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Abstract

Project Code : TRG5880051

Project Title : Integrators for vector-valued regulated functions and homomorphisms of

C”-valued regulated functions
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A function from a closed interval [a, b], to a Banach space X, is said to be
regulated if all one-side limits exist. A function « from [a,b] to the space of all bounded
linear transformations from X to a Banach space Y is an integrator for the regulated
functions if for each regulated function f , Riemann-Stielties sums of f with respect to «
converge to a vector in Y .

In the first year of the project, we use the Uniform boundedness principle to give a
complete description of the class of all operator-valued integrators for vector-valued regulated
functions. We prove that a subclass of such integrators is a Banach space under suitable
norm. We give compactness criteria for integrator induced operators. We also show that each
bounded linear map from a subspace of vector-valued regulated functions is represented by
an operator-valued integrator.

In the second year, we give a complete description of the class of all integrators that
induced operators that are homomorhisms, when X and Y are Banach algebras. The main

result of L. Fernandes and R. Arbach [4] showed a special subclass of our characterization.

Keywords : Regulated functions, semivariation, Banach space, C"-algebra
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| Introduction

Many real-world problems are mathematically formulated as integral equations, such as
f@=v@ +>\fQK(x,t)u(t)dt.

Here it involves the identity as integrator function (which corresponds to the Lebesgue
measure) and the unknown function to be found. Usually to solve an integral equation, we
have to determine the admissible class of integrator functions and the domain of the integral
operator. In many practical situations the class of integrator functions need to be as large as
possible. And the functions in the domain of the integral operators also need to be widen
from the continuous ones, as the real-world problems rarely arise continuously.

For real or complex-valued functions, a natural class of integrator functions is the
class of functions of bounded variation. And the natural class of functions in the domains of
such integration operators induced by functions of bounded variation is the space of
regulated functions.

From statistical applications, vector-valued functions emerge naturally in many
practical situations. This leads many researchers to consider vector-valued functions and
operator-valued integrators. The notion of bounded variation for scalar functions has a most
natural and obvious extension to operator-valued functions, namely replacing the absolute
value, used in the calculation of variation, by operator norm. But in many practical situations,
this is too restrictive. A generalized notion of bounded semivariation, an analogue of the
calculation of the operator norm, emerges. These two notions (bounded variation and
bounded semivariation) are equivalent in the scalar case. The space of vector-valued
regulated functions has been used as the domain of integral operators induced by operator-
valued functions of bounded semivariation. A lot of work has been done along this line. Our
question is whether we can extend the class of integrator functions beyond the class of
operator-valued functions of bounded semivariation. Answer to this question does not seem
to be known even the very special case of scalar-valued functions. After answer that

question, we will investigate homomorphisms of C *-algebras of regulated functions taking

values in a C *-algebras.



A function f on a closed interval [a, b], taking values in a Banach space X , is said
to be regulated if all one-side limits exist at every point of the interval [3]. The space of
regulated functions is much wider than the space of continuous functions. Given a function
a on [a,b] taking values in the space B(X,Y)of bounded linear operators from X to a
Banach space Y, an interesting and natural question is whether there is a vector in Y to
which the internal (sampling points in interior of subintervals) Riemann-Stielties sums of f
with respect to o converge. Those functions « with this property are called integrators. We
give a complete characterization of all such operator-valued integrators. We show that a
subclass of such integrators form a Banach space under suitable norm. We also derive
criteria for the compactness of integrator induced operators. Finally, when the Banach
spaces X and Y are replaced by Banach algebras, our question is when is the operator
induced by the operator-valued integrator is multiplicative. The main result of L. Fernandes
and R. Arbach [4] give a class of such examples. We will give a complete description of all

such integrators.



Il Objectives

The objectives for this research are as follows.
1. To determine the class of operator-valued integrators for the space of regulated
functions taking values in a Banach space.
2. Use the results obtained to investigate homomorphisms of C *-algebras of

regulated functions taking values in a C * -algebra.



lll Methodologies

. Study books and papers on integration of vector-valued functions with respect to
operator- valued integrators, particularly [3, 6, 2] for the first phase and [7, 6 ,4] for
the second phase.

. Construct examples of regulated functions and operator-valued functions that can help
us gain deeper insight into these the concepts and questions.

. Use known results and methods used therein and new examples from (2) to guess
possible answers to devise more precise conjectures.

. Use our modifications of techniques learned from studying the books and papers to
come up with new techniques to prove the conjectures.

. If it is unsuccessful, construct more examples, re-study key ideas in books and papers
carefully, and re-examine the whole process to modify the conjectures.

. Repeat these steps until valid proofs are obtained to turn the conjectures into
theorems. Our techniques and conjectures will be modified repeatedly as we go
along.

. Write up results and follow up with revisions and revising repeatedly until they are
ready for publication.

. Communicate with mentor and co-mentor.



IV Results

Fix a Banach space X , and a closed interval [a,b]. A function f:[a,b] — X is

said to be regulated if

flet) = lim £(2), fle)= lim /() existforall ¢ € (a,b), and
fla®)= Jim, f@), f(b7)= lim f(t) exist.

Denote by Reg ([a, b], X)= Reg(X) the space of regulated functions on [a,b] (taking

values in X ).

A partition P of the interval [a,b] is given by a finite number of division points, tj,
in [a,b]:
P(a =1y <t <..<t,p = b), n(P)eN.
The set of all partitions of [a,b] is denoted by 7 [a,b] = ~.

A function ¢ :[a,b] — X is a step function if there are a partition
Pla=ty<t; <..<typ =b)
and vectors X; € X, 1< j< n(P) such that g(t)=xj for all te(tj_l,tj), 1<j<n(P).
Since n(P) is determined by @, in this case we denote n(P) by n(g).

Theorem 1. [J.Dieudonne] : A function f :[a,b] — X is regulated iff there exists a sequence
{hn} of step functions such that h, — f uniformly on [a,b]. Furthermore, if f e Reg(X),

then
B sup]Hf (t)] < e,

te[a,b
and (Reg(X )||||) is a Banach space.



4.1 Operator Integrators for Regulated Vector Functions and Compactness

A function f on a closed interval [a,b], taking values in a Banach space X , is said
to be regulated if all one-side limits exist at every point of the interval [3]. The space of
regulated functions is much wider than the space of continuous functions. Given a function
a on [a,b] taking values in the space B(X,Y)of bounded linear operators from X to a
Banach space Y, an interesting and natural question is whether there is a vector in Y to
which the internal (sampling points in interior of subintervals) Riemann-Stielties sums of f
with respect to a converge. Those functions « with this property are called integrators. We
give a complete characterization of all such operator-valued integrators. We show that a
subclass of such integrators form a Banach space under suitable norm. We also derive

criteria for the compactness of integrator induced operators.

4.1.1 Integrators as bounded linear transformations

Let X, Y be Banach spaces. Denote B(X,Y) by the space of bounded linear
transformations from X to Y . An operator-valued function o : [a,b] - B(X ,Y) is said to be
an integrator for the regulated functions if for each f e Reg(X ,) there is y €Y satisfies the
following condition:

For every £>0 there is a partition P. <a =5 <8 <.<S8p)= b) such that for all
partitions P(a =ty <t <..<lyp = b) refining P, thatis
{sk 1<k < n(Pg)} - {tj 1< j< n(P)}

and for all t?e(tj_l,tj), 1<j<n(P), |y- Z[a(tj)—a(tj_l)](f(t?)) <e.

If « is an integrator for regulated functions, the vector y €Y to which integrates f is unique

and is called to be interior integral (or Dushnik integral) of f and is denoted by

Toe (1 ()=



We use the Uniform Boundedness Principle to show that each integrator induces
a bounded linear map from Reg(X) to Y .
Theorem 2. Let o : [a,b] — B(X ,Y) be an integrator for Reg (X ). Then the map

a:f Hi[da(t)](f(t)), f eReg(X)

is a bounded linear transformation from Reg(X) to Y.

4.1.2 Equivalent formulation of integrators

We will give an equivalent formulation for integrators.
Lemma 3. Let ¢ :[a,b] — X be a step function and let a:[a,b] - B(X,Y) be an
integrator for Reg( ) Then there exist a partition F, (a = Uy < U <...<Uyp)= b)

and % €[X] . 1<k<n(P), such that
n(P)

J.[da Zi‘, L (u)—a () =2 [“(tj)_a(tj—lﬂ(g(t?))

J_
for all partitions P(a =1y <t <..<tlyp = b) satisfying

{u 1<k <n(R)} g{tj 1< Sn(P)} , and for all choices of t] e(tj_l,tj), 1<j<n(P).

Theorem 4. Let o [a,b] - B(X ,Y) be an integrator for Reg(X ) Then for all partition
P(a =ty <t; <...<t,p = b) and for all choices of X; e[X]l, 1<j<n(P),
n(P)

2 a(t)-a(ta)x ]

j=

<l

Theorem 4 leads us to the following Definitions.

A function «: [a,b] - B(X ,Y) is said to be of bounded semivariation if there exists

an M >0 such that for all partitions P(a, =1, <t <..<t, P) = b) er [a b], and for

Z[“ te)—a(ty Xk}

all x, €[X], (the closed unit ball of X ), 1<k <n( M.




The semivariation of a function « : [a,b] - B(X ,Y) of bounded semivariation is
given by

n(P)
> le(t)-a(tea) %

Pla=ty <t <---<t , =b|eP;
= ( 01 n(P) ) .

V, (a):=sup

X €[X],, 1<k <n(P)

1 H

From Theorem 4. , we get that each integrator S is of bounded semivariation with

Vs (B)<

A

Al

The backward of Theorem 4 need the following Lemmas.

Lemma5. Let «: [a,b] - B(X ,Y) be of bounded semivariation and te[a,b]. Then

Ha (t)—a(a)” <V (a).

Lemma 6. Let g,h:[a,b]—> X be step functions given by
a=Uy <l < <Uyg =D, g(t)=x;€X, te(uj_l,uj), 1<j<n(g), and
a=Vy <V <<V =b, h(t)=w € X, te (Vi Vi), 1<k <n(h).
Let a: [a,b] — B(X ,Y) be of bounded semivariation; and let
n(g) n(h)
Yy = ;[a(uj)—a(uj_l)}xj and y, = kzl[a(vk)_a(vk_l)]wk.
Then Hyg - th < ||g —h||VS ().

Theorem 7. Let o [a,b] - B(X ,Y) be a function of bounded semivariation. Then « is an

integrator for Reg( X ).

Combining Theorem 7 and 4, we get the following Corollary.

Corollary 8.

(1) A function a:[a,b]—>B(X,Y) is an integrator for Reg(X) if and only if a is of
bounded semivariation.

(2) For each integrator ¢ for Reg(X ), V; (a)S”o?”.



The following Theorem shows that the class of integrators is a Banach space under
the suitable norm.
Th 0 : .
eorem 9. The space 7, ([a,b], B(X,Y )) of all function &:[a,b]— B(X,Y) of
bounded semivariation that satisfies a(a) =0, is a Banach space with pointwise addition
and scalar multiplication and norm
n

Z[“(tj )‘“(H—l)} X;

=1

‘neN, a=t, <t <---<t, =h,

e, =sup

Xje X, [xj|<1 1<j<n

4.1.3 Integrators as compact operators

For a given & :[a,b] > B(X,Y ) define the set []; as follows.

n(P)

o], = Z[a(tj)—(y(tj_l)]xj :P(a:t0 <t < <ty :b)e)‘> X €[X], 1< j<n(P)t.

=1

Note that « is an integrator iff [a]l is bounded in Y .

Theorem 10. Let o:[a,b]— B(X,Y) be an integrator for Reg( X ) that vanishes at a
(i.e., a(a): 0). Then the following conditions on « from Reg(X) to Y are equivalent.
1. « is compact.
2. There is a compact operator K from a Banach space Zto Y such that
[O‘]l cK ([Z]l)
3. There is a one-to-one compact operator K from a Banach space Z to Y such that
Kil(a(t» is bounded for all tand K o« is an integrator.

4. The set [a] is a totally bounded subset of Y .
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4.1.4 Operators as integrators
Let Reg, (X) be the set of all right continuous functions in Reg(X) that are also
left continuous at b; i.e., f €Reg,(X) iff f(t)=f (t+) for all t €[a,b)and f(b)=0.

The following Theorem shows the Banach space B(Regr (X),Y) and
//’58 ([a, b].B(X,Y )) are isometrically isomorphic.

Theorem 11. Let T € B(Regr (X),Y). Then there exists a unique
b

ar € v’//s\?([a,b],B(X,Y)) such that T(f)zj[da(t)](f(t)) vf eReg, (X).

Moreover, ar =T and |[T||=|ar|=V;(ar).
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4.2 Multiplicative Integrators of Algebra-valued Regulated Functions

A function f on a closed interval [a,b], taking values in a Banach space X , is said
to be regulated if all one-side limits exist. The class of regulated functions is much wider than
the class of continuous functions. A function « on [a,b] taking values in the space
B(X,Y)of bounded linear operators from X to a Banach space Y is an integrator if, for
each regulated function f, there is a vector in Y to which Riemann-Stielties sums of f with
sampling points from the interiors of subintervals, with respect to « converge. An operator
valued function ¢« is an integrator if and only if « is of bounded semivariation. When the
Banach spaces X and Y are replaced by Banach algebras .-~ and .%, a natural question
is when is the operator induced by the operator-valued integrator is multiplicative. In 2012, L.
Fernandes and R. Arbach proved that each function in the form

ol . :{: 11:‘or tela,c]

or te(c,b]
with T a Banach algebra homomorphism from ..~ to ., induces a Banach algebra
homomorphism from Reg(.') to 7. Their result give a class of such examples. Our work

will give a complete description of all such integrators.
4.2.1 Integrators as multiplicative maps

Let ', 7 be Banach algebras with 1 , 1 = respectively (over C). With the same

7

process in the previous result, we can show that Reg( /)is also a Banach algebra with
identity 1R . the constant function 1Reg( /)(t): 1 _, for all te[a,b]. Our question is : for
which a €., ([a,b],B( 7, //)) is @ a Banach algebra homomorphism? [ Inparticular:
whenis (1 )=1,, and a(fg)=a(f)a(g), Vf,geReg()?]

In 2012, L.Fernandes and R. Arbach proved that each function in the form

0 for tefa,c]
agzg piT =
71T for te(c,b]

with T a Banach algebra homomorphism from ..~ to .#, induces a Banach algebra
homomorphism from Reg(,k/) to 7.

The collection of all such integrators have the following full descriptions.
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Theorem 12. Let ., 7 and a be as above. Suppose a#0. Then «a is a
homomorphism from Reg(..') to ~ if and only if there exist ce[a,b], S,TeB( ., #)
such that T is a homomorphism and
(t):{s fora<t<c
S+T forc<t<b

or

(t) S fora<t<c
a =
S+T forc<t<hb

( That is : there are Ce [a,b), a homomorphism T and a bounded operator S from ../ to

% such that o =S +Z(c,b]T or =S +Z[c,b]T- )

Now, suppose ., 7 are C *-algebras with identities 1 ~and 1, . Then Reg(, /)

is a C' *-algebra with identity 1Reg( /)(t): 1 ,forallte [a,b]. The involution on Reg(, /)

is defined pointwise: for each f € Reg(.~'), and each t e [a,b], f*(t) = (f (t))*.

Theorem 13. Let a:[a,b]—> B(,/,’//’) be an integrator for Reg( /). Then « is a *-
homomorphism from Reg(.~) to .~ if and only if there exist Ce[a,b], STeB(.,7)

such that T isa *-homomorphism and

(t) S fora<t<c
a =
S+T forc<t<b

or

(t) S fora<t<c
a =
S+T forc<t<b

( That is : there are Ce [a,b), a *-homomorphism T and a bounded operator S from ../ to

% such that ¢ =S +Z(c,b]T or a=3 +Z[Cyb]T' )
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V Conclusions and Suggestions

As stated in the objective no.1, we would like to determine the class of operator-
valued integrators for the space of regulated functions taking values in a Banach space. We
found that, we cannot extend the class of integrator functions apart from the class of
operator-valued regulated functions of bounded semivarion. In the objective no.2, we plan to
use the results obtained to investigate homomorphisms of (' *-algebras of regulated
functions taking values in a C *-algebra. After studied and worked on the homomorphism
inducing integrators, we found that the main result of L. Fernandes and R. Arbach [4], is very

special case. We have worked a complete description of all such integrators.

Since the class of Riesz operators is much wider than the class compact operators,
but shares many nice properties of the compacts, it will be our follow up project along this
line to investigate whether there are analogous criteria for integrator induced operators to be

Riesz operators.
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1. Introduction

A function f on a closed interval [a,b], taking values in a Banach space X, is
said to be regulated if all one-sided limits exist at every point of the interval [3, §7.6,
p-139]. The space of regulated functions, which has been extensively studied [10, 5, 9,
8,7,2,6, 1, 4], is much wider than the space of continuous functions. Given a function
o on [a,b] taking values in the space B(X,Y) of bounded linear operators from X to
a Banach space Y, an interesting and natural question is whether there is a vector in
Y to which the internal (sampling points in interior of subintervals) Riemann-Stieltjes
sums (with respect to o) of f with respect to o converge. Those functions o with
this property are called integrators. We give a complete characterization of all such
operator-valued integrators. We show that a subclass of such integrators form a Banach
space under a suitable norm. We also derive criteria for the compactness of integrator
induced operators. All throughout the paper, we use only very elementary methods
from basic functional analysis.

The paper is organized as follows. We introduce equivalent formulations for reg-
ulated functions in section 2. In section 3, we introduce the notion of integrators and
use the uniform boundedness principle to prove that each integrator induces a bounded
linear operator. In section 4 we show that the space of integrators vanishing on the
left endpoint is a Banach space. Section 5 is devoted to the compactness of integrator
induced operators. In section 6, we prove that each operator from a certain subspace of
the space of regulated functions is an integrator induced operator.

2. Notation and Preliminaries

Fix real numbers ¢ < b and a Banach space X. A function f: [a,b] — X is
said to be regulated (see [3, §7.6, p.139] and [6, p. 16]) if one-sided limits f(c+) =
lim f(¢) exist forall ¢ € [a,b), and f(c ):= lim f(¢) exist for all ¢ € (a,b]. Denote

t

t—ct —c
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by Reg([a,b],X) = Reg(X) the space of regulated functions on [a,b] (taking values in
X).
A partition P of the interval [a,b] is given by a finite number of division points in
[a,b]:
P(a:t0<t]<t2<~-~<t”<l,):b>, n(P) € N.

The set of all partitions of [a,b] is denoted by Z?[a,b] or simply &, whenever no
confusion can arise.
A function g : [a,b] — X is a step function if there are a partition

P(a:t0<t1 <t2<-~~<t”(P):b)

and vectors x; € X, 1 < j <n(P) suchthat g(¢) =x; forallr € (t, |, 1,), 1<j<n(P);
i.e., g takes on constant values on each open subinterval in the partition. Since n(P) is
determined by g, we also denote n(P) by n(g). Regulated functions have the following
useful characterization.

THEOREM 1. [3, Th 7.6.1, p.139] A function f : |a,b] — X is regulated iff there
exists a sequence {h,} of step functions, from |a,b] to X, such that

lim | sup ||A,(t)—f@)]| =0 (i. e., h, — f uniformly on [a,b].)
n=e 1 rela,b]

Furthermore, if f € Reg(X), then

1A= sup [IF(£)I} <o,

t€la,b

and (Reg(X),||-||) is a Banach space.

3. Integrators as bounded linear transformations

Let X, Y be Banach spaces. Denote by B(X,Y) the space of bounded linear
transformations from X to Y. An operator-valued function « : [a,b] — B(X,Y) is
called an integrator for the regulated functions if for each f € Reg(X), thereisay €Y
that satisfies the following condition:

() forevery € > 0 there is a partition
P, (azs0 <5 <8y << Sy zb)
such that for every partition
P(a:t0 <t <t <<ty :b) that refines P, :
{sk o1 §k§n(Ps)} - {tj o1 §j§n(P)} and

for all selections of 7, € (t,_1:t,), 1< j<n(P),



n(P)
Y= ; [a(t_,') - a(tjfl )](f(t, )

Given an integrator ¢ and an f € Reg(X), a routine verification reveals that the
vector y € Y associated with f by « is unique. The vector y is called the interior
integral (or Dushnik integral [6, p. 7]) of f with respect to ¢ and is denoted by

[ty =y

We show that each integrator induces a bounded linear map from Reg(X) to Y.

THEOREM 2. Let o : [a,b] — B(X,Y) be an integrator for Reg(X). Then the
map

@ [le@)r),  feRea®)

is a bounded linear transformation from Reg(X) to Y.

Proof.

We omit the routine verification of linearity of &. First we show that ¢ is a
bounded function. Since o, = ot — &(a) and « give the same integral for each function
in Reg(X). We assume, without loss of generality, that a(a) = 0. Suppose o is not

bounded. Then, inductively, there is a sequence {z, },_ in [a,b] such that

k
la@)ll >4, |a@)]|>2" || )| foral k>2.

By compactness, we may assume without loss of generality, that the sequence {tk} is
monotonically increasing to a limit 7_ € [a,b]. (The decreasing case is handled simi-

larly.) For each k > 1 there is an x, € [X], such that

l[foe(e)x, | >4, |[[ee(e,)]x, || >max{22 e, )|, iHO‘(’k)H} vV k>2.

Let 7, = a. For each k € N, define f, by putting f, (t) = 2_'/xj for 1, <r<t,1<
Jj <k,and f,(r) =0 for all other 7 € [a,b]. Then for k <[ in N, we have

1, = il =max {27 flx, | k41 < <ih <27 S 00as ke

Thus there is a function f € Reg(X) such that ||f, — f|| — 0. Note that f(r) = f, (1)
forall 7 € [a,,], since fi [, =[],  foralll>k.
{3 "k

Let y € Y. (We show that for every partition P, there are a refinement P of P, and
interior sampling points such that the associated Riemann-Stieltjes sum of f has norm
more than ||y|| + 1. Therefore y cannot be the interior integral of f, for any y € ¥, and

hence the interior integral of f does not exist.) Let F, (a =85, <8 <8y < <S ) = b)
"o



be arbitrarily given. Choose k € N such that 2> vl + llec(b)|| +1 and 7, > Suipy)-1

(since t, /' b). Let P(a:uo <uyp <ty <<y :b) be such that
{s;1<j<n@)}u{s: 1<I<k}={u:1<i<n(P)}.

Then u o (P)1

=1
u}l(P ( k? t/\-H)

.- Arbitrarily choose u: € (u,,,u;) for 1 <i<n(P)—1; and

()~ alt)] (£ (u,))
k -J
=X () — e, )](2 )
J=U ()l )
o) = at)]2 " x| = Iy
k J
-1x ) —alu,,)]| 27'x))
Jj=1 (”H“)g(’,fllj)
Ha(b) - o)) x| = Iy
k : el
= | lat) et )12 ) o) = ate)) 2 ) = o]
> [l x| = et 12 )
= - j
—;[H[aa,m %) +H[a<r,-,l>}<z %]
~[fe@ie™ x| - lewne™ x| < I
>2* [ latl| -2 o) -2 i)

- Z 2 (lecte) |+ e, ) = I



k=2 —k k] —j
2 o) =@l =2 flet )l - X2 2l )l) -1

k
2

52" 7 e, )| -2 a®)| -2

k
2 —k-3 H

Y

(e, )| —2]Je )] = Iyl
alt, )| =2 a®)] - [yl > 1.

This shows that every y € Y cannot be the interior integral of f with respect to o,
contradicting our assumption on ¢. Therefore o is bounded.
Next we show that each fixed partition induces a bounded linear transformation

form Reg(X) to Y. Let P(a:to <t <ty <o <t :b> and let

>2

t, = {tj €t 1), 1< gn(P)}.

A straightforward application of triangle inequality shows that the map TPt* defined by
P

*

TRt* (f) = [a(tj) - a(tj—l)}(f(tj )) vV fe Reg(X)
tp =

is a bounded linear transformation from Reg(X) to Y (norm < 2(n(P)) |let|| ).
Let f € Reg(X). We show that there is an M, > 0 such that

I

Pt

»«(f)HSMj VP<a=t0<tl<t2<---<

P

oy = b) € Pla,b),

=107

Vet 1) 1< j<n(P).

b
Since o is an integrator, y = / [do(t)](f(r)) € Y exists. With € =1 in the definition

a
of interior integral (}), there is a partition

P, (a:s0<s1 <s2<---<sn(P0):b)

such that
if P(a:tO <t <t <<ty :b) satisfies
{s; 1<j<n@)}{,: 1<i<n(P)} and
1€t 1), 1< j<n(P)

then

J

n(P)
y= Y o) =, )I(f())
j=1




Let
P (a =1, <t <t, <<t = b) be an arbitrary partition, and let
6= {1 €)1 <n(P)}.
Let Q be the minimum common refinement of P and P, , i. e.,

Qla=uy <u, <---<u,, =b),

{s,;: 1<i<n(P)}u{t;: 1<j<n(P)}={u:1<1<n(Q)}.
Choose ul* € (u, ,,u,) in such a way that u* = t* if t* € (u, ,,u,) for some j, and
arbitrary ul* € (u_y,u) if t;, & (u,_,,u,) forall 1 < Jj< < n(P,).
Since each y; is either an s, or a 1, after cancellation of like terms, all remaining terms
in the difference

involve at least one s, of the form [a(s,) — a(t;)](f (t )— f(u,)) or its two other vari-

ants. Therefore there can be at most 2(n(P,)) terms of this form (since each s, can
appear in at most two such terms), and hence

n(P)
_Zl[a(tj) —a(t, (@) = Y low) = e, )I(f(w))
j=

< 2(n(F,))2llerll ) 2{I£1D)-

Since Q is a refinement of F,, we have

-

P *
g )](f(t,-))H
n(P)
=L

<8(n(F)) llecll,, 11+ 1+ ¥l

which is the desired M, independent of the partition P and the choice of sampling

points t; = {tj } . Since the foregoing argument holds for each fixed f, by the uniform
boundedness principle, there exists an M > 0 such that

T
H Pt

tp

<M for all partitions P (a =1, <t <1, < <L, = b)



and for all choices of t:, = {tj €t 1) 1<j< n(P)}

It follows that, for each f € Reg(X) and each € > 0, there is a partition P and choice
of sampling points t; such that

()l =

[laatno)| <

IfIl < e+M]f)

Zb[d(%(t)](f(t))-]" ) (f)H+

P.tP

<e+||T..
Pt

Since € > is arbitrary, the map

@ [We@l) v 7eRea)

is a bounded linear map from Reg(X) to Y with norm |a| < M.

4. Equivalent formulation of integrators
In this section we give an equivalent formulation for integrators.

LEMMA 3. Let g:[a,b] — X be a step function and let o :[a,b] —B(X,Y) be
an integrator for Reg(X). Then there exist

a partition F(a=u, <u, <---<u, =b) and x €[X], 1<k<n(P),
0

such that

.

n(P,

)
[ dale0) = ¥ ) — ot )b, = X late) - at,))s()

k=

,_.
~.
I

for all partitions P (a =1, <t <t, <o <t = b) satisfying
{uk 1<k< n(PU)} C {tj 1< < n(P)}7 and for all choices of
tj e (tj—lﬂtj)ﬂ l S]SH(P),

Proof. By the definition of step functions, there exist
Pla=u, <u, <u, <---< Uy =b), and x, €X, 1 <j<n(P)
such that
g(t) =x,, Vte (u_,u), vV 1<j<n(PR).
We show that

n

=

) b
y= Y latu)—alu, )y, = [ lda0](e(0)

J

Il
=



and the partition F, satisfies the stated conditions.
To that end, let P (a =t <t <, << Lipy = b) satisfy
{u; s 1<j<n(P)} C{r,:1<k<n(P)}.

For each k = 1,2,---,n(P), arbitrarily choose tZ € (t,_,,t,). Observe that, for
each 1< j<n(P)),since

U NA :(Mj717uj]7

(tk,| ’tk)g<uj—l ,uj)

by cancellations of intermediate terms,

Z la(e,) — oz, )] :O‘(Mj,l)—a(uj),
(g ) Sy ))

Therefore, since t: € (u,_,, u;) and g(tZ) =x; whenever (t,_, 1) C (u,_,, u;),

IS

n(Fy)
= [O‘(tk) a(tkq)] X;
j=1 (tkil,tk)g(uji1 u])
”(Po)
= 4 1 [(X(u_,') - a(ujfl)}x_,' =)
J=

Furthermore this also shows that the vector y is also the interior integral of g with
respect to Q.

THEOREM 4. Let a: [a,b] — B(X,Y) be an integrator for Reg(X). Then for all
partition P (a =1, <t <t <--- <t = b) and for all choices of x; € [X];, 1<
j<n(P),

[a(tj) - a(tj—l)]xj < ”&H .




b
Proof. First note that by Theorem 2 the map, @ : f +— / [da()](f(1)), isa

a
bounded linear transformation from Reg(X) to Y. To see that ||@| has the asserted
property, let a partition P (a =1, <t <1, < <t = b) and x; € [X];, 1 <j <
n(P), be given. Define
g(t)=x; for t€(t,_,t;), 1 <j<n(P), and g(t) =0 for all other #’s.

-0t
Then g is a step function and hence is in Reg(X) with ||g|| < 1. Thus, by Lemma 3,

n(P)

Z [a(tj) - a(tj—l )}‘xj

=

[ a0 = 13l < 1@ el < .

This result leads us to the following definition.
A function o : [a,b] — B(X,Y) is said to be of bounded semivariation if

there exists M > 0 such that
for all partitions P (a =1, <t; <. <t = b) € Pla,b), and

for all x, € [X], (the closed unit ball of X), 1<k <n(P),

<M.

n(P)
Z [Ot(tk) - a(tkfl )]xk
k=1

The semivariation of a function « : [a,b] — B(X,Y) of bounded semivariation is
given by

n(P)
Z [Ot(l‘k) - (X(l,ﬁl )]xk
k=1

V.(a) r=sup{

P(a:to<t1 <---<tn(P):b)€<@;xk6[X]], lgkgn(P)}.

It follows from Theorem 4 that each integrator 3 is of bounded semivariation with

V.(B) < H E H . We will need the following lemmas to the converse.
LEMMA 5. Let o : [a,b] — B(X,Y) be of bounded semivariation and t € [a,b].

Then
() —a(a)|| <V (a).

Proof. Observe that
la(t) = a(a)l| = sup |[[e(r) — ex(a) x|
xe[X],

= ZES Ilox(r) — ex(a)]x + [ee(b) — (1) ]0[] < V().



LEMMA 6. Let g,h:[a,b] — X be step functions given by

a=uy <u; <---<u, =b, gt)=x,€X, t€u, ,u;), 1<j<n(g),

and

a=v,<v, <. <v,,=b, h(t)=w X, t€ (v, ,v), 1<k<n(h).

Let a:la,b] — B(X,Y) be of bounded semivariation; and let

n(g) n(h)
Yy = Z[a(uj)_a(uj—l)]xj and Y = Z[a(vk)_a(vk—l)}wk'
j=1 k=1
Then
v =2l <llg =Rl V().

Proof. Relabel the elements of {uj :0<j<n(g)}u{v,: 0<k<n(h)} as
a=t, <t <--- <ty =b toeliminate duplicates. Then, for each 1< j<n(g) and
1 <K<n(h),

U (ti—17 ti] = (M_j—]’ uj]? and

(l,',l ) [,')g(“j,lﬁ ”j)

Thus

Choose t; € (t_,,t,). Then g(ti*) = x; whenever (#_,,) C (u,_,u;), and h(t,*) =w

27
whenever (¢, ,,t.) C (v,_

=177

it follows that

n(g) n(h)
||yg*yh = [(X(u/) a(”_/—l)}xji lee(v,) — (v, ,)]w,
j=1 k=1
n(g)
=Y () — a(t; )] | ¥,

10



n(g) .
= la(t) — et )] | (8(2))
=@, tl)g(ul_] ,uj)
n(h) i
-) [oc(t;) —a(e,_ )] | (A(z,))
k=1 (1S )
n(g) "
= lat) —a(r,,)](8(2,))
J=1 @, ,tl.)g(uFl ,uj)
n(h)

[
M=
Q
2
_N
~—
R
~—
NN
T
Pt
—
£y
\
=
L
-
oQ
iy
s
.
~—
\
=
—
i~
v
~—
| I

g =l

i=1 |
<V.(a)lg = All-

THEOREM 7. Let . : [a,b] — B(X,Y) be a function of bounded semivariation.
Then « is an integrator for Reg(X).

Proof. Let € > 0. By Theorem 1 there exists a sequence { &
tions g, : [a,b] — X such that

} ey Of step func-

|f =gl = sup [|f(t) —g,()], =0 as k— oo
a<t<b

For each k € N, let y, € Y be the vector associated with g, by Lemma 6. The lemma
also gives us

e =y, Vi) [lg =g [l < Vilo) [[lg = £l + ]l =g [[]] = 0as &, 1 — .

Thus {yk} is a Cauchy sequence in Y. By the completeness of Y, thereisa y € ¥ such
that Hy - Hy — 0 as k — oo. We show that y has the property (), i.e., is the integral
of f. Let € >0 be given. Then there is an N € N such that

€

2[w<a>+11} TREN

p-nl, <5 g <minf1

11



Let g =g, . Since g is a step function, there exist

a=uy <u <uy <o <u, = b, x, €X, 1<j<n(g)

such that g(t) = x;, for 1 € (u, ,u;), 1 <j< n(g) Let P, be the partition defined by

the division points u;, i.c., F(a=u, <u, <---<u,  =Db). Let

P(a:t0 <t <t <<ty :b)
be a partition that satisfies

{u; -1 (g)} S{t,: 1<k<n(P)}.

Let t; € (t,_,,t;), 1 < j<n(g), be arbitrarily chosen. Then since g = g, is a step
function, by Lemma 3
n(P) n(P)

* *

Y la(r) — e, )8t ) = ) lor(e) — ot )] (8 (1,)) =3y

5]
Lt
=
(@]
(¢
o
=
P
—
v
|
~
~—
NN
.
v
~—
IA
—
—
IA
IA
=
=
~
=
<
[¢)
g
<
o

n(P)

==yl + || X fxtt) = ate )] [l =11 (o) = £ e =71
<5 V@) e~ fll < 5+ g <

Combining Theorems 7 and 4, we have the following.
COROLLARY 8. 1. Afunction o [a,b] — B (X,Y) is an integrator for Reg(X)
if, and only if, o is of bounded semivariation.

2. For each integrator o for Reg(X), V.(a)=|a|.

s

Proof. Part (1) follows directly from Theorems 7 and 4.
For part (2), we have already noted above that V,(a) < ||@||. For the opposite
inequality, let f € Reg(X), and let € > 0. Let P, and all s; be as in (f). Choose any

* . -1 * .
s, € (s; s;). for 1 < j<n(R,). Then, since H||f|| f(sj)” <1 forall 1 <j<n(P),
we have

n(PO
et < | [ taat) nu@»‘

/=1

12



5

)

J

n(Fy)
+ ,Zl [a(s,) — als, )](f(s

n(Fy) B .
<e+ Zl[a(sj)*a(s,-_l)](||f|| FE|-IFl < e+ V() I £]
j=

Since ¢ is arbitrary, we have ||¢|| < V,(a), and hence equality follows.

Denote by £, ([a,b],B(X,Y)) (or simply B, whenever no ambiguity, i.e., only
one interval [a,b] and two fixed spaces X and Y in sight) the space of all functions
of bounded semivariation from [a,b] to B(X,Y). It is not hard to see that V, is not
a norm, as the semivariation of any constant function is 0. However every o € %,
and its normalized form o, = & — ¢t(a) define the same integrator. The set of all such
normalized functions is a Banach space.

THEOREM 9. The space %i([a,b],%(X,Y)) of all functions vanishing at the
point a is a Banach space under the norm ||a| = V.(a). Furthermore, the space

Z’ ([a,b),B(X,Y)) is isometrically isomorphic to the close subspace

sV

{a: ae%fv} of B(Reg(X),Y) via the map o+ Q.

Proof. We prove only the completeness and leave all other verifications to the
readers. Let {o, }, .y be a Cauchy sequence in %i (.e., V(o, — o) =0 as n,k —
o). (We are assuming that all @, (a) =0, n € N.) Then for each ¢ € [a,b], by Lemma
5

o, (1) — 0 (1) || = [ (et, (r) — 04, (1)) — (t,(a) — e, ()]

<V(o,—o) =0 as nk—oo

That is, for each ¢ € [a,b], {e,(¢)} is a Cauchy sequence in the complete space
$B(X,Y), and hence has a limit a(z) € B(X,Y). Furthermore, since the right hand
side of the inequality is independent of 7 € [a, D], the convergence of ¢, (1) — o(z) is
uniform on [a, b].
We show that o € %fv and V(¢ — o) — 0. Since {a, } is V,-Cauchy, there is
an N € N such that
Ve, —oy) <1 vV n, k>N.

Let Pla=1, <t <--- <t , =b)€ P, and x; € [X],, 1 < j < n(P). By the uniform
convergence of ||, (t) — o(t)|| — O for ¢ € [a,b], there is an N, > N such that

||a(t)fak(t)||<%[_)> V t€la,b],V k>N,

Then, since ||xj|| <1,forall 1 <j<n(P),

Z [a(tj) - a(tj—l )}‘xj

J=1

13



n(P) n(P)
< | Elat) — o, 0l |+ Lo, ()= a0l
j=1 j=
n(P) n(P)
1| 2 Lo () — oy (1 )b || | 2 Lo (2,0 ) — ey ()],
J=1 Jj=1
n(P)
+ [aNl (tjq) - a(tjq)]x,
j=1

n(P)
+‘/s(aN_aNl)+ Zl ‘
J=

%, (tH) — a(tH)
<V.(a,)+4

Since P and x; € [X], are arbitrary, & € %,, with V(o) <V, (a) +4.
For the convergence, let € > 0. Since {o, } is a V, -Cauchy sequence, there is an
N such that

Vx(ocn—ak)<§ vV n,k>N.

Let n>N, Pla=1,<t<---<t, =bjeZ, and x;€[X],, j=1,---,n(P) be
arbitrary. Since ¢, (t) — o(¢) uniformly for 7 € [a,b], there exists an N, > N such that

|e(r) — o £

k(t)H<4[l’l(P)] V k>N,,V t€la,b].

Since n, Ny >N and x; € [X];, 1 <j<N(P), we have

n(P)
L (e, (1)) —a(t;)) = (@, (1, ) — elt;)]x;
J=
n(P)
< y 1[(an(t,) - aNl (tj)) (an(tj—]) N, (tj—l))]x]
Jj=
n(P) n(P)
+ Zl [aN] (tj) - a(t/)]‘xj + Z,] [aNl (tj—l) - a(tj—l)}‘xj
Jj= Jj=
n(P) n(P) 3¢
<Vs(an — Oy )+ ] ‘ aNl (tj) - a(tj) “" Zl ’ aNl (tjfl) _a(tjq)H < Z
J= J=

Since this holds for all partitions and all x; € [X],, we have V,(a —a,) < & for all
n > N. The arbitrariness of € implies that V. (o — o) — 0.

14



5. Integrators as compact operators

We first consider an example. Let X =Y = I (the square summable Hilbert
sequence space), and [a,b] =[0,1]. Forn€ N, and r € (2”,2”71] , define a(r) to be the
rank one operator defined by the diagonal matrix, A, , whose (n,n)-entry is n ' and
all others 0, and a(0) = 0. With e; the jIh standard basis vector, and N € N, we have

1/2
—1

(N—=J)

M=

—> o0

il N-jtl N-j N
Z,l[a(z )2 ey Z,IAijeij
Jj= Jj=

as N — oo, Thus o is not an integrator, though each ¢(r) is of rank one and hence
compact. However, if A, is to have (n,n)-entry n' , O, then they are all mutually
orthogonal rank one projections, o/([Reg(X)],) is contained in the image of the unit
ball under the Hilbert-Schmidt diagonal operator with diagonal entries % . Hence « is
in fact compact.

Before stating criterion for compactness we introduce the following notation for
convenience. For a given « : [a,b] — B(X,Y) define the set [o], as follows.

1

~.
Il

—_

n(P)
], ::{ : la(t;) — ot )]x;: Pla=t,<--- <t , =b)€ P,

. n(P)
=

x; € [X],, lgjgn(P)}

Note that ¢ is an integrator iff [o], is bounded (in Y).

THEOREM 10. Let o : [a,b] — B(X,Y) be an integrator for Reg(X) that van-
ishes at a (i.e., ot(a) = 0). Then the following conditions on & from Reg(X) to Y are
equivalent.

1. O is compact,

2. There is a compact operator K from a Banach space Z to Y such that [a], C
K([2],).

3. There is a one-to-one compact operator K from a Banach space Z to Y such
that K~ (a(t)) is bounded for all t and K 'oaisan integrator.

4. The set [o], is a totally bounded subset of Y .

1

Proof. [(1) = (2)] Suppose O is compact. Each element of [a], determines a
partition P(a =1, <--- <t , =b)€ P[a,b] and a finite collection of vectors x; €
[X],,1 < j <n(P). Then the function g defined by g(r) =x, for t € [t,_,,7,), and
g(b) = 0 belongs in [Reg(X)], . Thus, by Lemma 3,

n(P)

_Zl[a(tj) — ot )]y, =a(g) € a([Reg(X)],).
=
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Thus [e], is contained in &([Reg(X)],) = K([Z],)

[(2) = (3)] Suppose [e], € K([Z],) for some compact operator K from a Banach space
Z to Y. Consider the compact operator K induced on the quotient space Z /kerK, we
may assume that K is one-to-one. For ¢ € [a,b] and x € [X], , since the function

(s) = x fors € [a,1]
870 for s € (¢,b]

isin [Reg(X)],, we have

ale=lot) ~ el = [ laa s, (1)
=a(s,.) € ([Reg(¥)],) C K(Z]).

Thus [o(2)](X) € K(Z) for all ¢ € [a,b]. Hence K [a(1)] is a closed operator from
the Banach space X to Z. Thus each K ' [a(7)] is a bounded operator from X to Z.
Furthermore f§ :=K o : [a,b] — B(X,Z) satisfies

B, =K oa], =K (joy]) C [Z],.

Therefore  is an integrator.

[(3) = (4)] Suppose B := K ' defines an integrator. Then Bl, = Kﬁl([a]l) is a

bounded subset of Z. Thus [¢], = K(I(1 ([a],)) =K([B],) is totally bounded.

[(4) = (1)] Suppose [a], is totally bounded. We show that 0/([Reg(X)],) is contained

in the closure of [ot],. Let f € [Reg(X)],, and € > 0. There is a step function g such
€

that || f —g|| < Ta1 - Then there exist a partition

a=t, <<t =band x; €[X], 1<j<n(g) such that

(
gt)=x, for re(t, ,1,), 1 <j<n(g).

By Lemma 3,

Moreover,

IIa(f)—a(g)IIZI&(f—g)lSllalllf—gllﬁllal{ : ]<8'

Therefore &(f) € [a] , that is a([Reg(X)],) C [a] . Since [a] is compact, and

a([Reg(X)],) C [a] , thus @ is compact.
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6. Operators as integrators

We prove next a Riesz representation type theorem. Let Reg (X) be the set of
all right continuous functions in Reg(X) that are also left continuous at b; i.e., f €

Reg, (X) iff f(r) = f(t") forall r € [a,b) and f(b) =0.

THEOREM 11. Let T € B(Reg, (X),Y). Then there exists a unique o, € %SV([a, b),B(X,Y))
such that ,
1(f) = [ da@)(f®) v feReg,(X).

Moreover, ., =T and |T| = |0, || =V, ().

This theorem can be restated as follows. The Banach spaces B(Reg (X),Y) and
931 ([a,b],B(X,Y)) are isometrically isomorphic.
Proof. Note that for each x € X andeach 1 € [a,b], ¥, ,

the value x on [a,?) and O on [t,b]) belonging to Reg (X ). Define (with the convention
that X = 0 is the zero function)

x is a step function (taking

o ()]x =T (x,,,,%) VxeX,t€lab].

To show that o, € £, , let P(azto <t <t <<t :b), and x; € [X], be
given. Note that the function g defined by
n(P)
8= Z (X[a_,_) _X[a‘,, ))'xj (*)
i=1 i J—1

is a step function in Reg (X), taking the value x; on [t,_,,,), 1 < j <n(P), and

lgll < max {[Jx || : 1< j<n(P)} <1.

Furthermore, by linearity of T,

n(P) n(P)
Z [aT (tj) - aT([j—l)]xj Z T((%[a,t.) _x[a,,_ ))xj)
=1 =1 / o

n(P)
T Z (x[uj) B X[a‘tJ;] ))xj

J=1

| =TI <IT]-

Thatis o, € A, .,
Theorem 7.

Since each step function g in Reg (X) can be written as a sum of the form (*)
above, and the interior integral of a step function is independent of the values of the
function at the division points for g, by Lemma 3,

and hence o an integrator for Reg(X), and hence for Reg (X), by

[ ldale) = a6 =7(0).
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From the density of the step functions, continuous from the right in Reg (X), and the
continuity of both T and @, , we have T = @, and ||T|| = ||, ||.
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MULTIPLICATIVE INTEGRATORS OF ALGEBRA-VALUED REGULATED
FUNCTIONS

TITARII WOOTIJIRATTIKAL ™ AND SING-CHEONG ONG

ABSTRACT. A function from a closed interval [a, b] to a Banach space X is regulated
if all one-sided limits exist. A function & from [a,b] to the space of all bounded
linear transformations from X to a Banach space Y is an integrator for the regulated
functions if, for each regulated function f, the Riemann-Stieltjes sums of f, with
sampling points from the interiors of subintervals, converge to a vector in Y. When X
and Y are Banach algebra, we give a complete description of the class of all integrators
that induce Banach algebra homomorphisms. The main result of L. Fernandes and R.
Arbach [Ann. Funct. Anal. 3 (2012), no. 2, 21-31] exhibit a special subclass of our
characterization.

1. INTRODUCTION

A function f on a closed interval [a,b], taking values in a Banach space X, is said to
be regulated if the all one-sided limits exist. The class of regulated functions is much
wider than the class of continuous functions. A function o on [a, b] taking values in the
space B(X,Y) of bounded linear operators from X to a Banach space Y is an integrator
if, for each regulated function f, there is a vector in Y to which the Riemann-Stieltjes
sums of f, with sampling points from the interiors of subintervals, with respect to o
converge. An operator valued function « is an integrator if and only if « is of bounded
semivariation [?]. When the Banach spaces X and Y are replaced by Banach algebras
o/ and %, a natural question to ask is when is the operator induced by the operator-
valued integrator is multiplicative. The main result of L. Fernandes and R. Arbach
[?] give a class of such examples. We shall give a complete description of all such
integrators.

2. NOTATIONS AND PRELIMINARIES

Fix real numbers a < b and a Banach space X. A function f : [a,b] — X is said to be
regulated (see [?, §7.6, p.139] and [?, p. 16]) if

f(c+) = lim+f(t) and f(c ):= lim f(t) existforall ¢ € (a,b), and

c —c

fla'):= Lm f(tf) and f(b ):= lim f(t) exist.
t—at t—b~
Denote by Reg([a,b],X) = Reg(X) the space of regulated functions on [a,b] (taking
values in X).

2010 Mathematics Subject Classification. Primary 46E40; Secondary 46L30.

Key words and phrases. C” -algebra, state space, weak topology, dual space.
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2 TITARII WOOTIJIRATTIKAL" AND SING-CHEONG ONG

A partition P of the interval [a,b] is given by a finite number of division points, t,,
in [a,b]:

P(a:t0<t1<tz<---<tn<P):b>, n(P) € N.

The set of all partitions of [a,b] is denoted by Z[a,b] or simply &, whenever no
confusion arises.
A function g : [a,b] — X is a step function if there are a partition

P<a:t0<tl <t2<-~-<tn(P):b)

and vectors x; € X, 1 < j <n(P) suchthat g(t) =x; forallt € (t,_, t,), 1 <j<n(P);
i.e., g takes constant values on each open subinterval in the partition. Since n(P) is
determined by g, we also denote n(P) by n(g) in this case.

Theorem 1. [?, Th 7.6.1, p.139] A function f : [a,b] — X is regulated iff there exists a
sequence {h,} of step functions such that h, — f uniformly on [a,b]. Furthermore, if
f € Reg(X), then

1f1]:=sup [[f(£)]] <ee,

t€la,b]

and (Reg(X), ||-||) is a Banach space.

When X is a Banach algebra .7 with identity 1 , it is readily seen that Reg(.%/) is
also a Banach algebra with the pointwise product of regulated functions and muilti-
plicative identity the function 1 taking the value 1 , at every point in [a,b] ([?,
Th. 2.3]).

Let X, Y be Banach spaces. Denote by ®B(X,Y) the space of bounded linear trans-
formations from X to Y. An operator-valued function & : [a,b] — B(X,Y) is said to be
an integrator for the regulated functions if for each f € Reg(X), there is ay € Y that
satisfies the following condition:

Reg (o)

(%) forevery € > O there is a partition P, (a =8 <8 <8 < S = b)

such that for all partitions P <a =1, <t; <t, <--- <t , = b) refining F, :
{s,: 1<k<n(P)}C{r,: 1<j<n(P)} and
forall 1, € (z,,,1,), 1 < j<n(P),

n(P)

y= Y la(t) —ale; (1))

J=1

<E.

If o is an integrator for regulated functions, the vector y to which o “integrates” f is
called the interior integral (or Dushnik integral ) of f and is denoted by

[tz =y

We gather some basic facts about integrators, that can be found in [?].
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Theorem 2. An operator-valued function o : [a,b] — B(X,Y) is an integrator if and
only if o is of bounded semivariation in the following sense:

there exists M > 0 such that
for all partitions P (a =1, <t, <. <t = b) € Pla,b), and

for all x, € [X], (the closed unit ball of X), 1<k <n(P),
n(P)

Z (1) — (),

<M.

Denote by A, ([a,b],B(X,Y)) (or simply &, whenever no ambiguity, i.e., only
one interval [a,b] and two fixed spaces X and Y in sight) the space of all functions of
bounded semivariation from [a,b] to B(X,Y).

The semivariation of a function a € A, ([a,b],B(X,Y)) is given by

n(P)
vio) = [T

Lemma 3. Let g:[a,b] — X be a step function and let o : [a,b] — B(X,Y) be of
bounded semivariation. Then there exists a y €Y with the following property.
There exists a partition P(a =u, <u, <--- < Uyp >) such that for all partitions

0

a(t) —alt, )x, :P(a:t0<t1<-~<tn<1,>:b)e@;

x, € [X],, 1gk5n<P)}.

P<a:t0<t1<t2< "<l b) satisfying
{u,:1<k<n(pR) }C{tAzlgjgn(P)}, and all choices of
t, €(t, 1)), 1< j<n(P),

n(P)
= Zl [(X(tj) - tj—l)](g(t;))'
j=

3. INTEGRATORS AS MULTIPLICATIVE MAPS

Let o7, % be Banach algebras with identities 1 ,, 1, respectively (over the complex
field C). A routine verification reveals that Reg(.<7) is also a Banach algebra with
identity 1, the constant function 1, (r) =1, for all 7 € [a,b] ([?, Th. 2.3]). A

natural question is: for which integrator o : [a,b] — B(.«/, %), is & a Banach algebra
homomorphism? In particular: when is

[ la@)r0) =atre) = anate)
b
- | [ewico)] | [aaew)]. v 1 gerep
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Towards a characterization of all integrator-induced homomorphisms from Reg(.<7) to
A, we will need the following simple fact.

Lemma 4. If S # T in B(o/,AB) are distinct Banach algebra homomorphisms, then
S —T is not multiplicative.

Proof. Since S—T # 0, there is an x € o such that (S—T)x # 0.
(S=T)1,-x)=(S—T)(x)#0 whereas
[(S=T)(AN)IS =T)a] =(1, = 1,)((S = T)x) = 0(Sx — Tx) = 0. O

The main theorem in [?] states that if a has its value a fixed homomorphism on
an interval (c,b| and O elsewhere then it induces a homomorphism on Reg(.<7). The
collection of all such integrators have the following full descriptions.

Theorem 5. Let o7, %, and & be as above. Then @ is a homomorphism from Reg (<)
to A if, and only if there exist ¢ € [a,b], S, T € B(of,B) such that T is a homomor-

phism and
S for a<t<c
ot) = or
S+T for c<t<b

S for a<t<c
o) =
S+T for c<t<b

i.e., there are a ¢ € [a,b), a homomorphism T and a bounded operator S from <7 to X
such that 00 = S+ Y. pT or & =S+ X T

We denote the characteristic function of a set J (restricted to [a,b]) by %,

= 1, which is nonzero by axioms of Banach algebra,

Proof. [=] Since o(1 Reg(,%))

o # 0. By assumption & is also multiplicative. Let S := ¢¢(0). Then @ and o — S
define the same integrator from Reg(.27) to Z. Replacing o by a — a(0), we may and
shall assume that a(a) = 0.

We then have

@®)(1,) = [0(8) ~a(@)(1,) = [ o))ty (1)) = B0 =1,

Claim 1: o(s) is multiplicative for all s € (a,b].
Letx,y€ o/. Let f = Xy 8 = X,y- Then f.g € Reg(«), fg = Xy Xy € Reg(«),
and, by Lemma 3,

() = [ We@) () = [a(s) - el = ()
i) = [ Tal](s0) = fo(w)y,  and
a(g) = [ al(8)0) = [al)]w)
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Thus
[oe(s)] (xy) = a(fg) = (a(f))(a(g)) = ([a(s)]x)([ax(s)]y)-

That is [a(s)](xy) = ([ee(s)]x)([ee(s)]y). Since x,y € o7 are arbitrary, d/(s) is multi-
plicative. In particular, with s = b, we have T := a(b) is a homomorphism from .27 to
AB.

Claim 2: for all u < v in [a,b], o(v) — o.(u) is multiplicative.
Letx,y € &/. Set f =y, % §=2X,,- Then, f.g,fe=x,, (xy) € Reg(«/) , and

. b

a(f) = [ 1da](0) = ) - alwx,

. b

&g) = [ [a)(s() = o)~ alwlx,  and

a(g) = [ da]((8)0) = [a0) — aw](o).
Thus, since @ is assumed to be multiplicative,

[a(v) — a(u)](xy) =a(fg) = [a(f)][a(g)]
=[la(v) = a(w)x] [[a(v) — a(w)]y].

Since @ is assumed to be a nonzero homomorphism, ¢(z,) # 0 for some 7, € [a,b].
Let ¢ =inf{t € [a,b] : a(r) #0}.
Case 1: ¢ = b. As noted above, T := a(b) is a homomorphism from .2/ to 4. Since
o(t) =0 fort € [a,b), by definition of ¢, we see that a has the second asserted form
with § = a(a) =0 and ¢ = b.
Case 2: ¢ < b. We claim that « is constant on (c,b]. With T = o (b) we show that
o= x(c‘b]T or o = xMT.
Fort € (c,b), since a(b) — a(t) is multiplicative by Claim 2, we have a(b) = o(t) by
Lemma 4. Thus o = %, T or ot =y, , T. That is o takes one of the asserted forms.
[«] Conversely, suppose o = Xien T+Soro= e T + S for some Banach algebra ho-
momorphism 7 from &7 to % and some bounded linear transformation S € B (o7, £).
We show first that

b T(f(c)) ifa=x,,T+S
[awiren =4 " V f € Reg(er).
a T(f(c") ifa=yx,,T+S

Let f € Reg(.e/) and let € > 0. There exists a 0 > 0 such that

&

(V1€ la,b)) [(c<t<c+5) = (Hf(c+)—f(t)H < Wﬂ and

(V1€ [a,b]) [(c—5 <t<c)= <Hf(c)—f(t)H < HTH%)]
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Arbitrarily pick ¢, € (c—0,¢) and ¢, € (c,c+6). Let

P (a =1, <t, <t, <. <1 = b) be a partition of [a, b] with
{c,c,,c,} C {tl,...,tn(P)}.

To show that P is the P, in the definition of the integral, let

0 (a =8 <8 <8, << T b) a partition such that

{sl,...,sn(@}Q{tl,...,tn(P)} and s*,E(s] 18, 1<7<n(Q).

J

Then there is a 1 < j, <n(Q) with #, =c. Thus ¢, <t, | andt, , <c,, and
0 Jo Jot
hence [ot(s;) — au(s; )] =0 forall j < j,, and all j > j,+2. f a =y, ,T+S, we

also have Oc( Oc( )=0. Since c— 0 < ¢, < tio*l < s; < = cowe have
0

j +l) 0
Hf ‘ < and hence

HTH+1’

n(Q)
T(f(c))— ZI[OC(S,-)—OC(S,»I)](f(S;))||
=

=|[re) - lats,) - ats,, )|
=|[TUre =T || < ITl ) =165, < e

b B
Since € > 0 is arbitrary, we have proved that / [da(t)](f() =T(f(c)), if a=
a
XMTJFS-
Likewise, if @@ = x(u’h]T—i—S, then a( ) —a(s, ,)=0. Sincec= Sjy < s <s

<
]0 Jo 1 Jot

¢, <C+ 9, we have Hf(c+) —f(s /0+1 ) < ||T||+1’ and hence
. n(Q) .
T(f(c )= Y [a(s;) —als, )I(f(s,) |
j=1

=|rerte >>—[a<s,+]> (j,-o)](f(s;OH))H
=|reen-rus | <imn|reh-res)

<e

b
Again by the arbitrariness of €, we have proved that / [do(t)](f() =T(f ("), if
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To see that @ is multiplicative, let f,g € Reg(./). Then by what we just proved above,

A b T((fg)(c)) fora=yx ,T+S
a(fs) = | da]((f9)() = .
’ T((fg)(c) foroa=x, ,T+S

~ b T(f(c)) fora=yx. ,T+S
a(f) = [ lda®)(f(1) =
a T(f(c')) fora=y,,T+S

~ b T(g(c ) fora=yx, ,T+S
a(g) = | lda(t))(s(1) =
a T(g(c")) fora=x, ,T+S

It follows from the continuity of the multiplication on .« that (fg)(c ) = f(c )g(c ),
and (fg)(c') = f(c )g(c"). Since T is multiplicative, we have
+ +

T((fg)(c ) =T ([f(c Ng(c ) = [T(F(c NIT(g(c )]
T((fg)(c ) =T([f(c glc )]) = [T(f(c NT(g(c )]

+

and hence
a(fg) = [a(f)][a(g)l.
=1,,note that 1, _, (ti) =1, forallt € (a,b).

To see that o¢(1

Reg() ) B

. ) T((Lyy,)(c ) fora=yx ,T+S
8(1y) = [ 1400 (L (1) =

“ T((Lyy)(c ) foro=gx, ,T+S
=T(1,)=1,,. 0

Now suppose < and 2 are C -algebras with identities 1 ,and 1. Then Reg(.%) is
a C -algebra with identity Ly (t) =1, forall 7 € [a,b]. The involution on Reg()
is defined pointwise: for each f € Reg(.7), and each t € [a,b], f (1) = (f(¢)) .
Then a routine verification reveals that Reg(.7) isaC ’ -algebra. Since a ' -homomorphism

from a C*—algebra to another is just an algebra homomorphism that also preserves the
adjoint, a direct adaptation of our proof yields the following.

Theorem 6. Let o : [a,b] — B(/, B) be an integrator for Reg(/). Then O is a
“-homomorphism from Reg(<7) to A if. and only if there exist ¢ € [a,b], S, T €
B (ot , B) such that T is a " -homomorphism and

S for a<t<c
S+T for c<t<b

ot) = or

S for a<t<c
o) =
S+T for c<t<b
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ie, there are a c € a,b), a *—homomorphism T and a bounded operator S from <f to
% such that & = S+ Y. p)T or 0 =S+ X p)T-
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