บทคัดย่อ

ในงานวิจัยนี้ได้ใช้พลาสมาพลังงานต่ำ (PIII) ชักนำให้เกิดการกลายพันธุ์ของแบคทีเรียที่เพื่อเพิ่มประสิทธิภาพการทำงาน ของเอนไซม์เซลลูเลสและเอนไซม์ไซลาเนสเพื่อผลิตเอทานอลจากวัสดุเหลือใช้ทางการเกษตร เช่น ฟางข้าวและต้นข้าวโพด Bacillus subtilis และ Bacillus amyloliquefaciens ซึ่งเป็นแบคทีเรียที่ผลิตเอนไซม์เซลลูเลสและเอนไซม์ไซลาเนสถูกซักนำให้ เกิดการกลายพันธุ์โดยการระดมยิงด้วยพลาสมาของอาร์กอนหรือในโตรเจน โดยใช้แรงดันไบแอสในช่วงพลังงานที่ 2.5 kV และ ความหนาแน่นของไอออนในช่วง 1x10¹⁵ ถึง 1x10¹⁷ ions/cm² แบคทีเรียพันธุ์กลายที่แสดงความสามารถในการย่อยสารตั้งต้น มากกว่าแบคทีเรียชุดควบคุมถูกคัดเลือกโดยการย้อมด้วยสี Congo red และทำการเปรียบเทียบประสิทธิภาพการทำงานของ เอนไซม์ระหว่างแบคทีเรียพันธุ์กลายและแบคทีเรียชุดควบคุมด้วยการวัดน้ำตาลรีดิวซ์ซึ่งเป็นผลจากการย่อยสารตั้งต้นด้วยเอนไซม์ ์ ทั้งนี้ได้โคลนยีนเซลลูเลส (BelC) และยีนไซลาเนส (XynA) ทั้งแบบปกติและที่ถูกชักนำให้เกิดการกลายพันธุ์จากนั้นส่งถ่ายชิ้นส่วน ของยีนเซลลูเลสและไซลาเนสเข้าสู่เวคเตอร์ pETDuet-1 เพื่อเพิ่มการแสดงออกของยีนในแบคทีเรียเจ้าบ้าน E. coli strain BL21 ทำการตั้งชื่อเซลล์ลูกผสมตามยีนที่ได้รับ ดังนี้ เซลล์ลูกผสมที่ได้รับยีน BglC และ XynA แบบปกติเรียก reBglC และ reXynA ส่วนเซลล์ลูกผสมที่ได้รับยืน BglC และ XynA ที่กลายพันธุ์ คือ reBglC M and reXynA M ตามลำดับ จากการเปรียบเทียบ ประสิทธิภาพการทำงานของเอนไซม์ในสภาวะต่างๆ พบว่า เอนไซม์เซลลูเลสและไซลาเนสที่ผลิตจากเซลล์ลูกผสม reBglC_M และ reXynA M แสดงประสิทธิภาพการทำงานที่สูงกว่าเอนไซม์แบบปกติตลอดทุกช่วงอุณหภูมิและค่า pH การทำงานร่วมกันของ เอนไซม์เซลลูเลสและไซลาเนสจากเซลล์ลูกผสม reBglC M และ reXynA M ในการย่อยฟางข้าวและต้นข้าวโพดที่ผ่านการปรับ สภาพแล้วให้ผลของน้ำตาลรีดิวซ์สูงที่สุดโดยให้ค่าถึง 22.16 และ 14.51 mg/ml ตามลำดับ จึงเลือกเงื่อนไขนี้ไปใช้ในการผลิตเอทา นอลจากฟางข้าวและต้นข้าวโพดที่ผ่านกระบวนการปรับสภาพและใช้ ยีสต์ Saccharomyces cerevisiae V1116 ใน กระบวนการหมัก พบว่าปริมาณเอทานอลที่ผลิตได้จากฟางข้าวและต้นข้าวโพดที่ผ่านการปรับสภาพแล้วให้ผลเท่ากับ 3.50 % (ปริมาตร/ปริมาตร) และ 3.23 % (ปริมาตร/ปริมาตร) ตามลำดับ

Abstract

In this research, Plasma immersion ion implantation (PIII) was applied to induce mutation on bacteria for enhancing cellulase and xylanase activities for ethanol production from agriculture wastes such as rice straw and corn stover. Cellulase and xylanase producing bacterial cells of Bacillus subtilis and Bacillus amylolique faciens were treated by argon or nitrogen PIII at a bias voltage of -2.5 kV with various from 1×10^{15} to 1 x 10¹⁷ ions/cm² to induce mutation. The bacterial mutants exhibiting clear potentiality of enhanced hydrolysis activity were screened by Congo red assay. Comparison of hydrolysis activity from the bacterial mutants and non-mutants was investigated by measurement of reducing sugars liberate from substrates hydrolysis. In addition, the original and mutated genes of cellulase (BglC) and xylanase (XynA) were cloned into expression vector (pETDuet-1) and transformed into E. coli BL21 for overproduction of enzymes. The recombinant cells which contained the original BglC and XynA were named reBglC and reXynA, while the recombinant cells which contained the mutated BglC and XynA were named reBglC M and reXynA M, respectively. The hydrolysis activity between the mutants (reBglC M and reXynA M) and the control (reBglC and reXynA) was compared under the condition of various pH values and temperatures and the result showed that both of cellulase and xylanase activities of the mutants were clearly higher than the control. The combination of cellulase and xylanase which produced from reBglC M and reXynA M showed the highest hydrolysis activity on pretreated rice straw and corn stover by liberated reducing sugar at 22.16 and 14.51 mg/ml, respectively. Then combination of reBglC M and reXynA M was chosen for the hydrolysis of the agricultural wastes and then Saccharomyces cerevisiae V1116 was used in fermentation. Ethanol produced from pretreated rice straw and pretreated corn stover has yields of 3.50 % v/v and 3.23 % v/v, respectively.