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แบบจ าลองเฟสฟิลด์ครสิตัลเป็นแบบจ าลองเชงิอะตอมที่มศีกัยภาพที่จะจ าลองพฤตกิรรมของวสัดุทีซ่บัซ้อน
ได้ ขอ้ดขีองแบบจ าลองเฟสฟิลด์ครสิตลันัน้คอืความสามารถของแบบจ าลองในการอธบิายปรากฎการณ์ที่
เกีย่วข้องกบัผลึกในระดบัอะตอมจนถงึระดบัไมครอน ในขณะทีย่งัสามารถด าเนินการด้วยชว่งเวลาที่
เกีย่วข้องกบัปรากฎการณ์ทีพ่ิจารณา แต่เนื่องจากแบบจ าลองเฟสฟิลด์ครสิตลันัน้ไมไ่ด้มทีีม่าจากทฤษฎี
พื้นฐาน จงึจ าเป็นต้องมกีารหาพารามเิตอรท์ีเ่หมาะสมกอ่นที่จะสามารถน าไปใชใ้นการท านายผลเชงิปรมิาณ
ได้ ซึ่งในกระบวนการหาพารามเิตอร์ทีถู่กต้องนัน้ จ าเป็นต้องท าการค านวณคา่คณุสมบตัขิองวสัดุจาก
แบบจ าลองด้วยวธิกีารทีถู่กต้อง จงึจะสามารถน าผลทีไ่ด้มาเปรยีบเทยีบกบัคา่อา้งองิเพื่อยนืยนัความ
เหมาะสมของคา่พารามเิตอร์ทีใ่ช ้ทัง้นี้งานวจิยันี้เกีย่วข้องกบัการศกึษาวธิกีารหาคา่โมดูลสัของแรงบบีอดั
ของเฟสของแขง็จากแบบจ าลองเฟสฟิลด์ครสิตลั โดยทีผู่้วจิยัได้คน้พบวา่วธิกีารดัง้เดิมทีไ่ด้เคยถูกใช้มานัน้ 
ใหค้า่โมดูลัสของแรงบบีอดัทีไ่มส่อดคล้องกบัคา่มาตรฐาน ดงันัน้ผู้วจิยัจงึได้เสนอวธิกีารทีถู่กต้องในการ
ค านวณคา่โมดูลัสของแรงบบีอดัทีส่อดคล้องกบัคา่มาตรฐาน จากการค านวณในเชงิตัวเลขนัน้ได้แสดงให้
เหน็วา่ วธิกีารดัง้เดมิใหค้า่โมดูลสัของแรงบบีอดัที่แตกต่างจากคา่ที่มาจากวธิกีารทีเ่สนอในงานวจิยันี้อย่าง
มาก ซึ่งแสดงใหเ้หน็วา่วธิกีารดัง้เดมินัน้ไมส่ามารถที่จะน ามาใชใ้นการยนืยนัความเหมาะสมของ
คา่พารามเิตอรใ์นแบบจ าลองเฟสฟิลด์ครสิตลัได้ นอกจากนี้ผู้วจิยัได้สรา้งสมการความสมัพนัธ์ระหวา่งคา่ 
โมดูลสัของแรงบีบอดัจากวธิกีารต่างๆเพื่อทีจ่ะแสดงใหเ้หน็ถงึความแตกต่างของคา่โมดูลสัของแรงบบีอดั
จากวธิกีารต่างๆในเชงิปรมิาณทางอุณหพลศาสตร ์ซึ่งการทีผู่้วจิยัสามารถสรา้งสมการความสมัพนัธไ์ด้นัน้
เป็นการแสดงถงึประโยชน์ของการศกึษาแบบจ าลองเฟสฟิลด์ครสิตลัด้วยหลักการทางอณุหพลศาสตรใ์น
โครงงานวจิยันี้เชน่กนั 
 
ค าหลกั: แบบจ าลองเฟสฟิลด์ครสิตลั การหาพารามเิตอร์ทีเ่หมาะสม คา่โมดูลัสของแรงบบีอดั 
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Abstract 
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Project Title: Parameterization of the phase-field crystal method using elastic 
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The phase-field crystal (PFC) method is an atomistic model with promising capability to model 
complex behaviors of materials. The appeal of the PFC method lies in its ability to describe 
crystalline-structure-related phenomena ranging from atomic to micron length scales, while 
operating under time scales that are relevant to the phenomena. Due to its phenomenological 
origin, however, the PFC model needs to be parameterized with known material properties for 
quantitative modeling.  For consistent parameterization, the predicted material properties have to 
be calculated in such a way that consistent comparisons can be made with the reference values. In 
this work, we investigate the procedures to calculate isothermal bulk modulus of a solid phase in 
the PFC literature and find that the procedures to calculate the bulk modulus result in the quantities 
(referred to as the PFC bulk moduli) that are not consistent with the standard definition. Therefore, 
we propose alternative procedures to calculate the bulk modulus that is consistent with the 
standard definition (referred to as the TE bulk modulus). The numerical comparison of the PFC and 
TE bulk moduli shows that the TE and PFC bulk moduli are significantly different.  This indicates 
that the TE and PFC bulk moduli cannot be used interchangeably and one must use the TE bulk 
moduli in order to make consistent comparison with values from experiments and other models. 
Furthermore, we derive the relationships among the TE and PFC bulk moduli to quantify 
differences among different types of bulk moduli in terms of thermodynamic quantities. The fact 
that the PFC and TE bulk moduli can be related in a meaningful way also highlights the application 
of the recently-proposed thermodynamic formulation for the PFC method. 
 
         
Keywords: phase-field crystal method, model parameterization, bulk modulus
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I. INTRODUCTION

Understanding microstructural evolution in materials is crucial to accurate prediction of

material properties and potential development of materials with new or improved properties.

Such understanding involves considerations of phenomena occurring over multiple length and

time scales which prove to be a challenging task for computational modeling. Among a wide

range of available modeling methods, the phase-field crystal (PFC) approach is a promising

method for modeling microstructural phenomena [1–3]. The appeal of the PFC method

lies in its ability to describe crystalline-structure-related phenomena ranging from atomic to

micron length scales, while operating under time scales that are relevant (diffusive) to the

phenomena. Such advantages have led to strong interest in the method over the past decade

as seen from various applications of the model on, for example, phase transformation [4–8],

nucleation [9, 10], dislocation stability and dynamics [11–13], grain boundary premelting

[14, 15], thin film growth [16, 17], elastic and plastic deformation [18–21], creep [22], and

glass formation [23–25].

The diversity of model applications suggests that the PFC method can potentially be used

to predict complex behaviors of real materials. However, quantitative predictions can only

be made after the method has been parameterized with known properties from the material

of interest. Several works have investigated this quantitative aspect where they explored

the capability of the PFC method to predict properties of liquid and solid in coexistence

[26–35]. As there are many variations in the parameterization procedures, the effectiveness

of the procedures is determined by how well the predicted material properties from the

parameterized models match the reference values from experiments or simulations. This

also means that the predicted material properties have to be calculated in such as way that

consistent comparisons can be made with the reference values.

Recently, Pisutha-Arnond et al. [36] explored the procedures to calculate isothermal elas-

tic constants of a cubic crystal using the PFC method and showed that the conventional

procedures [1, 2, 27] for calculating elastic constants yield results (referred to as the PFC

elastic constants) that are inconsistent with the elastic constants defined by the theory

of thermoelasticity of stressed materials [37–39] (referred to as the TE elastic constants).

Therefore, they proposed the procedures to calculate the TE elastic constants using the PFC

method and showed that the numerical values of the TE elastic constants can be significantly



different from that of the PFC elastic constants. This result indicates that the TE elastic

constants must be used instead of the PFC elastic constants for consistent parameterization.

In this work, we investigate the procedures to calculate another type of elastic constants

which is an isothermal bulk modulus of a solid phase. We have identified three types of bulk

moduli (referred to as the PFC bulk moduli) from the PFC literature [27, 28]. The first

type, termed the PFC-EC bulk modulus, is calculated from the PFC elastic constants [27]:

H11 + 2H12

3
. (1)

The other two types are calculated from the derivative of a free energy density (FED)[27, 28]

φ2
ave

∂2(F/V )

∂φ2
ave

, (2)

where F is free energy, V is volume, and φave is an average atomic number density. The

distinction between these two types of bulk moduli originates from the difference in the

conditions that are applied in the construction of the FED. The first condition is where the

unit-cell volume of the crystalline structure is constant [27]. This condition is the result

from a choice of a periodic density profile with a fixed period: for example, the one-mode

approximation[2] with a fixed “q” value. Using the FED with this condition in Expression

(2), one obtains the second type of the PFC bulk moduli which will be denoted as the PFC-

V bulk modulus. The second condition, on the other hand, is where the unit-cell volume

changes, or “relaxed,” with φave in such as way that the FED is always minimized [28];

such condition yields the FED that can be used to find solid-liquid coexistence through the

common tangent construction [40]. When this FED is used in Expression (2), the last PFC

bulk moduli is obtained and we denote this quantity as the PFC-µ bulk modulus.

Since Expressions (1) and (2) are somewhat recognizable, it is not unreasonable to expect

equivalent or at least similar results from these expressions. However, as pointed out in Ref.

27 and also shown in this paper, Expression (1) predicts significantly different results from

that of Expression (2). Therefore, a question arises as to which method, if at all, yields the

bulk modulus that are consistent with the “standard” definition; and how the discrepancies

among different bulk moduli can be explained in a meaningful manner.

To address the first questions, we use the thermodynamic framework proposed recently

for the homogeneous liquid and solid phases [40] to systematically study the PFC bulk

moduli. We have found that none of the three PFC bulk moduli is equivalent, in terms of



thermodynamic definitions, to (a) the standard bulk modulus of a solid phase as defined

from the derivative of pressure P with respect to volume, −V ∂P/∂V , for a closed system, or

equivalently (b) that defined by the theory of thermoelasticty (TE) [37–39]. To this end, we

propose two procedure to calculate the bulk modulus that is consistent with the standard

or TE definitions; we will referred to this quantity as TE bulk modulus. When comparing

the numerical values of the PFC and TE bulk moduli calculated from the PFC model of

iron [27], the result shows that the TE bulk modulus is significantly different from the PFC

bulk moduli. This result indicates that instead of the PFC bulk moduli, one must use the

TE bulk modulus in order to perform consistent parameterization of the model.

To address the second question, we use the thermodynamic definitions of the TE and

PFC bulk moduli to derive the relationships among different bulk moduli. These relation-

ships not only provide verification to the proposed definitions of the PFC bulk moduli, but

also quantify differences among different types of bulk moduli in a meaningful manner. For

example, the difference between the PFC-V and PFC-µ bulk moduli is proportional to the

degree in which the unit-cell volume that minimizes the FED changes with respect to the

average density. Furthermore, we can use one of the relationships to show that Expression

(2) can, in fact, yield the TE bulk modulus, but only in the case of a liquid phase. The

fact that the applicability of Expression (2) depends on the phase being considered em-

phasizes the importance of understanding the underlying thermodynamic description of the

system; such understanding ensures consistent calculation results and therefore, consistent

parameterization of the model.

The paper is organized as follows. In Section II, we provide background information

on the PFC method, the thermodynamic formulation of the homogengeous solid and liquid

phases, continuum mechanics, and the PFC and TE elastic constants. Next, the definitions

of the TE bulk moduli of solid and liquid phases are discussed in Section III. In Section

IV, we outline the procedures in calculating the PFC and TE bulk moduli using the PFC

method, and, at the same time, propose the thermodynamic definitions of the PFC bulk

moduli. Then, we present numerical comparisons between the PFC and TE bulk moduli in

Section V and derive the relationships among the PFC and TE bulk moduli in Section VI.

Lastly, the summary of this paper is presented in Section VII.



II. BACKGROUND

In this section, we provide background information that is necessary for analyzes and

discussions in the remainder of the work. In Section II A, we introduce the PFC free energy

and the density profiles. In Sections II B and II C, we review the thermodynamic formu-

lations of homogeneous solid and liquid phases, respectively; these formulations have been

recently used in the context of the PFC method [40]. Then, we introduce the definitions of

strain tensors in Section II D and review the definition of the PFC and TE elastic constants

in Section II E.

A. PFC method

In this work, we use the following PFC free energy functional [2]:

F =

∫
w(φ) dR, w(φ) ≡ φ

2

[
at + λ(q20 +∇2)2

]
φ+ gt

φ4

4
, (3)

where w(φ) is a free energy density (FED), φ = φ(R) is an atomic number-density field, and

R is a position vector. The quantities at, gt, λ, and q0 are fitting parameters. The density

field can be written in terms of a Fourier expansion of the form

φ(R, φave) = φave +
∑
j

Aje
iGj ·R + c.c., (4)

where Gj is a reciprocal lattice vector (RLV), Aj is an amplitude of the density wave cor-

responding to Gj, φave is an average number density, and c.c. denotes a complex conjugate.

To simplify the expressions in Eq. (3), one can non-dimensionalize the variables by using

the following substitutions [2]:

R̃ ≡ q0R, ε̃ ≡ − at
λq40

, φ̃ ≡
√

gt
λq40

φ, F̃ ≡ gt

λ2q8−d0

F , w̃ ≡ gt
λ2q80

w, (5)

where the quantities with tildes are nondimensional, and d = 3 is the dimensionality of the

problem. The PFC free energy then simplifies to

F̃ =

∫
w̃
(
φ̃
)
dR̃, w̃

(
φ̃
)

=
φ̃

2

[
−ε̃+

(
1 + ∇̃2

)2]
φ̃+

φ̃4

4
. (6)

In this work, we consider the density profiles of homogeneous solid and liquid phases.

The crystalline structure of the solid phase is assumed to be body-centered-cubic (bcc). For



simplicity, we use an approximation of the density profile where we restrict the terms in

Eq. (4) to those corresponding to 〈110〉 and 〈200〉 RLVs; in other words, the summation is

limited to the terms with |Gj| = 2π
√

2/La and |Gj| = 4π/La, respectively, where La is the

edge length of a cubic unit cell. We will refer to this density approximation as the two-mode

approximation. By assuming that the amplitudes corresponding to RLVs within the same

mode (〈110〉 or 〈200〉) are equivalent, we obtain, in the nondimensionalized quantities,

φ̃s2(R̃, φ̃ave) = φ̃ave + 4Ãs

[
cos
(
q̃aR̃1

)
cos
(
q̃aR̃3

)
+ cos

(
q̃aR̃2

)
cos
(
q̃aR̃3

)
+ cos

(
q̃aR̃1

)
cos
(
q̃aR̃2

) ]
+ 2B̃s

[
cos(2q̃aR̃1) + cos(2q̃aR̃2) + cos(2q̃aR̃3)

]
, (7)

where q̃a = 2π/(Laq0) = 2π/L̃a, and Ãs and B̃s are density-wave amplitudes corresponding

to the 〈110〉 and 〈200〉 RLVs, respectively. When B̃s = 0, the expression above reduces to

the one-mode approximation [2] which will be denoted as φ̃s1(R̃, φ̃ave). When B̃s = Ãs = 0,

the density profile is a constant function, φ̃l(φ̃ave) = φ̃ave, and is used to characterize the

density of a homogeneous liquid phase.

In Section II D, we will denote (R̃1, R̃2, R̃3) as the undeformed coordinates and, as a

result, the quantity q̃a will determine the (non-dimensionalized) reference unit-cell volume

(for the solid phase) where deformation is measured from. Even though the choice of q̃a is

arbitrary, q̃a is generally chosen to be the value that minimizes the homogeneous (or “bulk”)

free energy density (HFED) of the solid phase [41]. This HFED, denoted by g̃pfcs , can be

obtained by the following integration:

g̃pfcs (q̃a, φ̃ave) =
1

Ṽ

∫
Ṽ

w̃
(
φ̃s

)
dR̃, (8)

where Ṽ is taken to be a unit-cell volume with the value (2π/q̃a)
3. The amplitudes Ãs and

B̃s are not regarded as independent variables because they can be written in terms of φ̃ave

and q̃a. The superscript “pfc” emphasizes that the corresponding HFED is calculated from

the PFC free energy; such HFED will be referred to as PFC HFED. The subscripts “s”

in g̃pfcs and φ̃s can be either “s1” or “s2” depending on whether φ̃s1 or φ̃s2 is employed,

respectively.

The positive, nonzero value of q̃a that minimizes g̃pfcs2 is

1√
2

√(
Ã2
s + B̃2

s

)/(
Ã2
s + 2B̃2

s

)
≡ q̃∗2. (9)



However, if g̃pfcs1 is considered, B̃s = 0 and the above expression reduces to

1√
2
≡ q̃∗1. (10)

For the choice of the reference unit-cell volume, we follow Ref. 27 and set q̃a = q̃∗1 =

1/
√

2, which results in the reference unit-cell volume of (2
√

2π)3. This specification of

the undeformed state applies in all subsequent calculations, regardless of whether g̃pfcs1 or

g̃pfcs2 is considered. This specification also indicates that g̃pfcs1 is minimized with respect to

deformation of the unit-cell volume at the undeformed state, but g̃pfcs2 is not. Furthermore,

the constant values of q̃∗1 means that the unit-cell volume that minimizes g̃pfcs1 does not change

with φ̃ave while the expression of q̃∗2 suggests that the unit-cell volume that minimizes g̃pfcs2 is

a function of φ̃ave. The specification of the undeformed state and the functional dependence

of q̃∗2 contribute to the discrepancy between PFC-V and PFC-µ bulk moduli, as will be

shown subsequently.

The PFC HFED of the liquid phase, g̃pfcl , is obtained from

g̃pfcl (φ̃ave) =
1

Ṽ

∫
Ṽ

w̃
(
φ̃l

)
dR̃, (11)

where Ṽ is system volume, not the unit-cell volume. Unlike g̃pfcs , it turns out that g̃pfcl is

not dependent on q̃a. The difference in the number of independent variables between the

HFEDs of the solid and liquid phases is the reason why Expression (2) yield the TE bulk

modulus only for the liquid phase, but for the solid phase. Lastly, we will hereafter omit the

tilde notation for simplicity unless stated otherwise.

B. Thermodynamic formulation of a homogeneous solid phase

In this and the next subsections, we will introduce the thermodynamic HFEDs which

will be used to formally define elastic constants and other thermodynamic quantities in a

systematic manner. Here, we consider the thermodynamic formulation of a solid phase;

this formulation is based on a description of solid as a network of lattice which allows

description of vacancies [42–44] and was recently employed in the context of the PFC method

[40]. The starting point of the formulation is a postulation of functional dependence of the

Helmholtz free energy, denoted as Fs. For a one-component, hydrostatically-stressed system,

the functional dependence of Fs is proposed to be[40]

Fs(θ, V,NA, NL), (12)



where NL is a number of lattice sites, NA is a number of lattice sites occupied by atomic

species A, and V is system volume. For simplicity, we will limit the system size to one unit

cell and, as a result, V will be unit-cell volume. From Fs, two types of thermodynamic

HFEDs can be defined [40, 44]:

f ′s(θ, J, ρ
′
A) =

Fs
V
, (13)

and

gs(θ, J, ρA) =
Fs
V
, (14)

where θ is temperature, V is the reference-state (or undeformed) unit-cell volume, J = V/V ,

ρA = NA/V , and ρ′A = NA/V = JρA. The independent variable J quantifies the amount

of isotropic deformation from the undeformed state. The variables ρA and ρ′A are both

densities of the lattice sites occupied by atomic species A, but they are measured with

different frames of reference: ρA is measured with the current (or deformed) frame while ρ′A is

measured with the reference (or undeformed) frame. Similarly, f ′s and gs are thermodynamic

HFEDs measured with the deformed and undeformed frames, respectively, and will be used

to define the TE and PFC bulk moduli, respectively. We note that gs is closely related to

gpfcs introduced in the previous subsection. Also, the reduced number of the independent

variables of f ′s and gs compared with those of Fs is due to the assumption that NL remains

constant; this assumption is justified in the absence of defects that can alter the number of

lattice sites such as surfaces, grain boundaries and dislocations [42].

The differential of f ′s gives[44]

df ′s = −s′dθ − PdJ + µAdρ
′
A (15)

with

s′ = −
(
∂f ′s
∂θ

)
ρ′A,J

, P = −
(
∂f ′s
∂J

)
θ,ρ′A

, µA =

(
∂f ′s
∂ρ′A

)
θ,J

, (16)

where s′ is entropy density measured with the undeformed frame, P is pressure, and µA

is diffusion potential. The subscripts after the parentheses refer to variables that are held

constant. For the derivative of f ′s with respect to J (definition of P ), the condition of

constant ρ′A is equivalent to the condition of constant NA since V is taken to be constant;

this constant-NA condition, along with the constant-NL condition, implies deformation of

a closed system. This type of derivative will be used to define the TE elastic constants[36]

(Section II E) and the TE bulk modulus (Section III B).



As shown in Appendix A, the differential of gs can be written as[40]

dgs = −sdθ − P gdJ + µAdρA (17)

with

s = −
(
∂gs
∂θ

)
ρA,J

, P g = −
(
∂gs
∂J

)
θ,ρA

, µA =

(
∂gs
∂ρA

)
θ,J

, (18)

where s = s′/J . In contrast to P , the quantity P g is calculated from the derivative of gs

instead of fs and the derivative is performed with constant ρA instead of ρ′A. The constant-

ρA condition at the derivative of gs with respect to J implies that the system is no longer

closed. This type of derivative will later be used to define the PFC elastic constants[36]

(Section II E) and the PFC-EC bulk modulus (Section IV B).

From Appendix A, the quantity P g is identified to be µLρ
′
L/J

2, where ρ′L = NL/V and

µL is an energy change due to a change in the number of lattice sites at constant volume

and number of atoms. Of particular interest is the condition P g = 0, which is the condition

where gs is minimized with respect to J . Since ρ′L and J are nonzero, P g = 0 implies µL = 0,

which indicates no driving force to add or remove a lattice site. This condition is used to

evaluate solid-liquid coexistence through the common tangent construction[40] and is closely

related to that is used to calculate the PFC-µ bulk modulus in Expression (2). Also, the

quantities P and P g can be related through the Euler equation:[40]

P = −gs + µAρA + P gJ. (19)

It is clear from the above equation that the condition of P g = 0 does not necessarily result

in a zero-pressure condition (P = 0).

In addition to fs and gs, in Appendix E, we introduce another thermodynamic quantity,

ωs = gs + P gJ , whose one of the independent variables is P g. The quantity ωs will be used

to formally define the PFC-µ bulk modulus.

C. Thermodynamic formulation of a homogeneous liquid phase

In this subsection, we consider the thermodynamic formulation of a one-component homo-

geneous liquid phase. Since the description of lattices does not apply in the liquid phase, the



number of independent variables of the Helmholtz free energy, Fl, will be reduced compared

with that of the solid phase [40]:

Fl(θ, V,NA), (20)

where V and NA are system volume and a number of particles, respectively. The two HFEDs

can be defined in a similar manner [40]:

f ′l (θ, J, ρ
′
A) =

Fl
V

(21)

and

gl(θ, ρA) =
Fl
V
. (22)

Comparing the thermodynamic HFEDs from the solid and liquid phases, one can see that

gs(θ, J, ρA) and gl(θ, ρA) do not have the same number of independent variables; this is anal-

ogous to how gpfcs and gpfcl from Section II A have different number of independent variables.

However, f ′s(θ, J, ρ
′
A) and f ′l (θ, J, ρ

′
A) have an equal number of independent variables. The

equality in the number of independent variables leads to the fact that the definitions of

the TE bulk modulus in terms of f ′l and f ′s (Eqs. (40) and (43)) are similar; however, the

definitions in terms of gl and gs (Eqs. (42) and (73)) are not.

The differential of f ′l gives[44]

df ′l = −s′dθ − PdJ + µAdρ
′
A (23)

with

s′ = −
(
∂f ′l
∂θ

)
ρ′A,J

, P = −
(
∂f ′l
∂J

)
θ,ρ′A

, µA =

(
∂f ′l
∂ρA

)
θ,J

, (24)

where P is the pressure of the liquid phase; we note that a different symbol is used here to

distinguish between the pressure from the solid and liquid phases. The differential of gl is

dgl = −sdθ + µAdρA (25)

with

s = −
(
∂gl
∂θ

)
ρA

, µA =

(
∂gl
∂ρA

)
θ

, (26)

Finally, the pressure P is defined by the following expression:

P = −gl + µAρA. (27)



D. Measures of deformation

The reference or undeformed state is defined to be the state where material is subjected

to zero strain, but not necessary zero stress. A position of a material point is described by

a position vector R = R1i +R2j +R3k, where (R1, R2, R3) are the undeformed coordinates

and i, j, and k form a Cartesian basis. At the deformed state, the position of the same

material point is described by r = r1i+ r2j+ r3k, where (r1, r2, r3) are the deformed coordi-

nates. Various measures of deformation can be defined form the undeformed and deformed

coordinates such as the deformation gradient tensor,

αij =
∂ri
∂Rj

, (28)

the displacement gradient tensor,

uij = αij − δij, (29)

the Lagrangian strain tensor,

Eij =
1

2
(αkiαkj − δij) , (30)

the symmetric small-strain tensor,

εij =
1

2
(uij + uji) , (31)

the anti-symmetric small-strain tensor,

ωij =
1

2
(uij − uji) , (32)

and the ratio between the volumes elements in the deformed and undeformed states,

J = det |αij|, (33)

where the subscripts i and j vary from 1 to 3, δij is the Kronecker δ, and the Einstein

summation notation is used. For affine transformations, J is simply the volume ratio V/V .

E. Definitions of TE and PFC elastic constants

In this subsection, we review the definitions of the TE and PFC elastic constants which

will be later used to define the TE and PFC bulk moduli. The TE elastic constants are

defined from the theory of thermoelasticity of stressed materials [37–39]. Depending on the



measure of deformation, different types of the TE elastic constants can be defined. Here,

we consider two types of the TE elastic constants, Cijkl and Kijkl, which are defined by the

derivatives of f ′s with respect to Eij and εij (see Appendix B):

Cijkl =

(
∂2f ′s

∂Eij∂Ekl

)u
θ,E∗mn,ρ

′
A

, Kijkl =

(
∂2f ′s

∂εij∂εkl

)u
θ,ε∗mn,ρ

′
A

, (34)

where f ′s is assumed to depend on Eij or εij instead of J to uniquely describe nonhydrostatic

deformation. The notations E∗mn and ε∗mn indicate that the elements of the tensors that are

not involved in the partial derivatives are held constant, and the superscript “u” indicates

that the derivative is evaluated at the undeformed state.

On the other hand, the PFC elastic constants are the quantities calculated from the

methods outlined in Refs. 1, 2, and 27 and their definitions in terms of derivatives with

respect to elements of strain tensors were proposed in Ref. 36:

HE
ijkl =

(
∂2gs

∂Eij∂Ekl

)u
θ,E∗mn,ρA

, Hε
ijkl =

(
∂2gs

∂εij∂εkl

)u
θ,ε∗mn,ρA

. (35)

By comparing Eqs. (34) and (35), we can identify that the differences between the TE and

PFC elastic constants are the types of HFEDs used in the derivatives and the conditions

imposed during deformation; these differences are similar to those between P and P g in

Section II B. It is shown in Ref. 36 that the differences among the PFC and TE elastic

constants, both calculated form the PFC method, can be significant. Therefore, the PFC

and TE elastic constants are not interchangeable and only the TE elastic constants should

be used to make fair comparison with those from experiments and other theories [36].

For a system with cubic symmetry, there are three unique nonzero values of elastic con-

stants; these values are (no summation) C11 = Ciiii, C12 = Ciijj, C44 = Cijij = Cijji while the

remaining elements are zero. Similar notations apply to Kijkl, H
E
ijkl, and Hε

ijkl. Furthermore,

for a system under isotropic pressure, the TE elastic constants are related through

C11 = K11 + Pu, C12 = K12, C44 = K44 +
Pu
2
, (36)

and the PFC elastic constants are related through

HE
11 = Hε

11 + P g
u , HE

12 = Hε
12, HE

44 = Hε
44 +

P g
u

2
, (37)

where Pu and P g
u are the quantities P and P g evaluated at the undeformed state, respectively:

Pu = −
(
∂fs
∂J

)u
θ,ρ′A

, P g
u = −

(
∂gs
∂J

)u
θ,ρA

. (38)



It can be seen from Eq. (37) that the condition of P g
u = 0 results in HE

αβ = Hε
αβ, where the

subscript αβ can be 11, 12, or 44.

III. DEFINITIONS OF TE BULK MODULUS

In this section, we outline different definitions of the standard (or TE) bulk modulus using

the thermodynamic HFEDs introduced in Sections II B and II C and the elastic constants

from Section II E. These definitions provide the procedures from which the TE bulk modulus

can be calculated using the PFC method, and also facilitate the comparison between different

types of bulk moduli. As a starting point, the TE bulk modulus can be obtained from the

derivative of pressure:

−V
(
∂P
∂V

)
θ,N

= −J
(
∂P
∂J

)
θ,N

, (39)

where N refer to the variables that need to be held constant to achieve a close-system

condition, and the pressure P can be either P (solid phase) or P (liquid phase). Depending

on the functional forms of pressure, different expressions will result as follows.

A. Liquid phase

From Section II C, two functional forms of P are possible. One is P(θ, J, ρ′A) from Eq.

(24) and the other is P(θ, ρA) from Eq. (27). The appropriate form to use in Eq. (39) is

P(θ, J, ρ′A) because of the dependence on J and the fact that holding ρ′A constants yields a

close-system condition. Therefore, the definition of the TE bulk modulus of a liquid phase,

BTE, becomes

BTE(θ, J, ρ′A) = −J
(
∂P
∂J

)
θ,ρ′A

= J

(
∂2f ′l
∂J2

)
θ,ρ′A

, (40)

where the definition of Pl from Eq. (24) is used to obtain the expression in terms of f ′l . Since

the dependence on ρ′A is not conventional, the functional form of BTE can be changed to the

form that depends on ρA using the relationship ρ′A = JρA.

Another common expression for the liquid bulk modulus can be obtained by writing the

functional dependence of P as P(θ, ρA(J, ρ′A)); this allows the following transformation using



the chain rule: (
∂P
∂J

)
θ,ρ′A

= −ρA
J

(
∂P
∂ρA

)
θ

(41)

Substituting the above expression into the first equality in Eq. (40) and using the expression

of P from Eq. (27), we obtain an alternative expression for the liquid bulk modulus:

BTE(θ, ρA) = ρ2A

(
∂2gl
∂ρ2A

)
θ

. (42)

One can see that the right-hand side of above equation is similar to Expression (2) with

the substitutions ρA → φave, and gl → F/V ; and with the omission of θ as it is understood

that the process is isothermal. We also note that such substitutions are justified given

the phenomenological origin of the PFC free energy used in this work [36]. This indicates

that Expression (2) can be used to calculate the TE bulk modulus of the liquid phase;

unfortunately, Expression (2) does not yield the TE bulk modulus of the solid phase, as will

be discussed next.

B. Solid phase

From Section II B, the two functional forms of P are P (θ, J, ρ′A) from Eq. (16) and

P (θ, J, ρA) from Eq. (19). Similar to the case of the liquid phase, the form that can be

used in Eq. (39) is P (θ, J, ρ′A). Using the definition of P from Eq. (16), the expression for

the TE solid bulk modulus, BTE, from Eq. (39) becomes

BTE(θ, J, ρ′A) = −J
(
∂P

∂J

)
θ,ρ′A

= J

(
∂2f ′s
∂J2

)
θ,ρ′A

. (43)

The similarity between the definitions from Eqs. (40) and (43) is due to similarity in the

functional dependence between f ′l and f ′s. The similarity in the definitions is advantageous

because it results in the same procedures to calculate the TE bulk moduli using the PFC

method regardless of whether the solid or the liquid phase is considered.

The above expression evaluated at the undeformed state becomes

BTE
u (θ, ρ′A) =

(
∂2f ′s
∂J2

)u
θ,ρ′A

. (44)

At the undeformed state, the choice of dependence on ρ′A or ρA is immaterial because

ρ′A = ρA; however, we will only use the functional dependence on ρ′A for the quantity

evaluated at the undeformed state to avoid confusion.



Unlike the liquid phase, however, there is no definition of the TE bulk modulus of the solid

phase that is similar to Eq. (42). The reason is due to the functional form P (θ, J, ρA) which

has an extra dependence on J compared with P(θ, ρA) for the liquid phase; the difference

in the independent variables stems from the forms of gs(θ, J, ρA) and gl(θ, ρA). This extra

dependence leads to different transformation from Eq. (41) and a different expression from

Eq. (42); we refer to Eq. (73) for the resulting expression. The fact that Eqs. (42) and (73)

are different indicates that Expression (2) cannot be used to calculate the TE bulk modulus

of the solid phase, which also suggests that PFC-V and PFC-µ bulk moduli will be not equal

to the TE bulk modulus when considering the solid phase.

Another common expression for the solid bulk moduli is derived using the theory of

thermoelasticity and the expression can be written in terms of the TE elastic constants [39];

the details of the derivation is shown in Appendix B. The resulting expression that applies

to a system with cubic symmetry under isotropic pressure is

BTE
u (θ, ρ′A) =

C11 + 2C12 + Pu
3

=
K11 + 2K12 + 2Pu

3
, (45)

where the quantities with the subscripts u are used because Cαβ and Kαβ are already the

quantities evaluated at the undeformed state.

IV. PROCEDURES FOR CALCULATING ISOTHERMAL BULK MODULI US-

ING PFC FREE ENERGY

In this section, we outline different methods of calculating the PFC and TE bulk moduli

using the PFC free energy of the solid phase. At the same time, formal definitions of the

PFC bulk moduli will be proposed in terms of thermodynamic HFEDs. These definitions

clarify the difference between the PFC and TE bulk moduli and facilitate the derivation of

the relationships among different bulk moduli. The presentation consists of the introduction

of PFC HFEDs followed by the discussion of three types of the PFC bulk moduli. Lastly,

the procedures to calculate the TE bulk moduli using the PFC method will be presented.

A. PFC homogeneous free energy densities

In this subsection, we introduce the PFC HFEDs which are quantities that can be di-

rectly calculated from the free energy and be linked to the thermodynamic HFEDs, f ′s and



gs, described in Section II B. In this work, the PFC HFED will depend on isotropic defor-

mation characterized by r = (1 + ξ)R, where ξ is the variable that quantifies the amount

of deformation. From Eqs. (28) and (33), we can relate J and ξ by J(ξ) = (1 + ξ)3 and the

derivatives with respect to J and ξ are related by

∂

∂ξ
= 3(1 + ξ)2

∂

∂J
, (46)

and
∂2

∂ξ2
= 6(1 + ξ)

∂

∂J
+ 9(1 + ξ)4

∂2

∂J2
. (47)

The PFC HFED that can be linked to the thermodynamic HFED gs(θ, J, ρA) is the same

quantity as gpfcs (qa, φave) introduced in Eq. (8). However, since qa is now set to a constant

1/
√

2, we need to introduce the variable ξ to specify the unit-cell volume. This introduction

of ξ is accomplished by expressing φs(R, φave) with the deformed coordinate, φs(r/(1 +

ξ), φave), integrating w(φs) over the deformed unit-cell volume V (ξ) = (2
√

2π(1 + ξ))3, and

dividing the result by V (ξ) to obtain [36]

gpfcs (ξ, φave) =
1

V (ξ)

∫
V (ξ)

w

[
φs

(
r

1 + ξ
, φave

)]
dr. (48)

The function gpfcs (ξ, φave) can be linked to gs(θ, J, ρA) because both HFEDs are energies

defined by the deformed frame and are functions of deformation variables and densities

defined by the deformed frames; the difference in the dependence on temperature is ignored

because all processes considered in this work are isothermal.

The PFC HFED that is representative of f ′s(θ, J, ρ
′
A) can be obtained by writing φs(R, φave)

with the deformed coordinate, and, in addition, expressing φave in terms of φ′ave using the

transformation

φave =
φ′ave
J(ξ)

=
φ′ave

(1 + ξ)3
. (49)

This results in φs (r/(1 + ξ), φ′ave/J(ξ)). Then, w(φs) is integrated over the deformed volume

and the result is divided by the undeformed unit-cell volume V = (2
√

2π)3, which yields [36]

f ′,pfcs (ξ, φ′ave) =
1

V

∫
V (ξ)

w

[
φs

(
r

1 + ξ
,
φ′ave
J(ξ)

)]
dr. (50)

Let us now use the PFC HFED to calculate the quantity P g from the PFC free energy.

From the definition in Eq. (18), we replace gs with gpfcs and replace ρA by φave to obtain

P g(ξ, φave) = − 1

3(1 + ξ)2

(
∂gpfcs
∂ξ

)
φave

, (51)



where the chain rule in Eq. (46) is employed and the process is assumed to be isothermal.

Whether P g is calculated from gpfcs1 or gpfcs2 will be made clear in the context. When P g(ξ, φave)

is evaluated at the undeformed state, we obtain

P g
u (φ′ave) = −1

3

(
∂gpfcs
∂ξ

)u
φave

. (52)

Since ξ controls the unit-cell volume, one can see that the state of deformation where gpfcs

is minimized by the unit-cell volume corresponds to P g = 0; this state of deformation will

be specified by ξ = ξ∗. With the specification of P g
u and ξ∗, we can describe the behaviors

of gpfcs1 and gpfcs2 that are discussed in Section II A in a more precise manner. First, the fact

that gpfcs1 is minimized with respect to the reference unit-cell volume corresponds to P g
u = 0.

However, for gpfcs2 , P g
u does not necessarily equal to zero. Second, the fact that the unit-cell

volume that minimizes gpfcs1 does not change with average density corresponds a constant

function ξ∗. However, with the choice of gpfcs2 , ξ∗ is a function of φave.

B. PFC-EC bulk modulus

As mentioned in the introduction, the PFC-EC bulk modulus is calculated from Expres-

sion (1) (from Ref. 27):

H11 + 2H12

3
,

where Hαβ is the PFC elastic constant introduced in Section II E. However, the superscript

E or ε is intentionally omitted from Hαβ because it is not clear from Ref. 27 whether the

elastic constants are defined from Eij or εij; this ambiguity is discussed in Ref. 36. However,

the distinction between HE
αβ and Hε

αβ is not necessary for the calculation in Ref. 27 because of

the choice of PFC HFED that is equivalent to gpfcs1 in this work. As discussed in Section IV A,

these conditions lead to P g
u = 0 which then results inHE

αβ = Hε
αβ (see Eq. (37)). Nevertheless,

we have established that P g
u is not necessarily zero in general and, therefore, Expression (1)

needs to be generalized to include P g
u . We then propose the following expression:

HE
11 + 2HE

12 + P g
u

3
=
Hε

11 + 2Hε
12 + 2P g

u

3
≡MEC

u . (53)

where we use the notation “M” to denote the PFC bulk modulus and the superscript “EC”

specifies the PFC-EC bulk modulus. We note that all quantities above are evaluated at



the undeformed state. One can see that above expression is analogous to Eq. (45) and the

inclusion of P g
u is motivated by the fact that the difference between Pu and P g

u is similar to

the difference between the PFC and TE elastic constants. Clearly, if P g
u = 0, which leads to

HE
αβ = Hε

αβ ≡ Hαβ, the expression for MEC
u simplifies to Expression (1). The values of HE

αβ

and Hε
αβ can be obtained from gpfcs and the procedures are summarized in Appendix C.

Similar to how Eq. (45) are related to Eqs. (43) and (44), Eq. (53) suggests that the

thermodynamic definitions of the PFC-EC bulk modulus are

MEC(θ, J, ρA) = J

(
∂2gs
∂J2

)
θ,ρA

, (54)

and

MEC
u (θ, ρ′A) =

(
∂2gs
∂J2

)u
θ,ρA

. (55)

The above two equations are analogous to Eqs. (43) and (44) in a sense that the expressions

contain the derivatives of HFEDs with respect to J ; however, the difference is that gs and

ρA are used instead of f ′s and ρ′A.

By comparing Eqs. (43) and (54), it is clear that the PFC-EC bulk modulus is not

equivalent to the TE bulk modulus. The differences between the two quantities is due to the

type of HFED used in the derivatives and the condition imposed during the deformation; the

TE (PFC-EC) bulk modulus is calculated from HFED defined in the undeformed (deformed)

frame and the derivative is performed with the constant-mass (constant-φave) condition.

These differences are similar to those between PFC and TE elastic constants (Eqs. (34) and

(35)), and between P and P g (Eqs. (16) and (18)).

The advantage of the definitions in Eqs. (54) and (55) is that we can now propose the

alternative procedures to calculate the PFC-EC bulk modulus using the PFC free energy

directly; these procedures are obtained in a similar manner to how Eq. (51) is obtained. The

results are

MEC(ξ, φave) =
1

9(1 + ξ)

(
∂2gpfcs
∂ξ2

)
φave

+
2

3
P g, (56)

and

MEC
u (φ′ave) =

1

9

(
∂2gpfcs
∂ξ2

)u
φave

+
2

3
P g
u , (57)



where the relationship in Eq. (47) is also used. For consistency check, we use both gpfcs1 and

gpfcs2 to verify analytically that Eqs. (53) and (57) yield identical values of MEC
u . Despite

the similar results, Eq. (57) give a more convenient method to calculate MEC
u than Eq. (53)

because Eq. (57) does not involve evaluation of HE
αβ or Hε

αβ, which is more complicated. For

a more general result, Eq. (56) should be used because it allows evaluation of the PFC-EC

bulk modulus at any value of ξ, not only at ξ = 0 or the undeformed state.

C. PFC-V bulk modulus

The PFC-V bulk modulus is calculated from Expression (2),

φ2
ave

∂2(F/V )

∂φ2
ave

,

but with the condition that, in the construction of the free energy density, the unit-cell

volume is held constant [27]. This condition is a result from fixing the value of “q” in the

density profile; see Eqs. (27) and (81) in Ref. 27. Therefore, we rewrite Expression (2) to

give a more rigorous description of the PFC-V bulk modulus:

φ2
ave

(
∂2gpfcs
∂φ2

ave

)
ξ

≡MV(ξ, φave), (58)

where the subscript ξ in the above expression indicates that the unit-cell volume is fixed

during the change of the average density, and the superscript “V” indicates the PFC-V bulk

modulus. The above expression evaluated at the undeformed state gives

(φ′ave)
2

(
∂2gpfcs
∂φ2

ave

)u
ξ

≡MV
u (φ′ave), (59)

where the unit-cell volume is restricted to the undeformed-state value. From Eqs. (58) and

(59), we can now propose the thermodynamic definitions of the PFC-V bulk modulus which

are

MV(θ, J, ρA) = (ρA)2
(
∂2gs
∂ρ2A

)
θ,J

(60)

and

MV
u (θ, ρ′A) = (ρ′A)2

(
∂2gs
∂ρ2A

)u
θ,J

. (61)



Despite the fact that Eq. (60) is very similar to the expression of the liquid bulk modulus

in Eq. (42), Eq. (60), and also Eq. (61), does not yield the TE bulk modulus of the solid

phase. This fact is established in Section III and will also be verified by Eq. (73). Therefore,

we conclude that the PFC-V bulk modulus is not equivalent to the TE bulk modulus.

D. PFC-µ bulk modulus

The last type of the PFC bulk moduli is also calculated from Expression (2), but with the

condition that the unit-cell volume takes the value that minimizes gpfcs (hereafter referred

to as the “energy-minimizing unit-cell volume”) [28]. In other words, if we denote ξ∗(φave)

as the amount of isotropic deformation from the undeformed state such that the energy-

minimizing unit-cell volume is achieved, we can write another PFC HFED,

gpfcs (ξ = ξ∗(φave), φave) ≡ ωpfc
s (φave), (62)

where ωpfc
s is a function of only φave. One can see that ωpfc

s is the PFC HFED where the

condition of P g = 0, or µL = 0, is always satisfied. The PFC-µ bulk modulus can then be

defined [28]:

φ2
ave

(
∂2ωpfc

s

∂φ2
ave

)
≡Mµ(φave), (63)

where the subscript “µ” indicates the PFC-µ bulk modulus. The quantity Mµ are not

evaluated at the undeformed state because ξ is no longer an independent variable.

In general, the PFC-µ bulk modulus should be different from the PFC-V bulk modulus

due to different conditions that are applied to the PFC HFED. However, for the choice of

gpfcs = gpfcs1 , the energy-minimizing unit-cell volume is the reference unit-cell volume for all

values of φave (in other words, ξ∗(φave) = 0) and this leads to the equivalence of the two

conditions that are applied to the PFC HFED; thus Mµ = MV
u . However, for the choice of

gpfcs = gpfcs2 , it turns out that ξ∗(φave) 6= 0, which results in the difference between the values

of the PFC-V and PFC-µ bulk moduli, as will be seen in Section V B.

E. TE bulk modulus

In this part, we introduce two procedures for calculating the TE solid bulk modulus using

the PFC method. The first procedure is to calculate the TE bulk modulus from the TE



elastic constants introduced in Section II E using the expression taken from Eq. (45):

BTE
u (φ′ave) =

C11 + 2C12 + Pu
3

=
K11 + 2K12 + 2Pu

3
, (64)

where the procedures to calculate Cαβ and Kαβ from the PFC method are summarized in

Appendix C.

The second procedure is to calculate the TE bulk modulus from the definitions in Eqs.

(43) and (44). We first replace f ′s with f ′,pfcs and substitute ρ′A with φ′ave. Then by using the

derivative transformation in Eq. (47) and omitting temperature dependence, we arrive at

BTE(ξ, φ′ave) =
1

9(1 + ξ)

(
∂2f ′,pfcs

∂ξ2

)
φ′ave

+
2

3
P (65)

and

BTE
u (φ′ave) =

1

9

(
∂2f ′,pfcs

∂ξ2

)u
φ′ave

+
2

3
Pu, (66)

where the expressions to calculate P and Pu using the PFC HFED are obtained from the

definition in Eqs. (38), yielding

P (ξ, φ′ave) = − 1

3(1 + ξ)2

(
∂f ′,pfcs

∂ξ

)
φ′ave

. (67)

and

Pu(φ
′
ave) = −1

3

(
∂f ′,pfcs

∂ξ

)u
φ′ave

. (68)

We note that the dependence of BTE and P on φ′ave can be changed to φave by the relationship

in Eq. (49). For consistency check, we use gpfcs1 and gpfcs2 to calculate analytical expressions of

BTE
u from Eqs. (64) and (66) and the results confirm the equivalence of Eqs. (64) and (66).

However, the procedure to calculate BTE
u in Eq. (66) is more convenient than that in Eq.

(64) because evaluation of Cαβ and Kαβ is more complicated. For more general results, the

procedure in Eq. (65) should be used because it allows the TE bulk modulus to be evaluated

any state of deformation.

V. NUMERICAL COMPARISONS OF PFC AND TE BULK MODULI

In this section, we report numerical values of the PFC and TE bulk moduli to highlight

the difference among these quantities and to provide some discussion on parameterization



of the PFC model. We use the values of the fitting parameters that are parameterized for

bcc Fe [27]. These fitting values are (dimensional) q0 = 2.985 Å−1, λ = 0.291 eVÅ7, and

gt = 9.703 eVÅ9, which leads to ε̃ = 0.0923 (non-dimensional). However, the value of gt

is slightly different from 9.705 eVÅ9 in Ref. 27 due to the round-off error correction [36].

The dimensional value of the bulk modulus, B, is obtained from non-dimensional value, B̃,

through the relation B = (λ2q80/g)B̃.

The calculations are divided into those using φs1 (the one-mode approximation), and

those using φs2 (the two-mode approximation). The results from φs1 can be compared with

those from Ref. 27 while the results from φs2 represent the situations where other density

profiles, such as those from numerical relaxation, are used. For φs1, the amplitude As will

be obtained through energy minimization; however, for φs2, the functional forms of As and

Bs will be predetermined in order to make symbolic calculations tractable. The choice of

As and Bs will be discussed subsequently.

A. Calculations using a one mode approximation

Figure 1(a) shows the values of the TE bulk modulus (BTE
u ), and the PFC bulk moduli

(MEC
u , MV

u , Mµ); these quantities are plotted as functions of φ′ave. Table I displays the

values of the bulk moduli and the pressure at solid-liquid coexistence (φ′ave = -0.201). For

comparison, we also tabulate two values from Ref. 27: an equivalence of MEC
u in this work,

and the bulk modulus from a molecular dynamics (MD) simulation. The small discrepancy

between the value of MEC
u calculated in this work and that from Ref. 27 is due to the

difference in the values of gt.

By comparing the values of the PFC and TE bulk moduli, it is clear that neither MEC
u ,

MV
u , nor Mµ is equivalent to BTE

u and the differences between PFC and TE bulk moduli

are not negligible. This indicates that the procedures to calculate bulk moduli from Refs.

27 and 28 do not yield the TE bulk modulus and that the PFC and the TE bulk moduli

are not generally interchangeable. Therefore, one must use the TE bulk modulus as the

model prediction in order to make consistent comparison with the reference values from

experiments or other models.

From Fig. 1(a), the values of Mµ are identical to those of MV
u . As discussed in Section

IV D, this similarity is due to the fact that for the choice of gpfcs1 , the energy-minimizing unit



cell volume is the reference unit-cell volume for all values of the average density. We will

show later that when energy-minimizing unit cell volume is a function of average density,

Mµ and MV
u can be different from one another.

Since it is established that neither MEC
u , MV

u , nor Mµ is equivalent to the TE bulk moduli,

let us now compareBTE
u from the PFC method with the result from the MD simulation. From

Table I, the value of BTE
u is almost three time as much as the value from the MD simulation.

This finding indicates that the current model parameterization[27] (with bcc iron) does not

yield the solid phase with reasonable bulk modulus at liquid-solid coexistence. In fact, the

large value of BTE
u is not unexpected because the system is under very high pressure of 184.5

GPa, as shown in Table I. This state of the system is very different from that in an MD

simulation where a zero-pressure state is typically achieved. We can explore the values of

BTE
u at other pressure by considering Fig. 1(b) where the pressure is plotted as a function

of φ′ave. One can see that Pu decreases significantly from the value at φ′ave = -0.201 to much

smaller values at small |φ′ave|. At small |φ′ave|, one can see that BTE
u also exhibits values

that are comparable to the that from the MD calculation, as indicated by the values of BTE
u

within the dash rectangle in Fig. 1(a).

We can take a step further and make the condition of the pressure comparable to that

of the MD calculation. To this end, we compute the TE bulk modulus that is evaluated at

zero pressure. This is achieved by calculating BTE at the states of deformation (ξ) where

P = 0. These states of deformation are shown in Fig. 2(a) where the values of ξ that result

in P = 0 are plotted as a function of φave. However, we are able to find the zero-pressure

states only for small |φave|. Beyond the range of |φave| in Fig. 2(a), no real-value solution of

ξ exists when we attempt to solve for the zero-pressure condition. It is possible that this

limitation is due to the assumption of the one-mode approximation. The real-value solution

of ξ might be available at higher |φave| if, for example, numerically-relaxed density profile is

used.

Nevertheless, within the range of φave shown in Fig. 2(a), we show the values of the TE

bulk modulus at zero pressure, BTE(P = 0), in Fig. 2(b). From the figure, the values of

BTE(P = 0) are in most part comparable to the MD value. This result suggests that one

way to obtain reasonable values of the TE bulk modulus could be to enforce an additional

pressure condition. This condition is such that the system is under similar pressure to that

from the reference condition such as a zero-pressure condition of an MD simulation. For the



current model parameterization of Fe[27] using the one-mode approximation, however, it is

not possible to obtain the zero-pressure state of the solid phase at the coexistence density;

possible solutions to circumvent this limitation include using numerically-relaxed density

profile, alternative parameterization, or different types of PFC free energies [33].

(a) (b)

FIG. 1. (a) Plots of the TE bulk modulus (BTE
u ) and the PFC bulk moduli (MEC

u , MV
u , Mµ) as

functions of the average density, φ′ave. The dash horizontal line indicates the reference value from

the MD simulation (Row 6 in Table I). (b) Plot of pressure evaluated at the undeformed state, P u,

as a function of φ′ave. The inset is the enlarged portion of the plot at the range of φ′ave indicated

by the dash rectangle.

B. Calculations using a two-mode approximation

As shown previously, the use of the one-mode approximation leads to the energy-

minimizing volume that is equal to the reference-state unit-cell volume at all values of

φave; this also leads to identical values of MV
u and Mµ. To illustrate the situation where

MV
u could be different from Mµ, we use the two-mode approximation to show how these

two quantities can differ.

Unlike the case where the one-mode approximation is used, we will assume the functional

forms of the amplitudes in order to make the symbolic computation tractable. The proposed



Row Quantities Values (GPa)

1 BTE
u 327.5

2 MEC
u 59.9

3 MV
u 267.6

4 Pu 184.5

5 MEC
u (Ref. 27) 60.0

6 MD (Ref. 27) 111.6

TABLE I. Numerical values of the TE bulk modulus (BTE
u ), PFC bulk moduli (MEC

u , MV
u ), and

pressure (Pu) at the solid-liquid coexistence (φave = -0.201). The values from Rows 1 to 4 are the

results in Fig. 1. The values from Rows 5 and 6 are taken from Ref. 27. The small discrepancy

between MEC
u from Rows 2 and 5 is due to slightly different values of the model parameter gt used

in the calculations.

amplitude functions are

As = − 2

15
φave, Bs = ηA2

s. (69)

The functional form of As is obtained from retaining the first term in the amplitude ex-

pression that minimizes gpfcs1 (using the one-mode approximation) at the reference state:

As = −2/15φave + 1/15
√
−11φ2

ave + 5ε. The functional form of Bs is motivated by the fact

that the PFC free energy favors a density profile with small contributions from higher-mode

density waves (or terms with larger |Gj|) in the Fourier expansion in Eq. (4); thus the am-

plitude Bs is expected to be smaller than As. The parameter η is introduced to control the

magnitude of Bs. Figure 3(a) shows the magnitudes of As and Bs as functions of φave with

different values of η; the figure shows how Bs increases with increasing η from 0 to 30.

As mentioned in Section IV A, we denote ξ∗ as the deformation state where the energy-

minimizing unit-cell volume is achieved. By using Eq. (9), we can determine the values of

ξ∗ which is shown in Figure 3(b). When η = 0, we find that ξ∗ = 0 which is similar to

the case of using the one-mode approximation. However, when η > 0, ξ∗ is no longer zero

and changes with φave. The higher the value of η is, the higher the value of ξ∗ becomes.

This indicates that the contribution from the second-mode in the Fourier expansion (Eq.

4) causes the energy-minimizing unit-cell volume to be different from the reference unit-cell



(a) (b)

FIG. 2. (a) Plot of ξ (deformation state) that results in a zero-pressure state as a function of

φave. The vertical line indicates the limit at which the real-value solution of ξ that results in zero

pressure exists. (b) Plot of TE bulk modulus at zero pressure, BTE(P = 0), as a function of φave.

The values of BTE
u from Fig. 1(a) are shown for comparison. The dash horizontal line indicates

the reference value from the MD simulation (Row 6 in Table I).

volume ((2π
√

2)3), and results in ξ∗ being a function φave.

The difference between MV
u and Mµ can be further written into

MV
u −Mµ =

[
MV

u −MV(ξ∗)
]

+
[
MV(ξ∗)−Mµ

]
= ∆M1 + ∆M2. (70)

The term ∆M1 is the difference between MV evaluated at ξ = 0 and at ξ = ξ∗. This term

originates from the specification of the reference unit-cell volume (choice of qa in Eq. 7) that

is different from the energy-minimizing unit-cell volume. The term ∆M2 is the difference

between MV and Mµ, both evaluated at ξ = ξ∗. This term originates from the different

conditions that is used to calculate the PFC-V and PFC-µ bulk moduli: condition where the

unit-cell volume remains constant and the condition where the unit-cell volume is always

equal to the energy-minimizing unit-cell volume, respectively.

The values of ∆M1 and ∆M2 are shown in Figs. 3(c) and 3(d), respectively, as functions

of φave and η. At η = 0, ∆M1 = ∆M2 = 0 because ξ∗ = 0; in other words, the reference

unit-cell volume is equal to the energy-minimizing unit-cell volume for all φave. Therefore, in



this case, MV
u = Mµ, which is similar to the case of the one-mode approximation. However,

when η > 0, ∆M1 6= 0 and ∆M2 6= 0 because ξ∗ is not zero and varies with φave. This

indicates that MV
u is no longer equal to Mµ. The larger the value of η is, the larger the

values of ∆M1 and ∆M2, which means that the difference between MV
u and Mµ increases

with η or the contribution from the second-mode in the Fourier expansion. The magnitudes

of ∆M1 and ∆M2 will depend on specifications of the reference unit-cell volume, types of

PFC free energy, parameterization schemes, and choices of density profiles. However, in our

study, the magnitude ∆M1 is significantly larger than that of ∆M2, which indicates that the

discrepancy between MV
u and Mµ is mostly due to the specification of the reference unit-cell

volume.

To this end, we refer to another type of the PFC free energy called the “modified two-

mode” PFC free energy [30]. This free energy contains a specific parameter that can be

adjusted so that when using the two-mode approximation, the energy-minimizing unit-cell

volume does not change with φave. With the specification of the reference-unit cell volume

that is equal to the energy-minimizing unit-cell volume, ξ∗ will be zero for all φave and in

this case, MV
u and Mµ will be equivalent.

VI. THERMODYNAMIC RELATIONSHIPS AMONG PFC AND TE BULK MOD-

ULI

In this section, we derive the relationships among the TE and PFC bulk moduli in terms

of thermodynamic quantities. These relationships provides insights into the difference among

the bulk moduli and verify the validity of the proposed definitions of the PFC bulk moduli

in Section IV. The relationship among the TE, PFC-EC, and PFC-V bulk moduli will be

first presented, followed by the derivation of the relatioship between the PFC-V and PFC-µ

bulk moduli.

A. Relationship among TE, PFC-EC, and PFC-V bulk moduli

The relationship among the TE (BTE), PFC-EC (MEC), and PFC-V (MV) bulk moduli

is realized through deriving the expression of the TE solid bulk modulus from Eq. (43) in

terms of the derivative of gs. In this derivation, we use the functional form of pressure from



(a) (b)

(c) (d)

FIG. 3. Plots of (a) amplitudes As and Bs, (b) ξ∗, (c) ∆M1, and (d) ∆M2 as functions of φave

and η. The quantity ξ∗ is the deformation state that results in P g = 0 or the energy-minimizing

unit-cell volume.

Eq. (19) which is P (θ, J, ρA). This functional form gives the following transformation using

the chain rule:

(
∂P

∂J

)
θ,ρ′A

= −ρA
J

(
∂P

∂ρA

)
θ,J

+

(
∂P

∂J

)
θ,ρA

, (71)

When comparing the above expression with Eq. (41), one can see an extra term due to

additional dependence of pressure on J . By substituting the above expression into Eq. (43),



we obtain an alternative expression for the TE solid bulk modulus in terms of P (θ, J, ρA):

BTE = ρA

(
∂P

∂ρA

)
θ,J

− J
(
∂P

∂J

)
θ,ρA

. (72)

Then, we substitute the definition of P in Eq. (19) into the above expression to obtain

BTE = ρ2A

(
∂2gs
∂ρ2A

)
θ,J

+ J2

(
∂2gs
∂J2

)
θ,ρA

− 2JρA

(
∂2gs
∂J∂ρA

)
θ,[ρA,J ]

+ 2J

(
∂gs
∂J

)
θ,ρA

, (73)

where the notation “[ρA, J ]” indicates that ρA is held constant for the derivative with respect

to J , and vice versa. The above expression provides two verifications. First, it confirms that

the expression for MV in Eq. (60) is not equivalent to the TE bulk modulus. Second, it

validates the expression for the TE liquid bulk modulus in Eq. (42), which in turn confirms

the applicability of Expression (2) for the liquid phase. The validation can be seen from

using gl in place of gs in the above expression. Since gl is not dependent on J , all the terms

with the derivatives with respect to J will be zero and thus Eq. (42) is recovered.

Equation (73) can be further expressed in terms of the thermodynamic quantities intro-

duced previously. We recognize that the first term on the right-hand side is MV (Eq. (60)),

the second term is JMEC (Eq. (54)), and the last term is −2JP g (Eq. (18)). We also write

the third term as (
∂2gs
∂J∂ρA

)
θ,[ρA,J ]

=

(
∂P g

∂ρA

)
θ,J

≡ Dg. (74)

Then Eq. (73) becomes

BTE = MV + JMEC − 2JρAD
g − 2JP g, (75)

which is the relationship among BTE, MEC, and MV. The above equation (75) not only

emphasizes the fact that MEC and MV are not equivalent to the TE solid bulk modulus,

but also relates these bulk moduli in a quantitative way. To verify this relationship, we use

both gpfcs1 and gpfcs2 to confirm, with symbolic calculations, that BTE calculated from Eq. (75)

is identical to that calculated from the procedures in Section IV E. As another verification,

we evaluate Eq. (75) at the undeformed state to yield

BTE
u = MV

u +MEC
u − 2ρ′AD

g
u − 2P g

u , (76)

where Dg
u is the quantity Dg evaluated at the undeformed state. We then show in Appendix

D that the identical result can be obtained from the relationships between the TE and PFC

elastic constants introduced in Ref. 36.



Furthermore, when gpfcs1 (the one-mode approximation) is used, we have P g
u = 0 and from

Eq. (74), Dg
u = 0. This condition further simplifies Eq. (76) to

BTE
u = MV

u +MEC
u , (77)

which applies to the result in Fig. 1(a).

B. Relationship between PFC-V and PFC-µ bulk moduli

In this subsection, we derive the relationship between the PFC-V and PFC-µ bulk moduli

to give insight into the difference between the two quantities. As discussed in Eq. (70), the

discrepancy between the PFC-V and PFC-µ bulk moduli is divided into ∆M1 and ∆M2.

However, we will not consider ∆M1 here because ∆M1 depends on the specification of the

undeformed state (or the reference unit-cell volume) which is arbitrary. Therefore, we only

consider ∆M2 and derive the relationship between MV and Mµ that are evaluated at the

same deformation state.

The details of the derivation is somewhat lengthy and are instead shown in Appendix E.

In summary, we first propose the definition of Mµ in terms of the thermodynamic HFED.

This definition then allows us to derive the definition of the TE solid bulk modulus in terms

of Mµ. By comparing the resulting expression and that in Eq. (75), we arrive at

MV∗ −Mµ ≡ ∆M2 =
ρ2AM

EC∗

J∗

[(
∂J∗

∂ρA

)
θ

]2
, (78)

where the quantities with the superscript “∗” refer to those evaluated at P g = 0 or at

the state with energy-minimizing unit-cell volume. The above equation quantifies, in terms

of thermodynamic quantities, the difference between the PFC-V and PFC-µ bulk moduli

that comes from the two different conditions: the condition where the unit-cell volume

remains constant and the condition where the unit-cell volume is always equal to the energy-

minimizing unit-cell volume. In particular, the derivative (∂J∗/∂ρA)θ indicates the change

of the energy-minimizing unit-cell volume with respect to the average density. When the

energy-minimizing unit-cell volume does not change with the average density, as in the case

of the one-mode approximation, we have (∂J∗/∂ρA)θ = 0, which leads to MV∗ = Mµ.

However, when the energy-minimizing unit-cell volume changes with the average density, as

in the case of the two-mode approximation, we have (∂J∗/∂ρA)θ 6= 0, which leads to the

difference between MV∗ and Mµ.



VII. SUMMARY

In this work, we investigate the procedures to calculate isothermal bulk modulus of a solid

phase in the PFC literature [27, 28]. We have identified three procedures which results in

three types of the bulk moduli (referred to as the PFC bulk moduli): PFC-EC, PFC-V, and

PFC-µ bulk moduli. The PFC-EC bulk modulus is calculated from Expression (1) which

involves the PFC elastic constants (see Ref. 36) while the PFC-V and PFC-µ bulk moduli

are calculated from Expression (2) which contains the derivative of the free energy density

(FED) with respect to the average density. However, the difference between PFC-V and

PFC-µ bulk moduli originates from the conditions that are imposed to the FED. For the

calculation of the PFC-V bulk modulus, the condition is that the unit-cell volume remains

constant. For the calculation of the PFC-µ bulk modulus, the condition is such that the

unit-cell volume is always equal to the value that minimizes the FED.

We use the thermodynamic formulations of solid and liquid phases introduced in Ref.

40 to consistently define the PFC bulk moduli and find that neither PFC-EC, PFC-V, nor

PFC-µ bulk moduli is equivalent to the standard bulk moduli (referred to as the TE bulk

modulus) as defined from (a) the derivative of the pressure with respect to volume for a

closed system or (b) that defined by the theory of thermoelasticty (TE) [37–39]. To this

end, we propose two procedures to calculate the TE bulk modulus using the PFC method.

One method, shown in Eq. (64), is to use the TE elastic constants (see Ref. 36) and the other

method, shown in Eq. (65), is to calculate the energy change due to isotropic deformation

with the appropriate FED and a closed-system condition.

We perform numerical comparison of the PFC and TE bulk moduli calculated from

the PFC model that is parameterized to bcc iron [27]. The result shows that the TE

and PFC bulk moduli are significantly different. This indicates that the TE and PFC

bulk moduli cannot be used interchangeably and one must use the TE bulk moduli in

order to make consistent comparison with values from experiments and other models. The

result also suggests that in order to obtain reasonable values of the TE bulk modulus,

additional requirement that the system is under a reasonable value of pressure might need

to be enforced.

Furthermore, we use the definitions of the TE and PFC bulk moduli to derive the rela-

tionships among different quantities. These relationships verify the proposed definitions of



the PFC bulk moduli and provide quantitative measure of differences among different types

of the bulk moduli in a meaningful manner. The relationship also indicates that Expression

(2) can be used to calculate the TE bulk modulus of a liquid phase, but not the solid phase.

The limited applicability of Expression (2) highlights the importance of using the thermo-

dynamic framework to describe the PFC method [40]; this allows clear understanding of

quantities predicted by the model and ensures consistent parameterization of the model.

Appendix A: Differential form of gs

In this section, we derive the differential form of gs that is analogous to Eq. (15). We

start with the differential form of gs from Ref. 40:

dgs = −sdθ + χµLd(1/V ) + µAdρA, (A1)

where V is unit-cell volume and χ is a number of lattice site per unit cell where

χ = V ρA = Vρ′A. (A2)

Substituting the above expression and V = JV into Eq. (A1), we obtain

dgs = −sdθ + ρ′AµLd(1/J) + µAdρA (A3)

or

dgs = −sdθ − ρ′AµL
J2

dJ + µAdρA. (A4)

By setting ρ′AµL/J
2 ≡ P g, we obtain Eq. (17):

dgs = −sdθ − P gdJ + µAdρA.

Appendix B: Derivations of TE elastic constants and TE bulk modulus

We present derivations of the TE elastic constants and TE bulk modulus (in terms of the

TE elastic constants) from the theory of thermoelasticity of stressed materials [37–39]. The

TE elastic constants are defined from the Taylor expansion of the Helmholtz free energy of

a non-hydrostatically stressed system in the form:

F (θ, aij,N , Ri), (B1)



where N refers to a set of independent “number-of-species” variables, aij denotes either Eij

or εij, and Ri is the reference or undeformed coordinate. Since we consider Ri as constant,

we will omit this dependence subsequently. The expansion of F (θ, aij,N ) with respect to

aij around the undeformed state (aij = 0) gives [39, 45]

F (θ, Eij,N ) = F (θ, 0,N ) + VT uijEij +
V
2
CijklEijEkl + ..., (B2)

F (θ, εij,N ) = F (θ, 0,N ) + VT uijεij +
V
2
Kijklεijεkl + ..., (B3)

where T uij is the element of a symmetric second Piola-Kirchhoff stress tensor evaluated at

the undeformed state. The quantities Cijkl and Kijkl are the TE elastic constants defined as

Cijkl =
1

V

(
∂2F

∂Eij∂Ekl

)u
θ,E∗mn,N

=

(
∂2(F/V)

∂Eij∂Ekl

)u
θ,E∗mn,N

, (B4)

Kijkl =
1

V

(
∂2F

∂εij∂εkl

)u
θ,ε∗mn,N

=

(
∂2(F/V)

∂εij∂εkl

)u
θ,ε∗mn,N

, (B5)

respectively. If we consider the thermodynamic description of solid[42–44] from Section II B,

we can use the functional form of the Helmholtz free energy from Eq. (12) with the extension

to non-hydrostatically stressed system [40]:

Fs(θ, aij, NA, NL). (B6)

Then we can identify the free energy per unit undeformed volume as[40]

Fs
V

= f ′s(θ, aij, ρ
′
A). (B7)

By replacing F with Fs in Eqs. (B4) and (B5) and using Eq. (B7), we arrive at Eq. (34):

Cijkl =

(
∂2f ′s

∂Eij∂Ekl

)u
θ,E∗mn,ρ

′
A

, Kijkl =

(
∂2f ′s

∂εij∂εkl

)u
θ,ε∗mn,ρ

′
A

,

where the subscript N is replaced by ρ′A.

For the derivation of the TE bulk modulus in terms of the TE elastic constants, we

consider another set of elastic constants which are obtained from the expansion of a stress

tensor evaluated at the deformed configuration (Cauchy stress) defined as [39]

σij =
1

V
αikαjl

(
∂F

∂Ekl

)
θ,Emn∗,N

, (B8)



where there is no subscript “u” because the derivative is evaluated at the current configura-

tion. The expansion of σij is performed with respect to εij and ωij around the undeformed

state as follows [39]:

σij(θ, εij, ωij,N ) = T uij +Bijklεkl +

(
∂σij
∂ωkl

)u
θ,εmn,ω∗op,N

ωkl + ... (B9)

where

Bijkl =

(
∂σij
∂εkl

)u
θ,ε∗mn,ωop,N

. (B10)

It is also convenient to define the inverse of Bijkl as B̂ijkl where

BijklB̂klmn =
1

2
(δimδjn + δinδjm). (B11)

For a system with cubic symmetric under isotropic pressure Pu, where T uij = −δijPu, the

relationships among the elastic constants are [39]

C11 = K11 + Pu = B11 + Pu,

C12 = K12 = B12 − Pu,

C44 = K44 +
Pu
2

= B44 + Pu, (B12)

and

B̂11 =
B11 +B12

(B11 −B12)(B11 + 2B12)
,

B̂12 = − B12 +B12

(B11 −B12)(B11 + 2B12)
,

B̂44 =
1

B44

. (B13)

The expressions in Eq. (39) evaluated at the undeformed state (J = 1) yield

BTE
u =

(
∂P

∂J

)u
θ,N

. (B14)

The derivative in Eq. (B14) can then be written as [39]

BTE
u = 1

/( ∂J
∂P

)u
θ,N

= 1
/( ∂J

∂εij

)u
ε∗mn

(
∂εij
∂σkl

)u
θ,σ∗op,N

(
∂σkl
∂P

)u
. (B15)



By using the fact that (∂J/∂εij)
u
ε∗mn

= δij and (∂σkl/∂P )u = −δkl and recognizing that

(∂εij/∂σkl)
u
θ,σ∗op,N = B̂ijkl, one obtains [39]

BTE
u =

1

B̂iijj

, (B16)

which indicates the summation of nine terms in general. For a system with cubic symmetry

under isotropic pressure, one can use Eqs. (B12) and (B13) to obtain

BTE
u =

B11 + 2B12

3
=
C11 + 2C12 + Pu

3
=
K11 + 2K12 + 2Pu

3
. (B17)

We note that only the expression of the bulk modulus in terms of Bαβ contains no pressure

terms. This is a result from the fact that Bαβ is defined from the expansion of stress, not

from the energy expansions as for Cαβ and Kαβ.

Appendix C: Calculations of TE and PFC elastic constants using PFC free energy

In this section, we summarize the methods to calculate the TE and PFC elastic constants

of a cubic crystal using the PFC free energy, and we refer to Ref. 36 for more discussion on

the procedures. We use the following three types of deformation to extract the three unique

values of the constants: (I) isotropic deformation characterized by uij = δijξ, (II) biaxial

deformation where the nonzero elements are u11 = ξ and u22 = −ξ, and (III) simple-shear

deformation where the nonzero element is u12 = −ξ. Similar to Eqs. (48) and (50), the PFC

HFEDs, gpfcs and f ′,pfcs , are calculated for each deformation types:

gpfcs (ξ, φave) =
1

V (ξ)

∫
V (ξ)

w
[
φs
(
α−1 · r, φave

)]
dr, (C1)

and

f ′,pfcs (ξ, φ′ave) =
1

V

∫
V (ξ)

w

[
φs

(
α−1 · r, φ

′
ave

J(ξ)

)]
dr, (C2)

where the expression for α−1 · r, the volume V (ξ), and the integration bound for each

deformation type is shown in Table II. We will now drop the superscript “pfc” for brevity

and use the subscripts “iso”, “bi”, “sh” to refer to the isotropic, biaxial, and simple shear



deformation, respectively. The PFC elastic constants can be obtained by solving for HE
αβ:(

∂2giso
∂ξ2

)u
φave

= 3HE
11 + 6HE

12 − 3P g
u(

∂2gbi
∂ξ2

)u
φave

= 2HE
11 − 2HE

12 − 2P g
u(

∂2gsh
∂ξ2

)u
φave

= HE
44 − P g

u (C3)

where

P g
u = −1

3

(
∂giso
∂ξ

)u
φave

. (C4)

The elastic constants Hε
αβ can be calculated from Eq. (37). The TE elastic constants are

obtained by solving for Cαβ:(
∂2f ′iso
∂ξ2

)u
φ′ave

= 3C11 + 6C12 − 3Pu(
∂2f ′bi
∂ξ2

)u
φ′ave

= 2C11 − 2C12 − 2Pu(
∂2f ′sh
∂ξ2

)u
φ′ave

= C44 − Pu (C5)

where

Pu = −1

3

(
∂f ′iso
∂ξ

)u
φ′ave

. (C6)

The elastic constants Kαβ can be calculated from Eq. (36).

(i) Deformation (ii) φs
(
α−1 · r

)
(iii)

∫
V (ξ) dr (iv) J(ξ)

Isotropic φs
(
α−1 · r

)
= φ

(
r1
1+ξ ,

r2
1+ξ ,

r3
1+ξ

) ∫ La(1+ξ)
0

∫ La(1+ξ)
0

∫ La(1+ξ)
0 dr1dr2dr3 (1 + ξ)3

Biaxial φs
(
α−1 · r

)
= φ

(
r1
1+ξ ,

r2
1−ξ , r3

) ∫ La

0

∫ La(1−ξ)
0

∫ La(1+ξ)
0 dr1dr2dr3 1− ξ2

Simple shear φs
(
α−1 · r

)
= φ (r1 + ξr2, r2, r3)

∫ La

0

∫ La

0

∫ La−ξr2
−ξr2 dr1dr2dr3 1

TABLE II. List of (i) types of deformation, (ii) functional dependence of the density in terms of

the deformed coordinates, (iii) expressions for the integration over the deformed unit cell, and (iv)

volume ratios, J(ξ). The constant La is the edge length of the undeformed unit-cell: La = 2π
√

2.



Appendix D: Alternative derivation of a relationship among BTE
u , MEC

u , and MV
u :

Eq. (76)

From Ref. 36, the relationships between the TE and PFC elastic constants for a system

with cubic symmetry under isotropic pressure are

C11 = HE
11 + (ρ′A)

2Ags − 2ρ′ADgs + 2Pgs + ρ′AUgs − gsu

C12 = HE
12 + (ρ′A)

2Ags − 2ρ′ADgs + 2Pgs − ρ′AUgs + gsu

Pfps = Pgs − ρ′AUgs + gsu (D1)

where

Ags =

(
∂2gs
∂ρ2A

)u
θ,Eij

, Ugs =

(
∂gs
∂ρA

)u
θ,Eij

, (D2)

Dgs =
∂

∂ρA

∣∣∣∣∣
u

θ,Eij

(
∂gs
∂Eii

)
θ,ρA,E∗mn

, Pgs =

(
∂gs
∂Eii

)u
θ,ρA,E∗mn

, Pfss =

(
∂f ′s
∂Eii

)u
θ,ρ′A,E

∗
mn

, (D3)

and gsu is the HFED evaluated at the reference state. We note that there is no summation

for the derivative with respect to Eii; in other words, Eii can be either E11, E22, or E33. To

rewrite the above quantities in terms of the quantities defined in this work, we first recognize

that the condition of constant Eij is the same as constant J and therefore (ρ′A)2Ags = MV
u .

Next one can use the expression for J from Ref. 44, J =
√

(1 + E11)(1 + E22)(1 + E33), to

show that (∂/∂Eii)
u = (∂/∂J)u , where there is no summation for the derivative with Eii.

Therefore, we can identify the terms in Eq. (D3):

Dgs = Dg
u, Pgs = −P g

u , Pfps = −Pu. (D4)

With the above substitutions, Eq. (D1) becomes

C11 = HE
11 +MV

u − 2ρ′AD
g
u − 2P g

u + ρ′AUgs − gsu

C12 = HE
12 +MV

u − 2ρ′AD
g
u − 2P g

u − ρ′AUgs + gsu

Pu = P g
u + ρ′AUgs − gsu. (D5)

Substituting the above quantities in the definition of BTE
u in Eq. (45) and using the definition

of MEC
u in Eq. (53), we obtain identical result to Eq. (76):

BTE
u = MV

u +MEC
u − 2ρ′AD

g
u − 2P g

u .



Appendix E: Derivation of a relationship between PFC-V and PFC-µ bulk moduli:

Eq. (78)

In this section, we present the derivation of the relationship between the PFC-V and PFC-

µ bulk moduli; these two quantities are assumed to be evaluated at the same deformation

state where P g = 0 (corresponding to having the energy-minimizing unit-cell volume). First,

we need to define Mµ in terms of the thermodynamic HFED and, to this end, we propose

another thermodynamic HFED, ωs, which is defined as

ωs = gs + P gJ, (E1)

where the differential of ωs is

dωs = −sdθ + JdP g + µAdρA. (E2)

The above equation indicates that the functional dependence of ωs is ω(θ, J, P g). The

expression of pressure can then be obtained from Eqs. (19) and (E1):

P = −ωs + µAρA + 2P gJ. (E3)

From the expression for Mµ in Eq. (63), we can now propose the formal definition of Mµ in

terms of ωs:

Mµ = (ρA)2
(
∂2ωs
∂ρ2A

)P g=0

θ,P g

, (E4)

where the derivative is performed at constant θ and P g and the superscript P g = 0 indi-

cates the condition at which the derivative is evaluated. Next, Eq. (E3) suggests that the

functional dependence of P can be P (θ, J, P g). Therefore, we use the chain rule to obtain

the transformation:(
∂P

∂J

)
θ,ρ′A

= −ρA
J

(
∂P

∂ρA

)
θ,P g

+

(
∂P

∂P g

)
θ,ρA

(
∂P g

∂J

)
θ,ρ′A

. (E5)

Using the above expression in Eq. (43), we obtain another definition of the TE solid bulk

modulus:

BTE = ρA

(
∂P

∂ρA

)
θ,P g

− J
(
∂P

∂P g

)
θ,ρA

(
∂P g

∂J

)
θ,ρ′A

. (E6)



Substituting the definition of P from Eq. (E3) into the above equation, we obtain the

following expression through a lengthy but straightforward calculation:

BTE = ρ2A

(
∂2ωs
∂ρ2A

)
θ,P g

+ JMEC − 2JρAD
g − 2JP g +

(
Jρ2A(Dg)2

MEC

)
. (E7)

In arriving at the above equation, we use the following transformation from chain rule:(
∂P g

∂J

)
θ,ρ′A

=
ρAD

g −MEC

J
, (E8)

and the following transformation from the Maxwell’s relation and the chain rule:(
∂µA
∂P g

)
θ,ρA

=

(
∂J

∂ρA

)
θ,P g

= − JD
g

MEC
. (E9)

We note that the first term at the right-hand side of Eq. (E7) cannot yet be replaced by

Mµ because the condition of P g = 0 has not been applied. However, once we apply the

condition of P g = 0 to Eq. (E7), we obtain

BTE∗ = Mµ + J∗MEC∗ − 2J∗ρAD
g∗ +

(
J∗ρ2A(Dg∗)2

MEC∗

)
, (E10)

where the quantities with the superscripts “∗” are those evaluated at P g = 0. We have

verified the above relationship by using a symbolic calculation to show that BTE∗ calculated

from the above equation is identical to that calculated from Eq. (65) in Section IV E.

To obtain the relationship between MV∗ (or equivalently MV(ξ∗)) and Mµ, we first eval-

uate Eq. (75) with the condition P g = 0 to obtain

BTE∗ = MV∗ + J∗MEC∗ − 2J∗ρAD
g∗. (E11)

From Eqs. (E10) and (E11), we have

MV∗ −Mµ =
J∗ρ2A(Dg∗)2

MEC∗ , (E12)

where this quantity is essentially ∆M2 in Eq. (70). We can also use (E9) to further write

Eq. (E12) as

MV∗ −Mµ =
ρ2AM

EC∗

J∗

[(
∂J∗

∂ρA

)
θ

]2
,

which is Eq. (78).
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