รหัสโครงการ : TRG5880014

ชื่อโครงการ : การศึกษาและทำนายจลนพลศาสตร์ของการคั่วและการเปลี่ยนแปลงสมบัติทางเคมี-กายภาพ

ของกาแฟโรบัสต้าภายใต้การคั่วโดยใช้ใอน้ำร้อนยวดยิ่ง

ชื่อนักวิจัย : คร.ณฐมล จินคาพรรณ มหาวิทยาลัยสยาม

E-mail address: rchindapan@gmail.com

ระยะเวลาโครงการ : 2 ปี

บทคัดย่อ

เมื่อพิจารณาถึงราคาและคุณภาพ เป็นที่รู้กันดีว่ากาแฟโรบัสต้าไม่ดีเท่ากับอราบิก้า การคั่วโดยใช้ใอ น้ำร้อนยวคยิ่งดูเหมือนจะเป็นทางเลือกหนึ่งที่มีศักยภาพในการปรับปรุงคุณภาพของโรบัสต้า แต่ข้อมูล ้เกี่ยวกับเรื่องนี้มีอยู่ไม่มาก ดังนั้นงานวิจัยนี้จึงมุ่งศึกษาและทำนายจลนพลศาสตร์ของการคั่วและการ เปลี่ยนแปลงสมบัติทางเคมี-กายภาพของกาแฟโรบัสต้าภายใต้การคั่วโดยใช้ไอน้ำร้อนยวคยิ่ง สำหรับการ ทดลอง โรบัสต้าจะถูกคั่วที่อุณหภูมิ 190-250 °C โดยใช้ฟลูอิไดเซชันทั้งแบบลมร้อนและไอน้ำร้อนยวดยิ่ง ในระหว่างคั่วอุณหภูมิของเบด รวมทั้งความชื้นและความสว่างของเมล็ดกาแฟถูกวัดเป็นฟังก์ชันกับเวลา หลังจากนั้นทคลองคั่วโรบัสต้าอีกครั้งโคยใช้สภาวะเคิมจนกระทั่งความสว่างของเมล็คกาแฟลคลงจาก 45 ถึง 16 ตามลำคับ และนำไปวิเคราะห์ความเป็นกรค-ค่าง (pH) องค์ประกอบของน้ำตาล กรคอินทรีย์ คาเฟอีน และปริมาณไพราซีนทั้งหมด นอกจากนี้งานวิจัยนี้ยังได้พัฒนาแบบจำลองทางคณิตศาสตร์เพื่อทำนาย อุณหภูมิและความชื้นของเมล็ดกาแฟโรบัสต้าระหว่างการคั่วด้วย ผลการทดลองพบว่าการคั่วแบบไอน้ำร้อน ยวดยิ่งมีการเปลี่ยนแปลงจลนพลศาสตร์ของการคั่วสูงกว่าการคั่วแบบลมร้อนในทุกๆ อุณหภูมิที่ศึกษา อีกทั้ง พบว่าอุณหภูมิของการคั่วรวมทั้งค่าความสว่างของเมล็ดกาแฟมีผลต่อความเป็นกรด-ด่าง และองค์ประกอบ ทางเคมีของโรบัสต้าอย่างมีนัยสำคัญ ที่น่าสนใจคือโรบัสต้าที่ผ่านการคั่วโคยใช้ใอน้ำร้อนยวดยิ่งมีปริมาณ ้น้ำตาลซูโครส กลูโคส และอะราบิโนส รวมทั้งปริมาณไพราซีนทั้งหมคสูง ขณะที่มีปริมาณน้ำตาลฟรุกโตส และกรคอะซิติกต่ำเมื่อเปรียบเทียบกับโรบัสต้าที่คั่วโคยใช้ลมร้อน นอกจากนี้พบว่าแบบจำลองทาง คณิตศาสตร์ที่พัฒนาขึ้นสามารถทำนายการเปลี่ยนแปลงอุณหภูมิและความชื้นของเมล็ดกาแฟโรบัสต้าใน ระหว่างการคั่วได้เป็นอย่างดีในทุกกรณี อย่างไรก็ตามอุณหภูมิที่ทำนายโดยแบบจำลองที่มีการพิจารณาการ ขยายตัวของเมล็ดกาแฟมีค่าต่ำกว่าค่าที่ได้จากผลการทดลองเล็กน้อย

คำสำคัญ: กรคอินทรีย์ การคั่วแบบไอน้ำร้อนยวคยิ่ง กาแฟโรบัสต้า คาเฟอีน แบบจำลองทางคณิตศาสตร์ องค์ประกอบของน้ำตาล Project Code : TRG5880014

Project Title : Roasting Kinetics and Physicochemical Property Changes of Robusta

Coffee Beans Undergoing Superheated Steam Roasting: Experimental and

Modeling Studies

Investigator : Nathamol Chindapan (D.Eng), Siam University

E-mail address: rchindapan@gmail.com

Project Period: 2 years

Abstract

Robusta is not as good as Arabica coffee, considering their price and quality. An alternative means, superheated steam roasting seems to have a potential to improve Robusta quality, but a few data are available. Therefore, this study aimed at investigating and predicting roasting kinetics and physicochemical property changes of Robusta undergoing superheated steam roasting. Robusta were roasted at 190-250 °C using a batch fluidized bed roaster either in hot air or superheated steam. During roasting, changes in bed temperature as well as bean moisture content and lightness were determined as a function of time. After that, Robusta were again roasted at the same conditions until bean lightness was reduced from 45 to 16, respectively. Their pH, sugar composition, organic acids, caffeine and total pyrazines content were then investigated. A mathematical model was also developed to predict the bean temperature and moisture content during roasting. The results indicated that superheated steam roasting had higher changes in roasting kinetics than hot air roasting for all temperatures. The pH and all chemical composition of Robusta significantly affected by roasting temperature and bean lightness. Interestingly, Robusta roasted in superheated steam had higher sucrose, glucose and arabinose as well as total pyrazines content, while their fructose and acetic acid was lower than that roasted in hot air. In addition, the developed mathematical model was able to satisfactorily predict the temperature and moisture content of the beans during both hot air and superheated steam roasting in all cases. The bean temperature simulated by the model with bean expansion was, however, noted to be lower as compared with the experimental data.

Keywords: Caffeine, Mathematical model, Organic acid, Robusta coffee, Sugar composition, Superheated steam roasting