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                           เอกสารแนบหมายเลข 2 
Abstract  

 
Project Code : TRG5880067 
 
Project Title : A system-wide analysis of transcriptional regulation in hybrid plants in 
response to temperature change 
 
Investigator : Dr. Varodom Charoensawan et al. Faculty of Science, Mahidol University 
 
E-mail Address : varodom.cha@mahidol.ac.th  
 
Project Period : 2 years 
 
Keywords : Systems Biology, Regulation of Gene Expression, Climate Change, Plant 
Molecular Biology, High-throughput Sequencing 
 
Transcription in eukaryotes is tightly regulated by the interplay between the proteins transcription 
factors (TFs) and nucleosomal histones. It has been demonstrated that the eukaryotic TF Heat 
Shock Factor 1 (HSF1), and the histone variant H2A.Z both play a major role in mediating 
transcription in response to temperature changes, one of the most important external stimuli, 
especially in the light of the extreme environment due to climate changes. It is not clear, however, 
how these two proteins interplay in this important transcriptional regulation process. We investigate 
this long-standing question using a model plant Arabidopsis thaliana (wild-type plants and hybrids). 
Plants have to adapt to fluctuating temperatures both diurnally and seasonally, and thus serve as a 
useful model for this particular genome-environment interaction question. We have generated a 
large-scale dataset of transcriptomes (RNA-seq) and H2A.Z and HSF1 occupancy profiles (ChIP-
seq) of wild-type plants shifted to different ambient temperatures, in order to explore how the local 
and global changes in occupancies of H2A.Z-containing nucleosome and the HSF1 TF, affect 
transcriptional readouts. To investigate the link between the genomic interaction in hybrids and 
temperature changes, we also study the Arabidopsis accessions Col-0, C24 and hybrids grown low 
(22oC) and high (27oC) ambient temperatures. The differential growth rates of the hybrids are 
calculated and linked with corresponding time-course transcriptomic profiles, in order to identify a set 
of genes that control differential growth rate in hybrids and their responsiveness to temperature 
changes. 
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เปลีย่นแปลงอุณหภูม ิ
 
ช่ือนักวิจยั และสถาบนั ดร.วโรดม เจรญิสวรรค ์และคณะ คณะวทิยาศาสตร ์
มหาวทิยาลยัมหดิล 
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ระยะเวลาโครงการ: 2 ปี 
 
ค าหลกั : ชวีวทิยาระบบ, การควบคุมการแสดงออกทางพนัธุกรรม, สภาวะอากาศเปลีย่นแปลง, 
ชวีโมเลกุลในพชื, การหาล าดบัเบสปรมิาณมาก 
 
ทรานสปรปิชนั (Transcription) เป็นขัน้ตอนส าคญัในการแสดงออกทางพนัธุกรรมของสิง่มชีวีติทุกชนิด ซึง่ถูก
ควบคุมด้วยโปรตีนหลายชนิดเช่น ทรานสปริปชัน แฟคเตอร์ (transcription factors, TFs) และ ฮิสโตน 
(histones) ในการควบความการแสดงออกทางพนัธุกรรมเพื่อตอบสนองต่อการเปลีย่นแปลงอุณหภูม ิสิง่มชีวีติ
อาศยั TF Heat Shock Factor 1 (HSF1) และ histone variant H2A.Z ท างานร่วมกนั แต่กลไลในการท างาน
ของทัง้สองโปรตนีนัน้ไม่ชดัเจน ในงานวจิยัชิ้นนี้ผู้วจิยัได้ศกึษาปัญหาดงักล่าวในพชื Arabidopsis thaliana 
(ในพ่อแม่พนัธุ์และในลูกผสม) เนื่องจากสภาวะอากาศที่เปลี่ยนแปลงมผีลกระทบอย่างมากต่อผลผลติทาง
เกษตร ผูว้จิยัใชเ้ทคโนโลยกีารศกึษาขอ้มูลทางชวีโมเลกุลขนาดใหญ่ RNA-seq และ ChIP-seq และไดแ้สดง
ให้เห็นถึงการปฏสิมัพนัธ์ในลกัษณะต่างๆของโปรตีนทัง้สองชนิด และผลของการควบคุมการแสดงออกใน
รปูแบบของระดบั transcription เมื่ออุณหภูมเิพิม่ขึน้ และยงัศกึษาปัญหาดงีกล่าวในลกูผสม ซึง่เป็นหนึ่งในวธิี
ที่ใช้มากในการเพิ่มพืชผลทางเกษตร  เพื่อให้เกดิความเข้าใจว่าพืชทัว่ไปและพืชลูกผสมได้รบัผลกระทบ
อย่างไรต่อการเปลีย่นแปลงสภาวะอากาศ เพื่อใหใ้ชก้ารพฒันาสายพนัธุใ์หเ้หมาะสมต่อไป 
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A system-wide analysis of transcriptional regulation in hybrid plants in response to 
temperature change 
 
Objectives 
1. To establish a system-wide transcriptional profile of plants subjected to ambient temperature 

changes, which will serve as a platform for investigating global and local regulatory mechanisms of 
temperature transcriptomes.  

2. To elucidate the interplay between temperature-responsive phenotype and genetic effect using 
hybrid plants as a model, and identify differentially expressed genes between hybrids and parents. 

3. To design and construct an analytic pipeline for next-generation sequencing (NGS) data from 
publicly available computer codes and applications (e.g. for RNA-seq, ChIP-seq), which can also be 
adapted and implemented on other genomes in the future. 

4. To initiate collaborative research projects between systems biologists and experimental 
researchers, using high-throughput experimental and analytical methods as a common ground. 

 
Methodology and Materials 
As proposed, we have adopted a Systems Biology approach to globally characterize the genome-wide 
transcriptional patterns of wild-type plants and hybrids in response to temperature changes. This 
interdisciplinary problem-based project will combine several experimental as well as computational 
tools and techniques to investigate the transcriptional profiles and regulatory mechanisms, including 
Computational Biology, Bioinformatics, Molecular Biology, Plant Biology and Genetics, and 
Transcriptomics. We have also extended the pipeline initially proposed for transcriptomic analyses in 
the model plant Arabidopsis thaliana, to other model species including human and budding yeast. This 
also resulted in collaborative projects with experimental scientists and clinicians, as described below. 
 
1. Plant materials and growth conditions 
The Arabidopsis thaliana accessions Col-0 and C24 were crossed to produce F1 hybrid seeds. The 
seeds of F1 hybrids, parents, and pif4-101 (a mutant lacking functional PIF4) were grown at 17oC, 
22oC, and 27oC in the short-day photoperiod, where the hypocotyl growth and PIF4 activity is 
maximized (Kumar 2010; Wigge 2013). Light intensity is controlled to minimize potential crosstalk 
effect of light and temperature sensing pathways. Five-day-old seedlings were imaged using a high-
regulation scanner, and the hypocotyl lengths will be measured using Image. Statistical analysis of 
hypocotyl growth were performed in the statistical packages R (R core team, http://www.R-
project.org). The experimental results of plant growth were intitially obtained at the Sainsbury 
Laboratory Cambridge University, UK under advice of Dr. Philip A Wigge, in collaboration with Drs. 
Sandra Cortoji and Matt Box. The computational analyses were implemented and performed by Ms. 
Napaporn Sriden, a Ph.D. student at Department of Biochemistry, Faculty of Science, Mahidol 
University, under the supervision of Dr. Varodom Charoensawan. 
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2. Construction of temperature transcriptomes 
Whole seedlings were collected and used for RNA extraction. RNA quality were accessed using the 
BioAnalyzer or TapeStation systems (Agilent), as high quality RNA with minimal degradation is 
recommended for subsequent sequencing library preparation. The RNA-seq library were performed 
using the Illumina library preparation kits (e.g. TruSeq), to ensure compatibility with NGS technology 
that will be used at later stage. In brief, mRNA with polyA tails were selectively extracted, 
fragmented, and reverse transcribed into cDNA, which were then primed with sequencing adaptors 
and indices. The prepared sequencing libraries were analyzed using 100 base pair pair-end format 
(100 bps are sequenced from both directions of reads), using the Illumina HiSeq2000. The NGS 
library preparation were performed conducted at the Sainsbury Laboratory Cambridge University, 
UK, which were supported by the European Research Council (ERC) through the Wigge laboratory. 
The transcriptome-generating pipeline was re-implemented at Mahidol University, Thailand, using the 
funding from the Thailand Research Fund (TRF) by Dr. Varodom Charoensawan. The transcriptomic 
analyses were implemented and performed by Ms. Napaporn Sriden, a Ph.D. student at Department 
of Biochemistry, Faculty of Science, Mahidol University, under the supervision of Dr. Varodom 
Charoensawan, as described in more details below. 
 
3. Computational analyses of Next-Generation Sequencing (NGS) data, and 
bioinformatics analyses  
We have successfully developed an in-house NGS analytic pipeline, by combining a number of 
computational codes and applications publicly available. The pipeline for RNA-seq library has been 
robustly tested and used in several on-going projects at the Sainsbury Laboratory Cambridge 
University, and have now been re-implemented at the Integrative Computational BioScience (ICBS) 
center, Mahidol University. 
 
In summary, raw reads obtained from the NGS sequencing service go through the quality control 
process to check for adaptor sequences, optical duplication rates, GC contents, using in-house Linux 
shell scripts that format and manage large-scale data and run FastQC 
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). We use Trimmomatic and/or FASTX 
(http://hannonlab.cshl.edu/fastx_toolkit/) to trim adaptor sequences that may appear in the reads, if 
the insert size is shorter than the sequenced length. Trimmed reads are then aligned to reference 
genome using Bowtie (Langmead 2012) and Tophat (Trapnell 2009). The normalization and 
estimation of relative transcriptional abundance are performed using Cufflinks and Cuffdiffs (Trapnell 
2010). Mapped reads can also be visualized and analyzed using a genome browser, such as the 
integrative genome viewer (IGV) (Thorvaldsdottir 2013). As explained, these subsequent 
bioinformatic and statistical analyses have been performed in-house at Mahidol University, Thailand, 
using purposely written scripts, implemented in R, Perl, and Python (see Figure 1).  
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Figure 1: Summary of RNA-seq analytic pipelines. The illustration was created by Ms. Napaporn Sriden and 
was adapted from Wang and coworkers (Wang 2009). 
 
4. Implementation of systems biology and network biology tools 
One of the main objectives of this project is to establish analytical pipelines for high-throughput biological big 
data, as well as a common ground between systems biology, and experimental scientists and clinicians. In 
doing so, we used network analytic tool Cytoscape (http://www.cytoscape.org/) to showcase how large-scale 
biological data can be represented and analyzed. As a result, we have formed successfully collaborations 
with the laboratories of Prof. Dr. Sawawut Jitrapakee and Dr. Natini Jinawath, to work on network biology of 
miRNA in metabolic regulation and cancer biology. 
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Results and Discussion 
RNA-seq analytic pipeline has successfully implemented 
As proposed, we have successfully re-implemented the in-house NGS analytical pipelines (including 
RNA-seq) on the high-throughput computing (HPC) facility at the Integrative Computational 
BioScience (ICBS) center, Mahidol University. The pipelines consist of a set of publicly available 
libraries (as described in Methodology), were created and implemented by Dr. Varodom 
Charoensawan. 
 
An example of mapped reads is shown in Figure 2, which describes higher numbers of reads 
mapped to the Heat Shock Protein 70 (HSP70) locus at higher temperatures (Charoensawan, 
Cortijo, and Wigge, under review). 
 

 
 
Figure 2: Snapshot from IGV describing upregulation of HSP70 transcript at higher ambient 
temperature. Blue indicates reads mapped to the forward strand, and red indicates reads mapped to 
the reverse strand. 
 
The warm temperature transcriptome is highly dynamic 
Using our time-course RNA-seq of Arabidopsis seedings grown at 17oC and 27oC, we have 
observed specific set of genes with highly temperature responsiveness (Cluster 6 in Figure 3 below). 
These genes are enriched in stress and environmental responses, including HSP70, a heat shock 
protein known to be induced by high ambient temperature (Kumar and Wigge 2010). All 
transcriptomic levels were estimated by normalization with the length of genes and number of reads 
in each sample (e.g. TPM, transcripts per million reads). Red cells depict up-regulated and green for 
down-regulated as compared to the zero time-point (before shifting from 17oC and 27oC). 
 

4C 
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Figure 3: Heatmap demonstrating relative changes of transcriptional level of temperature responsive 
genes. Red and green indicate up- and down-regulated genes, as compared to time-point zero. 
 
Temperature transcriptional transcriptional induction in plants is associated with H2A.Z 
eviction 
The expression of heat responsive genes such as HSP70 is accompanied by the eviction of 
nucleosomes containing the alternative histone H2A.Z, but the mechanism by which this occurs is 
not known. We performed micrococcal nuclease (MNase) digestion followed by high-throughput 
sequencing on seedlings subjected to identical temperature shifts as described above. Nucleosomes 
protect the DNA from MNase cleavage and hence MNase accessibility was used to infer nucleosome 
occupancy. In addition, we also performed ChIP of HTA11-tagged to locate the binding position and 
occupancy of the HTA11 protein, one of the three H2A.Z proteins in plants. We observe a noticeable 
reduction of ChIP signal in the plants shifted from 17°C to 27°C for 15 min among the Cluster 6 
genes, consistent with this region becoming accessible to the transcriptional machinery upon 
increased temperature. There is a clear link between the loss of H2A.Z-nucleosomes and MNase-
seq signals around +1 nucleosome position in the genes in Cluster 6 (see Figure 4 below), when 

ze
ro

17
c,

15
m

17
c,

1h
r

17
c,

4h
r

27
c,

15
m

27
c,

1h
r

27
c,

4h
r

Log2 fold TPM (sample/Zero time point), WT cluster

−4 −2 0 2 4

Value

0
40

0
10

00

Color Key

and Histogram

C
ou

nt

1 

2 

3 

4 

5 

6 

Clustering based on expression in WT 

zero 15min 1hr 4hr 15min 1hr 4hr 

17°C 27°C 

 

 

 

 

 

 

 

 



9 
 

shifted from 17°C to 27°C, suggesting the genomic DNA becomes more accessible when H2A.Z 
(represented by HTA11 ChIP signal) is evicted. 
 

 
 
Figure 4   Heatmap demonstrating relative changes of HTA11 ChIP signal at the temperature 
responsive genes. Blue and green indicate increases and decrease in ChIP signal at 27oC, as 
compared to 17oC. 
 
Phenotype of seedling growth at different temperatures 
In addition to transcriptomic changes, we also investigated phenotypic variations of plants grown at 
different temperature. On top of the wild-type plant previously used before, Col-0, we also introduced 
to the study, different accession plant C24, and their hybrids, also grown at different temperatures, in 
order to observe the relationship between genetic and environmental factors on their growth. This 
was performed by taking photos of plants under infrared, and image analysis of the plant growth in 
three days (as in examples below). The plants were growth at 22°C and 27°C. This work was 
performed at the Sainsbury Laboratory Cambridge University, in collaboration with Drs. Sandra 
Cortoji and Matt Box. 
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Figure 5: Infrared (IR) images of plants of different accession and hybrid grown at different ambient 
temperatures. 
 
Growth rate of seedlings is maximized just before dawn 
In line with what previously observed in (Box 2015), we have observed that seedlings grow the 
fastest just before dawn, when the growth quickly drops due to inactivation of the functions of growth 
related proteins such as PIF4 (growth rate of Col-0 shown in Figure 6). Remarkably, we have seen 
that the hybrid C24xCol-0 demonstrate the most steep growth also at the time point ZT0, or just 
before dawn. This suggests that this time point would be particularly interesting to investigate for 
transcriptional level of genes differentially transcribed in parents and in hybrids, which might be 
related to the regulation of heterosis in these lines (Figure 7). 
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Figure 6: Differential growth rate of Col-0 grown at 22°C and 27°C for three days. The rate was 
calculated from IR images taken from 2 days after sowing. 
 

 
Figure 7: Differential growth rate of Col-0, C24, and hybrid grown at 22°C and 27°C for three days. The 
rate was calculated from IR images taken from 2 days after sowing. 
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Figure 8: Time-course differential expression in Col-0 during ZT-12 – ZT8 of 5 days old seedlings. 
Grey area indicates the night time, whereas yellow area indicates day time. (A)TAA1, (B) CYP79B2, 
(C) YUC8 and (D) PIF4. 
 
The differential expression in the key important gene in response to high ambient temperature 
In addition to the phenotypic observation of plants under an elevated ambient temperature (27°C), 
the time-course transcriptomes were also performed to investigate the molecular basis of this 
phenomenon. Time-course RNA-seq libraries were prepared by Drs. Varodom Charoensawan, Matt 
Box, Sandra Cortijo at Sainsbury Laboratory as described in Methodology. The sequenced NGS 
reads were analyzed by Ms. Napaporn Sriden under Dr. Charoensawan’s supervision. The time-
course transcriptomic analysis reveals different dynamic patterns of transcription among selected 
genes. Previous studies from (Koini 2009; Leibman 2014) showed that auxin biosynthesis genes, 
YUC8, TAA1 and CYP79B2, were up-regulated in Arabidopsis thaliana growing under a high 
ambient temperature. Here, the time-course transcriptome of Col-0 from this study showed two 
distinct transcription dynamic patterns (Figure 8). We found that high ambient temperature promoted 
only the transcription of YUC8 at all time points, without significantly changing the dynamic patterns 
of transcriptional changes. In contrast, transcription level of TAA1 and CYP79B2 at 22°C was slightly 
greater than the transcription level at 27°C. Transcriptional level of TAA1 appeared to decrease at 
nighttime until dawn, then slightly increase again during the day; whereas CYP79B2’s transcription 
gradually dropped until dawn, then suddenly peaked up 4 hours after light. For YUC8, its 
transcription dynamics showed a similar pattern in comparison to the differential growth of Col-0, 
which gradually increased at night and the peak appeared just before dawn. 
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Conclusion 
We have successfully implemented a number of NGS analytic pipelines for investigating 
transcriptomic changes (RNA-seq) and genome-wide DNA-protein interaction (ChIP-seq) at Mahidol 
University, Thailand. This analytical competency is not only a key to systems biology work of the 
Charoensawan laboratory, as initially proposed in the project, but also provides an opportunity for the 
group to collaborate with established research groups, in order to combine multidisciplinary expertise 
to investigate existing biological problems using a new approach. Figure 9 demonstrates a network 
of multiple miRNAs and oncogenic transcription factors controlling metabolic reprogramming in 
cancers, which normally would be studied individually without the knowledge and tools from systems 
biology. 
 

 
 
Figure 9: Regulatory network of miRNAs and oncogenic transcription factors controlling metabolic 
reprogramming in cancers. The figure shows direct and indirect miRNAs-metabolic genes interaction. 
The miRNAs that have already verified their regulatory function show in solid edges whereas the dash 
edges represent the overlap miRNAs from predictions only. The figure depicts a network 
representation, an important tool of Systems Biology that can be used to represent multiple 
biomolecular entities. The figure was adapted from a review by Pinweha and colleagues (Pinweha 
2016), where Dr. Charoensawan is a co-author.  
 
Molecular mechanisms of temperature sensing and response in plants and other species are crucial 
to mitigation of global climate changes. However, we are far from thorough understanding for this 
biological process, and thus adapting to this big change. Focusing on our transcriptomic results of 
RNA-seq from plants grown under different temperature, we are able to globally investigate a set of 
temperature-responsive genes that are highly inducible by the interplay of H2A.Z and HSF1. In 
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collaboration with Drs. Philip A Wigge and Sandra Cortigo, we have submitted a manuscript (where 
Dr. Charoensawan is a co-first author and co-corresponding author), which currently being revised. 
Additional transcriptomic investigation of plants have already been performed and being analyzed by 
Ms. Napaporn Sriden, a Ph.D. student under Dr. Charoensawan’s supervision. So far, we have 
observed diurnal growth of Arabidopsis seedlings using the IR imaging described in the results, and 
are now moving to focus on the time-course transcriptomic data of wide-type parents and hybrids. 
 
Future Directions 
We have successfully established a pipeline and facility for analysis of high-throughput biological 
data (RNA-seq and ChIP-seq), and have started to utilize the competency to help and collaborate 
with other research groups to analyze their “big data”. Moving on to the era of “Thailand 4.0”, we 
foresee that biomolecular and clinical research will move from investigation individual genes, 
proteins, or diseases, to automatically identification of biomarkers, biological pathways that are 
important to certain biological problems using large-scale biological data. We are confident that the 
core competency established here will play a key role in assisting our research community toward 
this new direction.  
 
Focusing on our molecular basis of temperature-response transcriptomes in plants and hybrids, we 
have now separately analyzed the plants’ phenotypic and transcriptomic changes, and will now 
combine the two types of data to form a comprehensive conceptual model that can explain how 
hybrid vigors are achieved and how these are affected by temperature changes.    
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ABSTRACT

Protein–ligand interaction analysis is an important
step of drug design and protein engineering in order
to predict the binding affinity and selectivity between
ligands to the target proteins. To date, there are more
than 100 000 structures available in the Protein Data
Bank (PDB), of which ∼30% are protein–ligand (MW
below 1000 Da) complexes. We have developed the
integrative web server MANORAA (Mapping Analo-
gous Nuclei Onto Residue And Affinity) with the aim
of providing a user-friendly web interface to assist
structural study and design of protein–ligand inter-
actions. In brief, the server allows the users to input
the chemical fragments and present all the unique
molecular interactions to the target proteins with
available three-dimensional structures in the PDB.
The users can also link the ligands of interest to as-
sess possible off-target proteins, human variants and
pathway information using our all-in-one integrated
tools. Taken together, we envisage that the server will
facilitate and improve the study of protein–ligand in-
teractions by allowing observation and comparison
of ligand interactions with multiple proteins at the
same time. (http://manoraa.org).

INTRODUCTION

Understanding protein–ligand interaction is crucial for
drug discovery research, as it defines the binding affinity,
steric complementarity of the surface and pharmacophoric
patterns of the compound to the target protein. Favor-
able ligand interactions with protein such as suitable polar

groups counterparts and proper hydrogen bonding partners
are crucial for the ligand design process and the imperfect fit
between the protein and the ligand will result in decreased
binding affinity (1). A number of tools is available for visu-
alizing and analyzing protein–ligand interaction; however,
only few can provide comprehensive information such as
verified binding affinity, and couple the results with the lig-
and interaction visualization available for multiple protein
comparison in the same place (2). By understanding the fa-
vorable interactions between the target protein and a ligand
of interest, one can start to rationalize drug design strategy
and make the protein engineering possible by strengthening
preferred interactions for instance.

To date, there are more than 100 000 structures in the
Protein Data Bank (PDB) (3). However, it is not always
straightforward to harness all the relevant information from
the PDB. Querying the substructure of the ligands to re-
turn multiple molecular interactions that are available in
the PDB can take a considerable amount of time as one
normally goes through a series of non-intuitive steps. After
multiple protein–ligand structures are retrieved, the com-
parison can be complicated and time-consuming, especially
when the structures contain a large amount of protein–
ligand interactions from multiple contacts points, which
normally have to be investigated individually and manually.
To the best of our knowledge, there is no existing tool specif-
ically designed for comparative analysis of protein–ligand
interactions in multiple structures at the time.

Two of the most popular tools for searching molecular
interactions in the binding sites are Relibase (4) and PDBe-
Motif (5). Both tools are restricted to the structures in the
PDB and are often used to show the distribution of protein–
ligand binding patterns in the PDB as a whole. Other tools
such as PLIP (6) are also available for investigating protein

*To whom correspondence should be addressed. Tel: +66 2 441 9003 (Ext. 1211); Fax: +66 2 9428499; Email: duangrudee.tan@mahidol.ac.th

C⃝ The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which
permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact
journals.permissions@oup.com

 by guest on July 10, 2016
http://nar.oxfordjournals.org/

D
ow

nloaded from
 

http://manoraa.org
http://nar.oxfordjournals.org/


Nucleic Acids Research, 2016, Vol. 44, Web Server issue W515

ligand interactions and visualization; however, the users
cannot obtain knowledge of preferred interactions easily
because it is dedicated to visualization and does not allow
sorting by binding affinities, or viewing multiple proteins
structures that bind to the same ligand in the same panel.
The PLIC database (7) provides protein–ligand interaction
clusters and also other related binding site information, and
also has a superposition panel based on the clustering of
similar binding sites. However, the ligand superposition is
performed as a whole molecule, not based on the equiva-
lent substructures, and hence, it is difficult to directly re-
late that information to the change in the binding affinities.
WONKA (8) on the other hand, can offer observation from
multiple structures but it requires the users to supply the set
of superposed proteins with their equivalent amino acids re-
named to the corresponding residue numbers. PoSSuM (9)
aims to detect similar small molecule binding pockets; how-
ever, the overall similarity between pockets do not guaran-
tee the same ligand binding pattern. A tool such as PLI (10)
can also be used to find a particular ligand binding to a list
of homologous proteins.

A direct query of ligand to the RCSB Protein Data Bank
(3,11) returns the data retrieval in the form of PDB files and
Jmol applet but does not provide ligand substructure anal-
yses for multiple structures. The databases BindingDB (12)
and Binding MOAD (13) emphasize the binding affinities
data for further use such as for QSAR analysis (14), which
does not offer the structural analysis of the binding site or
the trend of binding affinity. In addition, these databases do
not provide links from fragments to pathways or known hu-
man variants such as SNPs, a feature that will be useful for
the drug design in the personalized medicine era.

To this end, we have developed the integrative web server
MANORAA (Mapping Analogous Nuclei Onto Residue
And Affinity) to facilitate understanding of ligand selectiv-
ity and promiscuity through the analysis of multiple pro-
tein structures on the web interface. It enables researchers
to retrieve multiple chemical compounds and their binding
partner proteins from the PDB, and compare and visual-
ize the ligand-residue contact interactions all at the same
time. Other useful functionalities include sorting of bind-
ing affinities of multiple proteins, as well as obtaining ad-
ditional information such as protein functions, the species
that a particular ligand is found in a complex, and the path-
ways that the ligand is found to take part in by linking to a
pathway map such as KEGG (15), all in one place.

MANORAA: rationales, input and output

We built MANORAA with an aim to provide a user-
friendly, one-stop service for ligand–protein interaction
investigation. MANORAA was developed on top of
CREDO, a database devoted specially to the protein–ligand
interaction, which provides all pairwise atomic interaction
contacts between ligand and proteins from the PDB in the
form of a relational database (16,17). By filtering and rank-
ing the interaction types in a systematic manner, the ligand
contacts that are most important can be shown and can be
related to the change in the binding affinities. This server
provides integrated information about the target and off-
target proteins interacting with the query ligand from the

latest publicly available mirror of CREDO. MANORAA
also provides protein–ligand binding affinity values from
the Binding MOAD database (13) where the high qual-
ity binding affinity data are collected from literature. Im-
portantly, the users can observe and compare the interac-
tion by processing the ligand contact with multiple protein
structures based on the complexes deposited to the PDB
all at the same time. All queries to MANORAA start from
one simple input page, and the results are provided in two
output steps, as described here. We have extensively tested
MANORAA on several common operating systems and
web browsers (see Supplementary Data for details), and the
most compatible browsers that we recommend are Windows
version 7 or higher, and OSX Maverick or higher, and on
Chrome 49 or higher, and Safari 9 or higher.

Input: chemical structure

The users can start with a ligand or part of a ligand of inter-
est by providing one of the following as an input: (i) chemi-
cal name, (ii) SMILES expression, (iii) PDB ligand’s 3-letter
code or (iv) chemical structure (Figure 1). To facilitate gen-
eration of a SMILES expression, the MANORAA provides
the SMILES lookup and then exports the SMILES to the
chemical sketch panel as shown in Figure 1. The users can
also select to create or edit a SMILES expression by draw-
ing a chemical structure, or modify some parts and then
import that sketch to a SMILES string before submission.
From SMILES, the users can link to extended ligand names
and compound bioactivity information via ChEMBL (18).
The web server employs a JavaScript library called Marv-
inJS from ChemAxon to achieve the task. MarvinJS pro-
vides an HTML5-based user interface for chemical draw-
ing, which allows the users to have an interactive interface
without the need to install any additional plug-in.

Output 1: list of proteins interacting with a queried ligand

Once the users submit a ligand, a list of PDB entries that
contain the submitted ligand will be returned. Ligand(s)
of similar chemical structure and their target proteins will
be returned if any part of the molecule matches with the
SMILES input fragment. For example, Figure 2 shows a
table of PDB entries interacting with a ligand ‘STU’ (Stau-
rosporine). The binding affinity values, taken from Bind-
ing MOAD (13), are provided to help prioritize target
proteins as they imply the binding strengths between the
query ligand and the targets. For each entry, the follow-
ing external information is also provided: (i) the pathway
information from KEGG (15), (ii) the protein informa-
tion from UniProt (19), (iii) the amino acid variants from
SAMUL (20) and (iv) variants, isoforms and genomic con-
text, protein/RNA baseline expression, gene ontology from
the Centre for Therapeutic Target Validation (Open Targets,
https://www.targetvalidation.org/). The server links crystal-
lographic structures of protein–ligand interaction to related
biochemical pathways via UniProt ID to KEGG ID map-
ping. The user can also link the proteins of interest to known
human variants such as SNPs in the coding regions via the
SAMUL web server (20). This essentially allows researchers
to predict whether the candidate ligands will have a ten-
dency to bind proteins with different annotated SNPs in the
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Figure 1. Input panel for ligand fragment via chemical names, SMILES expression, PDB ligand’s three-letter code or chemical structure drawing.

coding regions, an important step of drug design in the per-
sonalized medicine era. These results can be exported as a
CSV table.

This result page serves as an input form for the next
step, which is to visualize three-dimensional (3D) structures
of protein–ligand interactions based on the selection of (i)
atom of interest in the ligand, and (ii) the target PDB chains.
To aid this process, the MANORAA web server shows the
ligand chemical structure so that users can pick up atoms of
their interest interactively. By default, all the heteroatoms of
ligands and PDB chains where the binding affinity are avail-
able are pre-selected.

Output 2: visualization of ligand–protein interactions

Once the users select ligand atoms and associated protein
chains of interest, MANORAA will connect to CREDO
to obtain interacting partner proteins of each ligand and
PDB pair, grouped by nine interaction types and high-
light them by different colors. The available interaction
types are aromatic, hydrogen bond, ionic interaction, co-
valent bond, metal complex, carbonyl interaction, halogen
bond, hydrophobic interaction and van der Waals clash (as
shown in Figure 3 with criteria in Supplementary Data).
The server will then rank the most important contact based
on the shortest distances of unique interaction found for ev-
ery atom per amino acid residue. JSmol (21), a JavaScript
framework based on HTML5 for displaying interactive 3D
molecular structures, has been employed into the user inter-

face to enable the users to toggle display of the interaction
partners in the 3D viewing panel. Display of ligand–protein
interaction at each residue can be obtained by clicking the
loading button of each PDB IDs, then choosing the residue
name of interest. This step allows the user to have full con-
trol on what part of the chemical structure that they want to
focus on. The results can be revisited using a unique URL
provided. The list of target proteins and contact residues
can be printed as PDF file together with the protein struc-
tures which can be saved from JSmol. Note that additional
technical details of the web server can be found as Supple-
mentary Data.

To assist the first-time users, we have provided compre-
hensive step-by-step tutorial, demo video and sample pages
on the web server. Here, we also provide two examples
of how MANORAA can be employed to assist real-world
drug design and protein engineering research.

Making use of MANORAA in ligand–protein interaction
studies

Case study 1: the trend of interaction observed in N4 of STU
interacting with the kinase family. To illustrate the use of
MANORAA and its features, here we use our previous
comprehensive study on staurosporine’s binding strength
as an example (22). The study demonstrated that stau-
rosporine’s strength of interaction with kinase depends on
the number and the orientation of hydrogen bonds and ionic
interactions made around the N4 atom of staurosporine.
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Figure 2. MANORAA provides integrated analyses for ligand–protein interactions, linking structural biology to genomics, pathways and target informa-
tion. Middle inset: the ligand panel on the left shows a chemical fragment with information of their protein binding partners on the right. This allows users
to make a query on their molecular interactions with available binding affinity, and obtain additional information about the target proteins/genes. Top left:
target gene information such as baseline expression is provided via the Open Targets project, using UniProt name. Top right: link to the protein structure
information via PDBe. Bottom left: SNP information via SAMUL. Bottom right: KEGG pathway where the protein/gene of interest is highlighted. The
results can be sorted by the proteins’ name, resolution, binding affinity and can be saved to a CSV file on the top of the page as needed.
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Figure 3. Display of the ligand three-letter code STU (staurosporine) interacting with several proteins in the kinase family. The top row shows interaction
with the lowest binding affinity value, which means staurosporine can tightly bind (0.00033 !M) via aspartate, and there are at most two hydrogen bonds
(cyan) or ionic interaction (magenta) in combination. The second group has binding affinity values between 0.0065 to 0.010 !M and has three interactions
that are either ionic or hydrogen bonds. All the others with binding affinity value more than 0.010 !M have one hydrogen bond, or ionic interaction, or
no interaction at all.
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For the worst STU binding to kinase cases, N4 from PDB
IDs: 1XBC, 1U59, 3HMO have only one bond in the non-
preferable orientation while the one from 1Q3D does not
have any hydrogen bonding or ionic interaction at all. These
two structural observations imply poor binding affinity and
hence they are present in the group of large binding affin-
ity values. In contrast, 1OKY, 1NVR, 1STC and 1YHS
have better binding affinities due to better hydrogen bond-
ing and ionic interaction in both the structural orientation
sense and also the amount of bonds they made which are at
least two hydrogen bonds plus one ionic interaction. Note
that binding via aspartate makes the interaction tighter than
binding via arginine as seen in 1XJD and 2Z7R and hence
shown with the lowest Ki or tightest binding affinities from
the Binding MOAD database. These types of analysis will
be beneficial to drug design because we know which part of
the ligand is the major determinant of the binding affinities
and what amino acids facilitate those preferred interactions.
With MANORAA, these processes can be performed all in
one place (Figure 3).

Case study 2: how MANORAA can be powerful for analyzing
ligand and its binding protein with known SNPs that can be
linked to diseases. Trifluoperazine (PDB ligand code TFP)
was originally identified as an antipsychotic drug used in
the treatment of schizophrenia, via blocking D2 dopamin-
ergic receptors in the brain. However, trifluoperazine has re-
cently been repurposed to inhibit the growth of cancer stem
cells via its function as a calmodulin inhibitor, but the in-
hibitory mechanism is unclear (23,24). Using MANORAA,
we can demonstrate that this ligand can also bind with many
target proteins such as the placental calcium binding pro-
tein (S100-A4), calmodulin and troponin C (in a way, ‘off-
targets’ to dopaminergic receptors). The result shows that
the N3 atom of TFP interact with the placental calcium
binding protein (S100-A4) via one hydrogen bond, or one
optional ionic interaction in the cases of bovine calmodulin
and human troponin C, suggesting the importance of this
atom for all the proteins that bind to this small molecule.
On the other hand, the N2 atom of TFP forms two ionic in-
teractions with both bovine calmodulin structures but does
not make any significant interaction for either S100-A4 pro-
tein or human troponin C. This kind of information can be
useful for designing the selectivity of the drug.

Furthermore, MANORAA (via SAMUL) also reveals
two SNPs in the human calmodulin gene that have been
associated with ventricular tachycardia, a common side ef-
fect from trifluoperazine use. MANORAA also provides
a list of multiple bovine calmodulin with crystallographic
structures that harbor the ligand, enabling researchers to
explore the effect of amino acid changes to affect ligand–
protein interaction. This demonstrates how MANORAA
can be used for an initial assessment of drug repurposing
results. It should be noted that our data relies on crystallo-
graphic structures deposited to the PDB at the time. Saying
that, MANORAA provides another way to make use of the
growing PDB by linking the structures to human genome
variations.

DISCUSSION AND FUTURE DIRECTIONS

Thanks to technological advances in crystallography and
other methods for determining structures of biological
molecules, the bottleneck of structural biology is now shift-
ing from obtaining the structures to interpreting and link-
ing them to other biological information such as path-
ways and genomic variants. With the wealth of informa-
tion on ligand–protein interactions from publicly available
databases such as PDB, it is now possible to perform a com-
parative study of multiple ligands and proteins (or drug can-
didate compounds and target proteins) at the same time.
MANORAA has been established to facilitate these pro-
cesses all in one place.

The web server has a number of useful features that as-
sist the investigation of ligand–protein binding specificity,
biological pathways the proteins are involved in and known
human variants in the coding regions of the proteins. As de-
picted by Böhm, ligand with poor binding affinity is caused
by missing crucial active site interactions in comparison
with other tight binding ligands (1). Our service allows the
user to compare the ligand’s binding affinities with the num-
bers and the types of interactions that the ligand makes with
multiple proteins, which should be useful for users to iden-
tify the key residues of proteins and the atoms of ligands in
order to manipulate the interaction strength.

Existing protein–ligand contact and interaction
databases are required in order to expedite the pro-
cess of calculating and classifying the molecular interaction
on the fly. To this end, we make use of the CREDO
backend, and provide links to SAMUL (20), UniProt
(19), PDBe (5), PDBsum (25) and KEGG (15). Note
that the total size of calculated interaction for CREDO
databases alone, including all the structures in the PDB, is
very large (72 GB), but that would allow the interactions
to be observed almost instantaneously. The graphical
representation on JSmol (21) allows the users to view
multiple structures with the fragment in the same window.
The color highlight of the protein–ligand interaction that
links to the JSmol structure visualization panel in real-time
allows robust ligand interaction identification so that the
researchers can relate the knowledge of the binding affinity
value to the missing or occurring interaction by themselves.
MANORAA employs a support responsive design, which
means the output structures can be visualized without
distortion even on a tablet or mobile phone. Another
unique feature of MANORAA is its multiple-structures
visualization panel with multiple loading buttons. The
users can observe multiple structures one at a time and
progress to each one to get an impression of the whole
set of proteins that interact with this particular ligand
fragment, and could identify the amino acid residue or
atoms of a ligand that can be modified to fine-tune the
ligand–protein binding interaction.

The main strengths of MANORAA over other previ-
ously available web servers aforementioned includes its flex-
ibility of analyzing multiple experimentally verified ligand–
protein interactions at the time, using its user-friendly and
fast responsive interface. PLIP (6), for instance, focuses on
the visualization of one structure at a time, while PoSSuM
(9) provides the superposition and makes a comparison be-
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tween residues surrounding a protein pair, rather than giv-
ing details of the type of residues in contact. Even though
there are a number of tools that allow multiple structure
observation, the interactions are not dissected to different
chemical interaction types and do not provide visualization
panel for the users to drill down to the level of ligand sub-
structure interactions.

Looking ahead, we aim to routinely maintain the server
and add new functionalities, which will be managed by a
programmer dedicated to MANORAA’s development and
a multidisciplinary team. For instance, we have been devel-
oping a new algorithm to show gradient color of atomic
position conservation. This will allow us to show position-
specific interaction by highlighting the active site based on
the percent conservation of the atomic position surround-
ing the ligand substructure. For the time being, we have
implemented this for 18 staurosporine superposed com-
plexes as an example from our sample page (see Supple-
mentary Data). In addition, protein ligand contacts will be
updated for every newer release of CREDO. In addition,
PDBe (5), PDBsum (25), CACTVS (26,27), ChEMBL (18),
KEGG (15), Open Targets (https://www.targetvalidation.
org/), UniProt (19) and SAMUL (20) are accessed in real-
time through their websites, hence the results shown will al-
ways be the most updated.

With MANORAA, the chemical fragments that have an
influence on different pathways in different organisms can
open the door for a more robust and insightful analysis
for the study of multi-target drug design, species selectiv-
ity, off-target inhibition causing drug side effect problems.
We envisage that MANORAA will provide a missing link
between structural biology, systems biology and genetics in-
formation by one central concept surrounding the ligand’s
chemical structure to assist drug discovery and the probe
molecules community.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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SUMMARY

The cell walls of the shoot apical meristem (SAM),
containing the stem cell niche that gives rise to the
above-ground tissues, are crucially involved in regu-
lating differentiation. It is currently unknown how
these walls are built and refined or their role, if any,
in influencing meristem developmental dynamics.
We have combined polysaccharide linkage analysis,
immuno-labeling, and transcriptome profiling of the
SAM to provide a spatiotemporal plan of the walls
of this dynamic structure. We find that meristematic
cells express only a core subset of 152 genes encod-
ing cell wall glycosyltransferases (GTs). Systemic
localization of all these GT mRNAs by in situ hybrid-
ization reveals members with either enrichment in
or specificity to apical subdomains such as emerging
flower primordia, and a large class with high expres-
sion in dividing cells. The highly localized and coor-
dinated expression of GTs in the SAM suggests
distinct wall properties of meristematic cells and
specific differences between newly forming walls
and their mature descendants. Functional analysis
demonstrates that a subset of CSLD genes is essen-
tial for proper meristem maintenance, confirming the
key role of walls in developmental pathways.

INTRODUCTION

Plant biomass, our only renewable bioresource, is largely
composed of cell walls. The primary plant cell wall is a complex
composite made up almost entirely of polysaccharides (90%–
95%), with some (glyco)proteins (5%–10%) [1–4]. It serves to
provide strength and mechanical support to plant tissues and
provides resistance to the high turgor pressure inside each
cell. Local reinforcement coupled with wall loosening, achieved
by rapid remodeling, permits not only growth but also the gener-

ation of a variety of cell shapes, ranging from the cylindrical cells
of the epidermis and endodermis of the root to more complex
shapes such as those of the leaf epidermal pavement cells [5].
All growing cells contain a primary wall, and further specialization
is observed in certain cell types during tissue differentiation [1, 6].
The shoot apical meristem (SAM) is a dome-shaped structure

that contains the above-ground stem cell pool, slowly prolifer-
ating cells that are found at the top of the dome within a region
termed the central zone (CZ). The progeny of these cells are
gradually displaced to the peripheral zone (PZ), where cells
grow and divide at a higher rate [7]. Auxin maxima within the
PZ determine the sites of either flower or leaf primordial initiation,
characterized by maximal rates of cell expansion [8, 9]. It has
been proposed that the dome-shaped structure is maintained
through a feedback loop whereby the stress patterns, dictated
by tissue geometry, influence the organization of the cytoskel-
eton and reinforcements of the cell wall [10]. This loop affects
auxin movements around the SAM via changes in the polarity
of the PIN1 auxin transporter [11]. Differences in cell wall rigidity
appear to demarcate the different functional domains [12], with
the CZ being 3-fold stiffer (having a higher elastic modulus)
than faster-growing cells at the flanks of the SAM [13, 14].
Thus, local differences exist in walls, and these result from,
and contribute to, developmental dynamics.
The primary wall of most flowering plants consists typically of

cellulose, non-cellulosic polysaccharides, pectins, and glyco-
proteins/proteoglycans. Whereas cellulose is an unsubstituted
homopolymer of glucose (Glc), most polysaccharides have back-
bone substitutions ranging froma small number of sugar residues
(e.g., xyloglucan; XG) to the very complex branching patterns
observed in some pectic polysaccharides, such as arabinogalac-
tan (AG), rhamnogalacturonan (RG), and proteoglycans (AGPs).
Both glycanbackbonechain elongation and substitutions are car-
ried out by polysaccharide synthases/glycosyltransferase (GT)
enzymes, classified into families and subfamilies based on phylo-
genetic similarities. Arabidopsis thaliana possesses on the order
of 560 GTs, and many of these are expected to be involved in
cell wall synthesis (CAZy; http://www.cazy.org).
Despite the central role played by the cell wall in the SAM and

subsequent development, very little information exists as to its
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compositionand thatof theearly-developingorgans [14–18].Here
we have combined data from polysaccharide linkage analysis,
steady-state mRNA quantification and localization, and polysac-
charide immuno-labeling to build up a comprehensive picture of
the construction of the SAM primary walls and their cognate
biosynthetic GTs. We find that meristematic cell walls are con-
structed by a reduced subset of GTswith spatially and temporally
regulated expression patterns. The data suggest a distinction be-
tween new walls formed at cell division and pre-existing walls, as
well as a key role by a GT of the CSLD gene family, required for
proper growth and maintenance of cell number in the SAM.

RESULTS

Isolating Shoot Meristematic Cells for Polysaccharide
and Expression Profiling
To reveal the structure and synthesis of stem cell walls, we tried
to harvest pure meristematic cells from the Arabidopsis shoot
apex. Due to the small meristem size, it would require around

105 dissected SAMs to generate the 4 mg of fresh weight
required for reliable polysaccharide linkage analysis. We thus
looked to the enlarged, stem cell-enriched SAMs of the clavata3
(clv3) mutant [19] (Figure S1). Meristems were carefully
dissected from 60 clv3-2 shoot apices, and young flowers
were also included in our analysis to represent a mixed sample
of meristematic, highly proliferative, and developing tissues (Fig-
ures 1A–1C) [20]. The samples were subjected to cell wall linkage
analysis and RNA sequencing (Figure 1B). To evaluate the quality
of these dissected samples (i.e., no contamination of developed
shoot tissues in the meristematic cells), we performed qRT-PCR
to check genes with specific expression pattern in different tis-
sues. Consistently, APUM10 and WUS, two SAM-enriched
genes, showed high expression in the SAM sample, and floral
organ-specific genes, AP1 and AG, expressed highly in the
flower sample. By contrast, the transcripts of genes involved
in secondary cell wall biosynthesis and vascular formation,
including CESA7, COBL4, TED6, and SND2, could barely be
detected in the meristematic tissues (Figure 1D).

Figure 1. Dissection of Meristematic Cells for Wall Analysis
(A) Schematic representation of the organization of the Arabidopsis shoot apex. Meristematic cells (purple) in both the shoot apical meristem (SAM) and flower

primordia were collected for analysis. CZ, central zone; PZ, peripheral zone.

(B and C) Schematic flowchart displaying the strategy used in this study. (B) The meristematic cells carefully dissected from clv3-2 SAM (top panel, circled) and

flower primordia (before Stage 6 according to [20] and shown as circles in the bottom panel) were used for RNA extraction and cell wall preparation followed by

linkage analysis (C).

(D) The expression of genes specific to SAM (APUM10 and WUS), flower (AP1 and AG), and shoot vasculature (CESA7, COBL4, TED6, and SND2) in dissected

SAM and young flower. The shoot sample was included for comparison. The Arabidopsis UBIQUITIN10 gene was used as an internal control. Shown are mean

values from three replicates; error bars represent SD values.

See also Figure S1 and Table S3.
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Composition and Spatial Organization of Cell Wall
Components
Thealcohol-insoluble residues (AIRs) fromsampleswereanalyzed
to determine their polysaccharide composition by monosaccha-
ride linkageanalysesbaseduponapriori knowledge of the relative
proportions of these linkages in a particular polysaccharide [21].
Most of themonosaccharides identified previously from leaf could
alsobedetected inbothmeristemandflower, although the relative
composition was different (Figure 2A). Polysaccharide calcula-
tions show the walls of meristematic cells to be composed of, in
order of decreasing abundance, cellulose, pectin, and non-cellu-
losic polysaccharides (Figure 2B). A marked increase in the
amount of homogalacturonan (HG), composed of linear chains
of galacturonic acid (GalA) residues, was found in the SAM
compared to flowers (11.3% versus 4.8%), whereas type I AG
(3.3%versus 5.3%) and cellulose (29.4%versus 37.1%)exhibited
decreases in theSAM.Compared to leaf, both theSAMandyoung
floral tissue contained at least 3-fold lessRGI, a 2- to 6-fold reduc-
tion in HG, and an approximately 6-fold increase in pectic ara-
binan. Total pectin content is reduced in the SAM and flowers
compared to the level in leaves. Cellulose levels in the leaf

(29.5%) were found to be nearly identical to the SAM (29.4%).
Overall, the data show somemarked differences in cell wall pectic
and non-cellulosic composition between the SAM and its deriva-
tives, the flower and leaf.
To reveal the spatial organization of cell wall structure in the

SAM,we tookadvantageof immunohistochemistryusingdifferent
antibodies or recombinant fluorescent proteins that recognize
individual wall components. Consistent with cellulose being the
major polysaccharide, CBM3a, which binds crystalline cellulose,
was found to label all walls within the SAM. Labeling of walls
across the apexbyCBM3awasnot uniform, suggesting either dif-
ferences in the organization of wall polymers (thereby affecting
accessibility of the probe to cellulose), variation in the degrees
of cellulose crystallinity, or absolute abundance (Figure 2E). Simi-
larly, inhomogeneous labelingwas observed for JIM7 (HG), which
might reflect somevariation in the degree ofHGmethyl-esterifica-
tion (Figure 2F). Detection of pectic a-1,5-arabinan by LM13 re-
sulted in a complex pattern of labeledwalls in both SAMand floral
tissues (Figure 2G), and a very intense signal was seen in the
epidermal cells of older developing tissues (Figure 2H). Labeling
of b-1,4-galactan by LM5 was found predominantly in primordia

Figure 2. Composition and Spatial Distribution of Wall Components in the Shoot Apex
(A) Monosaccharide linkage composition of AIR cell wall preparations.

(B) Calculation of polysaccharide composition based on the monosaccharide linkage analysis shown in (A).

(C–N) Immunofluorescence labeling showing the spatial distribution of wall components. The longitudinal sections of the Arabidopsis shoot apex were incubated

with cell wall antibody probes. No primary antibody (anti-rabbit secondary) control is shown in (C), and overexposed control is shown in (D). Scale bars, 5 mm (C–G

and J–N), 20 mm (H), and 10 mm (I).

See also Table S1.
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and the outer whorl of young developing flowers (Figure 2I), corre-
lating closely with the double amount of 1,4-Gal in flowers
compared to the SAM from linkage analysis (5.1% versus 2.7%;
Table S1). Both heteroxylan (HX) and XG existed in all walls of
meristematic cells, as revealed by LM28 and LM24 labeling (Fig-
ures2Jand2K).However, thesignalscouldbeobservedonlyafter
pectolyase treatment, suggesting that these polysaccharides are
maskedbypectin. Althoughmost of theepitopesexhibited similar
organization patterns in clv3 compared towild-type, XG seems to
show distinct patterns, with a higher signal in L1 layer cells (Fig-
ure 2L). This implies a secondary effect of an enlarged CZ upon
either XG synthesis or organization. In addition, we found that
PDM, amannan antibody that recognizes heteromannans (gluco-
mannans and galactomannans), only labeled certain regions of
cells that orientedanticlinally in upper cell layers butwere situated
either anticlinally or periclinally in lower cell layers (Figures 2Mand
2N), reminiscent of the newly formed crosswalls arising after cell-
division events.

Analysis of the Transcriptome Reveals Differential
Expression of a Subset of GT Genes in the SAM
With this insight into the cell wall composition of the SAM and
young flowers, we could then examine the specific differential
expression patterns of GTs in these tissues, because these
enzymes determine, to a large extent, which wall polysaccha-
rides and glycoproteins are being made. We performed RNA
sequencing using the highly purified SAM tissues and young
flowers that were equal to those used for linkage analysis. A third
sample, consisting of pooled total RNA from several plant tis-
sues, was also analyzed for comparison. Comparison of the
RNA levels from our purified meristematic cells with previously
published cell-type expression profiling data revealed high
spatial sensitivity to detect genes expressed within particular
tissues (see the Supplemental Experimental Procedures). For
example, APUM10/PUMLIO10, a gene that is only expressed
in the CLV3 domain, was detected exclusively in the SAM sam-
ples (Figure S2A). Gene ontology (GO) analysis of differentially
expressed genes revealed cell wall categories to be under-rep-
resented in the SAM and flower (Figure S2B). Further analysis
found differences in GT transcript abundance between SAM,
flower, and the whole-plant samples (Figure S2C), suggesting
that meristematic cells employ only a subset of GT enzymes to
build the wall. For example, in the GT8 subfamily of enzymes
that give rise to GlcA substitution of xylan [22–24], only GUX3
expression could be detected in the SAM and flower. Among
the ten FUT genes responsible for XG and AGI synthesis, only
three exhibited considerable expression in meristematic tissues.
This contraction also extends to the protein backbones of pro-
teoglycans, including those that make up AGPs and extensins,
where only a subset of mRNAs are present in the SAM (Table
S2). A literature search allowed the assignment of more gene
families or subfamilies that encode cell wall-related GTs to
polysaccharide linkages. A total of 152 SAM-expressed GTs
(transcripts per million [TPM] value >1) were mapped to their
respective polysaccharides/glycoproteins (Table S2).

Consistent with cellulose being the major polysaccharide, the
core primary wall cellulose synthase subunits of the GT2-CESA
family, encoded by CESA1 and CESA3, are highly co-expressed
(TPM values >100 for all samples), as observed in all primary wall

tissues, and are found together with other CESA mRNAs
(CESA2, CESA5, and CESA6) that encode proteins that provide
the third component of the active complex [25], with bothCESA5
and CESA6 exhibiting higher mRNA levels in flowers.
The pectin backbone (HG and RGI) (Figure 2B) is synthesized

by GalATs and encoded by the GT8-GAUT subfamily [26], the
transcripts of which are widely represented in the SAM. The pro-
posed HG core complex is encoded byGAUT7 andGAUT1, and
these are both expressed (Table S2), consistent with their prod-
ucts forming a core biosynthetic complex [27]. Despite the low
quantities of RGI in both the SAM and flower compared to leaf,
expression of some potential RGI-associated GTs (GATL3, 5,
6, 8, and 9) were found at higher levels than for the pooled sam-
ples (Table S2). The absence of XGD1mRNA in the floral sample
suggests that flowers either do not contain xylogalacturonan or
that it is made by the product of the related EMB175 gene.
XG biosynthesis has only one confirmed GT2 family member,

namely CSLC4, responsible for backbone (1,4-Glc) synthesis
[28]. Furthermore, all the genes encoding enzymes that make
up the recently identified XG multi-protein complex, CSLC4,
XXT2, XXT5, MUR3 [29], and XLT2 [30], are expressed in the
SAM at levels comparable to the pooled sample (Table S2).
CSLC6 displays the highest expression of all CSLC subfamily
members in the SAM; however, a function in XG assembly has
not yet been demonstrated. The GT34 family contains seven
members, of which data support five genes encoding XG xylo-
syltransferases (XXT1–5). There is no evidence that the remain-
ing two, designated GTL6 and GTL7, encode proteins with this
type of GT activity [31].GTL6 is one of themost highly expressed
GT genes in the SAM (mean TPM 210; Table S2). The gene
product exhibits similarity to galacto(gluco)mannan galactosyl-
transferases (GMGTs) in other plants [32]. Indeed, recent data
demonstrate that the gene, renamed MUCI10, encodes a
GMGT involved in seed mucilage formation [33]. We have there-
fore assigned these two GMGTs to mannan as the enzymes that
add the terminal Gal residue onto the 4-Man backbone, giving
rise to the 1,4,6-Man residue that most likely represents
substituted heteromannan. The backbone is synthesized by
members of the CSLA family, where CSLA2 transcripts are the
most abundant (Table S2). CSLA7, essential for embryonic
development [34], and CSLA10 exhibit higher expression in the
flower compared to other tissues (Table S2).
For HX, a proportion detected in the floral linkage analysis

would be expected to come from the vascular-derived second-
ary walls; however, it is not expected that there would be the
same in the SAM preparations, because mRNA transcripts
from known genes involved in xylem and secondary wall forma-
tion have been shown either to be absent or at barely detectable
levels (Figure 1D; Figure S2A). Although the key genes encoding
the enzymes for 1,4-Xyl backbone synthesis have been shown to
be IRX9, IRX10, and IRX14 [35, 36], transcriptome data suggest
apical enrichment of the corresponding paralog in each case
(IRX9L, IRX10L, and IRX14L; Table S2). Of the secondary wall-
associated members, only IRX10 and IRX14 are expressed in
the SAM. Also, F8H rather than FRA8 is the likely GT involved
in making the reducing-end sequence of the xylan chain.
Although the presence of a GT transcript is expected to corre-

late with its cognate polysaccharide, within the complex cell wall
composite we might expect to see spatiotemporal correlation
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between different polysaccharides reflected in the expression of
associated GTs. Using collections of publicly available microar-
ray expression data, a pairwise correlation coefficient network
[37] was constructed from SAM GT transcripts higher than 10
TPM (Figure S2D). At the center of the network are the CESA1,
3, and 6 genes that have a pairwise Pearson coefficient r >0.9,
consistent with the encoded proteins forming a primary wall cel-
lulose synthase complex (CSC) found in diverse tissue types [25].
Figure S2D (boxed) shows a subnetwork that comprises genes
with transcripts that peak in the young floral samples and where
the core is occupied by CSLC8. Together with CSLC5, this may
represent construction of an XG, although no function has yet
been assigned to the encoded GTs at present. Of the other floral
network genes, GATL5 is known to be involved in RGI formation
[38], which may extend to GATL3; CSLD5 has been attributed to
cellulose synthesis, although there is a report suggesting a role in
mannan biosynthesis [39–41]; GSL12 is a callose synthase [42];
and GALT31a (and possibly AT5G41460) assembles AGPs [43].

Visualization of GT mRNAs at the Wild-Type Shoot Apex
Reveals Subdomain-Specific Expression of Cell
Wall GTs
Co-expression of different GT family members suggests that the
encoded enzymes, and their respective polysaccharides, may
contribute to either specific types of walls or developmental
stages. We therefore performed systematic RNA in situ hybridi-
zation assays to examine the expression patterns of the SAM-
expressed GTs at single-cell spatial resolution, including those
transcripts that show either relative increases, reductions, or
no change between SAM and flower samples. Transcript locali-
zation data confirmed that most of the candidate GT-encoded
genes exhibit high expression in WT SAM as well as flower
primordia. Patterns of expression were found to be similar be-
tweenWT and clv3 (Figure S3). Based on the expression pattern,
these genes were divided into five categories (Figure 3A; Data
S1): type 1 represents a uniform distribution across the apex
(e.g., GSL1); type 2 represents apical patchy distribution, sug-
gesting flower primordia-specific enrichment (e.g., At3g14960);
type 3 has intense scattered spots (e.g., CSLD5); type 4 repre-
sents both spotted and general apical enrichment (e.g., FUT3);
and type 5 consists of patterns not classified in the above. Within
the type 5 group,GATL6mRNA gives a high signal in the approx-
imate location of vascular initials and in developing outer whorls
of the flower, further confirmed by visualizing the protein (Figures
S4A–S4C). A summary of the classification of mRNA localization
patterns for GT families, together with representative images of
all SAM-expressed cell wall GT mRNA hybridizations, is shown
in Figure 3B and Data S1. Some of these patterns are similar
to those reported for non-GT-encoding genes in the tomato
SAM [44], with Arabidopsis types 3 and 4 exhibiting similarities
to tomato pattern 5, represented by histone 2A, and suggesting
a degree of cell division-linked expression [45]. The majority (74/
115) of the Arabidopsis GT mRNA patterns are classified as
type 4. There are 14 genes that have a type 1 pattern. The
expression of these genes could also be detected in other tis-
sues (e.g., shoot tissue), suggesting that they might play funda-
mental roles in building the cell wall. Indeed, genes grouped into
this type include CESA3 for primary wall cellulose and CSLC4,
XXT1, and FUT1, which encode XG GTs. This broad expression

of GTs is consistent with the broad labeling of the polysaccha-
rides. In contrast to the type 1 CESA3 pattern, RNAs for two of
the subunits of the third polypeptide of the CSC, encoded by
either CESA5 or CESA6, gave a type 2 distribution pattern,
confirming upregulation in flower primordia. For XG, other GTs
include MUR3 (type 4), At5g62220 (type 4), and XXT2 (type 2).
The RNA for a putative GalT, encoded by GT15, although found
at low levels across the SAM, appears to be confined to the inner
whorls of the developing flower (Data S1).
For acidic pectic polysaccharide synthesis, the majority of

GAUT family transcripts (GAUT1, 3, 4, 6, 7, 9–11, and 13–15)
have similar expression patterns, in this case a type 4 distribu-
tion. In contrast, of the five genes that comprise the GT92
family-encoding enzymes that specifically make b-1,4-galactan
[46], the three shoot apex-expressed genes GALS1, GALS2,
and GALS3 exhibited divergent expression patterns, grouped
into types 2, 3, and 4, respectively (Table S2; Data S1). The
mRNA pattern of GALS2 and GALS3, concentrated at sites of
primordial initiation and during floral development (Figure S3A),
was largely consistent with the signal observed with the corre-
sponding epitope (Figure 2I).
Somemembers of the GT31 andGT29 families have been pro-

posed to be involved in the assembly of the b-1,6-Gal residues
that provide the core substitutions of the b-1,3-galactan back-
bone of type II AGs [43, 47]. Of particular interest is At1g32930
(GALT31a), because (1) its mRNA is florally enriched (Table
S2), (2) its patchy expression pattern matches that expected of
early-forming flower primordia (Figure S4D; Data S1), and (3)
insertion mutants have been found to arrest during embryo
development [43]. To confirm whether the patchy expression
is indeed confined to regions of organ initiation, we observed
a fluorescent reporter of GALT31a promoter activity, together
with a YFP plasma membrane reporter for observation of cell
boundaries. A top view of a confocal z projection shows that
the foci of GALT31a expression coincide with flower primordia
and at sites where primordia would be expected to initiate based
on a spiral phyllotactic pattern (Figures S4E and S4F), confirming
that, at least for some genes, the patchy mRNA localization co-
incides with new flower development.
All transcripts encoding known xylan biosynthetic enzymes

have a type 4 distribution and, for heteromannan backbone syn-
thesis, CSLA expression patterns were found to be either of type
2 or 4 patterns. The Gal substitutions along the backbone appear
to be formed through the action ofMUCI10/GTL6.MUCI10mRNA
signal was very high in some cells (Data S1), consistent with the
relatively high levels of mRNA found in the transcriptome analysis
of the SAM. Callose is made by GT48 (GSL/CALS) family mem-
bers, and transcripts were localized in either a type 1 (GSL1, 5,
6, and 10), type 2 (GSL8 and 11), or type 4 (GSL3 and 12) pattern.

Expression of GT Genes during Cell Division
We found that the mRNA of the GT2 member CSLD5 exhibits
intense spots (type 3 pattern) representing single cells against
a very low background (Figure 3A). Similarly intense spots
were also observed for GALS2 (Figure S3; Data S1). To test
whether the spotted pattern represents actively dividing cells,
we carried out dual labeling of CSLD5 and GALS2 mRNA
together with M phase marker CyclinB1;1 mRNA by using
probes labeled with either cyanine 5 or fluorescein. CSLD5
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mRNA was found in most of the cells containing CyclinB1;1
mRNA (Figure 3C; Manders coefficient M[1] 0.295), indicating
that its expression was linked to the later portion of the cell cycle.
GALS2 also largely co-expressed with CyclinB1;1 in flower
primordia (Figure 3D; M2 0.115). The enriched expression of
CSLD5 and GALS2 in mitotic cells, together with a significant
proportion of GT mRNAs showing an intense punctate labeling
(i.e., type 4 pattern), suggests that the expression of a large num-
ber of GT genes is upregulated during cell division, probably
contributing to the formation of new cross walls.

CSLD Family Genes Function in Stem Cell Maintenance
Given that CSLD5 and the other shoot apex-expressed mem-
bers of the CSLD family (CSLD2 and CSLD3) are found at

comparatively high levels at the shoot apex (Figures 4A–4D;
Table S2), we examined SAMs from double- and triple-mutant
combinations where whole-plant phenotypes have suggested
developmental defects [40]. We found severe growth retardation
of the triple-mutant compared to WT (Figures 4E and 4F). The
doublemutants csld2 csld5 and csld3 csld5 and the triplemutant
csld2 csld3 csld5 showed highly similar phenotypes. In our
growth conditions, the mutant plants (double and triple mutants)
produce only one to three flowers (Figure 4F); however, where
flowers did form, they appeared morphologically normal. For
some plants no SAM was readily identifiable, especially in the
triple mutant, presumably due to early termination. Confocal im-
aging revealed a small misshapen SAM in the csld mutants that
was approximately one-quarter of the diameter of WT SAMs,

Figure 3. Localization of Glycosyltransferase Gene mRNAs in the Shoot Apex by In Situ Hybridization
(A) The expression patterns of glycosyltransferase genes expressed in the shoot apex. The GTs were classified into five patterns according to their mRNA

distribution. One representative gene for each type is shown in both longitudinal (top panel) and transverse (bottom panel) sections except for FUT3which shows

a magnified region (bottom panel) of the SAM (top panel, boxed area). Scale bars, 50 mm, except for type 4, bottom, 20 mm.

(B) A sketch showing the expression patterns of GTs and a summary of gene number in each GT family, classified into different expression patterns.

(C and D) Co-expression of GT genes with CyclinB1;1, which marks dividing cells by dual-labeling fluorescence in situ hybridization. Scale bars, 20 mm.

See also Figures S2–S4, Tables S2 and S3, and Data S1.
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with the flowers encompassing a large part of the meristem
(compare Figures 4G and 4H). Over a 24-hr period, individual
cells were segmented and tracked to compare growth rates.
For WT, cells of the CZ yield the lowest growth (blue cells in Fig-
ure 4I), with increases observed in the PZ (turquoise through yel-
low and red in Figure 4I). Cells that are part of flower primordia
show the highest degree of growth. For the csld mutant, the
SAM (Figure 4J, arrow) had no recognizable growth domains;
however, the larger flower had cells achieving maximum growth
rates consistent with the growth retardation being exerted at the
level of the SAM, not the developing flowers. We interpret these
data to mean thatCSLD genes are needed for proper cell growth
and proliferation in the SAM, that is, maintaining the meriste-
matic stem cell pool rather than being involved in specifying
cell fate.
We also determined the cell wall composition, using linkage

analysis, of SAM samples of a csld3+/! csld5 mutant in the clv3
background. The plants exhibited retarded growth compared to
the clv3 single mutant, and were found to contain cell walls with

amarkeddifference in linkage composition (FigureS5A). The rela-
tive abundance of every detectable polysaccharide changed,
some dramatically increasing, such as heteromannan (5-fold),
and others decreasing, including HG (6-fold), arabinan (2-fold),
and XG (3-fold) (Figure S5B).

DISCUSSION

The primary cell wall plays a fundamental role in plant morpho-
genesis via modulation of cell shape, mechanical feedback,
and signaling [5, 10, 12, 13, 48, 49]. Knowing what this wall
is made of and how it is made, summarized in Figure 5
[50, 51], allows us to better understand plant shoot develop-
ment. The SAM uses a reduced set of GTs to make its walls
compared to the rest of the plant. Detailed analysis of the tran-
scriptome, and localization of the GT mRNAs revealed that
different categories of expression patterns are present across
the SAM and young flowers. These expression analyses,
together with antibody labeling of wall components and linkage

Figure 4. CSLDs Are Required for Shoot Apical Meristem Maintenance
(A) Expression patterns of CSLD2, CSLD3, and CSLD5 as revealed by in situ hybridization. Scale bar, 50 mm.

(B–D) Confocal images showing the expression domains of CSLD2, CSLD3, and CSLD5 in the SAM. CSLD2 and CSLD3 expression is active in most of the cells,

whereas CSLD5 is enriched in dividing cells. Scale bars, 50 mm (C) and 25 mm (D).

(E and F) Whole-plant phenotypes of wild-type (WT, Col-0) and the csld2 csld3 csld5 triple mutant. A close-up of the csld2 csld3 csld5mutant is shown in (F), with

the shoot apex boxed. Scale bars, 1 cm (E) and 0.5 mm (F).

(G and H) Three-dimensional rendering of confocal z stacks of wild-type and csld2 csld5 mutant SAMs. Scale bar, 20 mm.

(I and J) A growth heatmap of wild-type and csld2 csld5mutant SAMs showing relative growth increases per cell over a 24-hr period. In the csld2 csld5mutant, the

location of the SAM is indicated by an arrow (H and J). Scale bar, 20 mm.

See also Figure S5 and Table S3.
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analysis, have allowed us to probe the composition of cell walls
in the SAM.

Consistent with it being the main structural component of pri-
mary cell walls, cellulose is themajor polysaccharide inmeristem
tissues and was found at a reduced level in the SAM compared
to the young flower. Whereas the core cellulose subunits, en-
coded by CESA1 and CESA3, exhibit high expression in both
tissues, two of the three genes encoding the third subunit are
expressed predominantly in flower primordia.

Pectin is present throughout the primary walls and masks
several non-cellulosic polysaccharides, as demonstrated by
the requirement for pre-treatment to reveal antibody epitopes.
The predominance of pectic arabinan and galactan in specific
cell layers or tissues reinforces the idea that both of these poly-
saccharides are important as part of wall rearrangements dur-
ing cellular morphogenetic events, likely attributed to their high
mobility in the wall and reversible binding to cellulose [52].

For xyloglucan, the action of expansin to release the XG
tethers of adjacent cellulose microfibrils has been at the heart
of both cellular and tissue-scale models of growth and develop-
ment, especially in organ emergence from the flanks of the SAM
[15]. Consistent with XG being present throughout the apical re-
gions, we found that the only confirmed gene for backbone syn-
thesis, CSLC4, showed uniform expression. The dominance of
MUR3 and several GalT genes, as well as the strong and uniform
enrichment of FUT1 mRNA in the SAM, suggests a high degree
of galactosylation and fucosylation of XG in meristematic cells
(Figure 5).

Figure 5. GraphicalRepresentationShowing
the Different Types of Polysaccharides and
Their Linkages Present in the SAM Cell Wall
Shown are GT family and subfamily assignments.

Where only one candidate exists or a transcript

is present >10-fold than other members of a GT

family, the gene name is given in parentheses.

Xylan, RGI, XG, and AG have diverse backbone

substitution/branch patterns and the types of link-

ages are shown. For type II AG(P), the recently

identified Arabidopsis xylosyl-terminal branch is

included [50]. For xylan, the recently determined

primarywall structure is shown [51]. TheHMshown,

as an example, is galactoglucomannan. AGI and

AGII, type I and II arabinogalactan; HM, hetero-

mannan; HX, heteroxylan; HG, homogalacturonan;

RGI and RGII, type I and II rhamnogalacturonan;

XGA, xylogalacturonan; XG, xyloglucan.

The xylan synthesis module con-
sists predominantly of GTs encoded by
IRX10L, IRX9L (but not IRX9), and
IRX14/14L for backbone extension and
GUX3 for (methyl)GlcA substitutions,
which, based on recent evidence [51],
may be extended to include an unidenti-
fied pentose moiety (Figure 5). The data
presented here support the IRX-LIKE
genes being associated with primary
walls. Given the mostly type 4 distribu-
tion of xylan GT transcripts, much of the

deposition may occur during the de novo formation of the cross
wall during cell division and be maintained as walls mature,
which might be involved in the regulation of spacing between
cellulose microfibrils [51].
The localization of heteromannan in a small subset of walls

that could only be detected after removal of pectin suggests
that mannan is either masked by other components and modifi-
cations as cell walls mature or principally deposited early during
cross-wall formation and later removed. The high expression
of GTL6 in the SAM, recently characterized as the GMGT
MUCI10, suggests that the heteromannan in the SAM is likely
galactosylated to a much higher extent than in other tissues,
which might be important for proper cellulose organization [33].
Type II AG represents the glycosidic portion of AGPs that have

been implicated in various aspects of plant development [53, 54].
Multiple genes from several AGP-GT families are expressed
apically, and their transcripts show type 1, 2, and 4 in situ pat-
terns. GALT31a mRNA was found to be particularly abundant
in flower primordia, and this was confirmed through live imaging
of a reporter of promoter activity. The atgalt31a mutant arrests
embryo development [43] and may have an equally important
role in floral organ formation but, because the mutant is lethal
prior to growth of the meristem, functional analysis will require
targeted knockdown of the RNA late in development.
In the SAM, active cell division with intervening growth leads to

the formation of leaf and flower primordia while also maintaining
a pool of stem cells. Compared to animal cells, which divide by
forming a constriction, plants build a cell plate at the final step
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of cytokinesis to separate the two daughter cells. Callose and
cellulose have been implicated as the major components of
the cell plate, where callose decorates the nascent cross wall
and is gradually replaced by cellulose as the wall matures. Cal-
lose is synthesized by members of the GSL/CALS GT48 family,
exhibiting high expression in the SAM and primordia. No GSL
transcripts, including GSL6 [55], were found with the type 3
dotted pattern, suggesting that no GSL enzymes are exclusive
to cell-plate formation. Similarly, despite the accumulation of
CESA proteins on the forming cell plate [56], none of the CESA
genes displayed enriched expression in dividing cells, indicating
fundamental roles for callose and cellulose in both cell-plate
formation and wall building during post-mitotic expansion. For
callose, this may be limited to surrounding plasmodesmata as
part of the regulatory network controlling symplastic transport
[42]. Other components of the developing cell plate and their
synthesis remain elusive. Antibody labeling suggests the pres-
ence of other matrix polysaccharides [57, 58], including mannan
(Figure 2M), in the cell plate. Because cell-plate formation is
a quite transient process that usually completes in less than
60 min, we can speculate that a large set of GTs would be upre-
gulated through controlled transcription and/or protein synthesis
to accommodate a burst of GT enzyme activity for de novo poly-
saccharide synthesis during cytokinesis. Consistent with this
scenario, a majority of GTs exhibited what we interpret as a
cell-cycle pattern (type 4) and suggests an important role in tran-
scriptional reprogramming of GT genes upon cell-cycle entry.
The decreased expression of these GTs in non-dividing cells
also indicated some transient difference in the composition
and/or structure between new cross walls and mature walls,
and might also imply distinct wall properties of cells within and
outside of cell division. However, it is technically challenging to
measure the composition of cell plates, due to its transient
nature and low abundance in tissues.
The expression of CSLD5 was strongly linked to cell-division

patterns at a time when new cross walls are laid down. CSLD5
is also found to be co-expressed with markers of the root meri-
stem and division zone [59, 60]. Similar mitosis-enriched expres-
sion was observed for the rice homolog OsCSLD4, suggesting a
conserved regulation of CSLD expression across different spe-
cies [61]. The remaining shoot-expressed members, CSLD2
and CSLD3, displayed broader expression patterns across the
apex. csld2 and csld3mutants, when combined with csld5, pro-
duced plants with terminating meristems, apparently unable to
maintain the size of the stem cell pool to produce more than a
few flowers. It has been proposed that the CSLD gene family en-
codesGTs that make a type of cellulose [39], withCSLD5making
a less crystalline polysaccharide [62]; however, there is also
a suggestion they may make mannan [40]. A reduction in the
CSLD-derived polysaccharide resulted in large changes in
composition of the SAM cell wall (Figure S5), and demonstrates
how changes in wall content and/or wall integrity feed back on
wall biosynthesis. Based on our data, we postulate that the
polysaccharide made by CSLD is important for proper cell prolif-
eration and cell wall integrity in the SAM, and is not easily
compensated by the presence of other wall glycans.
In summary, we find that a limited subset of GTs make the

walls in the SAM. Cell wall polysaccharides, and the GTs that
make them, can be uniformly distributed or focused to particular

regions or cells at a given time. The phenotypes of csld mutants
demonstrate a clear relationship between the cell wall and the
function of the SAM for proper development. The data now allow
for a targeted approach for both exploring and manipulating
shoot morphogenesis.

EXPERIMENTAL PROCEDURES

Growth and Dissection of clv3-2 Tissues for RNA-Seq and Cell Wall
Linkage Analysis
Because wild-type meristems were too small to obtain sufficient material for

linkage analysis (see the Supplemental Experimental Procedures), plants of

the A. thaliana clv3-2 mutant, in the Ler background [63], were grown under

short-day (8-hr light) regimes for 4 weeks prior to transfer to long days

(16 hr). Tissues (two biological replicates of each) were collected from plants

exhibiting an inflorescence stem of at least 8 cm. Enlarged SAMs were

collected after careful removal of all floral organs. A razor blade was then

used to remove the upper fleshy portion at the center of the SAM (Figure 1C,

top panel), which was immediately frozen in liquid N2. Early-stage flowers

(stages 6–7) at the periphery of the SAM were collected using fine tweezers

and immediately frozen (Figure 1C, bottompanel). Tissues for the clv3-2

whole-plant sample for RNA-seq (known as the ‘‘pooled sample’’) consisted

of fruit (stage 17), young leaves, old leaves, roots, stem, whole inflorescence,

and flower (stage 15). The tissues were harvested and stored separately.

RNA-Seq Sample Preparation
RNA was extracted using the RNeasy plant kit (QIAGEN) for each biological

replicate according to the manufacturer’s protocol. For whole-plant samples,

80 ng of each sample was subsequently pooled before library preparation.

Libraries were prepared from 500 ng total RNA using the TruSeq Stranded

Total RNA with Ribo-Zero plant kit (Illumina).

qRT-PCR
For qRT-PCR analysis, total RNAs were extracted from dissected meristem,

young flowers, and shoot tissues using the RNeasy Plant Mini Kit (QIAGEN)

according to the manufacturer’s instructions. RNA (2 mg) was reverse tran-

scribed into cDNA using oligo(dT) primer and the Transcriptor High Fidelity

cDNA synthesis kit (Roche). The cDNA was used as templates for qRT-PCR

using LightCycler 480 SYBRGreen IMaster (Roche) and gene-specific primers

(Table S3).

Sequencing Analysis
The six RNA-seq libraries were sent for sequencing at the Beijing Genome

Institute using one full lane of Illumina HiSeq 2000. The raw reads in FastQ

format were obtained and analyzed in house. We first assessed the qual-

ity of the reads using FastQC (http://www.bioinformatics.babraham.ac.uk/

projects/fastqc). Potential adaptor contamination and low-quality trailing se-

quences were removed using Trimmomatic [64]. Preprocessed reads were

then mapped to the Ler-0 reference genome [65] using TopHat [66, 67], and

possible optical duplicates from PCR during the library preparation step

were then removed using Picard tools (http://broadinstitute.github.io/picard).

Relative transcript estimation was carried out using Cufflinks [67] to obtain

fragments per kilobase of transcript per million fragments mapped (FPKM)

values and converted to transcripts per million [68], and also as raw reads us-

ing HTSeq [69]. Normalization of read counts, gene ontology analysis, and

generation of a pairwise correlation coefficient network are described in the

Supplemental Experimental Procedures.

Polysaccharide Linkage Analysis
Alcohol-insoluble residues were prepared from isolated SAMs and young

flowers and used in the determination of both neutral and acidic monosaccha-

ride linkage composition and polysaccharide composition as previously

described [21]. For comparison with csld, crosses between clv3-2 and csld3

csld5 produced F2 plants where csld3 csld5 clv3 was not viable beyond early

vegetative stage and therefore plants genotyped as csld3+/! csld5 clv3, which

exhibited retarded growth, were used to generate SAM AIRs for linkage

analysis.
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RNA In Situ Hybridization of Wax-Embedded SAM Sections
For generation of gene-specific probes, cDNA fragments corresponding to

each GT gene were amplified using gene-specific primers (Table S3) and

ligated into the pGEM-T Easy vector (Promega). The constructs were verified

by sequencing and then used as templates for in vitro transcription using the

DIG RNA labeling kit (Roche). Shoot apices of Arabidopsis wild-type Col-0

or clv3-9 (a gift from Rüdiger Simon, Heinrich Heine University) were fixed in

FAA (formaldehyde, acetic acid, ethanol), embedded in wax, and cut into

8-mm sections. The sections were processed as described (http://www.its.

caltech.edu/"plantlab/protocols/insitu.pdf). In brief, after dewaxing, rehydra-

tion, and dehydration, the sections were hybridized with gene-specific probes

and then incubated with anti-digoxigenin antibody (Roche). Signals were de-

tected by the color reaction after application of NBT/BCIP (nitro blue tetrazo-

lium/5-bromo-4-chloro-3-indolyl-phosphate; Roche). Sense controls, yielding

no hybridization with target mRNA, are shown in Figure S3A. Two-color fluo-

rescence in situ hybridization was used for gene co-expression analysis,

and the protocol is described, in detail, in the Supplemental Experimental

Procedures.

Immunohistochemistry of Wall Components
Wax sections generated for in situ hybridizations were used for antibody

detection of wall polymers. Sections were mounted on polished slides

and dewaxed using xylene, followed by rehydration using an ethanol series:

100% (v/v), 95%, 70%, 50%, 30%, and 10%. Sections were then incu-

bated in buffer (20 mM Tris-HCl [pH 8.2], 0.5 mM CaCl2, 150 mM NaCl)

for 20 min, followed by blocking in 0.5% (w/v) milk powder in buffer. Pri-

mary antibody, diluted in buffer, was added to the sections and incubated

overnight. After washes in buffer, secondary antibody incubations were

carried out for 3 hr. Primary antibodies were rabbit PDM anti-mannan

(gift from Paul Dupree, University of Cambridge) [70], LM28 rat anti-xylan

(gift from Paul Dupree) [71], LM24 rat anti-xyloglucan [72], JIM7 rat anti-

homogalacturonan [73], LM13 rat anti-arabinan [74], and LM5 rat anti-

galactan (PlantProbes) [75]. Secondary antibodies were anti-rabbit IgG-

CF488A conjugate (Sigma; SAB4600030), anti-rat IgG-CF568 conjugate

(Sigma; SAB4600077), and anti-rat Alexa Fluor 647 (Life Technologies).

Crystalline cellulose was detected by CBM3a [76] together with anti-His

FITC secondary antibody. For enzyme treatments, sections were incu-

bated with pectolyase (0.1% [w/v]; Sigma; P5936) in incubation buffer

(0.2 M Na2HPO4, 0.1 M citric acid [pH 4.8]) prior to primary antibody incu-

bation. Labeled sections were mounted in ProLong Gold Antifade Mountant

(Life Technologies) with a coverslip and sealed. Images were taken with a

Zeiss LSM 700 confocal microscope equipped with a 203 0.8 numerical

aperture (NA) dry objective.

Live-Cell Imaging of Transgenic Reporter Lines
Plants were partially dissected to remove overhanging flowers obscuring the

SAM. Live-cell imaging was carried out on a Zeiss LSM 700 confocal micro-

scope equipped with 488- and 555-nm lasers and a 203NA 1.0 water-dipping

objective.

Observing Cell Boundaries for Segmentation and Growth Analysis in
csld Mutants
The csld2 csld5, csld3 csld5, and csld2 csld3 csld5 mutants were a gift

from Henrik Scheller (University of California, Berkeley) and their construction

has been reported [40]. For viewing of the SAM, large organs were dissected

and the apex was stained with the dye FM4-64 (Life Technologies;

333 mg ml!1) for 3 min and then carefully rinsed in water. SAMs were viewed

under a Zeiss LSM 700 confocal microscope with water-dipping objective,

and z stacks were obtained and 3D rendered using confocal software. For

growth analyses, the acylated YFP plasma membrane marker (myr-YFP)

was transformed into heterozygous plants, and double mutants were identi-

fied after selection. Whole plantlets were transferred shortly after bolting to

imaging boxes containing 2.2g l!1 Murashige and Skoog (MS) medium, Gam-

borg B5 vitamins (Duchefa), and 1% w/v agar. Confocal imaging of the YFP

reporter was then carried out at two time points separated by 24 hr followed

by segmentation and cell indexing using MorphoGraphX [77], where a heat-

map of relative growth was selected as output upon the 3D image of the

24-hr time point.
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Altered cellularmetabolism is a fundamental adaptation of cancer during rapid proliferation as a result of growth
factor overstimulation. We review different pathways involving metabolic alterations in cancers including aero-
bic glycolysis, pentose phosphate pathway, de novo fatty acid synthesis, and serine and glycine metabolism. Al-
though oncoproteins, c-MYC, HIF1α and p53 are the major drivers of this metabolic reprogramming, post-
transcriptional regulation by microRNAs (miR) also plays an important role in finely adjusting the requirement
of the key metabolic enzymes underlying this metabolic reprogramming. We also combine the literature data
on themiRNAs that potentially regulate 40metabolic enzymes responsible formetabolic reprogramming in can-
cers, with additionalmiRs from computational prediction. Our analyses show that: (1) ametabolic enzyme is fre-
quently regulated by multiple miRs, (2) confidence scores from prediction algorithms might be useful to help
narrow down functionalmiR-mRNA interaction, whichmight beworth further experimental validation. By com-
bining known and predicted interactions of oncogenic transcription factors (TFs) (c-MYC, HIF1α and p53), sterol
regulatory element binding protein 1 (SREBP1), 40metabolic enzymes, and regulatorymiRswe have established
one of the first reference maps for miRs and oncogenic TFs that regulate metabolic reprogramming in cancers.
The combined network shows that glycolytic enzymes are linked to miRs via p53, c-MYC, HIF1α, whereas the
genes in serine, glycine and one carbon metabolism are regulated via the c-MYC, as well as other regulatory or-
ganization that cannot be observed by investigating individual miRs, TFs, and target genes.

© 2016 Pinweha et al. Published by Elsevier B.V. on behalf of the Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Overall metabolic reprograming in cancers

In response to overstimulation of growth factor signaling, cancer
cells reprogram their metabolism in order to accommodate a high

demand for macromolecules during rapid proliferation [1–4]. The hall-
mark of the above metabolic reprograming is the shift from oxidative
phosphorylation to aerobic glycolysis, known as the “Warburg effect”
[5]. This phenomenon provides some advantages to the tumors because
aerobic glycolysis allows them to survive under hypoxic conditions,
while an acidic environment selects a highly aggressive population of
cancers to survive and metastasize to distal tissues or organs [3,6].
Cancers are also highly anabolic because they require lipids, protein
and nucleic acids as constituents of the structural components of the
newly divided cells [2]. This highly anabolic phenotype is partly attrib-
uted to theWarburg effect because inhibition of pyruvate entering into
the mitochondria results in the redirection of glycolytic intermediates
to the pentose phosphate pathway (PPP), which provides biosynthetic
precursors for nucleotides and lipids [4]. Furthermore, mitochondrial
metabolism of cancers is also reprogrammed toward cataplerosis
where substantial amounts of tricarboxylic acid (TCA) cycle intermedi-
ates are used as the biosynthetic precursors of lipids and amino acids
[2]. Therefore, it is not surprising to see up-regulate expression of key
enzymes that catalyze the above biosynthetic pathways in several
types of cancers. Fig. 1 shows the overall metabolic reprogramming
pathways in cancers together with the key regulatory enzymes.
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Herewe review the alteredmetabolic pathways and the relevant en-
zymes in cancers inferred from experimental and computational based
data [7–9].We also review the oncogenic transcription factors (TFs) and
miRNAs that regulate those metabolic pathways. In addition, using
known and predicted miRNA-target gene interaction, we establish and
analyze the network of oncogenic miRNA-metabolic target gene net-
works that interplay and regulate metabolic reprograming in cancers.

1.1. miRNAs regulate metabolic pathways

Post-transcriptional regulation by microRNAs (miRNAs) has long
been known as a mechanism to silence gene expression. miRNAs are
short double stranded RNAs, comprising 15–25 nucleotides. They are
first transcribed in the nucleus as the primary miRNAs, consisting of
multiple stem loop structures, which are then subsequently digested
to precursor miRNAs (pre-miRNAs) by Drosha, an RNase III family en-
zyme [10]. Pre-miRNAs are then transported to the cytoplasm where
the hairpin structure is further removed by a dicer enzyme, yielding ap-
proximately 21 base pairs miRNA duplex. The miRNA duplex is subse-
quently incorporated in the Argonaute protein which digests one
strand of the duplex miRNA, generating a single stranded miRNA. This
single stranded miRNA is further brought to their target mRNAs by an
RNA-induced silencing (RISC) complex. Binding of single stranded
miRNAs to their targets is mediated by hybridization of 7–8 nucleotides
of the miRNAs (known as seed match) to their complementary nucleo-
tides in the 3′-untranslated regions of their targets. Such hybridization
results in translational inhibition or degradation of target mRNAs, thus
providing a means to inhibit gene expression. Furthermore, one
miRNA can bind to more than one species of mRNA targets due to a
non-stringent hybridization of the seedmatch region, allowing simulta-
neous down-regulation of multiple target mRNAs. In the same way,
multiple species of miRNAs can bind to the samemRNA targets and en-
hance translational inhibition [11]. It is estimated that 45,000 miRNA

target sites are found in the human genome, and these miRNAs control
expression of up to 60% of human genes [12].

miRNAs are implicated in the regulation of various biological pro-
cesses. Biochemically, miRNAs also regulate cellular metabolism either
directly by targeting key enzymes of metabolic pathways or indirectly
by modulating the expression of important transcription factors. Multi-
ple studies have revealed that the altered metabolic pathways in can-
cers are tightly regulated by miRNAs [13]. In the first half of the
review, we describe the metabolic pathways and key enzymes that
are altered in various cancers and regulated by miRNAs. This will be
followed by the second half on the regulatory networks between meta-
bolic enzymes, regulatory miRNAs and oncogenic transcription factors.

1.2. Glycolytic and pentose phosphate pathways

The Warburg effect is a primary event of metabolic reprogramming
during tumorigenesis. This effect includes induced expression of en-
zymes such as GLUT1, hexokinase 2 (HK2), phosphofructokinase 2
(PFK2) and pyruvate dehydrogenase kinase 1 (PDK1) [3]. Up-
regulation of the expression of the first three targets results in a rapid
uptake of glucose and increased glycolytic rate, while increased expres-
sion of PDK1 inactivates pyruvate dehydrogenase, restricting the con-
version of pyruvate to acetyl-CoA in the mitochondria and thus
uncoupling glycolysis from subsequent mitochondrial oxidation. In-
creased expression of lactate dehydrogenase and monocarboxylic acid
transporter 4 (MCT4) further sequesters pyruvate toward lactate pro-
duction, lowering the pH of the extracellular environment [14]. The
muscle-specific pyruvate kinase M (PKM) isoform has also been impli-
cated in metabolic reprogramming in certain cancers [15]. PKM exists
in two isoforms, PKM1 and PKM2 that have arisen from alternative
splicing of exons 9 and 10 [16]. The activities of these two enzymes
are determined by their conformers. PKM1 has a tendency to form tet-
ramers that possess high enzymatic activitywhile PKM2 shows relative-
ly low activity due to its main conformer being dimers. PKM1 is the

Fig. 1.Metabolic pathways in cancers. Glucose and glutamine are two major carbon sources that are metabolized through these biochemical pathways.
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most abundant isoform in skeletal muscle while PKM2 is highly
expressed during embryonic development. In many cancers, PKM2 is
selectively expressed, resulting in the accumulation of phosphoenolpyr-
uvate, and thus redirecting the flow of glycolytic intermediates toward
the pentose phosphate pathway (PPP) [15]. This mechanism provides
a great benefit for cancers because PPP provides the ribose-5-
phosphate and NADPH required for the synthesis of nucleotides and
fatty acids. PKM2 also plays a non-metabolic role in which it can act as
a co-activator of TFs including HIF1α, STAT3, Oct4 and β-catinin
which regulate expression of certain oncogenes [16,17]. Therefore
PKM2 switching can reprogram metabolic pathways and alter the pro-
gram of gene expression in cancers.

In response to PKM2 activation or by othermechanisms, PPP activity
has been reported to be elevated in many cancers [18]. Therefore it
is not surprising to see up-regulation of key enzymes in this
pathway including glucose-6-phosphate dehydrogenase (G6PD),
6-phosphogluconate dehydrogenase (6-PGD) and transketolase-
like enzyme [19–21]. NADPH produced by PPP is also crucial for
maintaining the proper glutathione-redox loop that cancers use to
counter the reactive oxygen species formed especially during
epithelial–mesenchymal-transition (EMT) or anoikis resistance
[22,23]. Inhibition of PPP via the use of specific enzyme inhibitors
or siRNAs targeted to their corresponding enzymes retards growth
and biosynthesis of lipid and nucleotides in many types of cancers
[21,24,25].

1.3. Mitochondrial metabolism

The tricarboxylic acid cycle (TCA cycle) provides both catabolic and
anabolic functions for living cells. In normal cells, the TCA cycle func-
tions as a central oxidation hub where acetyl-CoA derived from oxida-
tions of glucose, amino acids and fatty acids enters for complete
oxidation. However in dividing cells or cancers, the TCA cycle is used
as an anabolic hub because its intermediates are used as biosynthetic
precursors of amino acids, nucleotides and lipids, in a process known
as “cataplerosis” [26]. Mutations of certain TCA cycle enzymes such as
isocitrate dehydrogenase (IDH), succinate dehydrogenase (SDH) and
fumarate hydratase (FH) can contribute to tumorigenesis [27,28]. In
certain cancers especially glioma, mutations of the cytosolic (IDH1) or
mitochondrial (IDH2) enzymes create a novel function in which they
can further convert α-ketoglutarate to 2-hydroxyglutarate (2-HG)
[29]. 2-HG is an oncometabolite because it acts as an inhibitor of
α-ketoglutarate-dependent dioxygenase involved in DNA and histone
demethylation. Inhibition of such a process can lead to tumorigenesis
[2,29]. Similarly, mutations of the genes encoding succinate dehydroge-
nase (SDH) and fumarate hydratase (FH) result in the accumulation of
succinate or fumarate, respectively. These two metabolites are inhibi-
tors of prolyl hydroxylase (PHD), which hydroxylates hypoxia-
inducible factor 1α (HIF1α), resulting in its degradation by proteolysis.
Therefore elevated levels of bothmetabolites stabilize HIF1α, activating
glycolysis in cancers [27].

Cancers also require the replenishment of TCA cycle intermediates
after their removal for biosynthetic purposes. In order to prevent a dis-
continuity in the supply of biosynthetic precursors, there is a biochem-
ical pathway known as “anaplerosis” which is composed of two main
reactions, glutaminolysis [30] and pyruvate carboxylation [31].
Glutaminolysis is the conversion of glutamine to glutamate by gluta-
minase (GLS) before glutamate is further converted to α-ketoglutarate
in the TCA cycle by glutamate dehydrogenase. The second anaplerotic
reaction is the carboxylation of pyruvate to oxaloacetate by pyruvate
carboxylase (PC). Different cancers use these two different anaplerotic
reactions to certain extents, to support biosynthesis by up-regulation
of either or both enzymes during tumorigenesis [32–35]. Inhibition of
these two enzymes results in impaired growth of cancers accompanied
with marked reduction in biosynthesis of lipids, nucleotides and amino
acids [33–36]. Recent studies show that a gluconeogenic enzyme,

phosphoenolpyruvate carboxykinase (PEPCK) also plays an important
role in supporting biosynthesis of tumors [37–39]. PEPCK catalyzes a
further conversion of oxaloacetate to phosphoenolpyruvate (PEP).
This enzyme occurs in two isoforms: the cytosolic (PEPCK1 or PEPCK-
C) and themitochondrial (PEPCK2 or PEPCK-M) isoforms. Colon cancer,
for instance, uses PEPCK1 [39] while non-small cell lung cancer uses
PEPCK2 [37,38] to supply PEP to support their growth, respectively.
However, PEP formed by both enzymes is not only converted to glucose
but also used locally as a biosynthetic precursor of serine and glycine.
Furthermore, elevated levels of PEP also drive the flow of the upstream
glycolytic intermediate glucose-6-phosphate to enter the PPP for the
synthesis of ribose sugar required for nucleotide synthesis [37,39]. In-
terestingly, this function becomes more obvious when the nutrient
that supports the growth of a tumor is shifted fromglucose to glutamine
[37,39]. This adaptive mechanism enables cancers to grow and survive
under glucose-limited conditions.

1.4. Amino acid synthesis

Amino acids serve as not only the building blocks of polypeptides,
but also the precursors of nucleotides. As cancers require large amounts
of proteins and nucleic acids, it is not surprising that up-regulation of
key enzymes involved in biosynthesis of certain amino acids were ob-
served in cancer cells. Serine and glycine are essential for synthesis of
nucleotides as deprivations of these two amino acids endogenously or
exogenously, retard growth of many cancers [40]. De novo synthesis of
these two amino acids is started from 3-phosphoglycerate (3-PG), an
intermediate in the glycolytic pathway. 3-PG is then converted to
serine via a three-step reaction, in which 3-PG is first converted to 3-
phosphohydroxypyruvate by phosphoglycerate dehydrogenase
(PHGDH). 3-phosphohydroxypyruvate is further converted to serine
by another two reactions catalyzed by phosphoserine aminotransferase
(PSAT) and phosphoserine phosphatase (PSPH) [40]. As only 10% of 3-
PG in the glycolytic pool enters serine and glycine biosynthesis, this
seems paradoxical with such a high demand for both amino acids dur-
ing the rapid proliferation of cancers. However, many cancers cope
with this limitation via an aberrant activation of the serine biosynthetic
pathway by increasing the copy number of the PHGDH gene or up-
regulating its mRNA expression, resulting in much a higher rate of ser-
ine synthesis [41,42]. Serine is further converted to glycine by the serine
hydroxymethyl transferase (SHMT), a folate-dependent pathway [40].
SHMT is comprised of two isoforms, SHMT1 which is expressed in the
cytoplasm whereas SHMT2 is expressed in mitochondria. It remains
unclear about the functional redundancy of these two isoforms as
inhibiting activity of either isoform or suppressing their expression re-
tards growth in different cancer models [43–45]. Nevertheless, both
SHMT1 and SHMT2 are associated with the folate cycle, which is in-
volved in one-carbon metabolism including synthesis of methionine
and nucleotides, and in histone methylation. Thus, disruption of both
SHMT isoforms can potentially perturb these metabolic processes [40].

1.5. Lipid biosynthesis

Fatty acids especially in phospholipids are important components of
the plasma membrane. In cancers, fatty acids are mainly synthesized
through the de novo pathway either from glucose or glutamine via gly-
colysis or glutaminolysis, respectively. However, the latter pathway
plays a more significant role in this process [46]. As mentioned earlier,
glutamine enters the TCA cycle via glutamate before being converted
to α-ketoglutarate by glutamate dehydrogenase. This glutaminolytic
flux increases TCA cycle intermediate pools, enabling citrate to leave
the mitochondria to enter the cytosol where it is decarboxylated to ox-
aloacetate and acetyl-CoA by the ATP-citrate lyase (ACL). It has been re-
ported that ACL expression and activity are elevated in many cancers.
Thus, inhibition of its activity impairs lipid synthesis and is accompanied
by reduced cell growth and survival [47,48]. The cytosolic acetyl-CoA
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then serves as a precursor for long chain acyl-CoA synthesis, which is
highly regulated by two enzymes, acetyl-CoA carboxylase 1 (ACC1)
and fatty acid synthase (FAS). ACC1 catalyzes the carboxylation of
acetyl-CoA to formmalonyl-CoA, a building block that donates two car-
bon units for fatty acid synthesis. ACC1 activity can be modulated by a
reversible phosphorylation. Among other kinases, the AMP-activated
protein kinase (AMP) can phosphorylate ACC1, transforming it into an
inactive form while protein phosphatase 1 dephosphorylates ACC1
back to an active form [49]. The phosphorylated ACC1 is subjected to a
second mode of regulation through interaction with a DNA repair pro-
tein, BRCA1which is highly expressed in breast tissue [49]. This interac-
tion sequesters phosphorylated ACC1 from being dephosphorylated
thereby blocking fatty acid synthesis [50,51]. A high incidence of the on-
cogene BRCA1mutations is associatedwith breast cancer because these
mutations not only result in the loss of BRCA1 function as a DNA repair
protein but also perturbs its interaction with phosphorylated ACC1,
freeing it to be dephosphorylated and subsequently stimulate lipogene-
sis in breast tissue [51,52]. ACC1 is one of the anti-cancer drug targets
because inhibiting its expression or activity induces apoptosis in many
cancers [53–55]. FAS has also been reported to be aberrantly activated
in many cancers [56–58]. Like ACC1, inhibition of FAS expression or
activity markedly reduces cancer growth [52,59,60].

1.6. Metabolic pathway crosstalk contributing to tumorigenesis

Although the crosstalk of signaling pathway is well implicated in tu-
morigenesis [61], only a few examples of metabolic pathway crosstalk
are reported in certain cancers. As mentioned earlier, accumulation of
succinate in cancers bearing mutations of succinate dehydrogenase
gene not only results in the inactivation of HIF1α, contributing to War-
burg effect but this also promotes tumorigenesis by attenuating the pro-
duction of glutathione, an important redox protein which functions in
detoxifying reactive oxygen species (ROS). Several cancers overproduce
ROS in order to enhance PI3K,MAPK and NF-κB signaling pathways that
support cellular proliferation [1]. Elevated levels of fumarate are found
to react with glutathione to form succinated glutathione thereby reduc-
ing the NADP/NADPH-couple regeneration system required to elimi-
nate ROS [62]. Similar reduction of glutathione levels was also
observed in glioma bearing IDH1 or IDH2 mutation which accumulates
2-HG, suggesting that this oncometabolite may support ROS formation
through attenuating the anti-oxidant system [63]. Warburg effect may
also enhance tumorigenesis via conversion of fructose-6-phosphate
into hexosamine biosynthetic pathway, yielding O-linked N-
acetylglucosamine that can enhance mitogenic signaling pathway [64].

1.7. Coordinate regulation of metabolic reprogramming in cancers by
oncogenic transcription factors

Having outlined different pathways and mechanisms of metabolic
reprogramming in cancers, an important question remains: what con-
trols this metabolic reprogramming in cancers? Threemajor TFs, name-
ly c-MYC, hypoxia inducible factor 1α (HIF1α) and p53 are responsible
for simultaneous up-regulation of the above key metabolic enzymes
[65]. Aberrant expression of c-MYC is observed inmore than 50% of can-
cers and it is one of themost amplified oncogenes. The c-MYC regulates
various biological processes including proliferation, apoptosis and met-
abolic reprogramming [66]. Elevated c-MYC levels in turn bind to its tar-
get gene promoters, which contain a canonical E-box (CANNTG)
element, resulting in increased mRNA transcripts. In normal situations,
c-MYC expression is tightly regulated i.e., its expression is high during
cell division but rapidly declines during cell cycle arrest [67]. In situa-
tions of metabolic alterations, c-MYC targets expression of genes
encoding GLUT1, HK2, PDK1 and GLS1 [65,66,68].

The hypoxia-inducible factor (HIF1α), another key oncogenic TF, is
functionally coordinated with c-MYC in controlling metabolic
reprogramming in cancers [69]. HIF1α exists into two forms: the non-

hydroxylated and the hydroxylated forms. In the presence of oxygen,
HIF1α undergoes hydroxylation by prolyl hydroxylase, making it
prone to proteolysis. However, when oxygen concentration is low,
HIF1α escapes hydroxylation, allowing it to enter to the nucleus
where it is hetero-dimerized with HIF1β and binds to the hypoxia-
responsive element (HRE) in the promoters of genes whose products
are involved in angiogenesis andmetabolism [3]. HIF1α's metabolic tar-
gets appear to overlap with those of c-MYC, including GLUT1, GLUT3,
HK1, HK2, aldolase A, phosphoglycerate kinase (PGK), lactate dehydro-
genase (LDH), monocarboxylic acid transporter 4 (MCT4), PDK1 and
PKM2 [65,70].

Unlike c-MYC and HIF1α, p53 functions as a tumor suppressor pro-
tein. Expression of p53 is highly regulated as its expression is essentially
low in unstressed cells whereas it becomes highly expressed under
stress conditions such as oxidative damage, nutrient limitations and
DNAdamage [67]. De-regulation of p53 expression caused bymutations
is associated with more than half of all cancers [71]. As a transcription
factor, p53 binds to the promoter of other tumor suppressor genes
such as those involved in cell cycle arrest, DNA repair, apoptosis and
metabolism. In addition, p53 can regulate turnover of many proteins in-
dependently of transcription [67]. In regard to its regulatory roles on
metabolism, p53 inhibits expression of GLUT1, GLUT3, GLUT4, phospho-
glycerate mutase 1 (PGM 1), and thus blocking excessive entry of glu-
cose through glycolytic flux [67,72]. p53 inhibits expression of MCT1
and PDK2while activates expression of PDH1α subunit of PDH complex
thereby coupling glycolysis with oxidative phosphorylation [73]. The
p53 also down-regulates biosynthesis by decreasing the activity and
abundance of glucose-6-phosphate dehydrogenase (G6PD) [74] and de-
creasing expression of malic enzymes ME1 and ME2 [67,73]. As these
three enzymes provide NADPH for biosynthesis, reducing their expres-
sion or activities would favor oxidative rather than biosynthetic path-
ways. In addition to controlling pathways that provide NADPH, p53
can also regulate de novo fatty acid synthesis via down-regulating the
expression of the sterol regulatory protein 1c (SREBP1c), which is a
key transcriptional factor controlling expression of ACL and FAS genes
[73]. Therefore, loss-of-function mutations of p53 in cancers literally
shift their metabolic phenotype from an oxidative fate to aerobic glycol-
ysis and anabolism. The p53 protein also targets degradation of PEPCK
and G6Pase in non-small cell lung cancer [75,76].

1.8. Expanding the repertoire of miRNA target of the alterative expressed
metabolic genes in cancer using computational prediction

It has now become clear that many cellular genes including those
encoding metabolic enzymes are regulated by miRNAs [13]. Several
studies have identified regulatorymiRNAs of the key enzymes responsi-
ble for metabolic reprogramming while some miRNAs regulate the ex-
pression of oncogenic TFs (e.g. c-MYC, HIF1α and p53), which in turn
regulate expression of those metabolic enzymes. Despite an increasing
number of studies on regulation of metabolic genes through miRNAs
in cancers, it is clear that the list of studies on miRNA-regulated meta-
bolic enzymes in cancers is nowhere close to the completion. Further-
more, it is still not known whether some key metabolic enzymes e.g.
HK1, Aldolase, MCT4, SHMT2, ACC1, can be regulated by certain
miRNAs. Thus, here we sought to explore the repertoire of miRNAs
that target expression of key enzymes involved in metabolic
reprogramming in cancers by combining known interactions from liter-
ature (Table 1) and computational prediction (Supplementary Tables S1
and S2). One of themost important challenges of computational predic-
tion of miRNA is the specificity of the prediction algorithms, which are
known to give a large number of false positives. To this end, we exam-
ined whether the prediction miRNAs are consistent with the functional
validation shown in Table 1, and the predicted miRNA-mRNA interac-
tions that would potentially be worth following up experimentally.

The most frequently used algorithms and webtools currently avail-
able for miRNA prediction include miRanda–mirSVR [77,78], DIANA-
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microT-CDS [79], TargetScan [80,81], Pictar [82], miRDB [83], and RNA22
[84], which use common features such as seed match and sequence con-
servation across the species [85]. In brief, the seed match is a perfect
pairing between miRNA and the 3′-UTR of mRNA targets, which usually
starts at the 5′ end of miRNA at the positions 2 to 8. There are four main
classes of canonical seed matches including (1) 6-mer (6 perfect nucleo-
tide matches between miRNA at positions 2 to 7 and mRNA target),
(2) 7mer-A1 (perfect match ofmiRNA at positions 2 to 7with an A oppo-
site position 1 of mRNA target), (3) 8-mer (perfect seed paring of miRNA
at positions 2 to 8with an A opposite position 1 ofmRNA target) [86] and
(4) 7mer-8mer (perfect match of miRNA at positions 2 to 8 and mRNA
target) [87,88]. However, these different seed matches do not reflect the
degrees of gene expression suppression by miRNAs [89].

With an aim to explore other potential miRNAs that may regulate
key metabolic enzymes listed in Table 1, we choose two widely-used

miRNA prediction tools that utilize different features to predict miRNA
of the target mRNAs of interest, TargetScan7.0 and miRanda–mirSVR.
The former predicts the miRNAs targeting a given gene based on the
seed match and sequence conservation across the species, whilst the
latter uses free energy binding between miRNA and mRNA targets,
and the site accessibility for miRNA target prophecy [85]. The
context++ scores and mirSVR scores were used as the parameters to
indicate the confidence of predictions from the TargetScan7.0 and mi-
Randa–mirSVR, respectively. The context++ score is the sumof contri-
bution from 14 features [81], such as site-type, 3′ pairing, the local AU
content [89], target site abundance, seed-pairing stability [80]. The
mirSVR scores, on the other hand, can also rank the empirical probabil-
ity of down-regulation using supervisedmachine learning of mRNA ex-
pression changes as a result of specific microRNA transfection [78]. In
short, the more negative context++ scores and mirSVR scores from

Table 1
A list of 40 metabolic enzymes that are involved in metabolic reprogramming in cancers.

Enzyme Full name Gene miRNA References

Aerobic glycolysis, Warburg effect
GLUT1 Glucose transporter 1 NM_006516 miR-1291 [123] [124–126]
GLUT2 Glucose transporter 2 NM_000340 N/A [124]
GLUT3 Glucose transporter 3 NM_006931 miR-195-5p [127],

miR-106-5p [90,128]
[124,129,125,126]

GLUT4 Glucose transporter 4 NM_001042 N/A [124,130,125]
HK1 Hexokinase1 NM_000188 N/A [3]
HK2 Hexokinase2 NM_000189 miR-143 [131], [132] [133,3]
Aldolase A Aldolase A NM_000034 N/A [134]
PGAM1 Phosphoglycerate mutase 1 NM_002629 N/A [135]
PKM2 Pyruvate kinase 2 NM_002654 miR-122, miR-133a,

miR-133b,miR-326
[136–138]

[139,140]

LDHA Lactate dehydrogenase A NM_005566 miR-21 [141] [142,143]
MCT1 Monocarboxylate transporter 1 NM_003051 miR-124 [144] [145]
MCT4 Monocarboxylate transporter 4 NM_004696 N/A [145,146]

Pentose phosphate pathway
G6PD Glucose-6-phosphate dehydrogenase NM_000402 miR-206, miR-1 [120] [20]
TKTL1 Transketolase-like1 NM_012253 miR-206, miR-1 [120] [19]

Gluconeogenesis
PCK1 Phosphoenolpyruvate carboxykinase 1 NM_002591 N/A [39]
PCK2 Phosphoenolpyruvate carboxykinase 2 NM_004563 N/A [38,37]

Tricarboxylic acid (TCA) cycle
PDK1 Pyruvate dehydrogenase kinase 1 NM_002610 N/A [147]
PDH Pyruvate dehydrogenase NM_003477 miR-26a [148] [149]
IDH1 Isocitrate dehydrogenase 1 NM_005896 N/A [28]
IDH2 Isocitrate dehydrogenase 2 NM_002168 miR-183 [150] [28]
SDH-B Succinate dehydrogenase complex iron sulfur subunit B NM_003000 N/A [27]
SDH-C Succinate dehydrogenase complex subunit C NM_003001 N/A [27]
SDH-D Succinate dehydrogenase complex subunit D NM_003002 miR-210 [151] [27]
FH Fumarate hydratase NM_000143 N/A [27]
ME1 Malic enzyme 1 NM_002395 N/A [152]

Glutaminolysis
GLS1 Glutaminase 1 NM_014905 miR-23a, miR-23b [118] [32]
GLS2 Glutaminase 2 NM_013267 miR-23a, miR-23b [118] [153,154]

Serine, Glycine and one carbon metabolism
SHMT2 Serine hydroxymethyltransferase 2 NM_005412 miR-193b [90,155] [156]
SHMT1 Serine hydroxymethyltransferase 1 NM_004169 miR-198 [157] [156]
MTHFD2 Methylenetetrahydrofolate dehydrogenase NM_006636 miR-9 [158] [156]
MTHFD1L Methylenetetrahydrofolate dehydrogenase 1-like NM_015440 miR-9 [158] [156]
PHGDH Phosphoglycerate dehydeogenase NM_006623 N/A [41]
PSAT1 Phosphoserine aminotransferase 1 NM_021154 miR-340 [159] [160,161]
PSPH Phosphoserine phosphatase NM_004577 N/A [161]
GNMT Glycine-N-methyltransferase NM_018960 N/A [162]

de novo fatty acid synthesis
CIC Citrate carrier NM_005984 N/A [163]
ACLY ATP citrate lyase Y NM_001096 N/A [152,164]
ACC1 Acetyl-CoA carboxylase 1 NM_198836 N/A [152,165]
FASN Fatty acid synthase NM_004104 miR-320 [166] [58,56,57]
SCD Stearoyl-CoA desaturase NM_005063 N/A [152]

Abbreviation: not available (N/A).
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the predictions reflect the higher “likelihood” that themRNA is targeted
by miRNA, and thus down-regulated gene expression.

As shown in Fig. 2A, TargetScan7.0 predicted that 40 metabolic en-
zymes shown in Table 1 are regulated by 299 miRNAs (blue circle). Six-
teen out of 40metabolic enzymeswere predicted to be regulated by 113
miRNAs. However, only 8 out of these 113 miRNAs have been reported
to functionally regulate expression of these enzymes, leaving the other
105miRNAs (yellow)whose functional verification is yet to be elucidat-
ed. We also noted that there are 14 miRNAs (red) that have been
experimentally verified to regulate this set of metabolic genes but
elude prediction by TargetScan7.0, suggesting a considerable degree of
false negatives. TargetScan7.0 also predicted 186 additional miRNAs
that are likely to regulate another 24metabolic enzymes, whose regula-
tory miRNAs have not been studied. The list of miRNAs that are
predicted to regulate theses 40 metabolic enzymes can be found in
Supplementary Table S1.

In a similar trend but not identical, miRanda–mirSVR predicted that
there are 395 miRNAs that can potentially regulate these metabolic en-
zymes (Fig. 2B). One hundred and seventy three miRNAs were predict-
ed to regulate 16 metabolic enzymes while the other 222 miRNAs
(gray) were predicted to target another 24 metabolic enzymes which
are currently unknown to be regulated by any miRNAs. Within those
16 metabolic enzymes regulated by 173 miRNAs, only 14 miRNAs
were independently reported to regulate expression of these metabolic
enzymes while the functional verifications of the other 159 miRNAs
(pink) are yet to be elucidated. Similar to the TargetScan7.0 prediction
but with fewer number of false negatives, eight additional miRNAs
have been reported to functionally regulate expression of these 16
metabolic enzymes but were not detected by the miRanda–mirSVR
prediction.

Due to the issues of sensitivity and specificity of miRNA prediction
algorithms mentioned earlier, we generated boxplots of the
context++ scores (Fig. 2C) and mirSRV scores (Fig. 2D), in three
miRNA groups: (1) experimentally verified miRNAs with prediction,
(2) miRNAs predicted for target genes with other verified miRNAs, but
their own functions are yet to be validated, and (3) the predicted

miRNAs of metabolic enzymes whose functions have not be validated
for any miRNA before (as outlined in the Venn diagrams). We did in-
deed observe a modest trend that the validated miRNAs have lower
context++ scores, than predicted miRNAs without validation; howev-
er, the number ofmiRNAs in each group is likely to be too small to give a
statistical significant result. Similarly, the same can be said about the
scores assigned to mirSVR prediction, indicating that confidence scores
from the prediction might be useful as an extra indicator to extract the
predicted miRNA that are likely to be “real” functional miRNAs, and
would be worth further experimental validation.

1.9. MicroRNAs and oncogenic transcriptional regulatory networks

To observe the overall interplay of oncogenic TFs, metabolic en-
zymes, and regulatory miRNAs, we combined the experimentally vali-
dated (Table 1), the experimentally validated miRNA-target data from
miRTarBase [90] and predicted interactions (from the two algorithms
as shown in Fig. 2) into a regulatory network of TFs-metabolic enzymes
andmiRNA-TFs using Cytoscape [91], as shown in Figs. 3 and 4. Fig. 3 fo-
cuses on the known miRNAs that regulate expression of metabolic en-
zymes via controlling the expression of oncogenic TFs, whereas we
expand the network to cover both validated and predicted miRNA-
mRNA interactions in Fig. 4. The predicted interactions shown here are
the overlaps of the two algorithms used: TargetScan7.0 and miRanda–
mirSVR, shown as gray dashed edges, whereas the functional verified
miRNA-gene targets from the Table 1 and miRTarBase database [90]
are shown in black solid lines. The edges' colors (blue, red, green and
purple) represent the miRNAs that regulate expression of metabolic
enzymes through the expression of oncogenic TFs (HIF1α, c-MYC,
p53, SREBP1, respectively), as in Fig. 3. The colors of node genes in Fig.
4 are classified bymetabolic pathways: pale blue color for anaerobic gly-
colytic genes;white for enzymes involved in serine, glycine and one car-
bon metabolism; orange for GLS; blue-green nodes for enzymes in the
TCA cycle; pink nodes for enzymes in the de novo fatty acid synthesis;
gray nodes for gluconeogenic enzyme, and purple nodes for enzymes
in the pentose phosphate pathway.

Fig. 2. Venn diagrams and boxplots representing the association between miRNA prediction scores and their functional validation. The Venn diagrams of TargetScan7.0 (Fig. 2A) and
miRanda–mirSVR (Fig. 2B) show the numbers of validated and predicted miRNAs that regulate metabolic enzymes in cancers. Boxplots illustrate the association of between
context++ scores (Fig. 2C) or miRanda–mirSVR scores (Fig 2D), and three miRNA groups: (1) experimentally validated miRNAs with prediction (2) miRNAs predicted to target
metabolic enzymes with other verified miRNAs (3) the predicted miRNAs of altered metabolic enzymes whose functions have not been validated for any miRNA before.
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Overall, our miRNAs and oncogenic transcriptional regulatory net-
work depicts individual “modules” of post-transcriptional regulation
by miRNA via major drivers of metabolic reprogramming in cancers,
acting as hubs that link multiple incoming miRNAs (yellow nodes,
Fig. 3) that can bind and suppress transcription of these oncogenes, to
their downstream metabolic gene targets (blue nodes). For instance,
the expression of c-MYC (red node in Fig. 3, and interaction between
miRNA and targeting metabolic genes via c-MYC are in red lines in
Fig. 4) is regulated by let-7a in Burkitt Lymphoma [92], miR-145 in
non-small cell lung cancer [93], let-7g and miR-744 in hepatocellular
carcinoma cells [94,95], miR-34 in prostate cancer cells [96], miR-135b
in osteosarcoma cells [97], miR-155 in gastric carcinoma cells [98],
miR-320b in colorectal cancer [99] andmiR-451 in head and neck squa-
mous cell carcinoma [100]. Suppression of these miRNAs contributes to
overexpression of key metabolic enzymes in these tumors. Similarly,
HIF1α ( dark blue node) expression is regulated by several miRNAs in-
cluding miR-17-92 in lung cancer cells [101], miR-519c and miR-18a in
breast and lung cancer cells [102,103], miR-22 in colon cancer cells
[104], miR-199a in non-small cell lung cancers [105] and miR-429 in
human endothelial cells [106]. Ectopic expression of these miRNAs re-
duces the expression of vascular endothelial growth factor (VEGF), a
crucial transcriptional target of HIF1α, thereby decreasing angiogenesis,
a process of blood vessel formation required for tumor growth and
metastasis [107]. Likewise, p53 (green node), a tumor suppressor
is also post-transcriptionally regulated by several miRNAs such as
miR-25 and miR-30d in myeloma cells [108], miR-125a in breast and
hepatoblastoma cells [109], miR-125b in neuroblastoma and lung
fibroblalst cells [110], miR-504 in breast and colon cancer cells [111],
miR-1285 in neuroblastoma, hepatoblastoma and breast cancer cells
[112], miR-33 in hematopoietic stem cells [113] and miR-380 in neuro-
blastoma cells [114]. Tight regulation of these miRNAs results in
substantial expression of p53 which then leads to cell cycle arrest,
thus maintaining cells in the non-proliferative state [115]. In contrast,

an aberrant overexpression of these p53-target miRNAs results in the
down-regulation of p53, causing malignancy. Because this group of
miRNAs exerts its effect on the oncogenic transformation, they are gen-
erally now classified as the “oncomiR” miRNAs [116].

In addition to these three oncogenes, the sterol regulatory element
binding protein (SREBP1, purple node) is also involved in metabolic
reprogramming. SREBP1 is a TF that regulates expression of liver type-
pyruvate kinase (PKL) and lipogenic enzymes, ACL, ACC and FAS, thus
allowing de novo fatty acid synthesis from glucose in liver. Cancers
also use SREBP1 to up-regulate expression of these lipogenic enzymes
to support fatty acid synthesis. Similar to c-MYC, HIF1α and p53, ex-
pression of SREBP1 by itself is also regulated by miRNAs. miR-185 and
miR-342 play important role in regulation of SREBP1 expression by di-
rect binding to the 3′UTR of its mRNA [117]. Of particular interest,
most lipogenic enzymes are co-regulated by more than one TF. For
example ACL and ACC1 are regulated by both SREBP1 and p53, while
FASN is regulated by SREBP1, p53 and c-MYC. Expression of HK1 is co-
regulated by HIF1a and p53 while that of LDHA and PKM2 are co-
regulated by HIF1α and c-MYC. GLU1, HK2 and ALDOA are the only
three enzymes that are regulated by p53, HIF1α and c-MYC. Interesting-
ly, the expression of certain miRNAs that regulate these metabolic en-
zymes can also be regulated by an oncogenic TFs. Gao et al. [118]
showed that c-MYC indirectly regulates GLS expression in B lymphoma
and prostate cancer by suppressing the expression ofmiR-23a/b that di-
rectly regulates the expression of GLS. Kim and coworkers also demon-
strated that p53 blocks the expression of HK1, HK2, glucose-6-
phosphate isomerase (GPI) and PDK1 by inducing miR-34a expression
which in turn, down-regulates the expression of the above four en-
zymes [119].

Looking at the expanded miRNA–mRNA interaction networks (Fig.
4), we observe a global overview of howmetabolic genes involving can-
cer progression are regulated bymiRNA through their direct interaction
(black lines for validated interactions and gray lines for those predicted

Fig. 3. Regulatory network of experimentally verified miRNAs and oncogenic transcription factors controlling metabolic reprogramming in cancers. The figure shows the integration of
experimentally validated regulatory network of TFs-cancer metabolic genes and miRNAs-TFs.
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by TargetScan7.0 and miRanda–mirSVR), or through oncogenic TFs
(colored edges). We have seen notable miRNAs such as miR-23a/b
that directly control glutaminolysis, whereas the miR-1 and miR-206
are responsible for regulation of the PPP pathway genes, G6PD and
TKTL1 [118,120]. The overall network also highlights the “hub”
miRNA. miR-429, a tumor suppressor that down-regulates almost all
genes in anaerobic glycolytic pathway (e.g. GLUTs) via the oncogenic
TF HIF1α. The anaerobic glycolytic genes themselves are also targeted
by several other miRNAs such as miR-22, miR-199a, miR-17-92 via
HIF1α (blue edges), miR-30d, miR-25, miR-125a/b, miR-1285 via p53
(green edges), and miR-451, miR-155, let-7a, let-7g via c-MYC (red
edges). The network also demonstrates other relationships between
metabolic pathways and miRNA regulation via TFs. For instance, three
out of five genes in de novo fatty acid synthesis pathway (ACC1, ACLY,
and FASN) share regulation by miRNAs via p53 and SREBP1. The genes
in the serine, glycine and one carbon metabolism pathways (white
nodes) heavily rely on the regulation of miRNAs via c-MYC. Post-
transcriptional regulatory networks have demonstrated intricate regu-
lation of metabolic genes by different miRNAs [13,121,122]. Here, we
aim to provide a detailed regulatory network of metabolic genes
under direct control of miRNAs, or oncogenic TFs regulated by miRNAs.
The high resolution network with complete labels can be found in Sup-
plementary material (Fig. S1 and Table S3). Such overall organization of
metabolic gene expression regulation cannot be observed by studying
miRNAs, TFs, and target genes individually. Saying that, we note that
the current version of network relies on the accuracy of the two

prediction algorithms used in this study. The known interactions
taken from literature might also be biased toward well-characterized
oncogenes such as p53 or c-MYC.

In conclusion, our review not only provides the current status of un-
derstanding metabolic reprogramming in cancers but also establishes
the regulatory network of miRNA-oncogenic TF-cancer metabolic
genes that would provide benefits for research guidance in this emerg-
ing field the future.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.csbj.2016.05.005.
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Abstract 
With the wealth of data accumulated from completely sequenced genomes and other high-throughput experiments, 
global studies of biological systems, by simultaneously investigating multiple biological entities (e.g. genes, tran-
scripts, proteins), has become a routine. Network representation is frequently used to capture the presence of these 
molecules as well as their relationship. Network biology has been widely used in molecular biology and genetics, 
where several network properties have been shown to be functionally important. Here, we discuss how such meth-
odology can be useful to translational biomedical research, where scientists traditionally focus on one or a small set of 
genes, diseases, and drug candidates at any one time. We first give an overview of network representation frequently 
used in biology: what nodes and edges represent, and review its application in preclinical research to date. Using can-
cer as an example, we review how network biology can facilitate system-wide approaches to identify targeted small 
molecule inhibitors. These types of inhibitors have the potential to be more specific, resulting in high efficacy treat-
ments with less side effects, compared to the conventional treatments such as chemotherapy. Global analysis may 
provide better insight into the overall picture of human diseases, as well as identify previously overlooked problems, 
leading to rapid advances in medicine. From the clinicians’ point of view, it is necessary to bridge the gap between 
theoretical network biology and practical biomedical research, in order to improve the diagnosis, prevention, and 
treatment of the world’s major diseases.

Keywords: Network biology, Systems biology, Biomedical research, Cancers, Personalized therapy
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Background
Next-generation sequencing (NGS) and other high-
throughput experiments highlight one of the most signif-
icant advances in molecular biology over the past decade. 
Such technological improvements enable a large number 
of molecules, including genes, transcripts, and proteins 
to be simultaneously measured in different conditions 
over time. This rapid generation of data has transformed 
molecular biology from a “data poor” to “data rich” 

discipline, leading to the emergence of systems biology 
[1–4]. The key challenges and bottlenecks of the modern-
day molecular biology have shifted from simply gather-
ing information to the analysis and interpretation of large 
quantities of data that can now be obtained.

Network representations have been widely used in 
physics and social science for decades, and are now 
among the most frequently used tools in systems biology. 
This technique provides not only a systematic represen-
tation of both the presence and abundance of biological 
molecules, but also displays the relationships or interac-
tions between them. Networks have been used to repre-
sent the interactions between different types of biological 
molecules, e.g. protein–protein interactions [5–8], and 
in various biological systems including transcriptional 
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regulation [9–11], signaling [12–14], and metabolic path-
ways [15, 16]. Analyses of network sub-structures have 
revealed fundamental insights into how biological mol-
ecules are organized [17–20], which would not have been 
possible by studying individual genes or proteins.

Network representation and analysis has been success-
fully applied to study many systems in molecular biol-
ogy [21]; however, the use of these tools in translational 
medicine and drug discovery is relatively new [22–24]. 
This might be due in part to the knowledge and under-
standing gaps between clinicians and systems biologists. 
By convention, clinicians typically focus on specific sets 
of key genetic markers associated with diseases, to iden-
tify the most probable drug targets. In contrast, systems 
biologists have strong computational and analytical skills, 
but frequently lack hands-on experimental experience. 
The lack of interaction of systems biologists with patients 
can prevent a full appreciation of the complexity of the 
problems and hindrances in biomedical research [25, 26]. 
In this review, we aim to improve the understanding of 
challenges in biomedical research and establish a com-
mon ground between clinicians and systems biologists 
to further promote the application of network biology in 
translational medicine.

Network biology in a nutshell
What are networks; what do they represent?
We first outline the fundamental concepts of a network 
representation. In general, a network represents the pres-
ence of objects or entities in a system as “nodes”, and the 
relationships or interactions among the nodes are called 
“edges” (Fig. 1). In biology, nodes can represent biological 
molecules such as genes, proteins, and ligands, or even 
larger entities such as cells or individual humans. Edges 
represent physical interactions or contacts between bio-
logical molecules, biochemical processes between sub-
strates and products, genetic interactions between genes, 
and in some cases, interactions between cells or individ-
ual organisms.

Biological information described in a network is not 
restricted to the presence of nodes and their relation-
ships. The size of node, for instance, can reflect abun-
dance of biological molecules (e.g. gene expression 
levels). Nodes can also be drawn in different shapes and/
or colors according to the classification of interest (e.g. 
gene/protein family). Likewise, the thickness of an edge 
or the distance between nodes may represent the fre-
quency or strength of pairwise interaction (e.g. affinity of 
protein–protein interaction); whereas colors can indicate 
different types of interactions (e.g. physical or genetic 
interaction). In addition, edges can be directional or 
non-directional, solid or dotted, depending on the types 
of interactions. Thus, networks are information-rich 

representations, which are widely used to summarize, 
visualize, and analyze large-scale datasets obtained from 
high-throughput experiments. To give an overview of the 
current application of networks in biomedical-related 
fields, here we review two major types of biological 
networks.

Interaction networks
We first illustrate the components of interaction net-
works, where the edges represent a “direct” relationship 
between nodes (Fig.  1, left). For instance, protein inter-
action networks, i.e. interactomes, describe physical 
interactions between proteins, usually obtained from 
high-throughput screening techniques such as yeast-two 
hybrid [6, 27], or affinity purification followed by mass 
spectrometry [5, 28]. In humans, analyses of protein–
protein interaction networks have shown that dysfunc-
tional interactions can lead to several diseases including 
neurological disorders such as ataxias [29], autism [30], 
several types of cancers including breast [31] and colo-
rectal cancers [32], acute lymphoblastic leukemia [33], as 
well as other inheritable genetic diseases [34–37].

Transcriptional regulation networks (also known as 
Gene Regulatory Networks, GRNs) are widely used to 
illustrate the binding events of regulatory proteins, such 
as transcription factors, to the promoters of targeted 
genes, and this technique has been employed in the anal-
ysis of bacteria [38], budding yeasts [9], worms [39], and 
embryonic stem cells [40, 41]. GRNs are directional, and 
the relationship between two nodes is represented by 
an arrow starting from a regulator and pointing toward 
a targeted gene. Mis-regulation of gene expression leads 
to various diseases especially cancers, as seen in the 
genome-wide transcription network of the vertebrate 
transcription factor SOX4 [42], and the androgen recep-
tor, a transcription factor that regulates the onset and 
progression of prostate cancer [43].

Interaction networks have also been used to describe 
the binding and affinity of ligands or small molecules to 
targeted proteins. As seen in a drug-target network [44], 
a list of drugs approved by the Food and Drug Admin-
istration (FDA) were linked to proteins according to 
drug-target binary associations. The analysis of these 
networks revealed that many drugs have overlapping 
but not identical sets of targets. In addition, the network 
analysis indicated that new drugs tend to be, at least 
partly, linked to well-characterized proteins already tar-
geted by previously developed drugs. This suggests that 
the pharmaceutical industry might be shifting toward 
polypharmacology, to systematically address complex 
diseases using multiple drugs aimed at multiple specific 
targets in related pathways to improve treatment efficacy 
[45, 46].
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Metabolic networks differs from other networks 
described earlier in the sense that the edges between 
two nodes (metabolites) do not represent physical con-
tacts, but instead biochemical reactions that convert 
one metabolite to another. Recent studies have recon-
structed and explored genome-scale metabolic networks 
in pathogenic microbes including Staphylococcus aureus 
[47], M. tuberculosis [48], as well as in human hosts [49]. 
These analyses may lead to a better understanding of 
host-pathogen interactions, and could aid in the design 
of drugs that specifically target the metabolic pathways 
of microbes and cause minimal interference with those of 
the hosts.

Association networks
Networks can also be used to visualize and summa-
rize the overlap in expression profiles for thousands of 
transcripts/proteins obtained from high-throughput 
methods, such as expression microarray, RNA-seq, or 
short-gun proteomics [50]. In co-expression networks, 
two or more genes are linked if their products (mRNAs 
or proteins) exhibit similar expression profiles, with the 
strength/thickness of the edges proportional to how 
often the two transcripts are expressed at the same time 
and/or place [51, 52]. Co-expression networks are widely 
used as a starting point for inferring the cellular functions 
of uncharacterized genes, as in many cases, genes with 

Fig. 1 Interaction networks (Left) represent direct interactions between biological molecules (e.g. transcripts, proteins, and ligands). The interactions 
represented include direct physical interaction (e.g. protein–protein, and gene regulatory networks) or transition (e.g. metabolic network). Associa-
tion networks (Right) represent biological molecules that are linked based on their shared and/or common properties (e.g. co-expression)
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related functions show overlapping expression patterns 
[53]. New disease markers can be discovered from clus-
ters of genes that are co-expressed with known disease-
associated genes, as they frequently show differential 
expression between the normal and diseased populations 
[54–57].

Other association networks include drug target-pro-
tein networks [44], where each node is a protein and 
two proteins are linked if they are targeted by the same 
compounds. These networks can be computationally 
derived from the drug-target network described in the 
previous section. It provides a complementary protein-
centric view by focusing on the proteins that are often 
co-targeted, and might be involved in related pathways. 
Conversely, two or more drugs can be linked in a net-
work based on common properties, such as targeting 
specific proteins or side effects. It has been shown that 
documented adverse side effects could be used to infer 
molecular drug-target interactions [58]. This type of net-
work has the potential to predict whether or not exist-
ing and routinely used drugs have additional unknown 
off-targets, allowing for these drugs to be candidates for 
additional, distinct therapeutic categories. Illustrations 
of the potential of alternative uses for current drugs are 
sildenafil, losartan, and fenofibrate. Sildenafil (e.g. Via-
gra®, Pfizer Incorporated) was initially developed to 
treat angina, but a side effect (prolong penile erection) 
discovered during clinical trial has become its main use. 
The antihypertensive drug losartan blocks angiotensin II 
type 1, and is now a candidate drug for preventing aortic 
aneurysm complications in Marfan syndrome patients, 
through reduction of TGF-β activitiy [59, 60]. Fenofi-
brate, a drug mainly used for controlling cholesterol lev-
els in cardiovascular patients, has also been shown to 
suppress growth of hepatocellular carcinoma [61].

Global disease networks offer a useful insight into how 
human disorders are related. In the “human disease net-
work” [62], disease nodes are connected if they share at 
least one gene with mutations associated with both dis-
eases. Complementarily, the gene-centric version of this 
network comprises nodes of disease genes, linked if they 
are associated with the same disorders. Such networks 
not only represent a framework to visualize all known 
disease genotype-phenotype associations, but also reveal 
that human diseases are much more genetically related 
than previously appreciated [63]. This is highlighted by 
a gigantic network comprising over 500 interconnected 
human diseases [7].

What can we learn from networks and their properties?
In addition to being a framework for visualizing and 
documenting all the known relationships between 
nodes, earlier analyses of large-scale networks from 

high-throughput studies have revealed many interest-
ing biologically relevant properties, which cannot be 
obtained by studying genes and proteins individually 
[64–66]. One of the most frequently observed proper-
ties of biological networks is the connectivity distribution 
that follows a power-law distribution, known as “scale-
free networks”. This pattern of connections, also known 
as the “small world property”, has also been extensively 
studied for their statistical features in different types of 
networks, including social networks, scientific collabo-
ration networks, and the World Wide Web [67–72]. In 
brief, a scale-free network consists of a small number 
of “hubs”, i.e. nodes that are connected to a larger num-
ber of other nodes, through different types of interac-
tions aforementioned. In contrast to hubs, the majority 
of nodes in the network have much fewer connections. 
Several studies have documented similar observation for 
biological networks, including protein–protein interac-
tion networks [6, 17, 73] and metabolic networks [15, 74].

Because of their connectivity distribution, scale-free 
networks are robust against random deletion of nodes. 
That is, the connections between a node and most other 
nodes remain intact, if nodes are removed randomly. In 
contrast, scale-free networks quickly become non-func-
tional if hubs are targeted. Earlier studies have shown 
that many pathogenic organisms have evolved to target 
the central components (i.e. hubs) of a human protein 
interaction network, and quickly disrupt various cellular 
functions, including the immune response [75, 76]. Simi-
larly, one would expect drugs that specifically inhibit the 
central components of the regulatory circuits in a patho-
gen will rapidly disrupt their homeostatic processes, and 
thus efficiently eliminate them. As a result, these hubs 
from pathogenic organisms could be promising candi-
dates for novel drugs. Network connectivity distribu-
tion is one of the better-studied areas, and a number of 
insightful reviews and analyses are available [77, 78].

Another interesting example of biological network 
properties are the network motifs, which are sets of well-
defined interconnection patterns between nodes [19]. 
These connectivity patterns, or network sub-circuits, 
recur in biological networks at a frequency significantly 
higher than in randomized networks [79–81], signifying 
their important roles as building blocks for the large-
scale organization of interactions. The patterns and pro-
portions of sub-circuits used in different networks are 
distinct, depending on the functionality required under 
different conditions. Interestingly, it has been shown in 
a yeast transcription regulatory network that sub-net-
work structures, facilitating fast signal propagation (e.g. 
single-inputs), are more frequently employed to respond 
to external stressors and sudden environmental changes 
(e.g. DNA damage or diauxic shift), because a rapid 
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response is required against the stressors. In contrast, 
motifs that buffer spurious inputs or only respond to per-
sistent signals (e.g. feed-forward-loops) are more suitable 
for analysis of normal growth stages (e.g. sporulation) 
[18, 82].

Applications of network biology in translational 
medicine
Disease network and drug discovery
Using a transistor radio as an analog of a biological sys-
tem, Yuri Lazebnik described how a biologist would fix 
a broken radio, assuming no prior knowledge of how 
the radio components were wired together [83]. A tra-
ditional biological approach would involve removing 
(gene knockout, mutagenesis) each part of a functioning 
radio and track the changes in performance (phenotype). 
However, the human “radios” are different and repeating 
this process on all the components would generate an 
enormous amount of data, some of which may be redun-
dant or contradictory. In contrast, a typical engineering 
approach would involve systematic reconstruction of 
a component diagram from a normal radio (e.g. regula-
tory network), and compare the broken radios with the 
normal reference. Can a similar problem-solving mindset 
help expedite advances in biomedical research?

If regulatory circuits that control biological activities in 
a human body can be represented using a complex net-
work, then a diseased state would be expected to occur 
when the normal state of the network is perturbed. Fail-
ure of key components (e.g. mutations in hub genes in 
genetic diseases) or external stimuli (e.g. invasion of 
pathogens in infectious diseases) would lead to loss of 
network integrity. Diseased perturbations can occur at 
different regulatory levels, as illustrated in Fig. 2. Firstly, 
the absence or malfunction in important network com-
ponents can lead to diseases, such as the loss of a par-
ticular gene. The absence of TBX1, in 22q11.2 deletion 
syndrome (DiGeorge syndrome) is responsible for the 
majority of characteristic features of this disease [84] 
(Fig. 2a, the absence of node is illustrated in red). Simi-
larly, inappropriate levels of gene expression can cause 
disorders (Fig.  2b, altered node size). For example, spe-
cific mutations in the FGFR3 gene result in an overac-
tive receptor and lead to the short stature phenotype 
observed in achondroplasia [85]. Some diseased states 
can be explained by mis-regulation of the interactions 
between key components of the network (Fig. 2c, miss-
ing edge), as well as mis-direction (Fig. 2d, mis-directed 
edge) or strength (Fig.  2e, altered edge’s thickness) of 
interactions. The diseases that can be linked to errone-
ous interactions include neurodegenerative and neurode-
velopmental diseases, genetic disorders, and cancers. In 
these cases, mutations in multiple relevant genes lead to 

abnormal protein interactions, and disrupt networks (see 
[29, 30, 36, 37] for details).

Some of the long-standing challenges in drug discovery 
are lack of specificity, high incidence of adverse effects, 
and unpredicted toxicities of new therapeutic compounds 
[86]. As a result, modern-day drug discovery employs 
more targeted approaches, such as virtual screening and 
structure-based drug design to complement conventional 
in  vitro high-throughput screening [46, 87]. These new 
approaches rely on an accurate global understanding of 
the mechanisms of diseases. Comprehensive understand-
ing of the network and regulatory circuit for a particular 
disease process would help to identify network hubs with 
the potential to be novel drug targets.

A network model of cancers
In the past decades, chemotherapy had been the back-
bone for systemic treatment of cancers. When admin-
istered to patients, these drugs target rapidly dividing 
cells but lack specificity. Survival of both cancer cells and 
normal, rapidly growing cells are impaired, resulting in 
side effects such as bone marrow suppression and hair 
loss, due to toxicity toward bone marrow cells and hair 
follicles, respectively. With recent advances in molecu-
lar biology and genetics, several genetic mutations and 
other alterations have been described for various cancers, 
and these changes specific to cancer cells have become 
an attractive target for novel therapies. The concept of 
“driver” and “passenger” mutations in carcinogenesis is 
comparable to hubs and peripheral nodes in a network, 
whereby a subset of somatic alterations present in each 
tumor is a driver of the oncogenic process [88]. Acting 
as a complex network hub, these driver mutations pro-
mote cancer cell survival, resistance to apoptosis, and 
lead to carcinogenesis (so-called “oncogene addiction”). 
This idea is supported by successful identification of new 
cancer fusion drivers from the network hubs and their 
partners, as the fusion mutation can lead to functional 
de-regulation of multiple genes and pathways [89]. Inhi-
bition of the driver mutation has the potential to induce 
cell death, and thus becomes a strong candidate for tar-
geted therapy [90]. As cancer cells are addicted to this 
driver mutation, specifically blocking these hubs would 
theoretically be more effective and less toxic compared to 
conventional chemotherapy.

To date, many targeted therapies have been approved 
as a standard of care in various cancers with additional 
clinical studies underway. Identification of a true driver; 
however, remains one of the biggest challenges. Patho-
genesis of cancer development is usually complex and 
involves several molecules and pathways. Therefore, tar-
geting one particular molecule or pathway might not be 
effective, as cancer cells may utilize alternative pathways 
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Fig. 2 Biological networks of healthy (left panel) and diseased (right panel) individuals. Biological components in healthy individuals are represented 
as green nodes in a network. Pathological perturbation, represented by red nodes that lead to morbidity, can occur at different stages of the regula-
tion of key components: a presence and absence of key component (green for presence and red for absence), b mis-regulated gene expression, 
leading to over- or under-expression (node sizes represent expression levels), c absence or erroneous interactions with interacting partners (dotted 
lines represent erroneous interactions), d mis-regulated directions (mis-directed arrows), or e strengths of interactions (thicknesses of arrows and 
accompanying numbers denote interaction strengths)
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to promote cell survival. Additionally, with the advent of 
next-generation sequencing, the previously well-accepted 
but unproven concept of tumor genetic heterogeneity 
has been solidly confirmed [91]. Sequential use of more 
than one targeted cancer therapy to finish off resistant 
clones, such as in the case of tumor recurrence, is likely 
to become a trend in cancer genomic medicine [92].

Breast cancer network: mechanisms of resistance
The regulatory network in breast cancer is a particularly 
interesting case study, due to its heterogeneous histologi-
cal and molecular features, and clinical manifestations 
that lead to multiple molecular sub-types. Based on 
gene expression profiling, breast cancer can be catego-
rized into four main molecular sub-types: (i) basal-like 
breast cancer (mainly estrogen-receptor (ER)-negative, 
progesterone-receptor (PR)-negative, and human epi-
dermal growth factor receptor 2 (HER2)-negative); (ii) 
luminal-A cancer (ER-positive or ER+, and histologically 
low-grade); (iii) luminal-B cancer (ER+ and histologi-
cally high-grade); and (iv) HER2-positive (HER2+) can-
cer (over-expression and/or amplification of HER2). Each 
molecular sub-type has a distinct course of disease pro-
gression and responds differently to specific treatments, 
including endocrine therapy, anti-HER2 drugs and cyto-
toxic chemotherapy [93].

As shown in Fig.  3, ER and HER2 can be considered 
as hubs of the breast cancer network. The ER+ breast 
cancer cells depend on activation of ER by estrogen, a 
sex steroid hormone. ER acts as a transcription factor 
in the  nucleus  when bound by estrogen  in  the genomic 
(nuclear) pathway, resulting in tumor cell proliferation 
[94]. The signal can also be activated through the non-
genomic (non-nuclear) pathway, where estrogen binds to 
membrane-associated ER. Endocrine therapy against the 
ER hubs is one of the cornerstones of treatment for ER+/
HER2- breast cancers (luminal-A and B) [95]. The pre-
dominant endocrine therapies are a selective ER modula-
tor (SERM), an aromatase inhibitor (AI), and selective ER 
down-regulators (SERD), such as tamoxifen, anastrozole, 
and fulvestrant [96].

HER2, a member of the epidermal growth factor recep-
tor tyrosine kinase family, is a hub in the HER2+ breast 
cancer network. Over-expressed and/or amplified HER2 
is found in approximately 20–30% of invasive breast 
cancers [97]. HER2 activates intracellular signaling cas-
cades, leading to tumor cell proliferation. Inhibition of 
HER2 through the use of anti-HER2 drugs significantly 
prolongs survival in HER2+ breast cancer patients. Cur-
rently, several anti-HER2 drugs are FDA-approved for 
HER2+ breast cancer, including trastuzumab, lapatinib, 
pertuzumab, and trastuzumab emtansine (T-DM1). 
Resistance to each of these specific treatments has been 

observed, as well as interactions between the ER and 
HER2 hubs (Fig.  3) [94, 98]. Since ER+/HER2+ tumor 
cells depend on both hubs, endocrine therapy alone 
cannot completely inhibit signals with tumor cell pro-
liferation continuing to be activated through HER2 (so-
called “cross-talk”). This has been identified as a primary 
mechanism of resistance in ER+/HER2+ breast cancer 
patients with a low response to endocrine therapy. With a 
better understanding of global gene regulation networks 
and the interplay between the two hubs, a combined 
treatment of endocrine therapy and anti-HER2 drugs was 
proposed. Several phase 3 clinical studies have already 
demonstrated increased efficacy of endocrine therapy 
in the ER+/HER2+ breast cancer when combined with 
anti-HER2 drugs [99–101].

On the other hand, ER+/HER− breast cancer does not 
depend on the HER2 hub, and is thus usually responsive 
to the first line endocrine therapy. However, resistance 
can still occur leading to less effective endocrine therapy. 
Blocking the ER hub with any endocrine therapy would 
inhibit only the genomic pathway, but not the non-
genomic pathway where abnormal activation of the PI3K/
Akt/mTOR pathway by somatic mutations can result in 
either de novo or acquired endocrine therapy resistance 
[102, 103]. Understanding this relationship has led to 
a second line of endocrine therapy using mTOR inhibi-
tors. A large phase 3 clinical study of metastatic ER+/
HER2− breast cancer patients, who failed the first line AI 
treatment, reported longer progression-free survival in a 
group treated with a combination of an mTOR inhibitor 
and another different AI [104, 105].

Having a comprehensive understanding of the interac-
tions between network components of specific disease 
should lead to improved efficacy in treatments, similar 
to those elucidated using the breast cancer model above. 
Indeed, a number of groups have already begun utilizing 
network biology to address different aspects of cancers 
with the goal to improve diagnosis and treatment. A model 
to identify genes potentially associated with high risks of 
breast cancer has been developed by integrating data from 
co-expression, biochemical, and protein interaction net-
works. Using this model, Pujana and coworkers success-
fully identified Hyaluronan Mediated Motility Receptor 
(HMMR), a hub of the integrated network, as a novel high 
risk associated locus [31]. The gene regulatory network 
for breast cancer has also been constructed [106]. Taylor 
and colleagues merged spatial gene expression informa-
tion with the protein interaction network to highlight the 
interactions that are active in specific tissues, where the 
interacting partners are also co-expressed [107]. This work 
also revealed the loss of key interactions between the net-
work hubs, such as BRCA1 and their binding partners, in 
patients who died of breast cancer due to mis-regulation 
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of the partner proteins. In contrast, the expression of hubs 
and their partners were strongly correlated in surviving 
patients. The complexity of the disease network is not only 
restricted to the gene–gene and gene-drug interactions, 
but also hinges upon the interactions between disease/
drug and the host (i.e. genetic background of the patients), 
as we discuss in the next section.

From individual network to personalized medicine
As we are approaching the so-called personalized and 
precision medicine era, where does network biology fit in 
the picture? Figure 4 depicts our view on how networks 
can be an important tool to help clinicians understand 
the physiological complexity of individual humans, pre-
dict possible failure of certain components that may lead 

Fig. 3 A simplified diagram of the therapeutic breast cancer network. The main targetable hubs are ER and HER2 receptor. The PI3K/Akt/mTOR hub 
was relatively recently identified to be the common mechanism of targeted therapy resistance. Circles and rectangles represent cellular receptors 
and signaling pathways, respectively. The pentagons represent other unspecified molecules interacted with the hubs. Arrows represent the direc-
tions of signals. (E estrogen, ER estrogen receptor, PR progesterone receptor, HER2 HER2 receptor, RTKs receptor tyrosine kinases)
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to morbidity, and deduce the most suitable preventa-
tive and treatment plans for individual patients. Genetic 
variation between human individuals is estimated to be 
less than 1% of the human genome, but through sophis-
ticated regulation of genes and other genetic elements, 
this small amount of genetic variation accounts for much 
greater differences in terms of our appearance, intellect, 
and health [108]. On top of genomes, which encode indi-
vidual sets of gene products (e.g. proteins, mRNA), indi-
vidual networks represent the unique interplay between 
different components in each patient. Understanding the 
extent of variations between individual networks may 
allow clinicians to statistically and quantitatively distin-
guish normal variations in healthy individuals (Fig.  4, 
upper panel) from critical perturbations that lead to dis-
eases and disorders (Fig. 4, lower panel). Network biology 
enables researchers to assess multiple components that 
do not show distinguishable differences between healthy 
individuals and those with cancers, but are collectively 
dysfunctional in cancers. A sub-network in which overall 

activity can be discriminated between patients versus 
controls has been shown to be a more reproducible prog-
nostic marker of diseases than individual genes in the 
sub-network, which are not significantly differentially 
expressed [109, 110].

Single nucleotide polymorphisms (SNPs) and other 
genetic variations add another dimension of disease-host 
interaction to disease networks. SNPs can provide clini-
cians with a good indication on how likely an individual 
might be to develop certain genetic diseases, assuming 
that all genetic elements associated with diseases are 
eventually identified. In addition, networks of individuals 
can, in part, aid pharmacogenomic progress by explain-
ing why the efficacy and toxicity profiles for the same 
drug may differ in each patient. For instance, tamoxifen 
is metabolized by CYP2D6 and variations in this gene 
among individuals may affect the response to the drug 
[111].

No matter how comprehensive, a genetic map cannot 
capture environmental factors (e.g. lifestyle, contact with 

Fig. 4 Healthy (top panel) and diseased (bottom panel) individual networks. Healthy individuals might show slight variations in their individual 
networks, which also differ over time. However, diseased networks are expected to show greater disparity than that between healthy individuals. In 
the example shown, the network component Z is controlled by its upstream components through the interactions of b and d (the molecule Z is a 
function of b and d). If the expression of Z is greater than a defined limit (e.g. 1 in this case), morbidity can be predicted (d(Z)/dt: change of expres-
sion level of molecule Z over time)
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pathogens) that heavily influence biochemical stages. Thus, 
outcomes for the interplay between genetics and environ-
ment may be absent in the analysis. Having a network that 
combines both the genetic variations and measurable bio-
chemical outcomes, such as gene expression, should assist 
in turning conceptual ideas into more quantitative models, 
which in turn would enhance the accuracy of prognosis 
and predictions of disease progression in each patient (as 
demonstrated in Fig.  4). Such a complete individual net-
work may not be possible in the near future; however, we 
start to see that the integration of genetic variations and 
biochemical outcomes (gene expression and protein inter-
action profiles) has utility in helping identify new disease-
associated marker genes [110, 112, 113].

Thanks to considerable effort and resources the com-
munity has put into developing computational tools for 
biological network analysis, we are now well-equipped 
with a range of user-friendly software that can be 
employed to handle, visualize, and analyze large-scale 
datasets. Importantly, the tools that will be particularly 
useful for translational medical research need to be able 
to combine multiple layer datasets (e.g. genomics, tran-
scriptomics, proteomics, and metabolomics) and/or 
heterogeneous datasets (e.g. from different platforms or 
formats) [3]. The most commonly known network analy-
sis tools currently available are Cytoscape [114], NAViGa-
TOR [115], VisANT [116], CellDesigner [117], and the 
commercial software Ingenuity IPA (Ingenuity Systems 
Inc., Redwood City, CA). More recently introduced tools 
include NaviCell, which has been developed for online 
network visualization and curation [118], and BNOmics 
[119], which can be used for inference and visualization 
of Bayesian networks of large heterogeneous data. Com-
prehensive guides to network biology tools, as well as 
detailed discussion on their key features and functional-
ity can be found in earlier review articles [3, 120].

Conclusions
Network biology provides an opportunity to image a 
clear global picture of drug-disease-host interactions and 
the biological complexity of diseases more easily from an 
unprecedented top-down vantage. This will allow a bet-
ter understanding of the relationships between multiple 
genes and other biological entities, as well as identify 
the missing links in our knowledge. These strategies are 
required to fully grasp the intricacies of diseases, which 
cannot be obtained by studying an individual or a smaller 
set of genes. The complexity of the therapeutic networks 
is ever-growing, and many new nodes are being discov-
ered every day. In the future, some of these nodes may 
become new hubs for targeted therapy.
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