## **Abstract**

miRNA was speculated to play an important role in regulating various responses in Chlamydomonas reinhardtii. However, not much is known about how miRNA mediates responses to nitrogen starvation. Therefore, this research aims to identify key miRNAs regulating nitrogen starvation response and the mechanisms used for mediating such responses. To do so, differentially expressed miRNAs in response to nitrogen-deprived condition were identified through miRNA sequencing and data analysis before the confirmation of change in the expression of miRNA and the predicted target transcripts using realtime RT-PCR. After sequence analyses, 25 known and 10 novel miRNAs with differential expression during nitrogen starvation were identified. Among the 25 known miRNAs, 18 were significantly induced and 7 are significantly repressed, whereas, among the 10 novel miRNAs, 4 were significantly induced and 6 are significantly repressed. However, despite various optimisations, the primers designed to specifically amplify miRNAs of interest failed to provide specific products. As a result, changes in the abundance of miRNA cannot be confirmed, and further analysis of the abundance of miRNA in polysome from nitrogen-depleted and -repleted conditions cannot be conducted. Therefore, the mechanisms miRNA used for control their target gene expression in response to nitrogen starvation are still left to be determined. Nevertheless, this research has identified various novel miRNAs and confirmed the presence of known miRNA under nitrogen starvation. In addition, this study provides optimised protocol for extracting high quality RNA from oleaginous microalgae for next generation sequencing, which could benefit future study of microalgal for strain improvement.

การควบคุมการตอบสนองต่อสิ่งแวดล้อมที่เปลี่ยนไปในสาหร่ายขนาดเล็กมีได้หลายวิธีรวมไปถึงการควบคุม ผ่าน miRNA อย่างไรก็ตาม ความเข้าใจเกี่ยวกับการใช้ miRNA เพื่อควบคุมการตอบสนองต่อการขาดไนโตรเจน ในสาหร่ายนั้นยังไม่สมบูรณ์ โดยเฉพาะอย่างยิ่งเกี่ยวกับกระบวนการที่เกี่ยวข้องกับการควบคุม เพื่อเป็นการตอบ ปัญหาส่วนนี้ งานวิจัยนี้จึงมุ่งเพื่อศึกษา miRNA ที่มีความสำคัญในการควบคุมการตอบสนองต่อสภาวะขาด ในโตรเจนและกระบวนการที่ใช้ miRNA ในการควบคุมการตอบสนองดังกล่าว โดยทำการแยก miRNA ที่มีการแสดงออกที่เปลี่ยนแปลงไปในสภาวะขาดไนโตรเจนด้วยการตรวจสอบลำดับเบส ก่อนยืนยันการเปลี่ยนแปลง ปริมาณการแสดงออก ทั้งของ miRNA และ transcript เป้าหมายด้วยวิธี realtime RT-PCR จากการตรวจสอบ ลำดับเบส พบทั้งหมด 35 miRNA ที่ระดับการแสดงออกมีการเปลี่ยนแปลงอย่างชัดเจนตอบสนองต่อการขาด ไนโตรเจน miRNA ที่พบ มีทั้งที่เคยมีการรายงานมาก่อนแล้วและเพิ่งพบในงานวิจัยนี้ โดยทั้ง 35 miRNA นี้ มี 13 miRNA ที่มีการลดการแสดงออก ในขณะที่อีก 22 miRNA ที่มีการเพิ่มการแสดงออกในสภาวะขาดไนโตรเจน แล้วสองวัน เทียบกับสภาวะปกติ อย่างไรก็ตาม การยืนยันการเปลี่ยนแปลงการแสดงออกของ miRNA เหล่านี้ ไม่สามารถทำได้เนื่องจาก primer ที่ออกแบบมาสำหรับขั้นตอนนี้ไม่สามารถเพิ่มจำนวนชิ้นส่วน miRNA ได้อย่าง จำเพาะ จึงไม่สามารถศึกษาปริมาณ miRNA ในส่วนของ polysome เพื่อตรวจสอบกระบวนการที่สาหร่ายใช้ miRNA ในการควบคุมการตอบสนองต่อสภาวะขาดในโตรเจนได้ กระนั้นก็ตาม งานวิจัยนี้ได้ค้นพบ miRNA ใหม่และยืนยัน miRNA ที่เคยพบมาก่อนแล้ว และยังได้นำเสนอวิธีการสกัด RNA คุณภาพสูงสำหรับการตรวจสอบ ลำดับเบส ซึ่งจะเป็นประโยชน์ต่องานวิจัยเพื่อพัฒนาสายพันธุ์สาหร่ายขนาดเล็กสำหรับผลิตน้ำมันต่อไป