centrally at the mouth of the tube and the other was wrapped around the tube and fixed in place with epoxy adhesive. Only a small length at the end was left uncoated at the terminus for liquid contact. The wire termini were $\sim 1 \text{ mm}$ apart. The cell constant was $\sim 33.0 \text{ cm}^{-1}$. The conductivity cell entered the PMMA tube wall in a perpendicular fashion and affixed thereto with hot-melt adhesive such that the tip was $\sim 1.0 \text{ mm}$ above the PTFE path. The conductance was measured by a commercial instrument (model 712 conductometer, www. metrohm.com). The instrument analog output was acquired at 5 Hz by a 22-bit A/D card (Emant300, www.emant.com). Custom software was written in-house in Visual Basic for data acquisition.

The gas conversion unit (GCU) was fabricated from a 50 mL polypropylene centrifuge tube (www.corning.com) as depicted in Fig. 1. A rubber cap was placed on top to seal the unit and also to function as a septum for reagent injection. The bottom of the chamber was connected with an on/off valve to drain out the solution to waste after the experiment. Nitrogen gas, flow controlled by a digital mass flow controller (0–2.0 L/min, Model MQ0002B/C, www.azbil.com) at 200 mL/min (ambient temperature) was used to bubble through the solution in the GCU: the gas entered through an elbow connector and used a 0.2 mm i.d. tube for bubbling.

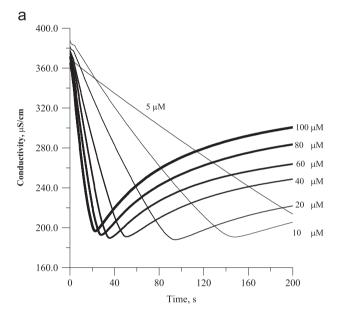
The effluent gas traveled through a polycarbonate tube and terminated in a 21 ga. hypodermic needle that was affixed through the PMMA tube at an angle, the needle tip being ~ 1 cm from the liquid drop and directed at it. The gas flow creates circulating mixing, at least in the outer layer of the drop [27].

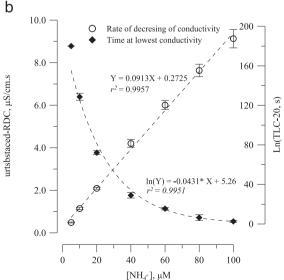
2.3. Experimental procedure

Ammonium bearing standards or samples in 0.1 M H₂SO₄ (5.00 mL) were transferred into the GCU by a transfer pipette. The H₂SO₄ absorber drop was manually dispensed and allowed to stop at the conductivity probe. The 4 M NaOH solution (5 mL) was then manually delivered to the GCU. The solution needs to be strongly alkaline for ammonia to be fully released and this is accomplished by the significant amount of NaOH added. Next the MFC was activated to begin purging of the GCU; this led to both mixing of the solution and transport of the evolved NH3 out of the GCU. As NH₃ reacted with H⁺ in the drop, the conductivity decreased; this was recorded for 200 s. The rate of decrease of the conductivity (RDC) was calculated. The RDC for a blank was similarly measured. The net RDC for various NH₄ samples were plotted against the known concentrations. The indophenol blue method was used for comparative measurements [28]; the absorbance due to the blue product was measured at 630 nm spectrophotometrically (CE1010, www.cecilinstruments.com).

3. Result and discussion

3.1. Fraction of ammonium volatilized


It is difficult to estimate how long it will require a solution of to be a purged of a volatile dissolved gas as this depends on many factors such as bubble size, gas flow rate and the operative Henry's law constant (K_H). For gases with a high K_H , such as NH₃, quantitative purging (>99%) requires a time too long to be practical for analysis. Measurement of residual NH₃/NH₄⁺ in the GCU solution after 200 s of bubbling under the stated conditions suggested that \sim 15% at room temperature (28 °C) on average is removed and this provides satisfactory results under the proposed procedure.


3.2. Analytical signal profile

As high mobility H $^+$ (λ_{H+} 349.8 S cm $^{-2}$ equiv $^{-1}$) is converted to much lower mobility NH $_4^+$ (λ_{NH4+} 73.5 S cm $^{-2}$ equiv $^{-1}$), the conductivity will decreases. The initial signal decrease is linear with time (Fig. 2a) and the slope (RDC) was linearly related to the NH $_4^+$ concentration (Fig. 2b). The relationship between the RDC and the ammonium concentration in the range 5–100 μ M is linear and described by an equation

RDC
$$(\mu S/\text{cm s}) = 0.0913 [\text{NH}_4^+ (\mu M)] + 0.2725, \quad r^2 = 0.9957$$
 (1)

The temporal profile of the conductance also reaches a minimum at the point the free acid is completely neutralized (hereinafter called time for lowest conductivity, TLC). Following the minimum, the excess ammonia leads to the formation of NH_4^+ and OH^- and increases the conductivity again [30]. The TLC, predictably, changes with varying sample $[NH_4^+]$ concentration as shown in Fig. 2. Regardless of the concentration TLC has a finite

Fig. 2. (a) Typical temporal profile of conductivity signals ($50 \,\mu\text{M}\ H_2\text{SO}_4$) which decrease due to 5– $100 \,\mu\text{M}\ N\text{H}_4^+$. 4 M NaOH and N $_2$ flow rate 200 ml/min were employed to convert NH $_4^+$ /NH $_3$. (b) Relationship of subtracted rate of decreasing of conductivity and ln(TLC-20) vs NH $_4^+$ concentration.

minimum value ($\sim\!20\,s)$ as a finite time is required for the gas to be liberated, transported, absorbed, and the droplet sufficiently mixed for the conductance minimum to be registered. Once this finite value is subtracted from the apparent TLC value, the logarithm of this value also bears a relationship with the analyte concentration, at least up to $100\,\mu M$:

$$ln(TLC, s-20) = -0.431 \times [NH_4^+, \mu M] + 5.26, r^2 = 0.9951$$

Using 50 μ M H₂SO₄, the interday operations (4 day study) were observed to give slopes of calibrations (RDC vs [NH₄⁺]) (5–100 μ M NH₄⁺) which differed by no more than 10%.

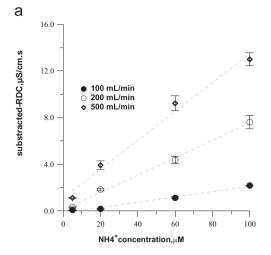
3.2.1. Parametric effects

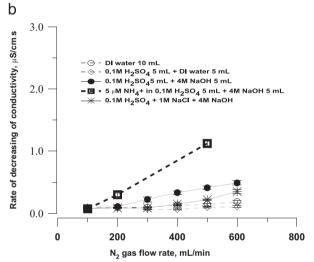
Parameters that affect the performance of this analytical system include drop volume, gas flow rate, added NaOH amount, sample volume, as well as electrode alignment and liquid drop delivery and removal.

3.2.2. Drop volume

The PEEK drop head as listed provided a drop volume of $25\pm1~\mu\text{L}~(n\!=\!10)$ as determined gravimetrically. Deliberately changing the volume of the liquid drop (by 3 drops, $\sim\!75~\mu\text{L}$) required that the incline be changed to ensure drop adherence. Increasing the drop volume makes a little change of slope of calibration graph (RDC vs [NH₄ $^+$]). From the base case of a single drop taken as unity, the slope decreases to 0.9 and 0.8, respectively, for 2 and 3 delivered drops. As the delivery of drops significantly less than 25 μL in volume was difficult to achieve reproducibly, this was not pursued. A single 25 μL drop also centers itself well on the present probe.

3.2.3. Gas flow rate


The N₂ purge gas not only carries the liberated NH₃ to the measurement drop absorber, but also helps the mixing of the GCU content. The gas flow rate affects the exit humidity (very slow flow rates can lead to moisture supersaturation of the exit humidity, potential condensation on exit tube walls and wall losses) and collection efficiency by the drop [35] (at very high gas flow rates, not only the collection efficiency will be poor, the drop shape is distorted and in an extreme case can be dislodged from the electrode. We studied gas flow rates in the 50-600 mL/min range: at 50 mL/min, the observed signals from samples were barely discernible from that of a blank. At the other extreme, at 600 mL/min, the drop became so skewed and unstable, no meaningful measurement was possible. Fig. 3 shows results for 100, 200 and 500 mL/min gas flow rates: although 500 mL/min provided the highest sensitivity, at high flow rates, the GCU solution was nebulized and contamination of the drop by the aerosol made for a high and poorly reproducible blank. In contrast, at 200 mL/min, the RDC of a blank was indistinguishable from that obtained after adding 1 M NaCl, indicating nebulization did not occur.


3.2.4. NaOH concentration

In principle, an NaOH concentration just over 0.2 M is sufficient to neutralize an equal volume of a sample containing 0.1 M H_2SO_4 . But the pH needs to be high enough (\geq 11) where the concentration of NH $_4^+$ is negligible compared to that of NH $_3$. We investigated 0.2–6 M NaOH for this purpose and 4 M NaOH provided the highest calibration slope (RDC). This concentration is high enough to deal with highly acidic samples such as those encountered with Kjeldahl digests [5].

3.2.5. Sample volume

We studied sample volume effects only over a small range (4.80-5.20 mL), over this range, the RDC signal was not perceptibly affected. Note that it is the concentration of NH₃ in the solution in the

Fig. 3. Effect of N_2 gas flow rate to the subtracted rate of decreasing of conductivity of 50 μ M H_2SO_4 at Pt electrode: (a) RDC vs NH_4^+ 5–100 μ M with using N_2 flow rate 100, 200 and 500 mL/min, (b) RDC vs N_2 Flow rate of various sets of solution in GCU (DI water, 0.1 M H_2SO_4+DI water, 0.1 M H_2SO_4+4 M NaOH, 5 μ M NH_4^+ in 0.1 M $H_2SO_4^+$ 4 M NaOH, 0.1 M $H_2SO_4^+$ 1 M NaOH, 0.1 M $H_2SO_4^+$ 1 M NaOH).

GCU rather than its amount that will be the primary determinant of the gas concentration. The tolerance to a modest amount of volume uncertainty suggests that a 5 mL disposable syringe, rather than a volumetric pipette, should be sufficient for sample transfer.

3.3. Extending the operational range to desired analyte concentrations through choice of absorber acid concentration

The absorber acid concentration can influence the linear range of calibration graph. We investigated various H₂SO₄ concentrations (5, 50, 200, 500, and 1000 μ M) for this purpose. It was found that using a lower acid concentration will obviously be better to improve the lower working range of this method. Data from a sulfuric acid concentration of 5 µM was difficult to reproduce. Regarding, possibility on that a lower concentration of H₂SO₄ could be interfered by CO₂ in air as in the studies on breath NH₃ by Toda et al. that 5%v/v of CO₂ can affect measurements with a 50 μM H₂SO₄ absorber [30]. In the present application, as long as the stock absorber is protected from CO₂ absorption, the drop is really exposed primarily to a water and ammonium bearing N₂ atmosphere during measurement. We conservatively judge, for example with 50 µM H₂SO₄, the limit of detection (LOD), was $\sim 5\,\mu M$ NH₄⁺ as the lowest concentration in linear calibration curve of RDC vs [NH₄⁺]. The absorber acid concentration should be

Table 1 Determination of NH_4^+ in water by using proposed method (50 μ M H_2SO_4 with Cu-electrode, 4 M NaOH, and N_2 flow rate 200 mL/min) and indophenols blue method.

Water sample	Ammonium concentration (μM)			
	Proposed method	Indophenols method		
A-Pond	5.9 ± 0.2	7.0 ± 0.0		
B-River (#1)	5.1 ± 0.3	5.0 ± 0.0		
C-River (#2)	6.1 ± 0.2	6.0 ± 0.0		
D-River (#3)	24.6 ± 0.4	24.5 ± 0.1		
E-River (#4)	13.4 ± 0.3	13.9 ± 0.0		
F-River (#5)	13.3 ± 0.5	13.8 ± 0.0		
G-River (#6)	13.1 ± 0.5	13.0 ± 0.0		
H-River (#7)	11.7 ± 0.4	12.1 ± 0.0		

Triplicate results: mean \pm SD.

chosen based on the anticipated analyte concentration; for a high concentration sample such as those in Kjeldahl digests [5], a high acid concentration needs to be chosen.

3.4. Choice of electrode materials

Low cost materials, such as copper wire that can easily be taken from normal electrical cable, were employed as an alternative to platinum [5].

3.5. Interferences

As demonstrated by the lack of any response to the incorporation of 1 M NaCl in the GCU solution, nonvolatile materials do not interfere. Heavy metals that cause problems in the indophenol blue method by forming precipitates are automatically separated by matrix isolation. Only possible interferents in this approach would be low molecular weight volatile amines. It is well known that the volatile amine concentrations in natural waters are far lower compared to that of NH₄⁺ [10]. We nevertheless tested the response of the system to ethylamine and diethylamine; at the 5 μ M level (this would be unacceptable based on odor) these changed the RDC of 50 μ M NH₄⁺ by \sim 5%.

3.6. Natural samples

Results for several natural water samples are reported in Table 1. The results agree well with that of the indolphenol blue method, y = 0.9809 + 0.462, r = 0.9987. We did observe some carryover; for best results repeat runs were made and data from the first run for each sample was discarded. In replicate measurements (n=3), the typical variance was $\sim < 5\%$.

4. Conclusion

This work aims to develop a cost-effective procedure for the determination of ammonia/ammonium ion, by employing a mobile drop system that is simple and requires no conventional pumps and injection valves. The components used are inexpensive. The mobile drop platform serves for facile manipulation of solutions.

Here, a drop defines a measured volume of solutions and moving of the drops offer enables handling of solutions without using conventional tools such as pipette, beakers, etc. It is cost effective and down scaling chemical analysis. This would be useful for some places where budget is limited. The designed GCU can handle a solid sample without extraction. Application for the determination of soil NH₃-N is in progress. Application to other analytes such as carbonate or sulfite will further be developed as an extension of some previous works [36,37].

Acknowledgement

The authors would like to thank Professor Purnendu K. Dasgupta, the University of Texas at Arlington, Arlington, Texas, USA for his help during manuscript preparation. We acknowledge the Thailand Research Fund (TRF), International Foundation for Science (W-5094-1), University and Human Resource Development in Science Project (Science Achievement Scholarship of Thailand, SAST), and the Center of Excellence for Innovation in Analytical Science and Technology (I-ANALY-S-T), Chiang Mai University.

Appendix A. Supporting information

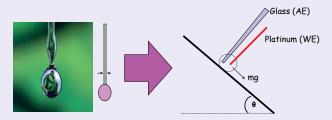
Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.talanta.2014.10.046.

References

- [1] B. Haghighi, S. Farrokhi Kurd, Talanta 64 (2004) 688-694.
- [2] W. Frenzel, Fresenius J. Anal. Chem. 336 (1990) 21-28.
- [3] W. Frenzel, C. Liu, Fresenius J. Anal. Chem. 342 (1992) 276–280.
- [4] H. Shen, T.J. Cardwell, R.W. Cattrall, Anal. Chim. Acta 367 (1998) 193-199.
- [5] J. Junsomboon, J. Jakmunee, Anal. Chim. Acta 627 (2008) 232–238.
- [6] H.L. Braz, D.T. Ito, J.A.F. Silva, C.L. Lago, J.J. Pedrotti, Electroanalysis 23 (2011) 2594–2600.
- [7] R.A. Segundo, R.B.R. Mesquita, M.T.S.O.B. Ferreira, C.F.C.P. Teixeira, A.A. Bordalo, A.O.S.S. Rangel, Anal. Methods 3 (2011) 2049–2055.
- [8] J. Klimundova, R. Forteza, V. Cerda, Int. J. Environ. Anal. Chem. 83 (2002) 233–246.
- [9] M.I.G.S. Almeida, J.M. Estela, M.A. Segundo, V. Cerdà, Talanta 84 (2011) 1244–1252.
- [10] S.M. Oliveira, T.I.M.S. Lopes, I.V. Toth, A.O.S.S. Rangel, Anal. Chim. Acta 600 (2007) 29–34.
- [11] S.M. Oliveira, T.I.M.S. Lopes, I.V. Toth, A.O.S.S. Rangel, J. Environ. Monit. 11 (2009) 228–234.
- [12] R.J. Watson, E.C.V. Butler, L.A. Clementson, K.M. Berry, J. Environ. Monit. 7 (2005) 37–42.
- [13] M.J. Almendral-Parra, A. Alonso-Mateos, M.S.Fuentes Prieto, J. Fluorescence 20 (2010) 55–65.
- [14] M.K. Sengupta, Z.A. Hossain, S.-I. Ohira, P.K. Dasgupta, P. K, Environ. Pollut. 158 (2010) 252–257.
- [15] K. Toda, H. Kuwahara, S. Ohira, Environ. Sci. Technol. 45 (2011) 5622 (-562).
- [16] Y. Tian, P.K. Dasgupta, S.B. Mahon, J. Ma, M. Brenner, J.H. Wang, G.R. Boss, Anal. Chim. Acta 768 (2013) 129–135.
- [17] N. Choengchan, P. Wilairat, P.K. Dasgupta, S. Motomizu, D. Nacapricha, Anal. Chim. Acta 579 (2006) 33–37.
- [18] P. Mornane, J. Haaka, T.J. Cardwell, R.W. Cattrall, P.K. Dasgupta, S.D. Kolev, Talanta 72 (2007) 741–746.
- [19] K. Sereenonchai, P. Saetear, N. Amornthammarong, K. Uraisin, P. Wilairat a,
- S. Motomizu, D. Nacapricha, Anal. Chim. Acta 597 (2007) 157–162. [20] S. Teerasong, S. Chan-Eam, K. Sereenonchai, N. Amornthammarong,
- N. Ratanawimarnwong, D. Nacapricha, Anal. Chim. Acta 668 (2010) 47–53.

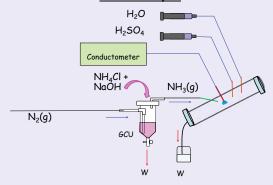
 [21] N. Ratanawimarnwong, T. Pluangklang, T. Chysiri, D. Nacapricha, Anal. Chim. Acta 796 (2013) 61–67.
- [22] H. Liu, P.K. Dasgupta, Trends Anal. Chem. 15 (1996) 468-475.
- [23] P.K. Dasgupta, S. Kar, Anal. Chem. 67 (1995) 3853–3860.
- [24] S. Kar, P.K. Dasgupta, J. Chromatogr. 739 (1996) 379-387.
- [25] S. Kar, P.K. Dasgupta, Am. Lab. 29 (1997) 17C (-17M).
- [26] A. Cardoso, P.K. Dasgupta, Anal. Chem. 67 (1995) 2562–2566.
- [27] S. Liu, P.K. Dasgupta, Anal. Chem. 67 (1995) 2042–2049.
- [28] A. Cardoso, H. Liu, P.K. Dasgupta, Talanta 44 (1997) 1099–1106.
 [29] M.R. Milani, A.A. Cardoso, Microchem. J. 74 (2003) 75–82.
- [30] K. Toda, J. Li, P.K. Dasgupta, Anal. Chem. 78 (2006) 7284–7291.
- [31] T. Kanyanee, W.L. Borst, J. Jakmunee, K. Grudpan, J. Li, P.K. Dasgupta, Anal. Chem. 78 (2006) 2786–2793.
- [32] H. Liu, P.K. Dasgupta, Anal. Chem. 69 (1997) 1211-1216.
- [33] T. Kanyanee, P. Fuekhad, K. Grudpan, Talanta 115 (2013) 258–262.
- [34] Determination of ammonia in the atmosphere (indophenols method), in: J.P. Lodge Jr. (Ed.), Method of Air Sampling and Analysis, third ed.,CRC Press, USA, 1988, p. 379.
- [35] T. Kanyanee, J. Jakmunee, K. Grudpan, P.K. Dasgupta, J. Am. Chem. Soc. 132 (2010) 18045–18047.
- [36] M. Oshima, Y. Wei, M. Yamamoto, H. Tanaka, T. Takayanagi, S. Motomizu, Anal. Sci. 17 (2001) 1285–1290.
- [37] C. Chinvongamorn, K. Pinwattana, N. Praphairaksit, T. Imato, O. Chailapakul, Sensors 8 (2008) 1846–1857.

Figure of Merit of Moving Liquid Drop as Flow Manipulation System


Tinakorn Kanyanee^{1,2*}, and Kate Grudpan^{1,2}

- ¹ Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
- ² Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
- *Email: tinakorn.kanyanee@cmu.ac.th

Principle of Moving Liquid Drop



A falling liquid drop defines itself a constant small volume (µL-level) which depends on some physical properties such as surface tension and density of the liquid, and terminus tube diameter

The liquid drop moves/ stops on hydrophobic incline path by gravitational force and adhesive force. It was developed to be a moving liquid drop as a simple manipulation which is analogy to mono-segmented flow analysis system.

Some application for gas collection and in-situ analysis

Results

Table. 1 Ammonium ion determination in some natural water by using the developed system compared with indophenols blue method.

Water Sample	Ammonium concentration (μ M)			
·	Proposed method	Indophenols blue		
		method		
A-Pond	5.9 ± 0.2	7.0 ± 0.0		
B-River	5.1 ± 0.3	5.0 ± 0.0		
C-River	6.1 ± 0.2	6.0 ± 0.0		
D-River	24.6 ± 0.4	24.5 ± 0.1		
E-River	13.4 ± 0.3	13.9 ± 0.0		
F-River	13.3 ± 0.5	13.8 ± 0.0		
G-River	13.1 ± 0.5	13.0 ± 0.0		
H-River	11.7 ± 0.4	12.1 ± 0.0		

Triplicate result: mean ± SD.

Table 2. The figure of merit of the moving liquid drop method compared with some selected gas diffusion flow analysis method for NH4+ determination

Method	Sample	Calibration range, NH₄⁺	LOD	Sample throughput (hr-1)	Equipment required	Relatively cost	Ref
GD-FIA-potentiometry	Waste water with high content of surfactant	55uM-10 mM	8 μM	30	Peristaltic pump + injection valve	Low	[1]
GD-FIA-conductometry	from Kjedahl digestion	0.58-5.8 mM	58 μM	35	Peristaltic pump + injection valve	Low	[2]
GD-FIA-C4D	Rain water	2-100 μM	0.8 <i>μ</i> Μ	35	Peristaltic pump + injection valve + special detector	Low	[3]
GD-SIA-spectrometry	Coastal water with wide salinity range	5.8-290 uM	1.5 μM	-	Syringe pump + selection valve + computer control and programming	High	[4]
Membraneless-multi syringe spectrometry	Waste water	0.58 -2.9 mM	130 <i>μ</i> M	11	Multiple syringe pump + selection valve+ computer control and programming	High	[5]
Multi Commuted FI- spectrometry	Surface/ tap water	2.9-58 μM	2.5 μM	20	Solenoid Valve pump +computer control and programming	Moderate	[6]
Moving liquid drop- conductometry	Natural water	5-100 μΜ	5 μΜ	10	No need of conventional pump + injection valve + computer control/programming	Extremely low	[8]

References:

- 1. H. Shen, T.J. Cardwell, R.W. Cattrall, Anal. Chim. Acta 367 (1998) 193-199.
- J. Junsomboon, J. Jakmunee, Anal. Chim. Acta 627 (2008) 232-238.
- H. L. Braz, D. T. Ito, J.A. F. Silva, C. L. Lago, J. J. Pedrotti, Electroanal. 23 (2011) 2594-2600.
- 4. R. A. Segundo, R. B. R. Mesquita, M. T. S. O. B. Ferreira, C. F. C. P. Teixeira, A. A. Bordalo, A. O. S. S. Rangel, Anal. Method. 3 (2011) 2049-2055.
- 5. M. I. G.S. Almeida, J. M. Estela, M. A. Segundo, V. Cerdà, Talanta 84 (2011) 1244-1252.
- 6. S. M. Oliveira, T. I.M.S. Lopes, I. V. Toth, A. O. S. S. Rangel, Anal. Chim. Acta 600 (2007) 29-34.
- T.Kanyanee, P. Fuekhad, K. Grudpan, Talanta 15 (2013) 258-262.
- 8. P. Jaikang, K. Grudpan, T. Kanyanee Talanta, 132(2015) 884-888.

Advantages of the proposed system

- > Quantitative analysis without using volumetric measuring tool such as pipette, burettes, and etc..
- Liquid flow manipulation without using pump and valve.

Acknowledgements

- Faculty of Science, Chiang Mai University (CMU) Thailand Research Fund (TRF)
- International Foundation for Science (IFS)

Time-based Micro Titration with Moving Liquid Drop

Tinakorn Kanyanee^{1,2}, Tanapong Yaprasert², Kate Grudpan^{1,2}

¹Center of Excellence for Innovation in Analytical Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand,

²Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.

*Email: tkanyanee@gmail.com

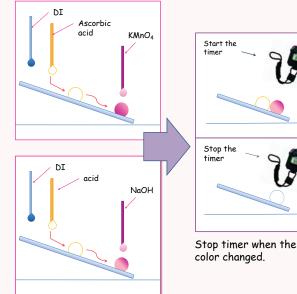
Introduction

The liquid drop that forms at the bottom tip and then fall by gravitation have provides features that can be characterized in its reproducibility , renewability, defined volume, and lack of containment walls. Beside that, there have the small volume (~10-50 μ L) and constant. So, that were the interesting for apply in chemistry analysis on the case that have small samples.

Where

V = the final volume of the sample drop

r = the radius of the tube


- σ = the surface tension of the sample liquid
- ρ = the density of the drop liquid g = the gravitational force constant

Principles

- 1. Let the drop of analyte flows down and attach against with drop of reagent.
- 2. Start the timer when drops bump against with each other until the color were changed.

Times α concentration

Experiment

References

- [1] K. Grudpan, S. Lapanantnoppakhun, S. Kradtap Hartwell, K.Watlaiad, W. Wongwilai, W. Siriangkhawut, W. Jangbai, W. Kumutanat, P. Nuntaboon, S. Tontrong, Simple lab-on-chip approach with time-based detection Talanta 2009.
- [2] T.Kanyanee, P. Fuekhad, K.Grudpan, Microcoulometric titration in a liquid drop, Talanta, 78(2006) 2786.
- [3] P. Jaikang, K. Grudpan, T. Kanyanee, Conductometric Determination of Ammonium Ion with a Mobile Drop, Talanta, 132 (2015) 884.

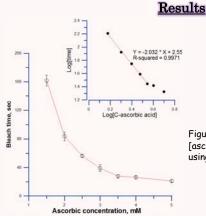


Figure 1. Linear relationship of [ascorbic acid] vs. time with using 1 mM KMnO4

Table 1. Application of the proposed method for ascorbic acid assay determination.

Sample	Proposed method	Titration method
Brand-1 (1000mg)	976	1035
Brand-2 (1000ng)	1003	1095
Brand-3 (500 mg)	440	498
Brand-4 (500 mg)	489	497

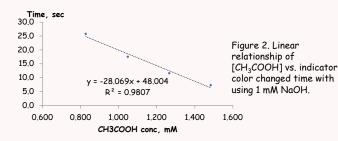


Table.2 Application of the proposed method compared with standard titration method for vinegar assay determination.

Durand	Vinegar concentration (M)			
Brand	Proposed method	Titration method		
QP	8.8E-04	8.89E-04		
Heinz	8.6E-04	9.07E-04		
Sor.Mor.	8.6E-04	8.68E-04		
Bia-C	9.3E-04	9.35E-04		

Conclusion

- 1. Low volume sample require ~ 30 uL
- 2. No of volumetric tool require and low cost setup.
- 3. Possible for portable analytical unit.

Acknowledgements

- 1. Department of Chemistry, Faculty of Science, Chiang Mai University
- 2. Thailand Research Fund (TRF)

Moving Liquid Drop with Conductometric Detection for Determination of Ammonium in Water

Pheeraya Jaikang^{a,b}, Kate Grudpan ^{a,b}, Tinakorn Kanyanee ^{a,b*}
^aDepartment of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
^bCenter of Excellence for Innovation in Analytical Science and Technology,

Chiang Mai University, Chiang Mai, 50200, Thailand.

*Corresponding Author: tkanyanee@gmail.com

Introduction

A liquid drop is an interesting tool for applies to gas analysis systems due to small volume and large surface/volume ratio. Thus, liquid drop is suitable to gas sampling. The constant volume of liquid drop can be controlled by diameter of tip tube. Moreover, a moving liquid drop are easily manipulated via gravimetrical force to move along a slope hydrophobic path by without using the conventional

Experiment H₂SO₄ H₂O electrode NH4* + NaOH NH₃(g) conductometer $N_2(g)$ Mass flow controller waste

Figure. 2 Schematic diagram of using moving liquid drop on the hydrophobic path

Application

Table. 1 Ammonium ion determination in some natural water by using the developed system (50 μ M $\rm H_2SO_4$, Cu-electrode, 4 M NaOH and $\rm N_2$ flow rate 200 ml/min) and indophenols blue method.

Water Sample	Ammonium concentration (μ M)			
	Proposed method	Indophenols blue method		
A-Pond	5.9 ± 0.2	7.0 ± 0.0		
B-River	5.1 ± 0.3	5.0 ± 0.0		
C-River	6.1 ± 0.2	6.0 ± 0.0		
D-River	24.6 ± 0.4	24.5 ± 0.1		
E-River	13.4 ± 0.3	13.9 ± 0.0		
F-River	13.3 ± 0.5	13.8 ± 0.0		
G-River	13.1 ± 0.5	13.0 ± 0.0		
H-River	11.7 ± 0.4	12.1 ± 0.0		

Triplicate result: mean ± SD.

The results of the proposed method agreed well with those obtained of the indophenol blue method.

Summary

- * A liquid drop can be manipulated by without using conventional pump and injection valve
- The developed system provides simple and cost-effective setup This system can be applied for color or turbidity water analysis.

References

- [1] P. Jaikang, K. Grudpan, T. Kanyanee Conductometric Determination of
- Ammonium Ion with a Mobile Drop, Talanta, 132(2015) 884–8. [2] T. Kanyanee, P. Fuekhad, K. Grudpan, Micro coulometric titration in a liquid drop, Talanta, 115(2013) 258-262

principle

A moving liquid drop or mobile drop with conductometric detection was applied for ammonium ion determination. The diluted sulfuric acid drop as micro gas absorbing solution was manipulated along the hydrophobic path to stop/ move out from miniature conductometric electrode. The NH $_{\rm A}^{\star}$ in gas conversion unit (GCU) was converted to NH $_{\rm 3}$ by NaOH and purged to the H $_{\rm 2}$ SO $_{\rm 4}$ drop. The H * in H $_{\rm 2}$ SO $_{\rm 4}$ drop was converted to NH $_{\rm 4}^{\star}$ and as a result, made conductivity decrease.

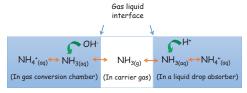


Figure. 1 Diagram for N-compound conversion

Result 400 360 Blank 320 5 μΜ 100 μM Conductivity, 80 μ**M** 280 60 μM 40 μM 240 20 μ**M** 10 μΜ 200 160 0 40 80 120 160 200 Time s 10.0 Y = 0.0913x + 0.2725

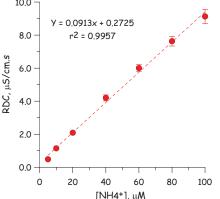
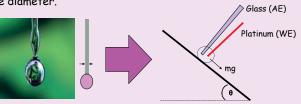


Figure. 3 a)Typical conductivity signal of 50 μ M H_2SO_4 drop which decrease due to 5-100 μM NH $_4^+$ and b) the linear relationship of RDC vs[NH4+] (5-100 μM); N $_2$ flow rate 200 mL/min, 4 M NaOH at Pt electrode.

A calibration curve in range of 5-100 μM NH $_{4}{}^{+}$ was obtained with detection limit of 5 μ M NH₄+ and a relative standard deviation of < 5%.

Down-scaling Chemical Analysis via Moving Liquid Drop Coupled with Electrochemical Sensor


50° S

Tinakorn Kanyanee^{1,2*}, Chonnatee Tinala^{1,2}, Pheeraya Jaikang^{1,2} Kate Grudpan^{1,2}

- ¹ Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
- ² Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
- *Email: tinakorn.kanyanee@cmu.ac.th

Center of Excellence
Chiang Mai University

A falling liquid drop defines itself a constant small volume (µL-level) which depends on some physical properties such as surface tension and density of the liquid, and terminus tube diameter.

The liquid drop moves/ stops on hydrophobic incline path by gravitational force and adhesive force. It was developed to be a moving liquid drop as a simple liquid manipulation which is analogy to mono-segmented flow analysis system.

Micro coulometric titration in a drop with potentiometric end-point detection 5O3-Micro coulomete 20.10 μΑ DAQ N₂(g) uRE uGE Fig 1. The setup of micro coulometric titration in a drop with Droplet potentiometric end-point detection uAE= micro auxiliary electrode uGE= micro generating electrode uRE= micro reference electrode uIE= micro indicator electrode 250.0 200,0 150.0 Fig 2. Typical micro coulometric titration curve 100.0 employing platinum wire as potentiometric 50.0 detection: sulfite in 100 mM NaOH, 380 $mL/min of N_2$ flow rate, applied current = 20.1

Table 1. Comparison of micro coulometry employing potentiometric end-point detection vs iodometric titration (3 replicates) in standard sulfite solution.

uA for iodine generation.

prep conc	Iodometry, mM	Micro coulometry, mM
mΜ	average ±SD	average ±SD
0.10	0.093 ± 0.006	0.10 ± 0.01
0.20	0.159 ± 0.011	0.16 ± 0.00
0.40	0.350 ± 0.003	0.35 ± 0.02
0.60	0.498 ± 0.007	0.46 ± 0.02
0.80	0.643 ± 0.017	0.63 ± 0.01
1.00	0.811 + 0.009	0.75 + 0.02

The Output:

[1] P.Jaikang, K.Grudpan, T. Kanyanee, Conductometric Determination of Ammonium Ion with a Mobile Drop, Talanta, 132(2015) 884.

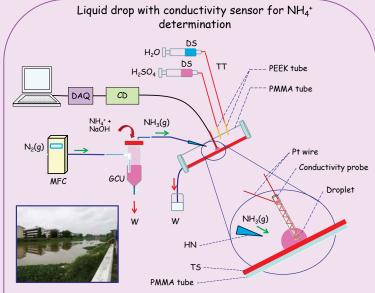


Fig. 3 The experimental setup: the mobile drop on the hydrophobic path with conductivity measurement for $\rm NH_4^+/NH_3$ determination, MFC= Mass flow controller, GCU= Gas Conversion Unit, HN= hypodermic needle, CD= conductivity detector, DAQ= Data acquisition, TS= Teflon sheet, DS= Disposable syringe, TT= Teflon tube, W= waste.

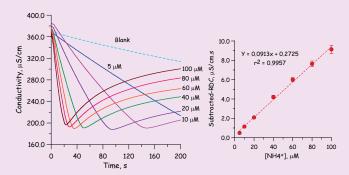


Fig. 4 Typical temporal profile of conductivity signals decreased due to 5-100 μM NH₄+. 50 uM H₂SO₄, 4 M NaOH and N₂ flow rate 200 mL/min were employed to convert NH₄+ to NH₃.

Table. 2 Ammonium ion determination in some natural water by using the developed system (50 μ M H_2SO_4 , Cu-electrode, 4 M NaOH and $\,N_2$ flow rate 200 ml/min) compared with indophenol blue method.

Water Sample	Ammonium concentration (µM)			
	Proposed method	Indophenols blue		
		method		
A-Pond	5.9 ± 0.2	7.0 ± 0.0		
B-River	5.1 ± 0.3	5.0 ± 0.0		
C-River	6.1 ± 0.2	6.0 ± 0.0		
D-River	24.6 ± 0.4	24.5 ± 0.1		
E-River	13.4 ± 0.3	13.9 ± 0.0		
F-River	13.3 ± 0.5	13.8 ± 0.0		
G-River	13.1 ± 0.5	13.0 ± 0.0		
H-River	11.7 ± 0.4	12.1 ± 0.0		

Triplicate result: mean ± SD

The results from proposed method agree well with those obtained from the indophenol blue method.

<u>Acknowledgements</u>

- Faculty of Science, Chiang Mai University (CMU)
- 2. Thailand Research Fund (TRF)
- 3. International Foundation for Science (IFS)

