

รายงานวิจัยฉบับสมบูรณ์

โครงการ

การพัฒนาชุดทดสอบภาคสนามโดยอาศัยระบบย่อส่วนและอุปกรณ์ที่ประดิษฐ์
จากกระดาษ สำหรับการวิเคราะห์ปริมาณแมกนีเซียมในน้ำยางธรรมชาติ

โดย ผู้ช่วยศาสตราจารย์ ดร.ปุริม จารุจารัส และคณะ

มิถุนายน 2560

ສັນຍາເລີກທີ TRG5880007

รายงานວິຈัยฉบับສມບູຮັນ

ໂຄຮງການ

ການພັ້ນນາຫຼຸດທດສອບກາດສນາມໂດຍອາຍຸຮັບບັນດາມມີການປະຕິບັດ
ຈາກກະດາວັນ ສໍາຮັບກາຣົວເຕຣະທີ່ປົມມານແມກນີ້ເຊີຍມີນໍາຍາງນໍາຮັມຫາຕີ

ຄະະຜູ້ວິຈัย

- ຝ.ສ.ດ.ຣ. ປຸ່ຣິມ ຈາກຸຈຳຮັສ
- ນາງສາວັນຈີ່ພຣ ມາລາຮອມ
- ນາຍຮັສພລ ມີລາກສມ
- ຝ.ສ.ດ.ຣ. ມະລິວຮຣນ ອມຕນງໄໝຍ

ສັງກັດ

ກາດວິຊາເຄມີ ຄະະວິທຍາສາສົກ ມາວິທຍາລັບອຸປະລາດນານີ
ກາດວິຊາເຄມີ ຄະະວິທຍາສາສົກ ມາວິທຍາລັບອຸປະລາດນານີ
ກາດວິຊາເຄມີ ຄະະວິທຍາສາສົກ ມາວິທຍາລັບອຸປະລາດນານີ
ກາດວິຊາເຄມີ ຄະະວິທຍາສາສົກ ມາວິທຍາລັບອຸປະລາດນານີ

ໜັກວິຈัยທີ່ປົມກົດ

ຮ.ສ.ດ.ຣ. ອທິຕຍາ ຕີຣິກິຄູ່ມູນນທີ

ສັງກັດ

ກາດວິຊາເຄມີ ຄະະວິທຍາສາສົກ ມາວິທຍາລັບມີດິດລ

ສັບສົນໂດຍສຳນັກງານກອງທຸນສັບສົນກາຣົວເຕຣະທີ່ປົມມີການວິຈัยແລະຕັ້ນສັງກັດ

(ຄວາມເຫັນໃນรายงานນີ້ເປັນຂອງຜູ້ວິຈัย ສກວ.ແລະຕັ້ນສັງກັດ ໄນຈະເປັນເຕັ້ນເຫັນດ້ວຍເສມອໄປ)

Abstract

Project Code : TRG5880007

Project Title : Development of field test kits based on small scale and paper based device for identification of magnesium content in natural rubber

การพัฒนาชุดทดสอบภาคสนามโดยอาศัยระบบย่อส่วนและอุปกรณ์ที่ประดิษฐ์จากการดามส์ สำหรับการวิเคราะห์ปริมาณแมกนีเซียมในน้ำยางธรรมชาติ

Investigator : Asst.Prof.Dr. Purim Jarujamrus

E-mail Address : purim.j@ubu.ac.th

Project Period : 2 Years

A simple, low-cost and portable field test kit based on colorimetry with detection by naked eye was developed for determination of magnesium content in natural rubber latex (NRL) and concentrated rubber latex (CRL). The miniaturized complexometric titration between Mg^{2+} and EDTA without any masking agent was a key reaction in this development which was designed according to the concept of green chemistry by reduction of waste generation and chemical and time consumption. The developed system enabled quantification of magnesium content in NRL at low concentration with the detection limit being 50 mg.L^{-1} (or could be adjusted less than that), small sample volume uptake (0.18 g, sampling by a small spoon) and use of $<1.5 \text{ mL}$ reagent volume which was >70 times less than that applied in the conventional method. Moreover, with the presence of potential interference ions, greater selectivity towards magnesium was observed. Furthermore, the reagents used in our developed test kit were stable for >6 months at the room temperature. The results obtained on real samples were in agreement with those obtained from the conventional complexometric titration (ISO 17403: 2014(E)) method. The proposed technique provides a low-cost, rapid, simple, selective and on-site analysis of magnesium content in NRL and concentrated rubber latex (CRL)

Keywords : Magnesium (Mg^{2+}), field test kit, natural rubber latex (NRL), concentrated rubber latex (CRL) complexometric titration

บทคัดย่อ

ในงานวิจัยนี้ได้พัฒนาชุดทดสอบภาคสนามอาศัยการตรวจวัดทางสีและอ่านผลด้วยตาเปล่าเพื่อใช้ในการวิเคราะห์หาปริมาณแมกนีเซียมในน้ำยางธรรมชาติและน้ำยางขัน การย่อส่วนปฏิกริยาของการไทเทเรตสารประกอบเชิงช้อนระหว่างแมกนีเซียมกับกรดเอทิลีนไดเออมีนเตตตะระอะซีติกโดยไม่ใช้สารกำบังตามแนวทางของเคมีสีเขียว เป็นหัวใจหลักของพัฒนาชุดทดสอบนี้เพื่อลดการใช้สารเคมีทำให้เกิดของเสียน้อยลง มีความง่าย ราคาถูก มีความรวดเร็วในการทดสอบ จากผลการทดลองพบว่าชุดทดสอบภาคสนามที่พัฒนาขึ้นมีขีดจำกัดต่ำสุดในการวิเคราะห์หาปริมาณแมกนีเซียมในน้ำยางธรรมชาติที่เท่ากับ 50 มิลลิกรัมต่อลิตร (สามารถปรับให้ต่ำกว่านี้ได้) โดยในแต่ละครั้งของการทดสอบจะใช้ตัวอย่างน้ำยางเพียง 0.18 กรัม (ใช้ช้อนขนาดเล็กในการตัก) ใช้สารเคมีน้อยกว่า 1.5 มิลลิลิตร (น้อยกว่าวิธีมาตรฐานทึ่ง 70 เท่า) สารเคมีในชุดทดสอบที่พัฒนาขึ้นที่มีอายุการใช้งานมากกว่า 6 เดือนที่อุณหภูมิห้อง นอกเหนือนี้ยังพบว่าไออกอนรบกวนที่เป็นองค์ประกอบของยางไม่มีผลต่อการวิเคราะห์ และเมื่อเปรียบเทียบผลการวิเคราะห์ที่ได้จากชุดทดสอบภาคสนามที่พัฒนาขึ้นกับเทคนิคการไทเทเรตเชิงช้อนที่ปราศจากการใช้เคมีในเดียวตามวิธีมาตรฐานขององค์การมาตรฐานสากลภายใต้เลขมาตรฐานหมายเลขอี 17403:2014 (E) พบว่าให้ผลสอดคล้องกัน ชุดทดสอบภาคสนามที่พัฒนาขึ้นนี้มีประสิทธิภาพที่ดี ใช้ง่าย ราคาถูก รวดเร็ว ไม่ต้องอาศัยผู้เชี่ยวชาญในการวิเคราะห์ ไม่ต้องเตรียมตัวอย่าง สามารถทำการวิเคราะห์ภาคสนามในการวิเคราะห์หาปริมาณแมกนีเซียมในน้ำยางธรรมชาติและน้ำยางขันได้เป็นอย่างดี

(คำหลัก) แมกนีเซียม ชุดทดสอบภาคสนาม น้ำยางธรรมชาติ น้ำยางขัน การไทเทเรตสารประกอบเชิงช้อน

Output จากโครงการวิจัยที่ได้รับทุนจาก สกอ.

- ผลงานตีพิมพ์ในวารสารวิชาการนานาชาติ (ระบุชื่อผู้แต่ง ชื่อเรื่อง ชื่อวารสาร ปี เล่มที่ เลขที่ และหน้า) หรือผลงานตามที่คาดไว้ในสัญญาโครงการ

Malahom, N.; Jarujamrus, P*; Meelapsom, R.; Siripinyanond, A.; Amatatongchai, M.; Chairam, S., Simple test kit based on colorimetry for quantification of magnesium content in natural rubber latex by miniaturized complexometric titration without using masking agent *Polym. Test.* 2017, 59, 160-167. (**Appendix A**)

2. การนำผลงานวิจัยไปใช้ประโยชน์

- เชิงพาณิชย์ (มีการนำไปผลิต/ขาย/ก่อให้เกิดรายได้ หรือมีการนำไปประยุกต์ใช้โดยภาคธุรกิจ/บุคคลทั่วไป)
- เชิงนโยบาย (มีการกำหนดนโยบายอิงงานวิจัย/เกิดมาตรการใหม่/เปลี่ยนแปลงระเบียบข้อบังคับ หรือวิธีทำงาน)
- เชิงสารสนเทศ (มีเครือข่ายความร่วมมือ/สร้างกระแสความสนใจในวงกว้าง)
 - ❖ ร่วมแสดงผลงานใน “การประชุมความร่วมมือการวิจัยพัฒนาเทคโนโลยียาง” ระหว่างวันที่ 13-14 กรกฎาคม 2560 ณ ศูนย์ประชุมอุทยานวิทยาศาสตร์ประเทศไทย จ.ปทุมธานี (**Appendix B**)
- เชิงวิชาการ (มีการพัฒนาการเรียนการสอน/สร้างนักวิจัยใหม่)
 - ❖ สาธิตการใช้ “ชุดทดสอบภาคสนามสำหรับวิเคราะห์ปริมาณแมกนีเซียมในน้ำยางธรรมชาติ” ให้กับนักศึกษาสาขาวิทยาศาสตร์และเทคโนโลยีการยาง ในวิชาปฏิบัติการเทคโนโลยีการยาง ภาคเรียนที่ 2/2559 คณะวิทยาศาสตร์ มหาวิทยาลัยอุบลราชธานี (**Appendix C**)

3. อื่นๆ (เช่น ผลงานตีพิมพ์ในวารสารวิชาการในประเทศ การเสนอผลงานในที่ประชุมวิชาการ หนังสือ การจดสิทธิบัตร)

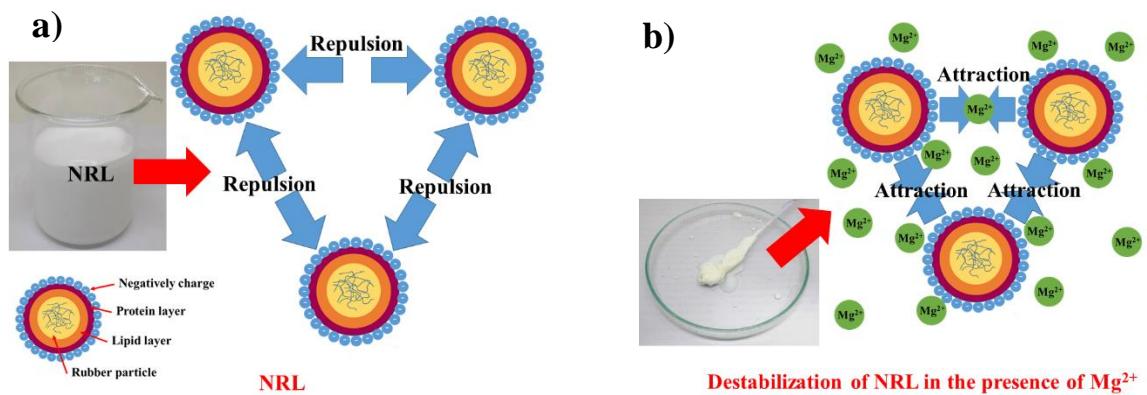
❖ การนำเสนอผลงานในที่ประชุมวิชาการ

(Oral Presentation)

- N. Malahom, R. Meelapsom, A. Siripinyanond, M. Amatatongchai, S. Chairam and P.Jarujamrus* "Field test kit based on colorimetry for quantification of magnesium content in rubber latex" The 13th Asian Conference on Analytical Sciences (ASIANALYSIS XIII), 8-11 December 2016, Empress International Convention Center, Chiang Mai, Thailand (**Appendix D**)

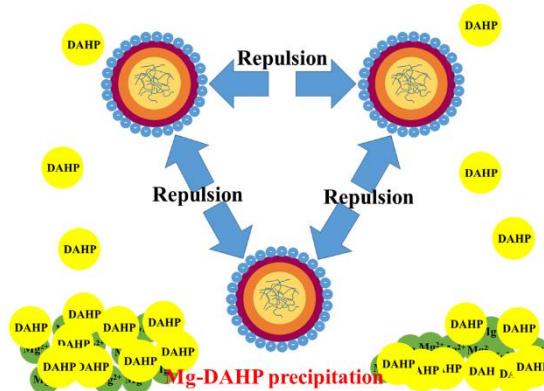
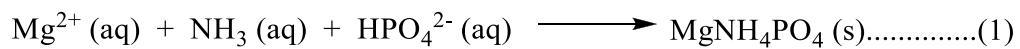
(Poster Presentation)

- S. Puchum, N. Malahom, R. Meelapsom, A. Siripinyanond, M. Amatatongchai, S. Chairam and P. Jarujamrus*, "Simple test kit based on colorimetry for quantification of magnesium content in rubber latex" North Eastern Science and Technology Conference (NESTC), 18 March 2017, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, Thailand (**Appendix E**)

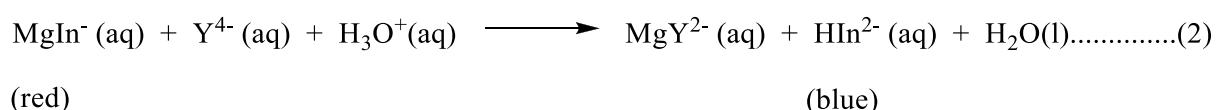

❖ การจดสิทธิบัตร

- ยื่นจดอนุสิทธิบัตรเรื่อง "ชุดทดสอบแมกนีเซียมในน้ำยางพาราภาคสนาม" เลขที่คำขอ 1603002133 เมื่อวันที่ 21 ตุลาคม 2559 (**Appendix F**)

Simple test kit based on colorimetry for quantification of magnesium content in natural rubber latex (NRL) and concentrated rubber latex (CRL) by miniaturized complexometric titration without using masking agent



Introduction:

Para rubber tree (*Hevea brasiliensis* Muell. Arg.) is a very important economic plant in Thailand where over three million tons a year of Natural Rubber Latex (NRL, the products of Para rubber tree) is exported [1,2]. The major component in NRL is cis-1,4-polyisoprene with non-rubber components such as carbohydrates, proteins and lipid based medium for bacteria growing. pH values of normal NRL solution range from 6 to 7 [3,4]. Under this condition, the surface of NRL particles will become negatively charged due to the presence of carboxylate ions of protein (Alpha-globulin with *pI* of 4.8) and the hydrolysis of R-Lecithin phospholipid on the NRL surface [4] (Fig. 1a). A critical step in production of NRL with high quality is identification of NRL components. Magnesium (Mg^{2+}) is one of the most important components suppressing NRL performance and quality, e.g. by direct interaction of Mg^{2+} with the carboxylate ions contained in the NRL. This produces insoluble, un-hydrated and un-ionized magnesium soap and insoluble magnesium hydroxide in the aqueous phase. Both of these phenomena invariably cause destabilization of NRL. Furthermore, Mg^{2+} ions can form primary valence linkages between the interface of adjacent latex particles. This can initiate flocculation and further lead to destabilization of NRL [5] Fig. 1b.


Fig. 1 Carboxylate ions contained in the NRL **a)** the proposed mechanism between Mg^{2+} ions and NRL **b)**

Mg^{2+} concentration is limited to within 40 mg.L^{-1} prior to distribution to manufacturers such as glove and condom companies [6]. Normally, removal of Mg^{2+} content in rubber is performed based on a precipitation reaction, e.g. by addition of excess amount of ammonium phosphate (>5 times of Mg^{2+} concentration) to rubber latex solution. Alternatively, diammonium hydrogen phosphate (DAHP) can be used for precipitation of Mg^{2+} with the related reaction shown in Eq 1 [7-8] and Fig. 2.

Fig. 2 Elimination of Mg^{2+} by adding DAHP into NRL

A conventional approach involves Mg^{2+} analysis in NRL based on the complexometric titration with ethylenediamine tetraacetic acid (EDTA, H_2Y^{2-}), disodium salt (soluble form) using eriochrome black T (EBT) as an indicator. Since dissociation of EDTA disodium salt and EBT depends on pH of the medium, addition of ammonium chloride (NH_4Cl)/ammonium hydroxide (NH_4OH) buffer solution is required in order to control pH of the solution to be ≥ 10 facilitating reaction between EBT and Mg^{2+} . At the end point of the reaction, the solution color changes from red to blue, according to the reaction shown in Eq 2 [8] for Mg^{2+} analysis in NRL.

Apart from the well controlled pH of the solution facilitating interaction between Mg^{2+} and EDTA, the masking agent is also added to prevent foreign ions, such as potassium (K^+), sodium (Na^+), calcium (Ca^{2+}), zinc (Zn^{2+}), iron (Fe^{3+}), copper (Cu^{2+}) and manganese (Mn^{2+}) interfering complexation between Mg^{2+} and EDTA in NRL. Potassium cyanide (KCN) is a common masking agent used in the standard method [9-10]. However, it is well known that cyanide compounds are very toxic. Therefore, development of a cyanide-free method for determination Mg^{2+} in NRL is still a challenge.

Satheinperakul et al. (2008) [11] have reported methods for magnesium determination in natural rubber latex based on the potentiometric titration with a Hg-EDTA electrode. Masking agents were not applied since they disturbed the end point of the titration. Their methods showed linearity range for Mg^{2+} detection from $36\text{-}126\text{ mg.L}^{-1}$ which is in good agreement with the results obtained from atomic absorption spectrometry. Unfortunately, they found that the

presence of zinc and cadmium in high levels interfered the determination of Mg^{2+} . In 2011, a method and composition for quantifying magnesium ions based on conventional complexometric titration have been patented (WO2011139245) using NaHS as a selectively precipitating interfering metal ions in NRL instead of using KCN as mentioned above [12]. Afterwards, the ISO 17403: 2014(E), Rubber-Determination of magnesium content of field and concentrated natural rubber latices by titration (cyanide-free method by using NaHS as a masking agent) [12-15] has also been established in 2014. However, the reported approaches are still complicated in terms of multiple steps of analysis including demand of sample pretreatment before analysis, reagent volume consumption ($>105\text{ mL}$), resulting in more waste and potential interference ions in NRL if masking agent was not applied (Table 1). Moreover, many reagents are needed for analysis which also requires skill to perform in the laboratory.

Nowadays, two types of test kit for magnesium detection based on colorimetry have been commercially available. One is the field test kit in seawater based on complexometric titration without addition of masking agents. A limit of detection (LOD) is found within the range of $15\text{-}100\text{ mg.L}^{-1}$ [16-19]. Moreover, interference from calcium and strontium was not observed. Another type of the commercial test kit is based on an enzymatic assay performed in a 96 well flat-bottom plate coupled with spectrophotometer detection at 450 nm [20]. The assay involves specific interaction between glycerol kinase enzyme and Mg^{2+} which results in a linear range of $1.5\text{-}7.5\text{ mg.L}^{-1}$ without interference from foreign ions such as Fe^{2+} , Cu^{2+} , Ni^{2+} , Zn^{2+} , Co^{2+} , Ca^{2+} and Mn^{2+} . However, the approach as mentioned above is costly and requires expertise to perform (Table 2). A miniaturized complexometric titration between Mg^{2+} and EDTA is thus considered to be a key reaction in this development.

Table 1 Selectivity study towards Mg^{2+} compared with the other metal ions (Zn^{2+} , Ca^{2+} , Fe^{3+} , Cu^{2+} , Mn^{2+} , K^+ and Na^+ tested using complexometric titration reported in the tolerance concentration ($mg.L^{-1}$) (n=3)

Interference	Tolerance concentration ($mg.L^{-1}$)	With masking agent			Without masking agent		
		Mg^{2+} content ($mg.L^{-1}$)		% Relative different	Mg^{2+} content ($mg.L^{-1}$)		% Relative different
		1 st collection	2 nd collection		1 st collection	2 nd collection	
Original NRL	-	524.02 ± 11.89	256.16 ± 2.99	-	534.81 ± 17.40	289.87 ± 23.37	-
Zn^{2+}	793.62	470.60 ± 2.85	-	-9.86	611.60 ± 2.47	-	+14.36
Ca^{2+}	955.82	545.10 ± 3.72	-	+4.02	565.40 ± 7.03	-	+5.72
Fe^{3+}	157.52	-	272.60 ± 1.26	+6.42	-	315.20 ± 7.13	+8.74
Cu^{2+}	244.14	-	232.50 ± 1.53	-9.23	-	N.D.	-
Mn^{2+}	53.93	-	267.90 ± 0.77	+4.58	-	330.90 ± 3.48	+14.15
K^+	2171.29	-	235.20 ± 7.16	-8.18	-	228.90 ± 23.32	-21.03
Na^+	1356.97	-	239.50 ± 2.72	-6.50	-	225.50 ± 7.63	-22.21

U_3 was used as model sample in this study

N.D. (Not detectable; end point of the titration cannot be accomplished)

Due to the NRL can be stable around 4 hours, therefore, NRL is needed to collect several time to accomplish the experiment

$$\% \text{Relative different} = \left[\frac{Mg^{2+} \text{contents from added concentration of foreign ions} - Mg^{2+} \text{contents from original NRL}}{Mg^{2+} \text{contents from original NRL}} \right] \times 100$$

Table 2 Comparison of commercial test kit for Mg²⁺ analysis of various samples.

Products	Sample	Limit of detection (mg.L ⁻¹)	Cost/test (USD)	Reference
A	Sea water	20	0.3699	[16]
B	Sea water	30	0.3922	[17]
C	Sea water	100	0.5198	[18]
D	Sea water	15	0.3998	[19]
E	Variety of samples	1.5	4.6050	[20]
F	NRL, CRL	< 50	0.1620	Proposed method

NRL= Natural rubber latex

CRL= Concentrated rubber latex

In this work, a simple (no requirement of skill for analysis, not demanding sample pretreatment before analysis), low-cost (small sample and reagents volume uptake) and portable field test kit based on colorimetry using naked eye for determination of magnesium content in NRL was established. The novelty of this work is that miniaturized complexometric titration between Mg²⁺ and EDTA (even without using masking agent) which were designed according to the concept of 'Green chemistry' reducing waste generation minimizing use of chemicals and consumption of time (at least simple two reagents (EBT indicator for reagent A; EDTA in ammonium buffer for reagent B) for test kit set up). The developed test kit was applied for investigation of the effect of the presence of potential interference ions, preservatives used in NRL and possibility for practical use in concentrated rubber latex (CRL). Stability of reagents applied in the kit and the analysis performances in real samples were investigated and discussed.

Experimental

Chemicals and materials

All chemicals were analytical grade. All solutions were prepared in deionized water with 18 M Ω resistance (obtained from a Millipore Milli-Q purification system, Bedford, MA, USA). The NRL in this research was collected from 6 areas (U₁-U₃ and K₁-K₃) in Ubon Ratchathani province (U) and Kalasin province (K). Magnesium sulfate heptahydrate (MgSO₄·7H₂O, Panreac), calcium carbonate (CaCO₃, Fluka), ethylenediamine tetraacetic acid (C₁₀H₁₄N₂Na₂O₈·2H₂O; EDTA, Fisher Chemical) and eriochrome black T (C₂₀H₁₂N₃O₇SNa; EBT, LABCONCO), ethanol 99%, v/v (C₂H₅OH, Sigma-Aldrich), ammonium chloride (NH₄Cl, Fluka) and ammonium hydroxide (NH₄OH, Fluka) and sodium hydrogen sulfide (NaHS·xH₂O, ACROS ORGANICS) were used as reagents in the conventional complexometric titration and our developed small-scale test kit approaches for Mg²⁺ identification in NRL. NH₄OH, zinc oxide (ZnO, Carlo Erba) and tetramethyl thiuram disulfide (C₆H₁₂N₂S₄, TMTD, Sigma-Aldrich) were used as preservatives in NRL. The following chemicals were used as received: calcium nitrate (Ca(NO₃)₂), potassium sulfate (K₂SO₄), sodium chloride (NaCl), copper(II) sulfate pentahydrate (CuSO₄·5H₂O), and manganese sulfate monohydrate (MnSO₄·H₂O), which were obtained from Carlo Erba. Iron(II) sulfate heptahydrate (FeSO₄·7H₂O, Unilab), zinc sulfate heptahydrate (ZnSO₄·7H₂O, Fluka), concentrated nitric acid 65%, v/v (HNO₃, Sigma-Aldrich) were used in interference study. Paraffin oil purchased from LABCONCO were used in acid digestion method of FAAS analysis. Bottle of serum container (10 mL) and eyes drop bottle (10 mL) were obtained from a pharmacy store in Ubon Ratchathani which were used as containers for

reagent A and B, respectively. Plastic coffee spoons obtained from local supermarket in Ubon Ratchathani were used as sampling spoons.

Instruments

A flame atomic absorption spectrophotometer (PinAAcle 900T; Perkin Elmer, US) equipped with hollow cathode lamps (HCL) was exploited to determine concentrations of Mg^{2+} and interfering ions (Cu^{2+} , Mn^{2+} , K^+ , Fe^{3+} , Zn^{2+} , Ca^{2+} and Na^+) in NRL samples for method validation with the operated conditions shown in **Table 3**.

Table 3 The operating conditions of FAAS

FAAS parameter	Wavelength (nm)/ Lamp current (mA)
Mg	285.2/84
Ca	422.7/86
Zn	213.9/67
Cu	324.8/89
Fe	248.3/62
Mn	279.5/66
K	766.5/116
Na	589.0/77
Slit width (nm)	0.7
Air flow rate ($m^3 \cdot s^{-1}$)	8.0
Acetylene flow rate ($m^3 \cdot s^{-1}$)	2.5

Preparation of reagents

Conventional method

ISO 17403: 2014(E) [15] was applied as a conventional method with slight modification.

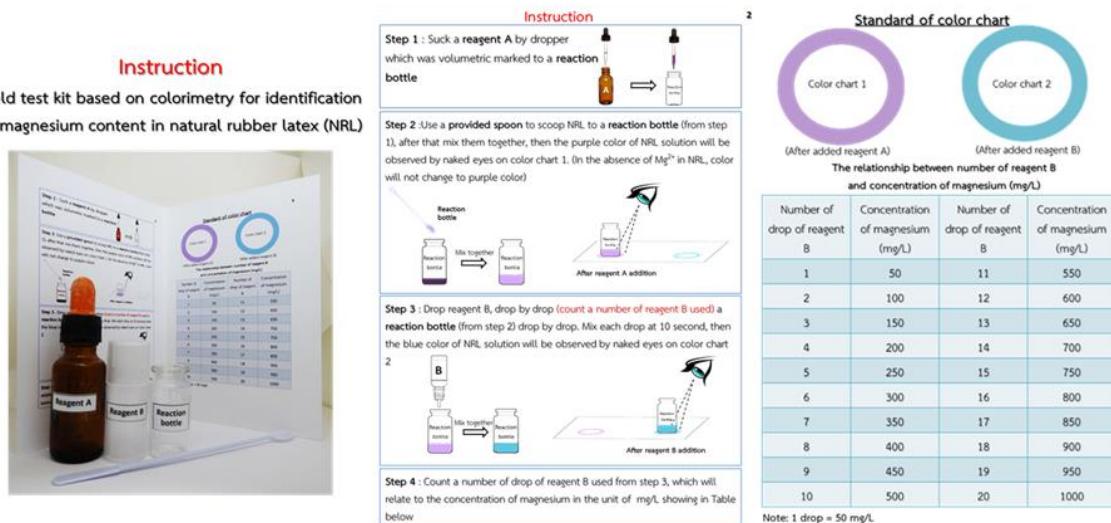
Briefly, $CaCO_3$ (0.500 g) was dissolved in 1 L of DI water (5×10^{-3} mol. L^{-1}) as a primary standard for standardization. EDTA (1.86 g) was dissolved in 1 L of DI water (5×10^{-3} mol. L^{-1}).

The equivalent mole ratio between Mg^{2+} standard and the EDTA solution is 1:1. pH of the system was adjusted to be 10.5 by using 0.06 mol.L^{-1} NH_4Cl/NH_4OH buffer solution (which was prepared by dissolving 67.5 g of NH_4Cl in 250 mL of DI water). After that, 570 mL of 25%, w/w NH_4OH were added to NH_4Cl solution brought up to 1 L with DI water. An indicator was prepared by dissolving EBT (0.1 g) into 100 mL of 75%, v/v ethanol ($2.16 \times 10^{-4}\text{ mol.L}^{-1}$). A masking agent, $NaHS.xH_2O$ (1.68 g) was dissolved in 100 mL of DI water (0.3 mol.L^{-1}).

Test kit based colorimetry

The small-scale test kit was developed based on the conventional method. The approaches were based on complexometric titration between Mg^{2+} and EDTA using $NaHS$ as a masking agent (or without any masking agent). The optimized procedure was as follows; Samples were transferred by plastic spoons ($\sim 0.18\text{ g}$). Reagent A was $2.16 \times 10^{-4}\text{ mol.L}^{-1}$ EBT indicator with the EBT:DI volume ratio of 3:10. Reagent B was $5.48 \times 10^{-3}\text{ mol.L}^{-1}$ EDTA which was prepared by dissolving EDTA (0.02 g) into a 0.06 mol.L^{-1} NH_4Cl/NH_4OH buffer (6.67 mL), followed by addition of 0.3 mol.L^{-1} $NaHS.xH_2O$ (3.33 mL) as a masking agent. The droplets of reagent A and B were generated by using eye drop bottles ($\sim 0.065\text{ mL.drop}^{-1}$).

Method validation


Complexometric titration was performed with slight modification according to ISO 17403: 2014(E) [15]. Briefly, NRL (2.0 g) was transferred into a conical flask followed by addition of 100 mL of DI water. 0.06 mol.L^{-1} NH_4Cl/NH_4OH buffer solution (2.0 mL) was then added to control the NRL solution pH within the range of 10.0-10.5. Next, $2.16 \times 10^{-4}\text{ mol.L}^{-1}$ EBT indicator (1.0 mL) was dropped into the NRL solution. The 0.3 mol.L^{-1} masking agent (1.0 mL) was added into the solution and also diluted in water (100 mL). The solution was then titrated with the standard

5×10^{-3} mol.L⁻¹ EDTA solution (which was standardized with 5×10^{-3} mol.L⁻¹ CaCO₃) until the red solution vanished and became pure blue. This titration approach was evaluated by comparison with FAAS which is a reliable technique with high accuracy and precision. The sample preparation for FAAS analysis was performed with slight modification [21-22] by transferring NRL (0.25 g) into a test tube followed by addition of concentrated HNO₃ (65% v/v) (4.0 mL). The solution was heated in an oil bath at 165 °C resulting in a transparent solution which was then cooled down and diluted with HNO₃ (2%, v/v) prior to the FAAS analysis.

For interferences study, a masking agent was added in order to reduce interference in Mg²⁺ analysis by undergoing complexation with the foreign ions in the NRL solution. In this study, the investigated ions were Fe³⁺, Cu²⁺, Mn²⁺, K⁺, Zn²⁺, Ca²⁺ and Na⁺. The tested concentrations of the foreign ions were 50, 100, 150, 250, 500, 750, 1000 and 1500 mg.L⁻¹, respectively. The results obtained from the complexometric titration with the masking agent were then compared with those obtained without the masking agent. NRL number of U₃ was used as model sample in this study. As the NRL can be stable for approximately 4 hours, fresh NRL was collected freshly several times during the experiment in order to prevent the NRL coagulating.

For the test kit application (**Fig 3-4**), reagent A was transferred by a dropper up to the marked level into a reaction bottle. Then, a small spoon was used to transfer NRL into the reaction bottle. The NRL solution was shaken together resulting in the purple color observed by naked eye, as shown by the color chart 1 in **Fig 3**. Reagent B was then added drop by drop and shaken (every 10 second) to the solution until the blue color of NRL solution was observed, see also the color chart 2 in **Fig 3**. The number of drops was recorded. For accuracy study, the

recovery test was performed by spiking Mg^{2+} to NRL solution at concentrations of 40 and 80 $mg\cdot L^{-1}$.

Fig 3. The instruction of “Field test kit based on colorimetry for determination of magnesium content in natural rubber latex (NRL)”

1. Addition of optimized reagent A (which was marked the level on the dropper of reagent A bottle) in the reaction bottle
2. Addition of NRL sample (comparing with standard color chart 1 shown in Fig 3)
3. Addition of reagent B (16 drops) 1 drop = $50 mg\cdot L^{-1} Mg^{2+}$ (comparing with standard color chart 2 shown in Fig 3)

Fig. 4 The operation of developed test kit based on colorimetry using naked eyes for determination of magnesium content in natural rubber latex (NRL) operated in NRL sample containing $775 mg\cdot L^{-1} Mg^{2+}$ (16 drops were performed)

Study of preservatives in NRL on our developing test kit

The preservative solutions of 0.2%, w/v NH₄OH and mixture of 0.2%, w/v NH₄OH, 0.025%, w/w ZnO and 0.025%, w/w TMTD, respectively, were added to the NRL sample. Mg²⁺ content in the treated NRL was then quantified and the result was compared with that obtained by the conventional method (complexometric titration).

Stability test for reagents (A and B) and application of the developed test kit for practical sample analysis

Reagents A and B were left at room temperature for 6 months prior to the application with the test kit for Mg²⁺ determination. The results were compared with that obtained by the conventional complexometric titration method.

Samples were collected from several regions in Ubon Ratchathani province (U₂-U₃) and Kalasin province (K₁-K₃), Thailand. In each analysis, identification of Mg²⁺ was performed by applying the developed test kit, which were operated by three different users. The results were averaged and compared with those obtained by the conventional complexometric titration method.

Results and Discussion

Optimization of the developed test kit

The optimized sample amount scooped by using a small spoon was 0.1731 ± 0.02 g (**Table 4**) and the optimized reagent volume dropped by using an eye drop bottle was 0.065 ± 0.004 mL (**Table 5**). In this study, reagent A (EBT, HIn^{2-}) was applied as an indicator; whilst, the EDTA, buffer solution and masking reagents were mixed into reagent B. Reagent A needs to be separated from the system prior to analysis due to the poor solubility of the indicator in the reagent B matrix, as well as the complexation between the indicator and Mg^{2+} as analysis has to be carried out before addition of EDTA as demonstrated in Equation 2.

Table 4 Optimization of sample weight per sampling by using a spoon (n = 20)

Replication	Weight (g)	Replication	Weight (g)
1	0.1741	11	0.1967
2	0.1495	12	0.1760
3	0.1759	13	0.1657
4	0.1528	14	0.1789
5	0.1431	15	0.1683
6	0.1742	16	0.1793
7	0.1981	17	0.1953
8	0.1795	18	0.1841
9	0.1863	19	0.1698
10	0.1645	20	0.1507

Average weight of NRL sample/sampling is 0.1731 ± 0.0200 g

Table 5 Optimization of volume of reagent B (weight/drop)

Replication	Weight (g)	Replication	Weight (g)	Replication	Weight (g)
1	0.070	6	0.063	11	0.062
2	0.067	7	0.067	12	0.066
3	0.066	8	0.065	13	0.064
4	0.062	9	0.065	14	0.064
5	0.065	10	0.065	15	0.067

Average weight/drop is 0.065 ± 0.004 g

The optimized condition for reagent A was obtained by variation of a number of droplets (1-8 drops) applied in different bottles each of which had already been filled in with 50 mg.L^{-1} of Mg^{2+} in DI water. The optimized number of droplets was three drops (**Fig 5a**) since the use of >3 drops resulted in precipitation of NRL whilst using of 1-2 drops led to low color intensity of the end point of the titration reaction which is difficult to see by naked eye. However, the addition of three drops into practical NRL samples resulted in precipitation of NRL since EBT was dissolved in ethanol which precipitated NRL (**Fig 5b**). EBT solution was thus diluted with DI water with the selected EBT:DI water ratio of 3:10, which was marked at the level shown on the dropper for sampling of reagent A.

Fig 5 Variation of number of EBT droplets (1-8 drops) containing 50 mg.L^{-1} Mg^{2+} in DI water **a)** and precipitation of NRL sample when 3 drops of EBT were applied **b)**.

Due to the fact that, EDTA is a limiting reagent in the complexometric titration reaction for Mg^{2+} determination. The stoichiometric amount of EDTA to react Mg^{2+} with theoretical concentrations of 25, 50 and 100 $mg\cdot L^{-1}$ corresponded to the optimized number of droplets for reagent B being 1 drop per 50 $mg\cdot L^{-1}$ of Mg^{2+} (with the volume of ~ 0.065 mL including buffer solution and masking reagents), detail of information and explanation shown in **Table 6** and **7**. This condition was obtained by taking in account solution miscibility and buffer capacity (β) where a drop of reagent B was found with $\beta = 2.17$ M per 0.1 pH unit. This is sufficient for the resistance to pH change in the developed test kit as well as being applicable even when excess amount of reagent B was applied, see also in **Table 8**.

Table 6 The stoichiometric amount of EDTA in the reagent B to react Mg^{2+} with theoretical concentration of 25, 50 and 100 $mg\cdot L^{-1}$

Amount of Mg^{2+} ($mg\cdot L^{-1}$)	Number of drops of reagent B		
	a drop of reagent B* = 25 $mg\cdot L^{-1}$ of Mg^{2+}	a drop of reagent B** = 50 $mg\cdot L^{-1}$ of Mg^{2+}	a drop of reagent B*** = 100 $mg\cdot L^{-1}$ of Mg^{2+}
50	2	1	1
100	4	2	1
150	5	3	2
200	8	4	2
250	10	5	3

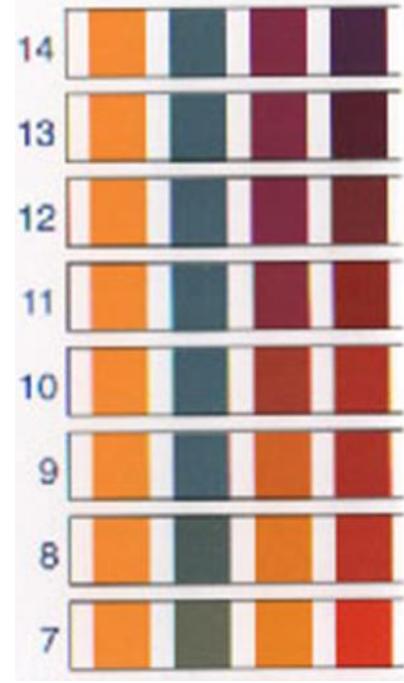
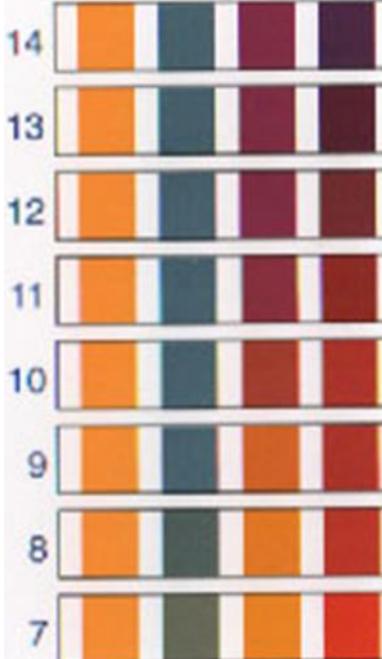

* containing $2.74 \times 10^{-3} \text{ mol}\cdot L^{-1}$ EDTA, ** containing $5.48 \times 10^{-3} \text{ mol}\cdot L^{-1}$ EDTA, *** containing $10.98 \times 10^{-3} \text{ mol}\cdot L^{-1}$ EDTA

Table 7 Comparison of percentage error between 1 drop of reagent B (1 drop of reagent B = 50 mgL⁻¹ of Mg²⁺) and (1 drop of reagent B = 100 mgL⁻¹ of Mg²⁺) on our developed test kit


Area of NRL	Mg ²⁺ content by complexometric titration (mg·L ⁻¹) (n=3)	%Relative difference (n = 3) from our developing test kit	
		1 drop of reagent B = 50 mg·L ⁻¹ of Mg ²⁺	1 drop of reagent B = 100 mg·L ⁻¹ of Mg ²⁺
U2	748.5 ± 7.1	0.3	6.9
U2	770.9 ± 8.2	3.8	3.8
U2	812.2 ± 3.6	4.7	10.8
U3	306.2 ± 5.3	14.3	30.6
U3	322.5 ± 4.4	8.5	24.0
U3	375.2 ± 26.1	6.6	6.6

$$\text{\%Relative difference} = \left[\frac{\text{Mg}^{2+} \text{contents from complexometric titration} - \text{Mg}^{2+} \text{contents from our developing method}}{\text{Mg}^{2+} \text{contents from complexometric titration}} \right] \times 100$$

Table 8 The monitoring of pH in our developing test kit system

Number of droplets of reagent B	Total concentration of buffer presented in reagent B (M)	Color change of pH paper		Standard color chart of pH paper
		Before addition of reagent B (NRL sample and reagent A were applied in the reaction bottle)	After addition of reagent B	
10	0.02			
20	0.03			
30	0.04	(pH 7-8)		
40	0.04			
50	0.05			
60	0.05			(pH 10-11)

Table 8 (Continue)

Number of droplets of reagent B	Total concentration of buffer presented in reagent B (M)	Color change of pH paper		Standard color chart of pH paper
		Before addition of reagent B (NRL sample and reagent A were applied in the reaction bottle)	After addition of reagent B	
70	0.05			
80	0.05			
90	0.05	(pH 7-8)		
100	0.06			
			(pH 10-11)	

[29] Buffer capacity was calculated by this equation;

$$\beta = 2.3 \frac{C_{BOH} \times C_B}{C_{BOH} + C_B}$$

β = Buffer capacity
 C_{BOH} = Concentration of base (M)
 C_B = Concentration of salt (M)

In this experiment, we used 3.67 M NH₄OH and 1.274 M NH₄Cl as basic and salt solutions for buffer preparation.

$$\begin{aligned}\beta &= 2.3 \frac{3.67 \times 1.274}{3.67 + 1.274} \\ &= 2.3 \left(\frac{4.676}{4.944} \right) \\ &= 2.3 \times 0.946 \\ &= 2.17 \text{ M/pH}\end{aligned}$$

Validation of the developed test kit

Comparison of the analysis results between complexometric titration (standard method) and FAAS techniques (reference method) was made for Mg²⁺ content in NRL samples obtained from U₁ and U₃. The results obtain from t-test showed $t_{\text{stat}} = 1.02$ whereas $t_{\text{critical}} = 2.78$ revealed that there is no statistical difference between these two methods with a confidence level of 95% (Table 9).

Table 9 Comparison of Mg^{2+} content ($mg\cdot L^{-1}$) at different area of NRL between Flame Atomic Absorption Spectroscopy, FAAS and complexometric titration ($n=3$)

Area of NRL	Mg^{2+} content ($mg\cdot L^{-1}$)	
	FAAS method	Complexometric titration method
U_1	746.90 ± 0.002	748.48 ± 7.07
U_1	800.02 ± 0.008	770.90 ± 8.22
U_1	873.81 ± 0.001	812.17 ± 3.62
U_3	283.12 ± 0.001	306.18 ± 5.30
U_3	342.55 ± 0.001	322.52 ± 4.39
U_3	363.89 ± 0.001	375.13 ± 26.08

U_1 and U_3 were collected 3 times

Due to the simplicity and lower analysis cost, the titration method was selected as the benchmark method for determination of Mg^{2+} in NRL samples. In addition, our test kit was developed based on scaling down the process for the complexometric titration between Mg^{2+} and EDTA with [13-15]/without NaHS as a masking agent. In order to study the ability of NaHS to be used as a masking agent, interferences in Mg^{2+} analysis caused by complexation with the potential foreign ions in the NRL solution (Fe^{3+} , Cu^{2+} , Mn^{2+} , K^+ , Zn^{2+} , Ca^{2+} , and Na^+) were assessed. The resulting tolerance concentration ($mg\cdot L^{-1}$, which was defined as the added concentrations of foreign ions that reveal significant changes of % error to be within $\pm 10\%$) data are shown in **Table 1**. The % error values obtained from complexometric titration using the masking agent were lower than those obtained without masking agent, especially with the presence of Cu^{2+} where the end point of the titration could not be identified without the masking

agent. This indicates the requirement for addition of masking agent (here being NaHS) for improved analysis reliability. According to the observed high tolerance concentrations, it can be concluded that the investigated ions could not interfere the analysis of practical NRL samples.

Note that the result revealed relatively low tolerance concentrations for Fe^{3+} , Cu^{2+} , and Mn^{2+} .

However, the concentrations of these ions in the real NRL are very much lower than the studied concentrations [8, 23-24] (see further explanation in **Table 10**). The function of NaHS as a masking agent for Mg^{2+} analysis in NRL can be explained by formation of complexes with foreign metal ions according to the Hard-Soft acid-base reaction. Na^+ can be considered as hard acid and HS^- is soft base which does not prefer to react with Mg^{2+} (hard-acid). However, interference ions in NRL are mostly soft acids favorably interacting with HS^- . The resulting complexes are stable and not likely to react with EDTA. [25]. These investigations corresponded to the results obtained in reported works [13-15]

Therefore, the evaluated complexometric titration was further used as the reference method by comparison with our developed test kit for quantification of Mg^{2+} from U_1 and U_2 as well as these samples spiked with 40 and 80 mg.L^{-1} Mg^{2+} , respectively. The complexometric titration results were insignificantly different from the results obtained from the test-kit approach ($t_{stat} = 6.42$ and $t_{critical} = 2.78$). Furthermore, the analytical recoveries were also in an acceptable range of 100.6- 102.4 for NRL sample. (**Table 11**).

Table 10 Our developed test kit (without masking agent) performed with the presence of potential interference ions in NRL sample

Elements	Reported* (mg.L ⁻¹)	Found by FAAS (mg.L ⁻¹)	Spiked elements (mg.L ⁻¹)	Total (mg.L ⁻¹)	Complexometric titration (mg.L ⁻¹) n=3	Developed Test Kit		% Relative different
						n=3	Drop mg.L ⁻¹	
Original NRL**								
(Mg)	-	-	-	0	571.572 ± 2.38	12	600	4.97
Fe	0.27	57.6	60	117.6	576.85 ± 11.00	12	650	13.72
Cu	0.27	1.5	2	3.5	584.07 ± 6.02	12	600	4.97
Mn	7.45	4.9	5	9.9	578.51 ± 2.40	12	600	4.97
K	816	1215.8	1300	2515.8	573.31 ± 13.79	13	650	13.72
Zn	16.02	42.3	50	92.3	573.41 21.27	13	650	13.72
Ca	8.9	905.4	150	1055.4	593.67 ± 3.35	13	650	13.72
Na	966	870.7	1000	1870.7	555.06 ± 23.80	13	650	13.72

* [23-24] operated by inductively coupled plasma (ICP) atomic emission spectroscopy technique and FAAS

** NRL from U₃ sample

Table 11 Recovery study by comparison between complexometric titration and our developed test kit (n=3)

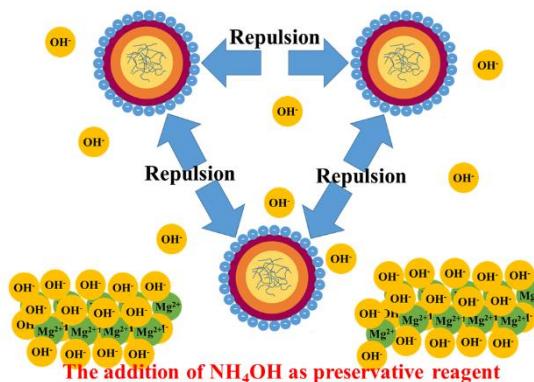

Area of NRL	Mg ²⁺ content by complexometric titration (mg.L ⁻¹)	Our developed test kit			
		Number of drops (1 drop=50 mg.L ⁻¹)	Mg ²⁺ content (mg.L ⁻¹)	Average of Mg ²⁺ content (mg.L ⁻¹)	% Recovery
Original U ₁	748.48 ± 7.07	15	750	750.0	-
		15	750		
		15	750		
U ₁ added 40 mg.L ⁻¹ of Mg ²⁺	770.90 ± 8.22	16	800	800.0	101.3
		16	800		
		16	800		
U ₁ added 80 mg.L ⁻¹ of Mg ²⁺	812.17 ± 3.62	17	850	850.0	102.4
		17	850		
		17	850		
Original U ₂	431.96 ± 0.84	10	500	500.0	-
		10	500		
		10	500		
U ₂ added 40 mg.L ⁻¹ of Mg ²⁺	488.49 ± 14.55	11	550	550.0	101.9
		11	550		
		11	550		

Table 11 (Continue)

Area of NRL	Mg ²⁺ content by complexometric titration (mg.L ⁻¹)	Our developed test kit			
		Number of drops (1 drop=50 mg.L ⁻¹)	Mg ²⁺ content (mg.L ⁻¹)	Average of Mg ²⁺ content (mg.L ⁻¹)	% Recovery
U ₂ added 80 mg.L ⁻¹ of Mg ²⁺	560.30 ± 6.05	12	600	583.3	100.6
		11	550		
		12	600		

Effect of preservatives in NRL on our developed test kit

In general, preservation of NRL can be long-term with the aim to maintain NRL quality during storage and transportation by addition of preservatives to the samples. Short-term preservation involves a few days storage of liquid samples prior to further processing. The related additives are anticoagulant in NRL. A mixture of 0.2%, w/v NH₄OH, 0.025%, w/w ZnO and 0.025%, w/w TMTD are normally used in formulation processes in Thailand as alternative to the sole use of NH₄OH which has a pungent smell as well as causing environmental pollution and respiratory system irritation when released into the atmosphere [26]. Ammonia solution (NH₄OH) is conventionally added into the samples as a primary preservative in the concentration ranging from 0.2 to 0.5%, w/v which can inhibit reaction with bacteria under high pH condition and precipitate Mg(OH)₂ (reduction of free Mg²⁺, **Fig 6**) [27].

Fig 6 The proposed mechanism when NH₄OH as preservative were performed

ZnO and TMTD were added in NRL as secondary preservatives which stabilize NRL dispersed system. ZnO and TMTD can preserve natural rubber latex (by inhibiting bacteria growth) in the presence of small amounts of ammonia [4, 28]. The results are shown in **Table**

12. When the preservative solutions of 0.2%, w/v NH₄OH, 0.025%, w/w ZnO and 0.025%, w/w TMTD were added to the NRL samples, Mg²⁺ content quantified by complexometric titration was slightly decreased in the system containing 0.2%, w/v NH₄OH. Moreover, Mg²⁺ content in the treated NRL analyzed by our developed test kit was not statistically different from that obtained by the complexometric titration. This suggests that the preservatives used in NRL did not affect the developed test kit system.

Table 12 Effect of preservatives used in NRL on our developed test kit (n=3)

Type of samples	Mg²⁺ content by complexometric titration (mg.L⁻¹)	Our developed test kit		
		Number of drops (1 drop=50 mg.L⁻¹)	Average of Mg²⁺ content (mg.L⁻¹)	% Relative different
Original NRL	775.3 ± 9.25	15	750.0	-3.3
		15		
		15		
NRL preserved with 0.2% NH ₄ OH	500.7 ± 4.39	10	500.0	-0.1
		10		
		10		
		11	550.0	
NRL preserved with 0.2% NH ₄ OH, 0.025% ZnO and 0.025%TMTD	611.7 ± 14.01	11		-10.1
		11		

U₂ was used as model sample in this study

$$\% \text{Relative different} = \left[\frac{\text{Mg}^{2+} \text{contents from our developing test kit} - \text{Mg}^{2+} \text{contents from complexometric titration}}{\text{Mg}^{2+} \text{contents from complexometric titration}} \right] \times 100$$

The results from these two methods showed $t_{\text{stat}} = 1.02$ and $t_{\text{critical}} = 12.71$ which are not statistically different with the confidence level of 95%

Stability of reagents (A and B) and real samples application

Stability of reagents applied in the developed test kit method was studied. Reagent A and B were left at room temperature for 6 months. The resulting Mg^{2+} concentrations determined in both cases were compared with the analysis obtained by using freshly prepared reagents. The results showed good stability of both reagents, as shown in **Table 13**. Furthermore, the proposed method for Mg^{2+} determination in NRL was evaluated by analyzing real samples from U_1 , U_2 and K_1-K_3 with concentrations of Mg^{2+} within in the ranges of 450-600 $mg.L^{-1}$ and 500-550 $mg.L^{-1}$, respectively. The results for all the samples were in good agreement with the values obtained from complexometric titration, see also **Table 14**.

Table 13 Stability of our developed test kit (reagent A and B) (n=3)

Area	Type of sample	Mg^{2+} content by complexometric titration ($mg.L^{-1}$)	6 months of reagent A		6 months of reagent B	
			Average of Mg^{2+} content ($mg.L^{-1}$)	% Relative different	Average of Mg^{2+} content ($mg.L^{-1}$)	% Relative different
U ₂	Original NRL	719.1±3.3	683.3	-5.0	700.0	-2.7
	NRL mixed with preservatives*	611.7±14.0	566.5	-7.4	566.5	-7.4
U ₃	Original NRL	667.1±7.5	633.3	-5.1	615.5	-7.6
	NRL mixed with preservatives*	582.4±1.4	600.0	+3.0	600.0	+3.0

*Preservatives is a mixed solution of 0.2%NH₄OH, 0.025% ZnO and 0.025%TMTD in NRL

For stability test of Reagent A, the reagent B was freshly prepared. On the other hand, for stability test of Reagent B, the reagent A was freshly prepared

$$\% \text{Relative different} = \left[\frac{Mg^{2+} \text{contents from our developing method} - Mg^{2+} \text{contents from complexometric titration}}{Mg^{2+} \text{contents from complexometric titration}} \right] \times 100$$

Table 14 Real sample application of NRL using our developed test kit

Area	Mg ²⁺ content by complexometric titration (mg.L ⁻¹)	Subject	Our developed test kit		% Relative different
			Number of drops	Mg ²⁺ content (mg.L ⁻¹)	
U ₁	523.1 ± 13.0	1	11	550	+5.14
		2	12	600	+14.70
		3	11	550	+5.14
U ₂	465.1 ± 6.9	1	10	500	+7.50
		2	9	450	-3.25
		3	10	500	+7.50
K ₁	518.0 ± 11.4	1	11	550	+6.18
		2	11	550	+6.18
		3	11	550	+6.18
K ₂	491.1 ± 2.8	1	10	500	+1.81
		2	10	500	+1.81
		3	10	500	+1.81
K ₃	558.4 ± 6.4	1	10	500	-10.46
		2	10	500	-10.46
		3	10	500	-10.46

$$\text{Relative different} = \left[\frac{\text{Mg}^{2+} \text{contents from our developing method} - \text{Mg}^{2+} \text{contents from complexometric titration}}{\text{Mg}^{2+} \text{contents from complexometric titration}} \right] \times 100$$

The results from these two methods showed $t_{\text{stat}} = 0.009$ and $t_{\text{critical}} = 3.18$ which are not statistically different with the confidence level of 95%

Conclusions

A simple and portable field test kit for colorimetric determination of magnesium content in natural rubber latex (NRL) was successfully developed according to the concept of green chemistry by reducing waste generation, minimizing use of chemicals and consumption of time (at least simple two reagents (EBT indicator for reagent A; EDTA in ammonium buffer for reagent B) for test kit set up). These were found to be effective and non-instrumental approaches with low cost, simple (no requirement of skill for analysis), not demanding sample pretreatment before analysis, small sample volume uptake (0.18 g, sampling by a small spoon) and use of <1.5 mL reagent volume which was >70 times less than when compared with conventional methods [12-15] and the other commercial test kits (see in **Table 2**). Our developed test kit (even without masking agent) can be applicable even with the presence of potential interference ions (see also in **Table 10**) and preservatives in NRL due to the effect of minimizing scale of reagents and sample. Moreover, the EDTA concentration in reagent B could be adjusted for matching with theoretically expected magnesium concentration; see further explanation in **Table 6** and **7** providing the detection limit of magnesium being 50 mg.L^{-1} (or could be adjusted less than that). The performance of the approach meets the requirement for analysis of magnesium content in practical NRL samples which can be performed within a minute and observed by naked eye based on comparison with a color chart. Moreover, our developed test kit can be stable at room temperature for more than 6 months. The established approaches were not only applicable for NRL analysis, but it is also for practical use in concentrated rubber latex (CRL; see further explanation in **Table 15**) since our developed test kit in terms of reagent B can provide enough buffer capacity system (even one drop was applied into the sample) which is suitable for acidic samples such as CRL.

Table 15 Study of concentrated rubber latex (CRL) using our developing test kit by comparison with complexometric titration (n = 3)

Type of CRL sample	Mg^{2+} content by complexometric titration (mg·L ⁻¹)	Our developed test kit	
		Number of drops (1 drop = 50 mg·L ⁻¹)	Mg^{2+} content (mg·L ⁻¹)
CRL*	55.54 ± 3.34	1 ± 1	50.00 ± 50.00
CRL**	54.25 ± 1.27	1 ± 1	50.00 ± 50.00

(U₂ was used as model NRL sample in this study which was contained 811.11 ± 28.40 mg·L⁻¹ of original Mg^{2+} content conducting by complexometric titration)

CRL*: Mg^{2+} in NRL (U₂) were removed by addition of diammonium hydrogen phosphate (DAHP)

[7-8]

CRL**: Clear serum with acidic medium (pH 3) was obtained from CRL* by diluting 10 g of CRL* with 10.0 mL of water and coagulate with 5.0 mL of 25% acetic acid water [15]

The results in **Table 15** indicated that the established test kit were not only applicable for NRL analysis, but it is also for practical use in CRL even in acidic medium of CRL sample which is sufficient in the developed test kit (pH 7 in the system was obtained after reagent A was applied, then pH 10 was accomplished in the system when just one drop of reagent B was applied)

References

- [1] C. Saengruksawong, S. Khamyong, N. Anongrak, J. Pinthong, Growths and carbon stocks of para rubber plantations on Phonpisai soil series in Northeastern Thailand, Rubber Thai Journal, 1 (2012) 1-18.
- [2] O. Kosanan, N. Kantanantha, Thailand's para rubber production forecasting comparison, in: S.I. Ao, O. Castillo, C. Douglas, D.D. Feng, J.-A. Lee (Eds.) International MultiConference of Engineers and Computer Scientists 2014 (IMECS 2014), Newswood Limited, Hong Kong, 2014, pp. 979-984.
- [3] W. Jankangram, Natural rubber latex protein, KKU Res. J., 18 (2013) 996-1002.
- [4] D.C. Blackley, Polymer latexs. : Science and technology, 2nd ed., Chapman & Hall, New York, 1997.
- [5] M.S. Sebastian, Studies on the production, properties and processability of low protein latex, Cochin University of Science and Technology, 2005, pp. 326.
- [6] L. Karunanayake, G.M.P. Perera, Effect of magnesium and phosphate ions on the stability of concentrated natural rubber latex and the properties of natural rubber latex-dipped products, J. Appl. Polym. Sci., 99 (2006) 3120-3124.
- [7] E. Devendar, Manual for certification of ammonia preserved concentrated natural rubber latex (IS 5430: 1981) Bureau of Indian Standards, 2013, pp. 33.
- [8] <http://www.rubbercenter.org/informationcenter/file/magazine3.pdf>, (23/06/2016).

[9] L. Karunananayake, P.H.S. Kumara, W.W. Nandasena, L. Wanigatunga, V. Gamage, C. Lokuge, Magnesium content in natural rubber latex, Bulletin of the Rubber Research Institute of Sri Lanka, 37 (1998) 36-39.

[10] Determination of magnesium (Direct titration method) [NRL: 18] "Second Revision", (IS 3708) Indian Standard; Methods of test for natural rubber latex, Bureau of Indian Standards, New Delhi, 2001, pp. 9.

[11] S. Satienerakul, S. Boonrasri, P. Sutigoolabud, Development of analytical procedure for the determination of magnesium in field latex, The Thailand Research Fund (TRF), Maejo University, 2008, pp. 35.

[12] W. Cheewasedtham, A method and composition for quantifying magnesium ions, in: W.I.P. Organization (Ed.) International Bureau U.S.A., 2011.

[13] W. Cheewasedtham, The development of cyanide-free method for magnesium determination in natural rubber latex, The Thailand Research Fund (TRF), Prince of Songkla University, 2011, pp. 57.

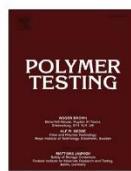
[14] W. Cheewasedtham, Development of free cyanide titration method for magnesium determination in *Hevea brasiliensis* latex to be TIS and ISO standard, The Thailand Research Fund (TRF) and Prince of Songkla University Science Park, Prince of Songkla University, Pattani Campus, 2014, pp. 143.

[15] Rubber-Determination of magnesium content of field and concentrated natural rubber lattices by titration (cyanide-free method), ISO 17403:2014(E), ISO copyright office, Switzerland, 2014, pp. 16.

[16] http://www.marinedepot.com/Red_Sea_Magnesium_Pro_Test_Kit_100_Tests_

Specialty_Test_Kits_for_Saltwater_Aquariums-Red_Sea-RS21415-FITKSI-vi.html,
(23/06/2016).

- [17] http://www.marinedepot.com/Salifert_Magnesium_Test_Kit_Specialty_Test_Kits_for_Saltwater_Aquariums-Salifert-SF1125-FITKSI-vi.html, (23/06/2016).
- [18] http://www.marinedepot.com/Elos_Aqua_Test_Kit_Magnesium_Specialty_Test_Kits_for_Saltwater_Aquariums-Elos_USA-EO4129-FITKSI-vi.html, (23/06/2016).
- [19] http://www.marinedepot.com/NYOS_REFER_Test_Kit_Magnesium_Specialty_Test_Kits_for_Saltwater_Aquariums-Nyos-6D92126-FITKSI-vi.html, (23/06/2016).
- [20] <http://www.sigmaaldrich.com/catalog/product/sigma/mak026?lang=en®ion=TH>,
(23/06/2016).
- [21] J. Sirikarn, Method development for determination of phosphate in natural rubber concentrated latex, Chemistry, Prince of Songkla University, Songkla, 2012, pp. 151.
- [22] Rubber and latex — Determination of copper content — Photometric method, ISO 8053:1995(E), ISO copyright office, Switzerland, 1995, pp. 8.
- [23] H. Kang, Y.S. Kim, G.C. Chung, Characterization of natural rubber biosynthesis in *Ficus benghalensis*, Plant Physiol. Biochem. , 38 (2000) 979-987.
- [24] D.J. Scotta, B.M.T.d. Costa, S.C. Espy, J.D. Keasling, K. Cornish, Activation and inhibition of rubber transferases by metal cofactors and pyrophosphate substrates, Phytochemistry 64 (2003) 123-134.
- [25] R.G. Pearson, Hard and soft acids and bases, J. Am. Chem. Soc., 85 (1963) 3533-3539.
- [26] <http://rubberdigest.com/?p=153>, (23/06/2016).


[27] S. Santipanusopon, S.-A. Riyajan, Effect of field natural rubber latex with different ammonia contents and storage period on physical properties of latex concentrate, stability of skim latex and dipped film, *Phys. Procedia*, 2 (2009) 127-134.

[28] N. Padmavathy, R. Vijayaraghavan, Enhanced bioactivity of ZnO nanoparticles-an antimicrobial study, *Sci. Technol. Adv. Mater.* , 9 (2008) 035004-035010.

[29] D.A. Skoog, D.M. West, F.J. Holler, S.R. Crouch, *Fundamentals of Analytical Chemistry*, 9th ed., Mary Finch, USA, 2014.

Appendix

Appendix A

Analysis Method

Simple test kit based on colorimetry for quantification of magnesium content in natural rubber latex by miniaturized complexometric titration without using masking agent

Nutthaporn Malahom ^a, Purim Jarujamrus ^{a,*}, Rattapol Meelapsom ^a,
Atitaya Siripinyanond ^b, Maliwan Amatatongchai ^a, Sanoe Chairam ^a

^a Department of Chemistry and Center of Excellent for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand

^b Department of Chemistry and Center of Excellent for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand

ARTICLE INFO

Article history:

Received 21 December 2016

Accepted 26 January 2017

Available online 30 January 2017

Keywords:

Magnesium (Mg^{2+})

Test kit

Natural rubber latex (NRL)

Green chemistry

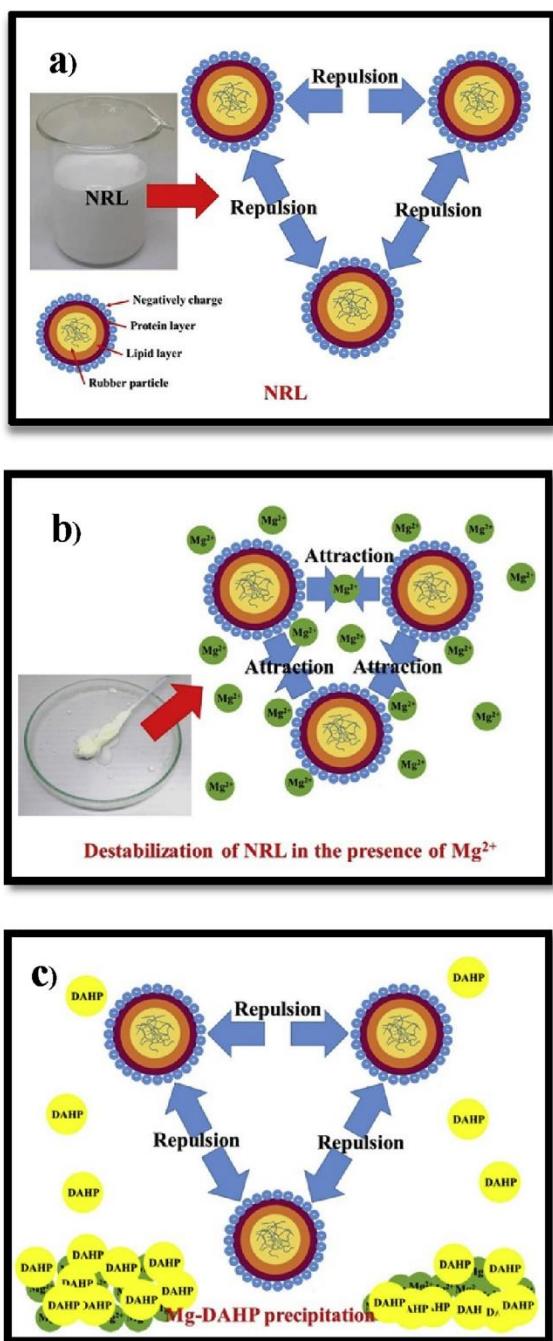
Complexometric titration

ABSTRACT

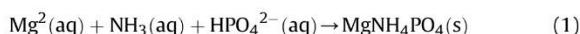
A simple, low-cost and portable field test kit based on colorimetry with detection by naked eye was developed for determination of magnesium content in natural rubber latex (NRL). The miniaturized complexometric titration between Mg^{2+} and EDTA without any masking agent was a key reaction in this development, which was designed according to the concept of green chemistry by reduction of waste generation and chemical and time consumption. The system enabled quantification of magnesium content in NRL at low concentration with the detection limit being $<50\text{ mg L}^{-1}$, small sample volume uptake (0.18 g, sampling by a small spoon) and use of $<1.5\text{ mL}$ reagent volume which was >70 times less than that applied in the conventional method. Moreover, with the presence of potential interference ions, greater selectivity towards magnesium was observed. Furthermore, the reagents used in our developed test kit were stable for >6 months at room temperature. The results obtained on real samples were in agreement with those obtained from the conventional complexometric titration (ISO 17403: 2014(E)) method. The proposed technique provides a low-cost, rapid, simple, selective and on-site analysis of magnesium content in NRL.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction


Para rubber tree (*Hevea brasiliensis* Muell. Arg.) is a very important economic plant in Thailand where over three million tons a year of Natural Rubber Latex (NRL, the product of Para rubber tree) is exported [1,2]. The major component in NRL is *cis*-1,4-polyisoprene with non-rubber components such as carbohydrates, proteins and lipid based medium for bacteria growing. pH values of normal NRL solution range from 6 to 7 [3,4]. Under this condition, the surface of NRL particles will become negatively charged due to the presence of carboxylate ions of protein (Alpha-globulin with pI of 4.8) and the hydrolysis of R-Lecithin phospholipid on the NRL surface [4] (Fig. 1a). A critical step in production of NRL with high quality is identification of NRL components.

Magnesium (Mg^{2+}) is one of the most important components suppressing NRL performance and quality, e.g. by direct interaction of Mg^{2+} with the carboxylate ions contained in the NRL. This produces insoluble, unhydrated and un-ionized magnesium soap and insoluble magnesium hydroxide in the aqueous phase. Both of these phenomena invariably cause destabilization of NRL. Furthermore, Mg^{2+} ions can form primary valence linkages between the interface of adjacent latex particles. This can initiate flocculation and further lead to destabilization of NRL [5] Fig. 1b.


Mg^{2+} concentration is limited to within 40 mg L^{-1} prior to distribution to manufacturers such as glove and condom companies [6]. Normally, removal of Mg^{2+} in rubber is performed based on a precipitation reaction, e.g. by addition of excess amount of ammonium phosphate (>5 times of Mg^{2+} concentration) to rubber latex solution. Alternatively, diammmonium hydrogen phosphate (DAHP) can be used for precipitation of Mg^{2+} with the related reaction shown in Eq (1) [7,8] and Fig. 1c.

* Corresponding author.

E-mail address: purim.j@ubu.ac.th (P. Jarujamrus).

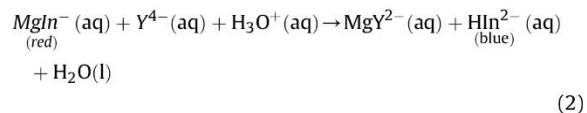


Fig. 1. Carboxylate ions contained in the NRL **a)** the proposed mechanism between Mg^{2+} ions and NRL **b)** elimination of Mg^{2+} by adding DAHP into NRL **c)**.

A conventional approach involves Mg^{2+} analysis in NRL based

on the complexometric titration with ethylenediamine tetraacetic acid (EDTA, H_2Y^{2-}), disodium salt (soluble form) using eriochrome black T (EBT) as an indicator. Since dissociation of EDTA disodium salt and EBT depends on pH of the medium, addition of ammonium chloride (NH_4Cl)/ammonium hydroxide (NH_4OH) buffer solution is required in order to control pH of the solution to be ≥ 10 , facilitating reaction between EBT and Mg^{2+} . At the end point of the reaction, the solution color changes from red to blue, according to the reaction shown in Eq (2) [8], for Mg^{2+} analysis in NRL.

Apart from the well controlled pH of the solution facilitating interaction between Mg^{2+} and EDTA, a masking agent is also added to prevent foreign ions, such as potassium (K^+), sodium (Na^+), calcium (Ca^{2+}), zinc (Zn^{2+}), iron (Fe^{3+}), copper (Cu^{2+}) and manganese (Mn^{2+}) interfering complexation between Mg^{2+} and EDTA in NRL. Potassium cyanide (KCN) is a common masking agent used in the standard method [9,10]. However, it is well known that cyanide compounds are very toxic. Therefore, development of a cyanide-free method for determination Mg^{2+} in NRL is still a challenge.

Satheinperakul et al. (2008) [11] have reported methods for magnesium determination in natural rubber latex based on the potentiometric titration with a Hg-EDTA electrode. Masking agents were not applied since they disturbed the end point of the titration. Their methods showed linearity range for Mg^{2+} detection from 36 to 126 mg L⁻¹, which is in good agreement with the results obtained from atomic absorption spectrometry. Unfortunately, they found that the presence of zinc and cadmium at high levels interfered with the determination of Mg^{2+} . In 2011, a method and composition for quantifying magnesium ions based on conventional complexometric titration was patented (WO2011139245) using NaHS as a selectively precipitating interfering metal ions in NRL instead of using KCN as mentioned above [12]. Afterwards, ISO 17403: 2014(E), Rubber-Determination of magnesium content of field and concentrated natural rubber latices by titration (cyanide-free method by using NaHS as a masking agent) [13–15] was established in 2014. However, the reported approaches are still complicated in terms of multiple steps of analysis including need for sample pretreatment before analysis, reagent volume consumption (>105 mL), resulting in more waste and potential interference ions in NRL if a masking agent was not applied (Table 1.). Moreover, many reagents are needed for analysis which also requires skill to perform in the laboratory.

Nowadays, two types of test kit for magnesium detection based on colorimetry have been commercially available. One is the field test kit in seawater based on complexometric titration without addition of masking agents. A limit of detection (LOD) is found within the range of 15–100 mg L⁻¹ [16–19]. Moreover, interference from calcium and strontium was not observed. Another type of the commercial test kit is based on an enzymatic assay performed in a 96 well flat-bottom plate coupled with spectrophotometer detection at 450 nm [20]. The assay involves specific interaction between glycerol kinase enzyme and Mg^{2+} which results in a linear range of 1.5–7.5 mg L⁻¹ without interference from foreign ions such as Fe^{2+} , Cu^{2+} , Ni^{2+} , Zn^{2+} , Co^{2+} , Ca^{2+} and Mn^{2+} . However, the approach as mentioned above is costly and requires expertise to perform (Table A). A miniaturized complexometric titration between Mg^{2+} and EDTA is thus considered to be a key reaction in this development.

In this work, a simple (no requirement of skill for analysis, not

Table 1

Selectivity study towards Mg^{2+} compared with the other metal ions (Zn^{2+} , Ca^{2+} , Fe^{3+} , Cu^{2+} , Mn^{2+} , K^+ and Na^+ tested using complexometric titration reported in the tolerance concentration ($mg\cdot L^{-1}$) ($n = 3$).

Interference	Tolerance concentration ($mg\cdot L^{-1}$)	With masking agent				Without masking agent			
		Mg^{2+} content ($mg\cdot L^{-1}$)		% Relative different		Mg^{2+} content ($mg\cdot L^{-1}$)		% Relative different	
		1st collection	2nd collection	1st collection	2nd collection	1st collection	2nd collection	1st collection	2nd collection
Original NRL	—	524.02 \pm 11.89	256.16 \pm 2.99	—	—	534.81 \pm 17.40	289.87 \pm 23.37	—	—
Zn^{2+}	793.62	470.60 \pm 2.85	—	—9.86	—	611.60 \pm 2.47	—	+14.36	—
Ca^{2+}	955.82	545.10 \pm 3.72	—	+4.02	—	565.40 \pm 7.03	—	+5.72	—
Fe^{3+}	157.52	—	272.60 \pm 1.26	+6.42	—	—	315.20 \pm 7.13	+8.74	—
Cu^{2+}	244.14	—	232.50 \pm 1.53	-9.23	—	—	N.D.	—	—
Mn^{2+}	53.93	—	267.90 \pm 0.77	+4.58	—	—	330.90 \pm 3.48	+14.15	—
K^+	2171.29	—	235.20 \pm 7.16	-8.18	—	—	228.90 \pm 23.32	-21.03	—
Na^+	1356.97	—	239.50 \pm 2.72	-6.50	—	—	225.50 \pm 7.63	-22.21	—

U_3 was used as model sample in this study.

N.D. (Not detectable; end point of the titration cannot be accomplished).

Due to the NRL can be stable around 4 h, therefore, NRL is needed to collect several time to accomplish the experiment.

$$\% \text{Relative different} = \left[\frac{Mg^{2+} \text{contents from original NRL} - Mg^{2+} \text{contents from added concentration of foreign ions}}{Mg^{2+} \text{contents from original NRL}} \right] \times 100.$$

demanding sample pretreatment before analysis), low-cost (small sample and reagents volume uptake) and portable field test kit based on colorimetry using naked eye for determination of magnesium content in NRL was established. The novelty of this work is the use of a miniaturized complexometric titration between Mg^{2+} and EDTA (even without using masking agent) which were designed according to the concept of 'Green chemistry' reducing waste generation, and minimizing use of chemicals and consumption of time (at least simple two reagents (EBT indicator for reagent A; EDTA in ammonium buffer for reagent B) for test kit set up). The developed test kit was applied for investigation of the effect of the presence of potential interference ions, preservatives used in NRL and the possibility for practical use in concentrated rubber latex (CRL). Stability of reagents applied in the kit and the analysis performances in real samples were investigated and discussed.

2. Experimental section

2.1. Chemicals and materials

All chemicals were analytical grade. All solutions were prepared in deionized water with 18 $M\Omega$ resistance (obtained from a Millipore Milli-Q purification system, Bedford, MA, USA). The NRL in this research was collected from 6 areas (U_1 – U_3 and K_1 – K_3) in Ubon Ratchathani province (U) and Kalasin province (K). Magnesium sulfate heptahydrate ($MgSO_4 \cdot 7H_2O$, Panreac), calcium carbonate ($CaCO_3$, Fluka), ethylenediamine tetraacetic acid ($C_{10}H_{14}N_2Na_2O_8 \cdot 2H_2O$; EDTA, Fisher Chemical) and eriochrome black T ($C_{20}H_{12}N_3O_7SNa$; EBT, LABCONCO), ethanol 99%, v/v (C_2H_5OH , Sigma-Aldrich), ammonium chloride (NH_4Cl , Fluka) and ammonium hydroxide (NH_4OH , Fluka) and sodium hydrogen sulfide ($NaHS \cdot xH_2O$, ACROS ORGANICS) were used as reagents in the conventional complexometric titration and our developed small-scale test kit for Mg^{2+} identification in NRL. NH_4OH , zinc oxide (ZnO , Carlo Erba) and tetramethyl thiuram disulfide ($C_6H_{12}N_2S_4$, TMTD, Sigma-Aldrich) were used as preservatives in NRL. The following chemicals were used as received: calcium nitrate ($Ca(NO_3)_2$), potassium sulfate (K_2SO_4), sodium chloride ($NaCl$), copper(II) sulfate pentahydrate ($CuSO_4 \cdot 5H_2O$), and manganese sulfate monohydrate ($MnSO_4 \cdot H_2O$), which were obtained from Carlo Erba. Iron(II) sulfate heptahydrate ($FeSO_4 \cdot 7H_2O$, Unilab), zinc sulfate heptahydrate ($ZnSO_4 \cdot 7H_2O$, Fluka), concentrated nitric acid 65%, v/v (HNO_3 , Sigma-Aldrich) were used in interference study. Paraffin oil purchased from LABCONCO was used in the acid

digestion method of FAAS analysis. Serum container (10 mL) and eyes drop bottles (10 mL) were obtained from a pharmacy store in Ubon Ratchathani and used as containers for reagents A and B, respectively. Plastic coffee spoons obtained from a local supermarket in Ubon Ratchathani were used as sampling spoons.

2.2. Instruments

A flame atomic absorption spectrophotometer (PinAAcle 900T; Perkin Elmer, US) equipped with hollow cathode lamps (HCL) was exploited to determine concentrations of Mg^{2+} and interfering ions (Cu^{2+} , Mn^{2+} , K^+ , Fe^{3+} , Zn^{2+} , Ca^{2+} and Na^+) in NRL samples for method validation with the operated conditions shown in Table 2.

2.3. Preparation of reagents

2.3.1. Conventional method

ISO 17403: 2014(E) [15] was applied as a conventional method with slight modification. Briefly, $CaCO_3$ (0.500 g) was dissolved in 1 L of DI water (5×10^{-3} mol L^{-1}) as a primary standard. EDTA (1.86 g) was dissolved in 1 L of DI water (5×10^{-3} mol L^{-1}). The equivalent mole ratio between Mg^{2+} standard and the EDTA solution is 1:1. pH of the system was adjusted to be 10.5 by using 0.06 mol L^{-1} NH_4Cl/NH_4OH buffer solution (which was prepared by dissolving 67.5 g of NH_4Cl in 250 mL of DI water). After that, 570 mL of 25%, w/w NH_4OH were added to NH_4Cl solution and brought up to 1 L with DI water. An indicator was prepared by dissolving EBT (0.1 g) in 100 mL of 75%, v/v ethanol (2.16×10^{-4} mol L^{-1}). A masking agent, $NaHS \cdot xH_2O$ (1.68 g) was dissolved in 100 mL of DI water (0.3 mol L^{-1}).

Table 2
The operating conditions of FAAS.

FAAS parameter	Wavelength (nm)/Lamp current (mA)
Mg	285.2/84
Ca	422.7/86
Zn	213.9/67
Cu	324.8/89
Fe	248.3/62
Mn	279.5/66
K	766.5/116
Na	589.0/77
Slit width (nm)	0.7
Air flow rate ($m^3 \cdot s^{-1}$)	8.0
Acetylene flow rate ($m^3 \cdot s^{-1}$)	2.5

2.3.2. Test kit based colorimetry

The small-scale test kit was developed based on the conventional method. The approaches were based on complexometric titration between Mg^{2+} and EDTA using NaHS as a masking agent (or without any masking agent). The optimized procedure was as follows; Samples were transferred by plastic spoons (~0.18 g). Reagent A was 2.16×10^{-4} mol L⁻¹ EBT indicator with the EBT:DI volume ratio of 3:10. Reagent B was 5.48×10^{-3} mol L⁻¹ EDTA which was prepared by dissolving EDTA (0.02 g) into a 0.06 mol L⁻¹ NH₄Cl/NH₄OH buffer (6.67 mL), followed by addition of 0.3 mol L⁻¹ NaHS.xH₂O (3.33 mL) as a masking agent. The droplets of reagents A and B were generated by using eye drop bottles (~0.065 mL.drop⁻¹).

2.4. Method validation

Complexometric titration was performed with slight modification according to ISO 17403: 2014(E) [15]. Briefly, NRL (2.0 g) was transferred into a conical flask followed by addition of 100 mL of DI water. 0.06 mol L⁻¹ NH₄Cl/NH₄OH buffer solution (2.0 mL) was then added to control the NRL solution pH within the range of 10.0–10.5. Next, 2.16×10^{-4} mol L⁻¹ EBT indicator (1.0 mL) was dropped into the NRL solution. The 0.3 mol L⁻¹ masking agent (1.0 mL) was added into the solution and also diluted in water (100 mL). The solution was then titrated with the standard 5×10^{-3} mol L⁻¹ EDTA solution (which was standardized with 5×10^{-3} mol L⁻¹ CaCO₃) until the red solution vanished and became pure blue. This titration approach was evaluated by comparison with FAAS which is a reliable technique with high accuracy and precision. The sample preparation for FAAS analysis was performed with slight modification [21,22] by transferring NRL (0.25 g) to a test tube followed by addition of concentrated HNO₃ (65% v/v) (4.0 mL). The solution was heated in an oil bath at 165 °C resulting in a transparent solution which was then cooled and diluted with HNO₃ (2%, v/v) prior to the FAAS analysis.

For interferences study, a masking agent was added in order to reduce interference in Mg^{2+} analysis by undergoing complexation with the foreign ions in the NRL solution. In this study, the investigated ions were Fe³⁺, Cu²⁺, Mn²⁺, K⁺, Zn²⁺, Ca²⁺ and Na⁺ at concentrations of 50, 100, 150, 250, 500, 750, 1000 and 1500 mg L⁻¹, respectively. The results obtained from the complexometric titration with the masking agent were then compared with those obtained without the masking agent. NRL number of U₃ was used as model sample in this study. As the NRL can be stable for approximately 4 h, fresh NRL was collected freshly several times during the experiment in order to prevent the NRL coagulating.

For the test kit application (Figs. 2–3), reagent A was transferred by a dropper up to the marked level into a reaction bottle. Then, a small spoon was used to transfer NRL into the reaction bottle. The NRL solution was shaken resulting in the purple color observed by naked eye, as shown by the color chart 1 in Fig. 2. Reagent B was then added drop by drop and shaken (every 10 s) to the solution until the blue color of NRL solution was observed, see also the color chart 2 in Fig. 2. The number of drops was recorded. For accuracy study, the recovery test was performed by spiking Mg^{2+} to NRL solution at concentrations of 40 and 80 mg L⁻¹.

2.5. Study of preservatives in NRL on our developing test kit

The preservative solutions of 0.2%, w/v NH₄OH and mixture of 0.2%, w/v NH₄OH, 0.025%, w/w ZnO and 0.025%, w/w TMTD, respectively, were added to the NRL sample. Mg^{2+} content in the treated NRL was then quantified and the result was compared with that obtained by the conventional method (complexometric titration).

2.6. Stability test for reagents (A and B) and application of the developed test kit for practical sample analysis

Reagents A and B were left at room temperature for 6 months prior to the application with the test kit for Mg^{2+} determination. The results were compared with that obtained by the conventional complexometric titration method.

Samples were collected from several regions in Ubon Ratchathani province (U₂–U₃) and Kalasin province (K₁–K₃), Thailand. In each analysis, identification of Mg^{2+} was performed by applying the developed test kit, which was operated by three different users. The results were averaged and compared with those obtained by the conventional complexometric titration method.

3. Results and discussion

3.1. Optimization of the developed test kit

The optimized sample amount scooped by using a small spoon was 0.1731 ± 0.02 g (Table B1) and the optimized reagent volume dropped by using an eye drop bottle was 0.065 ± 0.004 mL (Table B2). In this study, reagent A (EBT, HIn²⁻) was applied as an indicator; while the EDTA, buffer solution and masking reagents were mixed in reagent B. Reagent A needs to be separated from the system prior to analysis due to the poor solubility of the indicator in the reagent B matrix, as well as the complexation between the indicator and Mg^{2+} , as analysis has to be carried out before addition of EDTA, as demonstrated in equation (2).

The optimized condition for reagent A was obtained by variation of a number of droplets (1–8 drops) applied in different bottles each of which had already been filled in with 50 mg L⁻¹ of Mg^{2+} in DI water. The optimized number of droplets was three drops (Fig B1a) since the use of >3 drops resulted in precipitation of NRL whilst using of 1–2 drops led to low color intensity of the end point of the titration reaction which is difficult to see by naked eye. However, the addition of three drops into practical NRL samples resulted in precipitation of NRL since EBT was dissolved in ethanol which precipitated NRL (Fig B1b). EBT solution was thus diluted with DI water with the selected EBT:DI water ratio of 3:10, which was marked at the level shown on the dropper for sampling of reagent A.

EDTA is a limiting reagent in the complexometric titration reaction for Mg^{2+} determination. The stoichiometric amount of EDTA to react Mg^{2+} with theoretical concentrations of 25, 50 and 100 mg L⁻¹ corresponded to the optimized number of droplets for reagent B being 1 drop per 50 mg L⁻¹ of Mg^{2+} (with the volume of ~0.065 mL including buffer solution and masking reagents), details and explanation are shown in Tables B3 and B4. This condition was obtained by taking in account solution miscibility and buffer capacity (β) where a drop of reagent B was found with $\beta = 2.17$ M per 0.1 pH unit. This is sufficient for the resistance to pH change in the developed test kit as well as being applicable even when excess amount of reagent B was applied, see also Table B5.

3.2. Validation of the developed test kit

Comparison of the analysis results between complexometric titration (standard method) and FAAS techniques (reference method) was made for Mg^{2+} content in NRL samples obtained from U₁ and U₃. The results obtain from *t*-test showed $t_{stat} = 1.02$ whereas $t_{critical} = 2.78$ revealed that there is no statistical difference between these two methods with a confidence level of 95% (Table 3). Due to the simplicity and lower analysis cost, the titration method was selected as the benchmark method for determination of Mg^{2+} in NRL samples. In addition, our test kit was developed

2.3.2. Test kit based colorimetry

The small-scale test kit was developed based on the conventional method. The approaches were based on complexometric titration between Mg^{2+} and EDTA using NaHS as a masking agent (or without any masking agent). The optimized procedure was as follows; Samples were transferred by plastic spoons (~0.18 g). Reagent A was 2.16×10^{-4} mol L⁻¹ EBT indicator with the EBT:DI volume ratio of 3:10. Reagent B was 5.48×10^{-3} mol L⁻¹ EDTA which was prepared by dissolving EDTA (0.02 g) into a 0.06 mol L⁻¹ NH₄Cl/NH₄OH buffer (6.67 mL), followed by addition of 0.3 mol L⁻¹ NaHS.xH₂O (3.33 mL) as a masking agent. The droplets of reagents A and B were generated by using eye drop bottles (~0.065 mL.drop⁻¹).

2.4. Method validation

Complexometric titration was performed with slight modification according to ISO 17403: 2014(E) [15]. Briefly, NRL (2.0 g) was transferred into a conical flask followed by addition of 100 mL of DI water. 0.06 mol L⁻¹ NH₄Cl/NH₄OH buffer solution (2.0 mL) was then added to control the NRL solution pH within the range of 10.0–10.5. Next, 2.16×10^{-4} mol L⁻¹ EBT indicator (1.0 mL) was dropped into the NRL solution. The 0.3 mol L⁻¹ masking agent (1.0 mL) was added into the solution and also diluted in water (100 mL). The solution was then titrated with the standard 5×10^{-3} mol L⁻¹ EDTA solution (which was standardized with 5×10^{-3} mol L⁻¹ CaCO₃) until the red solution vanished and became pure blue. This titration approach was evaluated by comparison with FAAS which is a reliable technique with high accuracy and precision. The sample preparation for FAAS analysis was performed with slight modification [21,22] by transferring NRL (0.25 g) to a test tube followed by addition of concentrated HNO₃ (65% v/v) (4.0 mL). The solution was heated in an oil bath at 165 °C resulting in a transparent solution which was then cooled and diluted with HNO₃ (2%, v/v) prior to the FAAS analysis.

For interferences study, a masking agent was added in order to reduce interference in Mg^{2+} analysis by undergoing complexation with the foreign ions in the NRL solution. In this study, the investigated ions were Fe³⁺, Cu²⁺, Mn²⁺, K⁺, Zn²⁺, Ca²⁺ and Na⁺ at concentrations of 50, 100, 150, 250, 500, 750, 1000 and 1500 mg L⁻¹, respectively. The results obtained from the complexometric titration with the masking agent were then compared with those obtained without the masking agent. NRL number of U₃ was used as model sample in this study. As the NRL can be stable for approximately 4 h, fresh NRL was collected freshly several times during the experiment in order to prevent the NRL coagulating.

For the test kit application (Figs. 2–3), reagent A was transferred by a dropper up to the marked level into a reaction bottle. Then, a small spoon was used to transfer NRL into the reaction bottle. The NRL solution was shaken resulting in the purple color observed by naked eye, as shown by the color chart 1 in Fig. 2. Reagent B was then added drop by drop and shaken (every 10 s) to the solution until the blue color of NRL solution was observed, see also the color chart 2 in Fig. 2. The number of drops was recorded. For accuracy study, the recovery test was performed by spiking Mg^{2+} to NRL solution at concentrations of 40 and 80 mg L⁻¹.

2.5. Study of preservatives in NRL on our developing test kit

The preservative solutions of 0.2%, w/v NH₄OH and mixture of 0.2%, w/v NH₄OH, 0.025%, w/w ZnO and 0.025%, w/w TMTD, respectively, were added to the NRL sample. Mg^{2+} content in the treated NRL was then quantified and the result was compared with that obtained by the conventional method (complexometric titration).

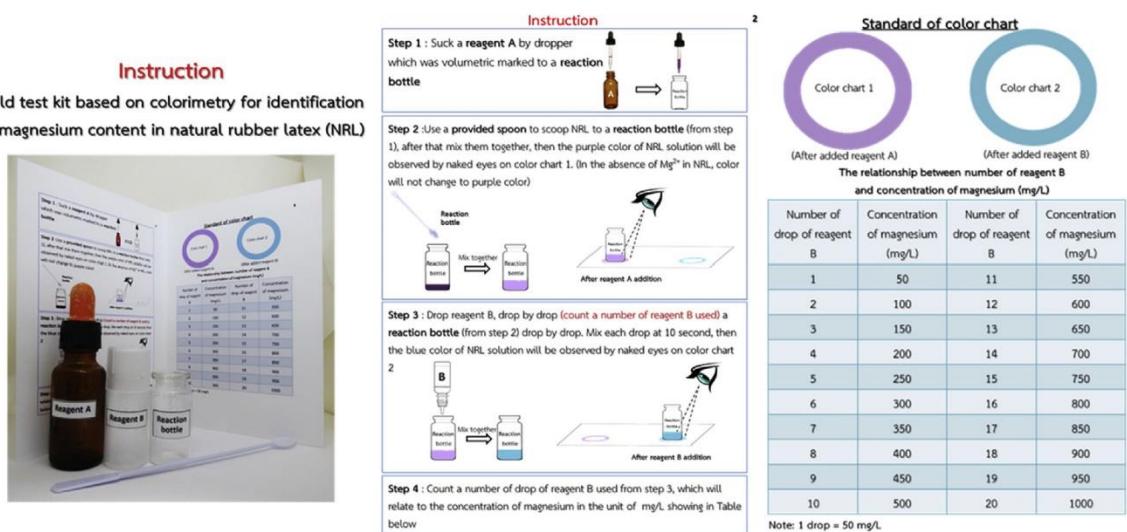
2.6. Stability test for reagents (A and B) and application of the developed test kit for practical sample analysis

Reagents A and B were left at room temperature for 6 months prior to the application with the test kit for Mg^{2+} determination. The results were compared with that obtained by the conventional complexometric titration method.

Samples were collected from several regions in Ubon Ratchathani province (U₂–U₃) and Kalasin province (K₁–K₃), Thailand. In each analysis, identification of Mg^{2+} was performed by applying the developed test kit, which was operated by three different users. The results were averaged and compared with those obtained by the conventional complexometric titration method.

3. Results and discussion

3.1. Optimization of the developed test kit


The optimized sample amount scooped by using a small spoon was 0.1731 ± 0.02 g (Table B1) and the optimized reagent volume dropped by using an eye drop bottle was 0.065 ± 0.004 mL (Table B2). In this study, reagent A (EBT, HIn²⁻) was applied as an indicator; while the EDTA, buffer solution and masking reagents were mixed in reagent B. Reagent A needs to be separated from the system prior to analysis due to the poor solubility of the indicator in the reagent B matrix, as well as the complexation between the indicator and Mg^{2+} , as analysis has to be carried out before addition of EDTA, as demonstrated in equation (2).

The optimized condition for reagent A was obtained by variation of a number of droplets (1–8 drops) applied in different bottles each of which had already been filled in with 50 mg L⁻¹ of Mg^{2+} in DI water. The optimized number of droplets was three drops (Fig B1a) since the use of >3 drops resulted in precipitation of NRL whilst using of 1–2 drops led to low color intensity of the end point of the titration reaction which is difficult to see by naked eye. However, the addition of three drops into practical NRL samples resulted in precipitation of NRL since EBT was dissolved in ethanol which precipitated NRL (Fig B1b). EBT solution was thus diluted with DI water with the selected EBT:DI water ratio of 3:10, which was marked at the level shown on the dropper for sampling of reagent A.

EDTA is a limiting reagent in the complexometric titration reaction for Mg^{2+} determination. The stoichiometric amount of EDTA to react Mg^{2+} with theoretical concentrations of 25, 50 and 100 mg L⁻¹ corresponded to the optimized number of droplets for reagent B being 1 drop per 50 mg L⁻¹ of Mg^{2+} (with the volume of ~0.065 mL including buffer solution and masking reagents), details and explanation are shown in Tables B3 and B4. This condition was obtained by taking in account solution miscibility and buffer capacity (β) where a drop of reagent B was found with $\beta = 2.17$ M per 0.1 pH unit. This is sufficient for the resistance to pH change in the developed test kit as well as being applicable even when excess amount of reagent B was applied, see also Table B5.

3.2. Validation of the developed test kit

Comparison of the analysis results between complexometric titration (standard method) and FAAS techniques (reference method) was made for Mg^{2+} content in NRL samples obtained from U₁ and U₃. The results obtained from *t*-test showed $t_{stat} = 1.02$ whereas $t_{critical} = 2.78$ revealed that there is no statistical difference between these two methods with a confidence level of 95% (Table 3). Due to the simplicity and lower analysis cost, the titration method was selected as the benchmark method for determination of Mg^{2+} in NRL samples. In addition, our test kit was developed

Fig. 2. The instruction of "Field test kit based on colorimetry for determination of magnesium content in natural rubber latex (NRL)".

1. The optimized reagent A was taken by a dropper up to the marked level into a reaction bottle.

2. Addition of NRL sample by a small spoon was used to transfer NRL into the reaction bottle. The NRL solution was shaken together resulting in the purple color observed by naked eyes, as shown by the color chart 1 in Fig 2.

3. Reagent B was then added drop by drop (every 10 second) into the solution until the blue color of NRL solution was observed, see also the color chart 2 in Fig 2.

Fig. 3. The operation of developed test kit based on colorimetry using naked eyes for determination of magnesium content in natural rubber latex (NRL) operated in NRL sample containing $775 \text{ mg L}^{-1} \text{ Mg}^{2+}$ (16 drops were performed).

Table 3
Comparison of Mg^{2+} content (mg L^{-1}) at different area of NRL between Flame Atomic Absorption Spectroscopy, FAAS and complexometric titration ($n = 3$).

Area of NRL	Mg^{2+} content (mg L^{-1})	
	FAAS method	Complexometric titration method
U ₁	746.90 ± 0.002	748.48 ± 7.07
U ₁	800.02 ± 0.008	770.90 ± 8.22
U ₁	873.81 ± 0.001	812.17 ± 3.62
U ₃	283.12 ± 0.001	306.18 ± 5.30
U ₃	342.55 ± 0.001	322.52 ± 4.39
U ₃	363.89 ± 0.001	375.13 ± 26.08

U₁ and U₃ were collected 3 times.

based on scaling down the process for the complexometric titration between Mg^{2+} and EDTA with [13–15]/without NaHS as a masking agent. In order to study the ability of NaHS to be used as a masking agent, interferences in Mg^{2+} analysis caused by complexation with

the potential foreign ions in the NRL solution (Fe^{3+} , Cu^{2+} , Mn^{2+} , K^{+} , Zn^{2+} , Ca^{2+} , and Na^{+}) were assessed. The resulting tolerance concentration (mg L^{-1} , which was defined as the added concentrations of foreign ions that reveal significant changes of % error to be within $\pm 10\%$) data are shown in Table 1. The % error values obtained from complexometric titration using the masking agent were lower than those obtained without masking agent, especially with the presence of Cu^{2+} where the end point of the titration could not be identified without the masking agent. This indicates the requirement for addition of masking agent (here being NaHS) for improved analysis reliability. According to the observed high tolerance concentrations, it can be concluded that the investigated ions could not interfere the analysis of practical NRL samples. Note that the result revealed relatively low tolerance concentrations for Fe^{3+} , Cu^{2+} , and Mn^{2+} . However, the concentrations of these ions in the real NRL are very much lower than the studied concentrations [8,23,24] (see further explanation in Table C). The function of NaHS as a masking

agent for Mg^{2+} analysis in NRL can be explained by formation of complexes with foreign metal ions according to the Hard-Soft acid-base reaction. Na^+ can be considered as hard acid and HS^- is soft base which does not prefer to react with Mg^{2+} (hard-acid). However, interference ions in NRL are mostly soft acids favorably interacting with HS^- . The resulting complexes are stable and not likely to react with EDTA [25]. These investigations corresponded to the results obtained in reported works [13–15].

Therefore, the evaluated complexometric titration was further used as the reference method by comparison with our developed test kit for quantification of Mg^{2+} from U_1 and U_2 as well as these samples spiked with 40 and 80 mg L^{-1} Mg^{2+} , respectively. The complexometric titration results were insignificantly different from the results obtained from the test-kit approach ($t_{\text{stat}} = 6.42$ and $t_{\text{critical}} = 2.78$). Furthermore, the analytical recoveries were also in an acceptable range of 100.6–102.4 for NRL sample. (Table 4).

3.3. Effect of preservatives in NRL on our developed test kit

In general, preservation of NRL can be long-term with the aim to maintain NRL quality during storage and transportation by addition of preservatives to the samples. Short-term preservation involves a few days storage of liquid samples prior to further processing. The related additives are anticoagulant in NRL. A mixture of 0.2%, w/v NH_4OH , 0.025%, w/w ZnO and 0.025%, w/w TMTD are normally used in formulation processes in Thailand as alternative to the sole use of NH_4OH , which has a pungent smell as well as causing environmental pollution and respiratory system irritation when released into the atmosphere [26]. Ammonia solution (NH_4OH) is conventionally added to the samples as a primary preservative in the concentration ranging from 0.2 to 0.5%, w/v which can inhibit reaction with bacteria under high pH condition and precipitate $Mg(OH)_2$ (reduction of free Mg^{2+} , Fig. 4) [27]. ZnO and TMTD were added to NRL as secondary preservatives which stabilize NRL dispersed system. ZnO and TMTD can preserve natural rubber latex (by inhibiting bacteria growth) in the presence of small amounts of ammonia [4,28]. The results are shown in Table 5. When the preservative solutions of 0.2%, w/v NH_4OH , 0.025%, w/w ZnO and 0.025%, w/w TMTD were added to the NRL samples, Mg^{2+} content quantified by complexometric titration was slightly decreased in

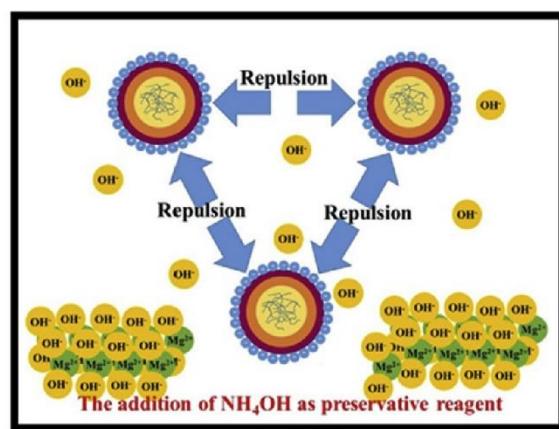


Fig. 4. The proposed mechanism when NH_4OH as preservative were performed.

the system containing 0.2%, w/v NH_4OH . Moreover, Mg^{2+} content in the treated NRL analyzed by our developed test kit was not statistically different from that obtained by the complexometric titration. This suggests that the preservatives used in NRL did not affect the developed test kit system.

3.4. Stability of reagents (A and B) and real samples application

Stability of reagents applied in the developed test kit method was studied. Reagent A and B were left at room temperature for 6 months. The resulting Mg^{2+} concentrations determined in both cases were compared with the analysis obtained by using freshly prepared reagents. The results showed good stability of both reagents, as shown in Table 6. Furthermore, the proposed method for Mg^{2+} determination in NRL was evaluated by analyzing real samples from U_1 , U_2 and K_1 – K_3 with concentrations of Mg^{2+} within in the ranges of 450–600 mg L^{-1} and 500–550 mg L^{-1} , respectively. The results for all the samples were in good agreement with the values obtained from complexometric titration, see also Table 7.

Table 4
Recovery study by comparison between complexometric titration and our developed test kit ($n = 3$).

Area of NRL	Mg^{2+} content by complexometric titration (mg. L^{-1})	Our developed test kit			
		Number of drops (1 drop = 50 mg L^{-1})	Mg^{2+} content (mg. L^{-1})	Average of Mg^{2+} content (mg. L^{-1})	% Recovery
Original U_1	748.48 ± 7.07	15	750	750.0	—
		15	750		
		15	750		
U_1 added 40 mg L^{-1} of Mg^{2+}	770.90 ± 8.22	16	800	800.0	101.3
		16	800		
		16	800		
U_1 added 80 mg L^{-1} of Mg^{2+}	812.17 ± 3.62	17	850	850.0	102.4
		17	850		
		17	850		
Original U_2	431.96 ± 0.84	10	500	500.0	—
		10	500		
		10	500		
U_2 added 40 mg L^{-1} of Mg^{2+}	488.49 ± 14.55	11	550	550.0	101.9
		11	550		
		11	550		
U_2 added 80 mg L^{-1} of Mg^{2+}	560.30 ± 6.05	12	600	583.3	100.6
		11	550		
		12	600		

Table 5

Effect of preservatives used in NRL on our developed test kit (n = 3).

Type of samples	Mg ²⁺ content by complexometric titration (mg.L ⁻¹)	Our developed test kit		
		Number of drops (1 drop = 50 mg L ⁻¹)	Average of Mg ²⁺ content (mg.L ⁻¹)	% Relative different
Original NRL	775.3 ± 9.25	15 15 15	750.0	+3.3
NRL preserved with 0.2% NH ₄ OH	500.7 ± 4.39	10 10 10	500.0	+0.1
NRL preserved with 0.2% NH ₄ OH, 0.025% ZnO and 0.025%TMTD	611.7 ± 14.01	11 11 11	550.0	+10.1

U₂ was used as model sample in this study.

$$\% \text{Relative different} = \left[\frac{\text{Mg}^{2+} \text{ contents from complexometric titration} - \text{Mg}^{2+} \text{ contents from our developing test kit}}{\text{Mg}^{2+} \text{ contents from complexometric titration}} \right] \times 100.$$

The results from these two methods showed $t_{\text{stat}} = 1.02$ and $t_{\text{critical}} = 12.71$ which are not statistically different with the confidence level of 95%.**Table 6**

Stability of our developed test kit (reagent A and B) (n = 3).

Area	Type of sample	Mg ²⁺ content by complexometric titration (mg.L ⁻¹)	6 months of reagent A		6 months of reagent B	
			Average of Mg ²⁺ content (mg.L ⁻¹)	% Relative different	Average of Mg ²⁺ content (mg.L ⁻¹)	% Relative different
U ₂	Original NRL	719.1 ± 3.3	683.3	-5.0	700.0	-2.7
	NRL mixed with preservatives ^a	611.7 ± 14.0	566.5	-7.4	566.5	-7.4
U ₃	Original NRL	667.1 ± 7.5	633.3	-5.1	615.5	-7.6
	NRL mixed with preservatives ^a	582.4 ± 1.4	600.0	+3.0	600.0	+3.0

For stability test of Reagent A, the reagent B was freshly prepared. On the other hand, for stability test of Reagent B, the reagent A was freshly prepared.

$$\% \text{Relative different} = \left[\frac{\text{Mg}^{2+} \text{ contents from complexometric titration} - \text{Mg}^{2+} \text{ contents from our developing method}}{\text{Mg}^{2+} \text{ contents from complexometric titration}} \right] \times 100.$$

^a Preservatives is a mixed solution of 0.2%NH₄OH, 0.025% ZnO and 0.025%TMTD in NRL.**Table 7**

Real sample application of NRL using our developed test kit.

Area	Mg ²⁺ content by complexometric titration (mg.L ⁻¹)	Subject	Our developed test kit		% Relative different
			Number of drops	Mg ²⁺ content (mg.L ⁻¹)	
U ₁	523.1 ± 13.0	1	11	550	+5.14
		2	12	600	+14.70
		3	11	550	+5.14
U ₂	465.1 ± 6.9	1	10	500	+7.50
		2	9	450	-3.25
		3	10	500	+7.50
K ₁	518.0 ± 11.4	1	11	550	+6.18
		2	11	550	+6.18
		3	11	550	+6.18
K ₂	491.1 ± 2.8	1	10	500	+1.81
		2	10	500	+1.81
		3	10	500	+1.81
K ₃	558.4 ± 6.4	1	10	500	-10.46
		2	10	500	-10.46
		3	10	500	-10.46

$$\% \text{Relative different} = \left[\frac{\text{Mg}^{2+} \text{ contents from complexometric titration} - \text{Mg}^{2+} \text{ contents from our developing method}}{\text{Mg}^{2+} \text{ contents from complexometric titration}} \right] \times 100.$$

The results from these two methods showed $t_{\text{stat}} = 0.009$ and $t_{\text{critical}} = 3.18$ which are not statistically different with the confidence level of 95%.

4. Conclusions

A simple and portable field test kit for colorimetric determination of magnesium content in natural rubber latex (NRL) was successfully developed according to the concept of green chemistry by reducing waste generation, minimizing use of chemicals and consumption of time (at least simple two reagents (EBT indicator for

reagent A; EDTA in ammonium buffer for reagent B) for test kit set up). These were found to be effective and non-instrumental approaches with low cost, simple (no requirement of skill for analysis), not demanding sample pretreatment before analysis, small sample volume uptake (0.18 g, sampling by a small spoon) and use of <1.5 mL reagent volume which was >70 times less than when compared with conventional methods [12–15] and the other

commercial test kits (see in Table A). Our developed test kit (even without masking agent) can be applicable even with the presence of potential interference ions (see also in Table C) and preservatives in NRL due to the effect of minimizing scale of reagents and sample. Moreover, the EDTA concentration in reagent B could be adjusted for matching with theoretically expected magnesium concentration; see further explanation in Table B3 and B4 providing the detection limit of magnesium of 50 mg L⁻¹ (or could be adjusted less than that). The performance of the approach meets the requirement for analysis of magnesium content in practical NRL samples which can be performed within a minute and observed by naked eye based on comparison with a color chart. Moreover, our developed test kit is stable at room temperature for more than 6 months. The established approaches were not only applicable for NRL analysis, but it is also for practical use in concentrated rubber latex (CRL; see further explanation in Table D) since our developed test kit in terms of reagent B can provide enough buffer capacity system (even one drop was applied into the sample) which is suitable for acidic samples such as CRL.

Acknowledgements

The financial supports from the Thailand Research Fund (TRF: TRG5880007), The Center of Excellence for Innovation in Chemistry (PERCH-CIC), the Office of the Higher Education Commission, Ministry of Education is gratefully acknowledged. Science Achievement Scholarship of Thailand (SAST) given to Nutthaporn Malahom is also gratefully acknowledged. The authors would like to thank Dr. Chadin Kulsing for proof of reading of this manuscript. Mr. Prasit Kanjana from Faculty of Agriculture, Ubon Ratchathani University, Mr. Sayun Phansomboon from Faculty of Agro-Industrial Technology, Kalasin University, and Mr. Chaiwute Vudjung from Department of Chemistry, Faculty of Science, Ubon Ratchathani University are also acknowledged for provision of NRL samples. The research scholarships and instrumental facility of the Department of Chemistry, Faculty of Science, Ubon Ratchathani University, are also gratefully acknowledged.

Appendix A. Supplementary data

Supplementary data related to this article can be found at <http://dx.doi.org/10.1016/j.polymertesting.2017.01.023>.

References

- [1] C. Saengruksawong, S. Khamyong, N. Anongrak, J. Pinthong, Growths and carbon stocks of para rubber plantations on Phongsai soil series in North-eastern Thailand, *Rubber Thai* j. 1 (2012) 1–18.
- [2] O. Kosanan, N. Kantanantha, Thailand's para rubber production forecasting comparison, in: S.I. Ao, O. Castillo, C. Douglas, D.D. Feng, J.-A. Lee (Eds.), International MultiConference of Engineers and Computer Scientists 2014 (IMECS 2014), Newswood Limited, Hong Kong, 2014, pp. 979–984.
- [3] W. Jankangram, Natural rubber latex protein, *KKU Res. J.* 18 (2013) 996–1002.
- [4] D.C. Blackley, *Polymer Latexs. : Science and Technology*, second ed., Chapman & Hall, New York, 1997.
- [5] M.S. Sebastian, *Studies on the Production, Properties and Processability of Low Protein Latex*, Cochin University of Science and Technology, 2005, p. 326.
- [6] L. Karunanayake, G.M.P. Perera, Effect of magnesium and phosphate ions on the stability of concentrated natural rubber latex and the properties of natural rubber latex-dipped products, *J. Appl. Polym. Sci.* 99 (2006) 3120–3124.
- [7] E. Devendar, Manual for certification of ammonia preserved concentrated natural rubber latex (IS 5430 1981) Bureau of Indian Standards, 2013, p. 33.
- [8] <http://www.rubbercenter.org/informationcenter/file/magazine3.pdf>, 23/06/2016.
- [9] L. Karunanayake, P.H.S. Kumara, W.W. Nandasena, L. Wanigatunga, V. Gamage, C. Lokuge, Magnesium content in natural rubber latex, *Bull. Rubber Res. Inst. Sri Lanka* 37 (1998) 36–39.
- [10] Determination of magnesium (Direct titration method) [NRL: 18] "Second Revision", (IS 3708) Indian Standard; Methods of test for natural rubber latex, Bureau of Indian Standards, New Delhi, 2001, pp. 9.
- [11] S. Satienperakul, S. Boonrasri, P. Sutigoolabud, *Development of Analytical Procedure for the Determination of Magnesium in Field Latex*, the Thailand Research Fund (TRF), Maejo University, 2008, p. 35.
- [12] W. Cheewasedtham, in: W.I.P. Organization (Ed.), *A Method and Composition for Quantifying Magnesium Ions*, International Bureau U.S.A, 2011.
- [13] W. Cheewasedtham, *The Development of Cyanide-free Method for Magnesium Determination in Natural Rubber Latex*, the Thailand Research Fund (TRF), Prince of Songkla University, 2011, p. 57.
- [14] W. Cheewasedtham, *Development of free cyanide titration method for magnesium determination in *Hevea brasiliensis* latex to be TIS and ISO standard*, the Thailand research Fund (TRF) and prince of songkla university science park, prince of songkla university, Pattani Campus (2014) 143.
- [15] *Rubber-Determination of magnesium content of field and concentrated natural rubber latices by titration (cyanide-free method)*, ISO 17403:2014(E), ISO copyright office, Switzerland, 2014, pp. 16.
- [16] http://www.marinedepot.com/Red_Sea_Magnesium_Pro_Test_Kit_100_Tests_Specialty_Test_Kits_for_Saltwater_Aquariums-Red_Sea-RS21415-FITKSI-vi.html, 23/06/2016.
- [17] http://www.marinedepot.com/Salifert_Magnesium_Test_Kit_Specialty_Test_Kits_for_Saltwater_Aquariums-Salifert-SF1125-FITKSI-vi.html, 23/06/2016.
- [18] http://www.marinedepot.com/Elos_Aqua_Test_Kit_Magnesium_Specialty_Test_Kits_for_Saltwater_Aquariums-Elos_USA-E04129-FITKSI-vi.html, 23/06/2016.
- [19] http://www.marinedepot.com/NYOS_REEFER_Test_Kit_Magnesium_Specialty_Test_Kits_for_Saltwater_Aquariums-Nyos-6D92126-FITKSI-vi.html, 23/06/2016.
- [20] <http://www.sigmaldrich.com/catalog/product/sigma/mak026?lang=en®ion=TH>, 23/06/2016.
- [21] J. Sirikarn, *Method Development for Determination of Phosphate in Natural Rubber Concentrated Latex*, Chemistry, Prince of Songkla University, Songkla, 2012, p. 151.
- [22] *Rubber and latex — Determination of copper content — Photometric method*, ISO 8053:1995(E), ISO copyright office, Switzerland, 1995, pp. 8.
- [23] H. Kang, Y.S. Kim, G.C. Chung, Characterization of natural rubber biosynthesis *Ficus benghalensis*, *Plant Physiol. Biochem.* 38 (2000) 979–987.
- [24] D.J. Scotta, B.M.T.d Costa, S.C. Espy, J.D. Keasling, K. Cornish, Activation and inhibition of rubber transferases by metal cofactors and pyrophosphate substrates, *Phytochemistry* 64 (2003) 123–134.
- [25] R.G. Pearson, Hard and soft acids and bases, *J. Am. Chem. Soc.* 85 (1963) 3533–3539.
- [26] <http://rubberdigest.com/?p=153>, 23/06/2016.
- [27] S. Santipanusopon, S.-A. Riyajan, Effect of field natural rubber latex with different ammonia contents and storage period on physical properties of latex concentrate, stability of skim latex and dipped film, *Phys. Procedia* 2 (2009) 127–134.
- [28] N. Padmavathy, R. Vijayaraghavan, Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study, *Sci. Technol. Adv. Mater.* 9 (2008) 035004–035010.
- [29] D.A. Skoog, D.M. West, F.J. Holler, S.R. Crouch, *Fundamentals of Analytical Chemistry*, ninth ed., 2014. Mary Finch, USA.

Further reading

Appendix B

ด่วนที่สุด

ທີ່ ၁၇/ ໜັດຕະປົງ/ກ.ຂະຊາຍ

100 מילון ערך

เรื่อง ขอเชิญเข้าร่วมการนำเสนอผลงานในรูปแบบของการบรรยายและการจัดแสดงนิทรรศการใน “การประชุมความร่วมมือการวิจัยและพัฒนาในประเทศไทย”

เงื่อนไข: ห้ามห้ามก่อจลาจล เก็บวิชาเรียน ออกหัวหน้าครูสอน น้ำหนักยกสัมภาระน้ำหนัก

สิ่งที่สำคัญที่สุด (ร่วม) กำหนดการดำเนินงาน

๒. แนวทางอนับการนับรายได้และการจัดแสดงนิทรรศการ

ด้วยศูนย์เทคโนโลยีและวัสดุแห่งชาติ ในฐานะตัวแทนของเครือข่ายนักวิเคราะห์ฯ จึงประกอบด้วย
การรายงานแห่งประเทศไทย น้ำท่วมที่ล้ำลึกลงลุ่มน้ำวิบูลย์ ภาคอุดมสมบูรณ์แห่งประเทศไทย และศูนย์เทคโนโลยีและวัสดุ
แห่งชาติ สำนักงานพัฒนาวิทยาศาสตร์และเทคโนโลยีแห่งชาติ กำหนดจัด “การประชุมความร่วมมือเครือข่ายพัฒนาเทคโนโลยีฯ”
ในระหว่างวันที่ ๓ – ๔ กรกฎาคม ๒๕๖๐ ณ ศูนย์ประชุมอุทัยธานีวิทยาศาสตร์ประเทศไทย จังหวัดปทุมธานี โดยมีวัตถุประสงค์
เพื่อสร้างความสนใจในการใช้ยางพาราให้เกิดประโยชน์สูงสุดโดยอาศัยวิทยาศาสตร์และเทคโนโลยี รวมถึงการส่งเสริมให้เกิด
การพัฒนาวัสดุการและเครื่องจักรเทคโนโลยียางอันเป็นวัสดุประสงค์หลักของเครือข่ายนักวิเคราะห์ฯ ซึ่งจำเป็นอย่างยิ่ง
ที่จะต้องสร้างความรู้และความร่วมมือระหว่างบุคลากรวิจัยด้านเทคโนโลยีฯ ในสังกัดมหาวิทยาลัย หน่วยงาน หรือองค์กรต่างๆ
ทั่วประเทศไทย โดยรูปแบบการจัดงานฯ ประกอบด้วย การประชุมนักวิชาการและผู้เชี่ยวชาญด้านเทคโนโลยีฯ ในประเทศไทย
และการจัดแสดงนิทรรศการผลงานวิจัยและกิจกรรมด้านยางพาราของหน่วยงานต่างๆ รายละเอียดเพิ่มเติมตามสิ่งที่ส่งมาด้วย ๑
หรือ www.mtec.or.th/RRD2017

ในการนี้ ศูนย์ฯ พิจารณาแล้วเห็นว่าหน่วยงานของท่านมีบทบาทสำคัญด้านการวิจัยพัฒนาและสร้างนวัตกรรม ยางพารา ศูนย์ฯ จึงขอเชิญหน่วยงานของท่านเข้าร่วมนำเสนอและแบ่งปันงานวิจัยด้านเทคโนโลยียางที่อยู่ระหว่างดำเนินการ และ/หรือ อุปกรณ์ เครื่องมือ และบริการวิเคราะห์ผลสอนที่หน่วยงานของท่านนำไปใช้ได้ให้บริการแก่หน่วยงานภายนอก ในรูปแบบของ การบรรยายพร้อมจัดถ่าย เวลาประมาณ ๒๐ นาที และการจัดแสดงนิทรรศการ ในพื้นที่ 6×9 เมตร พร้อมกันนี้ ขอเชิญผู้มาการ ในหน่วยงานของท่านเข้าร่วม “การประชุมความร่วมมือการวิจัยพัฒนาเทคโนโลยียาง” ในวัน เวลา และสถานที่ดังกล่าวข้างต้น ทั้งนี้ โปรดระบุรายละเอียดของการเข้าร่วมงาน (ไม่มีค่าใช้จ่าย) ในแบบตอบรับด้านล่างที่ส่งมาด้วย ๖ กลับมาอย่างศูนย์ฯ ทางโทรศัพท์ ๐๘๑-๐๘๐๘๐๐๐๐๐๐๐ หรืออีเมลที่ kobkulag@mtec.or.th ภายในวันที่ ๒๖ เมษายน ๒๕๖๐

ช่องเรียนภาษาพื้นเมืองไทยไปประเทศจีน

รากน้ำดื่มที่ความนับถือ

Dr. Shaw

(นายอุดม เพชรไชยภูล)
ผู้อำนวยการ

PS 66 0. 11571 ✓ / 5

Parsons, M. L.

ผู้อพยพพากว่าทศปีในไทย

งานประชุมพัฒนาและสร้างความตระหนัก

ໃຫຍ່ ຂອງຂໍ້ມູນ ສັນຕະລິບ ຕ່າງ ດູວ່າພ່ອ (ນາງສາວກອນທຸລ ອມຮຽນເຄລື)

Tigray - a brief history

ใบรายงานผู้ต้องหาในปัจจุบัน kobkula@mtec.or.th

37180000

๒๕๙๙ ๒๕๙๙ ๒๕๙๙

ពេជ្ជរាជការណាមី

21.12.85. 2563

(ร่าง)

กำหนดการประชุมรวมผู้เชี่ยวชาญด้านเทคโนโลยีทางในประเทศไทย

วันที่ 13-14 กรกฎาคม 2560

อุทยานวิทยาศาสตร์ประเทศไทย จ.ปทุมธานี

วันที่ 13 กรกฎาคม 2560

9.00 – 9.30 กล่าวเปิดงานโดยผู้บริหารของหน่วยงานเครือข่าย

9.30 – 10.15 การเสวนาด้วยหอดประดิษฐ์การณ์และมุมมองจากผู้บุกเบิกวงการ “ศึกษาวิจัย” ย่างพาราไทย
จากผู้ทรงคุณวุฒิด้านเทคโนโลยีทาง :

ผู้ช่วยศาสตราจารย์ ดร.บุญธรรม นิติอุทัย

นางวรรณรัตน์ ชจรริษย์กุล

ดร.บุชนาภา ณ รานอง

ผู้ช่วยศาสตราจารย์ ดร.กฤษฎา สุชีวะ

ดำเนินรายการโดย

ดร.อุลเทพ ชจรริษย์กุล ผู้อำนวยการ ศูนย์เทคโนโลยีโลหะและวัสดุแห่งชาติ (เอ็มเทค สาขะ)

และ รศ.ดร.อุกรรช หะยีสาแม คณบดี คณะวิทยาศาสตร์และเทคโนโลยี

มหาวิทยาลัยสงขลานครินทร์ วิทยาเขตปัตตานี

10.15 – 10.30 พักรับประทานอาหารว่าง

10.30 – 11.00 มุมมองของงานวิจัยเทคโนโลยีทางจากผู้ประกอบการอุตสาหกรรมย่าง

11.00 – 12.00 นำเสนอกิจกรรมงานวิจัยด้านย่างพาราของ 3 มหาวิทยาลัย*

12.00 – 13.00 รับประทานอาหารกลางวัน

13.00 – 15.00 นำเสนอกิจกรรมงานวิจัยด้านย่างพาราของ 6 มหาวิทยาลัย

15.00 – 16.00 พักรับประทานอาหารว่าง + เยี่ยมชมนิทรรศการและดูโปสเตอร์ + การหารือร่วมกัน

หมายเหตุ * การนำเสนอจากหน่วยงาน ให้นำเสนอ 15 นาที และซักถาม 5 นาที

(ร่าง)

กำหนดการประชุมรวมผู้เชี่ยวชาญด้านเทคโนโลยีทางในประเทศไทย

วันที่ 13-14 กรกฎาคม 2560

อุทยานวิทยาศาสตร์ประเทศไทย จ.ปทุมธานี

วันที่ 14 กรกฎาคม 2560

9.00 – 10.40 นำเสนอกิจกรรมงานวิจัยด้านยางพาราของ 4 มหาวิทยาลัย

10.40 – 11.00 พักรับประทานอาหารว่าง

11.00 – 12.00 นำเสนอกิจกรรมงานวิจัยด้านยางพาราของ 3 มหาวิทยาลัย

12.00 – 13.00 รับประทานอาหารกลางวัน

13.00 – 14.30 การนำเสนอหรือเสวนาจากหน่วยงานบริหารและสนับสนุนงบประมาณวิจัย

14.30 - 15.30 การนำเสนอกิจกรรมการวิจัยพัฒนาและให้บริการเทคโนโลยีด้านยางพารา โดย

การยางแห่งประเทศไทย (กยท.) กรมวิทยาศาสตร์บริการ (วศ.) และ ศว.พว. (เอ็มเทค)

15.30 – 16.30 พักรับประทานอาหารว่าง + เมื่อมนนิทรอสการและคุ้ปส์เตอร์ + การหารือร่วมกัน

ประมวลภาพกิจกรรม

“การประชุมความร่วมมือการวิจัยพัฒนาเทคโนโลยียาง” ระหว่างวันที่ 13-14 กรกฎาคม 2560

ณ ศูนย์ประชุมอุทยานวิทยาศาสตร์ประเทศไทย จ.ปทุมธานี

Appendix C

ประมวลภาพกิจกรรม

สาขาวิชาระบบที่ “ชุดทดลองสอนภาคสนามสำหรับวิเคราะห์ปริมาณแมกนีเซียมในน้ำย่างธรรมชาติ” ให้กับนักศึกษาสาขาวิทยาศาสตร์และเทคโนโลยีการยาง ภาคการศึกษาที่ 2/2559 คณะวิทยาศาสตร์ มหาวิทยาลัยอุบลราชธานี

Appendix D

The 13th Asian Conference on Analytical Sciences (ASIANALYSIS XIII)

c/o Center of Excellence for Innovation in Analytical Science and Technology (I-ANALY-S-T) Office
Science Complex Building II (SCB 2), Room 2323, Faculty of Science, Chiang Mai University,
Chiang Mai 50200, THAILAND
Tel. /Fax. +66-53-941-917, E-mail asianalysis.thailand@gmail.com,
Website: <http://asianalysis13.cmu.ac.th>, Facebook: Asianalysis Cnx

15 October 2016

Dear Nutthaporn Malahom; Rattapol Meelapsom; Atitaya Siripinyanond; Maliwan Amatatongchai;
Sanoe Chairam; Purim Jarujamrus,

The 13th Asian Conference on Analytical Sciences (ASIANALYSIS XIII) will take place at The Empress International Convention Center, Chiang Mai, the Kingdom of Thailand from 8–11 December 2016. The ASIANALYSIS XIII aims to provide a timely forum for the analytical scientists to disseminate their recent research works, to exchange the ideas and experiences on a broad range of analytical sciences. Moreover, it passionately pursues the spirit of international collaboration and friendship.

On behalf of the organizing committee, it is my great pleasure to inform you that your paper entitled “Field test kit based on colorimetry for quantification of magnesium content in rubber latex” has been accepted for presentation at ASIANALYSIS XIII.

Please visit our website at <http://asianalysis13.cmu.ac.th> for the latest information.

I thank you very much for your contribution to the ASIANALYSIS XIII. We look forward to welcoming you in Chiang Mai, Thailand.

Yours sincerely,

Kate Grudpan.

Kate Grudpan

Chairperson, ASIANALYSIS XIII Organizing Committee
Center of Excellence for Innovation in Analytical Science and Technology (I-ANALY-S-T),
Faculty of Science, Chiang Mai University,
Chiang Mai 50200 THAILAND

Field test kit based on colorimetry for quantification of magnesium content in rubber latex

Nutthaporn Malahom¹, Rattapol Meelapsom¹, Atitaya Siripinyanond², Maliwan Amatatongchai¹, Sanoe Chairam¹ and Purim Jarujamrus^{1,*}

¹ Department of Chemistry and Center of Excellent for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand

² Department of Chemistry and Center of Excellent for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand

*E-mail: purim.j@ubu.ac.th

Rubber latex (RL) is very important economic plant in Thailand which is driven by quality products, leading to a fundamental need for chemical analysis. A critical step in development of RL with high quality is identification of RL components. Magnesium (Mg^{2+}) is one of the most important components suppressing RL performance and quality. In this work, simple, low-cost and portable platforms of field test kit based on colorimetry detected using naked eyes was developed for determination of Mg^{2+} content in RL. The miniaturized complexometric titration between Mg^{2+} and EDTA with NaHS as a masking agent was a key reaction in this development which was designed according to the concept of green chemistry by reduction of waste generation and chemical and time consumption. The developed system enabled quantification of magnesium content in RL at low concentration with the detection limit being $<50\text{ mg.L}^{-1}$, small sample volume uptake (0.18 g, sampling by a small spoon) and use of $<1.5\text{ mL}$ reagent volume which was >70 times less than that applied in the conventional method. Moreover, with the presence of potential interference ions, greater selectivity towards magnesium was observed. Furthermore, the reagents used in our developed test kit were stable for >6 months at the room temperature. The results obtained in real samples were in agreement with those obtained from the conventional complexometric titration (ISO 17403: 2014(E)) method. The proposed technique provides a low-cost, rapid, simple, selective and on-site analysis of magnesium content in RL.

Keywords : Magnesium (Mg^{2+}), field test kit, rubber latex (RL), green chemistry, complexometric titration

Appendix E

ชุดทดสอบภาคสนามที่อาศัยการตรวจวัดทางสีเพื่อวิเคราะห์หาปริมาณของแมกนีเซียมในน้ำยาง

Simple test kit based on colorimetry for quantification of magnesium content in rubber latex

สดใส ภูชุม¹, ณัฐพร มาลาหอม¹, รัชพล มีลักษณ์¹, อธิยา ศิริภิญญาณท์²,
มะลิวรรณ ออมตรงไชย¹, เสนอ ชัยรัมย์¹ และ บุริม จารุจารัส^{1*}

¹ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยอุบลราชธานี, สำนักวิชาชีวาริบ, จังหวัดอุบลราชธานี, 34190

²ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล, ถ.พระรามที่ 6 แขวงทุ่งพญาไท เขตราชเทวี, กรุงเทพมหานคร, 10400

S. Puchum¹, N. Malahom¹, R. Meelapsom¹, A. Siripinyanond²,
M. Amatathongchai¹, S. Chairam¹ and P. Jarujamrus^{1*}

¹Department of Chemistry and Center of Excellent for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand

²Department of Chemistry and Center of Excellent for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand

บทคัดย่อ

การพัฒนาชุดทดสอบภาคสนามโดยอาศัยการตรวจวัดทางสีและอ่านผลด้วยตาเปล่าเพื่อใช้ในการวิเคราะห์หาปริมาณแมกนีเซียมในน้ำยาง พัฒนาขึ้นจากปฏิกริยาของการไฟเทรตเชิงช้อนที่เกิดขึ้นระหว่างแมกนีเซียมกับกรดethanoline ได้เอมีนเตตต์ราอะซีติกโดยไม่ใช้สารมาร์สกิ้งเอเจนต์ ตามแนวทางของเคมีสีเขียว ในชุดทดสอบที่พัฒนาขึ้นนี้จะอาศัยระบบย่อส่วนเพื่อลดการใช้สารเคมีเพื่อให้มีความง่าย ราคาถูก ลดเวลาที่ใช้ในการทดสอบ จากผลการทดลองพบว่าระบบชุดทดสอบภาคสนามที่พัฒนาขึ้นนี้มีขีดจำกัดต่ำสุดในการวิเคราะห์หาปริมาณแมกนีเซียมในน้ำยาง ธรรมชาติที่น้อยกว่า 50 มิลลิกรัมต่อลิตร โดยในแต่ละครั้งของการทดสอบจะใช้ตัวอย่างน้ำยาง เพียง 0.18 กรัม (ใช้ช้อนขนาดเล็กในการตัก) ใช้สารเคมีน้อยกว่า 1.5 มิลลิลิตร(น้อยกว่าวิธีมาตรฐานถึง 70 เท่า) และสามารถทำซ้ำได้ สารเคมีในชุดทดสอบที่พัฒนาขึ้นที่มีอายุการใช้งานมากกว่า 6 เดือนที่อุณหภูมิห้อง นอกจากนี้ยังพบว่าไอลอนรบกวนอื่นๆที่เป็นองค์ประกอบภายในน้ำยางไม่มีผลต่อการวิเคราะห์ เมื่อเปรียบเทียบผลการวิเคราะห์ที่ได้จากชุดทดสอบ

ภาคสนามที่พัฒนาขึ้นเทียบกับเทคนิคการไทเทเรตเชิงซ้อนที่ประกาศการใช้ไซยาไนด์ตามวิธีมาตรฐานขององค์การมาตรฐานสากลภายใต้เลขมาตรฐานหมายเลขอี 17403:2014 (E) ให้ผลสอดคล้องกัน ชุดทดสอบภาคสนามที่พัฒนาขึ้นนี้มีประสิทธิภาพที่ดี ง่าย ราคาถูก รวดเร็ว ไม่ต้องอาศัยผู้เชี่ยวชาญในการวิเคราะห์ ไม่ต้องเตรียมตัวอย่าง สามารถทำการวิเคราะห์ภาคสนามในการวิเคราะห์หาปริมาณแมgnีเซียมในน้ำยางได้อย่างดี

คำสำคัญ: แมgnีเซียม ชุดทดสอบภาคสนาม น้ำยาง เคมีสีเขียว การไทเทเรตสาระประกอบ เชิงซ้อน

Abstract

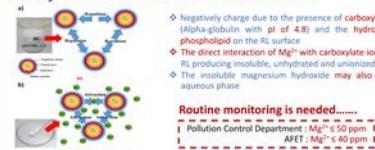
A simple, low-cost and portable field test kit based on colorimetry with detection by naked eye was developed for determination of magnesium content in rubber latex (RL). The miniaturized complexometric titration between Mg^{2+} and EDTA without any masking agent was a key reaction in this development, which was designed according to the concept of green chemistry by reduction of waste generation and chemical and time consumption. The system enabled quantification of magnesium content in RL at low concentration with the detection limit being <50 mg/L, small sample volume uptake (0.18 g, sampling by a small spoon) and use of <1.5 mL reagent volume which was >70 times less than that applied in the conventional method. Moreover, with the presence of potential interference ions, greater selectivity towards magnesium was observed. Furthermore, the reagents used in our developed test kit were stable for >6 months at room temperature. The results obtained on real samples were in agreement with those obtained from the conventional complexometric titration (ISO 17403: 2014(E)) method. The proposed technique provides a low-cost, rapid, simple, selective and on-site analysis of magnesium content in RL.

Keywords: Magnesium, Test kit, Rubber latex (RL), Green chemistry, Complexometric titration

*Corresponding author. E-mail address: purim.j@ubu.ac.th

Simple test kit based on colorimetry for quantification of magnesium content in rubber latex

S. Puchum¹, N. Malahom¹, R. Meelapsom¹, A. Siripinyanond², M. Amatathongchai¹, S. Chairam¹ and P. Jarujamrus^{1*}


¹ Department of Chemistry and Center of Excellent for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand

² Department of Chemistry and Center of Excellent for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand

*E-mail: purim.j@ubu.ac.th

Abstract : Export industries, especially rubber, are driven by quality of products, leading to a fundamental need for chemical analysis. In this work, simple, low-cost and portable platforms of field test kit based on colorimetry detected by using naked eyes was developed for determination of magnesium content in rubber latex (RL). The miniaturized complexometric titration between Mg^{2+} and EDTA without any masking agent was a key reaction in this development which was designed according to the concept of green chemistry by reduction of waste generation and chemical and time consumption. The developed system enabled quantification of magnesium content in RL at low concentration with the detection limit being < 50 ppm sample volume uptake (0.18 g, sampling by a small spoon) and use of < 1.5 mL reagent volume which was > 70 times less than that applied in the conventional method. Moreover, with the presence of potential interference ions, greater selectivity towards magnesium was observed. Furthermore, the reagents used in our developed test kit were stable for > 6 months at the room temperature. The results obtained in real samples were in agreement with those obtained from the conventional complexometric titration (ISO 17403: 2014(E)) method. The proposed technique provides a low-cost, rapid, simple, selective and on-site analysis of magnesium content in RL.

A major cause of destabilization of RL :

Routine monitoring is needed.....

Pollution Control Department : $Mg^{2+} \leq 50 \text{ ppm}$

APET : $Mg^{2+} \leq 40 \text{ ppm}$

Results :

Table 1. Comparison of Mg^{2+} content (ppm) at different area of RL between Flame Atomic Absorption Spectroscopy, FAAS and complexometric titration (n=3)

Area of RL	Mg^{2+} content (ppm)	
	FAAS method	Complexometric titration based on cyanide free method
U1	746.90 \pm 0.002	745.45 \pm 7.07
U1	800.0 \pm 0.008	770.99 \pm 8.22
U1	873.81 \pm 0.001	812.17 \pm 3.62
U3	283.12 \pm 0.001	306.18 \pm 5.30
U3	342.55 \pm 0.001	322.52 \pm 4.39
U3	363.89 \pm 0.001	375.13 \pm 26.08

The results from these two methods showed $t_{\text{test}} = 1.02$ and $t_{\text{critical}} = 2.78$ which are not statistically different with the confidence level of 95%

Development of Mg^{2+} determination in RL :

1. Complexometric titration (CMT)

At first condition 10-10.5 (using titrator)

Appendix F

กากวิชนาภี
เลขที่ 114
วันที่ 9 ส.ค. 2559
บันทึกข้อความ เวลา 16.12 น.
กต. 28 ส.ค. 2559
กต. 10.03 น. (ก)

SCAN
2018

ส่วนราชการ โครงการอุทยานวิทยาศาสตร์ สำนักงานอธิการบดี โทร.๓๑๘๕

ที่ ศธ ๐๔๒๙.๑.๔/ ๔๒(๑๒)

วันที่ ๗ สิงหาคม พ.ศ.๒๕๕๙

เรื่อง แจ้งคำເเบີນການດ້ານທ່ຽວທີ່ສິນທາງປ່ຽນ

เรียน คณบดีคณะวิทยาศาสตร์

ตามที่คณบดีคณะวิทยาศาสตร์ มีความประสงค์ยื่นคำขอรับอนุสิทธิบัตร “ஆட்டத்தோப்பு மூலம் கொண்ட நீண்ட வாய்ப்பு விதியாலை” จำนวน ๑ คำขอ โดยผู้ประดิษ்டதோ நายบุรินทร์ จารุจาร์สและคณะ นั้น
บัตรนี้ โครงการอุทยานวิทยาศาสตร์ ซึ่งเป็นหน่วยประสานงาน ได้ดำเนินการยื่นคำขอรับ
อนุสิทธิบัตรดังกล่าวต่อกรมทรัพย์สินทางปัญญา ผ่านสำนักงานพาณิชย์จังหวัดอุบลราชธานีเรียบร้อยแล้ว
รายละเอียดปรากฏตามเอกสารแนบ

จึงเรียนมาเพื่อโปรดทราบ และแจ้งผู้เกี่ยวข้องทราบ

(ผู้ช่วยศาสตราจารย์ขาวศิริ ถั่นวงศ์พิทักษ์)
ผู้อำนวยการโครงการอุทยานวิทยาศาสตร์

เรียน ดร. บุรินทร์ จารุจาร์
(✓) เพื่อโปรดทราบ

() เพื่อโปรดแจ้งเรียนให้ทราบทั่วไป
() เพื่อโปรดพิจารณา

(ผศ.ดร. บุรินทร์ จารุจาร์)
รองคณบดีฝ่ายวิจัย

สำนักงานจัดการสิทธิเทคโนโลยี โครงการอุทยานวิทยาศาสตร์ มหาวิทยาลัยอุบลราชธานี
ชั้น 1 อาคารศูนย์เครื่องมือคอมพิวเตอร์และปริญญาติการเทคโนโลยีชีวภาพ มหาวิทยาลัยอุบลราชธานี

85 ถนนสุรินทร์ ตำบลเมืองศรีโค อำเภอวารินชำราบ จังหวัดอุบลราชธานี 34190
โทรศัพท์ 0 4535 3000 ต่อ 3185, 0 4543 3456, 08 6087 5348 โทรสาร 0 4543 3456

Email: arporn.somrak@gmail.com

หนังสือนำเสนอสิ่งเอกสาร คำขอรับอนุสิทธิบัตร

ในนาม มหาวิทยาลัยอุบลราชธานี

ผ่านสำนักงานพัฒนาวิชีชีวจังหวัดอุบลราชธานี

หนังสือนำเสนอสิ่งเอกสาร คำขอรับอนุสิทธิบัตรในนามมหาวิทยาลัยอุบลราชธานีฉบับนี้ ขออภัยยังว่า
มหาวิทยาลัยอุบลราชธานี ได้นำเสนอสิ่งเอกสาร คำขอรับอนุสิทธิบัตร เรื่อง “ชุดทดสอบแมกนีเซียมภาคสนามในน้ำ
ยางพารา” แก่กรมทรัพย์สินทางปัจจุบัน ผ่านสำนักงานพัฒนาวิชีชีวจังหวัดอุบลราชธานี

เมื่อวันที่.....21.....เดือน.....ตุลาคม....พ.ศ....2559.....และเจ้าหน้าที่ประจำสำนักงานพัฒนา
จังหวัด ผู้รับคำขอ ได้รับเอกสารดังกล่าวเรียบร้อยแล้ว

ลงชื่อ ดร. สมรักษ์

(นางสาวอภารณ์ สมรักษ์)

ตำแหน่ง เจ้าหน้าที่วิจัย

สำนักงานจัดการสิทธิเทคโนโลยี โครงการอุทยานวิทยาศาสตร์ มหาวิทยาลัยอุบลราชธานี

ลงชื่อ ดร. นงนัชพงษ์

(.... นางสาวนงนัชพงษ์เกียรติ....)

ตำแหน่ง
นักวิชาการพัฒนาชีววิทยา

เจ้าหน้าที่ประจำสำนักงานพัฒนาวิชีชีวจังหวัดอุบลราชธานี

ผู้รับคำขอ

วันที่ 21 / 10 / 59

วันที่ 21 ต.ค. 2559 /

คำขอรับสิทธิบัตร/อนุสิทธิบัตร

- การประดิษฐ์
- การออกแบบผลิตภัณฑ์
- อนามัยธุรกิจ

ข้าพเจ้าสืบส่องลายมือชื่อในคำขอรับสิทธิบัตร/อนุสิทธิบัตรนี้
ขอรับสิทธิบัตร/อนุสิทธิบัตร ตามพระราชบัญญัติสิทธิบัตร
พ.ศ.2522 แก้ไขเพิ่มเติม โดยพระราชบัญญัติสิทธิบัตร (ฉบับที่ 2)
พ.ศ.2535 และพระราชบัญญัติสิทธิบัตร (ฉบับที่ 3) พ.ศ.2542

 สำนักงานปลัดสำนักนายกรัฐมนตรี สำนักงานปลัดสำนักนายกรัฐมนตรี		สำนักงานปลัดสำนักนายกรัฐมนตรี	
<input type="checkbox"/> การประดิษฐ์ <input type="checkbox"/> การออกแบบผลิตภัณฑ์ <input checked="" type="checkbox"/> อนุสิทธิบัตร		วันรับคำขอ 1 ต.ค. 2559 เลขที่คำขอ รับคำขอ 1 ต.ค. 2559 1603002133 สัญลักษณ์จดจำและการประดิษฐ์ระหว่างประเทศ	
ใช้กันแบบผลิตภัณฑ์ ประเภทผลิตภัณฑ์		วันประกาศโฆษณา เอกที่ประกาศโฆษณา วันออกสิทธิบัตร/อนุสิทธิบัตร เอกที่สิทธิบัตร/อนุสิทธิบัตร	
ข้าพเจ้าผู้ขอสิทธิบัตร/อนุสิทธิบัตรนี้ ขอรับสิทธิบัตร/อนุสิทธิบัตรตัว ตามพระราชบัญญัติสิทธิบัตร พ.ศ.2522 แก้ไขเพิ่มเติมโดยพระราชบัญญัติสิทธิบัตร (ฉบับที่2) พ.ศ.2535 และพระราชบัญญัติสิทธิบัตร (ฉบับที่3) พ.ศ.2542		ลายมือชื่อเจ้าหน้าที่	
<p>1. ชื่อที่แสดงถึงการประดิษฐ์/การออกแบบผลิตภัณฑ์ ชุดทดสอบแมกโนเรซิมิกส์สำหรับน้ำยาห้ามไฟ</p> <p>2. คำขอรับสิทธิบัตรการออกแบบผลิตภัณฑ์นี้เป็นคำขอสำหรับแบบผลิตภัณฑ์ที่ต้องใช้กับและเป็นค่าของสีดับที่ในจำนวน</p> <p>3. ผู้ขอรับสิทธิบัตร/อนุสิทธิบัตร แอนดี้ คอร์ (ลายมือชื่อ ที่แนบมา) ต่อ แagen สา/สพ/อสป 001-ก หน้า 3</p> <p>4. สิทธิในการขอรับสิทธิบัตร/อนุสิทธิบัตร แก้ไขเพิ่มเติมโดยพระราชบัญญัติสิทธิบัตร แก้ไขเพิ่มเติมและประมวลกฎหมายวิธีพิจารณาความยุติธรรม พ.ศ. ๒๕๕๙ ที่ได้รับการตราตั้งและประมวลกฎหมายวิธีพิจารณาความยุติธรรม พ.ศ. ๒๕๖๒ แก้ไขเพิ่มเติมโดยพระราชบัญญัติสิทธิบัตร แก้ไขเพิ่มเติมและประมวลกฎหมายวิธีพิจารณาความยุติธรรม พ.ศ. ๒๕๖๗</p> <p>5. คำแทน (ตัวชื่อ/ที่อยู่) (เลขที่ ถนน แขวง/เขต ไปรษณีย์)</p> <p>นางสาวอกราณี สมรักษ์ ที่อยู่ โครงการอุทัยานวิทยาศาสตร์ มหาวิทยาลัยอุบลราชธานี 85 ถนนสหกรณ์ ตำบลเมืองศรีไคร อำเภอวารินชำราบ จังหวัดอุบลราชธานี 34190</p> <p>6. ผู้ประดิษฐ์/ผู้ออกแบบผลิตภัณฑ์ และที่ชี้ชู (เลขที่ ถนน ไปรษณีย์)</p> <p><input type="checkbox"/> ผู้รับโอน <input checked="" type="checkbox"/> ผู้ขอรับสิทธิบัตร/อนุสิทธิบัตร</p> <p>5.1 คำแทนเลขที่ 2337 5.2 โทรศัพท์ 0 4543 3456, 08 6087 5348 5.3 โทรสาร 0 4543 3456 5.4 อีเมล์ arpom.somrak@gmail.com</p> <p>7. คำขอรับสิทธิบัตร/อนุสิทธิบัตรนี้เมียกจากหรือเกี่ยวข้องกับคำขอที่</p> <p>ผู้ขอรับสิทธิบัตร/อนุสิทธิบัตร ขอให้สืบต่อได้เป็นคำขอรับสิทธิบัตร/อนุสิทธิบัตรนี้ ในวันเดียวกับคำขอรับสิทธิบัตร เลขที่ วันที่ เหตุการณ์ของสิทธิบัตร/อนุสิทธิบัตรนี้เมียกจากหรือเกี่ยวข้องกับคำขอที่</p> <p><input type="checkbox"/> คำขอเดิมมีการประดิษฐ์ทักษะอย่างถ่องถ่อง <input type="checkbox"/> ถูกตัดคำนี้เมื่อจากผู้ขอรับสิทธิบัตร <input type="checkbox"/> ขอเปลี่ยนแปลงประเภทของสิทธิบัตร</p>			

หมายเหตุ ในกรณีที่ไม่อาจระบุรายละเอียดให้ครบถ้วน ให้เข้าที่เป็นเอกสารแนบท้ายแบบพิมพ์ชนิดกระดาษขาวเคลือบสำเนาที่แนบมาด้วยเชือกเพื่อพิมพ์ดังกล่าวไว้