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Abstract: Photosynthetic bacterium Rhodopseudomonas faecalis PA2 was recently proposed as
a new carotenoid producer with relatively high biomass production but the mass production in
cheap substrate remains unclear. In this study, Rps. faecalis PA2 was cultivated in domestic
wastewater. The optimum light intensity and agitation speed were 4,000 lux and 150 rpm,
respectively. Mass production in the photo-bioreactor showed that specific growth rate was 1.61
/day with the maximum biomass production of 33.9 g/L. Carotenoid yield, carotenoid production
rate and carotenoid productivity were found to be 7.2 mg/g, 74.3 mg/L/day and 40.9 mg/L/day,
respectively. The nutritional profile of the freeze dried bacterial biomass obtained from domestic
wastewater contained 64.8% protein and 10.6% lipid. The essential amino acid (EAA) accounted
for approximately 72.6% of the whole protein content. The content of unsaturated fatty acid was
higher than saturated fatty acid consisting of polyunsaturated fatty acid (PUFA) and essential fatty
acid including omega-3 and omega-6, particularly, alpha-linolenic acid (18:3, n-3), indicating to
be used as the good feedstuff.

Compared to microalgae and yeast, utilization of photosynthetic bacteria as fairy shrimp’s
diet has not been reported in the literature. In this study, the effects of microalgae, yeast and
photosynthetic bacteria as sole diet on survival, growth performance and water quality in fairy
shrimp Streptocephalus sirindhornae Sanoamuang, Murugan, Weekers and Dumont, 2000 were
first investigated. Survival of the larvae fed with algae Chlorella vulgaris and photosynthetic

bacterium Rhodopseudomonas faecalis were higher than 80% while those fed with yeast



Saccharomyces cerevisiae was 4.4%. After 30 days of cultivation, sub-adult and adult fairy shrimp
fed with Rps. faecalis showed the highest survival (46.7%) and growth rate (0.47 mm/day).
Ammonia, nitrate and nitrite concentrations of the rearing water (measured 3 days interval) treated
with Rps. faecalis were the lowest compared to the other microbes. The highest ammonia
concentration, the lowest dissolved oxygen and excessive turbidity were found in the water
treated with S. cerevisiae but the frequent water replacement could not overcome this incidence
that resulted in the low survival rate (10%). The results indicate that utilization of Rps. faecalis as
fairy shrimp’s diet and nitrogen wastes removal are feasible and the disadvantages of yeast in

fairy shrimp culture are proposed in this study.

Keywords: photosynthetic bacteria, domestic wastewater, fairy shrimp, Rhodopseudomonas

faecalis
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Chapter 1

Executive Summary

This study indicates the mass production of photosynthetic bacterium
Rhodopseudomonas faecalis PA2 in the undiluted domestic wastewater without
nutrient supplementation. The physical parameters including light intensity of 4,000 lux
and agitation speed of 150 rpm were optimal for cultivation. The biomass obtained from
the mass production showed the high carotenoid, protein and lipid contents with
essential amino acids and essential fatty acids which meet the requirements for animal
diets. Based on the results, Rps. faecalis PA2 grown in domestic wastewater is feasible
to be used as a good feedstuff for animal feed with price competitiveness. Therefore,
this strain was used as a diet in the indigenous fairy shrimp Streptocephalus
sirindhornae compared to microalgae and yeast. Survival and growth rate of fairy
shrimp fed with Rps. faecalis were higher than those fed with Chlorella vulgaris and
Saccharomyces cerevisiae. Moreover, ammonia, nitrite and nitrate concentrations of
the rearing water treated with photosynthetic bacterium were the lowest. The results
indicate that utilization of Rps. faecalis as fairy shrimp’s diet and nitrogen wastes
removal are feasible and this strain should be recommended in fairy shrimp culture of

Thailand.



Chapter 2

Main Results

Objectives
1. To study the mass production of photosynthetic bacteria Rhodopseudomonas

faecalis grown in domestic wastewater

2. To provide the biochemical profile of Rps. faecalis grown in domestic
wastewater

3. To investigate the efficiency of Rps. faecalis on growth performance, survival
rate and duration of maturation in fairy shrimp Streptocephalus sirindhornae compared to the

known microbial live food, Chlorella vulgaris and Saccharomyces cerevisiae.



Materials and Methods
1. Photosynthetic bacteria and wastewater analysis

Photosynthetic bacterium Rps. faecalis PA2, isolated from wastewater
treatment pond, was used in this study. The strain was grown in the modified glutamate-
malate (GM) medium for 72 h under anoxygenic condition at ambient temperature (26-
30°C) (Saejung & Apaiwong).

Undiluted domestic wastewater, collected from wastewater treatment pond
located in Khon Kaen University Thailand, was used as the sole substrate in the
experiments. Prior to use, the wastewater was filtered through the filter nylon with a
size of 60 um to separate the large particles and sediment. After filtration, it was
sterilized at 121°C for 30 min. To determine the characteristics of sterile wastewater,
closed reflux method (standard method part 5220 C), Kjedahl method, stannous
chloride method, standard method part 2540 D and drying at 105°C were used to
analyzed the chemical oxygen demand (COD), total Kjedahl nitrogen (TKN), total
phosphate (TP), total suspended solids (TSS) and total solids (TS), respectively.

2. Optimization studies in domestic wastewater

The experiments were carried out in a 500-mL screw-capped production bottle
completely filled with sterile wastewater to generate anoxygenic condition. The pH was
adjusted to 7.0. The parameters of inoculum were as follows: inoculant age of 72 h,
ODgso of 0.5 and inoculant volume of 10% (v/v). To optimize the important physical
parameters, the effect of light intensity (2,000, 3,000, 4,000 and 5,000 lux) and agitation
speed (static condition, 150, 300 and 600 rpm) were investigated. Nitrogen gas was
flushed into the production bottles to keep anoxygenic condition. The experiment was

done in triplicate.

3. Mass production of Rps. faecalis PA2 in domestic wastewater
Batch cultivation was conducted in a 5 L photo-bioreactor leaving a small air
space between culture broth and the lid of bioreactor in order to maintain anoxygenic
condition. The reactor was sterilized at 121 °C for 30 min before use. [lumination was
provided by an external light source. Inoculant age and volume were 72 h and 10%,
respectively. Anoxygenic condition was created by flushing nitrogen gas (99% purity)
into the photo-bioreactor as indicated in Fig. 1. The optimum light intensity and

agitation speed from the previous experiments were used in the batch cultivation.
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Fig. 1 Photo-bioreactor

4. Biochemical analysis

Bacterial cell grown in domestic wastewater was harvested by centrifugation
and washed cell with sterile 0.85% (w/v) saline solution. The cell pellet was freeze dried
using a freeze dryer (Freezone 2.5L; LABCONCO, Kansas City, United States). Protein
and lipid of the freeze dried biomass were analyzed using Kjeldahl method and soxhlet
extraction, respectively (AOAC, 1995). Amino acid composition of the freeze dried
sample was determined by using an in-house method based on AOAC (2000) and
detected by gas chromatography-mass spectrometry (GC-MS). The fatty acid methyl
esters (FAMEs) were quantitatively measured by capillary gas chromatography (GC)
based on (AOAC, 2005).



5. Analytical methods

The dry weight of bacterial biomass was used to determine the growth rate.
Bacterial cell was harvested by centrifugation the culture broth at 6,000 rpm 4°C for 20
min (Himac CR20B2; Hitachi, Tokyo, Japan) and washed twice with 0.85% (w/v)
saline solution. Carotenoid and bacteriochlorophyll were extracted using methanol-
acetone (2:3 v/v) until the cell was colorless as previously described by Hirayama

(1968).

6. Microorganism cultivation used for fairy shrimp culture
Rps. faecalis PA2 was grown in glutamate-malate medium under static
anoxygenic-light condition and incubated at room temperature. The microalgae C.
vulgaris was grown in BG-11 medium under oxygenic-light condition in the shaker at
room temperature. The yeast S. cerevisiae was grown in YM medium under oxygenic
condition in the shaker at room temperature. Due to liquid form and small size, these
microorganisms could be fed to the fairy shrimp directly without mixing with any

particles.

7. Fairy shrimp and cyst hatching
The indigenous fairy shrimp, S. sirindhornae, was used in this study. Reverse
osmosis water pH 6.5-8.0 was used to rear the fairy shrimp. Cyst of the fairy shrimp
were submerged in the glass container containing 1 L of water under static room
condition for 24 h at water temperatures between 24 and 26°C. These are common
temperatures when fairy shrimp occur during rainy season in Thailand. After hatching,

the larvae were transferred to the tested container containing 2 L of water.

8. The effects of different microorganisms as diet on survival and water
quality of the larvae fairy shrimp
Feeding was assigned once a day and started 1 day after hatching. Rps. faecalis,
C. vulgaris and S. cerevisiae were used as the tested microorganisms. Each treatment
with different microorganisms had 15 individuals with 6 replicates. The concentration
of bacteria, algae and yeast was adjusted approximately 2.5 x 10° cell/mL. All the
experiments were conducted under static room conditions at a visible light intensity of
1,140 lux. The larvae were reared for 3 days because the larvae of S. sirindhornae was

commonly reared for 2-3 days in Thailand. Survival rate and water quality including
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dissolved oxygen (DO), ammonia, nitrite and nitrate concentrations were measured at
the end of the experiment. Survival rate was calculated according to equation 1 (Saejung

etal., 2014).

Survival rate = (15— Nyx) x 100 (1)
15

Where 15 is the number of larvae/adult fairy shrimp used in each

experiment and N denotes the number of the dead larvae.

9. The effects of different microorganisms as diet on survival, growth
performance and water quality of the sub-adult and adult fairy shrimp
Cyst of S. sirindhornae were hatched and reared in the glass container
containing 1 L of water as previously described. The selected microorganism obtained
from the larvae experiment was fed to the new hatched fairy shrimp for 5 days. Rps.
faecalis, C. vulgaris and S. cerevisiae were fed to the fairy shrimp started on day 6 after
hatching. Each treatment had 10 individuals (10 individuals/ 3 L of water) with 6
replicates. Feeding was assigned once a day. The concentration of the microbes fed to
the sub-adult and adult stages was 0.5 x 10° cell/mL. The cultivation was conducted
under static room condition at light intensity of 1,140 lux. During the cultivation, fecal
particles were siphoned and reverse osmosis water was partially changed 3 days
interval. The first 3 replicates were used to determine survival rate at the end of
subsequent culture periods 3 days interval. Survival rate was calculated according to
equation 1. The latter 3 replicates were used to investigate the growth rate. Growth
performance was estimated by measuring body length along with their development 3
days interval. Measurement of individual was made from tip of the head to the posterior
margin of telson using a vernier caliper (Dararat et al. 2011). Growth rate was

determined as millimeter body length per day (mm/day) according to equation 2.

Growth rate (mm/day) = Body length (mm) (2)

Cultivation time (day)

Additionally, the duration of maturation, when eggs were first present in the
brood pouch of females and the full-grown antennae were formed on the males, was

observed. The pH, DO, ammonia, nitrite and nitrate concentrations of the rearing water

6



were measured 3 days interval in the latter 3 replicates before changing the rearing

water. The experiments were done for 30 days.

10. Analytical methods of rearing water
DO and pH were measured by DO meter (YSI model 550A, YSI Incorporated,
USA) and pH-meter (PCTestr 35, Eutech Instruments Pte Ltd., Singapore),
respectively. Ammonia was analyzed by Nesslerization method (APHA, AWWA &
WEF 1992). Nitrite and nitrate concentrations were analyzed by spectrophotometric
method (4500B) and ultraviolet spectrophotometric method, respectively (Armstrong,
1963; APHA, AWWA & WEF, 1980).

11. Statistical analysis
Survival rate and growth rate of fairy shrimp and water quality were analyzed
using one-way analysis of variance (ANOVA). The Least Significant Difference (LSD)
was employed to detect significant differences among treatments at the 0.05

significance level. All data analysis were carried out using the SPSS Version 17.0.



Results

1. Feasibility study of biomass and carotenoid production of Rps. faecalis PA2

in domestic wastewater
The characteristics of domestic wastewater is shown in Table 1. The feasibility
study of the selected strain in wastewater was carried out in light intensity at 2,000 lux
and pH 7.0. As shown in Fig. 2, it was feasible to use domestic wastewater as substrate
for biomass and pigment production in Rps. faecalis PA2. The biomass production was
increased quickly during the first 7 days without the lag phase, indicating that this strain
could effectively utilize organic and inorganic compounds in the wastewater for
growth. Carotenoid production was increased considerably at the end of the exponential
to stationary growth phase because the pigments were secondary metabolites that were
directly involved in photosynthesis and anti-oxidation rather than the normal growth of
bacteria. From the observation of this strain grown in domestic wastewater, the final
biomass production, carotenoid production and bacteriochlorophyll production were
found to be 13.3 g/L, 162.2 mg/L and 696.3 mg/L, respectively. Compared to the results
obtained from Saejung and Apaiwong (2015), biomass and carotenoid production of
the strain PA2 grown in chemically synthetic medium were 40 g/L and 413 mg/L,
respectively. To improve the productivity of Rps. faecalis PA2 grown in domestic

wastewater, optimization of the culture condition is needed.

Table 1 The characteristics of domestic wastewater used in this study.

Parameters Value (mg/L)
Chemical oxygen demand 4,500 £ 5.55
Total Kjedahl nitrogen 176 +2.58
Total phosphate 121 £0.79
Total suspended solids 6.5+0.23
Total solids 125 +£6.72
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Fig. 2 Biomass, carotenoid and bacteriochlorophyll production of Rhodopseudomonas

faecalis PA2 cultivated in domestic wastewater.

2. Effect of light intensity on biomass and carotenoid production of Rps.
faecalis PA2 in domestic wastewater

As shown in Fig. 3A, specific growth rate was increased when light intensity
was increased from 2,000 to 4,000 lux. The explanation is that the higher light intensity,
the higher energy obtained via photosynthesis, resulting in the highest biomass
productivity and biomass production (Figs. 3A and 3B). Results showed that light at
4,000 lux was the threshold in this strain, beyond which the biomass concentration was
decreased.

Carotenoid production profile was similar to that of the biomass production.
Carotenoid production was enhanced when light intensity was increased (Fig. 3C).
Generally, carotenoids are secondary metabolites producing in stationary phase. In this
study, carotenoid concentration was increased even in the late exponential phase. As
shown in Fig. 3D, light intensity of 4,000 lux was the most appropriate because it gave
the highest carotenoid productivity. Moreover, light at 4,000 lux was found to exhibit
the highest carotenoid yield which referred to high carotenoid produced per gram cell,

suggesting profitable production.



However, carotenoid production was decreased when the strain was exposed to
light intensity beyond 4,000 lux. Strong light intensity can induce the excessive
excitation in the photosynthetic apparatus. Exposure to excessive light intensity
resulted in the generation of singlet oxygen. The formation of singlet oxygen leads to
the loss of protein subunit (H, M and L) found in bacterial reaction center that leads to
severely damage in photosynthetic organisms. (Li et al., 2014; Tandori et al., 2001).
Therefore, light intensity beyond 4,000 lux was harmful to Rps. faecalis PA2 because
it could induce the formation of dangerous oxygen species in the photochemical
reaction centers.

Bacteriochlorophyll production was used to evaluate photosynthesis rate of
phototrophic bacteria in the presence of light intensity. Likewise, bacteriochlorophyll
production trend was similar to those of biomass and carotenoid production (Fig. 3E).
Bacteriochlorophyll concentration was the highest when the strain was exposed to the
light at 4,000 lux, whereas the production of bacteriochlorophyll was decreased above

this light intensity.
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Fig. 3 Effect of light intensity on specific growth rate and biomass productivity (A),
biomass production (B), carotenoid production (C), carotenoid yield and carotenoid
productivity (D) and bacteriochlorophyll production (E) in Rhodopseudomonas faecalis

PA2 cultivated in domestic wastewater.

3. Effect of agitation speed on biomass and carotenoid production of Rps.
faecalis PA2 in domestic wastewater
Actually, this strain could grow well under static condition with high biomass
concentration. However, the period of exponential phase was very long resulted in the
slow growth and the duration to reach to stationary phase is delayed (Fig. 3B). Although
the incubation time was terminated, bacterial growth was still in the exponential phase.

These have an adverse effect on carotenoid production because carotenoids are
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secondary metabolite and highly produce in the stationary phase. Furthermore, the
delay in growth rate are time and cost consuming which is not satisfying in industrial
production. In addition to the long cultivation time, the flocculation and the occurrence
of bacterial cells attach themselves to side surfaces of the culture bottle to form adherent
bacterial film, known as wall growth, were the problem. A thick layer formation caused
the light transfer limitation to phototrophic bacteria. Therefore, agitation of the culture
broth was studied to minimize the cultivation time and reduce the light transfer
limitation.

As indicated in Fig. 4A, specific growth rate and biomass productivity were the
highest under agitation speed at 150 rpm. Specifically, biomass productivity was
increased under agitation compared with static condition. As shown in the results, the
specific growth rate and biomass productivity obtained from agitation speed at 150 rpm
were higher than those from agitation speed at 300 and 600 rpm. This was due to the
occurrence of shear stress when bacterial cell was exposed to the high agitation speed.
Bacterial growth under static condition showed the long exponential phase up to 9 days,
whereas the growth of bacteria under agitation reached to a stationary phase within 4
days (Fig. 4B). This phenomenon was probably due to the effect of mixing which
provided homogenous culture and increased light transfer. Additionally, agitation
prevents bacterial clumps or biofilm formation on the side of the culture bottle as well
as to avoid bacterial sedimentation on the bottom, improving the nutrient availability.
Therefore, agitation speed at 150 rpm led to minimize the cultivation time and operating
cost of biomass production.

As shown in Fig. 4C, carotenoid production was the highest when the strain was
cultured under agitation speed of 150 rpm. The highest carotenoid content was obtained
within 8 days which reduced the hydraulic retention time for carotenoid production
resulted in the highest carotenoid productivity (Fig. 4D). Carotenoid yield was the
highest under agitation speed of 150 rpm, whereas the lowest carotenoid yield was
found in the static condition. Actually, carotenoid is highly produced in the presence of
light and it is repressed in the dark and low light intensity. Probably, it could be assumed
that the occurrence of bacterial biofilm caused the light transfer limitation on bacterial
cell cultivated in static condition, thus, decreasing carotenoid biosynthesis. On the other
hand, agitation is known to minimize concentration gradients of substrate and provide
homogenous liquid culture that prevent surface attachment and aggregation, thus,

increasing cell surface area for exposure to the light throughout the culture broth. When
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the light transfer increased, carotenoid accumulation was enhanced. Although moderate
agitation facilitated carotenoid production, excessive agitation speed could destroyed
the cells and preventing proper replication. This phenomenon might support our results
obtained from the experiment under agitation speed at 300 and 600 rpm.
Bacteriochlorophyll production under agitation speed of 150 rpm was not
significantly different from that of static condition (Fig. 4E). Bacteriochlorophyll
concentration was low under agitation speed of 300 and 600 rpm. It seems reasonable
to assume that the low production of bacteriochlorophyll caused by shear stress under
high agitation speed, resulting in reduced bacteriochlorophyll concentration.
According to the optimization studies, the optimum conditions, biomass
production, carotenoid production, bacteriochlorophyll production, specific growth
rate, carotenoid yield, carotenoid productivity and biomass productivity are

summarized in Table 2.
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Fig. 4 Effect of agitation speed on specific growth rate and biomass productivity (A),
biomass production (B), carotenoid production (C), carotenoid yield and carotenoid
productivity (D) and bacteriochlorophyll production (E) in Rhodopseudomonas faecalis

PA2 cultivated in domestic wastewater.
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Table 2 The optimum conditions of Rhodopseudomonas faecalis PA2 grown in domestic wastewater obtained from the optimization studies.

Optimum  Specific Biomass Carotenoid Bacteriochlorophyll Carotenoid Carotenoid Biomass
Factors value growth  production production production yield productivity productivity
rate
Light intensity 4,000 lux 1.46 18.8 204.3 685.8 10.9 20.4% 1.9
Agitation speed 150 rpm 1.91 21.1 286.8 2,319.5 13.6 35.7° 5.3¢

4 Calculated from 10 days.
® Calculated from 8 days.
¢, Calculated from 4 days.
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4. Mass production of Rps. faecalis PA2 in domestic wastewater

The optimum conditions obtained in Table 2 were used to culture Rps. faecalis
PA2 in a 5 L photo-bioreactor. As shown in Fig. 5A, the strain grew exponentially
without the lag phase and the number of new cells created was limited after 4 days of
cultivation. The kinetic parameters of the mass production are presented in Table 3. The
specific growth rate was 15.7% lower in the mass production than in the agitation
experiment. It could be assumed that the large cultivation vessel caused the light
transfer limitation. However, the maximum biomass production and biomass
productivity obtained from a photo-bioreactor were increased by 60.7 and 7.5%,
respectively relative to the optimization studies. The cultivation time for the maximum
carotenoid production presented in the optimization experiments was 8 days (Fig. 4C)
while this occurred on day 6 in the mass production (Fig. 5B). Therefore, carotenoid
productivity was 14.6% higher in the mass production than in the optimization studies.
Biomass and carotenoid production rates were found to be 11.7 g/L/day and 74.3
mg/L/day, respectively (Table 3). Bacteriochlorophyll production was increased higher
than that obtained from the optimization studies. The highest bacteriochlorophyll
content of 2,320 mg/L was produced on day 10 in the agitation experiment (Fig. 4E)
while the highest content was found to be 2,332 mg/L on day 8 in the mass production
(Fig. 5C).
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Fig. 5 Mass production of Rhodopseudomonas faecalis PA2 cultivated in domestic
wastewater in a 5 L photo-bioreactor; biomass production (A), carotenoid production

(B) and bacteriochlorophyll production (C).

Table 3 Kinetic parameters obtained from the batch cultivation of Rhodopseudomonas

faecalis PA2 grown in domestic wastewater using a 5 L photo-bioreactor.

Parameters Value Unit
Specific growth rate 1.61 /day
Maximum carotenoid production 245.1 mg/L
Maximum biomass production 33.9 g/L
Carotenoid yield 7.2 mg/g
Carotenoid productivity 40.9% mg/L/day
Biomass productivity 5.7% g/L/day
Carotenoid production rate 74.3 mg/L/day
Biomass production rate 11.7 g/L/day

A Calculated from 6 days.
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Obviously, the carotenoid productivity obtained from the GM medium was not
significantly different from that obtained by cultivating in the domestic wastewater.
Moreover, the biomass concentration presented in this study increased twice. This

indicates domestic wastewater can be used for mass production of Rps. faecalis PA2.

5. Biochemical composition of Rhodopseudomonas faecalis PA2

Since photosynthetic bacterial cells contain protein, heat-labile and hormone-
like growth substances, vitamin E and B complex, thus, they are widely used as
feedstock in poultry and aquatic animals. Besides photosynthetic bacteria, yeast and
algae are also utilized as feed supplement in aquaculture. Therefore, the biochemical
composition of Rps. faecalis PA2 grown in domestic wastewater are compiled in Table
4 and compared with the food species of photosynthetic bacteria, yeast and algae. As
indicated in Table 4, the freeze dried biomass of Rps. faecalis PA2 contained the high

content of crude protein.

Table 4 Protein and lipid contents of Rhodopseudomonas faecalis PA2.

Biochemical composition Content (%)
protein 64.8
lipid 10.6

The freeze dried biomass of Rps. faecalis PA2 was used to evaluate amino acid
composition as presented in Table 5. The essential amino acid accounted for

approximately 72.6% of the whole protein content.
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Table 5 Amino acid composition of Rhodopseudomonas faecalis PA2 biomass grown

in domestic wastewater and dietary amino acid requirement for penaeid shrimp.

Rps. faecalis PA2
Amino acid

(g/100 g dry cell)
Histidine 4.39
Lysine 13.73
Phenylalanine 7.22
Leucine 6.84
Isoleucine 2.56
Tryptophan 1.32
Valine 2.36
Threonine 0.73
Methionine 0.45
Cysteine 0.38
Alanine 2.17
Glycine 1.13
Proline 1.19
Glutamic acid 2.61
Serine 0.47
Tyrosine 5.24
Aspartic acid 1.76

Fatty acid composition of Rps. faecalis PA2 was determined as shown in Table
6. Obviously, the content of unsaturated fatty acid was higher than saturated fatty acid,
indicating the good feedstuff. Additionally, bacterial biomass contained
polyunsaturated fatty acid (PUFA) and essential fatty acid including omega-3 and
omega-6 fatty acids, particularly, alpha-linolenic acid (18:3, n-3) which is necessary for

shrimp growth.
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Table 6 Fatty acid composition of Rhodopseudomonas faecalis PA2 biomass grown

in domestic wastewater.

Content
Fatty Acid
(g/100 g dry cell)
Saturated fatty acid 1.811
Lauric acid (12:0) 0.031
Mpyristic acid (14:0) 0.087
Pentadecanoic acid (15:0) 0.007
Palmitic acid (16:0) 2.225
Heptadecanoic acid (17:0) 0.066
Stearic acid (18:0) 0.395
Unsaturated fatty acid 7.702
Palmitoleic acid (16:1, n-7) 0.331
cis-9-Oleic acid (18:1, n-9) 7.046
alpha-Linolenic acid (18:3, n-3) 0.032
cis-8,11,14-Eicosatrienoic acid (20:3, n-6) 0.292
Trans fatty acid 0.098
Trans-9-Elaidic acid (18:1, n-9t) 0.098

6. Survival and water quality of the larvae
As shown in Fig. 6, survival rate was significantly influenced by the type of
feed. Survival rate of the larvae fed with Rps. faecalis and C. vulgaris was not
significantly different (p > 0.05). The corresponding value were 82.2 and 86.7% when
Rps. faecalis and C. vulgaris were used as the feed, whereas the treatment fed with S.
cerevisiae showed only 4.4% survival (p < 0.05). As shown in the results, the use of S.
cerevisiae as larvae feed was not successful. In order to conduct the subsequent
experiments, C. vulgaris was used to rear the larvae for 5 days before feeding with

different microorganisms in the following studies.
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Fig. 6 Survival rate of the larvae Streptocephalus sirindhornae fed with

Rhodopseudomonas faecalis, Chlorella vulgaris and Saccharomyces cerevisiae.

In all treatments, temperature fell within the range from 27.9 to 32.4 °C. The pH
of the rearing water were between 8.73 and 9.03 which are the weak basic pH. DO
concentration of the yeast treatment had significantly lowest (p < 0.05) while those
treated with Rps. faecalis and C. vulgaris were higher than 7 mg/L (Fig. 7A). The use
of S. cerevisiae as feed showed the highest ammonia concentration of 1.54 + 0.13 mg/L,
followed by Rps. faecalis (0.66 £ 0.19 mg/L) and C. vulgaris (0.26 = 0.03 mg/L) (Fig.
7B). As presented in Figs. 7C and 7D, the respective concentrations of nitrite and nitrate
found in the water treated with Rps. faecalis were lower than the minimum threshold
value at which the substances could be detected, whereas the highest concentrations

were found in the algae treatment.
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could be detected.

7. Survival and growth performance of the sub-adults and adults
Sub-adult and adult fairy shrimp fed with Rps. faecalis had significantly higher
survival rate (46.7%) than the other treatments (Fig. 8). Survival rate had almost two
fold higher than the ones fed with C. vulgaris (26.7%). Survival rate of fairy shrimp fed
with S. cerevisiae showed significant drop within 9 days of cultivation and it was the
lowest (p < 0.05). At the end of experiment, survival rate of fairy shrimp fed with S.

cerevisiae was 10%.
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Fig. 8 Survival rate of sub-adult and adult fairy shrimp Streptocephalus sirindhornae

fed with Rhodopseudomonas faecalis, Chlorella vulgaris and Saccharomyces

cerevisiae.

As shown in Fig. 9, the highest growth rate of fairy shrimp fed with Rps. faecalis
(0.99 +0.16 mm day™') was observed on day 12, whereas those fed with C. vulgaris had
the highest growth rate (0.94 = 0.18 mm day') on day 15. The treatment with S.
cerevisiae showed the lowest growth rate and the growth rate was quite stable during
the experiment. Moreover, the duration of maturation of fairy shrimp fed with Rps.

faecalis and C. vulgaris was less than that fed with S. cerevisiae (Table 7).
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Fig. 9 Growth rate of sub-adult and adult fairy shrimp Streptocephalus sirindhornae
fed with Rhodopseudomonas faecalis, Chlorella vulgaris and Saccharomyces

cerevisiae.

Table 7 The duration of maturation in fairy shrimp fed with different microorganisms.

Microorganisms Duration of maturation in fairy

shrimp (day)

Rhodopseudomonas faecalis 10
Chlorella vulgaris 10
Saccharomyces cerevisiae 12

8. Water quality of the sub-adults and adults
The quality of rearing water was investigated 3 days interval before changing
water except the treatment with S. cerevisiae. Water replacement in the yeast treatment
was made frequently because of turbidity. As shown in Fig. 10A, DO concentration in
the water treated with S. cerevisiae was between 1.4 and 4.4 mg/L, whereas it was
higher than 5 mg/L in all the sampling periods when treated with Rps. faecalis. On the

other hand, the rearing water of fairy shrimp fed with S. cerevisiae had significantly
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higher (p < 0.05) ammonia concentration than those fed with Rps. faecalis and C.
vulgaris (Fig. 10B). The highest concentrations of nitrite and nitrate were found in the
water treated with C. vulgaris throughout the culture period (Figs. 10C and 10D).
Nitrate and nitrite concentrations of the treatment with C. vulgaris were significantly
different (p < 0.05) from those of the other treatments. During the experiment,

temperature ranged from 24.8 to 26.8 °C, the pH were between 5.80 and 7.53.
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* denotes the respective concentration was lower than the minimum threshold value at

which the substance could be detected.
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Discussion
This study indicates the mass production of photosynthetic bacterium Rps.
faecalis PA2 and carotenoid in the undiluted domestic wastewater without nutrient
supplementation. The physical parameters including light intensity of 4,000 lux and
agitation speed of 150 rpm were optimal for cultivation. The biomass obtained from the
mass production showed the high carotenoid, protein and lipid contents with essential
amino acids and essential fatty acids which meet the requirements for aquatic diets.
Based on this study, Rps. faecalis PA2 grown in domestic wastewater is feasible to be

used as a good feedstuff for aquaculture feed.

Survival and growth of the larvae, sub-adults and adults fairy shrimp

While much is known about the use of several algal species as diet in fairy
shrimp. The present study has shown that photosynthetic bacterium Rps. faecalis could
be used as an alternative diet in fairy shrimp cultivation. Survival rate of the larvae and
adult fairy shrimp fed with Rps. faecalis were comparable with that of C. vulgaris which
is considered to be the known diet used in larviculture and aquaculture. Moreover, the
highest growth rate of fairy shrimp fed with Rps. faecalis was observed on day 12,
whereas those fed with C. vulgaris had the highest growth rate on day 15 (Fig. 9),
suggesting that this bacterium could enhance the growth of fairy shrimp. It has been
reported that photosynthetic bacterial cell has a relatively high protein content
consisting of all essential amino acids (Kornochalert et al., 2014). The methionine
contents obtained from photosynthetic bacteria are comparable with that in the Food
Agriculture Organization (FAO) reference (Kim & Lee 2000). Moreover,
polyunsaturated fatty acids (PUFA) including omega-3 such as docosahexaenoic
acid (DHA) and eicosapentaenoic acid (EPA) and omega-6 were found in these bacteria
(Loo et al., 2013). Compared to microalgae and yeast, photosynthetic bacteria contain
ubiquinone-10 (CoQ10), carotenoids, vitamins and they have more digestible cell wall
that resulted in facilitating nutrient and physiological growth factor assimilations (Tian
et al., 2012). Importance of photosynthetic bacteria in aqua-hatcheries not only owes
their nutritional attributes but they also have small size less than 3 um meeting the feed
size requirements ideally well for the larvae production (Saejung & Thammaratana,
2016). These may have been associated with the enhanced growth and survival obtained
from the treatment with Rps. faecalis.

Water quality
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The use of a high density, water re-use system is the alternative pond production
system widely used in aquaculture. One of the major problems of this system is the
removal of nitrogen waste produced from aquatic animals. Therefore, the present study
evaluated the potential of each microbes in ammonia, nitrate and nitrite removal.
Ammonia concentration found in the rearing water of larvae and adult fairy shrimp
treated with Rps. faecalis and C. vulgaris was less than that found in the yeast
experiment. It has been suggested that photosynthetic bacteria and unicellular green
algae are capable of degrading ammonia nitrogen in the aquaculture water (Zhan & Liu
2013). Although the highest nitrate and nitrite concentrations were found in the water
treated with C. vulgaris, survival of larvae was the highest. This could possibly be due
to nitrate is considered to be relatively harmless to aquatic animals (Whitson et al.,
1993). Additionally, larvae were exposed to the toxic nitrite in the short period (3 days),
thus, survival rate was less affected. On the other hand, the high concentration of nitrite
might have an adverse effect to the survival of sub-adult and adult fairy shrimp treated
with C. vulgaris because of the long exposure time (30 days) to nitrite. Although water
replacement was made 3 days interval, it was a partial replacement (only 50%), the
remaining water still contained the amount of nitrite. As shown in Fig. 10D, the high
nitrate concentration in the water treated with C. vulgaris might have been associated
with the high nitrite concentration that resulted in decreasing survival rate of fairy
shrimp compared with the treatment of Rps. faecalis.

This study indicates the use of Rps. faecalis in fairy shrimp culture did not only
enhance survival and growth performance but it also improved rearing water quality
via a reduction in ammonia, nitrate and nitrite. The results were related to many works
which showed that phototrophic denitrifiers are able to decrease nitrate and nitrite
concentrations in aquaculture system because they have the ability to utilize nitrate as
an electron donor (Kim et al., 1999). Consequently, these bacteria are considered to be

a potential component for recirculating aquaculture systems.

The disadvantages of baker’s yeast in fairy shrimp culture

Our results clearly showed that the use of S. cerevisiae was not suitable for the
fairy shrimp S. sirindhornae. Survival and growth performance of larvae and adult
stages were not satisfactory. Maeda-Martinez et al. (1995) have suggested that the use

of baker’s yeast as basic food for rearing fairy shrimp Thamnocephalus platyurus and
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Branchinecta lindahli showed the digestibility problem and nutritional deficiencies.
Yeast fed to aquatic species showed significant reduction in growth, protein efficiency
rate, nitrogen gain and they contain anti-nutritional factors which may hamper the
performances of digestive tract. Mura et al. (1999) has found that fatty acid content of
the fairy shrimp Chirocephalus ruffoi fed with baker’s yeast was low compared with
the other food. These phenomenon may explain the results of survival, growth
performance and the delay of maturation stage of sub-adult and adult fairy shrimp fed
with S. cerevisiae. Although the experiment was repeated, S. cerevisiae could not be
used to raise the larvae. Therefore, C. vulgaris was used to feed the larvae for 5 days
before feeding with each microbe in the subsequent studies. Although the larvae fed
with S. cerevisiae showed the very low survival, the yeast treatment was not excluded
in the sub-adult and adult experiments. This was because baker’s yeast is occasionally
fed to S. sirindhornae in some Thai agriculturists but the publication dealing with its
effect on this fairy shrimp is scarce. Therefore, the results obtained in this study might
be beneficial.

Besides the problem of growth performance, S. cerevisiae had the adverse
effects on the water quality. Excessive turbidity of the rearing water occurred almost
every day during the cultivation and the frequent water replacement could not overcome
this incidence. Concurrent with turbidity of rearing water was the high ammonia
concentration. Ammonia was released into the water by excretion from the fairy
shrimp. This substance is highly toxic to aquatic species compared with nitrate and
nitrite (Randall & Tsui, 2002). However, ammonia could be assimilated as a nitrogen
source by microalgae and phototrophic bacteria as previously discussed but yeast could
not that resulted in ammonia accumulation in the rearing water. These are the reasons
why high ammonia concentration and low survival were found in the treatment with S.
cerevisiae. In addition to the high ammonia concentration, the low level of DO was
found in the water treated with S. cerevisiae. The DO concentration was lower than 5.0
mg/L in all the sampling periods. The level of ammonia is directly dependent on DO
concentration and the low DO concentration can increase the toxic of ammonia. The
significantly lower DO concentration in the treatment with S. cerevisiae could possibly
be due to the required dissolved oxygen of yeast for respiration and growth, whereas
Rps. faecalis grow anaerobically (Saejung & Apaiwong, 2015). Although C. vulgaris

consumes oxygen for growth, it releases oxygen to environment via oxygenic

photosynthesis|(Peers, 2014). Moreover, osmotic stress might have been additionally
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involved in the relatively lower survival rate of sub-adult and adult fairy shrimp fed
with S. cerevisiae upon increased frequency of water changes. In our opinion, a flow-

through system might have been more favorable for the feeding with yeast.
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Suggestions for future research

The current study showed that the application of Rps. faecalis in fairy shrimp
culture is technically feasible. Moreover, the mass production of this bacterium in the
waste materials resulted in introducing the cost effective. The results of survival rate
and growth enhancement of the fairy shrimp S. sirindhornae fed with Rps. faecalis were
comparable to C. vulgaris which is the common diet used in fairy shrimp. Moreover,
water quality of the rearing water treated with this bacterium was improved compared
to S. cerevisiae. Therefore, further study of this bacterium in aquaculture is suggested.
According to the results, the use of S. cerevisiae in fairy shrimp culture should be
avoided. In the presence of yeast, survival and growth of fairy shrimp were not only
decreased but excessive turbidity, high ammonia concentration and low DO content

were also observed.
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Abstract Use of photosynthetic bacteria to produce
carotenoids has increased considerably in recent decades;
however, few studies have been conducted to identify addi-
tional carotenoid producers. In this study, Rhodopseudomonas
faecalis PA2 was shown to be capable of carotenoid
production, and factors influencing this production were
identified. The maximum carotenoid content was observed
at an initial pH of 7 in the presence of 0.8% malic acid,
0.4% yeast extract, and 0.05% Fe** under light at 4,000 lux.
Fe’" significantly enhanced carotenogenesis, resulting in a
production rate of 2.5 mg/g/day and a reduction in time to
maximum production from 12 to 8 days. The carotenoid
content and carotenoid yield under modified conditions
were 413 mg/L and 13 mg/g (mg total carotenoids per
gram of dry cells), respectively, representing an increase of
117% relative to the original condition. The biomass and
carotenoid productivity reached 4 g/I./day and 51.6 mg/L/day,
respectively. To the best of our knowledge, this is the first
study of carotenoid production by Rps. faecalis PA2. The
results indicated that the productivity of this organism
under the aforementioned conditions was comparable to
that of previously described purple photosynthetic bacterial
species.

Keywords: carotenoid, photosynthetic bacteria, Rhodo-
pseudomonas faecalis, anoxygenic condition, carotenogenesis
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1. Introduction

Carotenoids are pigments located in the light-harvesting
complexes of plants and microorganisms that provide
photo-protection and light-absorbing functions [1,2]. There
has been increased demand for carotenoids because of their
potential applications, and their global market expanded by
nearly $1.2 billion in 2010 [3]. Carotenoids can be used as
antioxidants, precursors for vitamin A biosynthesis, anti-
tumor and anti-cancer treatments, and to protect skin from
the harmful effects of sunlight [4-6]. Recent research has
shown that carotenoids are widely applicable in the
pharmaceutical, nutraceutical and cosmetic industries [7].
In aquaculture, carotenoids are included in feed to enhance
pigmentation, especially during salmon and ornamental
fish cultivation, as well as to induce the immune system
[8].

Currently, only a few commercial carotenoids can be
produced via chemical synthesis, and these are prohibited
in some cosmetic and food industries; accordingly, interest
in carotenoids produced by microbes has recently increased
considerably [9-13]. Some carotenoids have been found to
be produced exclusively by photosynthetic bacteria, such
as lycopene produced by Rhodospirillum rubrum [14].
Photosynthetic bacteria can synthesize carotenoids under
anoxygenic conditions, which is cost effective. In addition,
the cells of photosynthetic bacteria often contain several
beneficial metabolites with high levels of total carotenoids,
making them useful as aquatic animal feed [15]. Therefore,
photosynthetic bacteria have the potential for use in caro-
tenoid production in conjunction with biomass production.

Carotenoid production by photosynthetic bacteria is
mainly limited to R. rubrum, Rhodobacter sphaeroides and
Rhodopseudomonas palustris [14,16,17]. However, the
newly isolated phototrophic purple non-sulfur bacterium

A Springer



702

Biotechnology and Bioprocess Engineering 20: 701-707 (2015)

Rhodopseudomonas faecalis may be capable of carotenoid
production [18]. Specifically, photosynthetic pigments of
this species are known to include bacteriochlorophyll and
carotenoids belonging to the spirilloxanthin series, but
quantitative information is very scarce [18]. Despite the
scant information regarding production of photosynthetic
pigments by this species, it has recently been investigated
for hydrogen production [19-21]. Hence, the present study
was conducted to investigate carotenoid production by Rps.
Jaecalis PA2 in the absence of oxygen. The effects of pH,
light intensity, malic acid, yeast extract and metal ions on
carotenogenesis were also evaluated.

2. Materials and Methods

2.1. Microorganism and media

Several photosynthetic bacteria were isolated from a
wastewater treatment pond, and the highest growth and
carotenoid-producing strain identified in preliminary studies,
PA2, was used in this study. The 16S rDNA base sequence
of PA2 was identical to that of Rhodopseudomonas faecalis
strain gc" with GenBank accession number AF123085
[18]. Glutamate-malate medium (GMM) was used for the
pre-culture.

2.2. Optimization of the culture conditions for carotenoid
production

Preliminary studies showed that GMM was suitable for the
growth and carotenoid production of the strain when
cultured at ambient temperature; thus, GMM was used as
the basic medium. The experiment was carried out in 500-
mL screw-capped production bottles filled completely with
GMM to generate anoxygenic conditions. The parameters
for the seed culture were as follows: inoculant age of 48 h,
ODgg of 0.5, inoculant volume of 10% (v/v). The culture
was incubated under static light conditions at ambient
temperature (approximately 30°C) for 12 days. At each
24-h interval, samples were collected for total carotenoid
analysis and to determine the growth based on the dry cell
weight.

To explore the effects of initial pH on carotenoid
production, culture medium adjusted to pH 6.0 ~ 9.0 was
used for cultivation at a light intensity of 2,000 lux. To
determine the optimum light intensity, the strain was
cultivated at 1,000 ~ 4,000 lux (Lux Meter HI 97500;
Hanna Instruments, Inc., Woonsocket, RI, USA). The effects
of malic acid were investigated by adding 0.2 ~ 3.2%
(W/v) to the basic medium prior to inoculation. Medium
without malic acid was used as a control. The effects of
initial yeast extract concentrations of 0.4 ~ 2.0% (w/v)
were also investigated based on comparison to basic medium
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without yeast extract as a control. To determine the effects
of metal ions (Zn**, Cu**, Fe** and Fe*"), 0.05% (w/v) of
each metal was added to the medium. The optimum factor
from each experiment was used in each subsequent
experiment until all factors were optimized.

2.3. Analytical methods

Growth of the strain was determined based on the dry cell
weight [22]. Carotenoid extraction was conducted by
centrifuging the culture broth at 6,000 rpm and 4°C for
20 min (Himac CR20B2; Hitachi, Tokyo, Japan). The
pellets were then washed twice with 0.9% NaCl and
extracted using methanol-acetone (2:3 v/v) solvent. Cell
extraction was repeated until the sample was colorless,
after which the absorbance of the extract at 480 and 770 nm
was measured using a Genesys 20 spectrophotometer
(Thermo Scientific, Waltham, MA, USA). Total carotenoid
content was calculated by Equation (1) [23], while bacterial
biomass and carotenoid content were calculated statistically.
All data were expressed as the means + standard deviation
(SD).

Total carotenoid content = (Aggp — 0.1 Ay79) X 0.385 (1)

where Aug9 and A;7o were the absorbance of the extract at
480 and 770 nm, respectively.

The results are presented as the dry biomass at any time
and at the end of growth (g/L), total carotenoid content at
any time and at the end of growth (mg/L total carotenoids
of culture broth), specific growth rate (/day), carotenoid
production rate (mg/g/day), carotenoid yield determined as
the amount of carotenoids produced per unit of dry weight
of cells (mg total carotenoids per gram of dry cells),
biomass productivity (g/L/day) and carotenoid productivity

(mg/L/day).

3. Results and Discussion

Fig. 1 shows the time-course of growth and carotenoid
production of Rps. faecalis PA2 under baseline conditions
(GMM, pH 6.8, light intensity = 2,000 lux). The highest
carotenoid content of 190 mg/L. was produced during the
stationary phase of growth because carotenoids are secondary
metabolites [24,25]. Additionally, the carotenoid content
was significantly higher at 180 h, and the results suggested
that this increase would continue with additional incubation
time. Therefore, the strain was cultivated for longer than
180 h in subsequent experiments.

3.1. Effect of initial pH on growth and carotenoid
production
As shown in Fig. 2A, the initial pH significantly influenced
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the growth and total carotenoid production of Rps. faecalis
PA2. Specific growth and carotenoid production rates
increased when the pH increased to 7, while they decreased
at higher pH. As shown in Fig. 2B, the highest carotenoid
content of 236 mg/L was observed at pH 6 and 7, while the
highest biomass and carotenoid production rates were
observed at pH 7. In contrast, the lowest specific growth
and carotenoid production rates were observed at pH 9.
Strong acidic and alkaline pH causes the denaturation of
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Fig. 3. Effect of light intensity on growth and carotenoid production
of Rps. faecalis PA2. (A) Specific growth and carotenoid production
rates; (B) bacterial biomass, carotenoid content, and carotenoid
yield. Error bars represent standard deviations of the means.

enzymes, distortion of cell structure and suppression of
carotenoid synthesis, resulting in slow growth and low
carotenoid content [26].

3.2. Effect of light intensity on growth and carotenoid
production

As shown in Figs. 3A and 3B, exposure to a light intensity
of 4,000 lux resulted in the highest specific growth rate of
0.25/day, while bacterial biomass was not significantly
higher than at 2,000 and 3,000 lux. These findings suggest
that the highest light intensity (4,000 lux) stimulated energy
absorption and accelerated the phototrophic bacterial
growth relative to the lower light intensity. When there is
excess light energy, bacteria cannot use all of the light
energy for cell growth because of photo-inhibition, resulting
in termination of biomass accumulation [27]. In contrast,
higher light intensity was associated with higher carotenoid
biosynthesis. Specifically, light at 4,000 lux produced the
highest carotenoid content and carotenoid production rates
of 278 mg/L and 1.3 mg/g/day, respectively. This is not
surprising since application of high light levels is known to
be one of the best strategies for maximization of carotenoid
accumulation in cells. Specifically, carotenoid accumulation
is associated with phytoene synthase and -carotenoid
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hydroxylase, which are activated in the presence of
increased light intensity [28]. A similar phenomenon has
been reported in microalgae [29]. The exposure of Rps.
Jaecalis PA2 to light at 1,000 lux resulted in the lowest
carotenoid yield, which is in accordance with the results of
a previous study showing that carotenoid biosynthesis was
repressed in the dark and under low light intensity [30].

3.3. Effect of malic acid concentration on growth and
carotenoid production

The concentration of malic acid is another important factor
because it is sequentially produced in the metabolic
pathway and associated with carotenoid formation. As
shown in Fig. 4A, as the concentration of malic acid
increased, specific growth and carotenoid production
increased, with the maximum levels of 44 g/ biomass and
285 mg carotenoid/L, respectively, occurring at 0.8% (W/v),
above which production decreased (Fig. 4B). The results of
the present study showed that the addition of malic acid
(0.2 ~ 0.8%) supported higher biomass and carotenoid
content relative to the control. This was likely because
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Fig. 4. Effect of malic acid concentration on growth and carotenoid
production of Rps. faecalis PA2. (A) Specific growth and carotenoid
production rates; (B) bacterial biomass, carotenoid content, and
carotenoid yield. Error bars represent standard deviations of the
means.
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malic acid is an intermediate of the tricarboxylic acid
(TCA) cycle, which is essential to metabolism and carbon
skeleton formation during carotenoid and lipid biosynthesis
[31]. The TCA cycle is also involved in the production of
free radicals and singlet oxygen, which enhance caroteno-
genesis [32]. Previous findings have also reported that
malic acid was a major component involved in stimulating
carotenoid synthesis in the photosynthetic bacteria, Rb.
sphaeroides and Rubrivivax gelatinosus [22,33]. However,
specific growth and carotenoid production rates decreased
when the malic acid levels reached 1.6 and 3.2%, respec-
tively, indicating that levels above this threshold might
exert a negative effect on the growth of bacteria.

3.4. Effect of yeast extract concentration on growth and
carotenoid production

The maximum specific growth and carotenoid production
rates increased with increasing yeast extract concentration
up to 0.4% (w/v), above which they sharply decreased
(Fig. 5A). As indicated in Fig. 5B, the highest carotenoid
content was observed when 0.4% yeast extract was added
to the medium. Growth and carotenogenesis were signifi-
cantly suppressed when the initial yeast extract concentration
was 2.0%. These findings indicated that carotenoid bio-
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Fig. 5. Effect of yeast extract concentration on growth and
carotenoid production of Rps. faecalis PA2. (A) Specific growth
and carotenoid production rates; (B) bacterial biomass, carotenoid
content, and carotenoid yield. Error bars represent standard
deviations of the means.
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synthesis could be induced by yeast extract supplementa-
tion at low levels [34]. Additionally, bacterial growth and
carotenoid content were observed in medium without yeast
extract. It is believed that the bacteria used not only yeast
extract, but also other compounds in the medium as
vitamin and nitrogen sources to support growth.

3.5. Effect of metal ions on growth and carotenoid
production

Metal ions were found to induce and suppress caroteno-
genesis. Fe** showed the highest positive effect on growth
(0.2/day) and carotenoid production (2.5 mg/g/day) rates,
resulting in carotenoid contents of 413 mg/L (Fig. 6A) and
a yield of 13 mg/g (Fig. 6B). When compared with the
other metal ions, Fe** and Fe?* led to significant increases
in carotenoid biosynthesis. It is well known that ferrous
ions are cofactors for carotenogenic enzymes that stimulate
the carotenoid biosynthetic pathway [35]. Similarly, ferrous
ion is assumed to be involved in uptake systems and
intracellular binding sites, resulting in increased carotenoid
accumulation [36]. It is also possible that the generation of
hydroxyl radical via the Fenton reaction of ferrous ion
(H,0, + Fe** = Fe** + HO™ + HO") induces carotenogenesis
[37]. Many studies have reported that copper ions improved
growth and carotenoid biosynthesis in microorganisms
[38,39]; however, the opposite was observed in the present
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study. The inhibitory effect of copper ion observed in the
present study was likely due to the different concentration
used here relative to previous studies.

3.6. Microbial growth and carotenoid production kinetics
The optimum factor from each experiment was used in
subsequent experiments until all factors were examined.
Figs. 7A and 7B compare the growth and carotenoid
production curves of Rps. faecalis PA2 observed during the
different experiments. The growth of bacteria began after
an initial lag of 18 ~ 20 h, then increased slowly during the
first 2 days. Bacterial biomass increased exponentially with
time for 9 ~ 10 days, then stabilized (Fig. 7A). As indicated
in Fig. 7B, a large amount of carotenoids were produced at
the end of the exponential to stationary growth phase
because the pigments were secondary metabolites. However,
carotenoids are pigments that accumulate in photosynthetic
bacterial cells to provide light absorption and photo-
protection functions; therefore, they are present at elevated
levels during exponential growth as well.

Biomass was highest in the pH experiment, but then
decreased in subsequent experiments (Fig. 7A). Conversely,
the lowest carotenoid was observed in the pH experiment,
while higher values were observed in subsequent experi-
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Fig. 7. Bacterial growth (A) and carotenoid production (B) trends
obtained under optimal conditions for each factor (initial pH of 7;
light intensity of 4,000 lux; 0.8% malic acid; 0.4% yeast extract;
and Fe** supplement).
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Table 1. Bacterial biomass and total carotenoid production from purple photosynthetic bacterial species under various conditions

. ' ' Carotenoid content Biomass Carotenoid produ*ctivity Biomgsg
Photosynthetic bacterial species (mg/L/day) productivity Reference
(mgl)  (mgg) &L (mg/g/day)” (&/L/day)
Rhodopseudomonas faecalis PA2 413 13 32 51.6°/1.6" 4 Present study
Rhodopseudomonas sp. 1.46 NA ND 0.73" ND [40]
Rhodopseudomonas sp. ND 4.08 3.26 1.36" 1.09 [42]
Rps. palustris ND 1.10 2.5 0.27" 0.62 [43]
Marichromatium sp. ND 3.28 3.83 1.64° 1.91 [42]
Rhodobacter sphaeroides 17.25 ND ND 345" ND [16]
Rhobrivivax gelatinosus ND 1.2 5.6 0.24" 1.12 [44]

ND: no data.

ments (Fig. 7B). These findings were likely because the pH
experiment was conducted at 2,000 lux, while the other
experiments were performed at 4,000 lux. These findings
suggested that strong light intensity was not favorable for
the growth of Rps. faecalis PA2, but that it stimulated
synthesis of carotenoids for photochemical protection
under excessive light conditions [40,41].

We also investigated the cultivation time at which the
highest carotenoid content was obtained under the optimum
conditions for each factor. Upon Fe** supplementation, the
highest carotenoid content was observed within 8 days,
while the highest levels were observed at the end of the
cultivation period in the other experiments (day 12). Based
on these results, the addition of Fe** reduced the cultivation
time required for carotenoid production and increased the
carotenoid production rate.

Table 1 summarizes the total carotenoid production
obtained from purple photosynthetic bacteria under various
conditions. The cultivation time for the maximum carotenoid
production presented in previous studies was between 3
and 7 days, while this occurred on day 8 in the present
study; thus, the results were calculated in terms of pro-
ductivity (carotenoid produced/cultivation time) to allow
comparison among studies. The total carotenoid productivity
(51.6 mg/L/day and 1.6 mg/g/day) and biomass productivity
(4 g/L/day) of this strain were comparable to those that
have been reported for other purple photosynthetic bacterial
species. Future studies should be conducted to determine
the carotenoid composition of this strain.

4. Conclusion

This study revealed the potential use of the purple photo-
synthetic bacteria Rps. faecalis PA2 for carotenoid production
under anoxygenic conditions. The results showed that an
initial pH of 7, light intensity of 4,000 lux, 0.8% malic
acid, 0.4% yeast extract and 0.05% Fe** were optimal for
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enhancing carotenogenesis in this strain. The addition of
Fe** not only increased carotenoid content, but also reduced
cultivation time, resulting in a carotenoid content of 413
mg/L and a carotenoid yield of 13 mg/g. The results of this
study indicate that it is feasible to use Rps. faecalis PA2 for
practical application.
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ABSTRACT

Utilization of photosynthetic bacteria (PSB) for wastewater treatment and production of biomass for
economical single cell protein production is a feasible option. In this study, Rhodopseudomonas sp.
CSKO1 was used for municipal wastewater treatment and the effect of initial pH, light intensity and
additional carbon source was investigated. Optimum chemical oxygen demand (COD) removal and
biomass production were achieved when the initial pH and light intensity were 7 and 4000 lux,
respectively. The specific growth rate, biomass yield and biomass productivity were found to be
0.4/d, 3.2 g/g COD and 2.1 g/L/d, respectively, which were improved by 100%, 167% and 200%
relative to the original condition. Under the optimal conditions, COD removal reached 85% and
maximum biomass was 6.2 g/L accomplished within three days of cultivation. The biomass had a
relatively high protein content (60.1%) consisting of all essential amino acids. The contents of
histidine, lysine, phenylalanine and leucine were superior to those of the previously described
PSB. Results showed that COD removal was not improved in the presence of additional carbon
sources (glucose, sucrose and malic acid). The addition of malic acid significantly increased the
biomass accumulation by 279% relative to the original condition, whereas COD removal was
declined due to carbon catabolite repression. In this study, PSB biomass recovery and catabolite
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repression are proposed in municipal wastewater treatment by Rhodopseudomonas sp.

Introduction

Interest in biological wastewater treatment has increased
considerably since it possesses the economic advantage
of both capital investment and operating costs. Photo-
synthetic bacteria (PSB) are one group of microorgan-
isms utilized for the wastewater treatment system.[1-5]
Traditional biological wastewater treatment generates
large amounts of residual sludge to degrade organic car-
bonaceous matter to CO,, whereas PSB can assimilate
organic pollutants into cellular constituents. Moreover,
PSB can assimilate CO, photoautotrophically, suggesting
that they are the candidate for greenhouse gas
reduction. However, there has been a small amount of
reports on municipal wastewater treatment by PSB com-
pared to industrial wastewater treatment.[6,7]

To improve waste removal, the manipulation of
chemical and physical factors needed for the growth of
PSB is required. Light is an important physical factor for
the growth of PSB since light is used as an energy
source via photosynthesis. Many work have shown that
the growth of PSB was repressed under dark condition.
[8,9] Additionally, bacterial photosynthesis is regulated
by light intensity. Previous research[10] has shown that

higher light intensity can increase the biomass pro-
duction of PSB. However, it has been reported that
light intensity above the threshold might exert a nega-
tive effect on the biomass accumulation of bacteria.[11]
Furthermore, the supplement of carbon sources in bio-
logical wastewater treatment seems to improve the per-
formance of biological wastewater treatment due to
promoting the growth of degrading microorganisms.
This strategy has been widely used to eliminate inorganic
phosphorus and nitrogen from wastewater. It has been
reported that the addition of external carbon sources
enhanced denitrification and phosphorus removal in
wastewater.[12,13] However, additional carbon source
required for wastewater treatment by PSB is not well
examined. Therefore, the investigation of optimum
light intensity and additional carbon sources seems to
be an interesting aspect and they vary depending
upon the species of PSB.

Microbial protein, known as single cell protein (SCP), is
widely accepted for human consumption and animal
feed since there has been increased demand for
protein supplement because of the shortage of protein
originating from plants and animals. In addition to
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algae and yeast, PSB is utilized for SCP production
because they contain significantly large amounts of caro-
tenoid pigments, biological cofactors, vitamins, ubiqui-
none-10 (CoQ10), protein, amino acids and fatty acids.
[14-16] Compared with algae and yeast, PSB have
more digestible cell wall. Moreover, they can grow
easily on a wide range of waste materials, which is the
important characteristic of microbes used for SCP pro-
duction in order to minimize production cost.

Hence, the objectives of this study are to investigate
municipal wastewater treatment by PSB in association
with biomass production and determine the protein
content and amino acid composition of the biomass pro-
duced. The effects of pH, light intensity and additional
carbon source are also discussed.

Materials and methods
Materials

Rhodopseudomonas sp. CSKO1 isolated from facultative
pond was used in this study.

The strain was cultivated in glutamate-malate
medium under anoxygenic condition at ambient temp-
erature (26-30C) and light intensity at 2000 lux.
Undiluted municipal wastewater was collected from
the facultative pond of the local wastewater treatment
system located in Khon Kaen province, Thailand. The
wastewater was filtered through the nylon filter with a
size of 60 um in order to separate the large particles
such as zooplankton and phytoplankton. Prior to use, it
was sterilized at 121°C for 30 min. To analyze the water
quality, closed reflux method (standard method part
5220°0), Kjedahl method and stannous chloride
method were used to evaluate the chemical oxygen
demand (COD), total kjeldahl nitrogen (TKN) and total
phosphorus (TP), respectively. Total solids (TS) was ana-
lyzed by drying at 103-105C and total suspended
solids (TSS) was analyzed according to standard
method part 2540 D. Dissolved oxygen (DO) and electri-
cal conductivity (EC) were measured using HI9829 Multi-
parameter (Hanna Instruments, Woonsocket, Rhode
Island, USA). [17] The COD, TKN, TP, TS, TSS, DO and EC
were 5000, 176, 127, 346, 15, 1.4 mg/L and 723 uS/mz,
respectively. The initial pH was 6.8.

Experimental setup

The pH (5, 6, 7, 8 and 9), light intensity (1000, 2000, 3000
and 4000 lux) and 1% additional carbon sources (malic
acid, glucose and sucrose) were optimized. Experiments
were carried out in a batch reactor. Prior to the exper-
iment, the reactor was sterilized at 121°C for 30 min.

PSB was inoculated into the wastewater and the par-
ameters of the inoculum were as follows: inoculant age
of 48 h, ODggp of 0.5 and inoculant volume of 10% (v/
v). The culture was illuminated and incubated under
anoxygenic condition at ambient temperature. The treat-
ment time of the batch reactor was 10 days. The strain
cultivated in the wastewater under pH 6.8 and light at
2000 lux was defined as the original condition. Replicate
experiments were conducted to obtain accurate data.

Analytical methods

The culture was centrifuged at 6000 rpm at 4°C for 30
min (Himac CR20B2; HITACHI, Tokyo, Japan). The super-
natant was used to analyze COD by using the closed
reflux method, and the collected bacterial cells were pre-
pared for lyophilization using a freeze-dryer (Freezone
2.5L; LABCONCO, Kansas City, United States).[18]
Biomass yield was determined as the amount of
biomass produced/unit of COD consumed. Biomass pro-
ductivity was defined as the maximum biomass/the cul-
tivation time at which the maximum biomass was
produced. The lyophilized biomass was used to evaluate
the crude protein by the Kjeldahl method following the
official AOAC 991.20 method,[19] and amino acid com-
position was determined by using an in-house method
based on the AOAC Official Method 994.12, 988.15
(2000) and detected by GC-MS (GC Model 6890/MS
Model 5973; Agilent Technologies, CA, United States)
using a Zebron ZB-AAA (10 m x 0.25 mm id, 0.25 um
film thickness) column (Phenomenex).[20] The flow rate
was 8 mL/h. Column temperature was held at 59°C for
0-50 min, then increased to 65 C for 50-90 min. Pump
regenerant was 0.2 M NaOH for 0-5.35 min. Elution
buffers were 0.2 M sodium citrate elution buffer 1 (pH
4.25, 5.35-50 min) and 0.14 M sodium citrate elution
buffer 2 (pH 5.3, 50-90 min) with 2-propanol.

Scanning electron microscopic examination

The fresh culture of Rhodopseudomonas sp. CSKO1 was
centrifuged and washed twice with 0.1 M phosphate
buffer saline (PBS) of pH 7.4. The bacterial suspension
was spread over the surface of a 13-mm diameter 0.2
pum polycarbonate nucleopore membrane filter. The sus-
pension was allowed to air dry, then fixed in 2.5% glutar-
aldehyde in 0.1 M PBS pH 7.4 at 4'C overnight, followed
by washing with 0.1 M PBS pH 7.4 at 4C for 5 min.
Graded ethanol (30%, 50%, 70%, 90% and 100%) series
were used for dehydrating the bacterial cell held on
the filter. The dehydration in 90% and 100% ethanol
was carried out two and three times, respectively. The
specimen was passed through each ethanol
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Figure 1. Growth profile of Rhodopseudomonas sp. CSK01 grown in the undiluted municipal wastewater under pH 6.8 and light at
2000 lux (defined as original condition) (a), light at 2000 lux and various initial pH (b), pH 7 and various light intensity (c) and pH

7, light at 4000 lux and various additional carbon sources (d).

concentration at 30-min intervals. It was allowed to air
dry, then mounted onto aluminum stubs using colloidal
carbon and sputter-coated with a gold layer. The speci-
men was examined under Scanning Electron Microscope
LEO 1450VP (LEO Electron Microscopy Ltd, Cambridge,
United Kingdom).

Results and discussion

The strain grown in wastewater in the original condition
(pH 6.8 and light at 2000 lux) is shown in Figure 1(a), bac-
terial growth increased gradually with time up to seven
days, and then stabilized. COD removal, COD consumed
and biomass yield are given in Table 1(a).

Effect of initial pH on biomass production and
COD removal

In practical wastewater treatment, it is difficult to control
the pH range. Besides, the preliminary study showed that
this strain could grow well in a wide pH range. Thus, this
study did not control the pH range during the treatment
and it would be more economical and desirable to
employ in the real system. The effect of initial pH was

selected to investigate the growth of bacteria in waste-
water. As shown in Figure 1(b), growth of the strain in
neutral and weak basic pH (7-9) was higher than that
in acidic pH (5-6). Padan et al. [21] have reported that

Table 1. Specific growth rate (u), biomass production (X), COD
consumed (S), biomass yield (Yy,), biomass productivity (Qp)
and COD removal obtained from Rhodopseudomonas sp. CSKO1
under original and optimized conditions.

Optimized u X(9/ S(g/ Yys(a/g Qp(g/L/ COD removal
factors (/day) L) L) CoD) day) (%)
(a) Original condition

None 0.2 48 4 1.2 0.7 85
(b) Effect of initial pH

pHS5 0.3 48 16 3.0 0.7 78
pH 6 0.2 57 16 3.7 0.8° 80
pH7 04 6.1 55 1.1 1.2° 94
pH 8 0.3 58 47 1.2 0.8° 90
pH9 0.3 5 47 1.1 0.8° 88
(c) Effect of light intensity

1000 lux 0.1 28 19 14 0.6° 86
2000 lux 0.3 3 1.8 1.7 1d 85
3000 lux 03 4.1 1.6 2.6 1.4¢ 81
4000 lux 04 62 19 3.2 2.14 85
(d) Effect of additional carbon source

Malic acid 0.6 182 14 135 1.8¢ 23
Glucose 0.8 55 33 16 2.8 71
Sucrose 08 62 32 19 3.1° 71

“Calculated from seven days; bealculated from five days; “calculated from six
days; dcalculated from three days; “calculated from 10 days; fcalculated from
two days.



3058 (&) C.SAEJUNG AND T.THAMMARATANA

bacteria have limitation to their acidity tolerance. In the
presence of low external pH, the concentration of H* is
greater outside than inside, resulting in the movement
of H" into the cytoplasm which lowers internal pH. The
low cytoplasmic pH can harm bacteria by disturbing
the plasma membrane or disrupting the activity of
enzymes and membrane transport proteins. Further-
more, previous investigations [22,23] have shown that
changes in the pH of the medium are likely to alter the
ionization of nutrient molecules, thus reducing their
availability to the microorganisms. The highest biomass
production, specific growth rate and biomass pro-
ductivity were achieved at pH 7. A similar study found
that PSB biomass and specific growth rate were the
highest at pH 7.[10]

Compared with the original condition (pH 6.8),
specific growth rate and biomass production were
increased by 100% and 27%, respectively, when the
strain was cultured at pH 7. The treatment time could
be reduced to five days for the maximum biomass pro-
duction. Furthermore, COD removal rate was the
highest when PSB was grown at pH 7 and it was
higher than that of the original condition. It is shown
that the change in pH (from 6.8 to 7) influenced the
adaptation and metabolic activity of PSB.

Effect of light intensity on biomass production
and COD removal

The effect of various light intensities on bacterial growth
is shown in Figure 1(c). Bacterial growth began after an
initial lag of 24 h and reached a stationary phase after
three days of cultivation. At light intensity of 1000 lux,
the specific growth rate was the lowest, resulting in the
lowest biomass production (Table 1(c)). Although the
COD consumed was the highest when light at 1000 lux
was used, the biomass yield was the lowest compared
with that obtained using other light intensity. In addition,
the specific growth rate and biomass production under
light at 1000 lux were less than those from the original
condition which were illuminated at 2000 lux. These find-
ings suggest that PSB used not only the substrate, but
also certain light intensity for growth and metabolism.
This is because light is an important factor for PSB
growth since they convert light into chemical energy
via photosynthesis.[5,24] Research have shown that
PSB growth and COD removal were increased in the
presence of light intensity from 2000 to 4000 lux,
whereas further increases in light intensity resulted in a
substantial decrease in the growth rate and COD
reduction; thus, light is one of the limiting factors for
PSB growth in a certain culture medium.[6,8,25] When
light intensity was limited, bacterial growth would be

low even in the high substrate environment. In contrast,
light intensity at 4000 lux showed the highest growth
rate and biomass production, resulting in the highest
biomass yield and productivity. The increase in light
intensity resulted in reducing the treatment time com-
pared with the original condition, since high light inten-
sity can provide more energy via photosynthesis, thus
stimulating bacterial growth.[6] Based on the light at
4000 lux, the corresponding specific growth rate,
biomass production, biomass yield and biomass pro-
ductivity were increased by 100%, 29%, 167% and
200%, respectively, compared with the original con-
dition. COD was decreased approximately 4250 mg/L
and the treatment time was reduced from seven to
three days. The short treatment time can minimize the
operation cost and energy consumption in wastewater
treatment.

Effect of additional carbon source on biomass
production and COD removal

Glucose and sucrose are known to be the basic com-
pounds which serve as carbon and energy sources for
bacteria. Likewise, malic acid is a major carbon source
for PSB. Therefore, these compounds were used in this
study.

The addition of carbon sources significantly enhanced
specific growth rate, biomass production, biomass yield
and biomass productivity compared with the original
condition (Table 1(d)). In the presence of glucose and
sucrose, the growth rates reached the stationary phase
within two days which reduced the treatment time sig-
nificantly (Figure 1(d)). This is not surprising since
sucrose is easily broken down to fructose and glucose
in the metabolic pathway and the production of adeno-
sine triphosphate (ATP) is generated by the catabolism of
glucose via the glycolysis process.[26,27] Likewise, fruc-
tose can be converted to fructose-6-phosphate or glycer-
aldehyde-3-phosphate in the glycolysis to yield ATP.
Moreover, the provision of building blocks for synthetic
reactions is also associated with glucose dissimilation.
[28] Therefore, bacteria could grow well when glucose
and sucrose were supplemented. The addition of malic
acid was found to significantly increase biomass accumu-
lation by 279% relative to the original condition. This was
because malic acid is a part of intermediates of the tricar-
boxylic acid cycle, which is the pathway to synthesize
carbon skeleton and ATP. When malic acid is used as a
carbon source, the enzymes involved in tricarboxylic
acid cycle will take place to establish the cellular pools
of reducing power for anabolic reactions and will
involve in keeping the high ATP levels that makes
malic acid a growth enhancer.[29,30] A recent study



Table 2. Crude protein content of Rhodopseudomonas sp. CSK01
biomass and other PSB.

Strains Crude protein content (%) Reference
Rhodopseudomonas sp. CSKO1 60.1 This study
R. sphaeroides P47 66.6 [37]
R. gelatinosus 50 [38]
Rhodopseudomonas gelatinosa 62 [39]
Rhodopseudomonas gelatinosa 65 [40]

[10] has shown that the biomass production of photo-
synthetic bacterium, Rhodopseudomonas faecalis, was
significantly increased when malic acid was sup-
plemented in the medium. Biomass production in the
wastewater supplemented with malic acid was greatly
increased, but the specific growth rate was the lowest,
suggesting that the addition of malic acid was found
to exhibit long-term growth rate compared with the
sugars. The research dealing with the use of glucose
and malic acid as co-metabolism substrates for the
degradation of o-chlorophenol by PSB Rhodopseudomo-
nas sp. has shown that the growth rate of PSB in the pres-
ence of malic acid was lower than that in the presence of
glucose, and the degradation period was extended when
exposed to malic acid.[31] A similar study [32] has found
that the use of glucose as co-substrate could reduce the
lag phase of bacteria for waste removal. Additionally,
purple PSB are able to decompose glucose in various
growth conditions, whereas the utilization of malic acid
is limited in some conditions.[33]

Interestingly, COD removal was significantly
decreased in the presence of malic acid, whereas
biomass accumulation was enhanced. To verify the
results, this experiment was repeated and the results
were similar. A plausible explanation for this phenom-
enon is that malic acid caused catabolite repression
(CCR) because malic acid is considered as a preferred

ENVIRONMENTAL TECHNOLOGY e 3059

substrate for PSB. When PSB was cultured in the waste-
water supplemented with malic acid which was prefer-
entially utilized, the capability of PSB to consume the
organic substances in wastewater was inhibited, result-
ing in the decline in COD assimilation. This hypothesis
can be supported by [34]. CCR allows bacteria to assim-
ilate a preferred carbon source when they are exposed to
more than one carbohydrate. One of them is preferen-
tially utilized, affecting the synthesis of catabolic
enzymes or inhibiting the uptake of other carbon
sources.[34] Recent research [35,36] have shown that
malic acid is considered as the second preferred
carbon source that causes CCR in Bacillus subtilis. There-
fore, the addition of malic acid was found to enhance
biomass accumulation instead of COD removal.

As mentioned above, the addition of glucose, sucrose
and malic acid was not successful for wastewater treat-
ment by this strain. Although the specific growth rate
was increased and the treatment time was reduced
when supplemented with sugars, the biomass pro-
duction was not significantly different from the light
experiments, and COD removal was lower. Moreover,
CCR was shown to be initiated by malic acid, resulting
in a low COD removal rate.

Determination of crude protein and amino acid
composition

The protein content of Rhodopseudomonas sp. CSKO1
grown in municipal wastewater under pH 7.0 and light
at 4000 lux is presented in Table 2. It was comparable
to the crude protein contents of Rhodobacter sphaeroides
P47,[37]1 Rhodocyclus gelatinosus,[38] R. gelatinosa,[39]
and R. gelatinosa[40] grown in medium containing pine-
apple peel waste, tuna condensate, soybean wastes and

Table 3. Amino acid composition of Rhodopseudomonas sp. CSKO1 biomass and other PSB.

Content (g/100 g dry cell)

Amino acid Rhodopseudomonas sp. CSKO1 R. sphaeroides P47% R. gelarinosusb R. gelatinosus AP
Histidine 436 0.96 113 1.01
Lysine 9.70 2.57 3.12 341
Phenylalanine 8.40 2.36 3.10 3.05
Leucine 8.38 3.90 541 5.28
Isoleucine 3.18 1.78 2.73 2.96
Methionine 1.00 1.47 1.89 1.71
Valine 2.80 2.68 3.42 3.75
Threonine 0.65 2.87 1.99 1.93
Cysteine 0.48 NA NA NA
Tryptophan 0.87 NA NA NA
Alanine 2.52 NA NA NA
Glycine 1.24 NA NA NA
Proline 1.38 NA NA NA
Glutamic acid 2.83 NA NA NA
Serine 0.93 NA NA NA
Tyrosine 5.73 NA NA NA
Aspartic acid 2.06 NA NA NA

2Data from [37]; "Data from [39]; NA, not analyzed.
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Figure 2. Scanning electron micrograph of Rhodopseudomonas
sp. CSKO1. Bar: 3 um.

wheat bran, respectively. In addition to high protein
content, the essential amino acid composition was com-
parable to other PSB as summarized in Table 3. In
addition, the contents of histidine, lysine, phenylalanine
and leucine were superior to those of the known SCP,
Chlorella vulgaris and Saccharomyces anomalus, and the
Food and Agriculture Organization guideline.[41,42]
The microbial protein produced by Rhodopseudomonas
sp. CSKO1 contained all the essential amino acids
required for animal feed, suggesting that this bacterium
would be suitable as protein supplement and SCP for
feedstuff.

In aquaculture, the size of the larval food is considered
a problem because the larvae are tiny and they have
small mouths that restrict the size of the food particles
that can be ingested. As presented in Figure 2, the cell
morphology of Rhodopseudomonas sp. CSK01 is vibrioid
shaped, and the dimension of this strain is less than 3 um
which is suitable for utilizing as live food during the larval
stage in aquaculture as well.

Conclusions

This study reveals that protein-rich biomass can be pro-
duced from municipal wastewater treatment. Rhodop-
seudomonas sp. CSKO1 grown in wastewater under pH
7 and light at 4000 lux were optimal for municipal waste-
water treatment and biomass production. In these con-
ditions, COD removal reached 85% and the treatment
time was three days with the maximum biomass of 6.2
g/L. The crude protein content of Rhodopseudomonas
sp. CSKO1 was 60.1%, containing all essential amino
acids.
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