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Abstract   
 
Project Code : TRG5880051 
 
Project Title : Integrators for vector-valued regulated functions and homomorphisms of  

         *C -valued regulated functions 
 
Investigator : Assistant Professor Titarii Wootijirattikal 
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  Ubon Ratchathani University, Warinchamrap, Ubon Ratchathani  34190 
 
E-mail Address : titarii.w@ubu.ac.th  
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A function from a closed interval  ,a b , to a Banach space X , is said to be 
regulated if all one-side limits exist. A function   from  ,a b  to the space of all bounded 
linear transformations from X to a Banach space Y is an integrator for the regulated 
functions if for each regulated function f , Riemann-Stieltjes sums of f with respect to   
converge to a vector in Y . 

 In the first year of the project, we use the Uniform boundedness principle to give a 
complete description of the class of all operator-valued integrators for vector-valued regulated 
functions. We prove that a subclass of such integrators is a Banach space under suitable 
norm. We give compactness criteria for integrator induced operators. We also show that each 
bounded linear map from a subspace of vector-valued regulated functions is represented by 
an operator-valued integrator. 

In the second year, we give a complete description of the class of all integrators that 
induced operators that are homomorhisms, when X  and Y  are Banach algebras. The main 
result of L. Fernandes and R. Arbach [4] showed a special subclass of our characterization. 
 
Keywords : Regulated functions, semivariation, Banach space, *C -algebra 
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เราจะเรยีกฟงัก์ชนัที่ส่งจากช่วงปิด  ,a b  ไปยงัปรภิูมบิานาค X  ว่า ฟงัก์ชนัเรกกวิเลท    
ถา้ทุกลมิติดา้นเดยีวหาคา่ได ้ และเรยีกฟงักช์นั   ทีส่ง่จาก  ,a b  ไปยงัปรภิมูขิองการแปลงเชงิเสน้
แบบมขีอบเขตทัง้หมด จากปรภิูมบิานาค X   ไปยงั ปรภิูมบิานาค Y  ว่า เครือ่งหาปรพินัธ์สาํหรบั
ฟงักช์นัเรกกวิเลท ถา้แต่ละฟงักช์นัเรกกวิเลท f , ผลบวก Riemann-Stieltjes ของ f  ทีส่มัพนัธก์บั 
  ลูเ่ขา้สูเ่วกเตอรใ์น Y    

ในปีแรกของโครงการ เราใชห้ลกัการมขีอบเขตเอกรปูในการพรรณนาแบบบรบิูรณ์ของคลาส
ของเครื่องหาปรพินัธ์ค่าตวัดําเนินการทัง้หมดสําหรบัฟงัก์ชนัเรกกวิเลทค่าเวกเตอร์  เราพสิูจน์ว่า
คลาสยอ่ยของเครือ่งหาปรพินัธ์เป็นปรภิูมบิานาคภายใตน้อรม์ทีเ่หมาะสม  เราใหเ้กณฑค์วามกระชบั
สําหรบัเครื่องหาปรพินัธ์ที่เหนี่ยวนําตวัดําเนินการ รวมถึงเราแสดงว่าแต่ละการส่งเชงิเส้นแบบมี
ขอบเขตจากปรภิมูยิอ่ยของฟงักช์นัเรกกวิเลทคา่เวกเตอร ์สามารถแทนไดด้ว้ยเครือ่งหาปรพินัธค์า่ตวั
ดาํเนินการ 

ในปีทีส่องของโครงการ ให ้ X  และ Y  เป็นพชีคณิตบานาค เราพรรณนาแบบบรบิูรณ์ของ
คลาสของเครื่องหาปรพินัธ์ทัง้หมดทีเ่หนี่ยวนําตวัดาํเนินการทีเ่ป็นเป็นฟงัก์ชนัสาทสิสณัฐาน เราจะ
เหน็วา่ผลลพัธห์ลกัของ L. Fernandes and R. Arbach [4] เป็นเพยีงคลาสยอ่ยเฉพาะของผลลพัธ์
หลกัของงานเรา 
 
Keywords : ฟงักช์นัเรกกวิเลท , กึง่การแปรผนั, ปรภิมูบิานาค, พชีคณติซสีตาร ์
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I Introduction 
 
 
        Many real-world problems are mathematically formulated as integral equations, such as  

( ) ( ) ( ) ( ), .f x x K x t t dtn l n
W

= + ò  

Here it involves the identity as integrator function (which corresponds to the Lebesgue 
measure) and the unknown function to be found. Usually to solve an integral equation, we 
have to determine the admissible class of  integrator functions and the domain of the integral 
operator. In many practical situations the class of integrator functions need to be as large as 
possible. And the functions in the domain of the integral operators  also need to be widen 
from the continuous ones, as the real-world problems rarely arise continuously. 
 For real or complex-valued functions, a natural class of integrator functions is the 
class of functions of bounded variation. And the natural class of functions in the domains of 
such integration operators induced by functions of bounded variation is the space of 
regulated functions. 
 From statistical applications, vector-valued functions emerge naturally in many 
practical situations. This leads many researchers to consider vector-valued functions and 
operator-valued integrators. The notion of bounded variation for scalar functions has a most 
natural and obvious extension to operator-valued functions, namely replacing the absolute 
value, used in the calculation of variation, by operator norm. But in many practical situations, 
this is too restrictive. A generalized notion of bounded semivariation, an analogue of the 
calculation of the operator norm, emerges. These two notions (bounded variation and 
bounded semivariation) are equivalent in the scalar case. The space of vector-valued 
regulated functions has been used as the domain of integral operators induced by operator-
valued functions of bounded semivariation.  A lot of work has been done along this line. Our 
question is whether we can extend the class of integrator  functions beyond the class of 
operator-valued functions of bounded semivariation. Answer to this question does not seem 
to be known even the very special case of scalar-valued functions. After answer that 
question, we will investigate homomorphisms of *C -algebras of regulated functions taking 
values in a *C -algebras. 
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A function f  on a closed interval  ,a b , taking values in a Banach space X , is said 
to be regulated if all one-side limits exist at every point of the interval [3]. The space of 
regulated functions is much wider than the space of continuous functions. Given a function 
  on   ,a b  taking values in the space  ,B X Y of bounded linear operators from X to a 
Banach space Y , an interesting and natural question is whether there is a vector in Y  to 
which the internal (sampling points in interior of subintervals) Riemann-Stieltjes sums of f

with respect to   converge. Those functions   with this property are called integrators. We 
give a complete characterization of all such operator-valued integrators. We show that a 
subclass of such integrators form a Banach space under suitable norm. We also derive 
criteria for the compactness of integrator induced operators.  Finally, when the Banach 
spaces X  and Y  are replaced by  Banach algebras, our question is when is the operator 
induced by the operator-valued integrator is multiplicative. The main result of L. Fernandes 
and R. Arbach [4] give a  class of such examples.  We will give a complete description of all 
such integrators. 
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II Objectives 
 
The objectives for this research are as follows. 

1. To determine the class of operator-valued integrators for the space of regulated 
functions taking values in a Banach space. 

2. Use the results obtained to investigate homomorphisms of *C -algebras of 
regulated functions taking values in a *C -algebra. 
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III Methodologies 
 

1.  Study books and papers on integration of vector-valued functions with respect to 
operator- valued integrators, particularly [3, 6, 2] for the first phase and [7, 6 ,4] for 
the second phase. 

2.  Construct examples of regulated functions and operator-valued functions that can help 
us gain deeper insight into these the concepts and questions. 

3.  Use known results and methods used therein and new examples from (2) to guess 
possible answers to devise more precise conjectures. 

4.  Use our modifications of techniques learned from studying the books and papers to 
come up with new techniques to prove the conjectures. 

5.  If it is unsuccessful, construct more examples, re-study key ideas in books and papers 
carefully, and re-examine the whole process to modify the conjectures.  

6.  Repeat these steps until valid proofs are obtained to turn the conjectures into 
theorems. Our techniques and conjectures will be modified repeatedly as we go 
along. 

7.  Write up results and follow up with revisions and revising repeatedly until they are 
ready for publication. 

8.  Communicate with mentor and co-mentor. 
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IV Results 
 

Fix a Banach space X , and a closed interval [ ],a b .  A function [ ]: ,f a b X  is 
said to be regulated if  
 

( ) ( ) ( ) ( ): lim ,   : lim
t c t c

f c f t f c f t
+ -

+ -

 
= =   exist for all ( ),c a bÎ ,   and 

                        ( ) ( ) ( ) ( ): lim ,   : lim
t a t b

f a f t f b f t
+ -

+ -

 
= =   exist. 

 
Denote by Reg [ ]( ), ,a b X = Reg( )X  the space of regulated functions on [ ],a b  (taking  

values in X ). 
 
 A partition P  of the interval  ,a b  is given by a finite number of division points, jt ,  
in  ,a b : 

( ) ( )0 1 ( )... ,   .n PP a t t t b n P= < < < = Î   
The set of all partitions of  ,a b  is denoted by  P [ ], :a b = P . 

 

 A function  : ,g a b X  is a step function if there are a partition 
( )0 1 ( )... n PP a t t t b= < < < =  

and vectors  ,  1jx X j n P    such that   jg t x  for all    1, ,  1 .j jt t t j n P    
Since  n P  is determined by g , in this case we denote  n P  by  n g . 
 
Theorem 1. [J.Dieudonne] : A function  : ,f a b X  is regulated iff there exists a sequence 
 nh  of step functions such that nh f  uniformly on  ,a b . Furthermore, if f  Reg  X , 
then  

 
 

,
: sup ,

t a b
f f t


    

and   Reg ,X   is a Banach space. 
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4.1 Operator Integrators for Regulated Vector Functions and Compactness 
 
 A function f  on a closed interval  ,a b , taking values in a Banach space X , is said 
to be regulated if all one-side limits exist at every point of the interval [3]. The space of 
regulated functions is much wider than the space of continuous functions. Given a function 
  on   ,a b  taking values in the space  ,B X Y of bounded linear operators from X to a 
Banach space Y , an interesting and natural question is whether there is a vector in Y  to 
which the internal (sampling points in interior of subintervals) Riemann-Stieltjes sums of f

with respect to   converge. Those functions   with this property are called integrators. We 
give a complete characterization of all such operator-valued integrators. We show that a 
subclass of such integrators form a Banach space under suitable norm. We also derive 
criteria for the compactness of integrator induced operators.   
 
4.1.1 Integrators as bounded linear transformations 

Let ,  X Y  be Banach spaces. Denote  ,B X Y  by the space of bounded linear 
transformations from X to Y . An operator-valued function    : , ,a b B X Y  is said to be 
an integrator for the regulated functions if for each  Reg ,f X  there is y Y satisfies the 
following condition: 
       For every 0   there is a partition ( )0 1 ( )... n PP a s s s b

ee = < < < =  such that for all  
partitions ( )0 1 ( )... n PP a t t t b= < < < =  refining P  that is  

     :1 :1k js k n P t j n P      

 and  for all    *
1, ,  1 ,j j jt t t j n P           

 
*

1
1

.
n P

j j j
j

y t t f t  


      

 
If   is an integrator for regulated functions, the vector y Y to which integrates f  is unique 
and is called to be interior integral (or Dushnik integral) of f  and is denoted by  

     .
b

a

d t f t y     
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We use the Uniform Boundedness Principle to show that each integrator induces      
a bounded linear map from  Reg X  to Y . 
Theorem 2.  Let    : , ,a b B X Y   be an integrator for  Reg X . Then the map  

      ˆ : ,    Reg
b

a

f d t f t f X      

is a bounded linear transformation from  Reg X  to .Y  
 
4.1.2 Equivalent formulation of integrators 

We will give an equivalent formulation for integrators. 
Lemma 3. Let  : ,g a b X  be a step function and let    : , ,a b B X Y   be an 
integrator for  Reg X . Then there exist a partition ( )00 0 1 ( )... n PP a u u u b= < < < =  
and  1kx X  ,   1 ,k n P   such that  

        
 

   
 

  
0

*
1 1

1 1

n Pb n P

k k k j j j
k ja

d t g t u u x t t g t     
 

              

for all partitions  ( )0 1 ( )... n PP a t t t b= < < < =  satisfying 

     0:1 :1k ju k n P t j n P     , and for all choices of    *
1, ,  1 .j j jt t t j n P    

 
Theorem 4.  Let    : , ,a b B X Y   be an integrator for  Reg X . Then for all partition 

( )0 1 ( )... n PP a t t t b= < < < =  and for all choices of    1
,  1 ,jx X j n P    

   
 

1
1

ˆ .
n P

j j j
j

t t x  


     

 
Theorem 4 leads us to the following Definitions. 

 
 A function    : , ,a b B X Y   is said to be of bounded semivariation  if there exists 
an 0M   such that for all partitions ( )0 1 ( )... n PP a t t t b= < < < = Î P  , ,a b  and for 

all  1kx X  (the closed unit ball of X ),   1 ,k n P      
 

1
1

.
n P

k k k
k

t t x M  


     
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The semivariation of a function    : , ,a b B X Y   of bounded semivariation is 
given by  

 
   

 

  
   

1 0 1
1

1

:  ;
: sup .

                                                            ,  1

n P

k k k n P
ks

k

t t x P a t t t b
V

x X k n P

 
 



 
            
 

    

  P
 

 
 

From Theorem 4. , we get that each integrator   is of bounded semivariation with 
  ˆ .sV     The backward of Theorem 4 need the following Lemmas. 

 
Lemma 5.  Let    : , ,a b B X Y  be of bounded semivariation and  ,t a b . Then  

     .st a V     
 
Lemma 6.  Let  , : ,g h a b X  be step functions given by  

       0 1 1,  ,  , ,  1 ,j j jn ga u u u b g t x X t u u j n g            and  

       0 1 1,  ,  , ,  1 .k k kn ha v v v b h t w X t v v k n h           

Let    : , ,a b B X Y  be of bounded semivariation; and let  

   
 

1
1

n g

g j j j
j

y u u x  


      and    
 

1
1

n h

h k k k
k

y v v w  


    . 

Then   g h sy y g h V    . 
 
Theorem 7.  Let    : , ,a b B X Y  be a function of bounded semivariation. Then   is an 
integrator for  Reg X . 
 
Combining Theorem 7 and 4, we get the following Corollary. 
Corollary 8.   
(1) A function    : , ,a b B X Y   is an integrator for  Reg X  if and only if   is of 
bounded semivariation. 
(2)  For each integrator   for  Reg X ,   ˆ .sV    
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The following Theorem shows that the class of integrators is a Banach space under 
the suitable norm.  
Theorem 9.  The space     0 , , ,sv a b B X YB of all function    : , ,a b B X Y   of 
bounded semivariation that satisfies   0,a   is a Banach space with pointwise addition 
and scalar multiplication and norm 

   1 0 1
1

:  ,  ,   
sup .

                                               ,  1,  1  

n

j j j n
jsv

j j

t t x n a t t t b

x X x j n

 





 
            

 
     

  
 

 
 
 
4.1.3 Integrators as compact operators 

For a given    : , ,a b B X Y  define the set  1  as follows.

[ ] ( ) ( ) ( )( ) [ ] ( )
( )

1 0 11 1
1

:  :  ,  ,  1 .
n P

j j j jn P
j

t t x P a t t t b x X j n Pa a a -
=

ì üï ïï ïï ïé ù= - = < < < = Î Î £ £í ýê úë ûï ïï ïï ïî þ
å  P

Note that a  is an integrator iff [ ]1a  is bounded in Y . 
 

Theorem 10.  Let    : , ,a b B X Y   be an integrator for  Reg X  that vanishes at a  
(i.e., ( ) 0aa = ).  Then the following conditions on a  from  Reg X  to Y  are equivalent. 

1. â  is compact. 
2. There is a compact operator K  from a Banach space Z to Y  such that 

[ ] [ ]( )1 1
K Za Í . 

3. There is a one-to-one compact operator K  from a Banach space Z to Y  such that 
( )( )1K ta-  is bounded for all t and 1K a-   is an integrator. 

4. The set [ ]1a  is a totally bounded subset of  Y . 
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4.1.4 Operators as integrators 
Let ( )Regr X  be the set of all right continuous functions in ( )Reg X  that are also 

left continuous at b ; i.e., ( )Reglf XÎ  iff ( ) ( )f t f t+=  for all [ ),t a bÎ and ( ) 0f b = .  

 
The following Theorem shows the Banach space   Reg ,rB X Y  and 

    0 , , ,sv a b B X YB  are isometrically isomorphic. 
Theorem 11.  Let   Reg , .rT B X Y  Then there exists a unique  

T      0 , , ,sv a b B X YB   such that           Reg .
b

r
a

T f d t f t f X      

Moreover, ˆT T   and   ˆ .T s TT V    
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4.2  Multiplicative Integrators of Algebra-valued Regulated Functions 
 

A function f  on a closed interval  ,a b , taking values in a Banach space X , is said 
to be regulated if all one-side limits exist. The class of regulated functions is much wider than 
the class of continuous functions. A function   on  ,a b  taking values in the space 
 ,B X Y of bounded linear operators from X to a Banach space Y is an integrator if, for 

each regulated function ,f  there is a vector in Y  to which Riemann-Stieltjes sums of f with 
sampling points from the interiors of subintervals, with respect to   converge. An operator 
valued function   is an integrator if and only if a  is of bounded semivariation. When the 
Banach spaces X  and Y  are replaced by Banach algebras  A  and B , a natural question 
is when is the operator induced by the operator-valued integrator is multiplicative. In 2012, L. 
Fernandes and R. Arbach proved that each function in the form 

 
 
 ,

0    for  ,

  for  ,  
T
c c b

t a c
T

T t c b
 

   


 

with T  a Banach algebra homomorphism from A  to B , induces a Banach algebra 
homomorphism from  Reg A  to B . Their result give a  class of such examples.  Our work 
will give a complete description of all such integrators. 
 
4.2.1  Integrators as multiplicative maps 
 

Let A , B be Banach algebras  with 1 ,  1A B  respectively (over  ). With the same 
process in the previous result, we can show that  Reg A is also a Banach algebra with 
identity 1R  . the constant function    Reg1 = 1t AA , for all [ ],t a bÎ .  Our question is : for 

which     , , ,sv a b B B A B , is ̂  a Banach algebra homomorphism? [ Inparticular: 
when is  ˆ 1 1 , A B  and        ˆ ˆ ˆ ,   , Reg ?fg f g f g     A  ] 

In 2012, L.Fernandes and R. Arbach proved that each function in the form 

 
 
 ,

0    for  ,

  for  ,  
T
c c b

t a c
T

T t c b
 

   


 

with T  a Banach algebra homomorphism from A  to B , induces a Banach algebra 
homomorphism from  Reg A  to B .  
 The collection of all such integrators have the following full descriptions. 
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Theorem 12.  Let A ,B  and   be as above. Suppose ˆ 0.   Then ̂  is a 
homomorphism from  Reg A  to B  if and only if there exist    , ,  , ,c a b S T B  A B   
such that T  is a homomorphism and  

 
            for 

     for       

S a t c
t

S T c t b


 
    

 

or 
  

 
            for 

     for       

S a t c
t

S T c t b


 
    

 

( That is : there are  ,c a b , a homomorphism T  and a bounded operator S  from A  to 
B  such that  ,c bS T      or    , .c bS T    ) 

 
Now,  suppose A ,B  are *C -algebras with identities 1A  and 1B . Then   Reg A

is a *C -algebra with identity    Reg1 = 1t AA , for all [ ],t a bÎ .  The involution on   Reg A

is defined pointwise: for each f Î  Reg A , and each [ ],t a bÎ , ( ) ( )( )**f t f t= . 
 

Theorem 13. Let [ ]: ,a ba   ,B A B  be an integrator for  Reg A . Then â  is a *-
homomorphism from  Reg A  to B  if and only if there exist    , ,  , ,c a b S T B  A B

such that T  is a   *-homomorphism and  
 

 
            for 

     for       

S a t c
t

S T c t b


 
    

 

or 
  

 
            for 

     for       

S a t c
t

S T c t b


 
    

 

 
( That is : there are  ,c a b , a *-homomorphism T  and a bounded operator S  from A  to 
B  such that  ,c bS T      or    , .c bS T    ) 
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V  Conclusions and Suggestions 
 

As stated in the objective no.1, we would like to determine the class of operator-
valued integrators for the space of regulated functions taking values in a Banach space. We 
found that, we cannot extend the class of integrator functions apart from the class of 
operator-valued regulated functions of bounded semivarion. In the objective no.2, we plan to  
use the results obtained to investigate homomorphisms of *C -algebras of regulated 
functions taking values in a *C -algebra. After studied and worked on the homomorphism 
inducing integrators, we found that the main result of L. Fernandes and R. Arbach [4], is very 
special case. We have worked a complete description of all such integrators. 
 
 Since the class of Riesz operators is much wider than the class compact operators, 
but shares many nice properties of the compacts, it will be our follow up project along this 
line to investigate whether there are analogous criteria for integrator induced operators to be 
Riesz operators.   
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1. Introduction

A function f on a closed interval [a,b] , taking values in a Banach space X , is

said to be regulated if all one-sided limits exist at every point of the interval [3, §7.6,

p.139]. The space of regulated functions, which has been extensively studied [10, 5, 9,

8, 7, 2, 6, 1, 4], is much wider than the space of continuous functions. Given a function

α on [a,b] taking values in the space B(X ,Y ) of bounded linear operators from X to

a Banach space Y , an interesting and natural question is whether there is a vector in

Y to which the internal (sampling points in interior of subintervals) Riemann-Stieltjes

sums (with respect to α ) of f with respect to α converge. Those functions α with

this property are called integrators. We give a complete characterization of all such

operator-valued integrators. We show that a subclass of such integrators form a Banach

space under a suitable norm. We also derive criteria for the compactness of integrator

induced operators. All throughout the paper, we use only very elementary methods

from basic functional analysis.

The paper is organized as follows. We introduce equivalent formulations for reg-

ulated functions in section 2. In section 3, we introduce the notion of integrators and

use the uniform boundedness principle to prove that each integrator induces a bounded

linear operator. In section 4 we show that the space of integrators vanishing on the

left endpoint is a Banach space. Section 5 is devoted to the compactness of integrator

induced operators. In section 6, we prove that each operator from a certain subspace of

the space of regulated functions is an integrator induced operator.

2. Notation and Preliminaries

Fix real numbers a < b and a Banach space X . A function f : [a,b] → X is

said to be regulated (see [3, §7.6, p.139] and [6, p. 16]) if one-sided limits f (c
+
) :=

lim
t→c+

f (t) exist for all c ∈ [a,b) , and f (c
−
) := lim

t→c−
f (t) exist for all c ∈ (a,b] . Denote

Keywords and phrases: Banach space; operator; regulated function; integrator; semivariation.
∗

Supported by Thailand Research Grant #TRG5880051.
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by Reg([a,b],X) = Reg(X) the space of regulated functions on [a,b] (taking values in

X ).

A partition P of the interval [a,b] is given by a finite number of division points in

[a,b] :

P
(

a = t
0
< t

1
< t

2
< · · ·< tn(P) = b

)
, n(P) ∈ N.

The set of all partitions of [a,b] is denoted by P[a,b] or simply P , whenever no

confusion can arise.

A function g : [a,b]→ X is a step function if there are a partition

P
(

a = t
0
< t

1
< t

2
< · · ·< tn(P) = b

)
and vectors xj ∈X , 1≤ j ≤ n(P) such that g(t)= xj for all t ∈ (t j−1

, t j) , 1≤ j ≤ n(P) ;

i.e., g takes on constant values on each open subinterval in the partition. Since n(P) is

determined by g , we also denote n(P) by n(g) . Regulated functions have the following

useful characterization.

THEOREM 1. [3, Th 7.6.1, p.139] A function f : [a,b]→ X is regulated iff there
exists a sequence {hn} of step functions, from [a,b] to X , such that

lim
n→∞

[
sup

t∈[a,b]
‖hn(t)− f (t)‖

]
= 0 (i. e., hn → f uniformly on [a,b] .)

Furthermore, if f ∈ Reg(X) , then

‖ f‖ := sup
t∈[a,b]

‖ f (t)‖< ∞,

and (Reg(X),‖·‖) is a Banach space.

3. Integrators as bounded linear transformations

Let X , Y be Banach spaces. Denote by B(X ,Y ) the space of bounded linear

transformations from X to Y . An operator-valued function α : [a,b] → B(X ,Y ) is

called an integrator for the regulated functions if for each f ∈ Reg(X) , there is a y ∈Y
that satisfies the following condition:

(†) for every ε > 0 there is a partition

Pε

(
a = s

0
< s

1
< s

2
< · · ·< sn(Pε )

= b
)

such that for every partition

P
(

a = t
0
< t

1
< t

2
< · · ·< tn(P) = b

)
that refines Pε :{

sk : 1 ≤ k ≤ n(Pε )
}⊆ {

t j : 1 ≤ j ≤ n(P)
}

and

for all selections of t
∗
j
∈ (t j−1

, t j), 1 ≤ j ≤ n(P),

2



∥∥∥∥∥y−
n(P)

∑
j=1

[α(t j)−α(t j−1
)]( f (t

∗
j
))

∥∥∥∥∥< ε.

Given an integrator α and an f ∈ Reg(X) , a routine verification reveals that the

vector y ∈ Y associated with f by α is unique. The vector y is called the interior
integral (or Dushnik integral [6, p. 7]) of f with respect to α and is denoted by∫ b

a
[dα(t)]( f (t)) = y.

We show that each integrator induces a bounded linear map from Reg(X) to Y .

THEOREM 2. Let α : [a,b]→B(X ,Y ) be an integrator for Reg(X) . Then the
map

α̂ : f �→
∫ b

a
[dα(t)]( f (t)), f ∈ Reg(X)

is a bounded linear transformation from Reg(X) to Y .

Proof.
We omit the routine verification of linearity of α̂ . First we show that α is a

bounded function. Since α
0
= α −α(a) and α give the same integral for each function

in Reg(X) . We assume, without loss of generality, that α(a) = 0. Suppose α is not

bounded. Then, inductively, there is a sequence
{

tk

}
k∈N in [a,b] such that

‖α(t
1
)‖> 4,

∥∥α(tk)
∥∥> 2

2
k ∥∥α(tk−1

)
∥∥ for all k ≥ 2.

By compactness, we may assume without loss of generality, that the sequence
{

tk

}
is

monotonically increasing to a limit t∞ ∈ [a,b] . (The decreasing case is handled simi-

larly.) For each k ≥ 1 there is an xk ∈ [X ]
1

such that

‖[α(t
1
)]x

1
‖> 4,

∥∥[α(tk)]xk

∥∥> max

{
2

2
k ∥∥α(tk−1

)
∥∥ , 3

4

∥∥α(tk)
∥∥} ∀ k ≥ 2.

Let t
0
= a . For each k ∈ N , define fk by putting fk(t) = 2

− j
x j for t j−1

< t < t j , 1 ≤
j ≤ k , and fk(t) = 0 for all other t ∈ [a,b] . Then for k < l in N , we have∥∥ fl − fk

∥∥= max
{

2
− j ∥∥xj

∥∥ : k+1 ≤ j ≤ l
}
≤ 2

−k−1 → 0 as k, l → ∞ .

Thus there is a function f ∈ Reg(X) such that
∥∥ fk − f

∥∥ → 0. Note that f (t) = fk(t)
for all t ∈ [a, tk ] , since fk |[a,tk ] = fl |[a,tk ] for all l ≥ k .

Let y ∈Y . (We show that for every partition P
0

there are a refinement P of P
0

and

interior sampling points such that the associated Riemann-Stieltjes sum of f has norm

more than ‖y‖+1. Therefore y cannot be the interior integral of f , for any y ∈Y , and

hence the interior integral of f does not exist.) Let P
0

(
a = s

0
< s

1
< s

2
< · · ·< sn(P

0
)
= b

)
3



be arbitrarily given. Choose k ∈ N such that 2
k
> ‖y‖+‖α(b)‖+1 and tk > sn(P

0
)−1

(since tl ↗ b). Let P
(

a = u
0
< u

1
< u

2
< · · ·< un(P) = b

)
be such that{

s j : 1 ≤ j ≤ n(P
0
)
}∪{

tl : 1 ≤ l ≤ k
}
= {ui : 1 ≤ i ≤ n(P)} .

Then un(P)−1
= tk . Arbitrarily choose u

∗
i
∈ (ui−1

,ui) for 1 ≤ i < n(P)− 1; and

u
∗
n(P)

∈ (tk , tk+1
) .∥∥∥∥∥y−
n(P)

∑
i=1

[α(ui)−α(ui−1
)]( f (u

∗
i
))

∥∥∥∥∥
≥

∥∥∥∥∥∥
k

∑
j=1

⎡⎣ ∑
(ui−1

,ui )⊆(t j−1
,t j )

[α(ui)−α(ui−1
)]( f (u

∗
i
))

⎤⎦
+[α(b)−α(tk)]( f (u

∗
n(P)

))

∥∥∥∥∥−‖y‖

=

∥∥∥∥∥∥
k

∑
j=1

⎡⎣ ∑
(ui−1

,ui )⊆(t j−1
,t j )

[α(ui)−α(ui−1
)](2

− j
x j)

⎤⎦
+[α(b)−α(tk)](2

−k−1
xk+1

)

∥∥∥∥∥−‖y‖

=

∥∥∥∥∥∥
k

∑
j=1

⎡⎣ ∑
(ui−1

,ui )⊆(t j−1
,t j )

[α(ui)−α(ui−1
)]

⎤⎦(2
− j

x j)

+[α(b)−α(tk)](2
−k−1

xk+1
)

∥∥∥∥∥−‖y‖

=

∥∥∥∥∥ k

∑
j=1

[α(t j)−α(t j−1
)](2

− j
x j)+ [α(b)−α(tk)](2

−k−1
xk+1

)

∥∥∥∥∥−‖y‖

≥
∥∥∥[α(tk)](2

−k
xk)

∥∥∥−∥∥∥[α(tk−1
)](2

−k
xk)

∥∥∥
−

k−1

∑
j=1

[∥∥∥[α(t j)](2
− j

x j)
∥∥∥+∥∥∥[α(t j−1

)](2
− j

x j)
∥∥∥]

−
∥∥∥[α(b)](2

−k−1
xk+1

)
∥∥∥−∥∥∥[α(tk)](2

−k−1
xk+1

)
∥∥∥−‖y‖

>2
−k

[
3

4

∥∥α(tk)
∥∥]−2

−k−1 ‖α(b)‖−2
−k−1 ∥∥α(tk)

∥∥
−

k−1

∑
j=1

2
− j

(∥∥α(t j)
∥∥+∥∥∥α(t j−1

)
∥∥∥)−‖y‖

4



>2
−k−2 ∥∥α(tk)

∥∥−‖α(b)‖−2
−k ∥∥α(tk−1

)
∥∥− k−1

∑
j=1

2
− j (

2
∥∥α(tk−1

)
∥∥)−‖y‖

>2
2
k−k−2 ∥∥α(tk−1

)
∥∥−2

k ‖α(b)‖−2
−k ∥∥α(tk−1

)
∥∥−2

∥∥α(tk−1
)
∥∥−‖y‖

≥2
2
k−k−3 ∥∥α(tk−1

)
∥∥−2

−k ‖α(b)‖−‖y‖> 1.

This shows that every y ∈ Y cannot be the interior integral of f with respect to α ,

contradicting our assumption on α . Therefore α is bounded.

Next we show that each fixed partition induces a bounded linear transformation

form Reg(X) to Y . Let P
(

a = t
0
< t

1
< t

2
< · · ·< tn(P) = b

)
and let

t
∗
P
=

{
t
∗
j
∈ (t j−1

, t j), 1 ≤ j ≤ n(P)
}
.

A straightforward application of triangle inequality shows that the map T
P,t∗P

defined by

T
P,t∗P

( f ) =
n(P)

∑
j=1

[α(t j)−α(t j−1
)]( f (t

∗
j
)) ∀ f ∈ Reg(X)

is a bounded linear transformation from Reg(X) to Y (norm ≤ 2(n(P))‖α‖
∞

).

Let f ∈ Reg(X) . We show that there is an Mf > 0 such that∥∥∥∥T
P,t∗P

( f )
∥∥∥∥≤ Mf ∀ P

(
a = t

0
< t

1
< t

2
< · · ·< tn(P) = b

)
∈ P[a,b],

∀ t
∗
j
∈ (t j−1

, t j) : 1 ≤ j ≤ n(P).

Since α is an integrator, y =
∫ b

a
[dα(t)]( f (t)) ∈ Y exists. With ε = 1 in the definition

of interior integral (†), there is a partition

P
0

(
a = s

0
< s

1
< s

2
< · · ·< sn(P

0
)
= b

)
such that

if P
(

a = t
0
< t

1
< t

2
< · · ·< tn(P) = b

)
satisfies{

s j : 1 ≤ j ≤ n(P
0
)
}⊆ {ti : 1 ≤ i ≤ n(P)} and

t
∗
j
∈ (t j−1

, t j), 1 ≤ j ≤ n(P)

then ∥∥∥∥∥y−
n(P)

∑
j=1

[α(t j)−α(t j−1
)]( f (t

∗
j
))

∥∥∥∥∥< 1
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Let

P
(

a = t
0
< t

1
< t

2
< · · ·< tn(P) = b

)
be an arbitrary partition, and let

t
∗
P
=

{
t
∗
j
∈ (t j−1

, t j), 1 ≤ j ≤ n(P)
}
.

Let Q be the minimum common refinement of P and P
0

, i. e.,

Q(a = u
0
< u

1
< · · ·< un(Q)

= b),{
si : 1 ≤ i ≤ n(P

0
)
}∪{

t j : 1 ≤ j ≤ n(P)
}
=

{
ul : 1 ≤ l ≤ n(Q)

}
.

Choose u
∗
l
∈ (ul−1

,ul ) in such a way that u
∗
l
= t

∗
j

if t
∗
j
∈ (ul−1

,ul ) for some j , and

arbitrary u
∗
l
∈ (ul−1

,ul ) if t j 
∈ (ul−1
,ul ) for all 1 ≤ j ≤ n(P

0
) .

Since each ul is either an si or a t j , after cancellation of like terms, all remaining terms

in the difference

n(P)

∑
j=1

[α(t j)−α(t j−1
)]( f (t

∗
j
))−

n(Q)

∑
l=1

[α(ul )−α(ul−1
)]( f (u

∗
l
))

involve at least one si of the form [α(si)−α(t j)]( f (t
∗
j
)− f (u

∗
l
)) or its two other vari-

ants. Therefore there can be at most 2(n(P
0
)) terms of this form (since each si can

appear in at most two such terms), and hence∥∥∥∥∥n(P)

∑
j=1

[α(t j)−α(t j−1
)]( f (t

∗
j
))−

n(Q)

∑
l=1

[α(ul )−α(ul−1
)]( f (u

∗
l
))

∥∥∥∥∥
≤ 2(n(P

0
))(2‖α‖

∞
)(2‖ f‖).

Since Q is a refinement of P
0

, we have∥∥∥∥T
P,t∗P

( f )
∥∥∥∥=

∥∥∥∥∥n(P)

∑
j=1

[α(t j)−α(t j−1
)]( f (t

∗
j
))

∥∥∥∥∥
≤

∥∥∥∥∥n(P)

∑
j=1

[α(t j)−α(t j−1
)]( f (t

∗
j
))−

n(Q)

∑
l=1

[α(ul )−α(ul−1
)]( f (u

∗
l
))

∥∥∥∥∥
+

∥∥∥∥∥n(Q)

∑
l=1

[α(ul )−α(ul−1
)]( f (u

∗
l
))− y

∥∥∥∥∥+‖y‖

<8(n(P
0
))‖α‖

∞
‖ f‖+1+‖y‖ ,

which is the desired Mf , independent of the partition P and the choice of sampling

points t∗
P
=

{
t j

}
. Since the foregoing argument holds for each fixed f , by the uniform

boundedness principle, there exists an M > 0 such that∥∥∥∥T
P,t∗P

∥∥∥∥≤ M for all partitions P
(

a = t
0
< t

1
< t

2
< · · ·< tn(P) = b

)
6



and for all choices of t
∗
P
=

{
t
∗
j
∈ (t j−1

, t j) : 1 ≤ j ≤ n(P)
}
.

It follows that, for each f ∈ Reg(X) and each ε > 0, there is a partition P and choice

of sampling points t∗
P

such that

‖α̂( f )‖=
∥∥∥∥∫ b

a
[dα(t)]( f (t))

∥∥∥∥≤
∥∥∥∥∫ b

a
[dα(t)]( f (t))−T

P,t∗P
( f )

∥∥∥∥+∥∥∥T
P,t∗

( f )
∥∥∥

<ε +
∥∥∥T

P,t∗

∥∥∥‖ f‖ ≤ ε +M ‖ f‖

Since ε > is arbitrary, the map

α̂ : f �→
∫ b

a
[dα(t)]( f (t)) ∀ f ∈ Reg(X)

is a bounded linear map from Reg(X) to Y with norm ‖α̂‖ ≤ M .

4. Equivalent formulation of integrators

In this section we give an equivalent formulation for integrators.

LEMMA 3. Let g : [a,b]→ X be a step function and let α : [a,b]→B(X ,Y ) be
an integrator for Reg(X) . Then there exist

a partition P
0
(a = u

0
< u

1
< · · ·< un(P

0
)
= b) and xk ∈ [X ]

1
, 1 ≤ k ≤ n(P),

such that

∫ b

a
[dα(t)](g(t)) =

n(P
0
)

∑
k=1

[α(uk)−α(uk−1
)]xk =

n(P)

∑
j=1

[α(t j)−α(t j−1
)](g(t

∗
j
))

for all partitions P
(

a = t
0
< t

1
< t

2
< · · ·< tn(P) = b

)
satisfying{

uk : 1 ≤ k ≤ n(P
0
)
}⊆ {

t j : 1 ≤ j ≤ n(P)
}
, and for all choices of

t
∗
j
∈ (t j−1

, t j), 1 ≤ j ≤ n(P),

Proof. By the definition of step functions, there exist

P
0
(a = u

0
< u

1
< u

2
< · · ·< un(P

0
)
= b), and xj ∈ X , 1 ≤ j ≤ n(P

0
)

such that

g(t) = xj , ∀ t ∈ (uj−1
,uj), ∀ 1 ≤ j ≤ n(P

0
).

We show that

y =
n(P

0
)

∑
j=1

[α(uj)−α(uj−1
)]xj =

∫ b

a
[dα(t)](g(t))

7



and the partition P
0

satisfies the stated conditions.

To that end, let P
(

a = t
0
< t

1
< t

2
< · · ·< tn(P) = b

)
satisfy{

uj : 1 ≤ j ≤ n(P
0
)
}⊆ {

tk : 1 ≤ k ≤ n(P)
}
.

For each k = 1,2, · · · ,n(P) , arbitrarily choose t
∗
k
∈ (tk−1

, tk) . Observe that, for

each 1 ≤ j ≤ n(P
0
) , since ⋃

(tk−1
,tk )⊆(u j−1

,u j )

(tk−1
, tk ] = (uj−1

,uj ],

by cancellations of intermediate terms,

∑
(tk−1

,tk )⊆(u j−1
,u j )

[α(tk)−α(tk−1
)] = α(uj−1

)−α(uj).

Therefore, since t
∗
k
∈ (uj−1

, uj) and g(t
∗
k
) = xj whenever (tk−1

, tk)⊆ (uj−1
, uj) ,

n(P)

∑
k=1

[α(tk)−α(tk−1
)](g(t

∗
k
))

=

n(P
0
)

∑
j=1

⎡⎣ ∑
(tk−1

,tk )⊆(u j−1
,u j )

[α(tk)−α(tk−1
)](g(t

∗
k
))

⎤⎦
=

n(P
0
)

∑
j=1

⎡⎣ ∑
(tk−1

,tk )⊆(u j−1
,u j )

[α(tk)−α(tk−1
)]xj

⎤⎦
=

n(P
0
)

∑
j=1

⎡⎣⎛⎝ ∑
(tk−1

,tk )⊆(u j−1
,u j )

[α(tk)−α(tk−1
)]

⎞⎠xj

⎤⎦
=

n(P
0
)

∑
j=1

[α(uj)−α(uj−1
)]xj = y.

Furthermore this also shows that the vector y is also the interior integral of g with

respect to α .

THEOREM 4. Let α : [a,b]→B(X ,Y ) be an integrator for Reg(X) . Then for all

partition P
(

a = t
0
< t

1
< t

2
< · · ·< tn(P) = b

)
and for all choices of x j ∈ [X ]

1
, 1 ≤

j ≤ n(P) , ∥∥∥∥∥n(P)

∑
j=1

[α(t j)−α(t j−1
)]xj

∥∥∥∥∥≤ ‖α̂‖ .
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Proof. First note that by Theorem 2 the map, α̂ : f �→
∫ b

a
[dα(t)]( f (t)) , is a

bounded linear transformation from Reg(X) to Y . To see that ‖α̂‖ has the asserted

property, let a partition P
(

a = t
0
< t

1
< t

2
< · · ·< tn(P) = b

)
and xj ∈ [X ]

1
, 1 ≤ j ≤

n(P) , be given. Define

g(t) = xj for t ∈ (t j−1
, t j), 1 ≤ j ≤ n(P), and g(t) = 0 for all other t ’s.

Then g is a step function and hence is in Reg(X) with ‖g‖ ≤ 1. Thus, by Lemma 3,∥∥∥∥∥n(P)

∑
j=1

[α(t j)−α(t j−1
)]xj

∥∥∥∥∥=

∥∥∥∥∫ b

a
[dα(t)](g(t))

∥∥∥∥= ‖α̂(g)‖ ≤ ‖α̂‖‖g‖ ≤ ‖α̂‖ .

This result leads us to the following definition.

A function α : [a,b]→B(X ,Y ) is said to be of bounded semivariation if

there exists M > 0 such that

for all partitions P
(

a = t
0
< t

1
< · · ·< tn(P) = b

)
∈ P[a,b], and

for all xk ∈ [X ]
1

(the closed unit ball of X), 1 ≤ k ≤ n(P),∥∥∥∥∥n(P)

∑
k=1

[α(tk)−α(tk−1
)]xk

∥∥∥∥∥≤ M.

The semivariation of a function α : [a,b]→B(X ,Y ) of bounded semivariation is

given by

Vs(α) :=sup

{∥∥∥∥∥n(P)

∑
k=1

[α(tk)−α(tk−1
)]xk

∥∥∥∥∥ :

P
(

a = t
0
< t

1
< · · ·< tn(P) = b

)
∈ P;xk ∈ [X ]

1
, 1 ≤ k ≤ n(P)

}
.

It follows from Theorem 4 that each integrator β is of bounded semivariation with

Vs(β )≤
∥∥∥β̂

∥∥∥ . We will need the following lemmas to the converse.

LEMMA 5. Let α : [a,b]→B(X ,Y ) be of bounded semivariation and t ∈ [a,b] .
Then

‖α(t)−α(a)‖ ≤Vs(α).

Proof. Observe that

‖α(t)−α(a)‖= sup
x∈[X ]

1

‖[α(t)−α(a)]x‖

= sup
x∈[X ]

1

‖[α(t)−α(a)]x+[α(b)−α(t)]0‖ ≤Vs(α).
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LEMMA 6. Let g,h : [a,b]→ X be step functions given by

a = u
0
< u

1
< · · ·< un(g) = b, g(t) = xj ∈ X , t ∈ (uj−1

,uj), 1 ≤ j ≤ n(g),

and

a = v
0
< v

1
< · · ·< vn(h) = b, h(t) = wk ∈ X , t ∈ (vk−1

,vk), 1 ≤ k ≤ n(h).

Let α : [a,b]→B(X ,Y ) be of bounded semivariation; and let

yg =
n(g)

∑
j=1

[α(uj)−α(uj−1
)]xj and yh =

n(h)

∑
k=1

[α(vk)−α(vk−1
)]wk .

Then ∥∥yg − yh

∥∥≤‖g−h‖Vs(α).

Proof. Relabel the elements of
{

uj : 0 ≤ j ≤ n(g)
}∪{

vk : 0 ≤ k ≤ n(h)
}

as

a = t
0
< t

1
< · · · < tN = b to eliminate duplicates. Then, for each 1 ≤ j ≤ n(g) and

1 ≤ k ≤ n(h) , ⋃
(ti−1

, ti )⊆(u j−1
, u j )

(ti−1
, ti ] = (uj−1

, uj ], and

⋃
(ti−1

, ti )⊆(vk−1
, vk )

(ti−1
, ti ] = (vk−1

, vk ].

Thus

∑
(ti−1

,ti )⊆(u j−1
,u j )

[α(ti)−α(ti−1
)] = α(uj−1

)−α(uj) and

∑
(ti−1

,ti )⊆(vk−1
,vk )

[α(ti)−α(ti−1
)] = α(vk−1

)−α(vk).

Choose t
∗
i
∈ (ti−1

, ti) . Then g(t
∗
i
) = xj whenever (ti−1

, ti) ⊆ (uj−1
,uj) , and h(t

∗
i
) = wk

whenever (ti−1
, ti)⊆ (vk−1

,vk) . Since∥∥∥‖g−h‖−1

(g(t
∗
i
)−h(t

∗
i
))
∥∥∥≤ 1, 1 ≤ i ≤ N,

it follows that

∥∥yg − yh

∥∥=

∥∥∥∥∥n(g)

∑
j=1

[α(uj)−α(uj−1
)]xj −

n(h)

∑
k=1

[α(vk)−α(vk−1
)]wk

∥∥∥∥∥
=

∥∥∥∥∥∥
n(g)

∑
j=1

⎡⎣ ∑
(ti−1

,ti )⊆(u j−1
,u j )

[α(ti)−α(ti−1
)]

⎤⎦xj
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−
n(h)

∑
k=1

⎡⎣ ∑
(ti−1

,ti )⊆(vk−1
,vk )

[α(ti)−α(ti−1
)]

⎤⎦wk

∥∥∥∥∥∥
=

∥∥∥∥∥∥
n(g)

∑
j=1

⎡⎣ ∑
(ti−1

,ti )⊆(u j−1
,u j )

[α(ti)−α(ti−1
)]

⎤⎦(g(t
∗
i
))

−
n(h)

∑
k=1

⎡⎣ ∑
(ti−1

,ti )⊆(vk−1
,vk )

[α(ti)−α(ti−1
)]

⎤⎦(h(t
∗
i
))

∥∥∥∥∥∥
=

∥∥∥∥∥∥
n(g)

∑
j=1

⎡⎣ ∑
(ti−1

,ti )⊆(u j−1
,u j )

[α(ti)−α(ti−1
)](g(t

∗
i
))

⎤⎦
−

n(h)

∑
k=1

⎡⎣ ∑
(ti−1

,ti )⊆(vk−1
,vk )

[α(ti)−α(ti−1
)](h(t

∗
i
))

⎤⎦∥∥∥∥∥∥
=

∥∥∥∥∥ N

∑
i=1

[α(ti)−α(ti−1
)](g(t

∗
i
))−

N

∑
i=1

[α(ti)−α(ti−1
)](h(t

∗
i
))

∥∥∥∥∥
=

∥∥∥∥∥ N

∑
i=1

[α(ti)−α(ti−1
)](g(t

∗
i
)−h(t

∗
i
))

∥∥∥∥∥
=

∥∥∥∥∥ N

∑
i=1

[α(ti)−α(ti−1
)]
[
‖g−h‖−1

(g(t
∗
i
)−h(t

∗
i
))
]∥∥∥∥∥‖g−h‖

≤Vs(α)‖g−h‖ .

THEOREM 7. Let α : [a,b] → B(X ,Y ) be a function of bounded semivariation.
Then α is an integrator for Reg(X) .

Proof. Let ε > 0. By Theorem 1 there exists a sequence
{

gk

}
k∈N of step func-

tions gk : [a,b]→ X such that∥∥ f −gk

∥∥= sup
a≤t≤b

∥∥ f (t)−gk(t)
∥∥

X
→ 0 as k → ∞.

For each k ∈ N , let yk ∈ Y be the vector associated with gk by Lemma 6. The lemma

also gives us∥∥yk − yl

∥∥
Y
≤Vs(α)

∥∥gk −gl

∥∥≤Vs(α)
[∥∥gk − f

∥∥+∥∥ f −gl

∥∥]→ 0 as k, l → ∞.

Thus
{

yk

}
is a Cauchy sequence in Y . By the completeness of Y , there is a y ∈Y such

that
∥∥y− yk

∥∥
Y
→ 0 as k → ∞ . We show that y has the property (†), i.e., is the integral

of f . Let ε > 0 be given. Then there is an N ∈ N such that∥∥y− yk

∥∥
Y
<

ε
2

and
∥∥ f −gk

∥∥< min

{
1,

ε
2[Vs(α)+1]

}
∀ k ≥ N.
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Let g = gN . Since g is a step function, there exist

a = u
0
< u

1
< u

2
< · · ·< un(g) = b, xj ∈ X , 1 ≤ j ≤ n(g)

such that g(t) = xj , for t ∈ (uj−1
,uj), 1 ≤ j ≤ n(g). Let P

0
be the partition defined by

the division points uj , i.e., P
0
(a = u

0
< u

1
< · · ·< un(g) = b). Let

P
(

a = t
0
< t

1
< t

2
< · · ·< tn(P) = b

)
be a partition that satisfies{

uj : 1 ≤ j ≤ n(g)
}⊆ {

tk : 1 ≤ k ≤ n(P)
}
.

Let t
∗
j
∈ (t j−1

, t j), 1 ≤ j ≤ n(g) , be arbitrarily chosen. Then since g = gN is a step

function, by Lemma 3

n(P)

∑
i=1

[α(ti)−α(ti−1
)](g(t

∗
i
)) =

n(P)

∑
i=1

[α(ti)−α(ti−1
)](gN (t

∗
i
)) = yN .

Since
∥∥∥‖g− f‖−1

(g(t
∗
i
)− f (t

∗
i
))
∥∥∥≤ 1, 1 ≤ i ≤ n(P) , we have∥∥∥∥∥y−

n(P)

∑
i=1

[α(ti)−α(ti−1
)]( f (t

∗
i
))

∥∥∥∥∥
≤

∥∥∥∥∥y−
n(P)

∑
i=1

[α(ti)−α(ti−1
)]g(t

∗
i
)

∥∥∥∥∥+
∥∥∥∥∥n(P)

∑
i=1

[α(ti)−α(ti−1
)](g(t

∗
i
)− f (t

∗
i
))

∥∥∥∥∥
=‖y− yN‖+

∥∥∥∥∥n(P)

∑
i=1

[α(ti)−α(ti−1
)]
[
‖g− f‖−1

(g(t
∗
i
)− f (t

∗
i
))
]∥∥∥∥∥‖g− f‖

<
ε
2
+Vs(α)‖g− f‖< ε

2
+

εVs(α)

2[Vs(α)+1]
< ε.

Combining Theorems 7 and 4, we have the following.

COROLLARY 8. 1. A function α : [a,b]→B(X ,Y ) is an integrator for Reg(X)
if, and only if, α is of bounded semivariation.

2. For each integrator α for Reg(X) , Vs(α) = ‖α̂‖ .

Proof. Part (1) follows directly from Theorems 7 and 4.

For part (2), we have already noted above that Vs(α) ≤ ‖α̂‖ . For the opposite

inequality, let f ∈ Reg(X) , and let ε > 0. Let P
0

and all s j be as in (†). Choose any

s
∗
j
∈ (s j−1

,s j) , for 1 ≤ j ≤ n(P
0
) . Then, since

∥∥∥‖ f‖−1

f (s
∗
j
)
∥∥∥≤ 1 for all 1 ≤ j ≤ n(P

0
) ,

we have

‖α̂( f )‖ ≤
∥∥∥∥∥∥
∫ b

a
[dα(t)]( f (t))−

⎡⎣n(P
0
)

∑
j=1

[α(s j)−α(s j−1
)]( f (s

∗
j
))

⎤⎦∥∥∥∥∥∥
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+

∥∥∥∥∥∥
n(P

0
)

∑
j=1

[α(s j)−α(s j−1
)]( f (s

∗
j
))

∥∥∥∥∥∥
<ε +

∥∥∥∥∥∥
n(P

0
)

∑
j=1

[α(s j)−α(s j−1
)](‖ f‖−1

f (s
∗
j
))

∥∥∥∥∥∥ · ‖ f‖ ≤ ε +Vs(α)‖ f‖

Since ε is arbitrary, we have ‖α̂‖ ≤Vs(α) , and hence equality follows.

Denote by Bsv([a,b],B(X ,Y )) (or simply Bsv whenever no ambiguity, i.e., only

one interval [a,b] and two fixed spaces X and Y in sight) the space of all functions

of bounded semivariation from [a,b] to B(X ,Y ) . It is not hard to see that Vs is not

a norm, as the semivariation of any constant function is 0. However every α ∈ Bsv

and its normalized form α
0
= α −α(a) define the same integrator. The set of all such

normalized functions is a Banach space.

THEOREM 9. The space B
0

sv([a,b],B(X ,Y )) of all functions vanishing at the
point a is a Banach space under the norm ‖α‖ = Vs(α) . Furthermore, the space
B

0

sv([a,b],B(X ,Y )) is isometrically isomorphic to the close subspace{
α̂ : α ∈ B

0

sv

}
of B(Reg(X),Y ) via the map α �→ α̂.

Proof. We prove only the completeness and leave all other verifications to the

readers. Let {αn}n∈N be a Cauchy sequence in B
0

sv (i.e., Vs(αn −αk)→ 0 as n,k →
∞ ). (We are assuming that all αn(a) = 0, n ∈ N .) Then for each t ∈ [a,b] , by Lemma

5 ∥∥αn(t)−αk(t)
∥∥=

∥∥(αn(t)−αk(t))− (αn(a)−αk(a))
∥∥

<Vs(αn −αk)→ 0 as n,k → ∞

That is, for each t ∈ [a,b] , {αn(t)} is a Cauchy sequence in the complete space

B(X ,Y ) , and hence has a limit α(t) ∈ B(X ,Y ) . Furthermore, since the right hand

side of the inequality is independent of t ∈ [a,b] , the convergence of αn(t)→ α(t) is

uniform on [a,b] .
We show that α ∈ B

0

sv and Vs(α −αn)→ 0. Since {αn} is Vs -Cauchy, there is

an N ∈ N such that

Vs(αn −αk)< 1 ∀ n, k ≥ N.

Let P(a = t
0
< t < · · ·< tn(P) = b) ∈ P , and xj ∈ [X ]

1
, 1 ≤ j ≤ n(P) . By the uniform

convergence of ‖αn(t)−α(t)‖→ 0 for t ∈ [a,b] , there is an N
1
> N such that∥∥α(t)−αk(t)

∥∥<
1

n(P)
∀ t ∈ [a,b], ∀ k ≥ N

1

Then, since
∥∥xj

∥∥≤ 1, for all 1 ≤ j ≤ n(P) ,∥∥∥∥∥n(P)

∑
j=1

[α(t j)−α(t j−1
)]xj

∥∥∥∥∥
13



≤
∥∥∥∥∥n(P)

∑
j=1

[α(t j)−αN
1
(t j)]xj

∥∥∥∥∥+
∥∥∥∥∥n(P)

∑
j=1

[αN
1
(t j)−αN (t j)]xj

∥∥∥∥∥
+

∥∥∥∥∥n(P)

∑
j=1

[αN (t j)−αN (t j−1
)]xj

∥∥∥∥∥+
∥∥∥∥∥n(P)

∑
j=1

[αN (t j−1
)−αN

1
(t j−1

)]xj

∥∥∥∥∥
+

∥∥∥∥∥n(P)

∑
j=1

[αN
1
(t j−1

)−α(t j−1
)]xj

∥∥∥∥∥
≤

n(P)

∑
j=1

∥∥∥α(t j)−αN
1
(t j)

∥∥∥+Vs(αN
1
−αN )+Vs(αN )

+Vs(αN −αN
1
)+

n(P)

∑
j=1

∥∥∥αN
1
(t j−1

)−α(t j−1
)
∥∥∥

<Vs(αN )+4

Since P and xj ∈ [X ]
1

are arbitrary, α ∈ Bsv with Vs(α)≤Vs(αN )+4.

For the convergence, let ε > 0. Since {αn} is a Vs -Cauchy sequence, there is an

N such that

Vs(αn −αk)<
ε
4

∀ n,k ≥ N.

Let n ≥ N , P(a = t
0
< t < · · · < tn(P) = b) ∈ P, and xj ∈ [X ]

1
, j = 1, · · · ,n(P) be

arbitrary. Since αn(t)→ α(t) uniformly for t ∈ [a,b] , there exists an N
1
> N such that∥∥α(t)−αk(t)

∥∥<
ε

4[n(P)]
∀ k ≥ N

1
, ∀ t ∈ [a,b].

Since n, N
1
≥ N and xj ∈ [X ]

1
, 1 ≤ j ≤ N(P) , we have∥∥∥∥∥n(P)

∑
j=1

[(αn(t j)−α(t j))− (αn(t j−1
)−α(t j−1

))]xj

∥∥∥∥∥
≤

∥∥∥∥∥n(P)

∑
j=1

[(αn(t j)−αN
1
(t j))− (αn(t j−1

)−αN
1
(t j−1

))]xj

∥∥∥∥∥
+

∥∥∥∥∥n(P)

∑
j=1

[αN
1
(t j)−α(t j)]xj

∥∥∥∥∥+
∥∥∥∥∥n(P)

∑
j=1

[αN
1
(t j−1

)−α(t j−1
)]xj

∥∥∥∥∥
≤Vs(αn −αN

1
)+

n(P)

∑
j=1

∥∥∥αN
1
(t j)−α(t j)

∥∥∥+ n(P)

∑
j=1

∥∥∥αN
1
(t j−1

)−α(t j−1
)
∥∥∥<

3ε
4
.

Since this holds for all partitions and all xj ∈ [X ]
1
, we have Vs(α −αn) < ε for all

n ≥ N . The arbitrariness of ε implies that Vs(α −αn)→ 0.

14



5. Integrators as compact operators

We first consider an example. Let X = Y = �
2

(the square summable Hilbert

sequence space), and [a,b] = [0,1] . For n ∈N , and t ∈ (2
n
,2

n−1
] , define α(t) to be the

rank one operator defined by the diagonal matrix, An , whose (n,n) -entry is n
−1/2

and

all others 0, and α(0) = 0. With ej the j
th

standard basis vector, and N ∈N , we have∥∥∥∥∥ N

∑
j=1

[α(2
N− j+1

)−α(2
N− j

)]eN− j

∥∥∥∥∥
∥∥∥∥∥ N

∑
j=1

AN− j eN− j

∥∥∥∥∥=

[
N

∑
j=1

(N − j)
−1

]1/2

→ ∞

as N → ∞ . Thus α is not an integrator, though each α(t) is of rank one and hence

compact. However, if An is to have (n,n) -entry n
−1

, α̂ , then they are all mutually

orthogonal rank one projections, α̂([Reg(X)]
1
) is contained in the image of the unit

ball under the Hilbert-Schmidt diagonal operator with diagonal entries 1
n . Hence α̂ is

in fact compact.

Before stating criterion for compactness we introduce the following notation for

convenience. For a given α : [a,b]→B(X ,Y ) define the set [α]
1

as follows.

[α]
1

:=

{
n(P)

∑
j=1

[α(t j)−α(t j−1
)]xj : P(a = t

0
< · · ·< tn(P) = b) ∈ P,

xj ∈ [X ]
1
, 1 ≤ j ≤ n(P)

}
Note that α is an integrator iff [α]

1
is bounded (in Y ).

THEOREM 10. Let α : [a,b] → B(X ,Y ) be an integrator for Reg(X) that van-
ishes at a (i.e., α(a) = 0). Then the following conditions on α from Reg(X) to Y are
equivalent.

1. α̂ is compact,

2. There is a compact operator K from a Banach space Z to Y such that [α]
1
⊆

K([Z]
1
) .

3. There is a one-to-one compact operator K from a Banach space Z to Y such
that K

−1
(α(t)) is bounded for all t and K

−1◦α is an integrator.

4. The set [α]
1

is a totally bounded subset of Y .

Proof. [(1) ⇒ (2)] Suppose α̂ is compact. Each element of [α]
1

determines a

partition P(a = t
0
< · · · < tn(P) = b) ∈ P[a,b] and a finite collection of vectors xj ∈

[X ]
1
,1 ≤ j ≤ n(P) . Then the function g defined by g(t) = xj for t ∈ [t j−1

, t j) , and

g(b) = 0 belongs in [Reg(X)]
1
. Thus, by Lemma 3,

n(P)

∑
j=1

[α(t j)−α(t j−1
)]xj = α̂(g) ∈ α̂([Reg(X)]

1
).

15



Thus [α]
1

is contained in α̂([Reg(X)]
1
) = K([Z]

1
)

[(2) ⇒ (3)] Suppose [α]
1
⊆K([Z]

1
) for some compact operator K from a Banach space

Z to Y . Consider the compact operator K̃ induced on the quotient space Z/kerK , we

may assume that K is one-to-one. For t ∈ [a,b] and x ∈ [X ]
1
, since the function

gt,x(s) =

{
x for s ∈ [a, t]
0 for s ∈ (t,b]

is in [Reg(X)]
1

, we have

[α(t)]x =[α(t)−α(a)]x =
∫ b

a
[dα(t)](gt,x(t))

=α̂(gt,x) ∈ α̂([Reg(X)]
1
)⊆ K([Z]

1
).

Thus [α(t)](X) ⊆ K(Z) for all t ∈ [a,b] . Hence K
−1
[α(t)] is a closed operator from

the Banach space X to Z . Thus each K
−1
[α(t)] is a bounded operator from X to Z .

Furthermore β := K
−1◦α : [a,b]→B(X ,Z) satisfies

[β ]
1
= [K

−1◦α]
1
= K

−1
([α

1
])⊆ [Z]

1
.

Therefore β is an integrator.

[(3) ⇒ (4)] Suppose β := K
−1α defines an integrator. Then [β ]

1
= K

−1
([α]

1
) is a

bounded subset of Z . Thus [α]
1
= K(K

−1
([α]

1
)) = K([β ]

1
) is totally bounded.

[(4) ⇒ (1)] Suppose [α]
1

is totally bounded. We show that α̂([Reg(X)]
1
) is contained

in the closure of [α]
1

. Let f ∈ [Reg(X)]
1

, and ε > 0. There is a step function g such

that ‖ f −g‖< ε
‖α̂‖+1

. Then there exist a partition

a = t
0
< · · ·< tn(g) = b and xj ∈ [X ]

1
, 1 ≤ j ≤ n(g) such that

g(t) = xj for t ∈ (t j−1
, t j), 1 ≤ j ≤ n(g).

By Lemma 3,

α̂(g) =
∫ b

a
[dα(t)](g(t)) =

n(P)

∑
j=1

[α(t j)−α(t j−1
)]xj ∈ [α]

1
.

Moreover,

‖α̂( f )− α̂(g)‖= ‖α̂( f −g)‖ ≤ ‖α̂‖‖ f −g‖ ≤ ‖α̂‖
[

ε
‖α̂‖+1

]
< ε.

Therefore α̂( f ) ∈ [α]
1

, that is α̂([Reg(X)]
1
) ⊆ [α]

1
. Since [α]

1
is compact, and

α̂([Reg(X)]
1
)⊆ [α]

1
, thus α̂ is compact.

16



6. Operators as integrators

We prove next a Riesz representation type theorem. Let Reg
r
(X) be the set of

all right continuous functions in Reg(X) that are also left continuous at b ; i.e., f ∈
Reg

l
(X) iff f (t) = f (t

+
) for all t ∈ [a,b) and f (b) = 0.

THEOREM 11. Let T ∈B(Reg
r
(X),Y ) . Then there exists a unique αT ∈B

0

sv([a,b],B(X ,Y ))
such that

T ( f ) =
∫ b

a
[dα(t)]( f (t)) ∀ f ∈ Reg

r
(X).

Moreover, α̂T = T and ‖T‖= ‖α̂T ‖=Vs(αT ) .

This theorem can be restated as follows. The Banach spaces B(Reg
r
(X),Y ) and

B
0

sv([a,b],B(X ,Y )) are isometrically isomorphic.

Proof. Note that for each x∈X and each t ∈ [a,b] , χ
[a,t)x is a step function (taking

the value x on [a, t) and 0 on [t,b] ) belonging to Reg
r
(X) . Define (with the convention

that χ
[a,a) = 0 is the zero function)

[αT (t)]x = T (χ
[a,t)x) ∀ x ∈ X , t ∈ [a,b].

To show that αT ∈ Bsv , let P
(

a = t
0
< t

1
< t

2
< · · ·< tn(P) = b

)
, and xj ∈ [X ]

1
be

given. Note that the function g defined by

g =
n(P)

∑
j=1

(χ
[a,t j )

−χ
[a,t j−1

)
)xj (∗)

is a step function in Reg
r
(X) , taking the value xj on [t j−1

, t j), 1 ≤ j ≤ n(P) , and

‖g‖ ≤ max
{∥∥xj

∥∥ : 1 ≤ j ≤ n(P)
}≤ 1.

Furthermore, by linearity of T ,∥∥∥∥∥n(P)

∑
j=1

[αT (t j)−αT (t j−1
)]xj

∥∥∥∥∥=

∥∥∥∥∥n(P)

∑
j=1

T ((χ
[a,t j )

−χ
[a,t j−1

)
)xj)

∥∥∥∥∥
=

∥∥∥∥∥T

(
n(P)

∑
j=1

(χ
[a,t j )

−χ
[a,t j−1

)
)xj

)∥∥∥∥∥= ‖T (g)‖ ≤ ‖T‖ .

That is αT ∈ Bsv , and hence αT an integrator for Reg(X) , and hence for Reg
r
(X) , by

Theorem 7.

Since each step function g in Reg
r
(X) can be written as a sum of the form (*)

above, and the interior integral of a step function is independent of the values of the

function at the division points for g , by Lemma 3,∫ b

a
[dα(t)](g(t)) = α̂T (g) = T (g).

17



From the density of the step functions, continuous from the right in Reg
r
(X) , and the

continuity of both T and α̂T , we have T = α̂T , and ‖T‖= ‖α̂T ‖ .
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[8] Š. Schwabik, Linear operator in the space of regulated functions, Math. Bohem. 117 (1992), no. 1,

79–92.
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MULTIPLICATIVE INTEGRATORS OF ALGEBRA-VALUED REGULATED
FUNCTIONS

TITARII WOOTIJIRATTIKAL
∗

AND SING-CHEONG ONG

ABSTRACT. A function from a closed interval [a,b] to a Banach space X is regulated

if all one-sided limits exist. A function α from [a,b] to the space of all bounded

linear transformations from X to a Banach space Y is an integrator for the regulated

functions if, for each regulated function f , the Riemann-Stieltjes sums of f , with

sampling points from the interiors of subintervals, converge to a vector in Y . When X
and Y are Banach algebra, we give a complete description of the class of all integrators

that induce Banach algebra homomorphisms. The main result of L. Fernandes and R.

Arbach [Ann. Funct. Anal. 3 (2012), no. 2, 21-31] exhibit a special subclass of our

characterization.

1. INTRODUCTION

A function f on a closed interval [a,b], taking values in a Banach space X , is said to
be regulated if the all one-sided limits exist. The class of regulated functions is much
wider than the class of continuous functions. A function α on [a,b] taking values in the
space B(X ,Y ) of bounded linear operators from X to a Banach space Y is an integrator
if, for each regulated function f , there is a vector in Y to which the Riemann-Stieltjes
sums of f , with sampling points from the interiors of subintervals, with respect to α
converge. An operator valued function α is an integrator if and only if α is of bounded
semivariation [?]. When the Banach spaces X and Y are replaced by Banach algebras
A and B, a natural question to ask is when is the operator induced by the operator-
valued integrator is multiplicative. The main result of L. Fernandes and R. Arbach
[?] give a class of such examples. We shall give a complete description of all such
integrators.

2. NOTATIONS AND PRELIMINARIES

Fix real numbers a < b and a Banach space X . A function f : [a,b]→ X is said to be
regulated (see [?, §7.6, p.139] and [?, p. 16]) if

f (c
+
) := lim

t→c+
f (t) and f (c

−
) := lim

t→c−
f (t) exist for all c ∈ (a,b), and

f (a
+
) := lim

t→a+
f (t) and f (b

−
) := lim

t→b−
f (t) exist.

Denote by Reg([a,b],X) = Reg(X) the space of regulated functions on [a,b] (taking
values in X).

2010 Mathematics Subject Classification. Primary 46E40; Secondary 46L30.
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A partition P of the interval [a,b] is given by a finite number of division points, t j ,

in [a,b]:

P
(

a = t
0
< t

1
< t

2
< · · ·< tn(P) = b

)
, n(P) ∈ N.

The set of all partitions of [a,b] is denoted by P[a,b] or simply P , whenever no
confusion arises.

A function g : [a,b]→ X is a step function if there are a partition

P
(

a = t
0
< t

1
< t

2
< · · ·< tn(P) = b

)
and vectors xj ∈ X , 1 ≤ j ≤ n(P) such that g(t) = xj for all t ∈ (t j−1

, t j), 1 ≤ j ≤ n(P);
i.e., g takes constant values on each open subinterval in the partition. Since n(P) is
determined by g, we also denote n(P) by n(g) in this case.

Theorem 1. [?, Th 7.6.1, p.139] A function f : [a,b]→ X is regulated iff there exists a
sequence {hn} of step functions such that hn → f uniformly on [a,b]. Furthermore, if
f ∈ Reg(X), then

‖ f‖ := sup
t∈[a,b]

‖ f (t)‖< ∞,

and (Reg(X),‖·‖) is a Banach space.

When X is a Banach algebra A with identity �A , it is readily seen that Reg(A ) is
also a Banach algebra with the pointwise product of regulated functions and muilti-
plicative identity the function �

Reg(A )
taking the value �A at every point in [a,b] ([?,

Th. 2.3]).
Let X , Y be Banach spaces. Denote by B(X ,Y ) the space of bounded linear trans-

formations from X to Y . An operator-valued function α : [a,b]→B(X ,Y ) is said to be
an integrator for the regulated functions if for each f ∈ Reg(X), there is a y ∈ Y that
satisfies the following condition:

(‡) for every ε > 0 there is a partition P
0

(
a = s

0
< s

1
< s

2
< · · ·< sn(P

0
)
= b

)
such that for all partitions P

(
a = t

0
< t

1
< t

2
< · · ·< tn(P) = b

)
refining P

0
:

{sk : 1 ≤ k ≤ n(P
0
)} ⊆ {

t j : 1 ≤ j ≤ n(P)
}

and

for all t
∗
j
∈ (t j−1

, t j), 1 ≤ j ≤ n(P),∥∥∥∥∥y−
n(P)

∑
j=1

[α(t j)−α(t j−1
)]( f (t

∗
j
))

∥∥∥∥∥< ε.

If α is an integrator for regulated functions, the vector y to which α “integrates” f is
called the interior integral (or Dushnik integral ) of f and is denoted by∫ b

a
[dα(t)]( f (t)) = y.

We gather some basic facts about integrators, that can be found in [?].
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Theorem 2. An operator-valued function α : [a,b]→B(X ,Y ) is an integrator if and
only if α is of bounded semivariation in the following sense:

there exists M > 0 such that

for all partitions P
(

a = t
0
< t

1
< · · ·< tn(P) = b

)
∈ P[a,b], and

for all xk ∈ [X ]
1

(the closed unit ball of X), 1 ≤ k ≤ n(P),∥∥∥∥∥n(P)

∑
k=1

[α(tk)−α(tk−1
)]xk

∥∥∥∥∥≤ M.

Denote by Bsv([a,b],B(X ,Y )) (or simply Bsv whenever no ambiguity, i.e., only
one interval [a,b] and two fixed spaces X and Y in sight) the space of all functions of
bounded semivariation from [a,b] to B(X ,Y ).

The semivariation of a function α ∈ Bsv([a,b],B(X ,Y )) is given by

Vs(α) :=sup

{∥∥∥∥∥n(P)

∑
k=1

[α(tk)−α(tk−1
)]xk

∥∥∥∥∥ : P
(

a = t
0
< t

1
< · · ·< tn(P) = b

)
∈ P;

xk ∈ [X ]
1
, 1 ≤ k ≤ n(P)

}
.

Lemma 3. Let g : [a,b]→ X be a step function and let α : [a,b]→B(X ,Y ) be of
bounded semivariation. Then there exists a y ∈ Y with the following property.
There exists a partition P

0
(a = u

0
< u

1
< · · ·< un(P

0
)
) such that for all partitions

P
(

a = t
0
< t

1
< t

2
< · · ·< tn(P) = b

)
satisfying

{uk : 1 ≤ k ≤ n(P
0
)} ⊆ {

t j : 1 ≤ j ≤ n(P)
}
, and all choices of

t
∗
j
∈ (t j−1

, t j), 1 ≤ j ≤ n(P),

y =
n(P)

∑
j=1

[α(t j)−α(t j−1
)](g(t

∗
j
)).

3. INTEGRATORS AS MULTIPLICATIVE MAPS

Let A ,B be Banach algebras with identities �A ,�B respectively (over the complex
field C). A routine verification reveals that Reg(A ) is also a Banach algebra with
identity �R the constant function �

Reg(A )
(t) = �A , for all t ∈ [a,b] ([?, Th. 2.3]). A

natural question is: for which integrator α : [a,b]→B(A ,B), is α̂ a Banach algebra
homomorphism? In particular: when is∫ b

a
[dα(t)](( f g)(t)) =α̂( f g) = α̂( f )α̂(g)

=

[∫ b

a
[dα(t)]( f (t))

][∫ b

a
[dα(t)](g(t))

]
, ∀ f , g ∈ Reg(A )?
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Towards a characterization of all integrator-induced homomorphisms from Reg(A ) to
B, we will need the following simple fact.

Lemma 4. If S 	= T in B(A ,B) are distinct Banach algebra homomorphisms, then
S−T is not multiplicative.

Proof. Since S−T 	= 0, there is an x ∈ A such that (S−T )x 	= 0.

(S−T )(�A · x) =(S−T )(x) 	= 0 whereas

[(S−T )(�A )][(S−T )x] =(�B −�B)((S−T )x) = 0(Sx−T x) = 0. �

The main theorem in [?] states that if α has its value a fixed homomorphism on
an interval (c,b] and 0 elsewhere then it induces a homomorphism on Reg(A ). The
collection of all such integrators have the following full descriptions.

Theorem 5. Let A ,B, and α be as above. Then α̂ is a homomorphism from Reg(A )
to B if, and only if there exist c ∈ [a,b], S, T ∈B(A ,B) such that T is a homomor-
phism and

α(t) =

{
S for a ≤ t ≤ c

S+T for c < t ≤ b
or

α(t) =

{
S for a ≤ t < c

S+T for c ≤ t ≤ b

i.e., there are a c ∈ [a,b), a homomorphism T and a bounded operator S from A to B
such that α = S+χ(c,b]T or α = S+χ[c,b]T .

We denote the characteristic function of a set J (restricted to [a,b]) by χJ

Proof. [⇒] Since α̂(�
Reg(A )

) = �B which is nonzero by axioms of Banach algebra,

α̂ 	= 0. By assumption α̂ is also multiplicative. Let S := α(0). Then α and α − S
define the same integrator from Reg(A ) to B. Replacing α by α −α(0), we may and
shall assume that α(a) = 0.

We then have

[α(b)](�A ) = [α(b)−α(a)](�A ) =
∫ b

a
[dα(t)](�

Reg(A )
(t)) = α̂(�

Reg(A )
) = �B

Claim 1: α(s) is multiplicative for all s ∈ (a,b].
Let x,y ∈ A . Let f = χ

[a,s]x, g = χ
[a,s]y. Then f ,g ∈ Reg(A ), f g = χ

[a,s]xy ∈ Reg(A ),
and, by Lemma 3,

α̂( f ) =
∫ b

a
[dα(t)]( f (t)) = [α(s)−α(a)]x = [α(s)]x,

α̂(g) =
∫ b

a
[dα(t)](g(t)) = [α(s)]y, and

α̂( f g) =
∫ b

a
[dα(t)](( f g)(t)) = [α(s)](xy).
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Thus

[α(s)](xy) = α̂( f g) = (α̂( f ))(α̂(g)) = ([α(s)]x)([α(s)]y).

That is [α(s)](xy) = ([α(s)]x)([α(s)]y). Since x,y ∈ A are arbitrary, α̂(s) is multi-
plicative. In particular, with s = b, we have T := α(b) is a homomorphism from A to
B.

Claim 2: for all u < v in [a,b], α(v)−α(u) is multiplicative.
Let x,y ∈ A . Set f = χ

[u,v]x, g = χ
[u,v]y. Then, f ,g, f g = χ

[u,v] (xy) ∈ Reg(A ) , and

α̂( f ) =
∫ b

a
[dα(t)]( f (t)) = [α(v)−α(u)]x,

α̂(g) =
∫ b

a
[dα(t)](g(t)) = [α(v)−α(u)]x, and

α̂( f g) =
∫ b

a
[dα(t)](( f g)(t)) = [α(v)−α(u)](xy).

Thus, since α̂ is assumed to be multiplicative,

[α(v)−α(u)](xy) =α̂( f g) = [α̂( f )][α̂(g)]

=[[α(v)−α(u)]x] [[α(v)−α(u)]y] .

Since α̂ is assumed to be a nonzero homomorphism, α(t
0
) 	= 0 for some t

0
∈ [a,b].

Let c = inf{t ∈ [a,b] : α(t) 	= 0} .
Case 1: c = b. As noted above, T := α(b) is a homomorphism from A to B. Since
α(t) = 0 for t ∈ [a,b), by definition of c, we see that α has the second asserted form
with S = α(a) = 0 and c = b.
Case 2: c < b. We claim that α is constant on (c,b]. With T = α(b) we show that
α = χ

(c,b]T or α = χ
[c,b]T .

For t ∈ (c,b), since α(b)−α(t) is multiplicative by Claim 2, we have α(b) = α(t) by
Lemma 4. Thus α = χ

(c,b]T or α = χ
[c,b]T . That is α takes one of the asserted forms.

[⇐] Conversely, suppose α = χ
[c,b]T +S or α = χ

(c,b]T +S for some Banach algebra ho-

momorphism T from A to B and some bounded linear transformation S ∈B(A ,B).
We show first that

∫ b

a
[dα(t)]( f (t)) =

⎧⎨⎩T ( f (c
−
)) if α = χ

[c,b]T +S

T ( f (c
+
)) if α = χ

(c,b]T +S
∀ f ∈ Reg(A ).

Let f ∈ Reg(A ) and let ε > 0. There exists a δ > 0 such that

(∀ t ∈ [a,b])
[
(c < t < c+δ )⇒

(∥∥∥ f (c
+
)− f (t)

∥∥∥<
ε

‖T‖+1

)]
and

(∀ t ∈ [a,b])
[
(c−δ < t < c)⇒

(∥∥∥ f (c
−
)− f (t)

∥∥∥<
ε

‖T‖+1

)]
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Arbitrarily pick c
1
∈ (c−δ ,c) and c

2
∈ (c,c+δ ). Let

P
(

a = t
0
< t

1
< t

2
< · · ·< tn(P) = b

)
be a partition of [a,b] with

{c,c
1
,c

2
} ⊆

{
t
1
, . . . , tn(P)

}
.

To show that P is the Pε in the definition of the integral, let

Q
(

a = s
0
< s

1
< s

2
< · · ·< sn(Q)

= b
)

a partition such that{
s

1
, . . . ,sn(Q)

}
⊇

{
t
1
, . . . , tn(P)

}
and s

∗
j
∈ (s j−1

,s j), 1 ≤ j ≤ n(Q).

Then there is a 1 ≤ j
0
< n(Q) with t j

0
= c. Thus c

1
≤ t j

0
−1

and t j
0
+1

≤ c
2
, and

hence [α(s j)−α(s j−1
)] = 0 for all j < j

0
, and all j > j

0
+ 2. If α = χ

[c,b]T + S, we

also have α(s j
0
+1
)−α(s j

0
) = 0. Since c− δ < c

1
≤ t j

0
−1

< s
∗
j
0
< s j

0
= c, we have∥∥∥ f (c

−
)− f (s

∗
j
0
)
∥∥∥< ε

‖T‖+1
, and hence

∥∥∥∥∥T ( f (c
−
))−

n(Q)

∑
j=1

[α(s j)−α(s j−1
)]( f (s

∗
j
))

∥∥∥∥∥
=
∥∥∥T ( f (c

−
))− [α(s j

0
)−α(s j

0
−1
)]( f (s

∗
j
0
))
∥∥∥

=
∥∥∥T ( f (c

−
))−T ( f (s

∗
j
0
))
∥∥∥≤ ‖T‖

∥∥∥ f (c
−
)− f (s

∗
j
0
)
∥∥∥< ε.

Since ε > 0 is arbitrary, we have proved that

∫ b

a
[dα(t)]( f (t)) = T ( f (c

−
)), if α =

χ
[c,b]T +S.

Likewise, if α = χ
(c,b]T +S, then α(s j

0
)−α(s j

0
−1
) = 0. Since c = s j

0
< s

∗
j
0
+1

< s j
0
+1

≤
c

2
<C+δ , we have

∥∥∥ f (c
+
)− f (s

∗
j
0
+1
)
∥∥∥< ε

‖T‖+1
, and hence

∥∥∥∥∥T ( f (c
+
))−

n(Q)

∑
j=1

[α(s j)−α(s j−1
)]( f (s

∗
j
))

∥∥∥∥∥
=
∥∥∥T ( f (c

+
))− [α(s j

0
+1
)−α( j j

0
)]( f (s

∗
j
0
+1
))
∥∥∥

=
∥∥∥T ( f (c

+
))−T ( f (s

∗
j
0
+1
))
∥∥∥≤ ‖T‖

∥∥∥ f (c
+
)− f (s

∗
j
0
+1
)
∥∥∥< ε.

Again by the arbitrariness of ε , we have proved that

∫ b

a
[dα(t)]( f (t)) = T ( f (c

+
)), if

α = χ
(c,b]T +S.
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To see that α̂ is multiplicative, let f ,g ∈ Reg(A ). Then by what we just proved above,

α̂( f g) =
∫ b

a
[dα(t)](( f g)(t)) =

⎧⎨⎩T (( f g)(c
−
)) for α = χ

[c,b]T +S

T (( f g)(c
+
)) for α = χ

(c,b]T +S

α̂( f ) =
∫ b

a
[dα(t)]( f (t)) =

⎧⎨⎩T ( f (c
−
)) for α = χ

[c,b]T +S

T ( f (c
+
)) for α = χ

(c,b]T +S

α̂(g) =
∫ b

a
[dα(t)](g(t)) =

⎧⎨⎩T (g(c
−
)) for α = χ

[c,b]T +S

T (g(c
+
)) for α = χ

(c,b]T +S

It follows from the continuity of the multiplication on A that ( f g)(c
−
) = f (c

−
)g(c

−
),

and ( f g)(c
+
) = f (c

+
)g(c

+
). Since T is multiplicative, we have

T (( f g)(c
+
)) =T ([ f (c

+
)][g(c

+
)]) = [T ( f (c

+
))][T (g(c

+
))]

T (( f g)(c
−
)) =T ([ f (c

−
)][g(c

−
)]) = [T ( f (c

−
))][T (g(c

−
))]

and hence

α̂( f g) = [α̂( f )][α̂(g)].

To see that α̂(�
Reg(A )

) = �B , note that �
Reg(A )

(t
±
) = �A for all t ∈ (a,b).

α̂(�
Reg(A )

) =
∫ b

a
[dα(t)](�

Reg(A )
(t)) =

⎧⎨⎩T ((�
Reg(A )

)(c
−
)) for α = χ

[c,b]T +S

T ((�
Reg(A )

)(c
+
)) for α = χ

(c,b]T +S

=T (�A ) = �B . �

Now suppose A and B are C
∗
-algebras with identities �A and �B . Then Reg(A ) is

a C
∗
-algebra with identity �

Reg(A )
(t) = �A for all t ∈ [a,b]. The involution on Reg(A )

is defined pointwise: for each f ∈ Reg(A ), and each t ∈ [a,b], f
∗
(t) = ( f (t))

∗
.

Then a routine verification reveals that Reg(A ) is a C
∗
-algebra. Since a

∗
-homomorphism

from a C
∗
-algebra to another is just an algebra homomorphism that also preserves the

adjoint, a direct adaptation of our proof yields the following.

Theorem 6. Let α : [a,b] → B(A ,B) be an integrator for Reg(A ). Then α̂ is a
∗
-homomorphism from Reg(A ) to B if, and only if there exist c ∈ [a,b], S, T ∈
B(A ,B) such that T is a

∗
-homomorphism and

α(t) =

{
S for a ≤ t ≤ c

S+T for c < t ≤ b
or

α(t) =

{
S for a ≤ t < c

S+T for c ≤ t ≤ b
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i.e., there are a c ∈ [a,b), a
∗
-homomorphism T and a bounded operator S from A to

B such that α = S+χ(c,b]T or α = S+χ[c,b]T .
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