บทคัดย่อ

รหัสโครงการ: TRG5880052

ชื่อโครงการ: ฤทธิ์การยับยั้งของในซินและสารต้านจุลินทรีย์จากพืชต่อเซลล์ปกติและสปอร์ของ

แบคทีเรีย และผลกระทบจากองค์ประกอบในอาหาร

ชื่อนักวิจัย: นางสาววรรณพร คลังเพชร มหาวิทยาลัยนเรศวร

E-mail Address: wannapornk@nu.ac.th

ระยะเวลาโครงการ: 2 ปี

คำหลัก: ไนซิน สารต้านเชื้อจากพืช ประสิทธิภาพร่วม แบคทีเรียก่อโรคในอาหาร สปอร์

องค์ประกอบอาหาร

งานวิจัยนี้มีเป้าหมายเพื่อศึกษาประสิทธิภาพและกลไกในการต้านเชื้อของในซินและสารต้านเชื้อ จากพืช ได้แก่ ซินนามาลดีไฮด์และคาร์วาครอลต่อแบคทีเรียก่อโรคในอาหารทั้งในรูปแบบของเซลล์ปกติ และ สปอร์ ก่อนอื่นได้ทำการหาความเข้มข้นต่ำสุดของสารต้านเชื้อแต่ละชนิดเมื่อใช้เดี่ยว ๆ และใช้ร่วมกัน การยับยั้งเซลล์ปกติของแบคทีเรีย พบว่าเมื่อใช้ในซินร่วมกับซินนามาลดีไฮด์สามารถลดความเข้มขันของ สารต้านเชื้อแต่ละชนิดได้ถึง 2-64 เท่า โดยมีการออกฤทธิ์ตามแบบของซินนามาลดีไฮด์ เมื่อวิเคราะห์การ เปลี่ยนแปลงภายในเซลล์ พบว่าเกิดการรั่วไหลของสารภายในเซลล์รวมถึง ATP นอกจากนี้ยังพบการ เปลี่ยนแปลงโพรไฟล์ของโปรตีนจากการทำ SDS-PAGE อีกด้วย ในระบบอาหารจำลองพบว่าความเข้มข้น ของสารอาหารมีผลต่อประสิทธิภาพของสารต้านเชื้อ โปรตีนที่เพิ่มขึ้นได้ส่งผลให้ประสิทธิภาพของซินนา มาลดีไฮด์เพิ่มสูงขึ้นในขณะที่ประสิทธิภาพของไนซินยังคงที่หรือลดลงเล็กน้อย แป้งและไขมันทำให้ ประสิทธิภาพของสารต้านเชื้อจะมีค่าลดลง และเมื่อเพิ่มความเป็นกรดของระบบอาหารจำลองพบว่า ประสิทธิภาพของสารต้านเชื้อเพิ่มสูงขึ้น ส่วนในระบบอาหารจริงซึ่งใช้แซนด์วิชสเปรดมาทดสอบ พบว่า ประสิทธิภาพร่วมในการต้านเชื้อสูงขึ้นอย่างชัดเจน ในซินและซินนามาลดีไฮด์ต่างก็มีฤทธิ์ในการยับยั้งการ งอกของสปอร์และยับยั้งการเจริญหลังการงอกของสปอร์ Bacillus cereus โดยในการยับยั้งการเจริญหลัง การงอกของสปอร์ เมื่อใช้ร่วมกันจะสามารถลดปริมาณของในซินและซินนามาลดีไฮด์ได้ถึง 40 และ 8 เท่า ตามลำดับ สำหรับการยับยั้งการงอก เมื่อใช้ร่วมกันจะสามารถลดความเข้มข้นของในซินและซินนามาลดี ไฮด์ได้ถึง 16 และ 32 เท่าตามลำดับ เมื่อศึกษากลไกการยับยั้งการงอก พบว่าสารสองชนิดนี้ได้ไปยับยั้งการ ปลดปล่อย DPA และลดสมบัติการย้อมติดสีของ DAPI อีกด้วย ผลงานวิจัยนี้ได้ชี้ให้เห็นถึงความสามารถใน การลดระดับความเข้มข้นของสารต้านเชื้อแต่ละชนิด ส่งผลในการลดความเสี่ยงในการดื้อยาของแบคทีเรีย รวมถึงการลดต้นทุนการผลิตได้

Abstract

Project Code: TRG5880052

Project Title: Inhibitory effect of nisin and plant-derived antimicrobials on vegetative and

spore forms of bacteria and the interaction with food constituents

Investigator: Miss Wannaporn Klangpetch, Naresuan University

E-mail Address: wannapornk@nu.ac.th

Project Period: 2 years

Keywords: Nisin, Plant-derived antimicrobial, Synergistic effect, Food-borne pathogenic

bacteria, Spore, Food constituents

This research aims to investigate the combination efficiency of Nisin with Cinnamaldehyde and Carvacrol, plant-derived antimicrobials on vegetative and spore forms of food-borne pathogenic bacteria. Firstly, the Minimum Inhibitory Concentrations of the antimicrobials when used singly as well as in combination were determined. The results showed that applying in combination reduced the concentrations from 2-64 folds. The combined antimicrobial dynamic was in a good relation with that of Cinnamaldehyde. Bacterial intracellular cell damages occurred during treating with the antimicrobials were cytoplasmic membrane leakage, intracellular ATP depletion and change in total protein profile evaluated by SDS-PAGE. In complex food system, the concentration of ingredients directly affected the efficiency of the antimicrobials. Increasing protein increased Cinnamaldehyde's ability while decreased that of Nisin. Starch and oil decreased both antimicrobials' ability. Reducing pH value increased both antimicrobials' ability. The combination effect was also showed even in the Sandwich spread used as a representative of real food system. Nisin and Cinnamaldehyde showed the ability to inhibit the outgrowth and germination of Bacillus cereus spores. Combining these antimicrobials could reduce the minimum concentrations to 40 and 8 fold, respectively for anti-outgrowth and to 16 and 32 fold, respectively for anti-germination. The mechanisms were proved to be the abilities to inhibit the DPA release and DAPI staining properties of the spores. These results successfully suggested the synergistic effects of Nisin and plant-derived antimicrobials that could reduce the amount of each antimicrobial leading to safe the production cost as well as solve the problem on antimicrobial resistance of the pathogenic bacteria.