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Abstract

Project Code: TRG5880084
Project Title: A novel off-line tube-based robust model predictive control algorithm
for uncertain polymerization processes
Investigator: Asst. Prof. Dr. Pornchai Bumroongsri Mahidol University

Assoc. Prof. Dr. Soorathep Kheawhom Chulalongkorn University
E-mail Address: pornchai.bum@mahidol.ac.th, soorathep.k@chula.ac.th
Project Period: July 2015 to June 2017 (2 years)

This research develops a novel off-line tube-based robust model predictive
control algorithm. All trajectories of uncertain systems are restricted to lie in a
sequence of tubes so robust stability and constraint satisfaction can be guaranteed in
the presence of both uncertain parameters and disturbances. All of the optimization
problems are solved off-line so the developed algorithm is applicable to fast
dynamic systems. The developed control algorithm is applied to the control
problem of uncertain polymerization process for polypropylene where the
polymerization reactions taking place are fast and highly exothermic. In the case
when the kinetic constant for propagation rate and the heat of reaction are
uncertain, the results show that the developed control algorithm is able to regulate
the controlled variables, which are the mass of polymer in the reactor and the
reactor temperature, to the desired set points. The developed algorithm can handle
both uncertain parameters and disturbances so the uncertain polymerization process
can be efficiently controlled. Finally, the developed control algorithm is applied to a
partially simulated exothermic (PARSEX) reactor operated in the continuous mode. In
the presence of uncertain parameters such as the reaction rate constant, heat of
reaction, cooling water temperature and reactor feed rate, the results show that the
reactor temperature can be regulated to the set point so robust stability of the
system is ensured.

Keywords: Off-line tube-based robust model predictive control; uncertain

polymerization process; uncertain parameters; partially simulated exothermic reactor



1. Executive summary

The control of systems in the presence of uncertain parameters and
disturbances is a challenging control problem because it is difficult to guarantee both
robust stability and constraint satisfaction. In this research, a novel off-line tube-based
robust model predictive control algorithm is developed. The trajectories of uncertain
systems are restricted to lie in a sequence of tubes so robust stability and constraint
satisfaction can be guaranteed in the presence of both uncertain parameters and
disturbances. All of the optimization problems are solved off-line so the developed
algorithm is applicable to fast dynamic systems.

In order to demonstrate the applications of the developed algorithm, it is
applied to a difficult control problem of uncertain polymerization process for
polypropylene where the exact values of reaction rate constants are unknown. The
polymerization reactions taking place are fast and highly exothermic so the presence
of uncertain parameters might lead to an unexpected thermal runaway. In the case
when the kinetic constant for propagation rate and the heat of reaction are
uncertain, the results show that the developed control algorithm is able to regulate
the controlled variables, which are the mass of polymer in the reactor and the
reactor temperature, to the desired set point by manipulating the mass flow rate of
propylene monomer and the mass flow rate of cooling water, respectively.
Additionally, in the presence of the disturbances acting on the system, the
developed control algorithm is able to regulate the mass of polymer in the reactor
and the reactor temperature to the neighborhood of the desired set point so robust
stability of the system can be guaranteed. The developed algorithm can handle both
uncertain parameters and disturbances so the uncertain polymerization process can
be efficiently controlled.

Finally, the developed control algorithm is applied to a partially simulated
exothermic (PARSEX) reactor operated in the continuous mode. In the presence of
uncertain parameters such as the reaction rate constant, heat of reaction, cooling
water temperature and reactor feed rate, the results show that the reactor
temperature can be regulated to the set point so robust stability of the system is

ensured.



2. Objectives of this research

(1) To develop a novel off-line tube-based robust MPC algorithm that can guarantee
robust stability and constraint satisfaction of the control systems in the presence of
both uncertain parameters and disturbances. Additionally, all of the optimization
problems are solved off-line so the developed off-line tube-based robust MPC

algorithm is applicable to fast dynamic processes.

(2) To apply the developed off-line tube-based robust MPC algorithm to a
challenging control problem of uncertain polypropylene polymerization process
where the reaction rate constants are uncertain and the polymerization reactions

taking place are fast and highly exothermic.

(3) To apply the developed off-line tube-based robust MPC algorithm to a partially
simulated exothermic pilot plant reactor where the reaction heat of various
uncertain polymerization reactions can be generated. Therefore, the effects of
uncertainties and disturbances in polymerization processes can be investigated and

controlled under realistic situations.



3. Research Methodology

In this project, a novel off-line tube-based robust MPC is developed. The
proposed tube-based robust MPC algorithm can handle both uncertain parameters
and disturbances. Moreover, all of the optimization problems are solved off-line so
the proposed tube-based robust MPC algorithm is applicable to fast exothermic
processes. In order to illustrate its effectiveness, the proposed tube-based robust
MPC algorithm will be applied to a simulation case study of polypropylene
polymerization process with uncertain and highly exothermic polymerization
reactions. Then, the proposed tube-based robust MPC algorithm will be applied to
an experimental case study of a partially simulated exothermic (PARSEX) pilot plant
reactor where the reaction heat of polymerization processes is generated and
controlled by the proposed tube-based robust MPC algorithm. The procedures of

this project are shown in Fig. 3.1.

1) Develop a novel off-line tube-based robust MPC algorithm.

A 4

2) Apply the developed algorithm to a simulation case study of

polypropylene polymerization process with uncertain and highly

exothermic polymerization reactions.

A4

3) Apply the developed algorithm to an experimental case study of a

partially simulated exothermic pilot plant reactor.

Fig. 3.1 The procedures of this project.



1) Develop a novel off-line tube-based robust MPC algorithm.

In the first experimental step, a novel off-line tube-based robust MPC
algorithm is developed. No optimization problem needs to be solved on-line.
Additionally, both model uncertainty and disturbance are included in the robust MPC
formulation. Consider the following discrete-time system with model uncertainty and

disturbance
x" = A x+ Bru+w. (3.1)

where xeR" is the state, ueR" is the control input, weR" is the bounded
disturbance and x* e R" is the successor state. The system is subject to the state
constraint xeX and the control constraint ueU where XcR" and UcR" are
compact, convex and each set contains the origin as an interior point. The
disturbance is bounded, i.e., we W where W < R" s compact, convex and contains
the origin as an interior point. The objective is to robustly stabilize the system (3.1)
while all of the constraints are satisfied. The presence of a persistent disturbance w
means it is not possible to regulate the state x to the origin. The best that can be
hoped for is to regulate the state to a neighborhood of the origin. The matrices 4%
and B* are not constant but vary with an uncertain parameter vectorA. An
uncertain parameter vector A can be measured at each sampling time but its future

values are uncertain. We make the following assumption

Assumption 1. [A/l B’i]eConv{[A1 B)1,...JA4; B;]} where Conv denotes the convex

hull, [4; B;] are vertices of the convex hull and L is the number of vertices of the
. L .
convex hull. Any [A’1 B’1] can be written as [4% B’l]zzjzllj[Aj B;] and the pair

[4; B;] is controllable.

Let the nominal system be defined by



x* = A x'+BM (3.2)

where x'eR" and u'e R"™ are the state and control input of the nominal system,
respectively. The predicted state trajectory and control sequence when the initial
state is x' are denoted by X"={Xy,X|,....xy} and U= {uy,u,,...uy_,} , respectively.
Consider the following equation which is the difference between the systems (3.1)

and (3.2)
xt=x"= A (x—x)+ B u—-u")+w. (3.3)

In order to counteract the effect of disturbance, the control law u=K(x—x")+u' is

employed where K is the disturbance rejection gain. The system (3.3) is rewritten as
xt—xt=(4" + BPK)(x—x) +w. (3.4)

We will bound x* —x"" by a robust positively invariant set Z. The definition of Z is

as follows

Definition 1 The set ZcR" is a robust positively invariant set of an uncertain
system with disturbance x*=A*x+w if A*ZOWcZ for vxez, YvweW and
vA* e Convi4,,...,4;} where @ denotes the Minkowski set addition (Mayne et al,,
2009).

For the system (3.4), it is clear that if K satisfies
(4, +BjK)TP(Aj +B,K)-P<0,Vje{l,...L} where P is a Lyapunov matrix, then
(4" +B*K)" P(4* + B*K)~P<0, V[4" B*]eConv{4, B;],Vj€l2,...L} and we can
bound x" —x" by a robust positively invariant set Z satisfying (4 +B'K)ZoWc 2z
for V(x—x") e Z, vyweW and V[4" B*]eConv{4, B,],Vj €1.2,...L} . It is desirable

that Z be as small as possible. The minimal Z of the uncertain system with



disturbance (3.4) is Z = ©(4* + B*K)'W. Since [4* B*]eConv{4, B,],Vj €1,2,...L},
i=0

the minimal Z can be calculated as

Z=W® Conv {4, +B,K)W,Vj€l2,..L} ® Conv{(4; + B,K)(4 +BK)W,
Vil €12,..,L} ® Conv{(A; +B,K)(A +BK) A, +B,K)W,¥j,,mel2,. L} .. (3.5

s—1 .

Defining F, == @ (4% +B*K)' W, F, can be properly scaled for some finite integer s
i=0

to obtain the outer approximation of Z in (3.5) using the method in Rakovi¢ et al.

(2005). Since we can bound x*-x" by Z, the following proposition can be

established

Proposition 1. If xex'®Z and u=K(x—x")+u', then x* ex"®Z for vweW and
V(4" B*]eConv{4; B;],Vj €1.2,....L}.

Proposition 1 states that the control law u=K(x—x")+u' keeps the state x of an
uncertain system with disturbance x* =A*x+B*u+w close to the state x' of the
nominal system X" =A*x+B ' . It is clear that if we can regulate x' to the origin,
then x must be regulated to a robust positively invariant set Z whose center is at
the origin. An off-line robust MPC algorithm for the nominal system X" =4 x+BMu
has been developed by Bumroongsri and Kheawhom (2012). The problem of
regulating the state x' to the origin has been considered. In this approach, a
sequence of stabilizing feedback gains F, corresponding to a sequence of polyhedral
invariant sets B,,i={l,...,N,} where N, is the number of polyhedral invariant sets, is
precomputed off-line by solving the optimal control problems subject to LMI
constraints (Boyd and Vandenberghe, 2004). At each sampling time, the state x' is
measured and the smallest P containing x' is determined. Then, we set the real-

time stabilizing feedback gain F equal to F, and apply the control law u'=Fx' to

the process. The control law u'= Fx' minimizes the following cost function

o0

" Ox, + (Fx))T R(Fx) (3.6)

Ve, (x6 , u') = max io%i

[4* B*JeConv [ 4; B}1Vjel,2....L}
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where ¥, is the state of the nominal system at prediction time i and Q and R are
the positive-definite weighting matrices. Additionally, the control law u'= Fx' ensures

that the Lyapunov function V(x'):= xT Px' is a strictly decreasing function satisfying

V() -V (') <—xT Or—(Fx') R(Fx'), V[ 4" B*]e Conv {4, B,1,Vj €12,...L} (3.7)

where P is a Lyapunov matrix. At each sampling time, although the future values of
an uncertain parameter vector A in the prediction horizon (which is the infinite
horizon in this case) are unknown, the satisfaction of (3.7) for the stabilizing feedback
gain F ensures that robust stability of the nominal system x" =(4*+B*F)x' is
guaranteed. In order to guarantee satisfaction of the original state and control
constraints, xeX and u €U, we must employ tighter constraint sets for the nominal
system, ie, xXeXOZ and FxeUB KZwhere © denotes the Minkowski set
difference (Mayne et al., 2009). The control law u=K(x—x")+u' is now rewritten as

u=K(x—x")+Fx'. An important consequence is the following result

Proposition 2. If xex®Z, xeXOZ and FxeUO KZ, then the control law
u=K(x—x")+Fx' of an uncertain system with disturbance x* = A4*x+B*u+w ensures
satisfaction of the original constraints xeX, wuelU for vweW and

V[4* B*]eConv{4, B;1.Vjel.2,.. L}

Proposition 2 states that the control law u = K(x—x")+ Fx' ensures satisfaction of the
original state and control constraints. In summary, the proposed off-line tube-based
robust MPC for an uncertain system with disturbance x"=A*x+B*u+w can be

formulated as follows

Off-line Step 1:

Calculate the disturbance rejection gain K satisfying
(4, +B,K) P(4, + B,K)—P<0,Yje{l,.,L}. Then, properly scale
F, = :(:J;);(A’1 +B*K) W for some finite integer s to obtain the outer approximation of

Z in (3.5) using the method in Rakovic¢ et al. (2005).
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Off-line Step 2:
Calculate a sequence of stabilizing feedback gains F, and the corresponding
sequence of polyhedral invariant sets P,i={l..,Np} using the method in

Bumroongsri and Kheawhom (2012) with tighter constraint sets for the nominal

system, ie., xeXEOZ and FxeUB KZ .

On-line:

At the first sampling time (r=0), measure the state x and the uncertain
parameter vector A. Find the smallest polyhedral invariant set P, containing the
measured state x, set F=F, and apply the control law u=Fx to the process.
Then, calculate x"™ from x"=(4*+B*F)x (Note that at the first sampling time,

x=x" so the control law u=K(x—x")+Fx' is reduced to u = Fx).

At each sampling time (#>0), measure the state x and the uncertain parameter
vector A. Find the smallest polyhedral invariant set P containing x' (which is
calculated from the previous step), set F=F and apply the control law

1

u=K(x—x")+Fx' to the process. Then, calculate x™ from x™ =(4* + B*F)x'.
We can now establish our main Theorem as follows

Theorem 1. The proposed tube-based MPC algorithm steers any initial state x of an
uncertain system with disturbance x* =A4*x+B*u+w in a sequence of polyhedral
invariant sets P,i={l,...,N,} to a robust positively invariant set Z whose center is at

the origin and thereafter maintains the state in Z for vweW and

V[4* B*]eConv{4, B,],Vj 12,..,L}.

Proof. Consider the following difference equation between x* = A4*x+B*u+w and

x™" = A*x+B*' where u=K(x—x')+Fx' and u'=Fx',

xT—x" =4+ B K)(x—x") +w. (3.8)
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The disturbance rejection gain K satisfies (Aj+BjK)TP(Aj+BjK)—P<O,‘v’je{1,...,L}
so x"—x'"" is bounded by a robust positively invariant set Z, i.e, x" ex"®Z . Since
the stabilizing feedback gain F ensures that the Lyapunov function is a strictly
decreasing function satisfying (3.7), the state x™ must converge to the origin. Since
x"ex"®Z, x" must converge to a tube Z whose center is at the origin. Finally, the
disturbance rejection controller u=Kx keeps the state within a tube Z whose

center is at the origin. O

Example: In this example, an implementation of the proposed off-line tube-based
robust MPC algorithm is illustrated. Consider the following uncertain system with

bounded disturbance

1 1 0.5
x" =[ }x+{ :|14+W. (3.9)
0 A 1

The state xeX where Xi={xe ]R2| [01]x<2}, the control uelU where
U= fueR|ju<1, the disturbance weW where
W={we R2|[-0.1 -0.1T <w<[0.1 0.1]"} and the uncertain parameter A e IL where
L:={1eR|0.9<1<1.1}. The weighting matrices in the cost function (3.6) are given as
QO=1 and R=0.01. The following nominal system

1 1 0.5
Xt = X'+ ' (3.10)
0 A 1

is subject to tighter state and control constraints, i.e., xeX& Z and u'ceUS KZ .
The disturbance rejection gain K=[-0.66 -1.33] satisfies
(Aj+BjK)TP(Aj+BjK)—P<0,‘v’je{1,2}. The difference equation between (3.9) and

(3.10) can be written as

+oe |11 w105 ' (3.11)
x —x"= 0 ;L(x—x)+ . (u—u")+w. )

The closed-loop system is simulated using the initial state x=x'=[-5 218 The

uncertain parameter A and the disturbance w are varied as A =1+0.1sin(4k) and
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w=[0.1sin(4k) 0.1sin(4k)]" , respectively, where ke{l,...19} is the simulation

horizon.

Figure 3.2 shows a robust positively invariant set Z precomputed off-line. The cross
section of Z is shown in yellow. The blue line represents the trajectory of the
difference equation (3.11). Starting from the origin, it is seen that the trajectory of the

difference equation is restricted to lie within a tube Z .

0.3

0.2

S o A

Fig. 3.2. A robust positively invariant set Z precomputed off-line.

Figure 3.3 shows a sequence of ten polyhedral invariant sets P,ie{l,...10}
precomputed off-line. In this example, only ten polyhedral invariant sets are
precomputed because P, are almost constant for i >10. The red line represents the
trajectory of the nominal system (3.10). Starting from the initial point x =x'=[-5 21,

the state of the nominal system at each time step is restricted to lie within a
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sequence of ten polyhedral invariant sets P.,ie{l,...10} precomputed off-line.

Finally, the state of the nominal system converges to the origin.

O L SO e i B

_4 | | | | i | | |

-15 10 5 0 5 10 15 20 25
Xl'

Fig. 3.3 A sequence of ten polyhedral invariant sets P, ,ie{l,...,10}

precomputed off-line.

The trajectory of the uncertain system with disturbance (3.9) is shown in Fig. 3.4. The
region shown in green is the infeasible region of the state constraint
X:= {xe]R2|[O 1]x<2}. The red line corresponds to the trajectory of the nominal
system (3.10). The cross section of a tube Z precomputed off-line is shown in
yellow. It is seen that the state of the uncertain system with disturbance at each
time step is restricted to lie within a tube Z whose center is the state of the
nominal system that converges to the origin. Finally, the state of the uncertain

system with disturbance is kept within a tube Z whose center is at the origin.
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24 : : : : : :
—+— Trajectory of uncertain system with disturbance

i | —— Trajectory of nominal system

3 I i ] i i i i i i
-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1

Fig. 3.4. The trajectory of the uncertain system with disturbance.

Figure 3.5 shows the control input as a function of sampling time. The region shown
in yellow is US KZ . The red line corresponds to the control input of the nominal
system (3.10). The black line corresponds to the control input of the uncertain
system with disturbance (3.9). It can be observed that the control input of the
nominal system is restricted to lie within the region US KZ so that the control
input of the uncertain system with disturbance satisfies the control constraint

U:z{ueR||u|S1}.

—+— Control input of uncertain system with disturbance
—+— Control input of nominal system

Control input

~o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Sampling time

Fig. 3.5. The control input as a function of sampling time.
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2) Apply the developed algorithm to a simulation case study of polypropylene
polymerization process with uncertain and highly exothermic polymerization

reactions.

In the second experimental step, the off-line tube-based robust MPC
algorithm developed in the first step is applied to a simulation case study of
polypropylene polymerization process. This process is characterized by its high value
of reaction heat and uncertainty of reaction rate constants (Seki et al, 2001).
Consider the bulk polymerization of polypropylene shown in Fig. 3.6. The process
takes place in CSTR at 340 K and 30 atm using high-activity fourth generation Ziegler-
Natta catalyst (TiCly/MgCl+p-ethylethoxy-benzoate+triethyl aluminum). The heat of
polymerization reaction is removed by condensation of boiling propylene. In the
presence of uncertain parameters and disturbances, the objective is to control the
reactor temperature (T) and the cumulative mass average molecular weight of
polymer (M) by manipulating the mass flowrate of cooling water (m,) and the

mass flowrate of propylene monomer (m,).

m,,, T, ;——|cONDENSER CONDENSER—> T

. i)
meA’TeA meB=TeB

W W

mearei >

My s T, mbfged

R rec > *erec
cat

M
[
>

Mrpy —> >
M T

REACTOR M urry

Mpppg —

h

FILTER

Fig.3.6. The bulk polymerization of polypropylene
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The material balance of this process can be written as Egs. (3.12) - (3.19) (Neto and

Pinto, 2001; Prata et al., 2009)

d;“ =m,w, — (%)mbleed (3.12)
e (1=~ Ry~ Pa’:f s (3.13)
dg f’ oy S (3.14)
T s =y~ K yCat (3.15)
% =mrpy — a(%)mbked -(1- a)(%)mpol (3.16)
dPiEB =MpgEp — (%)mpol (3.17)
dxS _ Rpor [XS® + K y( TEA 1y xs) (3.18)
dt  Pol PEEB
AN _ Rpor _Mpor (3.19)

a MM

where P, is the mass of propane in the reactor (kg), m, is the mass flowrate of
propylene monomer (kg/h), w, is the propane concentration in the feed stream
(wt/wt), P, is the mass of propylene in the reactor (kg), my,., is the mass flowrate of
liquid bleed (kg/h), R,y is the rate of polymerization (kg/h), Pol is the mass of
polymer in the reactor (kg), m,, is the mass flowrate of output polymer (kg/h), Cat

is the mass of catalyst in the reactor (kg), m,,, is the mass flowrate of catalyst (kg/h),

cat
K, is the catalyst deactivation constant (h_l), TEA is the mass of triethyl aluminum
in the reactor (kg), myy, is the mass flowrate of triethyl aluminum (kg/h), a is the
recycle factor of triethyl aluminum (wt/wt), PEEB is the mass of p-ethylethoxy-

benzoate in the reactor (kg), mpgzp is the mass flowrate of p-ethylethoxy-benzoate
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(ke/h), XS is the xylene extractable material (wt/wt), XS® is the reference value of

xylene extractable material (wt/wt), K¢ is the model parameter for XS correlation

(dimensionless), N is the mol number of polymer (mol), M,’; is the instantaneous

number average molecular weight (k¢/mol) and M, is the cumulative number

average molecular weight (kg/mol). Some properties and unmeasured variables can

be calculated from Egs. (3.20) to (3.30).

m pol = mslurry Wpol

_ Myec + Mpjeed

m =
slurry
1- Wpol

Pol
v

M =P, + P, + Pol

c,=—ta
B+
_ Ky (Can)(£y)
pol M

ML =K, (M)

M= P,
n PH
y+C 2
e
F,+P,
poe _ Pol
"N

My =(PD)M;)

y—fu, b Pol

Pa  Pe ppol

)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)
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where m

sy 1S the mass flowrate of slurry (kg/h), w,,; is the polymer concentration

in the slurry (wt/wt), m,,. is the mass flowrate of the recycle (kg/h), M is the total

mass in the reactor (kg), C, is the propane concentration in the recycle (wt/wt), K,
is the kinetic constant for propagation rate (h_l), MI is the melting index (kg/10 min),

K, is the model parameter for MI correlation ((kg/10 min)/(kg/mot)ﬂ), A is the

parameter for MI correlation (dimensionless), Pyp is the propylene molecular
weight (kg/mol), y is the parameter for M| correlation (dimensionless), C is the
kinetic constant for transfer rate to hydrogen (atm71), Py, is the partial pressure of
hydrogen in the reactor (atm), M, is the cumulative mass average molecular weight
(kg/mol), PD is the polydispersity (dimensionless), V' is the reactor volume (m3), o
is the density of propane (kg/m3), p, is the density of propylene (kg/m3) and p,y is
the density of polymer (kg/m3). The energy balance of the polypropylene

polymerization process shown in Fig. 3.6 can be written as Egs. (3.31) to (3.33).

T _ meCPe (Tel' -+ mrecCPe (T;zrec -T)+ (_AH)Rpol - Qe "

dr dy  (331)
dt (P,Cy, +P.Cp, +PolCp )
Qe = meAﬂ’e + meACPe (- TeA) + meBﬂ’e + meBCPe (T- TeB) (3.32)
+m,Cp T,
T, = Lo Cp, i (3.33)
m,Cp

where T is the reactor temperature (K), Cp is the heat capacity of propylene

(kJ/kgK), T,

L, is the temperature of propylene monomer (K), 7,,,. is the temperature

of the recycle (K), AH is the heat of reaction (kJ/ke), Q, is the heat exchanged in the
condenser (kl/h), Cp s the heat capacity of propane (kJ/kg.K), Croo 15 the heat
capacity of polymer (kJ/kg.K), m,, is the mass flowrate of propylene reflux from the
first condenser (kg/h), T,, is the temperature of propylene reflux from the first
condenser (K), m,z is the mass flowrate of propylene reflux from the second

condenser (kg/h), 4, is the latent heat of vaporization of propylene (kJ/kg), T, is the

temperature of propylene reflux from the second condenser (K), T

wo

is the output
temperature of cooling water (K), m,, is the mass flowrate of cooling water (kg/h),

Cp, is the heat capacity of cooling water (ki/kgK), T,, is the input temperature of
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cooling water (K) and d, is the disturbance from noises of temperature

measurement.

Since the polymerization process is usually involved with complicated
polymerization reactions, the values of some parameters such as reaction rate
constants are not exactly known and they are considered to be uncertain (Prata et
al,, 2014). Table 3.1 shows the uncertain parameters present in the polypropylene

polymerization process.

Table 3.1. The uncertain parameters present in the polypropylene polymerization

process.

Parameters Description Lower Bound | Upper Bound Unit

kinetic constant for q 5
K, 1.00x10 1.00x10 h
propagation rate

K, catalyst deactivation constant 4.00 8.00 h

kinetic constant for transfer rate = 4 4
C 1.00x10 1.00x10 atm
to hydrogen

AH Heat of reaction 4.94x10° 6.94x10° kJ/kg

The polymerization reaction is highly exothermic. In the presence of uncertain
parameters such as reaction rate constants and disturbances such as measurement
noises, an inefficient control of the polymerization process may lead to unexpected
thermal runaway of the system. For this reason, the uncertain parameters and
disturbances are explicitly taken into account in the proposed controller design as

shown in the first experimental step.

3) Apply the developed algorithm to a partially simulated exothermic pilot

plant reactor.
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In this step, a partially simulated exothermic (PARSEX) pilot plant reactor

operated in the continuous mode has been developed as shown in Fig. 3.7.

TEMPERATURE TRANSMITTER COMPUTER

SIMULATION

;i

k

Qsimululion

THERMOCOUPLE

THE PROPOSED
CONTROLLER

&
L
ELECTRIC HEATER

REACTOR

—> OUTLET

1
I
1
I
I
1 PUNP
I

1

& [ HEATEXCHANGER ’—>
COOLING WATER |

Figure 3.7. A partially simulated exothermic (PARSEX) pilot plant reactor.

The generation of heat (Q, ) of an exothermic polymerization reaction is

imulation
calculated on-line according to the concerned kinetic model. Then, the heat is
generated using an electric heater and the temperature of hot oil inside the reactor
is controlled by adjusting the flow rate of cooling water. The conservation equations

associated with the PARSEX reactor can be written as follows

dc E._ F
X =k Cexplc—)+—(C, -C (3.34)
dt oCexp( RT) pV( r=O

. ew C
E — Qszmulatlon +L(Tf —T)+ m p.cw (TCW _T) (335)

dt VpC, — pV VpC,
where  the generation  of  heat is  calculated  according to
Qsimulaﬁon=—AHk0VCexp(—%). The objective is to control the simulated reactor

concentration C and the reactor temperature T' by manipulating the simulated

reactor feed concentration C, and the flow rate of cooling water Mew , respectively.
The reaction is simulated in the computer while the heat transfer is really occurred

in the reactor. The parameter descriptions are presented as follows
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Table 3.2. The parameter descriptions and nominal values

Parameters Description Values Units

k Pre-exponential factor 55,600 s

Activation energy per

E/R 6,000 K
universal gas constant

F Reactor feed rate 0.125 ke/s
P Oil density 910 kg/m’
14 Reactor volume 0.15 m’
AH Heat of reaction -150,000 kJ/kmol
C, Specific heat of oil 1.95 kJ/kg.K
Cp’cw Specific heat of cooling water 4.18 kl/kg.K
Tf Reactor feed temperature 308 K
T., Cooling water temperature 300 K

Steady-state value of the simulated

C. 1.03 kmol/m’
5 reactor concentration

Steady-state value of the simulated

Cf,ss 1.5 kmon3
reactor feed concentration

Steady-state value of the reactor

T 320.60 K
* temperature

Steady-state value of the flow rate of

: 0.08 kg/s
. cooling water
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The following parameters are considered to be uncertain during the operation and
their values are given as follows. The cooling water temperature cannot be further
increased beyond +2% due to the limit in the heat transfer driving force to cool the

reactor.

Table 3.3 The values of the uncertain parameters

Range from the nominal values
Parameters Description
Minimum Maximum
k, Pre-exponential factor -20% +20%
AH Heat of reaction -20% +20%
T., Cooling water temperature -2% +2%
F Reactor feed rate -20% +20%
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4. Results of this research

(1) Results from the development of a novel off-line tube-based robust MPC

algorithm.

Case Study 1.1 In this case study, an implementation of the proposed off-line tube-

based robust MPC algorithm is illustrated. Consider the following uncertain system

x+={1 1}C+{0'5}u+w. (a.1)
0 A 1

The state xeX where X::{xeRZHO 1x<2}, the control uel where

with bounded disturbance

U=weRpy <1, the disturbance we W where
W= {we ]R2|[-0.1 -0.1]T <w<[0.1 O.I]T} and the uncertain parameter A ell
where IL:={21eR|0.9<2<1.1}. The weighting matrices in the cost function are given
as O=1 and R=0.01. The following nominal system

x,+{1 1}”[0.5}[ @.2)
0 A 1

is subject to tighter state and control constraints, i.e., ¥eXOZ and u'cUBKZ.
The disturbance rejection gain K =[-0.66 -1.33] satisfies
(4; +BjK)TP(Aj +B;K)-P<0,Vje{l2}. The difference equation between (4.1)

and (4.2) can be written as
1 1 0.5
x* —;d*:{ /J(x—x’)J{ . }(u—u')+w. (4.3)

The closed-loop system is simulated using the initial state x=x'=[-5 -Z]T. The
uncertain parameter A and the disturbance w are varied as A =1+0.1sin(4k) and
w=[0.1sin(4k) O.lsin(4k)]T, respectively, where £ke{l,...19} is the simulation

horizon.
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Figure 4.1 shows a robust positively invariant set Z precomputed off-line. The cross
section of Z is shown in yellow. The blue line represents the trajectory of the
difference equation (4.3). Starting from the origin, it is seen that the trajectory of the

difference equation is restricted to lie within a tube Z .

e T e :

0.3

0.2

0.1

-0.1

-0.2

-0.3

Fig. 4.1. A robust positively invariant set Z precomputed off-line.

Figure 4.2 show a sequence of ten polyhedral invariant sets P,ie{l...10}
precomputed off-line. In this example, only ten polyhedral invariant sets are
precomputed because P. are almost constant for i >10. The red line represents the
trajectory of the nominal system (4.2). Starting from the initial point x=x'=[-5 210
the state of the nominal system at each time step is restricted to lie within a
sequence of ten polyhedral invariant sets P,ie{l,...10} precomputed off-line.

Finally, the state of the nominal system converges to the origin.
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Fig. 4.2. A sequence of ten polyhedral invariant sets P.,ie{L...10} precomputed off-

line.

The trajectory of the uncertain system with disturbance (4.1) is shown in Fig. 4.3. The
region shown in green is the infeasible region of the state constraint
X:= {xe]R2|[O 1]x<2}. The red line corresponds to the trajectory of the nominal
system (4.2). The cross section of a tube Z precomputed off-line is shown in yellow.
It is seen that the state of the uncertain system with disturbance at each time step is
restricted to lie within a tube Z whose center is the state of the nominal system
that converges to the origin. Finally, the state of the uncertain system with

disturbance is kept within a tube Z whose center is at the origin.
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i | —— Trajectory of uncertain system with disturbance |

i i | —— Trajectory of nominal system

3 i i i i i i i i i j
-9 -8 -7 -6 -5 -4 -3 2 -1 0 1

Fig. 4.3. The trajectory of the uncertain system with disturbance.

Figure 4.4 shows the control input as a function of sampling time. The region shown
in yellow is Ue KZ . The red line corresponds to the control input of the nominal
system (4.2). The black line corresponds to the control input of the uncertain system
with disturbance (4.1). It can be observed that the control input of the nominal
system is restricted to lie within the region Ue KZ so that the control input of the

uncertain system with disturbance satisfies the control constraint U= {u e R |u| <lj.

1
—+— Control input of uncertain system with disturbance
0.8 —+— Control input of nominal system

0.6

Control input

() 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Sampling time

Fig. 4.4. The control input as a function of sampling time.
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Case study 1.2 In this case study, the proposed algorithm is applied to a non-
isothermal continuous stirred tank reactor (CSTR) in which an irreversible exothermic
reaction A — B takes place. The dimensionless modeling equations of this CSTR can

be written as (Nagrath et al.,, 2002; Silva and Kwong, 1999)

dx; )
—— =q(x1 5 —x1) — ey exp( )+wy (4.4)
dr XD
1+
v
dx X
=2 = q(xay —x2) = 8(xg —x3)+ B exp——=—)+wy  (4.5)
dr b))
1+
e
dx
d—:=51[qc(X3f —x3)+ 007 (x7 —x3)]+ w3 (4.6)

where x; is the dimensionless concentration of reactant 4, x, is the dimensionless
reactor temperature and x3 is the dimensionless cooling jacket temperature. The
manipulated variable is the dimensionless coolant flow rate g.. The disturbances
acting on the system are w;, w, and w;. By linearizing and discretizing (4.4) to (4.6)

with a sampling period AT, the following discrete-time state space model is

obtained
L+ AT-g-grps)] - AT[EasEi2s), 0
(1+725)2 )
x1(k +1) 4 x1(k)
xa(k+1)|=|  AT[Bdr(x25)] 1+AT[—q—5+Wxﬂ] ATS X2 (k)
*3(k+1) =5 ¥300)
0 AT3515, 1 - AT[S1q,5 + 65151
0 1 0 0] wi(k)
+ 0 g () +AT|0 1 0 wa(k)
ATS|[x3 7 — x35] 0 0 1| wsk)
a.7)
where x1(k) = x1 (k) - x135, x2 (k)= x5 (k)—x2g, x3(k) = x3(k)—x35,

4. =qe(k)=qes, wi(k)=wi(k)—wis, wa(k)=wy(k)—wys, wi(k)=w;(k)—wss and
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K(sz)ZCXp(xL). The model parameter values are shown in Table 4.1. The

1+ 225
4

Damkohler number ¢ is considered to be uncertain and its value is randomly time-
varying between ¢,.. =0.0648 and ¢, .. =0.0792. The disturbances Wi (k), v_m(k) and
v_m(k) are randomly time-varying between -0.01 to 0.01. The constraints are

‘)_a(k)‘ <0.5 and

ch(k)‘sm. The weighting matrices in the cost function are Q=1
and R=0.1. The objective is to regulate the state from (;1(0),52(0),;3(0)):(0, 5,0)
to the neighborhood of the origin by manipulating ‘_Ic(k)-

Table 4.1 The model parameter values.

Parameter Value Parameter Value

q 1.0 5 0.3
Xy 1.0 B 8.0
¢ 0.0648-0.0792 5, 10
y 20 X3/ -1.0
Xs 0.0 5, 1.0
X5 0.8933 Wi 0.0
Xy 0.5193 Wy 0.0
X -0.5950 Wig 0.0
dus 1.65

Figure 4.5 shows a sequence of four polyhedral invariant sets P,ie{l,...4}

precomputed off-line. The polyhedral invariant sets are shown in yellow.
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Fig.4.5. A sequence of four polyhedral invariant sets P,,ie{l,...4}

precomputed off-line.

Figure 4.6 shows the trajectory of the uncertain CSTR. The black line is the trajectory
of the uncertain CSTR with disturbances (CSTR containing both time-varying
parameter and disturbances). The red line is the trajectory of the uncertain CSTR with
no disturbances (CSTR containing only time-varying parameter). It can be observed
that the trajectory of the uncertain CSTR with disturbances lies in a sequence of
tubes shown in yellow. Finally, the state of the uncertain CSTR with disturbances is

steered to a tube whose center is at the origin.

0.5~

| —— Trajectory of the uncertain CSTR with disturbances
—+ Trajectory of the uncertain CSTR with no disturbances |

04—

03—

02~
e

Fig. 4.6. The trajectory of the uncertain CSTR (The cross section of tube is shown in

yellow).
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The proposed algorithm will be compared with tube-based robust MPC algorithm of
Mayne et al. (2005) in which the on-line optimization problem must be solved at
each sampling time. In Mayne et al. (2005), only disturbances are included in the
controller design so there is a mismatch between the model and the process when
the time-varying parameter is present. From Figure 4.7, it is seen that the proposed
algorithm is able to steer the state of the uncertain CSTR with disturbances to the

neighborhood of the origin faster than the algorithm of Mayne et al. (2005).

05

0.00 5 —e— Mayne et al (2005)

- The proposed algorithm

-.05 4

-.10
.15 4 o
-.20 A 14
—=— Mayne et al (2005)
25 | A 7 The proposed algorithm o L

-30 ! ! ! ! -1

(8]
'S
o
)
=]

0 2 4 6 8 10 0
T T
(a) dimensionless concentration of reactant A (b) dimensionless reactor temperature
.6 1.2
5! —&— Mayne etal (2005) 1.0 —— Mayre et al. (2005)
v The proposed algorithm v The proposed algorithm
s
74
6 v
1 15 %
41 .
A
0.0
1 -2
0 2 4 6 8 10 0 2 4 6 8 10
B T

(c) dimensionless cooling jacket temperature (d) dimensionless coolant flow rate

Fig.4.7. The control performance (a) dimensionless concentration of reactant A (b)
dimensionless reactor temperature (c) dimensionless cooling jacket temperature and

(d) dimensionless coolant flow rate.
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The on-line computational time is shown in Table 4.2. It is seen that the proposed

algorithm requires significantly less on-line computational time. The computations

are performed using Intel Core 2 Duo (2.53 GHz), 2 GB RAM.

Table 4.2 The on-line computational time.

On-line computational time

Algorithm
for each step (seconds)
Mayne et al. (2005) 0.067
The proposed algorithm 0.015
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(2) Results from the application of the developed algorithm to a simulation
case study of polypropylene polymerization process with uncertain and highly

exothermic polymerization reactions.

In this section, the developed off-line tube-based robust MPC algorithm is applied to
a simulation case study of polypropylene polymerization process containing
uncertain parameters and disturbances. The objective is to control the reactor
temperature (7) and the cumulative mass average molecular weight of polymer
(M) by manipulating the mass flowrate of cooling water (m,) and the mass
flowrate of propylene monomer (m,). The cumulative mass average molecular
weight of polymer (M) can be controlled by monitoring the mass of polymer in
the reactor (Pol) . The setpoints (with respect to the nominal values) for the mass of
polymer in the reactor (Pol) and the reactor temperature (7') are 600 kg and -5 K|
respectively. The results are presented in the form of deviation variables for the ease

of understanding.

Case study 2.1 The control performance when the kinetic constant for

propagation rate (KX ;) and the heat of reaction (AH') are uncertain.

In this case study, the developed control algorithm is applied to a simulation case
study of polypropylene polymerization process in which the kinetic constant for
propagation rate (K,) and the heat of reaction (AH) are uncertain. Figure 4.8
shows the simulation results when the values of the kinetic constant for propagation
rate (K,) and the heat of reaction (AH) are both increased by 1%, 3% and 5%
from the nominal values. It is seen that the controlled variables, which are the mass
of polymer in the reactor (Pol) and the reactor temperature (T'), can be regulated
to the setpoints Pol=600 kg and T =-5 K despite increased values of uncertainties.
This is due to the fact that the developed control algorithm is able to ensure robust

stability in the presence of uncertain parameters.
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Fig. 4.8 The controlled variables: a) the mass of polymer in the reactor (Pol) and b)

the reactor temperature (T') when the values of the kinetic constant for propagation

rate (Kp) and the

Figure 4.9 shows the manipulated variables, which are the mass flowrate of

heat of reaction (AH ) are uncertain.

propylene monomer (m,) and the mass flowrate of cooling water (m,,), when the

values of the kinetic constant for propagation rate (K,) and the heat of reaction

(AH) are both increased by 1%, 3% and 5% from the nominal values. It can be

observed from Fig. 4.9(a) that the values of the mass flowrate of propylene
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monomer (m,) are high at the beginning of the process in order to steer the mass of
polymer in the reactor (Pol) to the setpoint. Then, the values of the mass flowrate
of propylene monomer (m,) reach a steady state after 6 hr. Figure 4.9(b) shows the
mass flowrate of cooling water (m,,) as a function of time. It is seen that values of
the mass flowrate of cooling water (m,,) reach a steady state after 6 hr as the

reactor temperature (7) is regulated to the setpoint.
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Fig. 4.9. The manipulated variables: a) the mass flowrate of propylene monomer

(m,) and b) the mass flowrate of cooling water (m,,) when the values of the kinetic

constant for propagation rate (K ) and the heat of reaction (AH ) are uncertain.

The cumulative mass average molecular weight of polymer (M%) in the reactor is

shown in Fig. 4.10. It is seen that the cumulative mass average molecular weight of

polymer

cases.

Cumulative mass average molecular weight (g/mol)

(M) can be regulated to the desired value of 1.57x10° g/mol for all
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Fig. 4.10. The cumulative mass average molecular weight of polymer (MY°) when

the values of the kinetic constant for propagation rate (K ;) and the heat of reaction

(AH ) are uncertain.
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Case study 2.2 The control performance in the presence of the disturbance
acting on the mass of polymer in the reactor (dp,;) and the disturbance acting

on the reactor temperature (dy).

In this case study, the developed control algorithm is applied to a simulation case
study of polypropylene polymerization process in the presence of the disturbance
acting on the mass of polymer in the reactor (dp,;) and the disturbance acting on
the reactor temperature (dr). Figure 4.11 shows the simulation results when the
disturbance acting on the mass of polymer in the reactor (dp,;) and the disturbance
acting on the reactor temperature dr) are varied as
d py =0.1sin(9k), 1sin(%),10sin(%) and dz =0.01sin(9%),0.1sin(%),1sin(%) where k
is the simulation time step (hr). It is seen that the controlled variables, which are the
mass of polymer in the reactor (Pol) and the reactor temperature (T), are regulated
to the neighborhood of the setpoints Pol/=600 kg and 7'=-5 K. It should be noted
that in the presence of the additive disturbances, the controlled variables can only
be regulated to the neighborhood of the setpoints due to the nature of the

disturbances.
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0 4 —=—— d,=0.1sin(9k) and d;=0.01sin(9k)
..... o dp,=1sin(9k) and d;=0.1sin(%)
——— dp,=10sin(9k) and d;=1sin(%k)
— —  Setpoint
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Deviation of T (K) from nominal value
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Time (hr)
b) The reactor temperature (7')

Fig. 4.11. The controlled variables: a) the mass of polymer in the reactor (Pol) and
b) the reactor temperature (T) in the presence of the disturbance acting on the
mass of polymer in the reactor (dp,;) and the disturbance acting on the reactor

temperature (dr).

The manipulated variables, which are the mass flowrate of propylene monomer
(m,) and the mass flowrate of cooling water (m,,), are shown in Fig. 4.12. In the
presence of the additive disturbances, it can be observed that the mass flowrate of
propylene monomer (m,) and the mass flowrate of cooling water (m,,) are both
fluctuating around the steady-state values as the controlled variables are regulated

to the neighborhood of the setpoints due to the effects of the disturbances.
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Fig. 4.12. The manipulated variables: a) the mass flowrate of propylene monomer
(mg) and b) the mass flowrate of cooling water (m,,) in the presence of the
disturbance acting on the mass of polymer in the reactor (dp,;) and the disturbance

acting on the reactor temperature (dr).
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The cumulative mass average molecular weight of polymer (M%) in the reactor is
shown in Fig. 4.13. It is seen that the cumulative mass average molecular weight of
polymer (MYF) can be regulated to the neighborhood of the desired value of

1.57x10° g/mol despite the time-varying disturbances acting on the system.

2.2e+5 - — e d,,=0.1sin(9k) and d.=0.01sin(0k)
o dpy=1sin(9k) and d,=0.1sin(9k)
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1.5e+5 T T T T

Time (hr)

Fig. 4.13. The cumulative mass average molecular weight of polymer (M) in the
presence of the disturbance acting on the mass of polymer in the reactor (dp,;) and

the disturbance acting on the reactor temperature (dy).
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(3) Results from the application of the developed algorithm to a partially

simulated exothermic pilot plant reactor.

In this section, the developed control algorithm is applied to a partially simulated
exothermic pilot plant (PARSEX) reactor. The objective is to control the simulated

reactor concentration C and the reactor temperature 7 by manipulating the

simulated reactor feed concentration C, and the flow rate of cooling water Mew,
respectively. The reaction is simulated in the computer while the heat transfer is

really occurred in the reactor. Two case studies are conducted as follows

Case study 3.1 The control performance when the pre-exponential factor (k,)

and the heat of reaction (AH ) are uncertain.

In this case study, the developed control algorithm is applied to the control of the
simulated reactor concentration C and the reactor temperature T' when the pre-
exponential factor k, and the heat of reaction AH are uncertain. The values of the
pre-exponential factor k, and the heat of reaction AH are in the range between -
20% to +20% from the nominal values. Figure 4.14 shows the simulated reactor
concentration C and the reactor temperature T when the values of pre-
exponential factor are uncertain in the range between -20% to +20% from the
nominal values. The developed controller can drive the simulated reactor
concentration and the reactor temperature to the set point despite the presence of
uncertainty. It can be observed that high value of the pre-exponential factor (+20%)

leads to the overshoot for both state variables.
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Figure 4.14 The simulated reactor concentration C and the reactor temperature T
when the values of pre-exponential factor k, are uncertain in the range between -

20% to +20% from the nominal values.

Figure 4.15 shows the simulated reactor concentration C and the reactor
temperature T when the values of the heat of reaction AH are uncertain in the

range between -20% to +20% from the nominal values. In the presence of



43

uncertainty in the heat of reaction, the simulated reactor concentration and the
reactor temperature can be regulated to the set point. However, high value of the

heat of reaction (+20%) causes the overshoot of the reactor temperature.
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Figure 4.15 The simulated reactor concentration C and the reactor temperature T
when the values of the heat of reaction AH are uncertain in the range between

-20% to +20% from the nominal values.
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Case study 3.2 The control performance when the cooling water temperature

(T,,) and the reactor feed rate (F') are uncertain.

In this case study, the developed control algorithm is applied to the control of the
simulated reactor concentration C and the reactor temperature T when the cooling
water temperature T, and the reactor feed rate F are uncertain. The values of the
cooling water temperature T, are in the range between -2% to +2% from the
nominal values (the cooling water temperature cannot be further increased beyond
+2% due to the limit in the heat transfer driving force). The values of the reactor
feed rate F are in the range between -20% to +20% from the nominal values. Figure
4.16 shows the simulated reactor concentration C and the reactor temperature T
when the values of the cooling water temperature T, are uncertain in the range
between -2% to +2% from the nominal values. High value of the cooling water
temperature (+2%) has a small value of heat transfer driving force causing the
sluggish response for the simulated reactor concentration and the reactor

temperature.
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Figure 4.16 The simulated reactor concentration C and the reactor temperature T
when the values of the cooling water temperature T, are uncertain in the range

between -2% to +2% from the nominal values.

Figure 4.17 shows the simulated reactor concentration C and the reactor
temperature T when the values of the reactor feed rate F are uncertain in the
range between -20% to +20% from the nominal values. High value (+20%) of the
reactor feed rate F leads to a small value of the residence time in the reactor. As
the time that the substances spent in the reactor decrease, the slow responses of

the simulated reactor concentration and the reactor temperature are obtained.
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5. Conclusions

This research presents a novel off-line tube-based robust model predictive
control algorithm. In the presence of both uncertain parameters and disturbances,
robust stability and constraint satisfaction can be guaranteed due to the fact that the
trajectories of uncertain systems are restricted to lie in a sequence of tubes. The on-
line computational time is reduced because the optimization problems are solved
off-line so the developed algorithm is applicable to fast dynamic systems.

The applications of the developed algorithm are demonstrated in the control
problem of uncertain polymerization process for polypropylene in which the values
of reaction rate constants are uncertain. The presence of uncertain parameters can
lead to an unexpected thermal runaway because the polymerization reactions taking
place are fast and highly exothermic. In the case of uncertain kinetic constant and
uncertain heat of reaction, the developed control algorithm can regulate the
controlled variables, which are the mass of polymer in the reactor and the reactor
temperature, to the desired set point by manipulating the mass flow rate of
propylene monomer and the mass flow rate of cooling water, respectively. In the
presence of the disturbances acting on the system, the developed control algorithm
is able to regulate the mass of polymer in the reactor and the reactor temperature
to the neighborhood of the desired set point so robust stability of the system can be
guaranteed. The developed algorithm can systematically handle both uncertain
parameters and disturbances.

Finally, the developed control algorithm is applied to a partially simulated
exothermic (PARSEX) reactor operated in the continuous mode. In the presence of
uncertain parameters such as the reaction rate constant, heat of reaction, cooling
water temperature and reactor feed rate, the developed control algorithm can
regulate the reactor temperature to the set point despite uncertainty so robust

stability of the system is ensured.
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6. Recommendations for future research

6.1 The state variables are assumed measurable in this research. In some
applications, however, the state variables cannot be directly measured and only
output variables can be measured. In next research, the output feedback controller

should be developed to handle these situations.

6.2 The region of tube is constant in this research. The control performance can be

further improved by using time-varying tubes.
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Introduction

Tube-based robust model predictive control (MPC) is an
advanced control algorithm that can deal with model uncer-
tainty. The basic idea of tube-based robust MPC is to main-
tain a state trajectory of an uncertain system inside a
sequence of tubes (Rawlings and Mayne, 2009). Tube-based
robust MPC is motivated by the fact that a real state trajec-
tory differs from a state trajectory of a nominal system due
to uncertainty (Mayne and Langson, 2001). Chisci et al.
(2001) developed a tube-based robust model predictive
controller for the linear time-invariant (LTI) system subject
to bounded disturbance. The control law has the form
u= Kx + ¢, where K is obtained by solving an unconstrained
linear quadratic regulator (LQR) problem, x is the state, and
¢ is the vanishing input, that is, ¢; =0 for i > control horizon.
The objective is to drive the state of an uncertain system to a
terminal set while using c as little as possible. Constraint ful-
fillment is guaranteed by replacing the original constraints
with more stringent ones. A larger control horizon implies
better control performance at the price of a higher computa-
tional load, so a suitable trade-off is required. Langson et al.
(2004) proposed tube-based robust MPC employing the
time-varying control inputs instead of the LTI control law.
A sequence of time-varying control inputs is obtained by
solving an optimal control problem subject to the additional
constraint sets in order to guarantee robust stability. Since
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Color versions of one or more of the figures in the article
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the control inputs are time-varying, the proposed MPC
algorithm can achieve better control performance than the
conventional tube-based MPC algorithm using the LTI con-
trol law. The price to be paid is the computational com-
plexity that increases with the prediction horizon.

Mayne et al. (2005) established robust exponential stab-
ility of the disturbance invariant set for the LTI system with
bounded disturbance. The optimal control problem solved
at each sampling time includes the initial state of the nom-
inal model as a decision variable. The result is that the value
function is zero in the disturbance invariant set so robust
exponential stability of the disturbance invariant set can be
established. The control law has the form u = K(x — X)+
u, where X and # are the state and control inputs of the nom-
inal system, respectively. Higher online computational time
is required because the optimal control problem with
increased decision variable has to be solved at each sampling
time. In the case when the state of the LTI system with
bounded disturbance is not exactly known, tube-based
robust MPC can be implemented based on the observer state
as proposed by Mayne et al. (2006). A simple Luenberger
observer is employed to estimate the state. The state esti-
mation and control errors at each time step are bounded
by minimal robust positively invariant sets. Hence, the
actual and observer states are restricted to lie within tubes
whose center is the state of the nominal system. The control
law has the form u = K(X — X) + &, where X is the observer
state. The controller is based on the observer state so the
state X and control input % of the nominal system are subject
to tighter constraint sets than the case when the state is
exactly known. In Mayne et al. (2009), this idea is extended
to the case when the initial state estimation error does not lie
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in the minimal robust positively invariant set but it lies in the
time-varying set that converges to the minimal robust posi-
tively invariant set. In this case, higher online computational
time is required because the time-varying set is computed
online.

Tube-based robust MPC for tracking of LTI system with
bounded disturbance was presented by Limon et al. (2010).
The artificial steady variables are introduced as the decision
variables in the optimal control problem. If the target is
unreachable, the system will be steered to the neighborhood
of the artificial target. The proposed MPC algorithm is suit-
able for the system whose target is significantly changed.
However, the main drawback is that the proposed MPC
algorithm requires high online computational time because
some of the decision variables and constraints are intro-
duced to the optimal control problem. Gonzalez et al.
(2011) proposed tube-based robust MPC for tracking of lin-
ear time-varying (LTV) system subject to bounded disturb-
ance. The proposed MPC algorithm requires an additional
assumption that the time-varying parameter at each step
within the prediction horizon is known a priori. Then, a
reachable set at each time step is calculated instead of a dis-
turbance invariant set in order to reduce the conservative-
ness. Although the conservativeness is reduced, the
computational problem is more severe because both optimal
control problem and reachable set are computed online.

In this paper, an off-line formulation of tube-based robust
MPC using polyhedral invariant sets is proposed. The main
contributions are that: (i) we propose tube-based robust
MPC that solves all of the optimal control problems off-line,
so no optimal control problem needs to be solved online; (ii)
the proposed tube-based robust MPC algorithm can deal
with LTV system subject to bounded disturbance. Unlike
Gonzalez et al. (2011), the proposed algorithm does not
require an additional assumption that the time-varying para-
meter at each step within the prediction horizon is known a
priori. This article is organized as follows. The backgrounds
of the conventional tube-based robust MPC are described in
Backgrounds of Conventional Tube-Based Robust MPC sec-
tion. In An Off-Line Formulation of Tube-Based Robust
MPC Using Polyhedral Invariant Sets section, off-line
tube-based robust MPC is proposed. In Illustrative Example
section, the simulation results are presented. The conclusions
are then drawn in Conclusions section.

Nomenclature

Given two subsets X and Y of R”, Minkowski set addition
and set difference are defined, respectively, by X@ Y: =
{x+ylxeX, ye Y} and XO Y: ={x|x® YC X}. The dis-
tance of a point x € R” from a set YCR" is denoted by
d(x, Y): =inf{|x — y||y € Y} where || denotes the Euclidean
norm. The distance of a point x € R” from a point y € R”
is denoted by d(x, y): = |x — y|. For a matrix 4, 4 >0 means
that A is a positive-definite matrix and 4 < 0 means that 4 is
a negative-definite matrix. The spectral radius of a matrix 4
is denoted by p(4). Conv{ - } denotes the convex hull of the
elements in { - }.
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Backgrounds of Conventional Tube-Based Robust
MPC

In this section, some relevant backgrounds for the conven-
tional tube-based robust MPC are presented. Consider the
following discrete-time LTI system with disturbance

X" =Ax+Bu+w (1)

where x € R” is the state, u € R™ is the control input, w e R”
is the bounded disturbance, and x* € R” is the successor
state. The system is subject to the state constraint x € X
and the control constraint u € U, where X C R” and U c R
are compact, convex, and each set contains the origin as an
interior point. The disturbance is bounded, that is, we W
where W C R" is compact, convex, and contains the origin
as an interior point. The objective is to robustly stabilize
the system in Equation (1). The presence of a persistent dis-
turbance w means it is not possible to regulate the state x to
the origin. The best that can be hoped for is to regulate the
state to a neighborhood of the origin.
Let the nominal system be defined by

X" = Ax + Bu (2)

where ¥ € R” and # € R™ are the state and control inputs of
the nominal system, respectively. The predicted nominal state
trajectory and control sequence when the initial state is X, are
denoted by x := {X¢,X1,...,Xy} and @ := {#g, uy,...,uy-1},
respectively, where N is the prediction horizon. Consider the
following equation which is the difference between Equations
(1) and (2)

xT—xt=A(x—x)+Blu—u)+w (3)

In order to counteract the effect of disturbance, the control
law u = K(x — X) 4+ u is employed, where K is the disturbance
rejection gain. The system in Equation (3) is rewritten as

Xt —x"=(A+BK)(x—X)+w 4)

We will bound x* — X" by a robust positively invariant
set Z. The definition of Z for the LTI system with
disturbance is as follows:

Definition 1. The set ZC R" is a robust positively invariant
set of the LTI system with disturbance x™=Ax+w, if
AZoWCZ forV xeZ and Vwe W.

For the system in Equation (4), it is clear that if K is
chosen such that p(4+ BK)<1, we can bound x* — x*
by a robust positively invariant set Z satisfying
(A+BK)ZoWCZ for V(x —X)€Z and V weW. It is
desirable that Z be as small as possible. The minimal Z
can be calculated as (Kolmanovsky and Gilbert, 1998):

(A + BK)'W =W & (4 + BK)

S22

7/ =
i=0

W (A4+ BK)'W @ (4+ BK)’W o ... (5)
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If (44 BK) is nilpotent with index s, that is,
(A+ BK)’=0, then Z in Equation (5) can be finitely deter-
mined. In the case when (4 + BK) is not nilpotent, Z in
Equation (5) can be approximated by using the method in
Rakovi¢ (2005) and Rakovic¢ et al. (2005).

Since x™ — X is bounded by Z, we can control the nom-
inal system Xx* = AX + Bu in such a way that LTI system
with disturbance x* = Ax + Bu + w satisfies the original state
and control constraints x € X and u€ U, respectively. To
achieve this, the tighter constraint sets for the nominal sys-
tem are employed Xx;€¢ X&Z, u,€ UoeKZ for
i€{0,...,N—1}. In order to ensure stability, an additional
terminal constraint is employed xy € X; C X&Z where
X; is the terminal constraint set. The cost function for a tra-
jectory of the nominal system X" = AX + Bu is

N-1

Vi (xo,m) ==Y

where [(x;,u;) :=%[x] OX; +ul Ru;] is the stage cost;
Vi(Xy) == %X{,P}?N is the terminal cost; Q, R, and P are
the positive definite weighting matrices. The terminal con-
straint set and the terminal cost must satisfy the following
usual assumptions (Mayne et al., 2000):

I(iu;) + Vi (Xw) (6)

Assumption 1. (4 + BK)X; C X;, X; C X0 Z, KX, C Uo;KZ.
Assumption 2. V;((4 + BK)x) + I(x, Kx) < Vy(x),Vx € X;.
In summary, at each sampling time the state x is mea-

sured and the following optimization problem is solved
online:

min Vy (X, o) (7)

X0,
such that x € Xo ® Z (8)
Xiv1 = AX; + Bu;, i €{0,...,N — 1} 9)
xeXezZucUoKZie{0,...,.N—1} (10)
Xy € Xy (11)

Then, the control law u = K(x — X) +u, X = Xo, 4 = Uy is
implemented to the process.

An Off-Line Formulation of Tube-Based Robust MPC
Using Polyhedral Invariant Sets

It is seen that the conventional tube-based robust MPC in
Backgrounds of Conventional Tube-Based Robust MPC
section does not include a time-varying parameter in the
problem formulation. Moreover, the optimal control prob-
lem must be solved at each sampling time. In this section,
an off-line formulation of tube-based robust MPC is pre-
sented. No optimal control problem needs to be solved
online. Additionally, the time-varying parameter is included
in the problem formulation. Consider the following

P. Bumroongsri and S. Kheawhom

discrete-time LTV system with disturbance

xt=A'x+ Blu+w (12)

The descriptions for the state x € X, the control input
ue U, and the disturbance w € VW are the same as in Back-
grounds of Conventional Tube-Based Robust MPC section.
The only difference is that, in this case, the matrices A* and
B are not constant but they vary with the time-varying
parameter 4. The time-varying parameter A can be measured
at each sampling time but its future values are uncertain. We
make the following assumption:

Assumption 3. [4*B*] € Conv{[4;B,], Vj € 1,2,...,L}, where
[4;B)] are vertices of the convex hull and L is the number of
vertices of the convex hull. The pair [4; B is controllable.

Let the nominal LTV system be defined by

X' = A*X + B (13)
where X' € R” and «' € R™ are the state and control inputs
of the nominal LTV system, respectively. The pre-
dicted state trajectory and control sequence when the initial
state is x, are denoted by X := {x{,x},...,xy} and
v = {uj,u},...,uy_}, respectively. Consider the following
equation which is the difference between the systems in
Equations (12) and (13):
xt— Xt =AM =)+ B u—u)+w (14)
In order to counteract the effect of disturbance, the con-
trol law u= K(x — x’)+u' is employed where K is the dis-
turbance rejection gain. The system in Equation (14) is
rewritten as

xt =Xt = (4P BK)(x—X) 4w (15)

We will bound x™ — x’* by a robust positively invariant
set Z. The definition of Z for the LTV system with disturb-
ance is as follows:

Definition 2. The set ZCR”" is a robust positively
invariant set of the LTV system with disturbance
xT=A'x4w, if A/Z&WCZ for ¥V xeZ, YweW, and
VA* € Conv{4;,vj € 1,2,...,L}.

For the system in Equation (15), it is clear that if K satis-
fies (4 + BK)"P(4 + BK)— P<0,Vje{l,..., L} where P is
a Lyapunov matrix, then (A*+ B*K)TP(A* + B'K)—
P <0, V[4*B"] € Conv{[4,B)],Vj € 1,2,...,L} and we can
bound x* — x'* by a robust positively invariant set Z satisfy-
ing (4*+B'K)ZaWCZ for V(x—x)eZ, YweW and
V[A4*B*] € Conv{[4;B;],¥j € 1,2,...,L}. It is desirable that
Z be as small as possible. Unlike Equation (5), in the case
of the LTI system with disturbance, the minimal Z of the
LTV system with disturbance is Z = ®%, (4* + B*K)" W.
Since [4*B*] € Conv{[4,B;],¥j € 1,2,...,L}, the minimal
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Z of the LTV system with disturbance can be calculated as

Z =W @ Conv{(4; + BK)W,¥€1,2,....L}
@& Conv{(4; + BK)(A/ + B/K), V\"V],l € 1 2,...,L}
@ {Conv(4; + BiK)(A; + BiK)(Am + BuK)

WV, lmel,2,...,L}® ... (16)

Defining F := @j_ (A‘+B‘K)"\& F can be properly
scaled for some ﬁnlte 1nteger s to obtain the outer approx1-
mation of Z in Equation (16). Since we can bound x™ —
X' by Z, the following proposition can be established:

Proposition 1. If xex'®Z and u=K(x—x)+u, then
xtexXt®Z for YweW and V[4*BY] € Conv{[4;B/],
Viel,2,...,L}.

Proposition 1 states that the control law u = K(x — x') + v/
keeps the state x of the LTV system with disturbance
xt=A’x+Bu+w close to the state x' of the nominal
LTV system x' " = A*x' 4+ B*/. It is clear that if we can regu-
late X' to the origin, then x must be regulated to a robust
positively invariant set Z whose center is at the origin. An
off-line robust MPC algorithm for the nominal LTV system
x'T=A"X + B4 has been developed by Bumroongsri and
Kheawhom (2012). The problem of regulating the state x’
to the origin has been considered. In this approach, a
sequence of stabilizing feedback gains F corresponding to
a sequence of polyhedral invariant sets P, i={l,..., N},
where N, is the number of polyhedral invariant sets, is pre-
computed off-line by solving the optimal control problems
subject to LMI constraints (Boyd and Vandenberghe,
2004). At each sampling time, the state x’ is measured and
the smallest P containing x' is determined. Then, we set
the real-time stabilizing feedback gain F equal to F and
apply the control law ' = Fx' to the process. The control
law «' = Fx' minimizes the following cost function:

oo T
} Zi:O Xi

Voo(xp,u') := max
[47B*|eConv{[4;B;] Vjel 2,... L

Ox] + (Fx))" R(Fx]) (17)
where x} is the state of the nominal LTV system at prediction
time i and Q and R are the positive-definite weighting
matrices. Additionally, the control law «' = Fx’ ensures that
the Lyapunov function V(x'): =x'7 Px’ is a strictly decreas-

ing function satisfying

V(x") = V() < —xTOx — (FX)"R(FX'), V|A*B"] €

Conv{[4;B;,Vj € 1,2,...,L} (18)
where P is a Lyapunov matrix. At each sampling time,
although the future values of the time-varying parameter A
in the prediction horizon (which is the infinite horizon in this
case) are unknown, the satisfaction of Equation (18) for the
stabilizing feedback gain F ensures that the time-varying set
of all future states R;. = (4*+ B*F)R;, R, = {x)}, con-
verges to the origin d(0,R;1) — 0, V[4*B"] € Conv
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{[4;Bj],¥j € 1,2,...,L}. Hence, robust stability of the
nominal LTV system x'" =(4*+ B*F)x’ is guaranteed. In
order to guarantee satisfaction of the original state and con-
trol constraints, x € X and u € U, we must employ tighter
constraint sets for the nominal LTV system, that is, x' € X©&
Z and Fx' € Uo KZ. The control law u=K(x —x')+u is
now rewritten as u=K(x—x')+Fx'. An important
consequence is the following result:

Proposition 2 If xexX’' ®Z, ¥ €¢ X6 Z, and FX' e Uo KZ,
then the control law u= K(x — x’) + Fx' of the LTV system
with disturbance x* = 4*x + B'u+ w ensures satisfaction of
the original constraints x€ X, ucU for YweW and
V[A*B*] € Conv{[4,B)],Vj € 1,2,...,L}.

Proposition 2 states that the control law u = K(x — x) + Fx'
ensures satisfaction of the original state and control
constraints. In summary, off-line tube-based robust MPC for
LTV system with disturbance x™ = A*x+ B‘u+w can be
formulated as follows:

Off-line:

Step 1: Calculate the disturbance rejection gain K satisfying
(4 +BK)"P(4, +BK)-P<0, Yje{l,...,L}. Then,
calculate a tube Z in Equation (16).

Step 2: Calculate a sequence of stabilizing feedback gains F
and the corresponding sequence of polyhedral invariant
sets P, i={l,...,N,} using the method in Bumroongsri
and Kheawhom (2012) with tighter constraint sets for

the nominal LTV system, that is, X € X& Z and
Fx' e Uc KZ.
Online:

At the first sampling time (t =0) : Measure the state x and
the time-varying parameter A. Find the smallest polyhedral
invariant set P containing the measured state x, set F=F
and apply the control law u = Fx to the process. Then, calcu-
late x' " from x'" = (4" + B*F)x. (Note that at the first sam-
pling time, x=x’ so the control law u= K(x — x') + Fx’ is
reduced to u= Fx.)

At each sampling time (t > 0) : Measure the state x and the
time-varying parameter 4. Find the smallest polyhedral
invariant set P containing x’ (which is calculated from the
previous step), set F=F, and apply the control law
u=K(x — x')+ Fx' to the process. Then, calculate x'" from

tT=(4"+ B'F)x.

Theorem 1. The proposed tube-based MPC algorithm steers
any initial state x of the system x" =A*x+Bu-+w in a
sequence of polyhedral invariant setsP, i={1,...,N,} to a
robust positively invariant set Z whose center is at the origin
and thereafter maintains the state in Z for Vwe W and
V[A*B*] € Conv{[4;B]], Vj € 1,2,...,L}.

Proof Consider the following difference equation between
xT=A*x+Bu+w and X T=4"X+ B4, where u=K
(x —x')+ Fx' and v/ = F¥/,

xt =Xt =+ BK)(x—xX)+w (19)
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The disturbance rejection gain K satisfies (4 + BK)

P(4+BK)—P<0,Vje{l,..,L} so x" —x'" 1s bounded
by a robust positively 1nvar1ant set Z, thatis, xt ex't @ Z.
Since the stabilizing feedback gain F ensures that the Lyapu-
nov function is a strictly decreasing function satisfying
Equation (18), the state x’* must converge to the origin
d(x'*, 0)— 0. Since x* € X't @ Z, x* must converge to a tube
Z whose center is at the origin d(x", Z) — 0. Finally, the dis-
turbance rejection controller u = Kx keeps the state within a
tube Z whose center is at the origin. O

Corollary 1. The state of the LTV system with disturbance
xt=A"x+Bu+w at each time step is restricted to lie
within a tube whose center is the state of the nominal LTV
system X't =A4" X' + B/

Remark 1. For any initial state x contained in the first poly-
hedral invariant set P (which is largest in the sequence of P,
i={1,...,N,}), there exists a control law that is able to steer
the state to a tube Z whose center is at the origin by satisfy-
ing all state and control constraints x € X, u € U for Yw e W
and V[4*B*] € Conv{[4; B;],Vj € 1,2,...,L}. Hence, the
region of attraction for the proposed MPC algorithm is P

Illustrative Example

Example 1. Consider the following LTV system with
bounded disturbance

The state xe€X, where X: ={xecR?[01]x<2};
control ue U, where U: ={ue ||u| < 1} the dlsturbance
we W, where W := {we R?[-0.1-0.1" <w<[0101 5
and the time-varying parameter iel.,  where
L:={2€R|0.9 <1< 1.1}. The weighting matrices in the cost
function (Equation (17)) are given as Q=1 and R=0.01.
The following nominal LTV system:

D — {(1) wa [Ois}u’

is subject to tighter state and control constraints, that is,
x € X6 Z and ' € Us KZ. The disturbance rejection gain

= [-0.66 — 1.33] satisfies (4, +BK')TP(A +BK)— P <0,
V je€{1,2}. The difference equatron between Equatlons (20)
and (21) can be written as

Xt — Xt = [é H(x

The closed-loop system is simulated using the initial state
x=x'=[-5- Z}T. The time-varying parameter A and the
disturbance w are varied as A=1+0.1sin(4k) and

(21)

) + {Oﬂ w—i)+w (22)
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Fig. 1. The robust positively invariant set Z precomputed
off-line. The set Z is shown in yellow.

w = [0.1sin(4k)0.1sin(4k)]", respectively, where ke {1,...,
19} is the simulation horizon.

Figure 1 shows a robust positively invariant set Z pre-
computed off-line. The set Z is shown in yellow. The blue
line represents the trajectory of the difference Equation
(22). Starting from the origin, it is seen that the trajectory
of the difference equation is restricted to lie within the set Z.

Figure 2 shows a sequence of 10 polyhedral invariant set-
sP, ic{l,...,10} precomputed off-line. In this example,
only 10 polyhedral invariant sets are precomputed because
P are almost constant for i>10. The red line represents
the trajectory of the nominal LTV system (Equatron (21)).
Starting from the initial point x = x' = [-5 — 2] the state
of the nominal LTV system at each time step is restricted
to lie within a sequence of 10 polyhedral invariant sets P,
ie{l,...,10} precomputed off-line. Finally, the state of
the nominal LTV system converges to the origin.

=

Fig. 2. A sequence of 10 polyhedral invariant sets P, i€ {1,...,10}
precomputed off-line. The polyhedral invariant sets are shown in
yellow.
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3

—+— Trajectory of LTV system with disturbance
—*— Trajectory of nominal LTV system
i i i i

-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1

3|

Fig. 3. The trajectory of the system when A =1+ 0.1sin(4k) and
w = [0.1sin(4k) 0.1 sin(4k)]T. The infeasible region of state con-

The trajectory of the LTV system with disturbance
(Equation (20)) is shown in Figure 3. The region shown in
green is the infeasible region of the state constraint X: =
{x€ R?|[01]x <2}. The red line corresponds to the trajectory
of the nominal LTV system (Equation (21)). The cross-section
of a tube Z precomputed off-line is shown in yellow. It is seen
that the state of the LTV system with disturbance at each time
step is restricted to lie within a tube Z whose center is the state
of the nominal LTV system that converges to the origin.
Finally, the state of the LTV system with disturbance is kept
within a tube Z whose center is at the origin.

Figure 4 shows the control input as a function of sam-
pling time. The region shown in yellow is Uo KZ. The red
line corresponds to the control input of the nominal LTV
system (Equation (21)). The black line corresponds to the
control input of the LTV system with disturbance (Equation
(20)). It can be observed that the control input of the

o o Cunl input of LTV system with disturbance
—*— Control input of nominal LTV system

Control input

1] 1 2 3 4 5 6 7 5 9 10 11
Sampling time

1213 14 15 16 17 18 19

Fig. 4. The control input satisfying the input constraint U: =
{u€eR ||u] <1}. The tightened input constraint US KZ is shown
in yellow. The original input constraint U is shown in green.
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'
g

—+— Trajectories of LTV system with random disturbance
—+— Trajectory of nominal LTV system

7 i i i i i i i

:29 -8 -7 -6 -5 -4 -3 2 -1 0 1

%

Fig. 5. The trajectories of the system when A=1+0.1sin(4k)
and w are randomly time-varying. The infeasible region of state
constraint is shown in green. The cross-section of tube is shown
in yellow.

nominal LTV system is restricted to lie within the region
Us KZ so that the control input of the LTV system with dis-
turbance satisfies the control constraint U: ={u € |ju| < 1}.

Figure 5 shows the trajectories of the LTV system with
disturbance (Equation (20)) when the disturbance we W is
randomly time-varying. At each time step, the states of the
LTV system with random disturbance lie within a tube Z
whose center is the state of the nominal LTV system that
converges to the origin.

Example 2. In this example, the proposed algorithm is applied
to a non-isothermal continuous stirred tank reactor (CSTR)
in which an irreversible exothermic reaction A — B takes
place. The dimensionless modeling equations of this CSTR
can be written as (Silva and Kwong, 1999; Nagrath et al.,
2002)

2 >—|—w1 (23)

T q(x1y — X1) — @x1 €xp (r%

% = q(xzr — x2) — 0(x2 — x3) + fopx1 exp (1 j_z%> +w

(24)

dx
d_; = d1lge(x3r — x3) + 002(x2 — x3)] + w3

(25)
where x is the dimensionless concentration of reactant A4, x,
is the dimensionless reactor temperature, and x, is the dimen-
sionless cooling jacket temperature. The manipulated
variable is the dimensionless coolant flow rate g . The distur-
bances acting on the system are w , w,, and w_. By linearizing
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and discretizing Equation (23) to Equation (25) with a
sampling period AT, the following discrete-time state space
model is obtained:

P. Bumroongsri and S. Kheawhom

no disturbances (CSTR containing only time-varying
parameter). It can be observed that the trajectory of the
uncertain CSTR with disturbances lies in a sequence of tubes

x1(k+1)
Xz(k + 1)
X3 (k + 1)
xX1sK(X25)
1+ AT[—q — px(x2s)] —AT[“’(Ii%)i ] 0
- AT|[Bor(x2s)] 1+ AT [—q -0+ %} ATS
0 AT66,6, 1 — AT[01ges + 00103] (26)
x1 (k)
x> (k)
x3(k)
0 1 0 0] [wi(k)
+ 0 g (k) +AT |0 1 0] |walk)
AT 6 [X3f — X3S] 0 0 1 ws(k
where X;(k) = x1(k) — x15, X2(k) = xa2(k) — x25, X3(k) = 10, T
x3(k) —x3s,  qe(k) = qc(k) —qes,  wi(k) = wi(k) — wis, . .
wa (k) = wa(k) — was, wi(k) = ws(k) —wss, and k(xzs) = 2 \\\‘ P il Y
exp (xgg /1+ ‘%) The model parameter values are shown  _ o DO N i I e
in Table I. The Damkohler number ¢ is considered to be .
uncertain and its value is randomly time-varying between
@, =00648 and ¢ =0.0792. The disturbances w;(k), 40
wo(k), and w3 (k) are randomly time-varying between —0.01 N {
and 0.01. The constraints are [|x;(k)] <0.5 and o vV
|G, (k)| < 1.0. The weighting matrices in the cost function in LI \_—_—_—_t__": R, =% w

Equation (17) are Q=17and R=0.1. The objective is to regu-
late the state from (x;(0),x>(0),x3(0)) = (0,5,0) to the
neighborhood of the origin by manipulating g.(k).

Figure 6 shows a sequence of four polyhedral invariant
sets P, i€ {l,...,4} precomputed off-line. Figure 7 shows
the trajectory of the uncertain CSTR. The black line is the
trajectory of the uncertain CSTR with disturbances (CSTR
containing both time-varying parameter and disturbances).
The red line is the trajectory of the uncertain CSTR with

Table I. The model parameter values in Example 2

Parameter Value Parameter Value
q 1.0 0 0.3
0] 0.0648-0.0792 o1 10

Vi 20 X3f -1.0
Xof 0.0 52 1.0
X1s 0.8933 wis 0.0
Xog 0.5193 Wog 0.0
X35 —0.5950 WwW3s 0.0
qcs 1.65

Fig. 6. A sequence of four polyhedral invariantsets P,,i € {1, ...,4}
precomputed off-line. The polyhedral invariant sets are shown in
yellow.

[=+=Trajectory of the uncertain CSTR with disturbances |
| Trajectory of the uncenain CSTR with no disturbances |

Figure 7. The trajectory of the uncertain CSTR. The
cross-section of tube is shown in yellow.
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Fig. 8. The control performance (a) dimensionless concentration

(d)

of reactant A; (b) dimensionless reactor temperature; (c) dimen-

sionless cooling jacket temperature; and (d) dimensionless coolant flow rate.

shown in yellow. Finally, the state of the uncertain CSTR
with disturbances is steered to a tube whose center is at
the origin.

The proposed algorithm will be compared with
tube-based robust MPC algorithm of Mayne et al. (2005)
in which the online optimization problem must be solved
at each sampling time. In Mayne et al. (2005), only distur-
bances are included in the controller design so there is a mis-
match between the model and the process when the
time-varying parameter is present. From Figure 8, it is seen
that the proposed algorithm is able to steer the state of the
uncertain CSTR with disturbances to the neighborhood of
the origin faster than the algorithm of Mayne et al. (2005).
Moreover, the proposed algorithm requires significantly
less online computational time, as shown in Table II. The

Table II. The online computational time

Online computational

Algorithm time for each step (s)
Mayne et al. (2005) 0.067
The proposed algorithm 0.015

computations are performed using Intel Core 2 Duo
(2.53 GHz), 2 GB RAM.

Conclusions

In this paper, we present an offline tube-based robust MPC
algorithm using polyhedral invariant sets. All of the optimal
control problems are solved off-line so no optimal control
problem needs to be solved online. The simulation results
show that the state at each time step of the LTV system with
disturbance is restricted to lie within a tube whose center is
the state of the nominal LTV system that converges to the
origin. Hence, the state of the LTV system with disturbance
converges to a tube whose center is at the origin. Robust
stability and satisfaction of the state and control constraints
are guaranteed. In future work, the proposed algorithm can
be extended to the nonlinear system with bounded
disturbance.
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Nomenclature

x state

u input

c vanishing input

X state of nominal system

X observer state

u input of nominal system

N prediction horizon

K disturbance rejection gain

Z robust positively invariant set

w disturbance

Xr terminal constraint set

0 state weighting matrix

R input weighting matrix

A time-varying parameter

X state of nominal LTV system

u input of nominal LTV system

P Lyapunov matrix

P polyhedral invariant set i

F stabilizing feedback gain corresponding
to P

F real-time stabilizing feedback gain

V(x') Lyapunov function of variable x’

Example 1

X, state 1 of LTV system with disturbance

X, state 2 of LTV system with disturbance

x4 state 1 of nominal LTV system

X state 2 of nominal LTV system

u input of LTV system with disturbance

u input of nominal LTV system

Example 2

X, dimensionless concentration of reactant 4

X, dimensionless reactor temperature

x; dimensionless cooling jacket temperature

q dimensionless reactor feed-flow rate

q. dimensionless coolant flow rate

w, disturbance variable i

xi(k) deviation form of state 7 at time k

X equilibrium point of state i

X, dimensionless reactor feed concentration

X, dimensionless reactor feed temperature

X, dimensionless cooling jacket feed
temperature

p dimensionless heat of reaction

Y dimensionless activation energy

0 dimensionless heat transfer coefficient

0, dimensionless volume ratio of reactor to
cooling jacket

0, dimensionless density x heat capacity ratio of
reactor to cooling jacket

10} Damkohler number

T dimensionless time

Mathematical Symbols

XoY Minkowski set addition between X and Y

XoY Minkowski set difference between X and Y

P. Bumroongsri and S. Kheawhom

dx, Y) distance of a point x from a set Y
d(x, y) distance of a point x from a point y
|| Euclidean norm

A>0 A is a positive-definite matrix

A<0 A is a negative-definite matrix

p(A) spectral radius of a matrix 4

Conv{-} convex hull of the elements in {-}
Abbreviations

MPC model predictive control

LTI linear time-invariant

LQR linear quadratic regulator

LTV linear time-varying

LMI linear matrix inequality
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Robust Model Predictive Control with Time-varying Tubes

Pornchai Bumroongsri* and Soorathep Kheawhom

Abstract: This paper focuses on the problem of robustly stabilizing uncertain discrete-time systems subject to
bounded disturbances. The proposed tube-based model predictive controller ensures that all possible realizations of
the state trajectory lie in the time-varying tubes so robust stability and satisfaction of the state and input constraints
are guaranteed. The time-varying tubes are computed off-line so the on-line computational time is tractable. At each
sampling time, the precomputed time-varying tubes are included in the optimal control problem as the constraints
in the prediction horizon and only a quadratic programming problem is solved. In comparison to the algorithm that
calculates the time-varying tubes on-line, the proposed algorithm can achieve the same level of control performance

while the on-line computational time is greatly reduced.

Keywords: Bounded disturbances, model predictive controller, robust stability, time-varying tubes.

1. INTRODUCTION

Tube-based model predictive control (MPC) is an ad-
vanced control strategy that has been originally developed
to deal with bounded disturbances. Its basic idea is to re-
strict all possible realizations of the state trajectory in a
sequence of tubes so robust stability is ensured [1,2].

Mayne et al. [3] proposed a tube-based MPC algorithm
that can ensure robust exponential stability of linear time-
invariant (LTI) systems with bounded disturbances. An
optimal control problem for the nominal systems (systems
without disturbances) is solved at each sampling time by
replacing the original constraint with more stringent one.
A tube used as a constraint in each prediction horizon is
a disturbance invariant set that includes all possible real-
izations of the disturbances for all future time steps. This
leads to the reduction of size of the feasible region for the
state and input constraints of the nominal system. Thus,
the conservative result may be obtained.

Limon et al. [4] proposed a tube-based MPC algorithm
for tracking of LTI systems with bounded disturbances.
The artificial steady state variables are introduced in the
optimal control problem as the decision variables. The
proposed algorithm is suitable for the case when the target
is significantly changed. If the target is unreachable, the
state will be driven to the neighborhood of the artificial
target instead. However, a tube used in the optimal control
problem for each prediction horizon is also overestimated
by including the effects of all possible realizations of the
disturbances for all future time steps.

A tube-based MPC algorithm for linear time-varying
(LTV) systems with bounded disturbances has been de-
veloped by Bumroongsri [5]. The proposed control law is
a linear combination of two components. The first com-
ponent steers the state of the nominal LTV systems to the
origin. The second component keeps the state at each time
step of the LTV systems with bounded disturbances within
a tube whose center is the state of the nominal LTV sys-
tems. The disturbance invariant tube is precomputed off-
line and the optimal control problem is solved on-line with
tighter constraint sets. An off-line formulation of tube-
based robust MPC has been developed by Bumroongsri
and Kheawhom [6]. The proposed algorithm is also based
on the disturbance invariant tube that takes into account
the effects of all possible realizations of the disturbances
for all future time steps.

An idea to reduce the conservativeness by computing
on-line the time-varying tubes is introduced by Gonzalez
et al. [7]. Instead of precomputing the disturbance invari-
ant tube, the basic idea is to compute on-line the reachable
set. In addition to the optimal control problem solved at
each sampling time, the Minkowski sum algorithm has to
be implemented on-line which leads to increased compu-
tational complexity. Mayne et al. [8] introduced an idea
to use a time-varying tube for the case when the initial un-
certainty set for the unknown state is large. The size of
the tube is initially large and then converges to that of the
disturbance invariant tube. After reaching the steady state,
the size of the tube is still overestimated. This may lead to
the conservativeness due to the fact that the effects of the
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disturbances are included for all future time steps.

In this paper, robust MPC with time-varying tubes is
proposed. At each sampling time, the precomputed time-
varying tubes are included in the optimal control problem
as the constraints in the prediction horizon. The optimal
control problem solved on-line is quadratic programming
so the on-line computational time is tractable. The pro-
posed algorithm can ensure robust stability and satisfac-
tion of the state and input constraints for uncertain systems
with bounded disturbances. The uncertain parameters and
disturbances are not necessary to be measurable. This ar-
ticle is organized as follows: The problem statement is
presented in Section 2. The proposed algorithm is pre-
sented in Section 3. An illustrative example is presented
in Section 4. The conclusions are drawn in Section 5.

1.1. Nomenclature

Given two subsets X and Y of R”, Minkowski set
addition and set difference are defined, respectively, by
XY ={x+yxeX,yeY}and XOY := {x|x®Y CX}.

2. PROBLEM STATEMENT

Consider the following uncertain discrete-time system
with bounded disturbance

xt =A*x+ B u+w, 1)

where x € R” is the state, u € R™ is the input, w € R”" is
the disturbance and x* € R” is the successor state. This
system is subject to the state constraint x € X and the in-
put constraint # € U where X C R” and U C R” are com-
pact, convex and each set contains the origin as an interior
point. The disturbance is bounded w € W where W C R”
is compact, convex and contains the origin as an interior
point. The matrices A* and B* satisfy

[A* B € Conv{[A; B\], ..., [AL BL]}, 2)

where Conv{-} denotes the convex hull of all elements in
{-}, [A; B;] are the vertices of convex hull and L is the
number of vertices of convex hull. Any [A* B*] is the lin-
ear combination of the vertices such that

L
[A* B* =Y Aj[A; B)], (3)

J=1

where [A,4,,...,A;] are the uncertain parameters satisfy-
ing 25:1 A; = 1. The uncertain parameters and the distur-
bances are not necessary to be measurable. The presence
of bounded disturbance w means that it is only possible to
regulate the state x to the neighborhood of the origin. The
objective of this paper is to find the control law that is able
to maintain all possible realizations of the state trajectory
in the time-varying tubes despite the uncertain parameters

and disturbances while satisfying all of the state and in-
put constraints x € X and u € U. The definition for the
time-varying tube Z; is given as follows:

Definition 1: The set Z; C R” is said to be a time-
varying tube for the system x™ = Ax+w if Vx € Z; implies
xT €Z, forVi>0and Ywe W.

Instead of computing a tube Z as an outer approxi-
mation of the disturbance invariant set as proposed by
Rakovi¢ et al. [9], a sequence of time-varying tubes is
computed off-line in this paper. At each sampling time,
the precomputed time-varying tubes are included in the
optimal control problem as the constraints in the predic-
tion horizon. By doing so, robust stability and satisfaction
of the state and input constraints are guaranteed while the
effect of the disturbance is not overestimated.

3. A SYNTHESIS APPROACH FOR ROBUST
MPC WITH TIME-VARYING TUBES

This section presents a synthesis approach to robust
MPC with time varying tubes. Consider the follow-
ing nominal system (system without uncertain parameters
[A1,A2,...,AL] and disturbance w)

X" = Ax+ Bu, 4)

where A = %ZleAj, B = %):leBj, x € R" and u € R”
are the state and input of the nominal system, respec-
tively. The predicted nominal state and input in the pre-
diction horizon from the initial state X, are denoted by
X = {Xo,X1,....,xn} and U := {up,uy,...,uy_1 }, respec-
tively, where N is the prediction horizon. Consider the
following system which is the difference between (1) and

)
xt—xt=A(x—%)+Bu—u)+d, ®)

where the disturbance d is given by d := (A* — A)x +
(B* =B)u+w. Since x € X, u € U and w € W, it is seen
that d € D where D := (A* —A)X® (B* —B)U®W. In
order to deal with the disturbance d, the control law u =
u+ K(x—X) is employed where K is the disturbance re-
jection gain satisfying (A* + B*K)" P(A* + B*K) — P < 0
for V[A* B*] € Conv{[A| Bi],...,[AL BL]}. The Lyapunov
matrix P and the disturbance rejection gain K can be found
by solving the linear matrix inequality (LMI) optimization
problem [10]. The difference equation (5) can be rewritten
as

xt—=x"=(A+BK)(x—X)+d. (6)

The difference between x* — X' is usually bounded
within a disturbance invariant set Z C R” [3-6]. The def-
inition for the disturbance invariant set Z is given as fol-
lows:
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Definition 2: The set Z C R” is said to be a disturbance
invariant set for the system (6) if (A+BK)Z®D C Z for
V(x—X) € Zand Vd € D.

According to Kolmanovsky and Gilbert [11], the mini-
mal disturbance invariant tube Z is computed as

Z=& (A+BK)D
i=0

=D& (A+BK)D@ (A + BK)*D
®(A+BK)*Da.... (7

Howeyver, the use of the disturbance invariant tube Z
in the robust MPC formulation may lead to the conserva-
tive results due to the fact that the disturbance invariant
tube Z includes the effect of all possible realizations of
the disturbances for all future time steps. In this paper,
the time-varying tubes Z; as defined in Definition 1 are
computed off-line. At each sampling time, the precom-
puted time-varying tubes are included in the optimal con-
trol problem as the constraints in the prediction horizon.
The time-varying tube at each time step of the system (6)
can now be computed as follows

Zii1=(A+BK)Z;®D for Vi > 0 and V(x —X) € Z;,
(3)

where Zy = {0}. It is seen that the time-varying tube Z;
converges to the disturbance invariant tube Z as i — oo.
Thus, the use of the disturbance invariant tube Z in the ro-
bust MPC formulation is only a specific case of the synthe-
sis approach of robust MPC presented in this paper. The
idea of using the time-varying tubes is also developed by
Gonzalez et al. [7]. However, its main drawback is that
in addition to the optimal control problem solved at each
sampling time, the Minkowski sum algorithm has to be
implemented on-line which leads to increased computa-
tional complexity.

In order to ensure the satisfaction of the original state
and input constraints x € X and u € U for the proposed
algorithm, tighter constraint sets are imposed on the pre-
diction horizon of the nominal system, X; € X© Z; and
u; € Uo KZ;. The cost function for the trajectory of the
nominal system is

N—-1

Vn(%0,U) == Y 1(x:, ;) + Ve (Xn), )
i=0

where (X;,1;) := 1[x/ Ox; + u! Rii;] is the stage cost,
V(%) := X4 PXy is the terminal cost, Q, R and Py are
the positive definite weighting matrices. The proposed ro-
bust MPC algorithm with time-varying tubes can now be
formulated as follows:

Off-line: Compute the disturbance rejection gain K sat-
isfying (A;+B;K)"P(A;+B;K)—P <0,Vje{l,...,L}.
Then, compute a sequence of time-varying tubes Z;, i = 1,
2, ..., N according to (8) where N is the prediction horizon.

On-line: At each sampling time, the state x is measured
and the following optimal control problem is solved

min Vy (%o, U) (10)
Xo,U

s.t.Xg=ux (1)
X1 = AX;+ B, i€{0,..,N—1} (12)
x5 eXez, i;eUcKZ, icf{0,.,N—1} (13)
v €EX; CXO2Zy. (14)

The additional terminal constraint (14) is employed
to ensure robust stability where X/ is the terminal con-
straint set satisfying the following assumptions: (i) (A +
BK)Yf C Yf, Yf Cc X6 Zy, KYf c Us KZy, and (ii)
Vi((A+BK)X) +1(x,Kx) < V;(x), Vx € X .

We can now establish our main result.

Theorem 1: The proposed robust MPC algorithm
steers any initial state x of the uncertain system with
bounded disturbance x* = A*x 4 B*u +w in the time-
varying tubes Z; to the target set X ; ® Zy while satisfying
the original state and input constraints, x € X and u € U.

Proof: Consider the optimal control problem (10) sub-
ject to the constraints (11) to (14), the constraint (14) en-
sures that the nominal state X must be driven to the termi-
nal target set X . Since all possible state trajectories lie in
the time-varying tubes x e x® Z;, i € {0,...,N}, the state x
must be driven to the target set X ; ® Zy. Lastly, the satis-
faction of the tighten constraint sets for the state and input
of the nominal system X; € X&Z;, u; € US KZ; ensures
the satisfaction of the original state and input constraints.

4. ANILLUSTRATIVE EXAMPLE

In this section, an implementation of the proposed al-
gorithm is illustrated. Consider the following uncertain
discrete-time system with bounded disturbance

x :A’lx+Blu+w

11 0.5
{0 l]er[ ) ]u+w. (15)
. 2 1 1 2
The system matrices A* = A = 0 1 and B* =B =

1
The input constraint is U := {u € R||u| < 1}. The distur-
bance is bounded within W := {w € R?|[-0.1 —0.1]T <
w < [0.1 0.1]"}. The nominal system can be written as

{ 0-5 ] . The state constraint is X := {x € R?|[0 1]x < 2}.

1 1 0.5
7+_ p— — p— —
X" =Ax+Bu= [ 0 1 ]x—i—[ 1 }u (16)

The difference between (15) and (16) can be written as

xt—xt =A(x—%)+Bu—u)+d
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Fig. 1. The evolution of the size of the time-varying tube
Z; computed off-line.

! ](xx)+ { 0 ](uu)+d,
(17)

where d € D, D := W. By using the control law u = u+
K(x—x), the difference system (17) can be rewritten as
e

= (A+BK)(x—%) +d

_({ L1 % { ois ][ 066 —133] )(x—%)+d,
(18)

where the K = —0.66 —1.33] is the disturbance re-
jection gain. The closed-loop system is simulated using
the initial state x =¥ = [—5 —2]". The disturbance is var-
ied as d = w = [0.1sin(4k) 0.1sin(4k)]” where k is the
simulation time. The weighting matrices in the cost func-
. 2.0066 0.5099
tion are Q =1, R = 0.01 and P; = 05099 12682 |
The prediction horizon is N = 12.

Fig. 1 shows the evolution of the size of the time-
varying tube Z; computed off-line where Z;, Z, and Z;
are shown in yellow, green and red, respectively. It is seen
that the size of the time-varying tube Z; increases as the
time step 7 in the prediction horizon increases. However,
the size of the time-varying tube is nearly constant beyond
Zs.

Fig. 2 shows the state trajectories of the system. The
region shown in yellow is the infeasible region of the state
constraint X := {x € R?|[0 1]x < 2}. The terminal con-
straint set X ; for the nominal state X is shown in blue. The
target set X ; & Zy for the state x is shown in red. The cross
section of the precomputed time-varying tube Z; is shown
in green. The black line is the predicted state trajectory
of the nominal system X" = AX + Bu with the prediction
horizon N = 12. The red line is the state trajectory of the
uncertain system with bounded disturbance. It is seen that
the state trajectory of the uncertain system with bounded
disturbance lies in the time-varying tube Z; precomputed

xr2

N

N

——The predicted state trajectory of the nominal system

——The statc trajectory of the uncertain system with bounded disturbance
i T T T T

210 - % 4 2 o 2 4
&€y

Fig. 2. The state trajectories of the system.
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Fig. 3. The control inputs of the system.

Table 1. The on-line computational time.

Algorithms On-line CPU time per step
The proposed algorithm 0.043 s
Gonzalez et al. [7] 0.127 s

off-line. The center of the tube is the predicted state tra-
jectory of the nominal system.

Fig. 3 shows the control inputs of the system. The
infeasible region of the original input constraint U :=
{u €R||u| < 1} is shown in yellow. The black line is the
input % of the nominal system X" = AX + Bu with the pre-
diction horizon N = 12. The red line is the input u of the
uncertain system with bounded disturbance. It is seen that
the original input constraint is satisfied while the input of
the nominal system converges to the origin.

The proposed robust MPC algorithm with time-varying
tubes is compared with the tube-based MPC algorithm
proposed by Gonzalez et al. [7] where the Minkowski sum
algorithm has to be implemented on-line to find the time-
varying reachable sets. Fig. 4 shows the control perfor-
mance for the uncertain system with bounded disturbance.
It can be observed that nearly the same control perfor-
mance can be obtained while the on-line computational
time is greatly reduced as shown in Table 1.

The computations in Table 1 have been performed using
Intel Core 2 Duo (2.53 GHz), 2 GB RAM.
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—w— The proposed algorithm
- Gonzalez et al. [7]

Time Step

(a) The state x;.

Ui)

-2 5 —w— The proposed algorithm
- Gonzalez et al. [7]

-3 T T T T T
0 2 4 6 8 10 12

Time Step
(b) The state x;.

Fig. 4. The control performance; (a) the state x; and (b)
the state x,.

In Gonzalez et al. [7], the disturbance rejection gain
is computed on-line compensating the mismatch between
the real and the nominal state at each step within the pre-
diction horizon. The time-varying tube is computed at
each sampling time in accordance with the disturbance re-
jection gain. In the computation of the time-varying tube,
the Minkowski sum algorithm has to be implemented on-
line which leads to increased computational complexity.

In our proposed algorithm, the disturbance rejection
gain is computed off-line satisfying the Lyapunov stability
constraint. A sequence of the time-varying tubes is com-
puted off-line in accordance with the precomputed distur-
bance rejection gain. The reduction in the on-line com-
putational burden is obtained because a sequence of the
time-varying tubes is computed off-line so no Minkowski
sum algorithm has to be implemented at each sampling
time.

5. CONCLUSION

In this paper, robust MPC with time-varying tubes is
presented. All possible realizations of the state trajectory
of the uncertain systems with bounded disturbances are
guaranteed to lie within the time-varying tubes. The time-
varying tubes are computed off-line so no additional on-
line computational time is required. Only the quadratic
programming for the optimal control problem is solved at
each sampling time. In comparison to the algorithm that
calculates the time-varying tubes on-line, the proposed al-
gorithm can achieve the same level of control performance
while the on-line computational time is greatly reduced.
The proposed algorithm can be further extended to the
case when the exact state in unknown.

REFERENCES

[1] J. B. Rawlings and D. Q. Mayne, Model Predictive Con-
trol: Theory and Design, Nob Hill Publishing, 2009.

[2] D. Q. Mayne and W. Langson, “Robustifying model pre-
dictive control of constrained linear systems,” Electron.
Lett., vol. 37, no. 23, pp. 1422-1423, November 2001.
[click]

[3] D. Q. Mayne, M. M. Seron, and S. V. Rakovié, “Robust
model predictive control of constrained linear systems with
bounded disturbances,” Automatica, vol. 41, no. 2, pp. 219-
224, February 2005. [click]

[4] D.Limon, I. Alvarado, T. Alamo, and E. F. Camacho, “Ro-
bust tube-based MPC for tracking of constrained linear sys-
tems with additive disturbances,” J. Process Contr., vol. 20,
no. 3, pp. 248-260, March 2010. [click]

[5] P. Bumroongsri, “Tube-based robust MPC for linear time-
varying systems with bounded disturbances,” Int. J. Con-
trol Autom., vol. 13, no. 3, pp. 620-625, June 2015. [click]

[6] P. Bumroongsri and S. Kheawhom, “An off-line formula-
tion of tube-based robust MPC using polyhedral invariant
sets,” Chem. Eng. Commun., vol. 203, no. 6, pp. 736-745,
June 2016.

[7]1 R. Gonzalez, M. Fiacchini, T. Alamo, J. L. Guzman, and
F. Rodriguez, “Online robust tube-based MPC for time-
varying systems: a practical approach,” Int. J. Contr., vol.
84, no. 6, pp. 1157-1170, July 2011. [click]

[8] D.Q.Mayne, S. V. Rakovi¢, R. Findeisen, and F. Allgower,
“Robust output feedback model predictive control of con-
strained linear systems: Time varying case,” Automatica,
vol. 45, no. 9, pp. 2082-2087, September 2009.

[9] S. V. Rakovié, E. C. Kerrigan, K. I. Kouramas, and D. Q.
Mayne, “Invariant approximations of the minimal robust
positively invariant set,” IEEE T. Automat. Contr., vol. 50,
no. 3, pp. 406-410, March 2005. [click]

[10] S.Boyd and L. Vandenberghe, Convex Optimization, Cam-
bridge University Press, 2004.

[11] I. Kolmanovsky and E. G. Gilbert, “Theory and compu-
tation of disturbance invariant sets for discrete-time linear
systems,” Math Probl. Eng., vol. 4, no. 4, pp. 317-367, Oc-
tober 1998. [click]


http://dx.doi.org/10.1049/el:20010951
http://dx.doi.org/10.1016/j.automatica.2004.08.019
http://dx.doi.org/10.1016/j.jprocont.2009.11.007
http://dx.doi.org/10.1007/s12555-014-0182-5
http://dx.doi.org/10.1080/00207179.2011.594093
http://dx.doi.org/10.1109/TAC.2005.843854
http://dx.doi.org/10.1155/S1024123X98000866

6 Pornchai Bumroongsri and Soorathep Kheawhom

Pornchai Bumroongsri was born on 31st
January, 1985. He received his Bachelor
of Engineering from Chulalongkorn Uni-
versity in 2008. He obtained his Master
of Engineering and Doctor of Engineering
from Chulalongkorn University in 2009
and 2012, respectively. He is currently
a lecturer in the Department of Chemi-
cal Engineering, Faculty of Engineering,
Mahidol University. His current interests involve robust MPC
synthesis, modeling and optimization in chemical processes.

Soorathep Kheawhom is currently an
Associate Professor in the Department
of Chemical Engineering, Chulalongkorn
University. He earned his B.Eng from
Chulalongkorn University in 1997. He
continued his study at the University of
Tokyo where he received his M.Eng and
Ph.D. in 2001 and 2004, respectively. He
has been working on the use of statistics in

optimization, life cycle and printed electronics.



The 7™ International Symposium on Design, Operation and Control of Chemical Processes (PSE ASIA 2016)

Tube-Based Robust Model Predictive Control for Systems with Uncertain
Parameters and Disturbances

Pornchai BUMROONGSRI®, and Soorathep KHEAWHOM”

*Department of Chemical Engineering, Mahidol University, 73170 Nakhon Pathom, THAILAND
® Department of Chemical Engineering, Chulalongkorn University, 10330 Bangkok, THAILAND

"Corresponding Author’s E-mail: pornchai.bum@mahidol.ac.th

ABSTRACT: Chemical processes are multivariable processes that change one or more chemical compounds
to the desired products. Chemical processes are involved with many complex chemical reactions. Additionally,
they usually contain some uncertain parameters and disturbances. In order to efficiently control these uncertain
chemical processes, a multivariable control algorithm that can handle both uncertain parameters and
disturbances needs to be developed. However, the control of systems in the presence of uncertain parameters
and disturbances is a challenging control problem because it is difficult to guarantee both robust stability and
constraint satisfaction. In this paper, a novel tube-based robust model predictive control algorithm is developed.
The trajectories of the systems are restricted to lie in a sequence of tubes so robust stability and constraint
satisfaction can be guaranteed in the presence of both uncertain parameters and disturbances. All of the
optimization problems are solved off-line so the developed algorithm is applicable to fast dynamic systems. In
order to demonstrate the applications of the developed algorithm, it is applied to a control problem of the

continuous stirred tank reactor with uncertain parameters and disturbances.

Keywords: Model Predictive Control; tubes; uncertain parameters; disturbances; robust stability; constraint
satisfaction.

1 Introduction

Chemical processes are usually composed of a number of reactions. These reactions usually contain some
uncertain parameters such as those in reaction rate constants and heat transfer coefficients. Moreover, they
usually contain some disturbances such as measurement noises. Some chemical processes are fast and highly
exothermic so inefficient handling of these uncertainties and disturbances may lead to unexpected thermal
runaway of the system. For this reason, it is necessary to develop an efficient multivariable control algorithm
that is able to ensure both robust stability and constraint satisfaction in the presence of uncertain parameters and
disturbances. Additionally, it must be applicable to the control of fast dynamic reactions.

Model predictive control (MPC) is an advanced control algorithm for multivariable processes. MPC is
widely used in many chemical processes because input and output constraints are considered in a systematic
manner. At each sampling time, MPC solves a finite horizon optimal control problem based on an explicit
model of the process. Although an optimal control sequence is determined, only the first control action is
applied to the process. Since models are only approximations of real processes, it is extremely important for
MPC to be robust to uncertain parameters and disturbances. Moreover, only small computational time should be
required so that it can be applied to fast dynamic processes.

Off-line formulations of robust MPC have been developed to deal with uncertain parameters while ensuring
the same level of control performance (Wan and Kothare, 2003; Ding et al., 2007). The main idea was to solve
an optimization problem off-line to find a sequence of controller gains and the associated ellipsoidal invariant
sets. At each sampling time, the real-time state feedback gain was computed by linear interpolation between the
pre-computed feedback gains. Only uncertain parameters were considered in the MPC formulation so robust
stability was not guaranteed in the presence of disturbances. An off-line MPC algorithm for linear parameter-
varying (LPV) systems was developed by Bumroongsri and Kheawhom (2012a). The real-time state feedback
gain was calculated by linear interpolation between the pre-computed state feedback gains using the scheduling
parameters. Bumroongsri and Kheawhom (2012b) proposed an off-line robust MPC algorithm based on
polyhedral invariant sets instead of ellipsoidal invariant sets. A significantly larger stabilizable region was
obtained. However, the effects of disturbances were neglected in the robust MPC formulation so robust stability
could not be guaranteed in the presence of disturbances. In order to apply oft-line robust MPC to uncertain
chemical processes with disturbances, the effects of disturbances should be explicitly included in the MPC
formulation.

In the context of tube-based robust MPC, the effects of disturbances are explicitly included in the MPC
formulation. Tube-based robust MPC is motivated by the fact that a real state trajectory differs from a state
trajectory of a nominal system due to the effects of disturbances. Chisci et al. (2001) developed an on-line tube-
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based robust model predictive controller for linear time-invariant (LTI) systems subject to bounded
disturbances. The objective was to drive the state of LTI system with bounded disturbances to a terminal set.
Constraint fulfillment was guaranteed by replacing the original constraints with more stringent ones. Langson e?
al. (2004) proposed an on-line tube-based robust MPC employing the time-varying control inputs instead of the
LTI control law. A sequence of time-varying control inputs was obtained by solving an optimal control problem
subject to additional constraint sets. The proposed MPC algorithm could achieve better control performance
than the conventional tube-based MPC algorithm using LTI control law. The price to be paid was the
computational complexity that increased with the prediction horizon.

Tube-based robust MPC for tracking of LTI system with bounded disturbances was presented by Limon et
al. (2010). The artificial steady-state variables were introduced as the decision variables in the optimization
problem. If the target was unreachable, the system would be steered to the neighborhood of the artificial steady-
state point. High on-line computational time was required because some decision variables and constraints were
introduced to the optimal control problem. Tube-based robust MPC for linear time-varying (LTV) systems with
bounded disturbances was developed by Bumroongsri (2015). A novel feature was the fact that the developed
algorithm could handle both time-varying parameters and disturbances. However, the optimization problem
must be solved on-line at each sampling time. In order to apply tube-based robust MPC to fast dynamic
processes, its off-line formulation needs to be developed.

In this paper, an off-line synthesis approach for tube-based robust MPC is presented. The trajectories of
systems with both uncertain parameters and disturbances are restricted to lie in a sequence of tubes so robust
stability and constraint satisfaction are guaranteed. Additionally, no optimization problem needs to be solved
on-line so the developed tube-based robust MPC algorithm is applicable to fast dynamic processes. This paper is
organized as follows. The problem statement is presented in Section 2. The proposed synthesis approach for
tube-based robust MPC is presented in Section 3. A numerical example is presented in Section 4. The
conclusions are drawn in Section 5.

2 Problem Statement
Consider the following discrete-time system with uncertain parameters and disturbances

xt= At Bru+w )

where x eR" is the state, # € R is the input, we R" is the disturbance and x* € IR” is the successor state. The
matrices 4% and B* depend on an uncertain  parameter vector A that is

[4* B* e Conv{{4; B;],Vj€l.2,.,L} where Conv{-} is the convex hull of all elements in {-}. The state

constraintis x € X. The input constraint is # € U. The disturbances w lie in the set W. Consider the following
nominal system (the system without disturbances) defined by

= A x+B M )

where x'e R" and u'e R" are the state and input of the nominal system, respectively. The difference system
between (1) and (2) is

xt—xT = A (x=x)+ B u—u')+w. (3)

In order to deal with both uncertain parameters and disturbances, the control law u = K(x—x")+u' is employed

where u'= Fx' is the control law for the nominal system and K is the disturbance rejection gain. The difference
system (3) can be written as

xT=x" =AM+ BPK)(x— X))+ w. 4)

1+

The trajectory of the difference system x* — x'* is bounded by a robust positively invariant set Z defined by
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Z= @ Conv{(4" + B*KYW,Vjel2,.., L} )
i=0

where the symbol @ denotes the Minkowski set addition. The objective is to drive the nominal system (2) to
the origin while maintaining the trajectory of the system with uncertain parameters and disturbances (1) in a
sequence of tubes whose centers are the state of the nominal system (2).

3 A Synthesis Approach for Tube-Based Robust MPC

In this section, an off-line formulation for tube-based robust MPC is presented. If we can drive the state of the
nominal system x' to the origin, the state of the uncertain system with uncertain parameters and disturbances
x must be driven to a tube Z whose center is at the origin. An off-line formulation of robust MPC for nominal
system was developed by Wan and Kothare (2003). A sequence of off-line feedback gains F; corresponding to
a sequence of invariant ellipsoids &;,i ={l,.., N,} was pre-computed by solving the linear matrix inequality
(LMI) optimization problems. The real-time feedback gain F was calculated at each sampling time by linear
interpolation between the off-line feedback gains F;. Therefore, the state of the nominal system x' can be

driven to the origin using the nominal control law u'= Fx'.
In order to drive the state of the uncertain system with uncertain parameters and disturbances x to the origin,
the control law u =K(x—x")+ Fx' is employed in this paper where K is the disturbance rejection gain. The

task of the disturbance rejection gain K is to maintain the state of the uncertain system with uncertain
parameters and disturbances x in a sequence of tubes whose centers are the state of the nominal system x'.
When the nominal state x' is driven to the origin, the state of the uncertain system with uncertain parameters
and disturbances x must be driven to the neighborhood of the origin. Therefore, robust stability can be ensured.
In order to ensure constraint satisfaction x € X and u € U, tighter constraint sets for the nominal system
x'eX6 Z and Fix'e UGS KZ must be imposed where the symbol © denotes the Minkowski set difference. In
summary, the developed tube-based robust MPC algorithm can be written as follows:

Off-line step 1: Compute the disturbance rejection gain K satisfying the Lyapunov stability constraint
(4;+B,K) P(4,+B;K)-P<0.

Off-line step 2: Compute a sequence of off-line feedback gains F, corresponding to a sequence of invariant
ellipsoids &;,i ={l,.., N} with tighter constraint sets xX' e X& Z and Fx'e U© KZ .

At the first sampling time (7 =0) : measure the state x and the uncertain parameter A . Find the real-time
feedback gain F (that is the off-line feedback gain F, of the smallest invariant ellipsoid ¢; containing the

measured state x ). Apply the control law u = Fx to the process and compute x'* from x'" = (4" + B*F)x (At
the first sampling time, x=x' so the control law u = K(x—x")+ Fx' is equal to u = Fx).

At each sampling time (7> 0): measure the state x and the uncertain parameter A. Find the real-time
feedback gain F (that is the off-line feedback gain F, of the smallest invariant ellipsoid &; containing the

nominal state x' computed from the previous step). Apply the control law u = K(x—x')+ Fx' to the process

and compute x'" from x" = (4% +B*F)x'.

Remark 1: It is assumed that the state x is measurable. For the case when the state x is unmeasurable, an
observer should be included in the controller design (Mayne et al., 2006).

4 Numerical Example

In this section, the developed algorithm is applied to a numerical case study of an uncertain CSTR where an
irreversible exothermic reaction A — B is assumed to take place. A cooling jacket is used to adjust the reactor
temperature. The material and energy balances are as follows:
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dc -E
th :%(CAf_CA)_ko exp[ RT:I JCA (6)
E:Q o UA B —AH -E, .
7 V(Tf T) Ve, r T”)J{pcp ]koexp( =T jCA (7
A, Qo g, UL
a v (Ty =T+ 2.Cre (T-T.). (®)

where C, is the concentration of reactant 4, Q is the feed stream flowrate, V' is the reactor volume, C, is

the concentration of reactant A4 in feed stream, &, is the pre-exponential factor, E, is the activation energy, R

is the gas constant, 7 is the reactor temperature, T’ ) is the feed stream temperature, U4 is the overall heat
transfer coefficient, A/ is the heat of reaction, C, is the heat capacity, p is the density, 7, is the coolant
temperature, 7, is the coolant feed temperature, V. is the cooling jacket volume, p, is the coolant density,

C,. is the coolant heat capacity and O, is the coolant flowrate.

The material and energy balances can be written in the dimensionless form as follows (Nagrath ez al., 2002):

dx X
_IZCI(x]f_xl)_@CleXp( ) C)
dz 1+22
e
dx X
—2=q(x2f—x2)—5(x2—x3)+,8¢xlexp( ) (10)
Y
dxy
%zé‘l[qc(xaf_%)‘“%z(xz_x3)] (11)

where x; is the dimensionless concentration of reactant 4, x, is the dimensionless reactor temperature and x,
is the dimensionless coolant temperature. The manipulated variable is the dimensionless coolant flowrate ¢, .

The following discrete-time state-space model is obtained by linearizing and discretizing (9)-(11) with a
sampling period of AT :

ATl grtng)] Attty 0
- (1+-25)? __
xi1(k+1) 4 x1(k)
xak+1)|=|  AT[Bor(x,)] 1+AT[—q—5+M] ATS x2(k)
x3(k+1) (1+$)2 x3(k)
L 12
0 AT565,5, 1-AT[S,q,5 + 555, ] (12)
0 1 0 0wk
+ 0 g, (K)+|0 1 0w, (k)
AT [x3, —x35] 0 0 1wk
where  n()=x()-x5 . BE=x®-x; . BE=xuE-x5 . qMH=¢()-qs and
K(x,5) =exp( Y25 ). The disturbances w;(k), w,(k) and w;(k) are added to the system to take into account
1+228
4
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the effects of unmeasured disturbances. Their values are time-varying between -0.01 and 0.01. The Damkohler
number ¢ is uncertain and its value is time-varying between ¢, =0.0648 and ¢, =0.0792. The objective

is to drive the dimensionless state from the initial point (0,-5,0) to the neighborhood of the origin by adjusting
56 (k). The state constraint is ‘;1(k)‘ <0.5 and the input constraint is

(}c (k)‘ <1.0.The values of dimensionless

parameters are shown in Table 1.

Table 1. The values of dimensionless parameters.

Parameters | Values | Parameters | Values | Parameters | Values | Parameters Values
e 20 q 1.0 q.s 1.0 o 10
B 8.0 o 0.3 Xis 0.8933 0, 1.0
Xy 0.5193 X3 -0.5950 X3¢ -1.0

A sequence of five invariant ellipsoids ¢;,i = {l,...,5} computed off-line is shown in Fig.1. Each invariant
ellipsoid ¢; has the corresponding off-line feedback gain F; so the real-time feedback gain F can be updated
based on the distance from the origin.

0.5

5 .05 o

Figure 1. A sequence of five invariant ellipsoids.

Figure 2 shows the tracjectories of the system. The trajectory of the uncertain CSTR with disturbances lies in
a sequence of tubes whose centers are the state of the uncertain CSTR with no disturbances (nominal system).
Therefore, robust stability and constraint satisfaction are ensured.

1. s
0 —+—The uncertain CSTR with disturbances
—+—The uncertain CSTR with no disturbances M
-041 :
0.2
&

0.25 0.2 015 0.1 0.05 0
1

Figure 2. The tracjectories of the system.
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Figure 3 shows the dimensionless state variables. It is seen that the system is robustly stabilized since all
states are driven to the neighborhood of the origin.

04 "
&t ——7 (k) _
@ -2 ——3(k) i
=
3
5 3 :
[¥]
4L _
_5 1 1 1 1 1 Il 1 1 1
0 1 2 3 4 5 6 7 8 9 10

Sampling time
Figure 3. The dimensionless state variables of the system.

5 Conclusions

In this paper, a synthesis approach for robust MPC is presented. The trajectories of system with both uncertain
parameters and disturbances are restricted to lie in a sequence of tubes so robust stability and constraint
satisfaction are guaranteed. Additionally, no optimization problem needs to be solved on-line so the developed
tube-based robust MPC algorithm is applicable to fast dynamic processes.
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