Abstract

Project Code: TRG5780291

Project Title: Study of selectivity ion conduction in Na+ channel by Statistical

integral equation theory

Investigator: Saree Phongphanphanee

E-mail Address: fscisrph@ku.ac.th

Project Period: 15 July 2015- 14 July 2017

Abstract:

Selectively transport of Na and K across cells provides the electrical signal in

cardiac, muscle and nerve cells. To understand the basis of discrimination between Na

and K^{\dagger} of sodium channel, we investigate the ions distributions in the selectivity filter of

voltage gate sodium channel by applying the 3D-RISM theory. The distribution function

of water and ions, Na⁺, K⁺ and Cl⁻, in the channel were calculated. Our results show the

ion binding at S1, S2 and S4. The PMFs from the implicit ion model show the highest

ion selectivity arises at the S2 site. The explicit ion model demonstrated the selectivity

arise because the difference of dehydration water molecule between $Na^{^+}$ and $K^{^+}$.

Keywords: 3-5 words

Sodium channel, ion channel, 3D-RISM, selectivity