

Abstract

Toughness of epoxy resins was significantly enhanced with two types of reinforcing agents, silica nanoparticles and epoxidized natural rubber. Diglycidyl ether of bisphenol A (DGEBA) cured cycloaliphatic polyamine was used as epoxy system. Silica nanoparticles (SN) with average particle size of 20 nm in diameter and epoxidized natural rubber (ENR) containing 50% mole of epoxide group were used as reinforcing agents. Thermal and mechanical properties of hybrid SN-ENR epoxy nanocomposites such as glass transition temperature (T_g), Young's modulus and fracture toughness were investigated. For a single filler system, the addition of ENR resulted in reduction of T_g and modulus of epoxy resins, whereas the addition of SN resulted in slightly increased values of T_g and significantly improved modulus. However, for the hybrid ENR-SN nanocomposite systems, the enhancement in both T_g and the Young's modulus were observed. Interestingly, the addition of a few weight percent SN to an ENR toughened epoxy can lead to more than doubling of the K_{IC} value. Through visual evidence via SEM, particle cavitation of rubber particles and particle debonding of silica nanoparticles were attributed to be responsible for the toughness improvements for epoxy. A possible explanation is that the presence of SN may increase ductility of the epoxy matrix around the ENR particles and facilitate the particle cavitation, which simply increase the toughness of epoxy resin.

วัตถุประสงค์ของการวิจัยเพื่อการศึกษาการแก้ไขต้านทานการแตกหักและสมบัติเชิงกล/เชิงความร้อนของวัสดุ ผสมอีพ็อกซีเรซินยางธรรมชาติและนาโนซิลิกา ในงานวิจัยนี้ทำการปรับปรุงและศึกษาสมบัติของ อีพ็อกซีเรซินด้วยการเติมวัสดุธรรมชาติสองชนิด ได้แก่ ยางธรรมชาติอีพ็อกซีไซด์ และนาโนซิลิกาที่มีขนาดเส้นผ่าศูนย์กลาง 20 nm จากการทดลองพบว่าการเติมวัสดุผสมร่วมทั้งสองชนิดลงไปในอีพ็อกซี เพื่อให้ได้ไขบริดคอมโพสิตของอีพ็อกซีเรซินยางและนาโนซิลิกินน์ ส่งผลกระทบต่อ T_g เล็กน้อย แต่พบว่า ค่ามอดูลัสของและค่าความต้านทานการแตกหักมีค่าเพิ่มขึ้นอย่างเห็นได้ชัด กลไกการเสริมแรงของวัสดุ ผสมร่วมทั้งสองเกิดจากการกระจายพลังงานแบบ particle cavitation ของวัสดุผสม กล่าวคือเมื่อวัสดุ ได้รับแรงกระทำจากภายนอกแรงดึงกล่าวจะส่งไปยังวัสดุเสริมแรงและจะทำการต้านแรงนั้นโดยเกิดการ นีกขาดภายในและเกิดการกระจายพลังงานออกไป ทำให้อีพ็อกซีรับแรงกระทำจากภายนอกได้มากขึ้น ซึ่ง กลไกดังกล่าวสามารถตรวจสอบได้ด้วยกล้องจุลทรรศน์แบบส่องgranular องค์ความรู้ที่ได้สามารถนำไปใช้ พัฒนาด้วนวัสดุและการออกแบบผลิตภัณฑ์ที่ต้องการความแข็งแรงทนทานในการใช้งานได้

Keywords : epoxy, silica nanoparticles, natural rubber, toughening mechanisms