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Abstract

Project Code : TRG5880067

Project Title : A system-wide analysis of transcriptional regulation in hybrid plants in

response to temperature change

Investigator : Dr. Varodom Charoensawan et al. Faculty of Science, Mahidol University

E-mail Address : varodom.cha@mahidol.ac.th

Project Period : 2 years

Keywords : Systems Biology, Regulation of Gene Expression, Climate Change, Plant

Molecular Biology, High-throughput Sequencing

Transcription in eukaryotes is tightly regulated by the interplay between the proteins transcription
factors (TFs) and nucleosomal histones. It has been demonstrated that the eukaryotic TF Heat
Shock Factor 1 (HSF1), and the histone variant H2A.Z both play a major role in mediating
transcription in response to temperature changes, one of the most important external stimuli,
especially in the light of the extreme environment due to climate changes. It is not clear, however,
how these two proteins interplay in this important transcriptional regulation process. We investigate
this long-standing question using a model plant Arabidopsis thaliana (wild-type plants and hybrids).
Plants have to adapt to fluctuating temperatures both diurnally and seasonally, and thus serve as a
useful model for this particular genome-environment interaction question. We have generated a
large-scale dataset of transcriptomes (RNA-seq) and H2A.Z and HSF1 occupancy profiles (ChlP-
seq) of wild-type plants shifted to different ambient temperatures, in order to explore how the local
and global changes in occupancies of H2A.Z-containing nucleosome and the HSF1 TF, affect
transcriptional readouts. To investigate the link between the genomic interaction in hybrids and
temperature changes, we also study the Arabidopsis accessions Col-0, C24 and hybrids grown low
(22°C) and high (27°C) ambient temperatures. The differential growth rates of the hybrids are
calculated and linked with corresponding time-course transcriptomic profiles, in order to identify a set
of genes that control differential growth rate in hybrids and their responsiveness to temperature

changes.
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A system-wide analysis of transcriptional regulation in hybrid plants in response to

temperature change

Objectives

1. To establish a system-wide transcriptional profile of plants subjected to ambient temperature
changes, which will serve as a platform for investigating global and local regulatory mechanisms of
temperature transcriptomes.

2. To elucidate the interplay between temperature-responsive phenotype and genetic effect using
hybrid plants as a model, and identify differentially expressed genes between hybrids and parents.

3. To design and construct an analytic pipeline for next-generation sequencing (NGS) data from
publicly available computer codes and applications (e.g. for RNA-seq, ChlP-seq), which can also be
adapted and implemented on other genomes in the future.

4. To initiate collaborative research projects between systems biologists and experimental

researchers, using high-throughput experimental and analytical methods as a common ground.

Methodology and Materials

As proposed, we have adopted a Systems Biology approach to globally characterize the genome-wide
transcriptional patterns of wild-type plants and hybrids in response to temperature changes. This
interdisciplinary problem-based project will combine several experimental as well as computational
tools and techniques to investigate the transcriptional profiles and regulatory mechanisms, including
Computational Biology, Bioinformatics, Molecular Biology, Plant Biology and Genetics, and
Transcriptomics. We have also extended the pipeline initially proposed for transcriptomic analyses in
the model plant Arabidopsis thaliana, to other model species including human and budding yeast. This

also resulted in collaborative projects with experimental scientists and clinicians, as described below.

1. Plant materials and growth conditions

The Arabidopsis thaliana accessions Col-0 and C24 were crossed to produce F1 hybrid seeds. The
seeds of F1 hybrids, parents, and pif4-101 (a mutant lacking functional PIF4) were grown at 17°C,
22°C, and 27°C in the short-day photoperiod, where the hypocotyl growth and PIF4 activity is
maximized (Kumar 2010; Wigge 2013). Light intensity is controlled to minimize potential crosstalk
effect of light and temperature sensing pathways. Five-day-old seedlings were imaged using a high-
regulation scanner, and the hypocotyl lengths will be measured using Image. Statistical analysis of
hypocotyl growth were performed in the statistical packages R (R core team, hitp://www.R-
project.org). The experimental results of plant growth were intitially obtained at the Sainsbury
Laboratory Cambridge University, UK under advice of Dr. Philip A Wigge, in collaboration with Drs.
Sandra Cortoji and Matt Box. The computational analyses were implemented and performed by Ms.
Napaporn Sriden, a Ph.D. student at Department of Biochemistry, Faculty of Science, Mahidol

University, under the supervision of Dr. Varodom Charoensawan.



2. Construction of temperature transcriptomes

Whole seedlings were collected and used for RNA extraction. RNA quality were accessed using the
BioAnalyzer or TapeStation systems (Agilent), as high quality RNA with minimal degradation is
recommended for subsequent sequencing library preparation. The RNA-seq library were performed
using the lllumina library preparation kits (e.g. TruSeq), to ensure compatibility with NGS technology
that will be used at later stage. In brief, mMRNA with polyA tails were selectively extracted,
fragmented, and reverse transcribed into cDNA, which were then primed with sequencing adaptors
and indices. The prepared sequencing libraries were analyzed using 100 base pair pair-end format
(100 bps are sequenced from both directions of reads), using the lllumina HiSeq2000. The NGS
library preparation were performed conducted at the Sainsbury Laboratory Cambridge University,
UK, which were supported by the European Research Council (ERC) through the Wigge laboratory.
The transcriptome-generating pipeline was re-implemented at Mahidol University, Thailand, using the
funding from the Thailand Research Fund (TRF) by Dr. Varodom Charoensawan. The transcriptomic
analyses were implemented and performed by Ms. Napaporn Sriden, a Ph.D. student at Department
of Biochemistry, Faculty of Science, Mahidol University, under the supervision of Dr. Varodom

Charoensawan, as described in more details below.

3. Computational analyses of Next-Generation Sequencing (NGS) data, and

bioinformatics analyses

We have successfully developed an in-house NGS analytic pipeline, by combining a number of
computational codes and applications publicly available. The pipeline for RNA-seq library has been
robustly tested and used in several on-going projects at the Sainsbury Laboratory Cambridge
University, and have now been re-implemented at the Integrative Computational BioScience (ICBS)

center, Mahidol University.

In summary, raw reads obtained from the NGS sequencing service go through the quality control
process to check for adaptor sequences, optical duplication rates, GC contents, using in-house Linux
shell  scripts that format and manage large-scale data and run FastQC
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). We use Trimmomatic and/or FASTX
(http://hannonlab.cshl.edu/fastx_toolkit/) to trim adaptor sequences that may appear in the reads, if
the insert size is shorter than the sequenced length. Trimmed reads are then aligned to reference
genome using Bowtie (Langmead 2012) and Tophat (Trapnell 2009). The normalization and
estimation of relative transcriptional abundance are performed using Cufflinks and Cuffdiffs (Trapnell
2010). Mapped reads can also be visualized and analyzed using a genome browser, such as the
integrative genome viewer (IGV) (Thorvaldsdottir 2013). As explained, these subsequent
bioinformatic and statistical analyses have been performed in-house at Mahidol University, Thailand,

using purposely written scripts, implemented in R, Perl, and Python (see Figure 1).
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Figure 1: Summary of RNA-seq analytic pipelines. The illustration was created by Ms. Napaporn Sriden and

was adapted from Wang and coworkers (Wang 2009).

4. Implementation of systems biology and network biology tools

One of the main objectives of this project is to establish analytical pipelines for high-throughput biological big
data, as well as a common ground between systems biology, and experimental scientists and clinicians. In
doing so, we used network analytic tool Cytoscape (http://www.cytoscape.org/) to showcase how large-scale
biological data can be represented and analyzed. As a result, we have formed successfully collaborations
with the laboratories of Prof. Dr. Sawawut Jitrapakee and Dr. Natini Jinawath, to work on network biology of

miRNA in metabolic regulation and cancer biology.



Results and Discussion

RNA-seq analytic pipeline has successfully implemented

As proposed, we have successfully re-implemented the in-house NGS analytical pipelines (including
RNA-seq) on the high-throughput computing (HPC) facility at the Integrative Computational
BioScience (ICBS) center, Mahidol University. The pipelines consist of a set of publicly available
libraries (as described in Methodology), were created and implemented by Dr. Varodom

Charoensawan.

An example of mapped reads is shown in Figure 2, which describes higher numbers of reads
mapped to the Heat Shock Protein 70 (HSP70) locus at higher temperatures (Charoensawan,

Cortijo, and Wigge, under review).
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Figure 2: Snapshot from IGV describing upregulation of HSP70 transcript at higher ambient
temperature. Blue indicates reads mapped to the forward strand, and red indicates reads mapped to

the reverse strand.

The warm temperature transcriptome is highly dynamic

Using our time-course RNA-seq of Arabidopsis seedings grown at 17°C and 27°C, we have
observed specific set of genes with highly temperature responsiveness (Cluster 6 in Figure 3 below).
These genes are enriched in stress and environmental responses, including HSP70, a heat shock
protein known to be induced by high ambient temperature (Kumar and Wigge 2010). All
transcriptomic levels were estimated by normalization with the length of genes and number of reads
in each sample (e.g. TPM, transcripts per million reads). Red cells depict up-regulated and green for

down-regulated as compared to the zero time-point (before shifting from 170C and 270C).
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Figure 3: Heatmap demonstrating relative changes of transcriptional level of temperature responsive

genes. Red and green indicate up- and down-regulated genes, as compared to time-point zero.

Temperature transcriptional transcriptional induction in plants is associated with H2A.Z
eviction

The expression of heat responsive genes such as HSP70 is accompanied by the eviction of
nucleosomes containing the alternative histone H2A.Z, but the mechanism by which this occurs is
not known. We performed micrococcal nuclease (MNase) digestion followed by high-throughput
sequencing on seedlings subjected to identical temperature shifts as described above. Nucleosomes
protect the DNA from MNase cleavage and hence MNase accessibility was used to infer nucleosome
occupancy. In addition, we also performed ChIP of HTA11-tagged to locate the binding position and
occupancy of the HTA11 protein, one of the three H2A.Z proteins in plants. We observe a noticeable
reduction of ChIP signal in the plants shifted from 17°C to 27°C for 15 min among the Cluster 6
genes, consistent with this region becoming accessible to the transcriptional machinery upon
increased temperature. There is a clear link between the loss of H2A.Z-nucleosomes and MNase-

seq signals around +1 nucleosome position in the genes in Cluster 6 (see Figure 4 below), when



shifted from 17°C to 27°C, suggesting the genomic DNA becomes more accessible when H2A.Z

(represented by HTA11 ChIP signal) is evicted.
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Figure 4  Heatmap demonstrating relative changes of HTA11 ChIP signal at the temperature
responsive genes. Blue and green indicate increases and decrease in ChIP signal at 27°C, as

compared to 17°C.

Phenotype of seedling growth at different temperatures

In addition to transcriptomic changes, we also investigated phenotypic variations of plants grown at
different temperature. On top of the wild-type plant previously used before, Col-0, we also introduced
to the study, different accession plant C24, and their hybrids, also grown at different temperatures, in
order to observe the relationship between genetic and environmental factors on their growth. This
was performed by taking photos of plants under infrared, and image analysis of the plant growth in
three days (as in examples below). The plants were growth at 22°C and 27°C. This work was
performed at the Sainsbury Laboratory Cambridge University, in collaboration with Drs. Sandra

Cortoji and Matt Box.



Day 3
22°C | 27°C

Figure 5: Infrared (IR) images of plants of different accession and hybrid grown at different ambient

temperatures.

Growth rate of seedlings is maximized just before dawn

In line with what previously observed in (Box 2015), we have observed that seedlings grow the
fastest just before dawn, when the growth quickly drops due to inactivation of the functions of growth
related proteins such as PIF4 (growth rate of Col-0 shown in Figure 6). Remarkably, we have seen
that the hybrid C24xCol-0 demonstrate the most steep growth also at the time point ZTO, or just
before dawn. This suggests that this time point would be particularly interesting to investigate for
transcriptional level of genes differentially transcribed in parents and in hybrids, which might be

related to the regulation of heterosis in these lines (Figure 7).
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Figure 6: Differential growth rate of Col-0 grown at 22°C and 27°C for three days. The rate was

calculated from IR images taken from 2 days after sowing.
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Figure 7: Differential growth rate of Col-0, C24, and hybrid grown at 22°C and 27°C for three days. The

rate was calculated from IR images taken from 2 days after sowing.
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Figure 8: Time-course differential expression in Col-0 during ZT-12 — ZT8 of 5 days old seedlings.
Grey area indicates the night time, whereas yellow area indicates day time. (A)TAA1, (B) CYP79B2,
(C) YUCS8 and (D) PIF4.

The differential expression in the key important gene in response to high ambient temperature
In addition to the phenotypic observation of plants under an elevated ambient temperature (27°C),
the time-course transcriptomes were also performed to investigate the molecular basis of this
phenomenon. Time-course RNA-seq libraries were prepared by Drs. Varodom Charoensawan, Matt
Box, Sandra Cortijo at Sainsbury Laboratory as described in Methodology. The sequenced NGS
reads were analyzed by Ms. Napaporn Sriden under Dr. Charoensawan’s supervision. The time-
course transcriptomic analysis reveals different dynamic patterns of transcription among selected
genes. Previous studies from (Koini 2009; Leibman 2014) showed that auxin biosynthesis genes,
YUCS8, TAA1 and CYP79B2, were up-regulated in Arabidopsis thaliana growing under a high
ambient temperature. Here, the time-course transcriptome of Col-0 from this study showed two
distinct transcription dynamic patterns (Figure 8). We found that high ambient temperature promoted
only the transcription of YUC8 at all time points, without significantly changing the dynamic patterns
of transcriptional changes. In contrast, transcription level of TAA1 and CYP79B2 at 22°C was slightly
greater than the transcription level at 27°C. Transcriptional level of TAA1 appeared to decrease at
nighttime until dawn, then slightly increase again during the day; whereas CYP79B2’s transcription
gradually dropped until dawn, then suddenly peaked up 4 hours after light. For YUCS, its
transcription dynamics showed a similar pattern in comparison to the differential growth of Col-0,

which gradually increased at night and the peak appeared just before dawn.
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Conclusion

We have successfully implemented a number of NGS analytic pipelines for investigating
transcriptomic changes (RNA-seq) and genome-wide DNA-protein interaction (ChlP-seq) at Mahidol
University, Thailand. This analytical competency is not only a key to systems biology work of the
Charoensawan laboratory, as initially proposed in the project, but also provides an opportunity for the
group to collaborate with established research groups, in order to combine multidisciplinary expertise
to investigate existing biological problems using a new approach. Figure 9 demonstrates a network
of multiple miRNAs and oncogenic transcription factors controlling metabolic reprogramming in
cancers, which normally would be studied individually without the knowledge and tools from systems

biology.
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Figure 9: Regulatory network of miRNAs and oncogenic transcription factors controlling metabolic
reprogramming in cancers. The figure shows direct and indirect miRNAs-metabolic genes interaction.
The miRNAs that have already verified their regulatory function show in solid edges whereas the dash
edges represent the overlap miRNAs from predictions only. The figure depicts a network
representation, an important tool of Systems Biology that can be used to represent multiple
biomolecular entities. The figure was adapted from a review by Pinweha and colleagues (Pinweha

2016), where Dr. Charoensawan is a co-author.

Molecular mechanisms of temperature sensing and response in plants and other species are crucial
to mitigation of global climate changes. However, we are far from thorough understanding for this
biological process, and thus adapting to this big change. Focusing on our transcriptomic results of
RNA-seq from plants grown under different temperature, we are able to globally investigate a set of

temperature-responsive genes that are highly inducible by the interplay of H2A.Z and HSF1. In
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collaboration with Drs. Philip A Wigge and Sandra Cortigo, we have submitted a manuscript (where
Dr. Charoensawan is a co-first author and co-corresponding author), which currently being revised.
Additional transcriptomic investigation of plants have already been performed and being analyzed by
Ms. Napaporn Sriden, a Ph.D. student under Dr. Charoensawan’s supervision. So far, we have
observed diurnal growth of Arabidopsis seedlings using the IR imaging described in the results, and

are now moving to focus on the time-course transcriptomic data of wide-type parents and hybrids.

Future Directions

We have successfully established a pipeline and facility for analysis of high-throughput biological
data (RNA-seq and ChlP-seq), and have started to utilize the competency to help and collaborate
with other research groups to analyze their “big data”. Moving on to the era of “Thailand 4.0”, we
foresee that biomolecular and clinical research will move from investigation individual genes,
proteins, or diseases, to automatically identification of biomarkers, biological pathways that are
important to certain biological problems using large-scale biological data. We are confident that the
core competency established here will play a key role in assisting our research community toward

this new direction.

Focusing on our molecular basis of temperature-response transcriptomes in plants and hybrids, we
have now separately analyzed the plants’ phenotypic and transcriptomic changes, and will now
combine the two types of data to form a comprehensive conceptual model that can explain how

hybrid vigors are achieved and how these are affected by temperature changes.
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ABSTRACT

Protein-ligand interaction analysis is an important
step of drug design and protein engineering in order
to predict the binding affinity and selectivity between
ligands to the target proteins. To date, there are more
than 100 000 structures available in the Protein Data
Bank (PDB), of which ~30% are protein-ligand (MW
below 1000 Da) complexes. We have developed the
integrative web server MANORAA (Mapping Analo-
gous Nuclei Onto Residue And Affinity) with the aim
of providing a user-friendly web interface to assist
structural study and design of protein-ligand inter-
actions. In brief, the server allows the users to input
the chemical fragments and present all the unique
molecular interactions to the target proteins with
available three-dimensional structures in the PDB.
The users can also link the ligands of interest to as-
sess possible off-target proteins, human variants and
pathway information using our all-in-one integrated
tools. Taken together, we envisage that the server will
facilitate and improve the study of protein—ligand in-
teractions by allowing observation and comparison
of ligand interactions with multiple proteins at the
same time. (http:/manoraa.org).

INTRODUCTION

Understanding protein-ligand interaction is crucial for
drug discovery research, as it defines the binding affinity,
steric complementarity of the surface and pharmacophoric
patterns of the compound to the target protein. Favor-
able ligand interactions with protein such as suitable polar

groups counterparts and proper hydrogen bonding partners
are crucial for the ligand design process and the imperfect fit
between the protein and the ligand will result in decreased
binding affinity (1). A number of tools is available for visu-
alizing and analyzing protein-ligand interaction; however,
only few can provide comprehensive information such as
verified binding affinity, and couple the results with the lig-
and interaction visualization available for multiple protein
comparison in the same place (2). By understanding the fa-
vorable interactions between the target protein and a ligand
of interest, one can start to rationalize drug design strategy
and make the protein engineering possible by strengthening
preferred interactions for instance.

To date, there are more than 100 000 structures in the
Protein Data Bank (PDB) (3). However, it is not always
straightforward to harness all the relevant information from
the PDB. Querying the substructure of the ligands to re-
turn multiple molecular interactions that are available in
the PDB can take a considerable amount of time as one
normally goes through a series of non-intuitive steps. After
multiple protein-ligand structures are retrieved, the com-
parison can be complicated and time-consuming, especially
when the structures contain a large amount of protein—
ligand interactions from multiple contacts points, which
normally have to be investigated individually and manually.
To the best of our knowledge, there is no existing tool specif-
ically designed for comparative analysis of protein-ligand
interactions in multiple structures at the time.

Two of the most popular tools for searching molecular
interactions in the binding sites are Relibase (4) and PDBe-
Motif (5). Both tools are restricted to the structures in the
PDB and are often used to show the distribution of protein—
ligand binding patterns in the PDB as a whole. Other tools
such as PLIP (6) are also available for investigating protein
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ligand interactions and visualization; however, the users
cannot obtain knowledge of preferred interactions easily
because it is dedicated to visualization and does not allow
sorting by binding affinities, or viewing multiple proteins
structures that bind to the same ligand in the same panel.
The PLIC database (7) provides protein—ligand interaction
clusters and also other related binding site information, and
also has a superposition panel based on the clustering of
similar binding sites. However, the ligand superposition is
performed as a whole molecule, not based on the equiva-
lent substructures, and hence, it is difficult to directly re-
late that information to the change in the binding affinities.
WONKA (8) on the other hand, can offer observation from
multiple structures but it requires the users to supply the set
of superposed proteins with their equivalent amino acids re-
named to the corresponding residue numbers. PoSSuM (9)
aims to detect similar small molecule binding pockets; how-
ever, the overall similarity between pockets do not guaran-
tee the same ligand binding pattern. A tool such as PLI (10)
can also be used to find a particular ligand binding to a list
of homologous proteins.

A direct query of ligand to the RCSB Protein Data Bank
(3,11) returns the data retrieval in the form of PDB files and
Jmol applet but does not provide ligand substructure anal-
yses for multiple structures. The databases BindingDB (12)
and Binding MOAD (13) emphasize the binding affinities
data for further use such as for QSAR analysis (14), which
does not offer the structural analysis of the binding site or
the trend of binding affinity. In addition, these databases do
not provide links from fragments to pathways or known hu-
man variants such as SNPs, a feature that will be useful for
the drug design in the personalized medicine era.

To this end, we have developed the integrative web server
MANORAA (Mapping Analogous Nuclei Onto Residue
And Affinity) to facilitate understanding of ligand selectiv-
ity and promiscuity through the analysis of multiple pro-
tein structures on the web interface. It enables researchers
to retrieve multiple chemical compounds and their binding
partner proteins from the PDB, and compare and visual-
ize the ligand-residue contact interactions all at the same
time. Other useful functionalities include sorting of bind-
ing affinities of multiple proteins, as well as obtaining ad-
ditional information such as protein functions, the species
that a particular ligand is found in a complex, and the path-
ways that the ligand is found to take part in by linking to a
pathway map such as KEGG (15), all in one place.

MANORAA: rationales, input and output

We built MANORAA with an aim to provide a user-
friendly, one-stop service for ligand—protein interaction
investigation. MANORAA was developed on top of
CREDO, a database devoted specially to the protein-ligand
interaction, which provides all pairwise atomic interaction
contacts between ligand and proteins from the PDB in the
form of a relational database (16,17). By filtering and rank-
ing the interaction types in a systematic manner, the ligand
contacts that are most important can be shown and can be
related to the change in the binding affinities. This server
provides integrated information about the target and off-
target proteins interacting with the query ligand from the
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latest publicly available mirror of CREDO. MANORAA
also provides protein-ligand binding affinity values from
the Binding MOAD database (13) where the high qual-
ity binding affinity data are collected from literature. Im-
portantly, the users can observe and compare the interac-
tion by processing the ligand contact with multiple protein
structures based on the complexes deposited to the PDB
all at the same time. All queries to MANORAA start from
one simple input page, and the results are provided in two
output steps, as described here. We have extensively tested
MANORAA on several common operating systems and
web browsers (see Supplementary Data for details), and the
most compatible browsers that we recommend are Windows
version 7 or higher, and OSX Maverick or higher, and on
Chrome 49 or higher, and Safari 9 or higher.

Input: chemical structure

The users can start with a ligand or part of a ligand of inter-
est by providing one of the following as an input: (i) chemi-
cal name, (i1) SMILES expression, (iii) PDB ligand’s 3-letter
code or (iv) chemical structure (Figure 1). To facilitate gen-
eration of a SMILES expression, the MANORAA provides
the SMILES lookup and then exports the SMILES to the
chemical sketch panel as shown in Figure 1. The users can
also select to create or edit a SMILES expression by draw-
ing a chemical structure, or modify some parts and then
import that sketch to a SMILES string before submission.
From SMILES, the users can link to extended ligand names
and compound bioactivity information via ChEMBL (18).
The web server employs a JavaScript library called Marv-
inJS from ChemAxon to achieve the task. MarvinJS pro-
vides an HTMLS5-based user interface for chemical draw-
ing, which allows the users to have an interactive interface
without the need to install any additional plug-in.

Output 1: list of proteins interacting with a queried ligand

Once the users submit a ligand, a list of PDB entries that
contain the submitted ligand will be returned. Ligand(s)
of similar chemical structure and their target proteins will
be returned if any part of the molecule matches with the
SMILES input fragment. For example, Figure 2 shows a
table of PDB entries interacting with a ligand ‘STU” (Stau-
rosporine). The binding affinity values, taken from Bind-
ing MOAD (13), are provided to help prioritize target
proteins as they imply the binding strengths between the
query ligand and the targets. For each entry, the follow-
ing external information is also provided: (i) the pathway
information from KEGG (195), (ii) the protein informa-
tion from UniProt (19), (iii) the amino acid variants from
SAMUL (20) and (iv) variants, isoforms and genomic con-
text, protein/RNA baseline expression, gene ontology from
the Centre for Therapeutic Target Validation (Open Targets,
https://www.targetvalidation.org/). The server links crystal-
lographic structures of protein-ligand interaction to related
biochemical pathways via UniProt ID to KEGG ID map-
ping. The user can also link the proteins of interest to known
human variants such as SNPs in the coding regions via the
SAMUL web server (20). This essentially allows researchers
to predict whether the candidate ligands will have a ten-
dency to bind proteins with different annotated SNPs in the
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Figure 1. Input panel for ligand fragment via chemical names, SMILES expression, PDB ligand’s three-letter code or chemical structure drawing.

coding regions, an important step of drug design in the per-
sonalized medicine era. These results can be exported as a
CSV table.

This result page serves as an input form for the next
step, which is to visualize three-dimensional (3D) structures
of protein-ligand interactions based on the selection of (i)
atom of interest in the ligand, and (ii) the target PDB chains.
To aid this process, the MANORAA web server shows the
ligand chemical structure so that users can pick up atoms of
their interest interactively. By default, all the heteroatoms of
ligands and PDB chains where the binding affinity are avail-
able are pre-selected.

Output 2: visualization of ligand—protein interactions

Once the users select ligand atoms and associated protein
chains of interest, MANORAA will connect to CREDO
to obtain interacting partner proteins of each ligand and
PDB pair, grouped by nine interaction types and high-
light them by different colors. The available interaction
types are aromatic, hydrogen bond, ionic interaction, co-
valent bond, metal complex, carbonyl interaction, halogen
bond, hydrophobic interaction and van der Waals clash (as
shown in Figure 3 with criteria in Supplementary Data).
The server will then rank the most important contact based
on the shortest distances of unique interaction found for ev-
ery atom per amino acid residue. JSmol (21), a JavaScript
framework based on HTMLS for displaying interactive 3D
molecular structures, has been employed into the user inter-

face to enable the users to toggle display of the interaction
partners in the 3D viewing panel. Display of ligand—protein
interaction at each residue can be obtained by clicking the
loading button of each PDB IDs, then choosing the residue
name of interest. This step allows the user to have full con-
trol on what part of the chemical structure that they want to
focus on. The results can be revisited using a unique URL
provided. The list of target proteins and contact residues
can be printed as PDF file together with the protein struc-
tures which can be saved from JSmol. Note that additional
technical details of the web server can be found as Supple-
mentary Data.

To assist the first-time users, we have provided compre-
hensive step-by-step tutorial, demo video and sample pages
on the web server. Here, we also provide two examples
of how MANORAA can be employed to assist real-world
drug design and protein engineering research.

Making use of MANORAA in ligand—protein interaction
studies

Case study 1: the trend of interaction observed in N4 of STU
interacting with the kinase family. To illustrate the use of
MANORAA and its features, here we use our previous
comprehensive study on staurosporine’s binding strength
as an example (22). The study demonstrated that stau-
rosporine’s strength of interaction with kinase depends on
the number and the orientation of hydrogen bonds and ionic
interactions made around the N4 atom of staurosporine.
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Figure 2. MANORAA provides integrated analyses for ligand—protein interactions, linking structural biology to genomics, pathways and target informa-
tion. Middle inset: the ligand panel on the left shows a chemical fragment with information of their protein binding partners on the right. This allows users
to make a query on their molecular interactions with available binding affinity, and obtain additional information about the target proteins/genes. Top left:
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results can be sorted by the proteins’ name, resolution, binding affinity and can be saved to a CSV file on the top of the page as needed.
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Figure 3. Display of the ligand three-letter code STU (staurosporine) interacting with several proteins in the kinase family. The top row shows interaction
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For the worst STU binding to kinase cases, N4 from PDB
IDs: 1XBC, 1U59, 3HMO have only one bond in the non-
preferable orientation while the one from 1Q3D does not
have any hydrogen bonding or ionic interaction at all. These
two structural observations imply poor binding affinity and
hence they are present in the group of large binding affin-
ity values. In contrast, IOKY, INVR, ISTC and 1YHS
have better binding affinities due to better hydrogen bond-
ing and ionic interaction in both the structural orientation
sense and also the amount of bonds they made which are at
least two hydrogen bonds plus one ionic interaction. Note
that binding via aspartate makes the interaction tighter than
binding via arginine as seen in 1XJD and 2Z7R and hence
shown with the lowest Ki or tightest binding affinities from
the Binding MOAD database. These types of analysis will
be beneficial to drug design because we know which part of
the ligand is the major determinant of the binding affinities
and what amino acids facilitate those preferred interactions.
With MANORAA, these processes can be performed all in
one place (Figure 3).

Case study 2: how MANORAA can be powerful for analyzing
ligand and its binding protein with known SNPs that can be
linked to diseases. Trifluoperazine (PDB ligand code TFP)
was originally identified as an antipsychotic drug used in
the treatment of schizophrenia, via blocking D2 dopamin-
ergic receptors in the brain. However, trifluoperazine has re-
cently been repurposed to inhibit the growth of cancer stem
cells via its function as a calmodulin inhibitor, but the in-
hibitory mechanism is unclear (23,24). Using MANORAA,
we can demonstrate that this ligand can also bind with many
target proteins such as the placental calcium binding pro-
tein (S100-A4), calmodulin and troponin C (in a way, ‘off-
targets’ to dopaminergic receptors). The result shows that
the N3 atom of TFP interact with the placental calcium
binding protein (S100-A4) via one hydrogen bond, or one
optional ionic interaction in the cases of bovine calmodulin
and human troponin C, suggesting the importance of this
atom for all the proteins that bind to this small molecule.
On the other hand, the N2 atom of TFP forms two ionic in-
teractions with both bovine calmodulin structures but does
not make any significant interaction for either S100-A4 pro-
tein or human troponin C. This kind of information can be
useful for designing the selectivity of the drug.

Furthermore, MANORAA (via SAMUL) also reveals
two SNPs in the human calmodulin gene that have been
associated with ventricular tachycardia, a common side ef-
fect from trifluoperazine use. MANORAA also provides
a list of multiple bovine calmodulin with crystallographic
structures that harbor the ligand, enabling researchers to
explore the effect of amino acid changes to affect ligand—
protein interaction. This demonstrates how MANORAA
can be used for an initial assessment of drug repurposing
results. It should be noted that our data relies on crystallo-
graphic structures deposited to the PDB at the time. Saying
that, MANORAA provides another way to make use of the
growing PDB by linking the structures to human genome
variations.
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DISCUSSION AND FUTURE DIRECTIONS

Thanks to technological advances in crystallography and
other methods for determining structures of biological
molecules, the bottleneck of structural biology is now shift-
ing from obtaining the structures to interpreting and link-
ing them to other biological information such as path-
ways and genomic variants. With the wealth of informa-
tion on ligand—protein interactions from publicly available
databases such as PDB, it is now possible to perform a com-
parative study of multiple ligands and proteins (or drug can-
didate compounds and target proteins) at the same time.
MANORAA has been established to facilitate these pro-
cesses all in one place.

The web server has a number of useful features that as-
sist the investigation of ligand—protein binding specificity,
biological pathways the proteins are involved in and known
human variants in the coding regions of the proteins. As de-
picted by Bohm, ligand with poor binding affinity is caused
by missing crucial active site interactions in comparison
with other tight binding ligands (1). Our service allows the
user to compare the ligand’s binding affinities with the num-
bers and the types of interactions that the ligand makes with
multiple proteins, which should be useful for users to iden-
tify the key residues of proteins and the atoms of ligands in
order to manipulate the interaction strength.

Existing protein-ligand contact and interaction
databases are required in order to expedite the pro-
cess of calculating and classifying the molecular interaction
on the fly. To this end, we make use of the CREDO
backend, and provide links to SAMUL (20), UniProt
(19), PDBe (5), PDBsum (25) and KEGG (15). Note
that the total size of calculated interaction for CREDO
databases alone, including all the structures in the PDB, is
very large (72 GB), but that would allow the interactions
to be observed almost instantaneously. The graphical
representation on JSmol (21) allows the users to view
multiple structures with the fragment in the same window.
The color highlight of the protein—ligand interaction that
links to the JSmol structure visualization panel in real-time
allows robust ligand interaction identification so that the
researchers can relate the knowledge of the binding affinity
value to the missing or occurring interaction by themselves.
MANORAA employs a support responsive design, which
means the output structures can be visualized without
distortion even on a tablet or mobile phone. Another
unique feature of MANORAA is its multiple-structures
visualization panel with multiple loading buttons. The
users can observe multiple structures one at a time and
progress to each one to get an impression of the whole
set of proteins that interact with this particular ligand
fragment, and could identify the amino acid residue or
atoms of a ligand that can be modified to fine-tune the
ligand—protein binding interaction.

The main strengths of MANORAA over other previ-
ously available web servers aforementioned includes its flex-
ibility of analyzing multiple experimentally verified ligand—
protein interactions at the time, using its user-friendly and
fast responsive interface. PLIP (6), for instance, focuses on
the visualization of one structure at a time, while PoSSuM
(9) provides the superposition and makes a comparison be-
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tween residues surrounding a protein pair, rather than giv-
ing details of the type of residues in contact. Even though
there are a number of tools that allow multiple structure
observation, the interactions are not dissected to different
chemical interaction types and do not provide visualization
panel for the users to drill down to the level of ligand sub-
structure interactions.

Looking ahead, we aim to routinely maintain the server
and add new functionalities, which will be managed by a
programmer dedicated to MANORAA’s development and
a multidisciplinary team. For instance, we have been devel-
oping a new algorithm to show gradient color of atomic
position conservation. This will allow us to show position-
specific interaction by highlighting the active site based on
the percent conservation of the atomic position surround-
ing the ligand substructure. For the time being, we have
implemented this for 18 staurosporine superposed com-
plexes as an example from our sample page (see Supple-
mentary Data). In addition, protein ligand contacts will be
updated for every newer release of CREDO. In addition,
PDBe (5), PDBsum (25), CACTVS (26,27), ChEMBL (18),
KEGG (15), Open Targets (https://www.targetvalidation.
org/), UniProt (19) and SAMUL (20) are accessed in real-
time through their websites, hence the results shown will al-
ways be the most updated.

With MANORAA, the chemical fragments that have an
influence on different pathways in different organisms can
open the door for a more robust and insightful analysis
for the study of multi-target drug design, species selectiv-
ity, off-target inhibition causing drug side effect problems.
We envisage that MANORAA will provide a missing link
between structural biology, systems biology and genetics in-
formation by one central concept surrounding the ligand’s
chemical structure to assist drug discovery and the probe
molecules community.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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SUMMARY

The cell walls of the shoot apical meristem (SAM),
containing the stem cell niche that gives rise to the
above-ground tissues, are crucially involved in regu-
lating differentiation. It is currently unknown how
these walls are built and refined or their role, if any,
in influencing meristem developmental dynamics.
We have combined polysaccharide linkage analysis,
immuno-labeling, and transcriptome profiling of the
SAM to provide a spatiotemporal plan of the walls
of this dynamic structure. We find that meristematic
cells express only a core subset of 152 genes encod-
ing cell wall glycosyltransferases (GTs). Systemic
localization of all these GT mRNAs by in situ hybrid-
ization reveals members with either enrichment in
or specificity to apical subdomains such as emerging
flower primordia, and a large class with high expres-
sion in dividing cells. The highly localized and coor-
dinated expression of GTs in the SAM suggests
distinct wall properties of meristematic cells and
specific differences between newly forming walls
and their mature descendants. Functional analysis
demonstrates that a subset of CSLD genes is essen-
tial for proper meristem maintenance, confirming the
key role of walls in developmental pathways.

INTRODUCTION

Plant biomass, our only renewable bioresource, is largely
composed of cell walls. The primary plant cell wall is a complex
composite made up almost entirely of polysaccharides (90%-
95%), with some (glyco)proteins (5%-10%) [1-4]. It serves to
provide strength and mechanical support to plant tissues and
provides resistance to the high turgor pressure inside each
cell. Local reinforcement coupled with wall loosening, achieved
by rapid remodeling, permits not only growth but also the gener-

ation of a variety of cell shapes, ranging from the cylindrical cells
of the epidermis and endodermis of the root to more complex
shapes such as those of the leaf epidermal pavement cells [5].
All growing cells contain a primary wall, and further specialization
is observed in certain cell types during tissue differentiation [1, 6].

The shoot apical meristem (SAM) is a dome-shaped structure
that contains the above-ground stem cell pool, slowly prolifer-
ating cells that are found at the top of the dome within a region
termed the central zone (CZ). The progeny of these cells are
gradually displaced to the peripheral zone (PZ), where cells
grow and divide at a higher rate [7]. Auxin maxima within the
PZ determine the sites of either flower or leaf primordial initiation,
characterized by maximal rates of cell expansion [8, 9]. It has
been proposed that the dome-shaped structure is maintained
through a feedback loop whereby the stress patterns, dictated
by tissue geometry, influence the organization of the cytoskel-
eton and reinforcements of the cell wall [10]. This loop affects
auxin movements around the SAM via changes in the polarity
of the PIN1 auxin transporter [11]. Differences in cell wall rigidity
appear to demarcate the different functional domains [12], with
the CZ being 3-fold stiffer (having a higher elastic modulus)
than faster-growing cells at the flanks of the SAM [13, 14].
Thus, local differences exist in walls, and these result from,
and contribute to, developmental dynamics.

The primary wall of most flowering plants consists typically of
cellulose, non-cellulosic polysaccharides, pectins, and glyco-
proteins/proteoglycans. Whereas cellulose is an unsubstituted
homopolymer of glucose (Glc), most polysaccharides have back-
bone substitutions ranging from a small number of sugar residues
(e.g., xyloglucan; XG) to the very complex branching patterns
observed in some pectic polysaccharides, such as arabinogalac-
tan (AG), rhamnogalacturonan (RG), and proteoglycans (AGPs).
Both glycan backbone chain elongation and substitutions are car-
ried out by polysaccharide synthases/glycosyltransferase (GT)
enzymes, classified into families and subfamilies based on phylo-
genetic similarities. Arabidopsis thaliana possesses on the order
of 560 GTs, and many of these are expected to be involved in
cell wall synthesis (CAZy; http://www.cazy.org).

Despite the central role played by the cell wall in the SAM and
subsequent development, very little information exists as to its

Current Biology 26, 1-12, June 6, 2016 © 2016 Elsevier Ltd. 1
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(A) Schematic representation of the organization of the Arabidopsis shoot apex. Meristematic cells (purple) in both the shoot apical meristem (SAM) and flower

primordia were collected for analysis. CZ, central zone; PZ, peripheral zone.

(B and C) Schematic flowchart displaying the strategy used in this study. (B) The meristematic cells carefully dissected from c/v3-2 SAM (top panel, circled) and
flower primordia (before Stage 6 according to [20] and shown as circles in the bottom panel) were used for RNA extraction and cell wall preparation followed by

linkage analysis (C).

(D) The expression of genes specific to SAM (APUM10 and WUS), flower (AP7 and AG), and shoot vasculature (CESA7, COBL4, TED6, and SND2) in dissected
SAM and young flower. The shoot sample was included for comparison. The Arabidopsis UBIQUITIN10 gene was used as an internal control. Shown are mean

values from three replicates; error bars represent SD values.
See also Figure S1 and Table S3.

composition and that of the early-developing organs [14-18]. Here
we have combined data from polysaccharide linkage analysis,
steady-state mRNA quantification and localization, and polysac-
charide immuno-labeling to build up a comprehensive picture of
the construction of the SAM primary walls and their cognate
biosynthetic GTs. We find that meristematic cell walls are con-
structed by a reduced subset of GTs with spatially and temporally
regulated expression patterns. The data suggest a distinction be-
tween new walls formed at cell division and pre-existing walls, as
well as a key role by a GT of the CSLD gene family, required for
proper growth and maintenance of cell number in the SAM.

RESULTS

Isolating Shoot Meristematic Cells for Polysaccharide
and Expression Profiling

To reveal the structure and synthesis of stem cell walls, we tried
to harvest pure meristematic cells from the Arabidopsis shoot
apex. Due to the small meristem size, it would require around

2 Current Biology 26, 1-12, June 6, 2016

10° dissected SAMs to generate the 4 mg of fresh weight
required for reliable polysaccharide linkage analysis. We thus
looked to the enlarged, stem cell-enriched SAMs of the clavata3
(civ3) mutant [19] (Figure S1). Meristems were carefully
dissected from 60 cl/v3-2 shoot apices, and young flowers
were also included in our analysis to represent a mixed sample
of meristematic, highly proliferative, and developing tissues (Fig-
ures 1A-1C) [20]. The samples were subjected to cell wall linkage
analysis and RNA sequencing (Figure 1B). To evaluate the quality
of these dissected samples (i.e., no contamination of developed
shoot tissues in the meristematic cells), we performed gRT-PCR
to check genes with specific expression pattern in different tis-
sues. Consistently, APUM10 and WUS, two SAM-enriched
genes, showed high expression in the SAM sample, and floral
organ-specific genes, AP1 and AG, expressed highly in the
flower sample. By contrast, the transcripts of genes involved
in secondary cell wall biosynthesis and vascular formation,
including CESA7, COBL4, TED6, and SND2, could barely be
detected in the meristematic tissues (Figure 1D).
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Figure 2. Composition and Spatial Distribution of Wall Components in the Shoot Apex

(A) Monosaccharide linkage composition of AIR cell wall preparations.

(B) Calculation of polysaccharide composition based on the monosaccharide linkage analysis shown in (A).
(C-N) Immunofluorescence labeling showing the spatial distribution of wall components. The longitudinal sections of the Arabidopsis shoot apex were incubated
with cell wall antibody probes. No primary antibody (anti-rabbit secondary) control is shown in (C), and overexposed control is shown in (D). Scale bars, 5 um (C-G

and J-N), 20 um (H), and 10 um (I).
See also Table S1.

Composition and Spatial Organization of Cell Wall
Components

The alcohol-insoluble residues (AIRs) from samples were analyzed
to determine their polysaccharide composition by monosaccha-
ride linkage analyses based upon a priori knowledge of the relative
proportions of these linkages in a particular polysaccharide [21].
Most of the monosaccharides identified previously from leaf could
also be detected in both meristem and flower, although the relative
composition was different (Figure 2A). Polysaccharide calcula-
tions show the walls of meristematic cells to be composed of, in
order of decreasing abundance, cellulose, pectin, and non-cellu-
losic polysaccharides (Figure 2B). A marked increase in the
amount of homogalacturonan (HG), composed of linear chains
of galacturonic acid (GalA) residues, was found in the SAM
compared to flowers (11.3% versus 4.8%), whereas type | AG
(8.3% versus 5.3%) and cellulose (29.4% versus 37.1%) exhibited
decreases inthe SAM. Compared to leaf, both the SAM and young
floral tissue contained at least 3-fold less RGl, a 2- to 6-fold reduc-
tion in HG, and an approximately 6-fold increase in pectic ara-
binan. Total pectin content is reduced in the SAM and flowers
compared to the level in leaves. Cellulose levels in the leaf

(29.5%) were found to be nearly identical to the SAM (29.4%).
Overall, the data show some marked differences in cell wall pectic
and non-cellulosic composition between the SAM and its deriva-
tives, the flower and leaf.

To reveal the spatial organization of cell wall structure in the
SAM, we took advantage ofimmunohistochemistry using different
antibodies or recombinant fluorescent proteins that recognize
individual wall components. Consistent with cellulose being the
major polysaccharide, CBM3a, which binds crystalline cellulose,
was found to label all walls within the SAM. Labeling of walls
across the apex by CBM3a was not uniform, suggesting either dif-
ferences in the organization of wall polymers (thereby affecting
accessibility of the probe to cellulose), variation in the degrees
of cellulose crystallinity, or absolute abundance (Figure 2E). Simi-
larly, inhomogeneous labeling was observed for JIM7 (HG), which
might reflect some variation in the degree of HG methyl-esterifica-
tion (Figure 2F). Detection of pectic a-1,5-arabinan by LM13 re-
sulted in a complex pattern of labeled walls in both SAM and floral
tissues (Figure 2G), and a very intense signal was seen in the
epidermal cells of older developing tissues (Figure 2H). Labeling
of B-1,4-galactan by LM5 was found predominantly in primordia
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and the outer whorl of young developing flowers (Figure 2l), corre-
lating closely with the double amount of 1,4-Gal in flowers
compared to the SAM from linkage analysis (5.1% versus 2.7%;
Table S1). Both heteroxylan (HX) and XG existed in all walls of
meristematic cells, as revealed by LM28 and LM24 labeling (Fig-
ures 2J and 2K). However, the signals could be observed only after
pectolyase treatment, suggesting that these polysaccharides are
masked by pectin. Although most of the epitopes exhibited similar
organization patterns in c/v3 compared to wild-type, XG seems to
show distinct patterns, with a higher signal in L1 layer cells (Fig-
ure 2L). This implies a secondary effect of an enlarged CZ upon
either XG synthesis or organization. In addition, we found that
PDM, a mannan antibody that recognizes heteromannans (gluco-
mannans and galactomannans), only labeled certain regions of
cells that oriented anticlinally in upper cell layers but were situated
either anticlinally or periclinally in lower cell layers (Figures 2M and
2N), reminiscent of the newly formed cross walls arising after cell-
division events.

Analysis of the Transcriptome Reveals Differential
Expression of a Subset of GT Genes in the SAM
With this insight into the cell wall composition of the SAM and
young flowers, we could then examine the specific differential
expression patterns of GTs in these tissues, because these
enzymes determine, to a large extent, which wall polysaccha-
rides and glycoproteins are being made. We performed RNA
sequencing using the highly purified SAM tissues and young
flowers that were equal to those used for linkage analysis. A third
sample, consisting of pooled total RNA from several plant tis-
sues, was also analyzed for comparison. Comparison of the
RNA levels from our purified meristematic cells with previously
published cell-type expression profiling data revealed high
spatial sensitivity to detect genes expressed within particular
tissues (see the Supplemental Experimental Procedures). For
example, APUM10/PUMLIO10, a gene that is only expressed
in the CLV3 domain, was detected exclusively in the SAM sam-
ples (Figure S2A). Gene ontology (GO) analysis of differentially
expressed genes revealed cell wall categories to be under-rep-
resented in the SAM and flower (Figure S2B). Further analysis
found differences in GT transcript abundance between SAM,
flower, and the whole-plant samples (Figure S2C), suggesting
that meristematic cells employ only a subset of GT enzymes to
build the wall. For example, in the GT8 subfamily of enzymes
that give rise to GICcA substitution of xylan [22-24], only GUX3
expression could be detected in the SAM and flower. Among
the ten FUT genes responsible for XG and AGI synthesis, only
three exhibited considerable expression in meristematic tissues.
This contraction also extends to the protein backbones of pro-
teoglycans, including those that make up AGPs and extensins,
where only a subset of mMRNAs are present in the SAM (Table
S2). A literature search allowed the assignment of more gene
families or subfamilies that encode cell wall-related GTs to
polysaccharide linkages. A total of 152 SAM-expressed GTs
(transcripts per million [TPM] value >1) were mapped to their
respective polysaccharides/glycoproteins (Table S2).
Consistent with cellulose being the major polysaccharide, the
core primary wall cellulose synthase subunits of the GT2-CESA
family, encoded by CESA7 and CESAS, are highly co-expressed
(TPM values >100 for all samples), as observed in all primary wall
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tissues, and are found together with other CESA mRNAs
(CESA2, CESAS5, and CESAG) that encode proteins that provide
the third component of the active complex [25], with both CESA5
and CESAG exhibiting higher mRNA levels in flowers.

The pectin backbone (HG and RGI) (Figure 2B) is synthesized
by GalATs and encoded by the GT8-GAUT subfamily [26], the
transcripts of which are widely represented in the SAM. The pro-
posed HG core complex is encoded by GAUT7 and GAUT1, and
these are both expressed (Table S2), consistent with their prod-
ucts forming a core biosynthetic complex [27]. Despite the low
quantities of RGI in both the SAM and flower compared to leaf,
expression of some potential RGl-associated GTs (GATL3, 5,
6, 8, and 9) were found at higher levels than for the pooled sam-
ples (Table S2). The absence of XGD7 mRNA in the floral sample
suggests that flowers either do not contain xylogalacturonan or
that it is made by the product of the related EMB175 gene.

XG biosynthesis has only one confirmed GT2 family member,
namely CSLC4, responsible for backbone (1,4-Gic) synthesis
[28]. Furthermore, all the genes encoding enzymes that make
up the recently identified XG multi-protein complex, CSLC4,
XXT2, XXT5, MUR3 [29], and XLT2 [30], are expressed in the
SAM at levels comparable to the pooled sample (Table S2).
CSLC6 displays the highest expression of all CSLC subfamily
members in the SAM; however, a function in XG assembly has
not yet been demonstrated. The GT34 family contains seven
members, of which data support five genes encoding XG xylo-
syltransferases (XXT1-5). There is no evidence that the remain-
ing two, designated GTL6 and GTL7, encode proteins with this
type of GT activity [31]. GTLE is one of the most highly expressed
GT genes in the SAM (mean TPM 210; Table S2). The gene
product exhibits similarity to galacto(gluco)mannan galactosyl-
transferases (GMGTSs) in other plants [32]. Indeed, recent data
demonstrate that the gene, renamed MUCI10, encodes a
GMGT involved in seed mucilage formation [33]. We have there-
fore assigned these two GMGTSs to mannan as the enzymes that
add the terminal Gal residue onto the 4-Man backbone, giving
rise to the 1,4,6-Man residue that most likely represents
substituted heteromannan. The backbone is synthesized by
members of the CSLA family, where CSLAZ2 transcripts are the
most abundant (Table S2). CSLA7, essential for embryonic
development [34], and CSLA10 exhibit higher expression in the
flower compared to other tissues (Table S2).

For HX, a proportion detected in the floral linkage analysis
would be expected to come from the vascular-derived second-
ary walls; however, it is not expected that there would be the
same in the SAM preparations, because mRNA transcripts
from known genes involved in xylem and secondary wall forma-
tion have been shown either to be absent or at barely detectable
levels (Figure 1D; Figure S2A). Although the key genes encoding
the enzymes for 1,4-Xyl backbone synthesis have been shown to
be IRX9, IRX10, and IRX14 [35, 36], transcriptome data suggest
apical enrichment of the corresponding paralog in each case
(IRX9L, IRX10L, and IRX14L; Table S2). Of the secondary wall-
associated members, only IRX70 and IRX14 are expressed in
the SAM. Also, F8H rather than FRAS is the likely GT involved
in making the reducing-end sequence of the xylan chain.

Although the presence of a GT transcript is expected to corre-
late with its cognate polysaccharide, within the complex cell wall
composite we might expect to see spatiotemporal correlation
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between different polysaccharides reflected in the expression of
associated GTs. Using collections of publicly available microar-
ray expression data, a pairwise correlation coefficient network
[37] was constructed from SAM GT transcripts higher than 10
TPM (Figure S2D). At the center of the network are the CESAT,
3, and 6 genes that have a pairwise Pearson coefficient r >0.9,
consistent with the encoded proteins forming a primary wall cel-
lulose synthase complex (CSC) found in diverse tissue types [25].
Figure S2D (boxed) shows a subnetwork that comprises genes
with transcripts that peak in the young floral samples and where
the core is occupied by CSLC8. Together with CSLCS5, this may
represent construction of an XG, although no function has yet
been assigned to the encoded GTs at present. Of the other floral
network genes, GATLS5 is known to be involved in RGI formation
[38], which may extend to GATL3; CSLD5 has been attributed to
cellulose synthesis, although there is a report suggesting arole in
mannan biosynthesis [39-41]; GSL12 is a callose synthase [42];
and GALT31a (and possibly AT5G41460) assembles AGPs [43].

Visualization of GT mRNAs at the Wild-Type Shoot Apex
Reveals Subdomain-Specific Expression of Cell

Wall GTs

Co-expression of different GT family members suggests that the
encoded enzymes, and their respective polysaccharides, may
contribute to either specific types of walls or developmental
stages. We therefore performed systematic RNA in situ hybridi-
zation assays to examine the expression patterns of the SAM-
expressed GTs at single-cell spatial resolution, including those
transcripts that show either relative increases, reductions, or
no change between SAM and flower samples. Transcript locali-
zation data confirmed that most of the candidate GT-encoded
genes exhibit high expression in WT SAM as well as flower
primordia. Patterns of expression were found to be similar be-
tween WT and clv3 (Figure S3). Based on the expression pattern,
these genes were divided into five categories (Figure 3A; Data
S1): type 1 represents a uniform distribution across the apex
(e.g., GSLT); type 2 represents apical patchy distribution, sug-
gesting flower primordia-specific enrichment (e.g., At3g14960);
type 3 has intense scattered spots (e.g., CSLD5); type 4 repre-
sents both spotted and general apical enrichment (e.g., FUT3);
and type 5 consists of patterns not classified in the above. Within
the type 5 group, GATL6 mRNA gives a high signal in the approx-
imate location of vascular initials and in developing outer whorls
of the flower, further confirmed by visualizing the protein (Figures
S4A-S4C). A summary of the classification of MRNA localization
patterns for GT families, together with representative images of
all SAM-expressed cell wall GT mRNA hybridizations, is shown
in Figure 3B and Data S1. Some of these patterns are similar
to those reported for non-GT-encoding genes in the tomato
SAM [44], with Arabidopsis types 3 and 4 exhibiting similarities
to tomato pattern 5, represented by histone 2A, and suggesting
a degree of cell division-linked expression [45]. The majority (74/
115) of the Arabidopsis GT mRNA patterns are classified as
type 4. There are 14 genes that have a type 1 pattern. The
expression of these genes could also be detected in other tis-
sues (e.g., shoot tissue), suggesting that they might play funda-
mental roles in building the cell wall. Indeed, genes grouped into
this type include CESAS3 for primary wall cellulose and CSLC4,
XXT1, and FUTT, which encode XG GTs. This broad expression

of GTs is consistent with the broad labeling of the polysaccha-
rides. In contrast to the type 1 CESA3 pattern, RNAs for two of
the subunits of the third polypeptide of the CSC, encoded by
either CESA5 or CESAG6, gave a type 2 distribution pattern,
confirming upregulation in flower primordia. For XG, other GTs
include MURS (type 4), At5g62220 (type 4), and XXT2 (type 2).
The RNA for a putative GalT, encoded by GT15, although found
at low levels across the SAM, appears to be confined to the inner
whorls of the developing flower (Data S1).

For acidic pectic polysaccharide synthesis, the majority of
GAUT family transcripts (GAUT1, 3, 4, 6, 7, 9-11, and 13-15)
have similar expression patterns, in this case a type 4 distribu-
tion. In contrast, of the five genes that comprise the GT92
family-encoding enzymes that specifically make B-1,4-galactan
[46], the three shoot apex-expressed genes GALST1, GALS2,
and GALS3 exhibited divergent expression patterns, grouped
into types 2, 3, and 4, respectively (Table S2; Data S1). The
mRNA pattern of GALS2 and GALSS3, concentrated at sites of
primordial initiation and during floral development (Figure S3A),
was largely consistent with the signal observed with the corre-
sponding epitope (Figure 2I).

Some members of the GT31 and GT29 families have been pro-
posed to be involved in the assembly of the B-1,6-Gal residues
that provide the core substitutions of the B-1,3-galactan back-
bone of type Il AGs [43, 47]. Of particular interest is At19g32930
(GALT31a), because (1) its mRNA is florally enriched (Table
S2), (2) its patchy expression pattern matches that expected of
early-forming flower primordia (Figure S4D; Data S1), and (3)
insertion mutants have been found to arrest during embryo
development [43]. To confirm whether the patchy expression
is indeed confined to regions of organ initiation, we observed
a fluorescent reporter of GALT37a promoter activity, together
with a YFP plasma membrane reporter for observation of cell
boundaries. A top view of a confocal z projection shows that
the foci of GALT31a expression coincide with flower primordia
and at sites where primordia would be expected to initiate based
on a spiral phyllotactic pattern (Figures S4E and S4F), confirming
that, at least for some genes, the patchy mRNA localization co-
incides with new flower development.

All transcripts encoding known xylan biosynthetic enzymes
have a type 4 distribution and, for heteromannan backbone syn-
thesis, CSLA expression patterns were found to be either of type
2 or 4 patterns. The Gal substitutions along the backbone appear
to be formed through the action of MUCI10/GTL6. MUCI10 mRNA
signal was very high in some cells (Data S1), consistent with the
relatively high levels of mMRNA found in the transcriptome analysis
of the SAM. Callose is made by GT48 (GSL/CALS) family mem-
bers, and transcripts were localized in either a type 1 (GSL1, 5,
6, and 10), type 2 (GSL8 and 11), or type 4 (GSL3 and 12) pattern.

Expression of GT Genes during Cell Division

We found that the mRNA of the GT2 member CSLD5 exhibits
intense spots (type 3 pattern) representing single cells against
a very low background (Figure 3A). Similarly intense spots
were also observed for GALS2 (Figure S3; Data S1). To test
whether the spotted pattern represents actively dividing cells,
we carried out dual labeling of CSLD5 and GALS2 mRNA
together with M phase marker CyclinB1;7 mRNA by using
probes labeled with either cyanine 5 or fluorescein. CSLD5
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Figure 3. Localization of Glycosyltransferase Gene mRNAs in the Shoot Apex by In Situ Hybridization

(A) The expression patterns of glycosyltransferase genes expressed in the shoot apex. The GTs were classified into five patterns according to their mMRNA
distribution. One representative gene for each type is shown in both longitudinal (top panel) and transverse (bottom panel) sections except for FUT3 which shows
a magnified region (bottom panel) of the SAM (top panel, boxed area). Scale bars, 50 um, except for type 4, bottom, 20 um.

(B) A sketch showing the expression patterns of GTs and a summary of gene number in each GT family, classified into different expression patterns.

(C and D) Co-expression of GT genes with CyclinB1;1, which marks dividing cells by dual-labeling fluorescence in situ hybridization. Scale bars, 20 pm.

See also Figures S2-S4, Tables S2 and S8, and Data S1.

mRNA was found in most of the cells containing CyclinB1;1
mRNA (Figure 3C; Manders coefficient M[1] 0.295), indicating
that its expression was linked to the later portion of the cell cycle.
GALS2 also largely co-expressed with CyclinB1;1 in flower
primordia (Figure 3D; M2 0.115). The enriched expression of
CSLD5 and GALS2 in mitotic cells, together with a significant
proportion of GT mRNAs showing an intense punctate labeling
(i.e., type 4 pattern), suggests that the expression of a large num-
ber of GT genes is upregulated during cell division, probably
contributing to the formation of new cross walls.

CSLD Family Genes Function in Stem Cell Maintenance
Given that CSLD5 and the other shoot apex-expressed mem-
bers of the CSLD family (CSLD2 and CSLD3) are found at
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comparatively high levels at the shoot apex (Figures 4A-4D;
Table S2), we examined SAMs from double- and triple-mutant
combinations where whole-plant phenotypes have suggested
developmental defects [40]. We found severe growth retardation
of the triple-mutant compared to WT (Figures 4E and 4F). The
double mutants csld2 csld5 and csld3 csld5 and the triple mutant
csld2 csld3 csld5 showed highly similar phenotypes. In our
growth conditions, the mutant plants (double and triple mutants)
produce only one to three flowers (Figure 4F); however, where
flowers did form, they appeared morphologically normal. For
some plants no SAM was readily identifiable, especially in the
triple mutant, presumably due to early termination. Confocal im-
aging revealed a small misshapen SAM in the cs/d mutants that
was approximately one-quarter of the diameter of WT SAMs,
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Figure 4. CSLDs Are Required for Shoot Apical Meristem Maintenance

(A) Expression patterns of CSLD2, CSLD3, and CSLD5 as revealed by in situ hybridization. Scale bar, 50 pm.

(B-D) Confocal images showing the expression domains of CSLD2, CSLD3, and CSLD5 in the SAM. CSLD2 and CSLD3 expression is active in most of the cells,
whereas CSLD5 is enriched in dividing cells. Scale bars, 50 um (C) and 25 pm (D).

(E and F) Whole-plant phenotypes of wild-type (WT, Col-0) and the csld2 csld3 csld5 triple mutant. A close-up of the csld2 csld3 csld5 mutant is shown in (F), with

the shoot apex boxed. Scale bars, 1 cm (E) and 0.5 mm (F).

(G and H) Three-dimensional rendering of confocal z stacks of wild-type and csld2 csld5 mutant SAMs. Scale bar, 20 pm.
(land J) A growth heatmap of wild-type and csld2 csld5 mutant SAMs showing relative growth increases per cell over a 24-hr period. In the csld2 csld5 mutant, the

location of the SAM is indicated by an arrow (H and J). Scale bar, 20 um.
See also Figure S5 and Table S3.

with the flowers encompassing a large part of the meristem
(compare Figures 4G and 4H). Over a 24-hr period, individual
cells were segmented and tracked to compare growth rates.
For WT, cells of the CZ yield the lowest growth (blue cells in Fig-
ure 4l), with increases observed in the PZ (turquoise through yel-
low and red in Figure 4l). Cells that are part of flower primordia
show the highest degree of growth. For the csld mutant, the
SAM (Figure 4J, arrow) had no recognizable growth domains;
however, the larger flower had cells achieving maximum growth
rates consistent with the growth retardation being exerted at the
level of the SAM, not the developing flowers. We interpret these
data to mean that CSLD genes are needed for proper cell growth
and proliferation in the SAM, that is, maintaining the meriste-
matic stem cell pool rather than being involved in specifying
cell fate.

We also determined the cell wall composition, using linkage
analysis, of SAM samples of a csld3*/~ csld5 mutant in the c/v3
background. The plants exhibited retarded growth compared to
the clv3 single mutant, and were found to contain cell walls with

amarked difference in linkage composition (Figure S5A). The rela-
tive abundance of every detectable polysaccharide changed,
some dramatically increasing, such as heteromannan (5-fold),
and others decreasing, including HG (6-fold), arabinan (2-fold),
and XG (3-fold) (Figure S5B).

DISCUSSION

The primary cell wall plays a fundamental role in plant morpho-
genesis via modulation of cell shape, mechanical feedback,
and signaling [5, 10, 12, 13, 48, 49]. Knowing what this wall
is made of and how it is made, summarized in Figure 5
[50, 51], allows us to better understand plant shoot develop-
ment. The SAM uses a reduced set of GTs to make its walls
compared to the rest of the plant. Detailed analysis of the tran-
scriptome, and localization of the GT mRNAs revealed that
different categories of expression patterns are present across
the SAM and young flowers. These expression analyses,
together with antibody labeling of wall components and linkage
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analysis, have allowed us to probe the composition of cell walls
in the SAM.

Consistent with it being the main structural component of pri-
mary cell walls, cellulose is the major polysaccharide in meristem
tissues and was found at a reduced level in the SAM compared
to the young flower. Whereas the core cellulose subunits, en-
coded by CESAT and CESAS3, exhibit high expression in both
tissues, two of the three genes encoding the third subunit are
expressed predominantly in flower primordia.

Pectin is present throughout the primary walls and masks
several non-cellulosic polysaccharides, as demonstrated by
the requirement for pre-treatment to reveal antibody epitopes.
The predominance of pectic arabinan and galactan in specific
cell layers or tissues reinforces the idea that both of these poly-
saccharides are important as part of wall rearrangements dur-
ing cellular morphogenetic events, likely attributed to their high
mobility in the wall and reversible binding to cellulose [52].

For xyloglucan, the action of expansin to release the XG
tethers of adjacent cellulose microfibrils has been at the heart
of both cellular and tissue-scale models of growth and develop-
ment, especially in organ emergence from the flanks of the SAM
[15]. Consistent with XG being present throughout the apical re-
gions, we found that the only confirmed gene for backbone syn-
thesis, CSLC4, showed uniform expression. The dominance of
MUR3 and several GalT genes, as well as the strong and uniform
enrichment of FUTT mRNA in the SAM, suggests a high degree
of galactosylation and fucosylation of XG in meristematic cells
(Figure 5).
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walls. Given the mostly type 4 distribu-

tion of xylan GT transcripts, much of the
deposition may occur during the de novo formation of the cross
wall during cell division and be maintained as walls mature,
which might be involved in the regulation of spacing between
cellulose microfibrils [51].

The localization of heteromannan in a small subset of walls
that could only be detected after removal of pectin suggests
that mannan is either masked by other components and modifi-
cations as cell walls mature or principally deposited early during
cross-wall formation and later removed. The high expression
of GTL6 in the SAM, recently characterized as the GMGT
MUCI10, suggests that the heteromannan in the SAM is likely
galactosylated to a much higher extent than in other tissues,
which might be important for proper cellulose organization [33].

Type Il AG represents the glycosidic portion of AGPs that have
been implicated in various aspects of plant development [53, 54].
Multiple genes from several AGP-GT families are expressed
apically, and their transcripts show type 1, 2, and 4 in situ pat-
terns. GALT37a mRNA was found to be particularly abundant
in flower primordia, and this was confirmed through live imaging
of a reporter of promoter activity. The atgalt37a mutant arrests
embryo development [43] and may have an equally important
role in floral organ formation but, because the mutant is lethal
prior to growth of the meristem, functional analysis will require
targeted knockdown of the RNA late in development.

Inthe SAM, active cell division with intervening growth leads to
the formation of leaf and flower primordia while also maintaining
a pool of stem cells. Compared to animal cells, which divide by
forming a constriction, plants build a cell plate at the final step
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of cytokinesis to separate the two daughter cells. Callose and
cellulose have been implicated as the major components of
the cell plate, where callose decorates the nascent cross wall
and is gradually replaced by cellulose as the wall matures. Cal-
lose is synthesized by members of the GSL/CALS GT48 family,
exhibiting high expression in the SAM and primordia. No GSL
transcripts, including GSL6 [55], were found with the type 3
dotted pattern, suggesting that no GSL enzymes are exclusive
to cell-plate formation. Similarly, despite the accumulation of
CESA proteins on the forming cell plate [56], none of the CESA
genes displayed enriched expression in dividing cells, indicating
fundamental roles for callose and cellulose in both cell-plate
formation and wall building during post-mitotic expansion. For
callose, this may be limited to surrounding plasmodesmata as
part of the regulatory network controlling symplastic transport
[42]. Other components of the developing cell plate and their
synthesis remain elusive. Antibody labeling suggests the pres-
ence of other matrix polysaccharides [57, 58], including mannan
(Figure 2M), in the cell plate. Because cell-plate formation is
a quite transient process that usually completes in less than
60 min, we can speculate that a large set of GTs would be upre-
gulated through controlled transcription and/or protein synthesis
to accommodate a burst of GT enzyme activity for de novo poly-
saccharide synthesis during cytokinesis. Consistent with this
scenario, a majority of GTs exhibited what we interpret as a
cell-cycle pattern (type 4) and suggests an important role in tran-
scriptional reprogramming of GT genes upon cell-cycle entry.
The decreased expression of these GTs in non-dividing cells
also indicated some transient difference in the composition
and/or structure between new cross walls and mature walls,
and might also imply distinct wall properties of cells within and
outside of cell division. However, it is technically challenging to
measure the composition of cell plates, due to its transient
nature and low abundance in tissues.

The expression of CSLD5 was strongly linked to cell-division
patterns at a time when new cross walls are laid down. CSLD5
is also found to be co-expressed with markers of the root meri-
stem and division zone [59, 60]. Similar mitosis-enriched expres-
sion was observed for the rice homolog OsCSLD4, suggesting a
conserved regulation of CSLD expression across different spe-
cies [61]. The remaining shoot-expressed members, CSLD2
and CSLD3, displayed broader expression patterns across the
apex. csld2 and csld3 mutants, when combined with csld5, pro-
duced plants with terminating meristems, apparently unable to
maintain the size of the stem cell pool to produce more than a
few flowers. It has been proposed that the CSLD gene family en-
codes GTs that make a type of cellulose [39], with CSLD5 making
a less crystalline polysaccharide [62]; however, there is also
a suggestion they may make mannan [40]. A reduction in the
CSLD-derived polysaccharide resulted in large changes in
composition of the SAM cell wall (Figure S5), and demonstrates
how changes in wall content and/or wall integrity feed back on
wall biosynthesis. Based on our data, we postulate that the
polysaccharide made by CSLD is important for proper cell prolif-
eration and cell wall integrity in the SAM, and is not easily
compensated by the presence of other wall glycans.

In summary, we find that a limited subset of GTs make the
walls in the SAM. Cell wall polysaccharides, and the GTs that
make them, can be uniformly distributed or focused to particular

regions or cells at a given time. The phenotypes of cs/d mutants
demonstrate a clear relationship between the cell wall and the
function of the SAM for proper development. The data now allow
for a targeted approach for both exploring and manipulating
shoot morphogenesis.

EXPERIMENTAL PROCEDURES

Growth and Dissection of clv3-2 Tissues for RNA-Seq and Cell Wall
Linkage Analysis

Because wild-type meristems were too small to obtain sufficient material for
linkage analysis (see the Supplemental Experimental Procedures), plants of
the A. thaliana clv3-2 mutant, in the Ler background [63], were grown under
short-day (8-hr light) regimes for 4 weeks prior to transfer to long days
(16 hr). Tissues (two biological replicates of each) were collected from plants
exhibiting an inflorescence stem of at least 8 cm. Enlarged SAMs were
collected after careful removal of all floral organs. A razor blade was then
used to remove the upper fleshy portion at the center of the SAM (Figure 1C,
top panel), which was immediately frozen in liquid N,. Early-stage flowers
(stages 6-7) at the periphery of the SAM were collected using fine tweezers
and immediately frozen (Figure 1C, bottompanel). Tissues for the clv3-2
whole-plant sample for RNA-seq (known as the “pooled sample”) consisted
of fruit (stage 17), young leaves, old leaves, roots, stem, whole inflorescence,
and flower (stage 15). The tissues were harvested and stored separately.

RNA-Seq Sample Preparation

RNA was extracted using the RNeasy plant kit (QIAGEN) for each biological
replicate according to the manufacturer’s protocol. For whole-plant samples,
80 ng of each sample was subsequently pooled before library preparation.
Libraries were prepared from 500 ng total RNA using the TruSeq Stranded
Total RNA with Ribo-Zero plant kit (lllumina).

qRT-PCR

For gRT-PCR analysis, total RNAs were extracted from dissected meristem,
young flowers, and shoot tissues using the RNeasy Plant Mini Kit (QIAGEN)
according to the manufacturer’s instructions. RNA (2 ng) was reverse tran-
scribed into cDNA using oligo(dT) primer and the Transcriptor High Fidelity
cDNA synthesis kit (Roche). The cDNA was used as templates for gRT-PCR
using LightCycler 480 SYBR Green | Master (Roche) and gene-specific primers
(Table S3).

Sequencing Analysis

The six RNA-seq libraries were sent for sequencing at the Beijing Genome
Institute using one full lane of lllumina HiSeq 2000. The raw reads in FastQ
format were obtained and analyzed in house. We first assessed the qual-
ity of the reads using FastQC (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc). Potential adaptor contamination and low-quality trailing se-
quences were removed using Trimmomatic [64]. Preprocessed reads were
then mapped to the Ler-0 reference genome [65] using TopHat [66, 67], and
possible optical duplicates from PCR during the library preparation step
were then removed using Picard tools (http://broadinstitute.github.io/picard).
Relative transcript estimation was carried out using Cufflinks [67] to obtain
fragments per kilobase of transcript per million fragments mapped (FPKM)
values and converted to transcripts per million [68], and also as raw reads us-
ing HTSeq [69]. Normalization of read counts, gene ontology analysis, and
generation of a pairwise correlation coefficient network are described in the
Supplemental Experimental Procedures.

Polysaccharide Linkage Analysis

Alcohol-insoluble residues were prepared from isolated SAMs and young
flowers and used in the determination of both neutral and acidic monosaccha-
ride linkage composition and polysaccharide composition as previously
described [21]. For comparison with csld, crosses between clv3-2 and csld3
csld5 produced F2 plants where csld3 csld5 clv3 was not viable beyond early
vegetative stage and therefore plants genotyped as csld3*'~ csld5 clv3, which
exhibited retarded growth, were used to generate SAM AIRs for linkage
analysis.
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RNA In Situ Hybridization of Wax-Embedded SAM Sections

For generation of gene-specific probes, cDNA fragments corresponding to
each GT gene were amplified using gene-specific primers (Table S3) and
ligated into the pGEM-T Easy vector (Promega). The constructs were verified
by sequencing and then used as templates for in vitro transcription using the
DIG RNA labeling kit (Roche). Shoot apices of Arabidopsis wild-type Col-0
or clv3-9 (a gift from Rudiger Simon, Heinrich Heine University) were fixed in
FAA (formaldehyde, acetic acid, ethanol), embedded in wax, and cut into
8-um sections. The sections were processed as described (http://www.its.
caltech.edu/~plantlab/protocols/insitu.pdf). In brief, after dewaxing, rehydra-
tion, and dehydration, the sections were hybridized with gene-specific probes
and then incubated with anti-digoxigenin antibody (Roche). Signals were de-
tected by the color reaction after application of NBT/BCIP (nitro blue tetrazo-
lium/5-bromo-4-chloro-3-indolyl-phosphate; Roche). Sense controls, yielding
no hybridization with target mRNA, are shown in Figure S3A. Two-color fluo-
rescence in situ hybridization was used for gene co-expression analysis,
and the protocol is described, in detail, in the Supplemental Experimental
Procedures.

Immunohistochemistry of Wall Components

Wax sections generated for in situ hybridizations were used for antibody
detection of wall polymers. Sections were mounted on polished slides
and dewaxed using xylene, followed by rehydration using an ethanol series:
100% (v/v), 95%, 70%, 50%, 30%, and 10%. Sections were then incu-
bated in buffer (20 mM Tris-HCI [pH 8.2], 0.5 mM CaCl,, 150 mM NacCl)
for 20 min, followed by blocking in 0.5% (w/v) milk powder in buffer. Pri-
mary antibody, diluted in buffer, was added to the sections and incubated
overnight. After washes in buffer, secondary antibody incubations were
carried out for 3 hr. Primary antibodies were rabbit PDM anti-mannan
(gift from Paul Dupree, University of Cambridge) [70], LM28 rat anti-xylan
(gift from Paul Dupree) [71], LM24 rat anti-xyloglucan [72], JIM7 rat anti-
homogalacturonan [73], LM13 rat anti-arabinan [74], and LM5 rat anti-
galactan (PlantProbes) [75]. Secondary antibodies were anti-rabbit 1gG-
CF488A conjugate (Sigma; SAB4600030), anti-rat IgG-CF568 conjugate
(Sigma; SAB4600077), and anti-rat Alexa Fluor 647 (Life Technologies).
Crystalline cellulose was detected by CBM3a [76] together with anti-His
FITC secondary antibody. For enzyme treatments, sections were incu-
bated with pectolyase (0.1% [w/v]; Sigma; P5936) in incubation buffer
(0.2 M NayHPQy4, 0.1 M citric acid [pH 4.8]) prior to primary antibody incu-
bation. Labeled sections were mounted in ProLong Gold Antifade Mountant
(Life Technologies) with a coverslip and sealed. Images were taken with a
Zeiss LSM 700 confocal microscope equipped with a 20x 0.8 numerical
aperture (NA) dry objective.

Live-Cell Imaging of Transgenic Reporter Lines

Plants were partially dissected to remove overhanging flowers obscuring the
SAM. Live-cell imaging was carried out on a Zeiss LSM 700 confocal micro-
scope equipped with 488- and 555-nm lasers and a 20 x NA 1.0 water-dipping
objective.

Observing Cell Boundaries for Segmentation and Growth Analysis in
csld Mutants

The csld2 csld5, csld3 csld5, and csld2 csld3 csld5 mutants were a gift
from Henrik Scheller (University of California, Berkeley) and their construction
has been reported [40]. For viewing of the SAM, large organs were dissected
and the apex was stained with the dye FM4-64 (Life Technologies;
333 pg mi~") for 3 min and then carefully rinsed in water. SAMs were viewed
under a Zeiss LSM 700 confocal microscope with water-dipping objective,
and z stacks were obtained and 3D rendered using confocal software. For
growth analyses, the acylated YFP plasma membrane marker (myr-YFP)
was transformed into heterozygous plants, and double mutants were identi-
fied after selection. Whole plantlets were transferred shortly after bolting to
imaging boxes containing 2.2g I~' Murashige and Skoog (MS) medium, Gam-
borg B5 vitamins (Duchefa), and 1% w/v agar. Confocal imaging of the YFP
reporter was then carried out at two time points separated by 24 hr followed
by segmentation and cell indexing using MorphoGraphX [77], where a heat-
map of relative growth was selected as output upon the 3D image of the
24-hr time point.

10 Current Biology 26, 1-12, June 6, 2016

ACCESSION NUMBERS

The accession number for the RNA sequencing data reported in this paper is
NCBI Sequence Read Archive: SRP072228.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,
five figures, three tables, and one dataset and can be found with this article
online at http://dx.doi.org/10.1016/j.cub.2016.04.026.

AUTHOR CONTRIBUTIONS

W.Y. and R.W. generated the cell wall preparations and carried out morpho-
logical analysis of the cs/d mutants; W.Y. carried out the RNA in situ hybridiza-
tions with the help of C.S. and R.W.; C.S. prepared the RNA-seq libraries and
carried out the GO analysis; C.S. and V.C. processed the RNA-seq data;
C.T.B., A.B., and M.S.D. carried out the linkage analysis and calculated the
polysaccharide composition; A.P. devised and performed the cell wall im-
muno-labeling protocols; R.W. and M.S.D. carried out the literature searches,
identified meristem glycosyltransferases, and amalgamated the chemical and
expression data; W.Y. and R.W. prepared the figures; and R.W., M.S.D.,
E.M.M., and A.B. devised the project and wrote the manuscript with contribu-
tions from the remaining authors.

ACKNOWLEDGMENTS

The authors wish to thank Zachary Nimchuk for advice on reporter construc-
tion, Arun Sampathkumar for help with 3D visualization of the GALT31A
reporter, and Lisa Willis for help with spherical cap calculations. V.C. is
a recipient of a Thailand Research Fund grant for new researchers
(grantTRG5880067) and a research supplement grant from the Faculty of Sci-
ence, Mahidol University. C.T.B., M.S.D., and A.B. acknowledge the support
of the ARC Centre of Excellence in Plant Cell Walls (grant CE110001007).
E.M.M. acknowledges support from the Gatsby Charitable Trust through fel-
lowships GAT3272/C and GAT3273-PR1, Howard Hughes Medical Institute,
Gordon and Betty Moore Foundation (through grant GBMF3406), and U.S.
Department of Energy (through award DE-FG02-99ER13873). A.P. acknowl-
edges support of the EU Marie-Curie FP7 COFUND People Programme
through the award of an AgreenSkills (grant 267196). R.W. acknowledges sup-
port from the Leverhulme Trust (grant RPG-2015-285).

Received: March 11, 2016
Revised: March 24, 2016
Accepted: April 11, 2016
Published: May 19, 2016

REFERENCES

1. Doblin, M.S., Pettolino, F., and Bacic, A. (2010). Plant cell walls: the skel-
eton of the plant world. Funct. Plant Biol. 37, 357-381.

2. Cosgrove, D.J. (2005). Growth of the plant cell wall. Nat. Rev. Mol. Cell
Biol. 6, 850-861.

3. Somerville, C., Bauer, S., Brininstool, G., Facette, M., Hamann, T., Milne,
J., Osborne, E., Paredez, A., Persson, S., Raab, T., et al. (2004). Toward a
systems approach to understanding plant cell walls. Science 306, 2206—
2211.

4. Liepman, A.H., Wightman, R., Geshi, N., Turner, S.R., and Scheller, H.V.
(2010). Arabidopsis —a powerful model system for plant cell wall research.
Plant J. 67, 1107-1121.

5. Szymanski, D.B., and Cosgrove, D.J. (2009). Dynamic coordination of
cytoskeletal and cell wall systems during plant cell morphogenesis.
Curr. Biol. 19, R800-R811.

6. North, H.M., Berger, A., Saez-Aguayo, S., and Ralet, M.-C. (2014).
Understanding polysaccharide production and properties using seed
coat mutants: future perspectives for the exploitation of natural variants.
Ann. Bot. (Lond.) 174, 1251-1263.


http://www.its.caltech.edu/%7Eplantlab/protocols/insitu.pdf
http://www.its.caltech.edu/%7Eplantlab/protocols/insitu.pdf
http://www.its.caltech.edu/%7Eplantlab/protocols/insitu.pdf
http://dx.doi.org/10.1016/j.cub.2016.04.026
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref1
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref1
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref2
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref2
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref3
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref3
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref3
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref3
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref4
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref4
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref4
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref5
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref5
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref5
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref6
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref6
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref6
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref6

Please cite this article in press as: Yang et al., Regulation of Meristem Morphogenesis by Cell Wall Synthases in Arabidopsis, Current Biology (2016),
http://dx.doi.org/10.1016/j.cub.2016.04.026

10.

11.

12.

13.

14,

15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

25.

26.

. Kwiatkowska, D., and Dumais, J. (2003). Growth and morphogenesis at

the vegetative shoot apex of Anagallis arvensis L. J. Exp. Bot. 54, 1585-
1595.

. Reinhardt, D., Mandel, T., and Kuhlemeier, C. (2000). Auxin regulates the

initiation and radial position of plant lateral organs. Plant Cell 12, 507-518.

. Powell, A.E., and Lenhard, M. (2012). Control of organ size in plants. Curr.

Biol. 22, R360-R367.

Hamant, O., Heisler, M.G., Jonsson, H., Krupinski, P., Uyttewaal, M.,
Bokov, P., Corson, F., Sahlin, P., Boudaoud, A., Meyerowitz, E.M., et al.
(2008). Developmental patterning by mechanical signals in Arabidopsis.
Science 322, 1650-1655.

Heisler, M.G., Hamant, O., Krupinski, P., Uyttewaal, M., Ohno, C.,
Jonsson, H., Traas, J., and Meyerowitz, E.M. (2010). Alignment between
PIN1 polarity and microtubule orientation in the shoot apical meristem re-
veals a tight coupling between morphogenesis and auxin transport. PLoS
Biol. 8, e1000516.

Kierzkowski, D., Nakayama, N., Routier-Kierzkowska, A.-L., Weber, A,
Bayer, E., Schorderet, M., Reinhardt, D., Kuhlemeier, C., and Smith,
R.S. (2012). Elastic domains regulate growth and organogenesis in the
plant shoot apical meristem. Science 335, 1096-1099.

Milani, P., Gholamirad, M., Traas, J., Arnéodo, A., Boudaoud, A., Argoul,
F., and Hamant, O. (2011). In vivo analysis of local wall stiffness at the
shoot apical meristem in Arabidopsis using atomic force microscopy.
Plant J. 67, 1116-1123.

Peaucelle, A., Braybrook, S.A., Le Guillou, L., Bron, E., Kuhlemeier, C., and
Hofte, H. (2011). Pectin-induced changes in cell wall mechanics underlie
organ initiation in Arabidopsis. Curr. Biol. 21, 1720-1726.

Fleming, A.J., McQueen-Mason, S., Mandel, T., and Kuhlemeier, C.
(1997). Induction of leaf primordia by the cell wall protein expansin.
Science 276, 1415-1418.

Peaucelle, A., Louvet, R., Johansen, J.N., Hofte, H., Laufs, P., Pelloux, J.,
and Mouiille, G. (2008). Arabidopsis phyllotaxis is controlled by the methyl-
esterification status of cell-wall pectins. Curr. Biol. 18, 1943-1948.

Verica, J.A., and Medford, J.l. (1997). Modified MERI5 expression alters
cell expansion in transgenic Arabidopsis plants. Plant Sci. 125, 201-210.

Priestley, J.H. (1929). Cell growth and cell division in the shoot of the flow-
ering plant. New Phytol. 28, 54-81.

Clark, S.E., Running, M.P., and Meyerowitz, E.M. (1995). CLAVATAS is a
specific regulator of shoot and floral meristem development affecting
the same processes as CLAVATA1. Development 7271, 2057-2067.

Smyth, D.R., Bowman, J.L., and Meyerowitz, E.M. (1990). Early flower
development in Arabidopsis. Plant Cell 2, 755-767.

Pettolino, F.A., Walsh, C., Fincher, G.B., and Bacic, A. (2012). Determining
the polysaccharide composition of plant cell walls. Nat. Protoc. 7, 1590-
1607.

Bromley, J.R., Busse-Wicher, M., Tryfona, T., Mortimer, J.C., Zhang, Z.,
Brown, D.M., and Dupree, P. (2013). GUX1 and GUX2 glucuronyltrans-
ferases decorate distinct domains of glucuronoxylan with different substi-
tution patterns. Plant J. 74, 423-434.

Lee, C., Teng, Q., Zhong, R., and Ye, Z.-H. (2012). Arabidopsis GUX pro-
teins are glucuronyltransferases responsible for the addition of glucuronic
acid side chains onto xylan. Plant Cell Physiol. 53, 1204-1216.

Mortimer, J.C., Miles, G.P., Brown, D.M., Zhang, Z., Segura, M.P.,
Weimar, T., Yu, X., Seffen, K.A., Stephens, E., Turner, S.R., and Dupree,
P. (2010). Absence of branches from xylan in Arabidopsis gux mutants
reveals potential for simplification of lignocellulosic biomass. Proc. Natl.
Acad. Sci. USA 107, 17409-17414.

Desprez, T., Juraniec, M., Crowell, E.F., Jouy, H., Pochylova, Z., Parcy, F.,
Hofte, H., Gonneau, M., and Vernhettes, S. (2007). Organization of cel-
lulose synthase complexes involved in primary cell wall synthesis in
Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 104, 15572-15577.

Sterling, J.D., Atmodjo, M.A., Inwood, S.E., Kumar Kolli, V.S., Quigley,
H.F., Hahn, M.G., and Mohnen, D. (2006). Functional identification of an

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42,

Arabidopsis pectin biosynthetic homogalacturonan galacturonosyltrans-
ferase. Proc. Natl. Acad. Sci. USA 103, 5236-5241.

Atmodjo, M.A., Sakuragi, Y., Zhu, X., Burrell, A.J., Mohanty, S.S., Atwood,
J.A., lll, Orlando, R., Scheller, H.V., and Mohnen, D. (2011).
Galacturonosyltransferase (GAUT)1 and GAUT7 are the core of a plant
cell wall pectin biosynthetic homogalacturonan:galacturonosyltransferase
complex. Proc. Natl. Acad. Sci. USA 108, 20225-20230.

Cocuron, J.-C., Lerouxel, O., Drakakaki, G., Alonso, A.P., Liepman, A.H.,
Keegstra, K., Raikhel, N., and Wilkerson, C.G. (2007). A gene from the
cellulose synthase-like C family encodes a beta-1,4 glucan synthase.
Proc. Natl. Acad. Sci. USA 104, 8550-8555.

Chou, Y.-H., Pogorelko, G., Young, Z.T., and Zabotina, O.A. (2015). Protein-
protein interactions among xyloglucan-synthesizing enzymes and forma-
tion of Golgi-localized multiprotein complexes. Plant Cell Physiol. 56,
255-267.

Jensen, J.K., Schultink, A., Keegstra, K., Wilkerson, C.G., and Pauly, M.
(2012). RNA-seq analysis of developing nasturtium seeds (Tropaeolum
majus): identification and characterization of an additional galactosyltrans-
ferase involved in xyloglucan biosynthesis. Mol. Plant 5, 984-992.

Vuttipongchaikij, S., Brocklehurst, D., Steele-King, C., Ashford, D.A.,
Gomez, L.D., and McQueen-Mason, S.J. (2012). Arabidopsis GT34
family contains five xyloglucan «-1,6-xylosyltransferases. New Phytol.
195, 585-595.

Edwards, M.E., Dickson, C.A., Chengappa, S., Sidebottom, C., Gidley,
M.J., and Reid, J.S.G. (1999). Molecular characterisation of a mem-
brane-bound galactosyltransferase of plant cell wall matrix polysaccha-
ride biosynthesis. Plant J. 79, 691-697.

Voiniciuc, C., Schmidt, M.H.-W., Berger, A., Yang, B., Ebert, B., Scheller,
H.V., North, H.M., Usadel, B., and Ginl, M. (2015). MUCILAGE-
RELATED10 produces galactoglucomannan that maintains pectin and
cellulose architecture in Arabidopsis seed mucilage. Plant Physiol. 7169,
403-420.

Goubet, F., Barton, C.J., Mortimer, J.C., Yu, X., Zhang, Z., Miles, G.P.,
Richens, J., Liepman, A.H., Seffen, K., and Dupree, P. (2009). Cell wall glu-
comannan in Arabidopsis is synthesised by CSLA glycosyltransferases,
and influences the progression of embryogenesis. Plant J. 60, 527-538.

Brown, D.M., Goubet, F., Wong, V.W., Goodacre, R., Stephens, E.,
Dupree, P., and Turner, S.R. (2007). Comparison of five xylan synthesis
mutants reveals new insight into the mechanisms of xylan synthesis.
Plant J. 52, 1154-1168.

Brown, D.M., Zhang, Z., Stephens, E., Dupree, P., and Turner, S.R. (2009).
Characterization of IRX10 and IRX10-like reveals an essential role in
glucuronoxylan biosynthesis in Arabidopsis. Plant J. 57, 732-746.

De Bodt, S., and Inzé, D. (2013). A guide to CORNET for the construction
of coexpression and protein-protein interaction networks. Methods Mol.
Biol. 10711, 327-343.

Kong, Y., Zhou, G., Yin, Y., Xu, Y., Pattathil, S., and Hahn, M.G. (2011).
Molecular analysis of a family of Arabidopsis genes related to galacturono-
syltransferases. Plant Physiol. 7155, 1791-1805.

Park, S., Szumlanski, A.L., Gu, F., Guo, F., and Nielsen, E. (2011). A role
for CSLD3 during cell-wall synthesis in apical plasma membranes of tip-
growing root-hair cells. Nat. Cell Biol. 13, 973-980.

Yin, L., Verhertbruggen, Y., Oikawa, A., Manisseri, C., Knierim, B., Prak, L.,
Jensen, J.K., Knox, J.P., Auer, M., Willats, W.G.T., and Scheller, H.V.
(2011). The cooperative activities of CSLD2, CSLD3, and CSLD5 are
required for normal Arabidopsis development. Mol. Plant 4, 1024-1037.
Wang, W., Wang, L., Chen, C., Xiong, G., Tan, X.-Y., Yang, K.-Z., Wang,
Z.-C., Zhou, Y., Ye, D., and Chen, L.-Q. (2011). Arabidopsis CSLD1 and
CSLD4 are required for cellulose deposition and normal growth of pollen
tubes. J. Exp. Bot. 62, 5161-5177.

Vatén, A., Dettmer, J., Wu, S., Stierhof, Y.-D., Miyashima, S., Yadav, S.R.,
Roberts, C.J., Campilho, A., Bulone, V., Lichtenberger, R., et al. (2011).
Callose biosynthesis regulates symplastic trafficking during root develop-
ment. Dev. Cell 27, 1144-1155.

Current Biology 26, 1-12, June 6, 2016 11


http://refhub.elsevier.com/S0960-9822(16)30348-7/sref7
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref7
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref7
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref8
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref8
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref9
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref9
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref10
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref10
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref10
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref10
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref11
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref11
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref11
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref11
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref11
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref12
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref12
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref12
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref12
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref13
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref13
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref13
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref13
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref14
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref14
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref14
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref15
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref15
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref15
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref16
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref16
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref16
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref17
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref17
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref18
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref18
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref19
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref19
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref19
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref20
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref20
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref21
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref21
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref21
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref22
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref22
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref22
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref22
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref23
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref23
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref23
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref24
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref24
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref24
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref24
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref24
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref25
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref25
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref25
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref25
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref26
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref26
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref26
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref26
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref27
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref27
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref27
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref27
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref27
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref28
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref28
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref28
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref28
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref29
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref29
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref29
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref29
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref30
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref30
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref30
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref30
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref31
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref31
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref31
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref31
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref32
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref32
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref32
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref32
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref33
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref33
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref33
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref33
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref33
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref34
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref34
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref34
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref34
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref35
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref35
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref35
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref35
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref36
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref36
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref36
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref37
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref37
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref37
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref38
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref38
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref38
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref39
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref39
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref39
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref40
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref40
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref40
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref40
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref41
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref41
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref41
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref41
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref42
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref42
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref42
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref42

Please cite this article in press as: Yang et al., Regulation of Meristem Morphogenesis by Cell Wall Synthases in Arabidopsis, Current Biology (2016),
http://dx.doi.org/10.1016/j.cub.2016.04.026

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

Geshi, N., Johansen, J.N., Dilokpimol, A., Rolland, A., Belcram, K., Verger,
S., Kotake, T., Tsumuraya, Y., Kaneko, S., Tryfona, T., et al. (2013). A gal-
actosyltransferase acting on arabinogalactan protein glycans is essential
for embryo development in Arabidopsis. Plant J. 76, 128-137.

Fleming, A.J., Mandel, T., Roth, I., and Kuhlemeier, C. (1993). The patterns
of gene expression in the tomato shoot apical meristem. Plant Cell 5,
297-309.

Koning, A.J., Tanimoto, E.Y., Kiehne, K., Rost, T., and Comai, L. (1991).
Cell-specific expression of plant histone H2A genes. Plant Cell 3, 657-665.
Liwanag, A.J.M., Ebert, B., Verhertbruggen, Y., Rennie, E.A,
Rautengarten, C., Oikawa, A., Andersen, M.C.F., Clausen, M.H., and
Scheller, H.V. (2012). Pectin biosynthesis: GALS1 in Arabidopsis thaliana
is a B-1,4-galactan p-1,4-galactosyltransferase. Plant Cell 24, 5024-5036.
Dilokpimol, A., Poulsen, C.P., Vereb, G., Kaneko, S., Schulz, A., and Geshi,
N. (2014). Galactosyltransferases from Arabidopsis thaliana in the biosyn-
thesis of type Il arabinogalactan: molecular interaction enhances enzyme
activity. BMC Plant Biol. 74, 90.

Sampathkumar, A., Krupinski, P., Wightman, R., Milani, P., Berquand, A.,
Boudaoud, A., Hamant, O., Jonsson, H., and Meyerowitz, E.M. (2014).
Subcellular and supracellular mechanical stress prescribes cytoskeleton
behavior in Arabidopsis cotyledon pavement cells. eLife 3, e01967.
Seifert, G.J., and Blaukopf, C. (2010). Irritable walls: the plant extracellular
matrix and signaling. Plant Physiol. 153, 467-478.

Tryfona, T., Theys, T.E., Wagner, T., Stott, K., Keegstra, K., and Dupree, P.
(2014). Characterisation of FUT4 and FUT6 a-(1 — 2)-fucosyltransferases
reveals that absence of root arabinogalactan fucosylation increases
Arabidopsis root growth salt sensitivity. PLoS ONE 9, e93291.

Mortimer, J.C., Faria-Blanc, N., Yu, X., Tryfona, T., Sorieul, M., Ng, Y.Z.,
Zhang, Z., Stott, K., Anders, N., and Dupree, P. (2015). An unusual xylan
in Arabidopsis primary cell walls is synthesised by GUX3, IRX9L, IRX10L
and IRX14. Plant J. 83, 413-426.

Lin, D., Lopez-Sanchez, P., and Gidley, M.J. (2016). Interactions of pectins
with cellulose during its synthesis in the absence of calcium. Food
Hydrocoll. 52, 57-68.

Majewska-Sawka, A., and Nothnagel, E.A. (2000). The multiple roles of
arabinogalactan proteins in plant development. Plant Physiol. 722, 3-10.
Johnson, K.L., Kibble, N.A.J., Bacic, A., and Schultz, C.J. (2011). A fasci-
clin-like arabinogalactan-protein (FLA) mutant of Arabidopsis thaliana,
fla1, shows defects in shoot regeneration. PLoS ONE 6, e25154.

Hong, Z., Delauney, A.J., and Verma, D.P. (2001). A cell plate-specific
callose synthase and its interaction with phragmoplastin. Plant Cell 13,
755-768.

Miart, F., Desprez, T., Biot, E., Morin, H., Belcram, K., Hofte, H., Gonneau,
M., and Vernhettes, S. (2014). Spatio-temporal analysis of cellulose syn-
thesis during cell plate formation in Arabidopsis. Plant J. 77, 71-84.
Moore, P.J., and Staehelin, L.A. (1988). Immunogold localization of the
cell-wall-matrix polysaccharides rhamnogalacturonan | and xyloglucan
during cell expansion and cytokinesis in Trifolium pratense L.; implication
for secretory pathways. Planta 174, 433-445.

Northcote, D.H., Davey, R., and Lay, J. (1989). Use of antisera to localize
callose, xylan and arabinogalactan in the cell-plate, primary and second-
ary walls of plant cells. Planta 778, 353-366.

Brady, S.M., Orlando, D.A., Lee, J.-Y., Wang, J.Y., Koch, J., Dinneny, J.R.,
Mace, D., Ohler, U., and Benfey, P.N. (2007). A high-resolution root
spatiotemporal map reveals dominant expression patterns. Science 318,
801-806.

Toufighi, K., Brady, S.M., Austin, R., Ly, E., and Provart, N.J. (2005). The
Botany Array Resource: e-northerns, expression angling, and promoter
analyses. Plant J. 43, 153-163.

12 Current Biology 26, 1-12, June 6, 2016

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

Yoshikawa, T., Eiguchi, M., Hibara, K., Ito, J., and Nagato, Y. (2013). Rice
slender leaf 1 gene encodes cellulose synthase-like D4 and is specifically
expressed in M-phase cells to regulate cell proliferation. J. Exp. Bot. 64,
2049-2061.

Bernal, A.J., Jensen, J.K., Harholt, J., Serensen, S., Moller, ., Blaukopf, C.,
Johansen, B., de Lotto, R., Pauly, M., Scheller, H.V., and Willats, W.G.
(2007). Disruption of ATCSLDS5 results in reduced growth, reduced xylan
and homogalacturonan synthase activity and altered xylan occurrence in
Arabidopsis. Plant J. 52, 791-802.

Bowman, J. (1994). Arabidopsis: An Atlas of Morphology and Development
(Springer-Verlag).

Bolger, A.M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible
trimmer for lllumina sequence data. Bioinformatics 30, 2114-2120.

Gan, X., Stegle, O., Behr, J., Steffen, J.G., Drewe, P., Hildebrand, K.L.,
Lyngsoe, R., Schultheiss, S.J., Osborne, E.J., Sreedharan, V.T., et al.
(2011). Multiple reference genomes and transcriptomes for Arabidopsis
thaliana. Nature 477, 419-423.

Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L. (2009). Ultrafast
and memory-efficient alignment of short DNA sequences to the human
genome. Genome Biol. 10, R25.

Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D.R.,
Pimentel, H., Salzberg, S.L., Rinn, J.L., and Pachter, L. (2012).
Differential gene and transcript expression analysis of RNA-seq experi-
ments with TopHat and Cufflinks. Nat. Protoc. 7, 562-578.

Pachter, L. (2011). Models for transcript quantification from RNA-seq.
arXiv, arXiv:1104.3889.

Anders, S., Pyl, P.T., and Huber, W. (2015). HTSeq—a Python framework
to work with high-throughput sequencing data. Bioinformatics 37,
166-169.

Handford, M.G., Baldwin, T.C., Goubet, F., Prime, T.A., Miles, J., Yu, X.,
and Dupree, P. (2003). Localisation and characterisation of cell wall
mannan polysaccharides in Arabidopsis thaliana. Planta 218, 27-36.

Cornuault, V., Buffetto, F., Rydahl, M.G., Marcus, S.E., Torode, T.A., Xue,
J., Crépeau, M.-J., Faria-Blanc, N., Willats, W.G.T., Dupree, P., et al.
(2015). Monoclonal antibodies indicate low-abundance links between
heteroxylan and other glycans of plant cell walls. Planta 242, 1321-1334.

Pedersen, H.L., Fangel, J.U., McCleary, B., Ruzanski, C., Rydahl, M.G.,
Ralet, M.-C., Farkas, V., von Schantz, L., Marcus, S.E., Andersen,
M.C.F., et al. (2012). Versatile high resolution oligosaccharide microarrays
for plant glycobiology and cell wall research. J. Biol. Chem. 287, 39429-
39438.

Knox, J.P., Linstead, P.J., King, J., Cooper, C., and Roberts, K. (1990).
Pectin esterification is spatially regulated both within cell walls and be-
tween developing tissues of root apices. Planta 787, 512-521.

Verhertbruggen, Y., Marcus, S.E., Haeger, A., Verhoef, R., Schols, H.A.,
McCleary, B.V., McKee, L., Gilbert, H.J., and Knox, J.P. (2009).
Developmental complexity of arabinan polysaccharides and their pro-
cessing in plant cell walls. Plant J. 59, 413-425.

Jones, L., Seymour, G.B., and Knox, J.P. (1997). Localization of pectic gal-
actan in tomato cell walls using a monoclonal antibody specific to (1] —14)-
[beta]-D-galactan. Plant Physiol. 773, 1405-1412.

Blake, A.W., McCartney, L., Flint, J.E., Bolam, D.N., Boraston, A.B.,
Gilbert, H.J., and Knox, J.P. (2006). Understanding the biological rationale
for the diversity of cellulose-directed carbohydrate-binding modules in
prokaryotic enzymes. J. Biol. Chem. 281, 29321-29329.

de Reuille, P.B., Robinson, S., and Smith, R.S. (2014). Quantifying cell
shape and gene expression in the shoot apical meristem using
MorphoGraphX. Methods Mol. Biol. 7080, 121-134.


http://refhub.elsevier.com/S0960-9822(16)30348-7/sref43
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref43
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref43
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref43
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref44
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref44
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref44
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref45
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref45
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref46
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref46
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref46
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref46
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref47
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref47
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref47
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref47
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref48
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref48
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref48
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref48
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref49
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref49
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref50
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref50
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref50
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref50
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref51
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref51
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref51
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref51
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref52
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref52
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref52
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref53
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref53
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref54
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref54
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref54
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref55
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref55
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref55
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref56
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref56
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref56
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref57
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref57
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref57
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref57
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref58
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref58
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref58
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref59
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref59
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref59
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref59
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref60
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref60
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref60
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref61
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref61
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref61
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref61
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref62
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref62
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref62
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref62
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref62
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref63
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref63
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref64
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref64
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref65
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref65
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref65
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref65
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref66
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref66
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref66
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref67
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref67
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref67
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref67
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref69
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref69
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref69
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref70
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref70
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref70
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref71
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref71
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref71
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref71
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref72
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref72
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref72
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref72
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref72
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref73
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref73
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref73
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref74
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref74
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref74
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref74
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref75
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref75
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref75
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref76
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref76
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref76
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref76
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref77
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref77
http://refhub.elsevier.com/S0960-9822(16)30348-7/sref77

Computational and Structural Biotechnology Journal 14 (2016) 223-233

010101010010

COMPUTATIONAL
o A o ANDSTRUCTURAL
BIOTECHNOLOGY

T, J O URNAL

journal homepage: www.elsevier.com/locate/csbj

e o o comscom e stucran eriona

MicroRNAs and oncogenic transcriptional regulatory networks
controlling metabolic reprogramming in cancers

Pannapa Pinweha !, Khanti Rattanapornsompong *!, Varodom Charoensawan *°, Sarawut Jitrapakdee **

2 Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
Y Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom 73170, Thailand

ARTICLE INFO ABSTRACT

Article history:

Received 16 March 2016

Received in revised form 25 May 2016
Accepted 27 May 2016

Available online 04 June 2016

Altered cellular metabolism is a fundamental adaptation of cancer during rapid proliferation as a result of growth
factor overstimulation. We review different pathways involving metabolic alterations in cancers including aero-
bic glycolysis, pentose phosphate pathway, de novo fatty acid synthesis, and serine and glycine metabolism. Al-
though oncoproteins, c-MYC, HIF1a and p53 are the major drivers of this metabolic reprogramming, post-
transcriptional regulation by microRNAs (miR) also plays an important role in finely adjusting the requirement
of the key metabolic enzymes underlying this metabolic reprogramming. We also combine the literature data

gﬁ:/:rrd& on the miRNAs that potentially regulate 40 metabolic enzymes responsible for metabolic reprogramming in can-
Metabolism cers, with additional miRs from computational prediction. Our analyses show that: (1) a metabolic enzyme is fre-
MicroRNA quently regulated by multiple miRs, (2) confidence scores from prediction algorithms might be useful to help
Oncogene narrow down functional miR-mRNA interaction, which might be worth further experimental validation. By com-

Transcriptional regulation network bining known and predicted interactions of oncogenic transcription factors (TFs) (c-MYC, HIF1« and p53), sterol

regulatory element binding protein 1 (SREBP1), 40 metabolic enzymes, and regulatory miRs we have established
one of the first reference maps for miRs and oncogenic TFs that regulate metabolic reprogramming in cancers.
The combined network shows that glycolytic enzymes are linked to miRs via p53, c-MYC, HIF1«, whereas the
genes in serine, glycine and one carbon metabolism are regulated via the c-MYC, as well as other regulatory or-

ganization that cannot be observed by investigating individual miRs, TFs, and target genes.
© 2016 Pinweha et al. Published by Elsevier B.V. on behalf of the Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Overall metabolic reprograming in cancers

In response to overstimulation of growth factor signaling, cancer
cells reprogram their metabolism in order to accommodate a high
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demand for macromolecules during rapid proliferation [1-4]. The hall-
mark of the above metabolic reprograming is the shift from oxidative
phosphorylation to aerobic glycolysis, known as the “Warburg effect”
[5]. This phenomenon provides some advantages to the tumors because
aerobic glycolysis allows them to survive under hypoxic conditions,
while an acidic environment selects a highly aggressive population of
cancers to survive and metastasize to distal tissues or organs [3,6].
Cancers are also highly anabolic because they require lipids, protein
and nucleic acids as constituents of the structural components of the
newly divided cells [2]. This highly anabolic phenotype is partly attrib-
uted to the Warburg effect because inhibition of pyruvate entering into
the mitochondria results in the redirection of glycolytic intermediates
to the pentose phosphate pathway (PPP), which provides biosynthetic
precursors for nucleotides and lipids [4]. Furthermore, mitochondrial
metabolism of cancers is also reprogrammed toward cataplerosis
where substantial amounts of tricarboxylic acid (TCA) cycle intermedi-
ates are used as the biosynthetic precursors of lipids and amino acids
[2]. Therefore, it is not surprising to see up-regulate expression of key
enzymes that catalyze the above biosynthetic pathways in several
types of cancers. Fig. 1 shows the overall metabolic reprogramming
pathways in cancers together with the key regulatory enzymes.
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Fig. 1. Metabolic pathways in cancers. Glucose and glutamine are two major carbon sources that are metabolized through these biochemical pathways.

Here we review the altered metabolic pathways and the relevant en-
zymes in cancers inferred from experimental and computational based
data[7-9]. We also review the oncogenic transcription factors (TFs) and
miRNAs that regulate those metabolic pathways. In addition, using
known and predicted miRNA-target gene interaction, we establish and
analyze the network of oncogenic miRNA-metabolic target gene net-
works that interplay and regulate metabolic reprograming in cancers.

1.1. miRNASs regulate metabolic pathways

Post-transcriptional regulation by microRNAs (miRNAs) has long
been known as a mechanism to silence gene expression. miRNAs are
short double stranded RNAs, comprising 15-25 nucleotides. They are
first transcribed in the nucleus as the primary miRNAs, consisting of
multiple stem loop structures, which are then subsequently digested
to precursor miRNAs (pre-miRNAs) by Drosha, an RNase IIl family en-
zyme [10]. Pre-miRNAs are then transported to the cytoplasm where
the hairpin structure is further removed by a dicer enzyme, yielding ap-
proximately 21 base pairs miRNA duplex. The miRNA duplex is subse-
quently incorporated in the Argonaute protein which digests one
strand of the duplex miRNA, generating a single stranded miRNA. This
single stranded miRNA is further brought to their target mRNAs by an
RNA-induced silencing (RISC) complex. Binding of single stranded
miRNAs to their targets is mediated by hybridization of 7-8 nucleotides
of the miRNAs (known as seed match) to their complementary nucleo-
tides in the 3’-untranslated regions of their targets. Such hybridization
results in translational inhibition or degradation of target mRNAs, thus
providing a means to inhibit gene expression. Furthermore, one
miRNA can bind to more than one species of mRNA targets due to a
non-stringent hybridization of the seed match region, allowing simulta-
neous down-regulation of multiple target mRNAs. In the same way,
multiple species of miRNAs can bind to the same mRNA targets and en-
hance translational inhibition [11]. It is estimated that 45,000 miRNA

target sites are found in the human genome, and these miRNAs control
expression of up to 60% of human genes [12].

miRNAs are implicated in the regulation of various biological pro-
cesses. Biochemically, miRNAs also regulate cellular metabolism either
directly by targeting key enzymes of metabolic pathways or indirectly
by modulating the expression of important transcription factors. Multi-
ple studies have revealed that the altered metabolic pathways in can-
cers are tightly regulated by miRNAs [13]. In the first half of the
review, we describe the metabolic pathways and key enzymes that
are altered in various cancers and regulated by miRNAs. This will be
followed by the second half on the regulatory networks between meta-
bolic enzymes, regulatory miRNAs and oncogenic transcription factors.

1.2. Glycolytic and pentose phosphate pathways

The Warburg effect is a primary event of metabolic reprogramming
during tumorigenesis. This effect includes induced expression of en-
zymes such as GLUT1, hexokinase 2 (HK2), phosphofructokinase 2
(PFK2) and pyruvate dehydrogenase kinase 1 (PDK1) [3]. Up-
regulation of the expression of the first three targets results in a rapid
uptake of glucose and increased glycolytic rate, while increased expres-
sion of PDK1 inactivates pyruvate dehydrogenase, restricting the con-
version of pyruvate to acetyl-CoA in the mitochondria and thus
uncoupling glycolysis from subsequent mitochondrial oxidation. In-
creased expression of lactate dehydrogenase and monocarboxylic acid
transporter 4 (MCT4) further sequesters pyruvate toward lactate pro-
duction, lowering the pH of the extracellular environment [14]. The
muscle-specific pyruvate kinase M (PKM) isoform has also been impli-
cated in metabolic reprogramming in certain cancers [15]. PKM exists
in two isoforms, PKM1 and PKM2 that have arisen from alternative
splicing of exons 9 and 10 [16]. The activities of these two enzymes
are determined by their conformers. PKM1 has a tendency to form tet-
ramers that possess high enzymatic activity while PKM2 shows relative-
ly low activity due to its main conformer being dimers. PKM1 is the
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most abundant isoform in skeletal muscle while PKM2 is highly
expressed during embryonic development. In many cancers, PKM2 is
selectively expressed, resulting in the accumulation of phosphoenolpyr-
uvate, and thus redirecting the flow of glycolytic intermediates toward
the pentose phosphate pathway (PPP) [15]. This mechanism provides
a great benefit for cancers because PPP provides the ribose-5-
phosphate and NADPH required for the synthesis of nucleotides and
fatty acids. PKM2 also plays a non-metabolic role in which it can act as
a co-activator of TFs including HIF1q, STAT3, Oct4 and B-catinin
which regulate expression of certain oncogenes [16,17]. Therefore
PKM2 switching can reprogram metabolic pathways and alter the pro-
gram of gene expression in cancers.

In response to PKM2 activation or by other mechanisms, PPP activity
has been reported to be elevated in many cancers [18]. Therefore it
is not surprising to see up-regulation of key enzymes in this
pathway including glucose-6-phosphate dehydrogenase (G6PD),
6-phosphogluconate dehydrogenase (6-PGD) and transketolase-
like enzyme [19-21]. NADPH produced by PPP is also crucial for
maintaining the proper glutathione-redox loop that cancers use to
counter the reactive oxygen species formed especially during
epithelial-mesenchymal-transition (EMT) or anoikis resistance
[22,23]. Inhibition of PPP via the use of specific enzyme inhibitors
or siRNAs targeted to their corresponding enzymes retards growth
and biosynthesis of lipid and nucleotides in many types of cancers
[21,24,25].

1.3. Mitochondrial metabolism

The tricarboxylic acid cycle (TCA cycle) provides both catabolic and
anabolic functions for living cells. In normal cells, the TCA cycle func-
tions as a central oxidation hub where acetyl-CoA derived from oxida-
tions of glucose, amino acids and fatty acids enters for complete
oxidation. However in dividing cells or cancers, the TCA cycle is used
as an anabolic hub because its intermediates are used as biosynthetic
precursors of amino acids, nucleotides and lipids, in a process known
as “cataplerosis” [26]. Mutations of certain TCA cycle enzymes such as
isocitrate dehydrogenase (IDH), succinate dehydrogenase (SDH) and
fumarate hydratase (FH) can contribute to tumorigenesis [27,28]. In
certain cancers especially glioma, mutations of the cytosolic (IDH1) or
mitochondrial (IDH2) enzymes create a novel function in which they
can further convert a-ketoglutarate to 2-hydroxyglutarate (2-HG)
[29]. 2-HG is an oncometabolite because it acts as an inhibitor of
a-ketoglutarate-dependent dioxygenase involved in DNA and histone
demethylation. Inhibition of such a process can lead to tumorigenesis
[2,29]. Similarly, mutations of the genes encoding succinate dehydroge-
nase (SDH) and fumarate hydratase (FH) result in the accumulation of
succinate or fumarate, respectively. These two metabolites are inhibi-
tors of prolyl hydroxylase (PHD), which hydroxylates hypoxia-
inducible factor 1o (HIF1av), resulting in its degradation by proteolysis.
Therefore elevated levels of both metabolites stabilize HIF1a, activating
glycolysis in cancers [27].

Cancers also require the replenishment of TCA cycle intermediates
after their removal for biosynthetic purposes. In order to prevent a dis-
continuity in the supply of biosynthetic precursors, there is a biochem-
ical pathway known as “anaplerosis” which is composed of two main
reactions, glutaminolysis [30] and pyruvate carboxylation [31].
Glutaminolysis is the conversion of glutamine to glutamate by gluta-
minase (GLS) before glutamate is further converted to a-ketoglutarate
in the TCA cycle by glutamate dehydrogenase. The second anaplerotic
reaction is the carboxylation of pyruvate to oxaloacetate by pyruvate
carboxylase (PC). Different cancers use these two different anaplerotic
reactions to certain extents, to support biosynthesis by up-regulation
of either or both enzymes during tumorigenesis [32-35]. Inhibition of
these two enzymes results in impaired growth of cancers accompanied
with marked reduction in biosynthesis of lipids, nucleotides and amino
acids [33-36]. Recent studies show that a gluconeogenic enzyme,

phosphoenolpyruvate carboxykinase (PEPCK) also plays an important
role in supporting biosynthesis of tumors [37-39]. PEPCK catalyzes a
further conversion of oxaloacetate to phosphoenolpyruvate (PEP).
This enzyme occurs in two isoforms: the cytosolic (PEPCK1 or PEPCK-
C) and the mitochondrial (PEPCK2 or PEPCK-M) isoforms. Colon cancer,
for instance, uses PEPCK1 [39] while non-small cell lung cancer uses
PEPCK2 [37,38] to supply PEP to support their growth, respectively.
However, PEP formed by both enzymes is not only converted to glucose
but also used locally as a biosynthetic precursor of serine and glycine.
Furthermore, elevated levels of PEP also drive the flow of the upstream
glycolytic intermediate glucose-6-phosphate to enter the PPP for the
synthesis of ribose sugar required for nucleotide synthesis [37,39]. In-
terestingly, this function becomes more obvious when the nutrient
that supports the growth of a tumor is shifted from glucose to glutamine
[37,39]. This adaptive mechanism enables cancers to grow and survive
under glucose-limited conditions.

1.4. Amino acid synthesis

Amino acids serve as not only the building blocks of polypeptides,
but also the precursors of nucleotides. As cancers require large amounts
of proteins and nucleic acids, it is not surprising that up-regulation of
key enzymes involved in biosynthesis of certain amino acids were ob-
served in cancer cells. Serine and glycine are essential for synthesis of
nucleotides as deprivations of these two amino acids endogenously or
exogenously, retard growth of many cancers [40]. De novo synthesis of
these two amino acids is started from 3-phosphoglycerate (3-PG), an
intermediate in the glycolytic pathway. 3-PG is then converted to
serine via a three-step reaction, in which 3-PG is first converted to 3-
phosphohydroxypyruvate by phosphoglycerate dehydrogenase
(PHGDH). 3-phosphohydroxypyruvate is further converted to serine
by another two reactions catalyzed by phosphoserine aminotransferase
(PSAT) and phosphoserine phosphatase (PSPH) [40]. As only 10% of 3-
PG in the glycolytic pool enters serine and glycine biosynthesis, this
seems paradoxical with such a high demand for both amino acids dur-
ing the rapid proliferation of cancers. However, many cancers cope
with this limitation via an aberrant activation of the serine biosynthetic
pathway by increasing the copy number of the PHGDH gene or up-
regulating its mRNA expression, resulting in much a higher rate of ser-
ine synthesis [41,42]. Serine is further converted to glycine by the serine
hydroxymethyl transferase (SHMT), a folate-dependent pathway [40].
SHMT is comprised of two isoforms, SHMT1 which is expressed in the
cytoplasm whereas SHMT2 is expressed in mitochondria. It remains
unclear about the functional redundancy of these two isoforms as
inhibiting activity of either isoform or suppressing their expression re-
tards growth in different cancer models [43-45]. Nevertheless, both
SHMT1 and SHMT2 are associated with the folate cycle, which is in-
volved in one-carbon metabolism including synthesis of methionine
and nucleotides, and in histone methylation. Thus, disruption of both
SHMT isoforms can potentially perturb these metabolic processes [40].

1.5. Lipid biosynthesis

Fatty acids especially in phospholipids are important components of
the plasma membrane. In cancers, fatty acids are mainly synthesized
through the de novo pathway either from glucose or glutamine via gly-
colysis or glutaminolysis, respectively. However, the latter pathway
plays a more significant role in this process [46]. As mentioned earlier,
glutamine enters the TCA cycle via glutamate before being converted
to o-ketoglutarate by glutamate dehydrogenase. This glutaminolytic
flux increases TCA cycle intermediate pools, enabling citrate to leave
the mitochondria to enter the cytosol where it is decarboxylated to ox-
aloacetate and acetyl-CoA by the ATP-citrate lyase (ACL). It has been re-
ported that ACL expression and activity are elevated in many cancers.
Thus, inhibition of its activity impairs lipid synthesis and is accompanied
by reduced cell growth and survival [47,48]. The cytosolic acetyl-CoA
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then serves as a precursor for long chain acyl-CoA synthesis, which is
highly regulated by two enzymes, acetyl-CoA carboxylase 1 (ACC1)
and fatty acid synthase (FAS). ACC1 catalyzes the carboxylation of
acetyl-CoA to form malonyl-CoA, a building block that donates two car-
bon units for fatty acid synthesis. ACC1 activity can be modulated by a
reversible phosphorylation. Among other kinases, the AMP-activated
protein kinase (AMP) can phosphorylate ACC1, transforming it into an
inactive form while protein phosphatase 1 dephosphorylates ACC1
back to an active form [49]. The phosphorylated ACC1 is subjected to a
second mode of regulation through interaction with a DNA repair pro-
tein, BRCA1 which is highly expressed in breast tissue [49]. This interac-
tion sequesters phosphorylated ACC1 from being dephosphorylated
thereby blocking fatty acid synthesis [50,51]. A high incidence of the on-
cogene BRCA1 mutations is associated with breast cancer because these
mutations not only result in the loss of BRCA1 function as a DNA repair
protein but also perturbs its interaction with phosphorylated ACC1,
freeing it to be dephosphorylated and subsequently stimulate lipogene-
sis in breast tissue [51,52]. ACC1 is one of the anti-cancer drug targets
because inhibiting its expression or activity induces apoptosis in many
cancers [53-55]. FAS has also been reported to be aberrantly activated
in many cancers [56-58]. Like ACC1, inhibition of FAS expression or
activity markedly reduces cancer growth [52,59,60].

1.6. Metabolic pathway crosstalk contributing to tumorigenesis

Although the crosstalk of signaling pathway is well implicated in tu-
morigenesis [61], only a few examples of metabolic pathway crosstalk
are reported in certain cancers. As mentioned earlier, accumulation of
succinate in cancers bearing mutations of succinate dehydrogenase
gene not only results in the inactivation of HIF1q, contributing to War-
burg effect but this also promotes tumorigenesis by attenuating the pro-
duction of glutathione, an important redox protein which functions in
detoxifying reactive oxygen species (ROS). Several cancers overproduce
ROS in order to enhance PI3K, MAPK and NF-kB signaling pathways that
support cellular proliferation [1]. Elevated levels of fumarate are found
to react with glutathione to form succinated glutathione thereby reduc-
ing the NADP/NADPH-couple regeneration system required to elimi-
nate ROS [62]. Similar reduction of glutathione levels was also
observed in glioma bearing IDH1 or IDH2 mutation which accumulates
2-HG, suggesting that this oncometabolite may support ROS formation
through attenuating the anti-oxidant system [63]. Warburg effect may
also enhance tumorigenesis via conversion of fructose-6-phosphate
into hexosamine biosynthetic pathway, yielding O-linked N-
acetylglucosamine that can enhance mitogenic signaling pathway [64].

1.7. Coordinate regulation of metabolic reprogramming in cancers by
oncogenic transcription factors

Having outlined different pathways and mechanisms of metabolic
reprogramming in cancers, an important question remains: what con-
trols this metabolic reprogramming in cancers? Three major TFs, name-
ly c-MYC, hypoxia inducible factor 1o (HIF1at) and p53 are responsible
for simultaneous up-regulation of the above key metabolic enzymes
[65]. Aberrant expression of c-MYC is observed in more than 50% of can-
cers and it is one of the most amplified oncogenes. The c-MYC regulates
various biological processes including proliferation, apoptosis and met-
abolic reprogramming [66]. Elevated c-MYC levels in turn bind to its tar-
get gene promoters, which contain a canonical E-box (CANNTG)
element, resulting in increased mRNA transcripts. In normal situations,
c-MYC expression is tightly regulated i.e., its expression is high during
cell division but rapidly declines during cell cycle arrest [67]. In situa-
tions of metabolic alterations, c-MYC targets expression of genes
encoding GLUT1, HK2, PDK1 and GLS1 [65,66,68].

The hypoxia-inducible factor (HIF1at), another key oncogenic TF, is
functionally coordinated with c-MYC in controlling metabolic
reprogramming in cancers [69]. HIF1« exists into two forms: the non-

hydroxylated and the hydroxylated forms. In the presence of oxygen,
HIF1ae undergoes hydroxylation by prolyl hydroxylase, making it
prone to proteolysis. However, when oxygen concentration is low,
HIF1a escapes hydroxylation, allowing it to enter to the nucleus
where it is hetero-dimerized with HIF1@3 and binds to the hypoxia-
responsive element (HRE) in the promoters of genes whose products
are involved in angiogenesis and metabolism [3]. HIF1a's metabolic tar-
gets appear to overlap with those of c-MYC, including GLUT1, GLUT3,
HK1, HK2, aldolase A, phosphoglycerate kinase (PGK), lactate dehydro-
genase (LDH), monocarboxylic acid transporter 4 (MCT4), PDK1 and
PKM2 [65,70].

Unlike c-MYC and HIF1q, p53 functions as a tumor suppressor pro-
tein. Expression of p53 is highly regulated as its expression is essentially
low in unstressed cells whereas it becomes highly expressed under
stress conditions such as oxidative damage, nutrient limitations and
DNA damage [67]. De-regulation of p53 expression caused by mutations
is associated with more than half of all cancers [71]. As a transcription
factor, p53 binds to the promoter of other tumor suppressor genes
such as those involved in cell cycle arrest, DNA repair, apoptosis and
metabolism. In addition, p53 can regulate turnover of many proteins in-
dependently of transcription [67]. In regard to its regulatory roles on
metabolism, p53 inhibits expression of GLUT1, GLUT3, GLUT4, phospho-
glycerate mutase 1 (PGM 1), and thus blocking excessive entry of glu-
cose through glycolytic flux [67,72]. p53 inhibits expression of MCT1
and PDK2 while activates expression of PDH1c subunit of PDH complex
thereby coupling glycolysis with oxidative phosphorylation [73]. The
p53 also down-regulates biosynthesis by decreasing the activity and
abundance of glucose-6-phosphate dehydrogenase (G6PD) [74] and de-
creasing expression of malic enzymes ME1 and ME2 [67,73]. As these
three enzymes provide NADPH for biosynthesis, reducing their expres-
sion or activities would favor oxidative rather than biosynthetic path-
ways. In addition to controlling pathways that provide NADPH, p53
can also regulate de novo fatty acid synthesis via down-regulating the
expression of the sterol regulatory protein 1c (SREBP1c), which is a
key transcriptional factor controlling expression of ACL and FAS genes
[73]. Therefore, loss-of-function mutations of p53 in cancers literally
shift their metabolic phenotype from an oxidative fate to aerobic glycol-
ysis and anabolism. The p53 protein also targets degradation of PEPCK
and G6Pase in non-small cell lung cancer [75,76].

1.8. Expanding the repertoire of miRNA target of the alterative expressed
metabolic genes in cancer using computational prediction

It has now become clear that many cellular genes including those
encoding metabolic enzymes are regulated by miRNAs [13]. Several
studies have identified regulatory miRNAs of the key enzymes responsi-
ble for metabolic reprogramming while some miRNAs regulate the ex-
pression of oncogenic TFs (e.g. c-MYC, HIF1a and p53), which in turn
regulate expression of those metabolic enzymes. Despite an increasing
number of studies on regulation of metabolic genes through miRNAs
in cancers, it is clear that the list of studies on miRNA-regulated meta-
bolic enzymes in cancers is nowhere close to the completion. Further-
more, it is still not known whether some key metabolic enzymes e.g.
HK1, Aldolase, MCT4, SHMT2, ACC1, can be regulated by certain
miRNAs. Thus, here we sought to explore the repertoire of miRNAs
that target expression of key enzymes involved in metabolic
reprogramming in cancers by combining known interactions from liter-
ature (Table 1) and computational prediction (Supplementary Tables S1
and S2). One of the most important challenges of computational predic-
tion of miRNA is the specificity of the prediction algorithms, which are
known to give a large number of false positives. To this end, we exam-
ined whether the prediction miRNAs are consistent with the functional
validation shown in Table 1, and the predicted miRNA-mRNA interac-
tions that would potentially be worth following up experimentally.

The most frequently used algorithms and webtools currently avail-
able for miRNA prediction include miRanda-mirSVR [77,78], DIANA-
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Table 1
A list of 40 metabolic enzymes that are involved in metabolic reprogramming in cancers.
Enzyme Full name Gene miRNA References
Aerobic glycolysis, Warburg effect
GLUT1 Glucose transporter 1 NM_006516 miR-1291 [123] [124-126]
GLUT2 Glucose transporter 2 NM_000340 N/A [124]
GLUT3 Glucose transporter 3 NM_006931 miR-195-5p [127], [124,129,125,126]
miR-106-5p [90,128]
GLUT4 Glucose transporter 4 NM_001042 N/A [124,130,125]
HK1 Hexokinasel NM_000188 N/A [3]
HK2 Hexokinase2 NM_000189 miR-143 [131] [132] [133,3]
Aldolase A Aldolase A NM_000034 N/A [134]
PGAM1 Phosphoglycerate mutase 1 NM_002629 N/A [135]
PKM2 Pyruvate kinase 2 NM_002654 miR-122, miR-133a, [139,140]
miR-133b,miR-326
[136-138]
LDHA Lactate dehydrogenase A NM_005566 miR-21 [141] [142,143]
MCT1 Monocarboxylate transporter 1 NM_003051 miR-124 [144] [145]
MCT4 Monocarboxylate transporter 4 NM_004696 N/A [145,146]
Pentose phosphate pathway
G6PD Glucose-6-phosphate dehydrogenase NM_000402 miR-206, miR-1 [120] [20]
TKTL1 Transketolase-like1 NM_012253 miR-206, miR-1 [120] [19]
Gluconeogenesis
PCK1 Phosphoenolpyruvate carboxykinase 1 NM_002591 N/A [39]
PCK2 Phosphoenolpyruvate carboxykinase 2 NM_004563 N/A [38,37]
Tricarboxylic acid (TCA) cycle
PDK1 Pyruvate dehydrogenase kinase 1 NM_002610 N/A [147]
PDH Pyruvate dehydrogenase NM_003477 miR-26a [148] [149]
IDH1 Isocitrate dehydrogenase 1 NM_005896 N/A [28]
IDH2 Isocitrate dehydrogenase 2 NM_002168 miR-183 [150] [28]
SDH-B Succinate dehydrogenase complex iron sulfur subunit B NM_003000 N/A [27]
SDH-C Succinate dehydrogenase complex subunit C NM_003001 N/A [27]
SDH-D Succinate dehydrogenase complex subunit D NM_003002 miR-210 [151] [27]
FH Fumarate hydratase NM_000143 N/A [27]
ME1 Malic enzyme 1 NM_002395 N/A [152]
Glutaminolysis
GLS1 Glutaminase 1 NM_014905 miR-23a, miR-23b [118] [32]
GLS2 Glutaminase 2 NM_013267 miR-23a, miR-23b [118] [153,154]
Serine, Glycine and one carbon metabolism
SHMT2 Serine hydroxymethyltransferase 2 NM_005412 miR-193b [90,155] [156]
SHMT1 Serine hydroxymethyltransferase 1 NM_004169 miR-198 [157] [156]
MTHFD2 Methylenetetrahydrofolate dehydrogenase NM_006636 miR-9 [158] [156]
MTHFD1L Methylenetetrahydrofolate dehydrogenase 1-like NM_015440 miR-9 [158] [156]
PHGDH Phosphoglycerate dehydeogenase NM_006623 N/A [41]
PSAT1 Phosphoserine aminotransferase 1 NM_021154 miR-340 [159] [160,161]
PSPH Phosphoserine phosphatase NM_004577 N/A [161]
GNMT Glycine-N-methyltransferase NM_018960 N/A [162]
de novo fatty acid synthesis
CIC Citrate carrier NM_005984 N/A [163]
ACLY ATP citrate lyase Y NM_001096 N/A [152,164]
ACC1 Acetyl-CoA carboxylase 1 NM_198836 N/A [152,165]
FASN Fatty acid synthase NM_004104 miR-320 [166] [58,56,57]
SCD Stearoyl-CoA desaturase NM_005063 N/A [152]

Abbreviation: not available (N/A).

microT-CDS [79], TargetScan [80,81], Pictar [82], miRDB [83], and RNA22
[84], which use common features such as seed match and sequence con-
servation across the species [85]. In brief, the seed match is a perfect
pairing between miRNA and the 3’-UTR of mRNA targets, which usually
starts at the 5’ end of miRNA at the positions 2 to 8. There are four main
classes of canonical seed matches including (1) 6-mer (6 perfect nucleo-
tide matches between miRNA at positions 2 to 7 and mRNA target),
(2) 7mer-A1 (perfect match of miRNA at positions 2 to 7 with an A oppo-
site position 1 of mRNA target), (3) 8-mer (perfect seed paring of miRNA
at positions 2 to 8 with an A opposite position 1 of mRNA target) [86] and
(4) 7mer-8mer (perfect match of miRNA at positions 2 to 8 and mRNA
target) [87,88]. However, these different seed matches do not reflect the
degrees of gene expression suppression by miRNAs [89].

With an aim to explore other potential miRNAs that may regulate
key metabolic enzymes listed in Table 1, we choose two widely-used

miRNA prediction tools that utilize different features to predict miRNA
of the target mRNAs of interest, TargetScan7.0 and miRanda-mirSVR.
The former predicts the miRNAs targeting a given gene based on the
seed match and sequence conservation across the species, whilst the
latter uses free energy binding between miRNA and mRNA targets,
and the site accessibility for miRNA target prophecy [85]. The
context ++ scores and mirSVR scores were used as the parameters to
indicate the confidence of predictions from the TargetScan7.0 and mi-
Randa-mirSVR, respectively. The context 4+ score is the sum of contri-
bution from 14 features [81], such as site-type, 3’ pairing, the local AU
content [89], target site abundance, seed-pairing stability [80]. The
mirSVR scores, on the other hand, can also rank the empirical probabil-
ity of down-regulation using supervised machine learning of mRNA ex-
pression changes as a result of specific microRNA transfection [78]. In
short, the more negative context 4+ scores and mirSVR scores from
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the predictions reflect the higher “likelihood” that the mRNA is targeted
by miRNA, and thus down-regulated gene expression.

As shown in Fig. 2A, TargetScan7.0 predicted that 40 metabolic en-
zymes shown in Table 1 are regulated by 299 miRNAs (blue circle). Six-
teen out of 40 metabolic enzymes were predicted to be regulated by 113
miRNAs. However, only 8 out of these 113 miRNAs have been reported
to functionally regulate expression of these enzymes, leaving the other
105 miRNAs (yellow) whose functional verification is yet to be elucidat-
ed. We also noted that there are 14 miRNAs (red) that have been
experimentally verified to regulate this set of metabolic genes but
elude prediction by TargetScan7.0, suggesting a considerable degree of
false negatives. TargetScan7.0 also predicted 186 additional miRNAs
that are likely to regulate another 24 metabolic enzymes, whose regula-
tory miRNAs have not been studied. The list of miRNAs that are
predicted to regulate theses 40 metabolic enzymes can be found in
Supplementary Table S1.

In a similar trend but not identical, miRanda-mirSVR predicted that
there are 395 miRNAs that can potentially regulate these metabolic en-
zymes (Fig. 2B). One hundred and seventy three miRNAs were predict-
ed to regulate 16 metabolic enzymes while the other 222 miRNAs
(gray) were predicted to target another 24 metabolic enzymes which
are currently unknown to be regulated by any miRNAs. Within those
16 metabolic enzymes regulated by 173 miRNAs, only 14 miRNAs
were independently reported to regulate expression of these metabolic
enzymes while the functional verifications of the other 159 miRNAs
(pink) are yet to be elucidated. Similar to the TargetScan7.0 prediction
but with fewer number of false negatives, eight additional miRNAs
have been reported to functionally regulate expression of these 16
metabolic enzymes but were not detected by the miRanda-mirSVR
prediction.

Due to the issues of sensitivity and specificity of miRNA prediction
algorithms mentioned earlier, we generated boxplots of the
context ++ scores (Fig. 2C) and mirSRV scores (Fig. 2D), in three
miRNA groups: (1) experimentally verified miRNAs with prediction,
(2) miRNAs predicted for target genes with other verified miRNAs, but
their own functions are yet to be validated, and (3) the predicted
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miRNAs of metabolic enzymes whose functions have not be validated
for any miRNA before (as outlined in the Venn diagrams). We did in-
deed observe a modest trend that the validated miRNAs have lower
context + + scores, than predicted miRNAs without validation; howev-
er, the number of miRNAs in each group is likely to be too small to give a
statistical significant result. Similarly, the same can be said about the
scores assigned to mirSVR prediction, indicating that confidence scores
from the prediction might be useful as an extra indicator to extract the
predicted miRNA that are likely to be “real” functional miRNAs, and
would be worth further experimental validation.

1.9. MicroRNAs and oncogenic transcriptional regulatory networks

To observe the overall interplay of oncogenic TFs, metabolic en-
zymes, and regulatory miRNAs, we combined the experimentally vali-
dated (Table 1), the experimentally validated miRNA-target data from
miRTarBase [90] and predicted interactions (from the two algorithms
as shown in Fig. 2) into a regulatory network of TFs-metabolic enzymes
and miRNA-TFs using Cytoscape [91], as shown in Figs. 3 and 4. Fig. 3 fo-
cuses on the known miRNAs that regulate expression of metabolic en-
zymes via controlling the expression of oncogenic TFs, whereas we
expand the network to cover both validated and predicted miRNA-
mRNA interactions in Fig. 4. The predicted interactions shown here are
the overlaps of the two algorithms used: TargetScan7.0 and miRanda-
mirSVR, shown as gray dashed edges, whereas the functional verified
miRNA-gene targets from the Table 1 and miRTarBase database [90]
are shown in black solid lines. The edges' colors (blue, red, green and
purple) represent the miRNAs that regulate expression of metabolic
enzymes through the expression of oncogenic TFs (HIF1a, c-MYC,
P53, SREBP1, respectively), as in Fig. 3. The colors of node genes in Fig.
4 are classified by metabolic pathways: pale blue color for anaerobic gly-
colytic genes; white for enzymes involved in serine, glycine and one car-
bon metabolism; orange for GLS; blue-green nodes for enzymes in the
TCA cycle; pink nodes for enzymes in the de novo fatty acid synthesis;
gray nodes for gluconeogenic enzyme, and purple nodes for enzymes
in the pentose phosphate pathway.
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Fig. 2. Venn diagrams and boxplots representing the association between miRNA prediction scores and their functional validation. The Venn diagrams of TargetScan7.0 (Fig. 2A) and
miRanda-mirSVR (Fig. 2B) show the numbers of validated and predicted miRNAs that regulate metabolic enzymes in cancers. Boxplots illustrate the association of between
context ++ scores (Fig. 2C) or miRanda-mirSVR scores (Fig 2D), and three miRNA groups: (1) experimentally validated miRNAs with prediction (2) miRNAs predicted to target
metabolic enzymes with other verified miRNAs (3) the predicted miRNAs of altered metabolic enzymes whose functions have not been validated for any miRNA before.
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Fig. 3. Regulatory network of experimentally verified miRNAs and oncogenic transcription factors controlling metabolic reprogramming in cancers. The figure shows the integration of

experimentally validated regulatory network of TFs-cancer metabolic genes and miRNAs-TFs.

Overall, our miRNAs and oncogenic transcriptional regulatory net-
work depicts individual “modules” of post-transcriptional regulation
by miRNA via major drivers of metabolic reprogramming in cancers,
acting as hubs that link multiple incoming miRNAs (yellow nodes,
Fig. 3) that can bind and suppress transcription of these oncogenes, to
their downstream metabolic gene targets (blue nodes). For instance,
the expression of c-MYC (red node in Fig. 3, and interaction between
miRNA and targeting metabolic genes via c-MYC are in red lines in
Fig. 4) is regulated by let-7a in Burkitt Lymphoma [92], miR-145 in
non-small cell lung cancer [93], let-7g and miR-744 in hepatocellular
carcinoma cells [94,95], miR-34 in prostate cancer cells [96], miR-135b
in osteosarcoma cells [97], miR-155 in gastric carcinoma cells [98],
miR-320b in colorectal cancer [99] and miR-451 in head and neck squa-
mous cell carcinoma [100]. Suppression of these miRNAs contributes to
overexpression of key metabolic enzymes in these tumors. Similarly,
HIF1a ( dark blue node) expression is regulated by several miRNAs in-
cluding miR-17-92 in lung cancer cells [101], miR-519c and miR-18a in
breast and lung cancer cells [102,103], miR-22 in colon cancer cells
[104], miR-199a in non-small cell lung cancers [105] and miR-429 in
human endothelial cells [106]. Ectopic expression of these miRNAs re-
duces the expression of vascular endothelial growth factor (VEGF), a
crucial transcriptional target of HIF1a, thereby decreasing angiogenesis,
a process of blood vessel formation required for tumor growth and
metastasis [107]. Likewise, p53 (green node), a tumor suppressor
is also post-transcriptionally regulated by several miRNAs such as
miR-25 and miR-30d in myeloma cells [108], miR-125a in breast and
hepatoblastoma cells [109], miR-125b in neuroblastoma and lung
fibroblalst cells [110], miR-504 in breast and colon cancer cells [111],
miR-1285 in neuroblastoma, hepatoblastoma and breast cancer cells
[112], miR-33 in hematopoietic stem cells [113] and miR-380 in neuro-
blastoma cells [114]. Tight regulation of these miRNAs results in
substantial expression of p53 which then leads to cell cycle arrest,
thus maintaining cells in the non-proliferative state [115]. In contrast,

an aberrant overexpression of these p53-target miRNAs results in the
down-regulation of p53, causing malignancy. Because this group of
miRNAs exerts its effect on the oncogenic transformation, they are gen-
erally now classified as the “oncomiR” miRNAs [116].

In addition to these three oncogenes, the sterol regulatory element
binding protein (SREBP1, purple node) is also involved in metabolic
reprogramming. SREBP1 is a TF that regulates expression of liver type-
pyruvate kinase (PKL) and lipogenic enzymes, ACL, ACC and FAS, thus
allowing de novo fatty acid synthesis from glucose in liver. Cancers
also use SREBP1 to up-regulate expression of these lipogenic enzymes
to support fatty acid synthesis. Similar to c-MYC, HIF1a and p53, ex-
pression of SREBP1 by itself is also regulated by miRNAs. miR-185 and
miR-342 play important role in regulation of SREBP1 expression by di-
rect binding to the 3’UTR of its mRNA [117]. Of particular interest,
most lipogenic enzymes are co-regulated by more than one TF. For
example ACL and ACC1 are regulated by both SREBP1 and p53, while
FASN is regulated by SREBP1, p53 and c-MYC. Expression of HK1 is co-
regulated by HIF1a and p53 while that of LDHA and PKM2 are co-
regulated by HIF1a and ¢-MYC. GLU1, HK2 and ALDOA are the only
three enzymes that are regulated by p53, HIF1ae and c-MYC. Interesting-
ly, the expression of certain miRNAs that regulate these metabolic en-
zymes can also be regulated by an oncogenic TFs. Gao et al. [118]
showed that c-MYC indirectly regulates GLS expression in B lymphoma
and prostate cancer by suppressing the expression of miR-23a/b that di-
rectly regulates the expression of GLS. Kim and coworkers also demon-
strated that p53 blocks the expression of HK1, HK2, glucose-6-
phosphate isomerase (GPI) and PDK1 by inducing miR-34a expression
which in turn, down-regulates the expression of the above four en-
zymes [119].

Looking at the expanded miRNA-mRNA interaction networks (Fig.
4), we observe a global overview of how metabolic genes involving can-
cer progression are regulated by miRNA through their direct interaction
(black lines for validated interactions and gray lines for those predicted
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Fig. 4. Regulatory network of miRNAs and oncogenic transcription factors controlling metabolic reprogramming in cancers. The figure shows direct and indirect miRNAs-metabolic genes
interaction. The miRNAs that have already verified their regulatory function show in solid edges whereas the dash edges represent the overlap miRNAs from predictions only. In addition,
direct interaction of experimentally verified miRNAs and gene targets are showed in black edges whilst the color edges (blue, green, red and purple) illustrate the interaction of miRNAs
and cancer metabolic genes via oncogenic transcription factors. Blue edges represent the regulation of miRNA mediated HIF1c, green edges represent the regulation of miRNA mediated
p53, red edges represent the regulation of miRNA mediated c-MYC and the purple edges represent the regulation of miRNA mediated SREBP1. The pale blue circle nodes show the
anaerobic glycolytic genes, white circle nodes show genes in serine, glycine and one carbon metabolism, orange circle nodes show genes in glutaminolysis, pink circle nodes show
genes in de novo fatty acid synthesis, purple circle nodes show genes in PPP pathways, gray circle node is PCK1 and the blue-green nodes show genes in TCA cycle. High resolution of

the figure with complete labels can be found in Fig. S1.

by TargetScan7.0 and miRanda-mirSVR), or through oncogenic TFs
(colored edges). We have seen notable miRNAs such as miR-23a/b
that directly control glutaminolysis, whereas the miR-1 and miR-206
are responsible for regulation of the PPP pathway genes, G6PD and
TKTL1 [118,120]. The overall network also highlights the “hub”
miRNA. miR-429, a tumor suppressor that down-regulates almost all
genes in anaerobic glycolytic pathway (e.g. GLUTSs) via the oncogenic
TF HIF1ow. The anaerobic glycolytic genes themselves are also targeted
by several other miRNAs such as miR-22, miR-199a, miR-17-92 via
HIF1a (blue edges), miR-30d, miR-25, miR-125a/b, miR-1285 via p53
(green edges), and miR-451, miR-155, let-7a, let-7g via c-MYC (red
edges). The network also demonstrates other relationships between
metabolic pathways and miRNA regulation via TFs. For instance, three
out of five genes in de novo fatty acid synthesis pathway (ACC1, ACLY,
and FASN) share regulation by miRNAs via p53 and SREBP1. The genes
in the serine, glycine and one carbon metabolism pathways (white
nodes) heavily rely on the regulation of miRNAs via c-MYC. Post-
transcriptional regulatory networks have demonstrated intricate regu-
lation of metabolic genes by different miRNAs [13,121,122]. Here, we
aim to provide a detailed regulatory network of metabolic genes
under direct control of miRNAs, or oncogenic TFs regulated by miRNAs.
The high resolution network with complete labels can be found in Sup-
plementary material (Fig. S1 and Table S3). Such overall organization of
metabolic gene expression regulation cannot be observed by studying
miRNAs, TFs, and target genes individually. Saying that, we note that
the current version of network relies on the accuracy of the two

prediction algorithms used in this study. The known interactions
taken from literature might also be biased toward well-characterized
oncogenes such as p53 or c-MYC.

In conclusion, our review not only provides the current status of un-
derstanding metabolic reprogramming in cancers but also establishes
the regulatory network of miRNA-oncogenic TF-cancer metabolic
genes that would provide benefits for research guidance in this emerg-
ing field the future.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.csbj.2016.05.005.
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Abstract

With the wealth of data accumulated from completely sequenced genomes and other high-throughput experiments,
global studies of biological systems, by simultaneously investigating multiple biological entities (e.g. genes, tran-
scripts, proteins), has become a routine. Network representation is frequently used to capture the presence of these
molecules as well as their relationship. Network biology has been widely used in molecular biology and genetics,
where several network properties have been shown to be functionally important. Here, we discuss how such meth-
odology can be useful to translational biomedical research, where scientists traditionally focus on one or a small set of
genes, diseases, and drug candidates at any one time. We first give an overview of network representation frequently
used in biology: what nodes and edges represent, and review its application in preclinical research to date. Using can-
cer as an example, we review how network biology can facilitate system-wide approaches to identify targeted small
molecule inhibitors. These types of inhibitors have the potential to be more specific, resulting in high efficacy treat-
ments with less side effects, compared to the conventional treatments such as chemotherapy. Global analysis may
provide better insight into the overall picture of human diseases, as well as identify previously overlooked problems,

treatment of the world’s major diseases.

leading to rapid advances in medicine. From the clinicians’ point of view, it is necessary to bridge the gap between
theoretical network biology and practical biomedical research, in order to improve the diagnosis, prevention, and

Keywords: Network biology, Systems biology, Biomedical research, Cancers, Personalized therapy

Background

Next-generation sequencing (NGS) and other high-
throughput experiments highlight one of the most signif-
icant advances in molecular biology over the past decade.
Such technological improvements enable a large number
of molecules, including genes, transcripts, and proteins
to be simultaneously measured in different conditions
over time. This rapid generation of data has transformed
molecular biology from a “data poor” to “data rich”
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discipline, leading to the emergence of systems biology
[1-4]. The key challenges and bottlenecks of the modern-
day molecular biology have shifted from simply gather-
ing information to the analysis and interpretation of large
quantities of data that can now be obtained.

Network representations have been widely used in
physics and social science for decades, and are now
among the most frequently used tools in systems biology.
This technique provides not only a systematic represen-
tation of both the presence and abundance of biological
molecules, but also displays the relationships or interac-
tions between them. Networks have been used to repre-
sent the interactions between different types of biological
molecules, e.g. protein—protein interactions [5-8], and
in various biological systems including transcriptional
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regulation [9-11], signaling [12—-14], and metabolic path-
ways [15, 16]. Analyses of network sub-structures have
revealed fundamental insights into how biological mol-
ecules are organized [17-20], which would not have been
possible by studying individual genes or proteins.

Network representation and analysis has been success-
fully applied to study many systems in molecular biol-
ogy [21]; however, the use of these tools in translational
medicine and drug discovery is relatively new [22-24].
This might be due in part to the knowledge and under-
standing gaps between clinicians and systems biologists.
By convention, clinicians typically focus on specific sets
of key genetic markers associated with diseases, to iden-
tify the most probable drug targets. In contrast, systems
biologists have strong computational and analytical skills,
but frequently lack hands-on experimental experience.
The lack of interaction of systems biologists with patients
can prevent a full appreciation of the complexity of the
problems and hindrances in biomedical research [25, 26].
In this review, we aim to improve the understanding of
challenges in biomedical research and establish a com-
mon ground between clinicians and systems biologists
to further promote the application of network biology in
translational medicine.

Network biology in a nutshell

What are networks; what do they represent?

We first outline the fundamental concepts of a network
representation. In general, a network represents the pres-
ence of objects or entities in a system as “nodes’, and the
relationships or interactions among the nodes are called
“edges” (Fig. 1). In biology, nodes can represent biological
molecules such as genes, proteins, and ligands, or even
larger entities such as cells or individual humans. Edges
represent physical interactions or contacts between bio-
logical molecules, biochemical processes between sub-
strates and products, genetic interactions between genes,
and in some cases, interactions between cells or individ-
ual organisms.

Biological information described in a network is not
restricted to the presence of nodes and their relation-
ships. The size of node, for instance, can reflect abun-
dance of biological molecules (e.g. gene expression
levels). Nodes can also be drawn in different shapes and/
or colors according to the classification of interest (e.g.
gene/protein family). Likewise, the thickness of an edge
or the distance between nodes may represent the fre-
quency or strength of pairwise interaction (e.g. affinity of
protein—protein interaction); whereas colors can indicate
different types of interactions (e.g. physical or genetic
interaction). In addition, edges can be directional or
non-directional, solid or dotted, depending on the types
of interactions. Thus, networks are information-rich
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representations, which are widely used to summarize,
visualize, and analyze large-scale datasets obtained from
high-throughput experiments. To give an overview of the
current application of networks in biomedical-related
fields, here we review two major types of biological
networks.

Interaction networks

We first illustrate the components of interaction net-
works, where the edges represent a “direct” relationship
between nodes (Fig. 1, left). For instance, protein inter-
action networks, i.e. interactomes, describe physical
interactions between proteins, usually obtained from
high-throughput screening techniques such as yeast-two
hybrid [6, 27], or affinity purification followed by mass
spectrometry [5, 28]. In humans, analyses of protein—
protein interaction networks have shown that dysfunc-
tional interactions can lead to several diseases including
neurological disorders such as ataxias [29], autism [30],
several types of cancers including breast [31] and colo-
rectal cancers [32], acute lymphoblastic leukemia [33], as
well as other inheritable genetic diseases [34—37].

Transcriptional regulation networks (also known as
Gene Regulatory Networks, GRNs) are widely used to
illustrate the binding events of regulatory proteins, such
as transcription factors, to the promoters of targeted
genes, and this technique has been employed in the anal-
ysis of bacteria [38], budding yeasts [9], worms [39], and
embryonic stem cells [40, 41]. GRNs are directional, and
the relationship between two nodes is represented by
an arrow starting from a regulator and pointing toward
a targeted gene. Mis-regulation of gene expression leads
to various diseases especially cancers, as seen in the
genome-wide transcription network of the vertebrate
transcription factor SOX4 [42], and the androgen recep-
tor, a transcription factor that regulates the onset and
progression of prostate cancer [43].

Interaction networks have also been used to describe
the binding and affinity of ligands or small molecules to
targeted proteins. As seen in a drug-target network [44],
a list of drugs approved by the Food and Drug Admin-
istration (FDA) were linked to proteins according to
drug-target binary associations. The analysis of these
networks revealed that many drugs have overlapping
but not identical sets of targets. In addition, the network
analysis indicated that new drugs tend to be, at least
partly, linked to well-characterized proteins already tar-
geted by previously developed drugs. This suggests that
the pharmaceutical industry might be shifting toward
polypharmacology, to systematically address complex
diseases using multiple drugs aimed at multiple specific
targets in related pathways to improve treatment efficacy
[45, 46].
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Fig. 1 Interaction networks (Left) represent direct interactions between biological molecules (e.g. transcripts, proteins, and ligands). The interactions
represented include direct physical interaction (e.g. protein—protein, and gene regulatory networks) or transition (e.g. metabolic network). Associa-
tion networks (Right) represent biological molecules that are linked based on their shared and/or common properties (e.g. co-expression)

Metabolic networks differs from other networks
described earlier in the sense that the edges between
two nodes (metabolites) do not represent physical con-
tacts, but instead biochemical reactions that convert
one metabolite to another. Recent studies have recon-
structed and explored genome-scale metabolic networks
in pathogenic microbes including Staphylococcus aureus
[47], M. tuberculosis [48], as well as in human hosts [49].
These analyses may lead to a better understanding of
host-pathogen interactions, and could aid in the design
of drugs that specifically target the metabolic pathways
of microbes and cause minimal interference with those of
the hosts.

Association networks

Networks can also be used to visualize and summa-
rize the overlap in expression profiles for thousands of
transcripts/proteins obtained from high-throughput
methods, such as expression microarray, RNA-seq, or
short-gun proteomics [50]. In co-expression networks,
two or more genes are linked if their products (mRNAs
or proteins) exhibit similar expression profiles, with the
strength/thickness of the edges proportional to how
often the two transcripts are expressed at the same time
and/or place [51, 52]. Co-expression networks are widely
used as a starting point for inferring the cellular functions
of uncharacterized genes, as in many cases, genes with
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related functions show overlapping expression patterns
[53]. New disease markers can be discovered from clus-
ters of genes that are co-expressed with known disease-
associated genes, as they frequently show differential
expression between the normal and diseased populations
[54-57].

Other association networks include drug target-pro-
tein networks [44], where each node is a protein and
two proteins are linked if they are targeted by the same
compounds. These networks can be computationally
derived from the drug-target network described in the
previous section. It provides a complementary protein-
centric view by focusing on the proteins that are often
co-targeted, and might be involved in related pathways.
Conversely, two or more drugs can be linked in a net-
work based on common properties, such as targeting
specific proteins or side effects. It has been shown that
documented adverse side effects could be used to infer
molecular drug-target interactions [58]. This type of net-
work has the potential to predict whether or not exist-
ing and routinely used drugs have additional unknown
off-targets, allowing for these drugs to be candidates for
additional, distinct therapeutic categories. Illustrations
of the potential of alternative uses for current drugs are
sildenafil, losartan, and fenofibrate. Sildenafil (e.g. Via-
gra® Pfizer Incorporated) was initially developed to
treat angina, but a side effect (prolong penile erection)
discovered during clinical trial has become its main use.
The antihypertensive drug losartan blocks angiotensin II
type 1, and is now a candidate drug for preventing aortic
aneurysm complications in Marfan syndrome patients,
through reduction of TGF-p activitiy [59, 60]. Fenofi-
brate, a drug mainly used for controlling cholesterol lev-
els in cardiovascular patients, has also been shown to
suppress growth of hepatocellular carcinoma [61].

Global disease networks offer a useful insight into how
human disorders are related. In the “human disease net-
work” [62], disease nodes are connected if they share at
least one gene with mutations associated with both dis-
eases. Complementarily, the gene-centric version of this
network comprises nodes of disease genes, linked if they
are associated with the same disorders. Such networks
not only represent a framework to visualize all known
disease genotype-phenotype associations, but also reveal
that human diseases are much more genetically related
than previously appreciated [63]. This is highlighted by
a gigantic network comprising over 500 interconnected
human diseases [7].

What can we learn from networks and their properties?

In addition to being a framework for visualizing and
documenting all the known relationships between
nodes, earlier analyses of large-scale networks from
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high-throughput studies have revealed many interest-
ing biologically relevant properties, which cannot be
obtained by studying genes and proteins individually
[64—66]. One of the most frequently observed proper-
ties of biological networks is the connectivity distribution
that follows a power-law distribution, known as “scale-
free networks” This pattern of connections, also known
as the “small world property’, has also been extensively
studied for their statistical features in different types of
networks, including social networks, scientific collabo-
ration networks, and the World Wide Web [67-72]. In
brief, a scale-free network consists of a small number
of “hubs’, i.e. nodes that are connected to a larger num-
ber of other nodes, through different types of interac-
tions aforementioned. In contrast to hubs, the majority
of nodes in the network have much fewer connections.
Several studies have documented similar observation for
biological networks, including protein—protein interac-
tion networks [6, 17, 73] and metabolic networks [15, 74].
Because of their connectivity distribution, scale-free
networks are robust against random deletion of nodes.
That is, the connections between a node and most other
nodes remain intact, if nodes are removed randomly. In
contrast, scale-free networks quickly become non-func-
tional if hubs are targeted. Earlier studies have shown
that many pathogenic organisms have evolved to target
the central components (i.e. hubs) of a human protein
interaction network, and quickly disrupt various cellular
functions, including the immune response [75, 76]. Simi-
larly, one would expect drugs that specifically inhibit the
central components of the regulatory circuits in a patho-
gen will rapidly disrupt their homeostatic processes, and
thus efficiently eliminate them. As a result, these hubs
from pathogenic organisms could be promising candi-
dates for novel drugs. Network connectivity distribu-
tion is one of the better-studied areas, and a number of
insightful reviews and analyses are available [77, 78].
Another interesting example of biological network
properties are the network motifs, which are sets of well-
defined interconnection patterns between nodes [19].
These connectivity patterns, or network sub-circuits,
recur in biological networks at a frequency significantly
higher than in randomized networks [79-81], signifying
their important roles as building blocks for the large-
scale organization of interactions. The patterns and pro-
portions of sub-circuits used in different networks are
distinct, depending on the functionality required under
different conditions. Interestingly, it has been shown in
a yeast transcription regulatory network that sub-net-
work structures, facilitating fast signal propagation (e.g.
single-inputs), are more frequently employed to respond
to external stressors and sudden environmental changes
(e.g. DNA damage or diauxic shift), because a rapid
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response is required against the stressors. In contrast,
motifs that buffer spurious inputs or only respond to per-
sistent signals (e.g. feed-forward-loops) are more suitable
for analysis of normal growth stages (e.g. sporulation)
[18, 82].

Applications of network biology in translational
medicine
Disease network and drug discovery
Using a transistor radio as an analog of a biological sys-
tem, Yuri Lazebnik described how a biologist would fix
a broken radio, assuming no prior knowledge of how
the radio components were wired together [83]. A tra-
ditional biological approach would involve removing
(gene knockout, mutagenesis) each part of a functioning
radio and track the changes in performance (phenotype).
However, the human “radios” are different and repeating
this process on all the components would generate an
enormous amount of data, some of which may be redun-
dant or contradictory. In contrast, a typical engineering
approach would involve systematic reconstruction of
a component diagram from a normal radio (e.g. regula-
tory network), and compare the broken radios with the
normal reference. Can a similar problem-solving mindset
help expedite advances in biomedical research?

If regulatory circuits that control biological activities in
a human body can be represented using a complex net-
work, then a diseased state would be expected to occur
when the normal state of the network is perturbed. Fail-
ure of key components (e.g. mutations in hub genes in
genetic diseases) or external stimuli (e.g. invasion of
pathogens in infectious diseases) would lead to loss of
network integrity. Diseased perturbations can occur at
different regulatory levels, as illustrated in Fig. 2. Firstly,
the absence or malfunction in important network com-
ponents can lead to diseases, such as the loss of a par-
ticular gene. The absence of TBX1, in 22q11.2 deletion
syndrome (DiGeorge syndrome) is responsible for the
majority of characteristic features of this disease [84]
(Fig. 2a, the absence of node is illustrated in red). Simi-
larly, inappropriate levels of gene expression can cause
disorders (Fig. 2b, altered node size). For example, spe-
cific mutations in the FGFR3 gene result in an overac-
tive receptor and lead to the short stature phenotype
observed in achondroplasia [85]. Some diseased states
can be explained by mis-regulation of the interactions
between key components of the network (Fig. 2c, miss-
ing edge), as well as mis-direction (Fig. 2d, mis-directed
edge) or strength (Fig. 2e, altered edge’s thickness) of
interactions. The diseases that can be linked to errone-
ous interactions include neurodegenerative and neurode-
velopmental diseases, genetic disorders, and cancers. In
these cases, mutations in multiple relevant genes lead to
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abnormal protein interactions, and disrupt networks (see
[29, 30, 36, 37] for details).

Some of the long-standing challenges in drug discovery
are lack of specificity, high incidence of adverse effects,
and unpredicted toxicities of new therapeutic compounds
[86]. As a result, modern-day drug discovery employs
more targeted approaches, such as virtual screening and
structure-based drug design to complement conventional
in vitro high-throughput screening [46, 87]. These new
approaches rely on an accurate global understanding of
the mechanisms of diseases. Comprehensive understand-
ing of the network and regulatory circuit for a particular
disease process would help to identify network hubs with
the potential to be novel drug targets.

A network model of cancers

In the past decades, chemotherapy had been the back-
bone for systemic treatment of cancers. When admin-
istered to patients, these drugs target rapidly dividing
cells but lack specificity. Survival of both cancer cells and
normal, rapidly growing cells are impaired, resulting in
side effects such as bone marrow suppression and hair
loss, due to toxicity toward bone marrow cells and hair
follicles, respectively. With recent advances in molecu-
lar biology and genetics, several genetic mutations and
other alterations have been described for various cancers,
and these changes specific to cancer cells have become
an attractive target for novel therapies. The concept of
“driver” and “passenger” mutations in carcinogenesis is
comparable to hubs and peripheral nodes in a network,
whereby a subset of somatic alterations present in each
tumor is a driver of the oncogenic process [88]. Acting
as a complex network hub, these driver mutations pro-
mote cancer cell survival, resistance to apoptosis, and
lead to carcinogenesis (so-called “oncogene addiction”).
This idea is supported by successful identification of new
cancer fusion drivers from the network hubs and their
partners, as the fusion mutation can lead to functional
de-regulation of multiple genes and pathways [89]. Inhi-
bition of the driver mutation has the potential to induce
cell death, and thus becomes a strong candidate for tar-
geted therapy [90]. As cancer cells are addicted to this
driver mutation, specifically blocking these hubs would
theoretically be more effective and less toxic compared to
conventional chemotherapy.

To date, many targeted therapies have been approved
as a standard of care in various cancers with additional
clinical studies underway. Identification of a true driver;
however, remains one of the biggest challenges. Patho-
genesis of cancer development is usually complex and
involves several molecules and pathways. Therefore, tar-
geting one particular molecule or pathway might not be
effective, as cancer cells may utilize alternative pathways
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Healthy Diseased

Fig. 2 Biological networks of healthy (left panel) and diseased (right panel) individuals. Biological components in healthy individuals are represented
as green nodes in a network. Pathological perturbation, represented by red nodes that lead to morbidity, can occur at different stages of the regula-
tion of key components: a presence and absence of key component (green for presence and red for absence), b mis-regulated gene expression,
leading to over- or under-expression (node sizes represent expression levels), € absence or erroneous interactions with interacting partners (dotted
lines represent erroneous interactions), d mis-regulated directions (mis-directed arrows), or e strengths of interactions (thicknesses of arrows and
accompanying numbers denote interaction strengths)
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to promote cell survival. Additionally, with the advent of
next-generation sequencing, the previously well-accepted
but unproven concept of tumor genetic heterogeneity
has been solidly confirmed [91]. Sequential use of more
than one targeted cancer therapy to finish off resistant
clones, such as in the case of tumor recurrence, is likely
to become a trend in cancer genomic medicine [92].

Breast cancer network: mechanisms of resistance

The regulatory network in breast cancer is a particularly
interesting case study, due to its heterogeneous histologi-
cal and molecular features, and clinical manifestations
that lead to multiple molecular sub-types. Based on
gene expression profiling, breast cancer can be catego-
rized into four main molecular sub-types: (i) basal-like
breast cancer (mainly estrogen-receptor (ER)-negative,
progesterone-receptor (PR)-negative, and human epi-
dermal growth factor receptor 2 (HER2)-negative); (ii)
luminal-A cancer (ER-positive or ER+, and histologically
low-grade); (iii) luminal-B cancer (ER+ and histologi-
cally high-grade); and (iv) HER2-positive (HER2+) can-
cer (over-expression and/or amplification of HER2). Each
molecular sub-type has a distinct course of disease pro-
gression and responds differently to specific treatments,
including endocrine therapy, anti-HER2 drugs and cyto-
toxic chemotherapy [93].

As shown in Fig. 3, ER and HER2 can be considered
as hubs of the breast cancer network. The ER+ breast
cancer cells depend on activation of ER by estrogen, a
sex steroid hormone. ER acts as a transcription factor
in the nucleus when bound by estrogen in the genomic
(nuclear) pathway, resulting in tumor cell proliferation
[94]. The signal can also be activated through the non-
genomic (non-nuclear) pathway, where estrogen binds to
membrane-associated ER. Endocrine therapy against the
ER hubs is one of the cornerstones of treatment for ER+/
HER2- breast cancers (luminal-A and B) [95]. The pre-
dominant endocrine therapies are a selective ER modula-
tor (SERM), an aromatase inhibitor (AI), and selective ER
down-regulators (SERD), such as tamoxifen, anastrozole,
and fulvestrant [96].

HER2, a member of the epidermal growth factor recep-
tor tyrosine kinase family, is a hub in the HER2+ breast
cancer network. Over-expressed and/or amplified HER2
is found in approximately 20-30% of invasive breast
cancers [97]. HER2 activates intracellular signaling cas-
cades, leading to tumor cell proliferation. Inhibition of
HER2 through the use of anti-HER2 drugs significantly
prolongs survival in HER2+ breast cancer patients. Cur-
rently, several anti-HER2 drugs are FDA-approved for
HER2+ breast cancer, including trastuzumab, lapatinib,
pertuzumab, and trastuzumab emtansine (T-DM1).
Resistance to each of these specific treatments has been
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observed, as well as interactions between the ER and
HER?2 hubs (Fig. 3) [94, 98]. Since ER+/HER2+ tumor
cells depend on both hubs, endocrine therapy alone
cannot completely inhibit signals with tumor cell pro-
liferation continuing to be activated through HER2 (so-
called “cross-talk”). This has been identified as a primary
mechanism of resistance in ER+/HER2+ breast cancer
patients with a low response to endocrine therapy. With a
better understanding of global gene regulation networks
and the interplay between the two hubs, a combined
treatment of endocrine therapy and anti-HER2 drugs was
proposed. Several phase 3 clinical studies have already
demonstrated increased efficacy of endocrine therapy
in the ER+/HER2+ breast cancer when combined with
anti-HER2 drugs [99-101].

On the other hand, ER+/HER— breast cancer does not
depend on the HER2 hub, and is thus usually responsive
to the first line endocrine therapy. However, resistance
can still occur leading to less effective endocrine therapy.
Blocking the ER hub with any endocrine therapy would
inhibit only the genomic pathway, but not the non-
genomic pathway where abnormal activation of the PI3K/
Akt/mTOR pathway by somatic mutations can result in
either de novo or acquired endocrine therapy resistance
[102, 103]. Understanding this relationship has led to
a second line of endocrine therapy using mTOR inhibi-
tors. A large phase 3 clinical study of metastatic ER+/
HER2— breast cancer patients, who failed the first line Al
treatment, reported longer progression-free survival in a
group treated with a combination of an mTOR inhibitor
and another different AI [104, 105].

Having a comprehensive understanding of the interac-
tions between network components of specific disease
should lead to improved efficacy in treatments, similar
to those elucidated using the breast cancer model above.
Indeed, a number of groups have already begun utilizing
network biology to address different aspects of cancers
with the goal to improve diagnosis and treatment. A model
to identify genes potentially associated with high risks of
breast cancer has been developed by integrating data from
co-expression, biochemical, and protein interaction net-
works. Using this model, Pujana and coworkers success-
fully identified Hyaluronan Mediated Motility Receptor
(HMMR), a hub of the integrated network, as a novel high
risk associated locus [31]. The gene regulatory network
for breast cancer has also been constructed [106]. Taylor
and colleagues merged spatial gene expression informa-
tion with the protein interaction network to highlight the
interactions that are active in specific tissues, where the
interacting partners are also co-expressed [107]. This work
also revealed the loss of key interactions between the net-
work hubs, such as BRCAI and their binding partners, in
patients who died of breast cancer due to mis-regulation
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of the partner proteins. In contrast, the expression of hubs
and their partners were strongly correlated in surviving
patients. The complexity of the disease network is not only
restricted to the gene—gene and gene-drug interactions,
but also hinges upon the interactions between disease/
drug and the host (i.e. genetic background of the patients),
as we discuss in the next section.

From individual network to personalized medicine
As we are approaching the so-called personalized and
precision medicine era, where does network biology fit in
the picture? Figure 4 depicts our view on how networks
can be an important tool to help clinicians understand
the physiological complexity of individual humans, pre-
dict possible failure of certain components that may lead
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Fig. 4 Healthy (top panel) and diseased (bottom panel) individual networks. Healthy individuals might show slight variations in their individual
networks, which also differ over time. However, diseased networks are expected to show greater disparity than that between healthy individuals. In
the example shown, the network component Z is controlled by its upstream components through the interactions of b and d (the molecule Z is a
function of b and d). If the expression of Z is greater than a defined limit (e.g. 1 in this case), morbidity can be predicted (d(2)/dt: change of expres-

to morbidity, and deduce the most suitable preventa-
tive and treatment plans for individual patients. Genetic
variation between human individuals is estimated to be
less than 1% of the human genome, but through sophis-
ticated regulation of genes and other genetic elements,
this small amount of genetic variation accounts for much
greater differences in terms of our appearance, intellect,
and health [108]. On top of genomes, which encode indi-
vidual sets of gene products (e.g. proteins, mRNA), indi-
vidual networks represent the unique interplay between
different components in each patient. Understanding the
extent of variations between individual networks may
allow clinicians to statistically and quantitatively distin-
guish normal variations in healthy individuals (Fig. 4,
upper panel) from critical perturbations that lead to dis-
eases and disorders (Fig. 4, lower panel). Network biology
enables researchers to assess multiple components that
do not show distinguishable differences between healthy
individuals and those with cancers, but are collectively
dysfunctional in cancers. A sub-network in which overall

activity can be discriminated between patients versus
controls has been shown to be a more reproducible prog-
nostic marker of diseases than individual genes in the
sub-network, which are not significantly differentially
expressed [109, 110].

Single nucleotide polymorphisms (SNPs) and other
genetic variations add another dimension of disease-host
interaction to disease networks. SNPs can provide clini-
cians with a good indication on how likely an individual
might be to develop certain genetic diseases, assuming
that all genetic elements associated with diseases are
eventually identified. In addition, networks of individuals
can, in part, aid pharmacogenomic progress by explain-
ing why the efficacy and toxicity profiles for the same
drug may differ in each patient. For instance, tamoxifen
is metabolized by CYP2D6 and variations in this gene
among individuals may affect the response to the drug
[111].

No matter how comprehensive, a genetic map cannot
capture environmental factors (e.g. lifestyle, contact with
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pathogens) that heavily influence biochemical stages. Thus,
outcomes for the interplay between genetics and environ-
ment may be absent in the analysis. Having a network that
combines both the genetic variations and measurable bio-
chemical outcomes, such as gene expression, should assist
in turning conceptual ideas into more quantitative models,
which in turn would enhance the accuracy of prognosis
and predictions of disease progression in each patient (as
demonstrated in Fig. 4). Such a complete individual net-
work may not be possible in the near future; however, we
start to see that the integration of genetic variations and
biochemical outcomes (gene expression and protein inter-
action profiles) has utility in helping identify new disease-
associated marker genes [110, 112, 113].

Thanks to considerable effort and resources the com-
munity has put into developing computational tools for
biological network analysis, we are now well-equipped
with a range of user-friendly software that can be
employed to handle, visualize, and analyze large-scale
datasets. Importantly, the tools that will be particularly
useful for translational medical research need to be able
to combine multiple layer datasets (e.g. genomics, tran-
scriptomics, proteomics, and metabolomics) and/or
heterogeneous datasets (e.g. from different platforms or
formats) [3]. The most commonly known network analy-
sis tools currently available are Cytoscape [114], NAViGa-
TOR [115], VisANT [116], CellDesigner [117], and the
commercial software Ingenuity IPA (Ingenuity Systems
Inc., Redwood City, CA). More recently introduced tools
include NaviCell, which has been developed for online
network visualization and curation [118], and BNOmics
[119], which can be used for inference and visualization
of Bayesian networks of large heterogeneous data. Com-
prehensive guides to network biology tools, as well as
detailed discussion on their key features and functional-
ity can be found in earlier review articles [3, 120].

Conclusions

Network biology provides an opportunity to image a
clear global picture of drug-disease-host interactions and
the biological complexity of diseases more easily from an
unprecedented top-down vantage. This will allow a bet-
ter understanding of the relationships between multiple
genes and other biological entities, as well as identify
the missing links in our knowledge. These strategies are
required to fully grasp the intricacies of diseases, which
cannot be obtained by studying an individual or a smaller
set of genes. The complexity of the therapeutic networks
is ever-growing, and many new nodes are being discov-
ered every day. In the future, some of these nodes may
become new hubs for targeted therapy.
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