เอกสารแนบหมายเลข 2

Abstract (บทคัดย่อ)

Project Code: TRG5880017

Project Title: Anti-acne and anti-inflammatory activity of Crocodylus siamensis

hemoglobin and leukocyte extracts

Investigator: Dr. Nisachon Jangpromma

E-mail Address: nisaja@kku.ac.th

Project Period: 2 Years

บทคัดย่อ

จระเข้สายพันธุ์ไทย (Crocodylus siamensis) ถือเป็นหนึ่งในไม่กี่ชนิดของสัตว์เลื้อยคลานโบราณที่ สามารถอยู่รอดได้จนถึงปัจจุบัน ซึ่งอาจเป็นไปได้ว่าจระเข้มีระบบภูมิคุ้มกันแบบสืบทอดแต่กำเนิด (innate immunitv) ที่มีประสิทธิภาพทำให้สามารถปรับตัวในสภาพแวดล้อมที่เปลี่ยนแปลงไปได้เป็นอย่างดี โดยเฉพาะ ภูมิคุ้มกันสืบทอดของกลุ่มเปปไทด์ต้านจุลชีพ ซึ่งน่าจะเป็นปัจจัยหนึ่งที่ทำให้สัตว์เลื้อยคลานสามารถดำรงคงอยู่ใน สายวิวัฒนาการมาอย่างยาวนาน ดังนั้นโครงการนี้จึงมีวัตถุประสงค์เพื่อศึกษาฤทธิ์ทางชีวภาพของโปรตีนหรือ เปปไทด์จากเลือดจระเข้สายพันธุ์ไทย โดยเฉพาะฤทธิ์ต้านเชื้อสิว (Propionibacterium acnes) ฤทธิ์ต้านอักเสบ รวมทั้งฤทธิ์ต้านอนุมูลอิสระ เพื่อเป็นการศึกษาถึงความสามารถในการต้านอนุมูลอิสระขององค์ประกอบต่างๆ ของ เลือดจระเข้สายพันธุ์ไทย ซึ่งได้แก่ พลาสมา ซีรัม ฮีโมโกลบิน และสารสกัดเม็ดเลือดขาว ในเซลล์ผิวหนังมนุษย์ ไฮโดรเจนเปอร์ออกไซด์ (H_2O_2) ซึ่งถือเป็นอนุมูลอิสระกลุ่มออกซิเจน (reactive oxygen species; ROS) ที่มี ความเกี่ยวข้องกับการเกิดโรคต่างๆ มากมาย จึงถูกนำมาใช้เป็นตัวแทนของอนุมูลอิสระในการทดลองครั้งนี้ ซึ่งผล การทดลองแสดงให้เห็นว่าองค์ประกอบต่างๆ จากเลือดจระเข้ดังกล่าวข้างต้น ไม่มีความเป็นพิษต่อเซลล์ ไฟโบ fibroblasts) และเซลล์เม็ดเลือดขาวของมนษย์ รบลาสต์จากผิวหนังมนุษย์ (BJ; human skin (peripheral blood mononuclear cells; PBMC) เมื่อตรวจวัดด้วยวิธี 3-(4,5-dimethylthiazol-2-yl)-2,5diphenyltetrazoliumbromide solution (MTT) แต่เมื่อเซลล์ได้รับ $\rm H_2O_2$ นั้น พบว่าเซลล์ไฟโบรบลาสต์มีอัตรา การรอดชีวิตลดลงมากว่า 50% อย่างไรก็ตามความเป็นพิษจาก H_2O_2 นี้สามารถบรรเทาได้เมื่อเลี้ยงเซลล์ ไฟโบรบลาสต์ร่วมกับองค์ประกอบของเลือดจระเข้ก่อนได้รับอนุมูลอิสระ H_2O_2 เป็นเวลา 1 ชั่วโมง ซึ่งพบว่า ฮีโมโกลบินสามารถลดพิษที่เกิดจาก H_2O_2 ได้สูงที่สุด โดยพบว่าเซลล์ไฟโบรบลาสต์มีอัตรารอดชีวิตสูงถึง 89% ถึงแม้จะได้รับอนุมูลอิสระ ซึ่งผลการทดลองนี้สอดคล้องกับผลการย้อมเซลล์ไฟโบรบลาสต์แล้วตรวจดูด้วยกล้อง จุลทรรศน์ จากผลการทดลองข้างต้นนี้ จึงมีความเป็นไปได้ที่เลือดจระเข้จะมีความสามารถในการต้านการอักเสบ ด้วย ทั้งนี้เนื่องจากอนุมูลอิสระที่เกิดขึ้นภายในเซลล์นั้น สามารถเหนี่ยวนำให้เกิดการอักเสบได้ ดังนั้นสารที่มีฤทธิ์ ต้านอนุมูลอิสระจึงอาจมีฤทธิ์ต้านอักเสบด้วยเช่นกัน เพื่อทดสอบฤทธิ์ในการต้านอักเสบนั้น การทดลองครั้งนี้จึงได้ นำฮีโมโกลบิน และสารสกัดเม็ดเลือดขาวที่แสดงฤทธิ์ต้านอนุมูลอิสระภายในเซลล์ได้อย่างดีเยี่ยมมาศึกษาต่อเนื่อง ถึงฤทธิ์ต้านการอักเสบในเซลล์เพราะเลี้ยงแมคโครฟาจ (RAW 264.7) โดยผลการทดลองพบว่าเมื่อทำการกระตุ้น เซลล์ RAW 264.7 ให้เกิดการอักเสบด้วยทั้งไลโปโพลีแซคคาไรด์ (lipopolysaccharide; LPS) และเชื้อก่อสิว (Heat-killed *P. acnes*) สารสกัดเม็ดเลือดขาวจากเลือดจระเข้สายพันธุ์ไทยที่ความเข้มข้น 25 50 และ 100 ug/ml สามารถลดระดับของในตริกออกไซด์ (NO) ได้อย่างมีนัยสำคัญ ซึ่งสอดคล้องกับผลการแสดงออกของยีนที่ ้ เกี่ยวข้องกับการอักเสบคือ พบว่าสารสกัดเม็ดเลือดขาวสามารถลดระดับการแสดงออกของยีนของสารสื่อกลาง อักเสบและไซโตไคน์ในเซลล์ RAW 264.7 เมื่อถูกกระตุ้นให้เกิดการอักเสบด้วย LPS และ *P. acnes* ได้ ตัวอย่างเช่น ลดการแสดงออกของยืน inducible nitric oxide synthase (iNOS) Interleukin 6 (IL-6), Interleukin 1eta (IL-1eta) และ Tumor necrosis factor-alpha (TNF-lpha) เมื่อทำการตรวจวัดด้วยเทคนิค RT-PCR และสามารถลดระดับของโปรตีน IL-6 และ TNF-lpha เมื่อทำการตรวจวัดด้วยเทคนิค ELISA นอกจากนี้เมื่อทำการ ทดสอบผลของสารสกัดเม็ดเลือดขาวในการป้องกันการตายแบบ apoptosis ในเซลล์ RAW 264.7 ที่ได้รับการ กระตุ้นการอักเสบ พบว่าสารสกัดเม็ดเลือดขาว (25 และ 50 µg/ml) สามารถป้องกันเซลล์จากกระบวนการ apoptosis เพื่อเซลล์ถูกกระตุ้นให้เกิดการอักเสบด้วย LPS และ *P. acnes* ได้ โดยพบว่าสารสกัดเม็ดเลือดขาวที่ ความเข้มข้นสูงสุด (50 µg/ml) สามารถลดระดับการตายแบบ apoptosis ในเซลล์ที่ถูกกระตุ้นการอักเสบด้วย LPS ได้ถึง 74% และสามารถลดระดับการตายแบบ apoptosis ในเซลล์ที่ถูกกระตุ้นการอักเสบด้วย P. acnes ได้ ถึง 59% ผลการทดสอบฤทธิ์ต้านเชื้อ P. acnes ด้วยเทคนิค broth dilution พบว่าสารสกัดเม็ดขาวสามารถ ้ ยับยั้งการเจริญของเชื้อ P. acnes ได้อย่างมีประสิทธิภาพ สำหรับฮีโมโกลบินนั้น พบว่าฮีโมโกลบินจากเลือดจระเข้ สายพันธุ์ไทยสามารถลดระดับการอักเสบได้ในทำนองเดียวกันกับสารสกัดเม็ดเลือดขาว เมื่อทำการศึกษาแบบแผน ของโปรตีนในเซลล์ RAW 264.7 เมื่อถูกกระตุ้นให้เกิดการอักเสบด้วย LPS และได้รับฮีโมโกลบินจากเลือดจระเข้ สายพันธุ์ไทยร่วม ด้วยเทคนิคโปรติโอมิกส์ (proteomics) ร่วมกับเทคนิคแมสสเปคโตสโกปี (LC-MS/MS) พบว่า ฮีโมโกลบินจากเลือดจระเข้สายพันธุ์ไทยสามารถลดการอักเสบโดยอาศัยหลายกลไกที่เกี่ยวข้องกับการอักเสบ เช่น cellular metabolism protein fate oxidative burst signal transduction และ morphogenesis ผลงานวิจัยทั้งหมดในครั้งนี้เป็นงานวิจัยแรกที่ได้ทำการศึกษาฤทธิ์ทางชีวภาพที่หลากหลาย ไม่ว่าจะเป็นฤทธิ์ต้าน เชื้อสิว ฤทธิ์ต้านอักเสบ และฤทธิ์ต้านอนุมูลอิสระ ซึ่งถือเป็นข้อมูลพื้นฐานในการสนับสนุนการพัฒนาใช้เลือด จระเข้เพื่อการรักษาหรือเป็นอาหารเสริมต่อไปในอนาคต

คำสำคัญ: ต้านการอักเสบ, สิว, เซลล์แมคโครฟาจชนิด RAW 264.7, จระเข้สายพันธุ์ไทย, เซลล์ไฟโบรบลาสต์ จากผิวหนังมนุษย์

Abstract

Siamese crocodile (Crocodylus siamensis) is one of a few ancient reptile species which was survived until nowadays. Regarding from this evidence, it indicates that the innate immunity of the crocodiles is very powerful to protect itself from several pathogens infection. Thus, in this project we are interested to study biological properties of crocodile blood proteins and peptides in the term of the anti- P. acnes, anti-inflammatory and antioxidant activity. To elucidate the antioxidant activity of C. siamensis blood components (plasma, serum, hemoglobin (cHb) and white blood cells extract (cWBC) on BJ human skin fibroblasts, hydrogen peroxide (H₂O₂), a reactive oxygen species (ROS) causing cellular injury associated with the induction of numerous diseases, was selected as the oxidant in this research. Using the 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide solution (MTT) assay, C. siamensis blood components were found exhibit no toxicity on BJ cells. A pronounced protective effect against H₂O₂ damage was observed upon pre-incubation of the cells with 25, 50 and 100 μg/ml of each C. siamensis blood component for 1 h prior to H₂O₂ exposure. The highest potential to preserve cell viability was found in C. siamensis hemoglobin (cHb) (89.0%). These results were coincided with visible light microscopy observation. Additionally, it could further be shown that treatment with C. siamensis blood components did not exhibit any toxic effect on human peripheral blood mononuclear cells (PBMC). Moreover, the collected data clearly demonstrates that H₂O₂ induces apoptosis within human skin fibroblast cells, which was evidently decreased by pre-treatment with cHb. Free radicals lead to oxidation and this accumulates within cells can contributes to the inflammatory state of various diseases. Thus, antioxidant compounds are potent scavengers of free radicals that may have a possible role in improving inflammatory conditions. From this evidence, cHb and cWBC that exhibited antioxidant behavior might also have the anti-inflammatory function. Consequently, this report represents the first study aimed to shed light onthe basic mechanism of the anti-inflammatory activities of cHb and cWBC. In the present study, 25, 50 and 100 µg/ml of cWBC were found to reduce the production of NO in both LPS and P. acnes-stimulated RAW 264.7 cells. Consistent with the NO testing results, it was observed that co-treatment with cWBC also significantly decreased inducible nitric oxide synthase (iNOS), likely due to decreased expression levels of Inducible nitric oxide synthase (iNOS), Interleukin 6 (IL-6), Interleukin 1 β (IL-1 β) and Tumor necrosis factor-alpha (TNF- α) mRNA expression level and also decreased IL-6 and TNF-lpha protein level as determined by RT-PCR and ELISA, respectively. Moreover, combining the cWBC (25 and 50 µg/ml) with LPS or P. acneswould decrease the apoptosis of RAW 264.7 cells. At the concentration of 50 µg/ml, cWBC significantly decreased apoptosis process that induced by LPS and P. acnes about 74% and

59%, respectively. Additionally, the result from broth dilution method revealed that cWBC inhibited the growth of *P. acnes*. To elucidate the proteomics response of macrophages treated with LPS in the presence or absence of cHb, several proteins with differential expressions were identified by using LC-MS/MS analysis. With respect to the individual functions of these proteins, our data indicated involvement in various processes during inflammation, such as cellular metabolism, protein fate, oxidative burst, signal transduction and morphogenesis. Consequently, all results of this study directly indicated that cHb exhibits anti-inflammatory activity on LPS-stimulated RAW 264.7 cells via functioning as an activator or suppressor in the expression of inflammatory factor genes and affects several specific proteins that related to important inflammation pathways. Therefore, this work represents the first study to demonstrate the efficiency of *C. siamensis* blood components with respect to their biological function and strongly supports the utilization of *C. siamensis* blood as a therapeutic products or dietary supplements.

Keywords : Anti-inflammatory, Acne vulgalis, RAW 264.7, Siamese crocodile, Human skin fibroblast