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The phase-field crystal (PFC) method is an atomistic model with promising capability to model
complex behaviors of materials. The appeal of the PFC method lies in its ability to describe
crystalline-structure-related phenomena ranging from atomic to micron length scales, while
operating under time scales that are relevant to the phenomena. Due to its phenomenological
origin, however, the PFC model needs to be parameterized with known material properties for
quantitative modeling. For consistent parameterization, the predicted material properties have to
be calculated in such a way that consistent comparisons can be made with the reference values. In
this work, we investigate the procedures to calculate isothermal bulk modulus of a solid phase in
the PFC literature and find that the procedures to calculate the bulk modulus result in the quantities
(referred to as the PFC bulk moduli) that are not consistent with the standard definition. Therefore,
we propose alternative procedures to calculate the bulk modulus that is consistent with the
standard definition (referred to as the TE bulk modulus). The numerical comparison of the PFC and
TE bulk moduli shows that the TE and PFC bulk moduli are significantly different. This indicates
that the TE and PFC bulk moduli cannot be used interchangeably and one must use the TE bulk
moduli in order to make consistent comparison with values from experiments and other models.
Furthermore, we derive the relationships among the TE and PFC bulk moduli to quantify
differences among different types of bulk moduli in terms of thermodynamic quantities. The fact
that the PFC and TE bulk moduli can be related in a meaningful way also highlights the application

of the recently-proposed thermodynamic formulation for the PFC method.

Keywords: phase-field crystal method, model parameterization, bulk modulus
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I. INTRODUCTION

Understanding microstructural evolution in materials is crucial to accurate prediction of
material properties and potential development of materials with new or improved properties.
Such understanding involves considerations of phenomena occurring over multiple length and
time scales which prove to be a challenging task for computational modeling. Among a wide
range of available modeling methods, the phase-field crystal (PFC) approach is a promising
method for modeling microstructural phenomena [1-3]. The appeal of the PFC method
lies in its ability to describe crystalline-structure-related phenomena ranging from atomic to
micron length scales, while operating under time scales that are relevant (diffusive) to the
phenomena. Such advantages have led to strong interest in the method over the past decade
as seen from various applications of the model on, for example, phase transformation [4-8],
nucleation [9, 10], dislocation stability and dynamics [11-13], grain boundary premelting
[14, 15], thin film growth [16, 17], elastic and plastic deformation [18-21], creep [22], and
glass formation [23-25].

The diversity of model applications suggests that the PFC method can potentially be used
to predict complex behaviors of real materials. However, quantitative predictions can only
be made after the method has been parameterized with known properties from the material
of interest. Several works have investigated this quantitative aspect where they explored
the capability of the PFC method to predict properties of liquid and solid in coexistence
[26-35]. As there are many variations in the parameterization procedures, the effectiveness
of the procedures is determined by how well the predicted material properties from the
parameterized models match the reference values from experiments or simulations. This
also means that the predicted material properties have to be calculated in such as way that

consistent comparisons can be made with the reference values.

Recently, Pisutha-Arnond et al. [36] explored the procedures to calculate isothermal elas-
tic constants of a cubic crystal using the PFC method and showed that the conventional
procedures [1, 2, 27] for calculating elastic constants yield results (referred to as the PFC
elastic constants) that are inconsistent with the elastic constants defined by the theory
of thermoelasticity of stressed materials [37-39] (referred to as the TE elastic constants).
Therefore, they proposed the procedures to calculate the TE elastic constants using the PFC

method and showed that the numerical values of the TE elastic constants can be significantly



different from that of the PFC elastic constants. This result indicates that the TE elastic
constants must be used instead of the PFC elastic constants for consistent parameterization.

In this work, we investigate the procedures to calculate another type of elastic constants
which is an isothermal bulk modulus of a solid phase. We have identified three types of bulk
moduli (referred to as the PFC bulk moduli) from the PFC literature [27, 28]. The first
type, termed the PFC-EC bulk modulus, is calculated from the PFC elastic constants [27]:

Hyy +2Hyo

. (1)

The other two types are calculated from the derivative of a free energy density (FED)[27, 28]

5T, ®)
ave

where F is free energy, V is volume, and ¢,. is an average atomic number density. The
distinction between these two types of bulk moduli originates from the difference in the
conditions that are applied in the construction of the FED. The first condition is where the
unit-cell volume of the crystalline structure is constant [27]. This condition is the result
from a choice of a periodic density profile with a fixed period: for example, the one-mode
approximation[2] with a fixed “¢” value. Using the FED with this condition in Expression
(2), one obtains the second type of the PFC bulk moduli which will be denoted as the PFC-
V bulk modulus. The second condition, on the other hand, is where the unit-cell volume
changes, or “relaxed,” with ¢, in such as way that the FED is always minimized [28];
such condition yields the FED that can be used to find solid-liquid coexistence through the
common tangent construction [40]. When this FED is used in Expression (2), the last PFC
bulk moduli is obtained and we denote this quantity as the PFC-y bulk modulus.

Since Expressions (1) and (2) are somewhat recognizable, it is not unreasonable to expect
equivalent or at least similar results from these expressions. However, as pointed out in Ref.
27 and also shown in this paper, Expression (1) predicts significantly different results from
that of Expression (2). Therefore, a question arises as to which method, if at all, yields the
bulk modulus that are consistent with the “standard” definition; and how the discrepancies
among different bulk moduli can be explained in a meaningful manner.

To address the first questions, we use the thermodynamic framework proposed recently
for the homogeneous liquid and solid phases [40] to systematically study the PFC bulk

moduli. We have found that none of the three PFC bulk moduli is equivalent, in terms of



thermodynamic definitions, to (a) the standard bulk modulus of a solid phase as defined
from the derivative of pressure P with respect to volume, —V9P/0V, for a closed system, or
equivalently (b) that defined by the theory of thermoelasticty (TE) [37-39]. To this end, we
propose two procedure to calculate the bulk modulus that is consistent with the standard
or TE definitions; we will referred to this quantity as TE bulk modulus. When comparing
the numerical values of the PFC and TE bulk moduli calculated from the PFC model of
iron [27], the result shows that the TE bulk modulus is significantly different from the PFC
bulk moduli. This result indicates that instead of the PFC bulk moduli, one must use the

TE bulk modulus in order to perform consistent parameterization of the model.

To address the second question, we use the thermodynamic definitions of the TE and
PFC bulk moduli to derive the relationships among different bulk moduli. These relation-
ships not only provide verification to the proposed definitions of the PFC bulk moduli, but
also quantify differences among different types of bulk moduli in a meaningful manner. For
example, the difference between the PFC-V and PFC-u bulk moduli is proportional to the
degree in which the unit-cell volume that minimizes the FED changes with respect to the
average density. Furthermore, we can use one of the relationships to show that Expression
(2) can, in fact, yield the TE bulk modulus, but only in the case of a liquid phase. The
fact that the applicability of Expression (2) depends on the phase being considered em-
phasizes the importance of understanding the underlying thermodynamic description of the
system; such understanding ensures consistent calculation results and therefore, consistent

parameterization of the model.

The paper is organized as follows. In Section II, we provide background information
on the PFC method, the thermodynamic formulation of the homogengeous solid and liquid
phases, continuum mechanics, and the PFC and TE elastic constants. Next, the definitions
of the TE bulk moduli of solid and liquid phases are discussed in Section III. In Section
IV, we outline the procedures in calculating the PFC and TE bulk moduli using the PFC
method, and, at the same time, propose the thermodynamic definitions of the PFC bulk
moduli. Then, we present numerical comparisons between the PFC and TE bulk moduli in
Section V and derive the relationships among the PFC and TE bulk moduli in Section VI.
Lastly, the summary of this paper is presented in Section VII.



II. BACKGROUND

In this section, we provide background information that is necessary for analyzes and
discussions in the remainder of the work. In Section IT A, we introduce the PFC free energy
and the density profiles. In Sections II B and IIC, we review the thermodynamic formu-
lations of homogeneous solid and liquid phases, respectively; these formulations have been
recently used in the context of the PFC method [40]. Then, we introduce the definitions of
strain tensors in Section II D and review the definition of the PFC and TE elastic constants

in Section ITE.

A. PFC method

In this work, we use the following PFC free energy functional [2]:
4

lac + Ngg + V?)?] &+ g:—, (3)

F = /w(¢) dR, w(p) = ¢ 1

2
where w(¢) is a free energy density (FED), ¢ = ¢(R) is an atomic number-density field, and

R is a position vector. The quantities a;, g;, A, and ¢ are fitting parameters. The density

field can be written in terms of a Fourier expansion of the form

¢(R7 ¢ave) = ¢ave + Z AjeiGj‘R +c.c., (4)

J

where G; is a reciprocal lattice vector (RLV), A; is an amplitude of the density wave cor-
responding to G, @ave is an average number density, and c.c. denotes a complex conjugate.
To simplify the expressions in Eq. (3), one can non-dimensionalize the variables by using

the following substitutions [2]:

7 gt ~ gt - gt
=,/ = F = 5
o v @, g w g w, (5)

where the quantities with tildes are nondimensional, and d = 3 is the dimensionality of the

problem. The PFC free energy then simplifies to

ﬁ:/w(&) iR, w(é):gz{—é+(1+?2)2}a§+~z. (6)

In this work, we consider the density profiles of homogeneous solid and liquid phases.

The crystalline structure of the solid phase is assumed to be body-centered-cubic (bee). For



simplicity, we use an approximation of the density profile where we restrict the terms in
Eq. (4) to those corresponding to (110) and (200) RLVs; in other words, the summation is
limited to the terms with |G;| = 27v/2/L, and |G| = 47/ L,, respectively, where L, is the
edge length of a cubic unit cell. We will refer to this density approximation as the two-mode
approximation. By assuming that the amplitudes corresponding to RLVs within the same

mode ((110) or (200)) are equivalent, we obtain, in the nondimensionalized quantities,

qBSQ(R, &ave) = Pave + 44, [COS (qaél) cos (fjaR:s) + cos (CjaR2> cos <gaé3)

+ cos <cja1§1> coS (cjaf{g) } + 2B, [cos(cha]%) + cos(2cja]§2) + cos(QQaég)} , (7)

where G, = 27/(Laqo) = 27/ L,, and A, and B, are density-wave amplitudes corresponding
to the (110) and (200) RLVs, respectively. When B, = 0, the expression above reduces to
the one-mode approximation [2| which will be denoted as (581(1-:{, qgave). When B, = A, =0,
the density profile is a constant function, gzgl(ggave) = ggave, and is used to characterize the
density of a homogeneous liquid phase.

In Section IID, we will denote (Rl,Rg,Rg) as the undeformed coordinates and, as a
result, the quantity ¢, will determine the (non-dimensionalized) reference unit-cell volume
(for the solid phase) where deformation is measured from. Even though the choice of ¢, is
arbitrary, G, is generally chosen to be the value that minimizes the homogeneous (or “bulk”)
free energy density (HFED) of the solid phase [41]. This HFED, denoted by P, can be

obtained by the following integration:

~—

Bl bn) = [ 9(62) aR (8

where V is taken to be a unit-cell volume with the value (27/g,)*. The amplitudes A, and
B, are not regarded as independent variables because they can be written in terms of Dave
and ¢,. The superscript “pfc” emphasizes that the corresponding HFED is calculated from
the PFC free energy; such HFED will be referred to as PFC HFED. The subscripts “s”
in g and $s can be either “s1” or “s2” depending on whether ¢, or ¢y is employed,

respectively.

. - L. ~ofc -
The positive, nonzero value of g, that minimizes g&,° is

ooy (A B2) / (A 282) = )




. ~pfc - ) ~ .
However, if g¥,° is considered, B, = 0 and the above expression reduces to
1

- =qq. 10

\/§ QI ( )

For the choice of the reference unit-cell volume, we follow Ref. 27 and set ¢, = ¢ =

1/4/2, which results in the reference unit-cell volume of (24/27)%. This specification of
~pfc

the undeformed state applies in all subsequent calculations, regardless of whether g;; or
37 is considered. This specification also indicates that §F® is minimized with respect to
deformation of the unit-cell volume at the undeformed state, but g§2fC is not. Furthermore,
the constant values of §; means that the unit-cell volume that minimizes §°° does not change
With ¢y while the expression of ¢ suggests that the unit-cell volume that minimizes g% is
a function of ggave. The specification of the undeformed state and the functional dependence
of @5 contribute to the discrepancy between PFC-V and PFC-p bulk moduli, as will be

shown subsequently.

The PFC HFED of the liquid phase, g;’fc, is obtained from

T (Dave) = &/ W (éz) R, (11)

e

where V is system volume, not the unit-cell volume. Unlike gP€, it turns out that g is
not dependent on ¢,. The difference in the number of independent variables between the
HFEDs of the solid and liquid phases is the reason why Expression (2) yield the TE bulk
modulus only for the liquid phase, but for the solid phase. Lastly, we will hereafter omit the

tilde notation for simplicity unless stated otherwise.

B. Thermodynamic formulation of a homogeneous solid phase

In this and the next subsections, we will introduce the thermodynamic HFEDs which
will be used to formally define elastic constants and other thermodynamic quantities in a
systematic manner. Here, we consider the thermodynamic formulation of a solid phase;
this formulation is based on a description of solid as a network of lattice which allows
description of vacancies [42-44] and was recently employed in the context of the PFC method
[40]. The starting point of the formulation is a postulation of functional dependence of the
Helmholtz free energy, denoted as Fy. For a one-component, hydrostatically-stressed system,

the functional dependence of Fy is proposed to be[40]

FS(Q7V7NA7NL)7 (12)



where N is a number of lattice sites, N4 is a number of lattice sites occupied by atomic
species A, and V' is system volume. For simplicity, we will limit the system size to one unit

cell and, as a result, V' will be unit-cell volume. From Fj, two types of thermodynamic

HFEDs can be defined [40, 44]:

10,00 = 5 (13)
and

9s(0,J,pa) = % (14)
where 6 is temperature, V is the reference-state (or undeformed) unit-cell volume, J = V/V,
pa = Na/V, and p'y = Na/V = Jpa. The independent variable J quantifies the amount
of isotropic deformation from the undeformed state. The variables p4 and p/, are both
densities of the lattice sites occupied by atomic species A, but they are measured with
different frames of reference: p4 is measured with the current (or deformed) frame while p/, is
measured with the reference (or undeformed) frame. Similarly, f! and g5 are thermodynamic
HFEDs measured with the deformed and undeformed frames, respectively, and will be used

to define the TE and PFC bulk moduli, respectively. We note that g, is closely related to

fc
g5

variables of f! and g, compared with those of Fy is due to the assumption that N remains

introduced in the previous subsection. Also, the reduced number of the independent

constant; this assumption is justified in the absence of defects that can alter the number of
lattice sites such as surfaces, grain boundaries and dislocations [42].

The differential of f gives[44]

dfl = —s'd0 — PdJ + padp'y (15)

s

S = — -3 y P=- = 5 HA = /S ) (16)
( 09 ), 07 ) g, 0a /) 9.5

where s’ is entropy density measured with the undeformed frame, P is pressure, and ji»4

with

is diffusion potential. The subscripts after the parentheses refer to variables that are held
constant. For the derivative of f! with respect to J (definition of P), the condition of
constant p/; is equivalent to the condition of constant N4 since V is taken to be constant;
this constant-N, condition, along with the constant-/N; condition, implies deformation of
a closed system. This type of derivative will be used to define the TE elastic constants|36]
(Section ITE) and the TE bulk modulus (Section III B).



As shown in Appendix A, the differential of g, can be written as[40]
dgs = —sdf — PdJ + padpa (17)

with

895) (6’gs> ( dgs )
S = — s Py =— y  MHA = ) (18)
( 90 ) yus 9 /g pa 9pa/ g,

where s = §'/J. In contrast to P, the quantity P is calculated from the derivative of g,
instead of f; and the derivative is performed with constant p, instead of p/,. The constant-
pa condition at the derivative of g, with respect to J implies that the system is no longer
closed. This type of derivative will later be used to define the PFC elastic constants[36]
(Section ITE) and the PFC-EC bulk modulus (Section IV B).

From Appendix A, the quantity PY is identified to be pzp} /J?, where p; = Np/V and
pr is an energy change due to a change in the number of lattice sites at constant volume
and number of atoms. Of particular interest is the condition P9 = 0, which is the condition
where g, is minimized with respect to J. Since p} and J are nonzero, P9 = 0 implies py, = 0,
which indicates no driving force to add or remove a lattice site. This condition is used to
evaluate solid-liquid coexistence through the common tangent construction[40] and is closely
related to that is used to calculate the PFC-p bulk modulus in Expression (2). Also, the
quantities P and P? can be related through the Euler equation:[40]

P = —gs+ prapa+ P?J. (19)

It is clear from the above equation that the condition of P9 = 0 does not necessarily result
in a zero-pressure condition (P = 0).

In addition to fs and g, in Appendix E, we introduce another thermodynamic quantity,
ws = gs + P9J, whose one of the independent variables is PY. The quantity w, will be used

to formally define the PFC-x bulk modulus.

C. Thermodynamic formulation of a homogeneous liquid phase

In this subsection, we consider the thermodynamic formulation of a one-component homo-

geneous liquid phase. Since the description of lattices does not apply in the liquid phase, the



number of independent variables of the Helmholtz free energy, F;, will be reduced compared

with that of the solid phase [40]:
Fi(8,V, Na), (20)

where V' and N4 are system volume and a number of particles, respectively. The two HFEDs
can be defined in a similar manner [40]:

F;
fl/(0> J, 024) = Vl (21)

and

E

9(6.01) = - 22)

Comparing the thermodynamic HFEDs from the solid and liquid phases, one can see that
gs(0, J,pa) and g;(0, pa) do not have the same number of independent variables; this is anal-
ogous to how gP* and glpfC from Section IT A have different number of independent variables.
However, f1(0,J,py) and f/(0,J, py) have an equal number of independent variables. The
equality in the number of independent variables leads to the fact that the definitions of
the TE bulk modulus in terms of f; and f! (Eqgs. (40) and (43)) are similar; however, the
definitions in terms of g; and g, (Egs. (42) and (73)) are not.

The differential of f] gives[44]

df] = =s'd0 — PdJ + padpy (23)

| afl/) (aﬁ) ( o )
s=—(=t) . P=—(Z%t) . ma= : (24)
( 09 Pard 0J 0,04 Opa 0,J

where P is the pressure of the liquid phase; we note that a different symbol is used here to

with

distinguish between the pressure from the solid and liquid phases. The differential of g; is

dgi = —sdf + pradpa (25)

391) (391)
_ (%) _ (99 2
° (ae L\, (26)

Finally, the pressure P is defined by the following expression:

with

P =—ag + papa. (27)



D. Measures of deformation

The reference or undeformed state is defined to be the state where material is subjected
to zero strain, but not necessary zero stress. A position of a material point is described by
a position vector R = Rji+ Ryj + Rsk, where (R;, Rs, R3) are the undeformed coordinates
and i, j, and k form a Cartesian basis. At the deformed state, the position of the same
material point is described by r = i+ roj + r3k, where (11,79, 73) are the deformed coordi-
nates. Various measures of deformation can be defined form the undeformed and deformed

coordinates such as the deformation gradient tensor,

or;
G = ——0, (28)
7 OR;
the displacement gradient tensor,
Uiy = Qi — 0y, (29)
the Lagrangian strain tensor,
1
Eij = 5 (i — 0ij) (30)
the symmetric small-strain tensor,
1
€ij = 5 (wij + uji), (31)
the anti-symmetric small-strain tensor,
1
Wi = 5 (uij - sz‘) ) (32)
and the ratio between the volumes elements in the deformed and undeformed states,
J = det |O{7;j|, (33)

where the subscripts ¢ and j vary from 1 to 3, J;; is the Kronecker §, and the Einstein

summation notation is used. For affine transformations, J is simply the volume ratio V/V.

E. Definitions of TE and PFC elastic constants

In this subsection, we review the definitions of the TE and PFC elastic constants which
will be later used to define the TE and PFC bulk moduli. The TE elastic constants are
defined from the theory of thermoelasticity of stressed materials [37-39]. Depending on the



measure of deformation, different types of the TE elastic constants can be defined. Here,
we consider two types of the TE elastic constants, Cj;,; and Kj, which are defined by the
derivatives of f! with respect to E;; and €;; (see Appendix B):

>’ \" *fe \"
Ciju = (—aEijaE]gl> ;o Kij = (361‘]‘36191)976* ; (34)

/ /
HzE;knnipA mnva

where f! is assumed to depend on Ej; or ¢;; instead of J to uniquely describe nonhydrostatic
deformation. The notations EY  and € indicate that the elements of the tensors that are
not involved in the partial derivatives are held constant, and the superscript “u” indicates
that the derivative is evaluated at the undeformed state.

On the other hand, the PFC elastic constants are the quantities calculated from the
methods outlined in Refs. 1, 2, and 27 and their definitions in terms of derivatives with
respect to elements of strain tensors were proposed in Ref. 36:

D?g “ g \"
K <8Eij 0Ey ) ’ Ik ((%ij o ) 0.cr (%)

evE:nn’pA mniPA

By comparing Eqgs. (34) and (35), we can identify that the differences between the TE and
PFC elastic constants are the types of HFEDs used in the derivatives and the conditions
imposed during deformation; these differences are similar to those between P and PY in
Section IIB. It is shown in Ref. 36 that the differences among the PFC and TE elastic
constants, both calculated form the PFC method, can be significant. Therefore, the PFC
and TE elastic constants are not interchangeable and only the TE elastic constants should
be used to make fair comparison with those from experiments and other theories [36].

For a system with cubic symmetry, there are three unique nonzero values of elastic con-
stants; these values are (no summation) C11 = Cjji;, C1a = Ciyjj, Caa = Cyji; = Cijj; while the
remaining elements are zero. Similar notations apply to K, Hgkl, and Hf;,. Furthermore,

for a system under isotropic pressure, the TE elastic constants are related through

Py,
Cii=Kiu+ P, Cio=Kpn, Cuy=Ky-+ DR (36)

and the PFC elastic constants are related through
Py
77

Hf} = Hj, + P, Hy=Hij, Hyj=Hj+ (37)

where P, and P?¢ are the quantities P and PY evaluated at the undeformed state, respectively:

8fs>“ (8gs>“
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It can be seen from Eq. (37) that the condition of Py = 0 results in HZ; = H,, where the
subscript a3 can be 11, 12, or 44.

III. DEFINITIONS OF TE BULK MODULUS

In this section, we outline different definitions of the standard (or TE) bulk modulus using
the thermodynamic HFEDs introduced in Sections IIB and IIC and the elastic constants
from Section IT E. These definitions provide the procedures from which the TE bulk modulus
can be calculated using the PFC method, and also facilitate the comparison between different

types of bulk moduli. As a starting point, the TE bulk modulus can be obtained from the

oP oP
(@) @) &

where A refer to the variables that need to be held constant to achieve a close-system

derivative of pressure:

condition, and the pressure P can be either P (solid phase) or P (liquid phase). Depending

on the functional forms of pressure, different expressions will result as follows.

A. Liquid phase

From Section IIC, two functional forms of P are possible. One is P(0, J, p/;) from Eq.
(24) and the other is P(0, p4) from Eq. (27). The appropriate form to use in Eq. (39) is
PO, J, py) because of the dependence on J and the fact that holding py constants yields a
close-system condition. Therefore, the definition of the TE bulk modulus of a liquid phase,

op o f!
TE Iy o e — !
B0, ), pl,) — J(a{,)M J(aﬁ)w (40)

where the definition of P, from Eq. (24) is used to obtain the expression in terms of f;. Since

BT becomes

the dependence on p/; is not conventional, the functional form of BT can be changed to the
form that depends on p4 using the relationship p/y = Jpa.
Another common expression for the liquid bulk modulus can be obtained by writing the

functional dependence of P as P(0, pa(J, p4)); this allows the following transformation using



the chain rule:

P PA <6P)
- =2 (= 41

Substituting the above expression into the first equality in Eq. (40) and using the expression

of P from Eq. (27), we obtain an alternative expression for the liquid bulk modulus:

50,0 = (52) (12)
) g

One can see that the right-hand side of above equation is similar to Expression (2) with

the substitutions p4 — @ave, and g — F/V; and with the omission of € as it is understood

that the process is isothermal. We also note that such substitutions are justified given

the phenomenological origin of the PFC free energy used in this work [36]. This indicates

that Expression (2) can be used to calculate the TE bulk modulus of the liquid phase;

unfortunately, Expression (2) does not yield the TE bulk modulus of the solid phase, as will

be discussed next.

B. Solid phase

From Section IIB, the two functional forms of P are P(6,.J,p,) from Eq. (16) and
P(0,J,pa) from Eq. (19). Similar to the case of the liquid phase, the form that can be
used in Eq. (39) is P(0, J, p)y). Using the definition of P from Eq. (16), the expression for
the TE solid bulk modulus, B™®, from Eq. (39) becomes

oP o2 f!
TE Iy — Z Js ) 4

The similarity between the definitions from Egs. (40) and (43) is due to similarity in the
functional dependence between f/ and f.. The similarity in the definitions is advantageous
because it results in the same procedures to calculate the TE bulk moduli using the PFC
method regardless of whether the solid or the liquid phase is considered.

The above expression evaluated at the undeformed state becomes

an/ u

TE /N S

Bu (0710 )_ (8J2>9p/ . (44)
P A

At the undeformed state, the choice of dependence on p/; or ps is immaterial because
Py = pa; however, we will only use the functional dependence on p/y for the quantity

evaluated at the undeformed state to avoid confusion.



Unlike the liquid phase, however, there is no definition of the TE bulk modulus of the solid
phase that is similar to Eq. (42). The reason is due to the functional form P(0, J, p4) which
has an extra dependence on J compared with P (6, p4) for the liquid phase; the difference
in the independent variables stems from the forms of ¢4(6, J, pa) and ¢;(0, p4). This extra
dependence leads to different transformation from Eq. (41) and a different expression from
Eq. (42); we refer to Eq. (73) for the resulting expression. The fact that Eqs. (42) and (73)
are different indicates that Expression (2) cannot be used to calculate the TE bulk modulus
of the solid phase, which also suggests that PFC-V and PFC-p bulk moduli will be not equal
to the TE bulk modulus when considering the solid phase.

Another common expression for the solid bulk moduli is derived using the theory of
thermoelasticity and the expression can be written in terms of the TE elastic constants [39];
the details of the derivation is shown in Appendix B. The resulting expression that applies

to a system with cubic symmetry under isotropic pressure is

O +20+ P, Ki+2Ks+2P,
B 3 B 3 ’

where the quantities with the subscripts u are used because C,p and K,g are already the

B;5(0, ) (45)

quantities evaluated at the undeformed state.

IV. PROCEDURES FOR CALCULATING ISOTHERMAL BULK MODULI US-
ING PFC FREE ENERGY

In this section, we outline different methods of calculating the PFC and TE bulk moduli
using the PFC free energy of the solid phase. At the same time, formal definitions of the
PFC bulk moduli will be proposed in terms of thermodynamic HFEDs. These definitions
clarify the difference between the PFC and TE bulk moduli and facilitate the derivation of
the relationships among different bulk moduli. The presentation consists of the introduction
of PFC HFEDs followed by the discussion of three types of the PFC bulk moduli. Lastly,
the procedures to calculate the TE bulk moduli using the PFC method will be presented.

A. PFC homogeneous free energy densities

In this subsection, we introduce the PFC HFEDs which are quantities that can be di-

rectly calculated from the free energy and be linked to the thermodynamic HFEDs, f! and



gs, described in Section IIB. In this work, the PFC HFED will depend on isotropic defor-
mation characterized by r = (1 4+ £)R, where ¢ is the variable that quantifies the amount
of deformation. From Egs. (28) and (33), we can relate J and & by J(§) = (14 £)? and the

derivatives with respect to J and £ are related by

0
_ 2 O
3_5_3(1+5) 37 (46)
and ) )
* 0 L 0
8_52_6(1+€)§+9(1+5) 372 (47)

The PFC HFED that can be linked to the thermodynamic HFED g4(6, J, p4) is the same
quantity as gP(qq, dave) introduced in Eq. (8). However, since ¢, is now set to a constant
1/ V2, we need to introduce the variable ¢ to specify the unit-cell volume. This introduction
of ¢ is accomplished by expressing ¢s(R, dave) with the deformed coordinate, ¢4(r/(1 +
€), bave), integrating w(¢,) over the deformed unit-cell volume V (£) = (2v/27(1 + £))?3, and
dividing the result by V' (£) to obtain [36]

fe _ b _r
o) = g [ K [@ (1 d g,qbave)} . (48)

The function gP(, gave) can be linked to g4(6,J, pa) because both HFEDs are energies
defined by the deformed frame and are functions of deformation variables and densities
defined by the deformed frames; the difference in the dependence on temperature is ignored

because all processes considered in this work are isothermal.

The PFC HFED that is representative of f.(6, J, p/4) can be obtained by writing ¢5(R, ¢aye)

/

‘we using the

with the deformed coordinate, and, in addition, expressing ¢, in terms of ¢

transformation
/ /

¢ave = J?Z; = (1 jvz)3- (49)

This results in ¢5 (r/(1 + &), Lo/ J(£)). Then, w(ps) is integrated over the deformed volume

ave

and the result is divided by the undeformed unit-cell volume V = (2v/27)3, which yields [36]

1 r !
f;,PfC €7¢;we) — _/ w |:¢s ( ’ ave )1 dr. 50
( V v 1+&7J(€) (50)
Let us now use the PFC HFED to calculate the quantity P? from the PFC free energy.

From the definition in Eq. (18), we replace g, with ¢gP* and replace ps by ¢aye to obtain

B 1 dgre
P9<£,¢ave) = _3(1 +£)2 ( 85 )d)ave; (51)



where the chain rule in Eq. (46) is employed and the process is assumed to be isothermal.
Whether P9 is calculated from g% or ¢ will be made clear in the context. When P9(£, ¢aye)
is evaluated at the undeformed state, we obtain

, 1 (9gre\"
P =3 () (52
Qbavc

Since ¢ controls the unit-cell volume, one can see that the state of deformation where gP'
is minimized by the unit-cell volume corresponds to P9 = 0; this state of deformation will
be specified by £ = £*. With the specification of P¢ and £*, we can describe the behaviors
of g’ and g% that are discussed in Section IT A in a more precise manner. First, the fact
that ¢P° is minimized with respect to the reference unit-cell volume corresponds to P¢ = 0.
However, for gEQfC, P9 does not necessarily equal to zero. Second, the fact that the unit-cell
volume that minimizes gflfc does not change with average density corresponds a constant

function &*. However, with the choice of P, £ is a function of @aye.

B. PFC-EC bulk modulus

As mentioned in the introduction, the PFC-EC bulk modulus is calculated from Expres-

sion (1) (from Ref. 27):

Hiy +2Hy

— 3
where H,s is the PFC elastic constant introduced in Section ITE. However, the superscript
E or e is intentionally omitted from H, because it is not clear from Ref. 27 whether the
elastic constants are defined from F;; or €;;; this ambiguity is discussed in Ref. 36. However,
the distinction between HZ; and H{ is not necessary for the calculation in Ref. 27 because of
the choice of PFC HFED that is equivalent to gf:lfc in this work. As discussed in Section IV A,
these conditions lead to P¢ = 0 which then results in HY; = H{ 5 (see Eq. (37)). Nevertheless,
we have established that P¢ is not necessarily zero in general and, therefore, Expression (1)
needs to be generalized to include P¢. We then propose the following expression:

HE +2HE + P¢ Hf) +2H{, + 2P¢

; 3 = MFC. (53)

where we use the notation “M” to denote the PFC bulk modulus and the superscript “EC”
specifies the PFC-EC bulk modulus. We note that all quantities above are evaluated at



the undeformed state. One can see that above expression is analogous to Eq. (45) and the
inclusion of P? is motivated by the fact that the difference between P, and P7 is similar to
the difference between the PFC and TE elastic constants. Clearly, if P = 0, which leads to
H[y = H{s = Hqp, the expression for M} simplifies to Expression (1). The values of HZf;
and Hg s can be obtained from gP® and the procedures are summarized in Appendix C.

Similar to how Eq. (45) are related to Egs. (43) and (44), Eq. (53) suggests that the
thermodynamic definitions of the PFC-EC bulk modulus are

0%g
MEC(0, J =J l 54
( 5 7pA) (8J2>6’pA7 ( )
and
g5\ "
MO8, ply) = : .
o (0,0) (&p>am (55)

The above two equations are analogous to Eqs. (43) and (44) in a sense that the expressions
contain the derivatives of HFEDs with respect to J; however, the difference is that g, and
pa are used instead of f, and p/4.

By comparing Eqgs. (43) and (54), it is clear that the PFC-EC bulk modulus is not
equivalent to the TE bulk modulus. The differences between the two quantities is due to the
type of HFED used in the derivatives and the condition imposed during the deformation; the
TE (PFC-EC) bulk modulus is calculated from HFED defined in the undeformed (deformed)
frame and the derivative is performed with the constant-mass (constant-¢,y.) condition.
These differences are similar to those between PFC and TE elastic constants (Egs. (34) and
(35)), and between P and PY (Egs. (16) and (18)).

The advantage of the definitions in Eqs. (54) and (55) is that we can now propose the
alternative procedures to calculate the PFC-EC bulk modulus using the PFC free energy
directly; these procedures are obtained in a similar manner to how Eq. (51) is obtained. The

results are

BC B 1 a2g§fc 2
VU o) = g (o), 5P (56)

and

1 [/ 9%gPfe\" 2
MEC(p ) == 2 + - P
u (¢ave) 9( 852 )¢ave 3 u? (57)




where the relationship in Eq. (47) is also used. For consistency check, we use both gﬁ’lfc and
gSZfC to verify analytically that Eqs. (53) and (57) yield identical values of MEC. Despite
the similar results, Eq. (57) give a more convenient method to calculate M than Eq. (53)
because Eq. (57) does not involve evaluation of H, fﬁ or H{ 5, which is more complicated. For
a more general result, Eq. (56) should be used because it allows evaluation of the PFC-EC

bulk modulus at any value of £, not only at £ = 0 or the undeformed state.

C. PFC-V bulk modulus

The PFC-V bulk modulus is calculated from Expression (2),

e 0*(F/V)

ave 8¢Zve ?
but with the condition that, in the construction of the free energy density, the unit-cell
volume is held constant [27]. This condition is a result from fixing the value of “¢” in the

density profile; see Egs. (27) and (81) in Ref. 27. Therefore, we rewrite Expression (2) to

give a more rigorous description of the PFC-V bulk modulus:

82 pfc

where the subscript ¢ in the above expression indicates that the unit-cell volume is fixed
during the change of the average density, and the superscript “V” indicates the PFC-V bulk
modulus. The above expression evaluated at the undeformed state gives

pfc

0?gPle\ "
(o)’ (—) = MY (0, (59)
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where the unit-cell volume is restricted to the undeformed-state value. From Egs. (58) and

(59), we can now propose the thermodynamic definitions of the PFC-V bulk modulus which

are
9%q,
MY(0,7,pa) = (pa)? (—92) (60)
Ipy 0,J
and
VvV / /7 \2 8293 “
Pa/ o



Despite the fact that Eq. (60) is very similar to the expression of the liquid bulk modulus
in Eq. (42), Eq. (60), and also Eq. (61), does not yield the TE bulk modulus of the solid
phase. This fact is established in Section III and will also be verified by Eq. (73). Therefore,
we conclude that the PFC-V bulk modulus is not equivalent to the TE bulk modulus.

D. PFC-u bulk modulus

The last type of the PFC bulk moduli is also calculated from Expression (2), but with the
condition that the unit-cell volume takes the value that minimizes gP™ (hereafter referred
to as the “energy-minimizing unit-cell volume”) [28]. In other words, if we denote &*(aye)
as the amount of isotropic deformation from the undeformed state such that the energy-

minimizing unit-cell volume is achieved, we can write another PFC HFED,

ggfc<5 = S* (¢ave)7 ¢ave) = wgf(:(qbave)a (62>

where wg’fc is a function of only ¢.... One can see that wg’f" is the PFC HFED where the
condition of P9 = 0, or uy = 0, is always satisfied. The PFC-x bulk modulus can then be
defined [28]:

82 pfc
2 (25) « o o

where the subscript “u” indicates the PFC-p bulk modulus. The quantity M* are not
evaluated at the undeformed state because £ is no longer an independent variable.

In general, the PFC-1 bulk modulus should be different from the PFC-V bulk modulus
due to different conditions that are applied to the PFC HFED. However, for the choice of
ghle = gflfc, the energy-minimizing unit-cell volume is the reference unit-cell volume for all
values of @av (in other words, £*(¢awe) = 0) and this leads to the equivalence of the two
conditions that are applied to the PFC HFED; thus M* = M. However, for the choice of

ghle = gfgfc, it turns out that £*(¢ave) 7# 0, which results in the difference between the values

of the PFC-V and PFC-u bulk moduli, as will be seen in Section V B.

E. TE bulk modulus

In this part, we introduce two procedures for calculating the TE solid bulk modulus using

the PFC method. The first procedure is to calculate the TE bulk modulus from the TE



elastic constants introduced in Section II E using the expression taken from Eq. (45):

BTE(¢/ ) = Ci1 +2C12 + P, _ Ky + 2K, + 2P,
u ave 3 3 9

(64)

where the procedures to calculate C,p and K,z from the PFC method are summarized in
Appendix C.

The second procedure is to calculate the TE bulk modulus from the definitions in Eqs.
(43) and (44). We first replace f! with f/P and substitute p/; with ¢/ .. Then by using the

ave*

derivative transformation in Eq. (47) and omitting temperature dependence, we arrive at
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where the expressions to calculate P and P, using the PFC HFED are obtained from the
definition in Egs. (38), yielding

1 (g
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and
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We note that the dependence of BT and P on ¢/, can be changed to ¢, by the relationship
in Eq. (49). For consistency check, we use ¢°* and P to calculate analytical expressions of
BI® from Egs. (64) and (66) and the results confirm the equivalence of Eqs. (64) and (66).
However, the procedure to calculate BI® in Eq. (66) is more convenient than that in Eq.
(64) because evaluation of C,s and K,z is more complicated. For more general results, the

procedure in Eq. (65) should be used because it allows the TE bulk modulus to be evaluated

any state of deformation.

V. NUMERICAL COMPARISONS OF PFC AND TE BULK MODULI

In this section, we report numerical values of the PFC and TE bulk moduli to highlight

the difference among these quantities and to provide some discussion on parameterization



of the PFC model. We use the values of the fitting parameters that are parameterized for
bee Fe [27]. These fitting values are (dimensional) gy = 2.985 A=', A = 0.291 eVA7, and
g: = 9.703 eVA®, which leads to € = 0.0923 (non-dimensional). However, the value of g,
is slightly different from 9.705 eVA? in Ref. 27 due to the round-off error correction [36].
The dimensional value of the bulk modulus, B, is obtained from non-dimensional value, B,
through the relation B = (\2q/g)B.

The calculations are divided into those using ¢, (the one-mode approximation), and
those using ¢ (the two-mode approximation). The results from ¢ can be compared with
those from Ref. 27 while the results from ¢, represent the situations where other density
profiles, such as those from numerical relaxation, are used. For ¢, the amplitude A, will
be obtained through energy minimization; however, for ¢, the functional forms of A, and
B, will be predetermined in order to make symbolic calculations tractable. The choice of

A and By will be discussed subsequently.

A. Calculations using a one mode approximation

Figure 1(a) shows the values of the TE bulk modulus (BI*), and the PFC bulk moduli
(MEC MY M*); these quantities are plotted as functions of ¢ .. Table I displays the

values of the bulk moduli and the pressure at solid-liquid coexistence (¢, = -0.201). For
comparison, we also tabulate two values from Ref. 27: an equivalence of MC in this work,
and the bulk modulus from a molecular dynamics (MD) simulation. The small discrepancy
between the value of MEC calculated in this work and that from Ref. 27 is due to the
difference in the values of g¢;.

By comparing the values of the PFC and TE bulk moduli, it is clear that neither MF¢
MY, nor M* is equivalent to BI® and the differences between PFC and TE bulk moduli
are not negligible. This indicates that the procedures to calculate bulk moduli from Refs.
27 and 28 do not yield the TE bulk modulus and that the PFC and the TE bulk moduli
are not generally interchangeable. Therefore, one must use the TE bulk modulus as the
model prediction in order to make consistent comparison with the reference values from
experiments or other models.

From Fig. 1(a), the values of M* are identical to those of M. As discussed in Section

IV D, this similarity is due to the fact that for the choice of gP, the energy-minimizing unit



cell volume is the reference unit-cell volume for all values of the average density. We will
show later that when energy-minimizing unit cell volume is a function of average density,
M* and MY can be different from one another.

Since it is established that neither M*¢ MY nor M* is equivalent to the TE bulk moduli,
let us now compare BIF from the PFC method with the result from the MD simulation. From
Table I, the value of BI'® is almost three time as much as the value from the MD simulation.
This finding indicates that the current model parameterization[27] (with bce iron) does not
yield the solid phase with reasonable bulk modulus at liquid-solid coexistence. In fact, the
large value of BI® is not unexpected because the system is under very high pressure of 184.5
GPa, as shown in Table I. This state of the system is very different from that in an MD
simulation where a zero-pressure state is typically achieved. We can explore the values of
BT at other pressure by considering Fig. 1(b) where the pressure is plotted as a function
of ¢! .. One can see that P, decreases significantly from the value at ¢, . = -0.201 to much

ave* ave

smaller values at small |¢] .. At small |¢,,.|, one can see that BIF also exhibits values
that are comparable to the that from the MD calculation, as indicated by the values of BT
within the dash rectangle in Fig. 1(a).

We can take a step further and make the condition of the pressure comparable to that
of the MD calculation. To this end, we compute the TE bulk modulus that is evaluated at
zero pressure. This is achieved by calculating BTE at the states of deformation (§) where
P = 0. These states of deformation are shown in Fig. 2(a) where the values of £ that result
in P = 0 are plotted as a function of ¢.,... However, we are able to find the zero-pressure
states only for small |@.y.|- Beyond the range of |pay.| in Fig. 2(a), no real-value solution of
¢ exists when we attempt to solve for the zero-pressure condition. It is possible that this
limitation is due to the assumption of the one-mode approximation. The real-value solution
of £ might be available at higher |¢ay.| if, for example, numerically-relaxed density profile is
used.

Nevertheless, within the range of ¢, shown in Fig. 2(a), we show the values of the TE
bulk modulus at zero pressure, B™®(P = 0), in Fig. 2(b). From the figure, the values of
BTE(P = 0) are in most part comparable to the MD value. This result suggests that one
way to obtain reasonable values of the TE bulk modulus could be to enforce an additional
pressure condition. This condition is such that the system is under similar pressure to that

from the reference condition such as a zero-pressure condition of an MD simulation. For the



current model parameterization of Fe[27] using the one-mode approximation, however, it is
not possible to obtain the zero-pressure state of the solid phase at the coexistence density;
possible solutions to circumvent this limitation include using numerically-relaxed density

profile, alternative parameterization, or different types of PFC free energies [33].
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FIG. 1. (a) Plots of the TE bulk modulus (B!¥) and the PFC bulk moduli (MFC, MY, M") as
functions of the average density, ¢/ .. The dash horizontal line indicates the reference value from
the MD simulation (Row 6 in Table I). (b) Plot of pressure evaluated at the undeformed state, P*,

/

The inset is the enlarged portion of the plot at the range of ¢, indicated

/

as a function of ¢ ..

by the dash rectangle.

B. Calculations using a two-mode approximation

As shown previously, the use of the one-mode approximation leads to the energy-
minimizing volume that is equal to the reference-state unit-cell volume at all values of
Oave; this also leads to identical values of qu and M*. To illustrate the situation where
MY could be different from M*, we use the two-mode approximation to show how these
two quantities can differ.

Unlike the case where the one-mode approximation is used, we will assume the functional

forms of the amplitudes in order to make the symbolic computation tractable. The proposed



Row| Quantities |Values (GPa)
1 BIE 327.5
2 MEC 59.9
3 MY 267.6
4 P, 184.5
5 |MFEC (Ref. 27) 60.0
6 | MD (Ref. 27) 111.6

TABLE I. Numerical values of the TE bulk modulus (BI'¥), PFC bulk moduli (MFC, M), and
pressure (P,) at the solid-liquid coexistence (¢ave = -0.201). The values from Rows 1 to 4 are the
results in Fig. 1. The values from Rows 5 and 6 are taken from Ref. 27. The small discrepancy
between MEC from Rows 2 and 5 is due to slightly different values of the model parameter g; used

in the calculations.
amplitude functions are
2 2
As - _1_5¢ave7 Bs = 77143 (69)

The functional form of A, is obtained from retaining the first term in the amplitude ex-
pression that minimizes ¢°° (using the one-mode approximation) at the reference state:
Ag = —2/15¢pape + 1/ 15%. The functional form of B, is motivated by the fact
that the PFC free energy favors a density profile with small contributions from higher-mode
density waves (or terms with larger |G;,|) in the Fourier expansion in Eq. (4); thus the am-
plitude By is expected to be smaller than A;. The parameter 7 is introduced to control the
magnitude of By. Figure 3(a) shows the magnitudes of A; and B; as functions of ¢y, with
different values of n; the figure shows how B, increases with increasing n from 0 to 30.

As mentioned in Section IV A, we denote ¢* as the deformation state where the energy-
minimizing unit-cell volume is achieved. By using Eq. (9), we can determine the values of
¢* which is shown in Figure 3(b). When n = 0, we find that £* = 0 which is similar to
the case of using the one-mode approximation. However, when n > 0, £* is no longer zero
and changes with ¢,.. The higher the value of 7 is, the higher the value of £&* becomes.
This indicates that the contribution from the second-mode in the Fourier expansion (Eq.

4) causes the energy-minimizing unit-cell volume to be different from the reference unit-cell
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FIG. 2. (a) Plot of ¢ (deformation state) that results in a zero-pressure state as a function of
¢ave- The vertical line indicates the limit at which the real-value solution of £ that results in zero
pressure exists. (b) Plot of TE bulk modulus at zero pressure, BTE(P = 0), as a function of ¢aye.
The values of B from Fig. 1(a) are shown for comparison. The dash horizontal line indicates

the reference value from the MD simulation (Row 6 in Table I).

volume ((271/2)?), and results in £* being a function @uye.

The difference between MY and M* can be further written into

MY — M* = [M) — MY ()] + [MY(&) — M*]
— AM, + AM,. (70)

The term AM, is the difference between MV evaluated at ¢ = 0 and at £ = ¢*. This term
originates from the specification of the reference unit-cell volume (choice of ¢, in Eq. 7) that
is different from the energy-minimizing unit-cell volume. The term AM,; is the difference
between MY and M*, both evaluated at & = £*. This term originates from the different
conditions that is used to calculate the PFC-V and PFC-p bulk moduli: condition where the
unit-cell volume remains constant and the condition where the unit-cell volume is always
equal to the energy-minimizing unit-cell volume, respectively.

The values of AM; and AMs, are shown in Figs. 3(c) and 3(d), respectively, as functions
of ¢ave and . At n =0, AM; = AM,; = 0 because £* = 0; in other words, the reference

unit-cell volume is equal to the energy-minimizing unit-cell volume for all ¢,... Therefore, in



this case, MY = M*, which is similar to the case of the one-mode approximation. However,
when n > 0, AM; # 0 and AM, # 0 because £* is not zero and varies with ¢,y.. This
indicates that MY is no longer equal to M*. The larger the value of 7 is, the larger the
values of AM; and AM,, which means that the difference between M, and M* increases
with n or the contribution from the second-mode in the Fourier expansion. The magnitudes
of AM; and AM, will depend on specifications of the reference unit-cell volume, types of
PFC free energy, parameterization schemes, and choices of density profiles. However, in our
study, the magnitude AM; is significantly larger than that of AM,, which indicates that the
discrepancy between M, and M* is mostly due to the specification of the reference unit-cell
volume.

To this end, we refer to another type of the PFC free energy called the “modified two-
mode” PFC free energy [30]. This free energy contains a specific parameter that can be
adjusted so that when using the two-mode approximation, the energy-minimizing unit-cell
volume does not change with ¢.... With the specification of the reference-unit cell volume
that is equal to the energy-minimizing unit-cell volume, £* will be zero for all ¢, and in

this case, MY and M* will be equivalent.

VI. THERMODYNAMIC RELATIONSHIPS AMONG PFC AND TE BULK MOD-
ULI

In this section, we derive the relationships among the TE and PFC bulk moduli in terms
of thermodynamic quantities. These relationships provides insights into the difference among
the bulk moduli and verify the validity of the proposed definitions of the PFC bulk moduli
in Section IV. The relationship among the TE, PFC-EC, and PFC-V bulk moduli will be
first presented, followed by the derivation of the relatioship between the PFC-V and PFC-u
bulk moduli.

A. Relationship among TE, PFC-EC, and PFC-V bulk moduli

The relationship among the TE (B™™), PFC-EC (M®°), and PFC-V (M") bulk moduli
is realized through deriving the expression of the TE solid bulk modulus from Eq. (43) in

terms of the derivative of g,. In this derivation, we use the functional form of pressure from
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FIG. 3. Plots of (a) amplitudes As; and Bs, (b) £*, (c) AM;, and (d) AMs as functions of ¢@aye
and 7. The quantity £* is the deformation state that results in P9 = 0 or the energy-minimizing

unit-cell volume.

Eq. (19) which is P(0, J, pa). This functional form gives the following transformation using

opP pA (8P> (8]3)
- =22 = + | =— , 71
(&])e,p;\ J \Opa/y, 9 ) g o4 ()

When comparing the above expression with Eq. (41), one can see an extra term due to

the chain rule:

additional dependence of pressure on J. By substituting the above expression into Eq. (43),



we obtain an alternative expression for the TE solid bulk modulus in terms of P(0,J, pa):

OP OP
B™E = (—) —J (—) . 72
& Ipa 6,J 9J 0,p4 "

Then, we substitute the definition of P in Eq. (19) into the above expression to obtain

d%g 9%y d%g dyg
e (35), 0 (58), o), (),
N 0,J 9% ) g, 9J0pa ) gp4.1 0 ) .4

where the notation “[p4, J]” indicates that p4 is held constant for the derivative with respect

to J, and vice versa. The above expression provides two verifications. First, it confirms that
the expression for MV in Eq. (60) is not equivalent to the TE bulk modulus. Second, it
validates the expression for the TE liquid bulk modulus in Eq. (42), which in turn confirms
the applicability of Expression (2) for the liquid phase. The validation can be seen from
using ¢; in place of g5 in the above expression. Since g; is not dependent on J, all the terms
with the derivatives with respect to J will be zero and thus Eq. (42) is recovered.

Equation (73) can be further expressed in terms of the thermodynamic quantities intro-
duced previously. We recognize that the first term on the right-hand side is MV (Eq. (60)),
the second term is JMEC (Eq. (54)), and the last term is —2J P9 (Eq. (18)). We also write
the third term as

2 Pg
( 9 ) - (a_) =5 (74)
0J0pa) ojpusy \OPAJ oy
Then Eq. (73) becomes
BT = MY + JM®C —2Jp,D9 — 2] P9, (75)

which is the relationship among BT®, MEC and MV. The above equation (75) not only
emphasizes the fact that MTC and MV are not equivalent to the TE solid bulk modulus,
but also relates these bulk moduli in a quantitative way. To verify this relationship, we use
both g?lfc and gEQfC to confirm, with symbolic calculations, that BT calculated from Eq. (75)
is identical to that calculated from the procedures in Section IV E. As another verification,

we evaluate Eq. (75) at the undeformed state to yield
B," = M, + M —2p/,Dj — 2P}, (76)

where DY is the quantity DY evaluated at the undeformed state. We then show in Appendix
D that the identical result can be obtained from the relationships between the TE and PFC

elastic constants introduced in Ref. 36.



Furthermore, when ¢*i° (the one-mode approximation) is used, we have P9 = 0 and from

Eq. (74), D9 = 0. This condition further simplifies Eq. (76) to
BIE 1Y 4 M ()

which applies to the result in Fig. 1(a).

B. Relationship between PFC-V and PFC-u bulk moduli

In this subsection, we derive the relationship between the PFC-V and PFC-x bulk moduli
to give insight into the difference between the two quantities. As discussed in Eq. (70), the
discrepancy between the PFC-V and PFC-p bulk moduli is divided into AM; and AM,.
However, we will not consider AM; here because AM; depends on the specification of the
undeformed state (or the reference unit-cell volume) which is arbitrary. Therefore, we only
consider AM, and derive the relationship between MY and M* that are evaluated at the
same deformation state.

The details of the derivation is somewhat lengthy and are instead shown in Appendix E.
In summary, we first propose the definition of M* in terms of the thermodynamic HFED.
This definition then allows us to derive the definition of the TE solid bulk modulus in terms

of M*. By comparing the resulting expression and that in Eq. (75), we arrive at
2 ECx* * 2
MY* — M* = AM, = 78
’ J* [ (@PA ) (j 7 8)

where the quantities with the superscript “x” refer to those evaluated at P9 = 0 or at

the state with energy-minimizing unit-cell volume. The above equation quantifies, in terms
of thermodynamic quantities, the difference between the PFC-V and PFC-u bulk moduli
that comes from the two different conditions: the condition where the unit-cell volume
remains constant and the condition where the unit-cell volume is always equal to the energy-
minimizing unit-cell volume. In particular, the derivative (0.J*/0p4)y indicates the change
of the energy-minimizing unit-cell volume with respect to the average density. When the
energy-minimizing unit-cell volume does not change with the average density, as in the case
of the one-mode approximation, we have (0.J*/0p4)s = 0, which leads to MV* = M*.
However, when the energy-minimizing unit-cell volume changes with the average density, as
in the case of the two-mode approximation, we have (0J*/0pa)s # 0, which leads to the

difference between MV* and M*.



VII. SUMMARY

In this work, we investigate the procedures to calculate isothermal bulk modulus of a solid
phase in the PFC literature [27, 28]. We have identified three procedures which results in
three types of the bulk moduli (referred to as the PFC bulk moduli): PFC-EC, PFC-V, and
PFC-p bulk moduli. The PFC-EC bulk modulus is calculated from Expression (1) which
involves the PFC elastic constants (see Ref. 36) while the PFC-V and PFC-p bulk moduli
are calculated from Expression (2) which contains the derivative of the free energy density
(FED) with respect to the average density. However, the difference between PFC-V and
PFC-p bulk moduli originates from the conditions that are imposed to the FED. For the
calculation of the PFC-V bulk modulus, the condition is that the unit-cell volume remains
constant. For the calculation of the PFC-p bulk modulus, the condition is such that the

unit-cell volume is always equal to the value that minimizes the FED.

We use the thermodynamic formulations of solid and liquid phases introduced in Ref.
40 to consistently define the PFC bulk moduli and find that neither PFC-EC, PFC-V, nor
PFC-p bulk moduli is equivalent to the standard bulk moduli (referred to as the TE bulk
modulus) as defined from (a) the derivative of the pressure with respect to volume for a
closed system or (b) that defined by the theory of thermoelasticty (TE) [37-39]. To this
end, we propose two procedures to calculate the TE bulk modulus using the PFC method.
One method, shown in Eq. (64), is to use the TE elastic constants (see Ref. 36) and the other
method, shown in Eq. (65), is to calculate the energy change due to isotropic deformation

with the appropriate FED and a closed-system condition.

We perform numerical comparison of the PFC and TE bulk moduli calculated from
the PFC model that is parameterized to bec iron [27]. The result shows that the TE
and PFC bulk moduli are significantly different. This indicates that the TE and PFC
bulk moduli cannot be used interchangeably and one must use the TE bulk moduli in
order to make consistent comparison with values from experiments and other models. The
result also suggests that in order to obtain reasonable values of the TE bulk modulus,
additional requirement that the system is under a reasonable value of pressure might need

to be enforced.

Furthermore, we use the definitions of the TE and PFC bulk moduli to derive the rela-

tionships among different quantities. These relationships verify the proposed definitions of



the PFC bulk moduli and provide quantitative measure of differences among different types
of the bulk moduli in a meaningful manner. The relationship also indicates that Expression
(2) can be used to calculate the TE bulk modulus of a liquid phase, but not the solid phase.
The limited applicability of Expression (2) highlights the importance of using the thermo-
dynamic framework to describe the PFC method [40]; this allows clear understanding of

quantities predicted by the model and ensures consistent parameterization of the model.

Appendix A: Differential form of g,

In this section, we derive the differential form of g, that is analogous to Eq. (15). We
start with the differential form of g, from Ref. 40:

dgs = —sdf + xprd(1/V) + padpa, (A1)
where V' is unit-cell volume and y is a number of lattice site per unit cell where
X =Vpa=Vp. (A2)

Substituting the above expression and V' = JV into Eq. (A1), we obtain

dgs = —sdf + paprd(1/J) + padpa (A3)
or
Palt
dg, = —sdf — ’j‘]zLdJ + padpa. (A4)

By setting pypr/J* = P9, we obtain Eq. (17):

dgs = —sdf — P9dJ + padpa.

Appendix B: Derivations of TE elastic constants and TE bulk modulus

We present derivations of the TE elastic constants and TE bulk modulus (in terms of the
TE elastic constants) from the theory of thermoelasticity of stressed materials [37-39]. The
TE elastic constants are defined from the Taylor expansion of the Helmholtz free energy of

a non-hydrostatically stressed system in the form:

F(@,CLU,N, Rz), (Bl)



where AV refers to a set of independent “number-of-species” variables, a;; denotes either Ej;
or €;, and R; is the reference or undeformed coordinate. Since we consider R; as constant,
we will omit this dependence subsequently. The expansion of F(6,a;;, N') with respect to
a;; around the undeformed state (a;; = 0) gives [39, 45]

)%

F(0,E;;,N) = F(0,0,N) + VT;E;; + §OijklEijEkl + ..., (B2)
" %

F(0,€e;,N)=F(0,0,N) + V1€ + EKijklfijekl + . (B3)

where T} is the element of a symmetric second Piola-Kirchhoff stress tensor evaluated at

the undeformed state. The quantities Cj5; and K;ji; are the TE elastic constants defined as

- t(G2E ) (Zumy -

V\OE;0En ) gp. n \OEj0Bw),p
Kow— L (ZE N (CEVY (B5)
" % 862»j(96kl 0,65 N 8eij86kl 0,65 N ’

respectively. If we consider the thermodynamic description of solid[42-44] from Section I B,
we can use the functional form of the Helmholtz free energy from Eq. (12) with the extension

to non-hydrostatically stressed system [40]:
Fs(eaaiijAaNL)‘ (B6)

Then we can identify the free energy per unit undeformed volume as[40)]

Fy

v = full: aij, 0). (B7)
By replacing F' with F; in Egs. (B4) and (B5) and using Eq. (B7), we arrive at Eq. (34):
82f/ )U ( 82f/ )u
Ciing = | =—=—=2— . Kiw = s ’
gkl (8Eij8Ekl 97E:n,n7pi4 gkl aeijale 976%17/)14

where the subscript A is replaced by py.
For the derivation of the TE bulk modulus in terms of the TE elastic constants, we
consider another set of elastic constants which are obtained from the expansion of a stress

tensor evaluated at the deformed configuration (Cauchy stress) defined as [39]

1 OF
B 7 BS
7 =y (8Ekl)0,Emn*,N (B8)



where there is no subscript “u” because the derivative is evaluated at the current configura-
tion. The expansion of o;; is performed with respect to ¢;; and w;; around the undeformed

state as follows [39]:

001-- “
0ij(0, €ij, wij, N) = T, + Bijrier + 2 Wit + ... (B9)
8wkl H,Gmn,w;‘;p,./\/'

where

607;]' “
pum (22) o0

gveinn Wop 7-/\/

It is also convenient to define the inverse of B;jj; as Bijk;l where
. 1

For a system with cubic symmetric under isotropic pressure P,, where T}% = —0;;P,, the

relationships among the elastic constants are [39]

Chn=Ku+P,=DBu+PF,,
Cio = K9 = B2 — P,

P,
Cu = Ky + 5= By + Py, (B12)
and
B — Bi1 + Bi2
11 — )
(B11 — Bia)(B11 + 2Bs)
B — Bis + Bi2
12 — — )
(B11 — Bi2)(B11 + 2By2)
. 1
By = —. B13
u=g- (B13)

The expressions in Eq. (39) evaluated at the undeformed state (J = 1) yield
P u
B — op : (B14)
9J ) o n

The derivative in Eq. (B14) can then be written as [39]

oJ\" oJ\" Oeii \ " Oow \ "
BTE =1 _7 =1 Y —kl . B1
U / <8P>97N / (861-]-)67*”” (30;61)97031”]\/ ( (9P ( 5)




By using the fact that (0.J/0e;;)f = 0;; and (9o /OP)" = —6); and recognizing that

(861-]»/80,@03,0&7]\/ = Biju, one obtains [39]

1

TE __
BI® = —

z (B16)

1jj
which indicates the summation of nine terms in general. For a system with cubic symmetry

under isotropic pressure, one can use Egs. (B12) and (B13) to obtain

Bll+2312 . 011 +2012+Pu o Kll +2K12+2Pu

BTE — —
“ 3 3 3

(B17)

We note that only the expression of the bulk modulus in terms of B,3 contains no pressure
terms. This is a result from the fact that B,z is defined from the expansion of stress, not

from the energy expansions as for C,z and K,p.

Appendix C: Calculations of TE and PFC elastic constants using PFC free energy

In this section, we summarize the methods to calculate the TE and PFC elastic constants
of a cubic crystal using the PFC free energy, and we refer to Ref. 36 for more discussion on
the procedures. We use the following three types of deformation to extract the three unique
values of the constants: (I) isotropic deformation characterized by w;; = 0;;¢, (II) biaxial
deformation where the nonzero elements are uj; = & and ugy = —¢, and (III) simple-shear
deformation where the nonzero element is w5 = —¢. Similar to Egs. (48) and (50), the PFC

HFEDs, g and f/Pf are calculated for each deformation types:

ple - e d C1
9s (57 (bave) V(f) /V(g) w [¢s (Ot r, (bave)} r, ( )
and
1,pfc / _ l -1 ;ve
) = [l (@ S ) (2)

where the expression for a™! - r, the volume V(£), and the integration bound for each

deformation type is shown in Table II. We will now drop the superscript “pfc” for brevity

454

and use the subscripts “iso”, “bi”, “sh” to refer to the isotropic, biaxial, and simple shear



deformation, respectively. The PFC elastic constants can be obtained by solving for H, fﬁz

02 iso “
( J ) — 3HE + 6HE — 3P9

8§2 ¢€LV9
2.\ U
(88595‘) —2HE —2HE —opy
¢ave
3295h) “ E
= Hy) — Pg <C3)
( 852 ¢ave

where

1 8giso)u
o ( . (C4)
3 af ¢ave

The elastic constants H s can be calculated from Eq. (37). The TE elastic constants are

obtained by solving for C,:

82 U u
( =0 - 3011 -+ 6012 - 3Pu

0 ) 4.,
82 /. u
(%) y = 2011 - 2012 - 2Pu
Pfan )"
( D¢ )%e — Gl (©5)
where
1 7\
P,=—=(2se) (C6)
3\ o /,

The elastic constants K5 can be calculated from Eq. (36).

(i) Deformation (i) ¢s (@' - 1) (iii) [y dr (iv) J(€)
Isotropic bs (a—l . I‘) _ ¢< ri ro T3 ) fOLa(l-‘rE) fOLa(1+§) fo a(14€) dridradrs| (1 _|_€)3

16 Tre TiE
Biaxial Qbs (afl . I') _ (ZS (erlg’ 11%5’7,3) fOLa OLa(l—ﬁ) 0La(1+§) dridrydrs 1— 52

Simple shear |¢s (OF1 . r) = ¢ (r1 + &rg, o, 13) fOL“ I f_LgT;&Q dridradrs 1

TABLE II. List of (i) types of deformation, (ii) functional dependence of the density in terms of
the deformed coordinates, (iii) expressions for the integration over the deformed unit cell, and (iv)

volume ratios, J(¢). The constant L, is the edge length of the undeformed unit-cell: L, = 27/2.



Appendix D: Alternative derivation of a relationship among BEE, MEC, and sz :

Eq. (76)

From Ref. 36, the relationships between the TE and PFC elastic constants for a system
with cubic symmetry under isotropic pressure are
Cu = Hij + (p)" AL = 20,D4 + 2P + phlle — g

Cio = HE + (p4)? AL — 20/, DI + 2P¢ — p, U + g,

Psfp = Psg - P;xusg + Isu (Dl)
where
2 u u
Al = (8 92) , U= <8gs) , (D2)
8pA 0,E;; apA 0,E;;
u 7\ U
’Dsg — i < 895 > : 7)59 — (%) 7 pgs _ (%) , (D?))
8PA 0.5, aEzz 0,p4,E%,. aEzz 0,p4,E%,. 8E“ 0,0y B

and g, is the HFED evaluated at the reference state. We note that there is no summation
for the derivative with respect to Ej;; in other words, F;; can be either E1, Eay, or E33. To
rewrite the above quantities in terms of the quantities defined in this work, we first recognize
that the condition of constant E;; is the same as constant .J and therefore (p4)* A9 = M.
Next one can use the expression for J from Ref. 44, J = /(1 + E11)(1 + E2)(1 + E33), to
show that (0/0Ey;)" = (0/0J)", where there is no summation for the derivative with E;.

Therefore, we can identify the terms in Eq. (D3):
DI=D PI=-Pi PIP=-P, (D1)
With the above substitutions, Eq. (D1) becomes

Cu = Hiy + My = 2p/,D} — 2P + pliUe — g
Chy = Hfy+ M — 20/, D} — 2PJ — piUd? + g,

Substituting the above quantities in the definition of B " in Eq. (45) and using the definition
of MEC in Eq. (53), we obtain identical result to Eq. (76):

B = MY + MFC — 20/, D9 — 2P



Appendix E: Derivation of a relationship between PFC-V and PFC-; bulk moduli:
Eq. (78)

In this section, we present the derivation of the relationship between the PFC-V and PFC-
4 bulk moduli; these two quantities are assumed to be evaluated at the same deformation
state where P9 = 0 (corresponding to having the energy-minimizing unit-cell volume). First,
we need to define M* in terms of the thermodynamic HFED and, to this end, we propose

another thermodynamic HFED, w,, which is defined as
we = gs + PJ, (E1)
where the differential of wy is
dws = —sdf + JdP? 4 padpa. (E2)

The above equation indicates that the functional dependence of w; is w(f,J, P?). The

expression of pressure can then be obtained from Egs. (19) and (E1):
P = —ws+ papa+2P%J. (E3)

From the expression for M* in Eq. (63), we can now propose the formal definition of M* in

terms of wy:

2 PI=0
o “’S) , (B4)

2
= (52),..
where the derivative is performed at constant ¢ and PY and the superscript PY = 0 indi-
cates the condition at which the derivative is evaluated. Next, Eq. (E3) suggests that the
functional dependence of P can be P(6,.J, P9). Therefore, we use the chain rule to obtain

the transformation:

opP oA (ap> (ap) (apg)
il =2 = + — ) E5
(8] > 07pf4 J apA G,Pg 6P‘g 0’pA aJ 0,p24 ( )

Using the above expression in Eq. (43), we obtain another definition of the TE solid bulk

oP oP P9
o =5 (050),,, (57 )., o
pPA 8pA 0.Ps an 6.0 8J H,p;l ( )

modulus:



Substituting the definition of P from Eq. (E3) into the above equation, we obtain the

following expression through a lengthy but straightforward calculation:

82 s J 2 D9 2
BT = p% (%) + JMEC —2JpaD9 —2JPY + (%) : (E7)
A/ 9,P9

In arriving at the above equation, we use the following transformation from chain rule:

P9 _ paD9 — M
o )y, J ’

(E8)

and the following transformation from the Maxwell’s relation and the chain rule:

Olia a _JD?
(ﬁ>9,pfz— (aPA)e,Pg_ MEC (E9)

We note that the first term at the right-hand side of Eq. (E7) cannot yet be replaced by
M*" because the condition of P9 = 0 has not been applied. However, once we apply the

condition of PY =0 to Eq. (E7), we obtain

J* 2 D9* 2
BTE* — M 4 J* MO — 27, D% + (%) , (E10)

where the quantities with the superscripts “x” are those evaluated at PY = 0. We have
verified the above relationship by using a symbolic calculation to show that BTE* calculated
from the above equation is identical to that calculated from Eq. (65) in Section IV E.

To obtain the relationship between MV* (or equivalently MY (£*)) and M*, we first eval-
uate Eq. (75) with the condition P9 = 0 to obtain

B = MY* + J*MP — 27 pa DY (E11)

From Egs. (E10) and (E11), we have
T D)

Vx _
M = M" = MECx 7

(E12)

where this quantity is essentially AM; in Eq. (70). We can also use (E9) to further write
Eq. (E12) as

o= ()]
J* 3p,4 0 ’

which is Eq. (78).
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INFO ABSTRACT

We present thermodynamic relationships between the free energy density of the phase-field crystal {PFC)
model and thermodynamic state variables that correspend to the model input parameters: temperature,
lattice spacing, arl an average value of the PFC order parameter, fi. These relationships, derived for
homogeneous phases under hydrostatic and nonhydrostatic stresses, are based on the thermod ynamic
formalism for crystalline solids of Larché and Cahin ( 1973) These relationships provide clear thermody-
namic descriptions of the physical processes that are associated with changing PFC inpul parameters, and
demomstrate that a crystalline phase from the PFC model can be considered a network of lattices occupied
by atems and vacancies, 2 described by Larché and Cahn. The equilibriom conditions between a orys-
talline: phase and a liguid phase are imposed on the thermodynamic mh!lnll:hlps For the PFC model ta
oblain a procedure for determining salid-liquid phase coexi The e is found 1o
be in agreement with the method commaonly used in the PFC community. Finally, we apply the procedure
1o an eighth-crder-fit (E0F) PFC model that has been parameterized o body-centered=cubic {bec) ron
[Jaatinen et al, 2009) to verify the applicability of the procedure. We demonstrate that the EOF-PFC
maode] parameterization does not predict stable ber structures with positive vacancy densities. This result
suggests an alternative parameterization of the PFC model which requires the primary peak position of
the two=body direct comrelation fundtion to shift as a function of i

& 2017 Published by Elsevier BV.
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Fhase-field crysial model
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Solid-lsquid phase coexistence

1. Introduction

The phase-field crystal (FFC) mode! is a simulation approach for
studying phenomena that occur on atomic length and diffusive
rime scales. This capability of the model is achieved by considering
a free energy that is minimized by either a periodic order parame-
ter profile, which represenis a solid crystalline phase, or a constant
order parameter profile, which represents a liquid phase [1.2). Such
a formulation allows the PFC model to describe elastic and plastic
deformation, multiple crystal orientations, and free surfaces in
non-equilibrium processes |2]. Consequently, the model has been
applied to investigate many important materials phenomena such
as dislocation motion [3-5], crack propagation 5], nucleation | 7,8].
solidification |9,10], and grain-boundary-energy anisotropy |2,11].

The connection between PFC model parameters and measurable
quantities in experiments and atomistic simulations was made by
Elder et al. [12] who showed that the PFC model can be linked o
the classical density functional theory (cDFT) of freezing |13,14]

* Corresponding authar.
E-mail address: kthom@umiched (K Thormton).

hatpc) fdi doLorg/ 10,1016 j.commatso 201704017
OS37-256/€ 2017 Fublished by Elssvier BV,

through several simplifications. This relationship provided a statis-
tical mechanical interpretation of the PFC order parameter as an
atomic-probability density, which is obtained by taking an ensem-
ble average of the microscopic particle density [15]. The connec-
tion also associated the bulk modulus and lattice spacing of a
crystal to the curvature and position, respectively, of the first peak
of the two-body direct comrelation function (DCF); the DCF can be
aobtained from experiments or atomistic simulations.

Although the PFC model parameters have been linked to measur-
ahble quantities, the procedures for calculating equilibrium material
properties from the PFC model are not straightforward [ 16) because
the thermodynamic interpretation of the PFC free energy has not
been fully developed. Specifically, the choices of energy densities
and independent state variables used in conventional thermody-
namic formulations’ are different from those employed in the PFC
model. Such differences lead to a misinterpretation of the quantities

" The density quaniities used in fermulating thermodynamics of a crystalline phase
are mypically measured per unet volume in the reference state |17,18] while the
denecity guantities used in the PFC method are meeasured per unit volume in the
current staie | 16
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Abstract

The phase-field crystal (PFC) method is an atomistic model with diffusive time scale and has
shown promising capability to model complex behaviors of materials. Due to its phenomenological
origin, the PFC model needs to be parameterized with known material properties for quantitative
modeling. For consistent parameterization, the predicted material properties have to be calculated
in such as way that consistent comparisons can be made with the reference values. This work is
a continuation from the previous investigation (Pisutha-Arnond et al., 2013) on the methods to
caleulate elastic constants for model parameterization. In particular, we investigate the procedures
to caleulate isothermal bulk modulus of a solid phase in the PFC literature and find that the three
procedures to caleulate the bulk modulus result in the gquantities (referred to as the PFC bulk
moduli) that are not consistent with the standard definition. Therefore, we propose alternative
procedures to calenlate the bulk modulus that is consistent with the standard definition (referred
to as the TE bulk modulus). The mmerical comparison of the PFC and TE bulk moduli shows
that the TE and PFC bulk moduli are significantly different. This indicates that the TE and
PFC bulk moduli cannot be used interchangeably and one must use the TE bulk moduli in order
to make consistent comparison with values from experiments and other models. Furthermore, we
derive the relationships among the TE and PFC bulk moduli to quantify differences amenyg different
types of bulk moduli in terms of thermodynamic quantities, The fact that the PFC and TE bulk
moduli can be related in & meaningful way also highlights the application of the recent-proposed
thermodynamie formmlation for the PFC method (Chan et al.. 2017).





