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บทคัดย่อ 

 
รหัสโครงการ: TRG5880084 
ชื่อโครงการ: วิธีการใหม่ของการควบคุมเชิงท านายแบบจ าลองคงทนที่มีรากฐานเป็นท่อแบบไม่
เชื่อมตรงส าหรับกระบวนการเกิดพอลิเมอร์ที่มีความไม่แน่นอน 
ชื่อนักวิจัย และสถาบัน:  ผศ.ดร.พรชัย บ ารุงศรี มหาวิทยาลัยมหิดล 
   รศ.ดร.สุรเทพ เขียวหอม จุฬาลงกรณ์มหาวิทยาลัย 
อีเมล์: pornchai.bum@mahidol.ac.th, soorathep.k@chula.ac.th 
ระยะเวลาโครงการ: กรกฎาคม 2558 ถึง มิถุนายน 2560 
 
 งานวิจัยนี้ได้ท าการพัฒนาวิธีใหม่ของการควบคุมโดยจ ากัดเส้นทางเดินทั้งหมดของระบบที่มี
ความไม่แน่นอนให้อยู่ในล าดับของท่อดังนั้นจึงสามารถรับประกันเสถียรภาพความคงทนและข้อจ ากัด
ของระบบได้ในกรณีที่เกิดตัวแปรซึ่งมีความไม่แน่นอนและตัวแปรรบกวน การค านวณหาค่าเหมาะสม
ที่สุดจะด าเนินการก่อนการควบคุมดังนั้นจึงสามารถน าวิธีการควบคุมที่พัฒนาขึ้นไปใช้ในการควบคุม
ระบบที่มีพลวัตรวดเร็วได้ วิธีการควบคุมที่พัฒนาขึ้นได้มีการน าไปประยุกต์ใช้กับปัญหาการควบคุม
กระบวนการพอลิเมอไรเซชันของพอลิโพรพิลีนที่มีความไม่แน่นอนซึ่งปฏิกิริยาพอลิเมอไรเซชันที่
เกิดข้ึนมีความรวดเร็วและคายความร้อนสูง ในกรณีที่ค่าคงที่ของจลนพลศาสตร์และค่าความร้อนของ
ปฏิกิริยามีความไม่แน่นอนจะพบว่าวิธีการควบคุมที่พัฒนาขึ้นสามารถควบคุมตัวแปรควบคุมซึ่งคือ
มวลของพอลิเมอร์และอุณหภูมิภายในถังปฏิกรณ์ให้เข้าสู่ค่าเป้าหมายที่ต้องการได้ วิธีการที่พัฒนาขึ้น
สามารถจัดการกับตัวแปรที่มีความไม่แน่นอนและตัวแปรรบกวนดังนั้นจึงสามารถควบคุมกระบวนการ
พอลิเมอไรเซชันที่มีความไม่แน่นอนได้อย่างมีประสิทธิภาพ ในขั้นตอนสุดท้ายได้มีการน าวิธีการ
ควบคุมที่พัฒนาขึ้นไปประยุกต์ใช้กับการควบคุมเครื่องปฏิกรณ์ที่มีการจ าลองการคายความร้อน
บางส่วนซึ่งปฏิบัติการแบบต่อเนื่อง ในกรณีที่เกิดตัวแปรซึ่งมีความไม่แน่นอน เช่น ค่าคงที่ของอัตรา
การเกิดปฏิกิริยา ความร้อนของปฏิกิริยา อุณหภูมิของน้ าหล่อเย็น และอัตราการป้อนของเครื่อง
ปฏิกรณ์ จะพบว่าวิธีการควบคุมที่พัฒนาขึ้นสามารถควบคุมอุณหภูมิของเครื่องปฏิกรณ์ให้เข้าสู่ค่า
เป้าหมายได้ซึ่งเป็นการรับประกันเสถียรภาพความคงทนของระบบ  
 
ค าหลัก: การควบคุมเชิงท านายแบบจ าลองคงทนที่มีรากฐานเป็นท่อแบบไม่เชื่อมตรง กระบวนการพอ
ลิเมอไรเซชันที่มีความไม่แน่นอน ตัวแปรที่มีความไม่แน่นอน เครื่องปฏิกรณ์ที่มีการจ าลองการคาย
ความร้อนบางส่วน 
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Abstract 

 
Project Code: TRG5880084  
Project Title: A novel off-line tube-based robust model predictive control algorithm 
for uncertain polymerization processes 
Investigator:  Asst. Prof. Dr. Pornchai Bumroongsri  Mahidol University 
  Assoc. Prof. Dr. Soorathep Kheawhom Chulalongkorn University 
E-mail Address: pornchai.bum@mahidol.ac.th, soorathep.k@chula.ac.th 
Project Period: July 2015 to June 2017 (2 years)   
 
 This research develops a novel off-line tube-based robust model predictive 
control algorithm. All trajectories of uncertain systems are restricted to lie in a 
sequence of tubes so robust stability and constraint satisfaction can be guaranteed in 
the presence of both uncertain parameters and disturbances. All of the optimization 
problems are solved off-line so the developed algorithm is applicable to fast 
dynamic systems. The developed control algorithm is applied to the control 
problem of uncertain polymerization process for polypropylene where the 
polymerization reactions taking place are fast and highly exothermic. In the case 
when the kinetic constant for propagation rate and the heat of reaction are 
uncertain, the results show that the developed control algorithm is able to regulate 
the controlled variables, which are the mass of polymer in the reactor and the 
reactor temperature, to the desired set points. The developed algorithm can handle 
both uncertain parameters and disturbances so the uncertain polymerization process 
can be efficiently controlled. Finally, the developed control algorithm is applied to a 
partially simulated exothermic (PARSEX) reactor operated in the continuous mode. In 
the presence of uncertain parameters such as the reaction rate constant, heat of 
reaction, cooling water temperature and reactor feed rate, the results show that the 
reactor temperature can be regulated to the set point so robust stability of the 
system is ensured.  
Keywords: Off-line tube-based robust model predictive control; uncertain 
polymerization process; uncertain parameters; partially simulated exothermic reactor 
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1. Executive summary 

The control of systems in the presence of uncertain parameters and 
disturbances is a challenging control problem because it is difficult to guarantee both 
robust stability and constraint satisfaction. In this research, a novel off-line tube-based 
robust model predictive control algorithm is developed. The trajectories of uncertain 
systems are restricted to lie in a sequence of tubes so robust stability and constraint 
satisfaction can be guaranteed in the presence of both uncertain parameters and 
disturbances. All of the optimization problems are solved off-line so the developed 
algorithm is applicable to fast dynamic systems.  

In order to demonstrate the applications of the developed algorithm, it is 
applied to a difficult control problem of uncertain polymerization process for 
polypropylene where the exact values of reaction rate constants are unknown. The 
polymerization reactions taking place are fast and highly exothermic so the presence 
of uncertain parameters might lead to an unexpected thermal runaway. In the case 
when the kinetic constant for propagation rate and the heat of reaction are 
uncertain, the results show that the developed control algorithm is able to regulate 
the controlled variables, which are the mass of polymer in the reactor and the 
reactor temperature, to the desired set point by manipulating the mass flow rate of 
propylene monomer and the mass flow rate of cooling water, respectively. 
Additionally, in the presence of the disturbances acting on the system, the 
developed control algorithm is able to regulate the mass of polymer in the reactor 
and the reactor temperature to the neighborhood of the desired set point so robust 
stability of the system can be guaranteed. The developed algorithm can handle both 
uncertain parameters and disturbances so the uncertain polymerization process can 
be efficiently controlled. 

Finally, the developed control algorithm is applied to a partially simulated 
exothermic (PARSEX) reactor operated in the continuous mode. In the presence of 
uncertain parameters such as the reaction rate constant, heat of reaction, cooling 
water temperature and reactor feed rate, the results show that the reactor 
temperature can be regulated to the set point so robust stability of the system is 
ensured.
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2. Objectives of this research 

 

(1) To develop a novel off-line tube-based robust MPC algorithm that can guarantee 
robust stability and constraint satisfaction of the control systems in the presence of 
both uncertain parameters and disturbances. Additionally, all of the optimization 
problems are solved off-line so the developed off-line tube-based robust MPC 
algorithm is applicable to fast dynamic processes.    
 
(2) To apply the developed off-line tube-based robust MPC algorithm to a 
challenging control problem of uncertain polypropylene polymerization process 
where the reaction rate constants are uncertain and the polymerization reactions 
taking place are fast and highly exothermic. 
 
(3) To apply the developed off-line tube-based robust MPC algorithm to a partially 
simulated exothermic pilot plant reactor where the reaction heat of various 
uncertain polymerization reactions can be generated. Therefore, the effects of 
uncertainties and disturbances in polymerization processes can be investigated and 
controlled under realistic situations.  
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3. Research Methodology 

 
In this project, a novel off-line tube-based robust MPC is developed. The 

proposed tube-based robust MPC algorithm can handle both uncertain parameters 
and disturbances. Moreover, all of the optimization problems are solved off-line so 
the proposed tube-based robust MPC algorithm is applicable to fast exothermic 
processes. In order to illustrate its effectiveness, the proposed tube-based robust 
MPC algorithm will be applied to a simulation case study of polypropylene 
polymerization process with uncertain and highly exothermic polymerization 
reactions. Then, the proposed tube-based robust MPC algorithm will be applied to 
an experimental case study of a partially simulated exothermic (PARSEX) pilot plant 
reactor where the reaction heat of polymerization processes is generated and 
controlled by the proposed tube-based robust MPC algorithm. The procedures of 
this project are shown in Fig. 3.1. 

 

 
 

Fig. 3.1 The procedures of this project. 
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1) Develop a novel off-line tube-based robust MPC algorithm. 

 
 In the first experimental step, a novel off-line tube-based robust MPC 
algorithm is developed. No optimization problem needs to be solved on-line. 
Additionally, both model uncertainty and disturbance are included in the robust MPC 
formulation. Consider the following discrete-time system with model uncertainty and 
disturbance  
 

.wuBxAx                                     (3.1) 
 
where x ℝ

n is the state, u ℝ
m is the control input, w ℝ

n is the bounded 
disturbance and x ℝ

n is the successor state. The system is subject to the state 
constraint x 𝕏 and the control constraint u 𝕌 where 𝕏ℝ

n and 𝕌ℝ
m are 

compact, convex and each set contains the origin as an interior point. The 
disturbance is bounded, i.e., w 𝕎 where 𝕎ℝ

n is compact, convex and contains 
the origin as an interior point. The objective is to robustly stabilize the system (3.1) 
while all of the constraints are satisfied. The presence of a persistent disturbance w  
means it is not possible to regulate the state x  to the origin. The best that can be 
hoped for is to regulate the state to a neighborhood of the origin. The matrices A  
and B  are not constant but vary with an uncertain parameter vector . An 
uncertain parameter vector   can be measured at each sampling time but its future 
values are uncertain. We make the following assumption 
 

Assumption 1. ]} [],..., [Conv{] [ 11 LL BABABA   where Conv  denotes the convex 
hull, ] [ jj BA  are vertices of the convex hull and L  is the number of vertices of the 

convex hull. Any ] [  BA  can be written as  


L

j jjj BABA
1

] [] [   and the pair 

] [ jj BA  is controllable. 
 
Let the nominal system be defined by 
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     ''' uBxAx                                           (3.2) 
 
where 'x ℝ

n and 'u ℝ
m are the state and control input of the nominal system, 

respectively. The predicted state trajectory and control sequence when the initial 

state is 'x  are denoted by },...,,{: ''
1

'
0 Nxxxx '  and },...,,{: '

1
'
1

'
0  Nuuuu' , respectively. 

Consider the following equation which is the difference between the systems (3.1) 
and (3.2) 
 

.)'()'(' wuuBxxAxx                            (3.3) 
 

In order to counteract the effect of disturbance, the control law ')'( uxxKu   is 
employed where K  is the disturbance rejection gain. The system (3.3) is rewritten as 
 

.)')((' wxxKBAxx                                (3.4) 
 

We will bound   'xx  by a robust positively invariant set Z . The definition of Z  is 
as follows    
 
Definition 1 The set Z ℝ

n is a robust positively invariant set of an uncertain 

system with disturbance wxAx    if ZA 𝕎 Z  for Zx , w 𝕎 and 

},...,Conv{ 1 LAAA    where   denotes the Minkowski set addition (Mayne et al., 
2009).    
 
For the system (3.4), it is clear that if K  satisfies 

},...,1{,0)()( LjPKBAPKBA jj
T

jj   where P  is a Lyapunov matrix, then 

,0)()(  PKBAPKBA T   },...,2,1], [Conv{] [ LjBABA jj    and we can 

bound   'xx  by a robust positively invariant set Z  satisfying  ZKBA )(  𝕎 Z  

for Zxx  )'( , w 𝕎 and },...,2,1], [Conv{] [ LjBABA jj   . It is desirable 
that Z  be as small as possible. The minimal Z  of the uncertain system with 
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disturbance (3.4) is Z i

i
KBA )(

0

 



𝕎. Since },...,2,1], [Conv{] [ LjBABA jj  , 

the minimal Z  can be calculated as 
 
Z 𝕎 )(Conv{ KBA jj  𝕎 Lj ,...,2,1,  } ))((Conv{ KBAKBA lljj  𝕎,

Llj ,...,2,1,  } ))()((Conv{ KBAKBAKBA mmlljj  𝕎 Lmlj ,...,2,1,,,  }…  (3.5) 
                                        

Defining :sF
i

s

i
KBA )(

1

0

 



𝕎, sF  can be properly scaled for some finite integer s  

to obtain the outer approximation of Z  in (3.5) using the method in Raković et al. 
(2005). Since we can bound   'xx  by Z , the following proposition can be 
established 
 
Proposition 1. If Zxx  '  and ')'( uxxKu  , then Zxx   '  for w 𝕎 and 

},...,2,1], [Conv{] [ LjBABA jj   .  
 
Proposition 1 states that the control law ')'( uxxKu   keeps the state x  of an 

uncertain system with disturbance wuBxAx    close to the state 'x  of the 

nominal system ''' uBxAx   . It is clear that if we can regulate 'x  to the origin, 
then x  must be regulated to a robust positively invariant set Z  whose center is at 

the origin. An off-line robust MPC algorithm for the nominal system ''' uBxAx    
has been developed by Bumroongsri and Kheawhom (2012). The problem of 
regulating the state 'x  to the origin has been considered. In this approach, a 
sequence of stabilizing feedback gains iF  corresponding to a sequence of polyhedral 
invariant sets iP , },...,1{ PNi   where pN  is the number of polyhedral invariant sets, is 
precomputed off-line by solving the optimal control problems subject to LMI 
constraints (Boyd and Vandenberghe, 2004). At each sampling time, the state 'x  is 
measured and the smallest iP  containing 'x  is determined. Then, we set the real-
time stabilizing feedback gain F  equal to iF  and apply the control law '' Fxu   to 
the process. The control law '' Fxu   minimizes the following cost function 
 

         







 
0

''''

},...,2,1], [Conv{] [

'
0 )()(max:),(

i i
T

ii

T

i
LjjBjABA

FxRFxQxxxV


'u                 (3.6) 
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where '
ix  is the state of the nominal system at prediction time i  and Q  and R  are 

the positive-definite weighting matrices. Additionally, the control law '' Fxu   ensures 

that the Lyapunov function '':)'( PxxxV T  is a strictly decreasing function satisfying  
 

 

 )'()'('')'()'( FxRFxQxxxVxV TT  , },...,2,1], [Conv{] [ LjBABA jj    (3.7) 
 
where P  is a Lyapunov matrix. At each sampling time, although the future values of 
an uncertain parameter vector   in the prediction horizon (which is the infinite 
horizon in this case) are unknown, the satisfaction of (3.7) for the stabilizing feedback 
gain F  ensures that robust stability of the nominal system ')(' xFBAx    is 
guaranteed. In order to guarantee satisfaction of the original state and control 
constraints, x 𝕏 and u 𝕌, we must employ tighter constraint sets for the nominal 
system, i.e., 'x 𝕏⊖ Z  and 'Fx 𝕌⊖KZ where ⊖ denotes the Minkowski set 
difference (Mayne et al., 2009). The control law ')'( uxxKu   is now rewritten as 

')'( FxxxKu  . An important consequence is the following result 
 
Proposition 2. If Zxx  ' , 'x 𝕏⊖ Z  and 'Fx 𝕌⊖KZ , then the control law 

')'( FxxxKu   of an uncertain system with disturbance wuBxAx    ensures 
satisfaction of the original constraints x 𝕏, u 𝕌 for w 𝕎 and 

},...,2,1], [Conv{] [ LjBABA jj   . 
 
Proposition 2 states that the control law ')'( FxxxKu   ensures satisfaction of the 
original state and control constraints. In summary, the proposed off-line tube-based 

robust MPC for an uncertain system with disturbance wuBxAx    can be 
formulated as follows 
 
Off-line Step 1:  
Calculate the disturbance rejection gain K  satisfying 

},...,1{,0)()( LjPKBAPKBA jj
T

jj  . Then, properly scale 

:sF
i

s

i
KBA )(

1

0

 



𝕎 for some finite integer s  to obtain the outer approximation of 

Z  in (3.5) using the method in Raković et al. (2005). 
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Off-line Step 2:  
Calculate a sequence of stabilizing feedback gains iF  and the corresponding 
sequence of polyhedral invariant sets iP , },...,1{ PNi   using the method in 
Bumroongsri and Kheawhom (2012) with tighter constraint sets for the nominal 
system, i.e., 'x 𝕏⊖ Z  and 'Fx 𝕌⊖KZ . 
 
On-line:  
At the first sampling time )0( t , measure the state x  and the uncertain 
parameter vector  . Find the smallest polyhedral invariant set iP  containing the 
measured state x , set iFF   and apply the control law Fxu   to the process. 
Then, calculate 'x  from xFBAx )('    (Note that at the first sampling time, 

'xx   so the control law ')'( FxxxKu   is reduced to Fxu  ). 
  
At each sampling time )0( t , measure the state x  and the uncertain parameter 
vector  . Find the smallest polyhedral invariant set iP  containing 'x  (which is 
calculated from the previous step), set iFF   and apply the control law 

')'( FxxxKu   to the process. Then, calculate 'x  from ')(' xFBAx   .     
 
We can now establish our main Theorem as follows 
 
Theorem 1. The proposed tube-based MPC algorithm steers any initial state x  of an 
uncertain system with disturbance wuBxAx    in a sequence of polyhedral 
invariant sets iP , },...,1{ PNi   to a robust positively invariant set Z  whose center is at 
the origin and thereafter maintains the state in Z  for w 𝕎 and 

},...,2,1], [Conv{] [ LjBABA jj   . 
 
Proof. Consider the following difference equation between wuBxAx    and 

''' uBxAx    where ')'( FxxxKu   and '' Fxu  ,  
     
    .)')((' wxxKBAxx                                (3.8) 
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The disturbance rejection gain K  satisfies },...,1{,0)()( LjPKBAPKBA jj
T

jj   
so   'xx  is bounded by a robust positively invariant set Z , i.e., Zxx   ' . Since 
the stabilizing feedback gain F  ensures that the Lyapunov function is a strictly 
decreasing function satisfying (3.7), the state 'x  must converge to the origin. Since 

Zxx   ' , x  must converge to a tube Z  whose center is at the origin. Finally, the 
disturbance rejection controller Kxu   keeps the state within a tube Z  whose 

center is at the origin. □ 

 
Example: In this example, an implementation of the proposed off-line tube-based 
robust MPC algorithm is illustrated. Consider the following uncertain system with 
bounded disturbance 
    

     .
1

5.0

0

11
wuxx 




















                           (3.9) 

 
The state x 𝕏 where 𝕏  x{: ℝ

2
}21]  0[| x , the control u 𝕌 where 

𝕌  u{: ℝ }1| u , the disturbance w 𝕎 where 

𝕎  w{: ℝ
2

}0.1]  1.0[0.1]-  1.0- [| TT  w  and the uncertain parameter  𝕃 where 
𝕃  {: ℝ }1.19.0|   . The weighting matrices in the cost function (3.6) are given as 

IQ   and 01.0R . The following nominal system   
 

     '
1

5.0
'

0

11
' uxx 




















                              (3.10) 

 
is subject to tighter state and control constraints, i.e., 'x 𝕏⊖ Z  and 'u 𝕌⊖KZ . 
The disturbance rejection gain 1.33]-  66.0- [K  satisfies 

}2,1{,0)()(  jPKBAPKBA jj
T

jj . The difference equation between (3.9) and 
(3.10) can be written as         
 

    .)'(
1

5.0
)'(

0

11
' wuuxxxx 

















 


              (3.11) 

The closed-loop system is simulated using the initial state T2]-  5-[' xx . The 
uncertain parameter   and the disturbance w  are varied as )4sin(1.01 k  and 
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Tkkw )]4sin(1.0  )4sin(1.0[ , respectively, where }19,...,1{k  is the simulation 
horizon.        
 
Figure 3.2 shows a robust positively invariant set Z  precomputed off-line. The cross 
section of Z  is shown in yellow. The blue line represents the trajectory of the 
difference equation (3.11). Starting from the origin, it is seen that the trajectory of the 
difference equation is restricted to lie within a tube Z . 
 

 
Fig. 3.2. A robust positively invariant set Z  precomputed off-line. 

 
Figure 3.3 shows a sequence of ten polyhedral invariant sets iP , }10,...,1{i  
precomputed off-line. In this example, only ten polyhedral invariant sets are 
precomputed because iP  are almost constant for 10i . The red line represents the 

trajectory of the nominal system (3.10). Starting from the initial point T2]-  5-[' xx , 
the state of the nominal system at each time step is restricted to lie within a 
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sequence of ten polyhedral invariant sets iP , }10,...,1{i  precomputed off-line. 
Finally, the state of the nominal system converges to the origin. 
 

 

Fig. 3.3 A sequence of ten polyhedral invariant sets iP , }10,...,1{i   
precomputed off-line. 

 
The trajectory of the uncertain system with disturbance (3.9) is shown in Fig. 3.4. The 
region shown in green is the infeasible region of the state constraint 
𝕏  x{: ℝ

2
}21]  0[| x . The red line corresponds to the trajectory of the nominal 

system (3.10). The cross section of a tube Z  precomputed off-line is shown in 
yellow. It is seen that the state of the uncertain system with disturbance at each 
time step is restricted to lie within a tube Z  whose center is the state of the 
nominal system that converges to the origin. Finally, the state of the uncertain 
system with disturbance is kept within a tube Z  whose center is at the origin.          
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Fig. 3.4. The trajectory of the uncertain system with disturbance. 

 
Figure 3.5 shows the control input as a function of sampling time. The region shown 
in yellow is 𝕌⊖KZ . The red line corresponds to the control input of the nominal 
system (3.10). The black line corresponds to the control input of the uncertain 
system with disturbance (3.9). It can be observed that the control input of the 
nominal system is restricted to lie within the region 𝕌⊖KZ  so that the control 
input of the uncertain system with disturbance satisfies the control constraint 
𝕌  u{: ℝ }1| u .    
        

 
Fig. 3.5. The control input as a function of sampling time. 
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2) Apply the developed algorithm to a simulation case study of polypropylene 
polymerization process with uncertain and highly exothermic polymerization 
reactions. 
 
 In the second experimental step, the off-line tube-based robust MPC 
algorithm developed in the first step is applied to a simulation case study of 
polypropylene polymerization process. This process is characterized by its high value 
of reaction heat and uncertainty of reaction rate constants (Seki et al., 2001). 
Consider the bulk polymerization of polypropylene shown in Fig. 3.6. The process 
takes place in CSTR at 340 K and 30 atm using high-activity fourth generation Ziegler-
Natta catalyst (TiCl4/MgCl2+p-ethylethoxy-benzoate+triethyl aluminum). The heat of 
polymerization reaction is removed by condensation of boiling propylene. In the 
presence of uncertain parameters and disturbances, the objective is to control the 
reactor temperature )(T  and the cumulative mass average molecular weight of 
polymer )( ac

wM  by manipulating the mass flowrate of cooling water )( wm  and the 
mass flowrate of propylene monomer )( em . 
 

 
 

Fig.3.6. The bulk polymerization of polypropylene 
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The material balance of this process can be written as Eqs. (3.12) – (3.19) (Neto and 
Pinto, 2001; Prata et al., 2009) 
 

bleed
ea

a
ae

a m
PP

P
wm

dt

dP
)(


                               (3.12) 

 

 bleed
ea

e
polae

e m
PP

P
Rwm

dt

dP
)()1(


               (3.13) 

      

    polpol mR
dt

dPol
                                              (3.14) 

 

    
CatKm

Pol

Cat
m

dt

dCat
dpolcat  )(                          (3.15) 

 

    
polbleed

ae
TEA m

Pol

TEA
m

PP

TEA
m

dt

dTEA
))(1()(  


 (3.16) 

 

    
polPEEB m

Pol

PEEB
m

dt

dPEEB
)(                             (3.17) 

 

    
])1([ XS

PEEB

TEA
KXS

Pol

R

dt

dXS
XS

Rpol
               (3.18) 

 

    
ac
n

pol

i
n

pol

M

m

M

R

dt

dN
                                              (3.19) 

 
where aP  is the mass of propane in the reactor (kg), em  is the mass flowrate of 
propylene monomer (kg/h), aw  is the propane concentration in the feed stream 
(wt/wt), eP  is the mass of propylene in the reactor (kg), bleedm  is the mass flowrate of 
liquid bleed (kg/h), polR  is the rate of polymerization (kg/h), Pol  is the mass of 
polymer in the reactor (kg), polm  is the mass flowrate of output polymer (kg/h), Cat  
is the mass of catalyst in the reactor (kg), catm  is the mass flowrate of catalyst (kg/h), 

dK  is the catalyst deactivation constant (h-1), TEA  is the mass of triethyl aluminum 
in the reactor (kg), TEAm  is the mass flowrate of triethyl aluminum (kg/h),   is the 
recycle factor of triethyl aluminum (wt/wt), PEEB is the mass of p-ethylethoxy-
benzoate in the reactor (kg), PEEBm  is the mass flowrate of p-ethylethoxy-benzoate 
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(kg/h), XS  is the xylene extractable material (wt/wt), RXS  is the reference value of 
xylene extractable material (wt/wt), XSK  is the model parameter for XS  correlation 
(dimensionless), N  is the mol number of polymer (mol), i

nM  is the instantaneous 
number average molecular weight (kg/mol) and ac

nM  is the cumulative number 
average molecular weight (kg/mol). Some properties and unmeasured variables can 
be calculated from Eqs. (3.20) to (3.30). 
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where slurrym  is the mass flowrate of slurry (kg/h), polw  is the polymer concentration 
in the slurry (wt/wt), recm  is the mass flowrate of the recycle (kg/h), M  is the total 
mass in the reactor (kg), aC  is the propane concentration in the recycle (wt/wt), pK  
is the kinetic constant for propagation rate (h-1), MI  is the melting index (kg/10 min), 

oK  is the model parameter for MI  correlation ((kg/10 min)/(kg/mol) ),   is the 
parameter for MI  correlation (dimensionless), eMPP  is the propylene molecular 
weight (kg/mol),   is the parameter for i

nM  correlation (dimensionless), C  is the 
kinetic constant for transfer rate to hydrogen (atm-1), 

2H
P  is the partial pressure of 

hydrogen in the reactor (atm), ac
wM  is the cumulative mass average molecular weight 

(kg/mol), PD  is the polydispersity (dimensionless), V  is the reactor volume (m3), a  
is the density of propane (kg/m3), e  is the density of propylene (kg/m3) and pol  is 
the density of polymer (kg/m3). The energy balance of the polypropylene 
polymerization process shown in Fig. 3.6 can be written as Eqs. (3.31) to (3.33). 
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)()( eBePeBeeBeAePeAeeAe TTCmmTTCmmQ                     (3.32) 
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where T  is the reactor temperature (K), 

eP
C  is the heat capacity of propylene 

(kJ/kg.K), eiT  is the temperature of propylene monomer (K), erecT  is the temperature 
of the recycle (K), H  is the heat of reaction (kJ/kg), eQ  is the heat exchanged in the 
condenser (kJ/h), 

aP
C  is the heat capacity of propane (kJ/kg.K), 

polPC  is the heat 

capacity of polymer (kJ/kg.K), eAm  is the mass flowrate of propylene reflux from the 
first condenser (kg/h), eAT  is the temperature of propylene reflux from the first 
condenser (K), eBm  is the mass flowrate of propylene reflux from the second 
condenser (kg/h), e  is the latent heat of vaporization of propylene (kJ/kg), eBT  is the 
temperature of propylene reflux from the second condenser (K), woT  is the output 
temperature of cooling water (K), wm  is the mass flowrate of cooling water (kg/h), 

wP
C  is the heat capacity of cooling water (kJ/kg.K), wiT  is the input temperature of 
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cooling water (K) and Td  is the disturbance from noises of temperature 
measurement.       
 
Since the polymerization process is usually involved with complicated 
polymerization reactions, the values of some parameters such as reaction rate 
constants are not exactly known and they are considered to be uncertain (Prata et 
al., 2014). Table 3.1 shows the uncertain parameters present in the polypropylene 
polymerization process. 
 
Table 3.1. The uncertain parameters present in the polypropylene polymerization 
process.  
 

Parameters Description Lower Bound Upper Bound Unit 

pK  
kinetic constant for  
propagation rate 

1.00x104 1.00x105 h-1 

dK  catalyst deactivation constant 4.00 8.00 h-1 

C  
kinetic constant for transfer rate 

to hydrogen 
1.00x10-5 1.00x10-3 atm-1 

H  Heat of reaction 4.94x102 6.94x102 kJ/kg 

 
The polymerization reaction is highly exothermic. In the presence of uncertain 
parameters such as reaction rate constants and disturbances such as measurement 
noises, an inefficient control of the polymerization process may lead to unexpected 
thermal runaway of the system. For this reason, the uncertain parameters and 
disturbances are explicitly taken into account in the proposed controller design as 
shown in the first experimental step. 
 
3) Apply the developed algorithm to a partially simulated exothermic pilot 
plant reactor.  
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 In this step, a partially simulated exothermic (PARSEX) pilot plant reactor 
operated in the continuous mode has been developed as shown in Fig. 3.7. 
   

 
Figure 3.7. A partially simulated exothermic (PARSEX) pilot plant reactor.  

 
The generation of heat ( simulationQ ) of an exothermic polymerization reaction is 
calculated on-line according to the concerned kinetic model. Then, the heat is 
generated using an electric heater and the temperature of hot oil inside the reactor 
is controlled by adjusting the flow rate of cooling water. The conservation equations 
associated with the PARSEX reactor can be written as follows  
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where the  generation of heat is calculated according to 

)exp(simulation
RT

E
VCHkQ o  . The objective is to control the simulated reactor 

concentration C  and the reactor temperature T  by manipulating the simulated 

reactor feed concentration fC  and the flow rate of cooling water cwm
.

, respectively. 
The reaction is simulated in the computer while the heat transfer is really occurred 
in the reactor. The parameter descriptions are presented as follows 
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Table 3.2. The parameter descriptions and nominal values 
 

Parameters 
 

Description Values 
 

Units 

ok  Pre-exponential factor  55,600  s-1 

RE /  
Activation energy per  
universal gas constant  

6,000  K 

F  Reactor feed rate  0.125  kg/s 

  Oil density  910  kg/m3 

V  Reactor volume  0.15 m3 

H  Heat of reaction  -150,000 kJ/kmol 

pC  Specific heat of oil  1.95 kJ/kg.K 

cwpC ,  Specific heat of cooling water  4.18 kJ/kg.K 

fT  Reactor feed temperature 308 K 

cwT  Cooling water temperature  300 K 

ssC  
Steady-state value of the simulated  

reactor concentration 
1.03 kmol/m3 

ssfC ,  
Steady-state value of the simulated  

reactor feed concentration 
1.5  kmol/m3 

sT  
Steady-state value of the reactor 

temperature 
320.60 K 

cwm
.

 
Steady-state value of the flow rate of 

cooling water 
0.08 kg/s 
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The following parameters are considered to be uncertain during the operation and 
their values are given as follows. The cooling water temperature cannot be further 
increased beyond +2% due to the limit in the heat transfer driving force to cool the 
reactor. 
 
Table 3.3 The values of the uncertain parameters 

 
Parameters 

 
Description 

 
Range from the nominal values 

 

Minimum  Maximum 

ok  Pre-exponential factor  -20%  +20% 

H  Heat of reaction  -20%  +20% 

cwT  Cooling water temperature  -2%  +2% 

F  Reactor feed rate  -20%  +20% 

 



24 
 

4. Results of this research 

 
(1) Results from the development of a novel off-line tube-based robust MPC 
algorithm. 
  
Case Study 1.1 In this case study, an implementation of the proposed off-line tube-
based robust MPC algorithm is illustrated. Consider the following uncertain system 
with bounded disturbance    
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The state x 𝕏 where 𝕏  x{: ℝ2
}21]  0[| x , the control u 𝕌 where 

𝕌  u{: ℝ }1| u , the disturbance w 𝕎 where 

𝕎  w{: ℝ2
}0.1]  1.0[0.1]-  1.0- [| TT  w  and the uncertain parameter  𝕃 

where 𝕃  {: ℝ }1.19.0|   . The weighting matrices in the cost function are given 
as IQ   and 01.0R . The following nominal system 
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is subject to tighter state and control constraints, i.e., 'x 𝕏⊖ Z  and 'u 𝕌⊖KZ . 
The disturbance rejection gain 1.33]-  66.0- [K  satisfies 

}2,1{,0)()(  jPKBAPKBA jj
T

jj . The difference equation between (4.1) 
and (4.2) can be written as         
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The closed-loop system is simulated using the initial state T2]-  5-[' xx . The 
uncertain parameter   and the disturbance w  are varied as )4sin(1.01 k  and 

Tkkw )]4sin(1.0  )4sin(1.0[ , respectively, where }19,...,1{k  is the simulation 
horizon. 
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Figure 4.1 shows a robust positively invariant set Z  precomputed off-line. The cross 
section of Z  is shown in yellow. The blue line represents the trajectory of the 
difference equation (4.3). Starting from the origin, it is seen that the trajectory of the 
difference equation is restricted to lie within a tube Z . 
 

 
Fig. 4.1. A robust positively invariant set Z  precomputed off-line. 

 
Figure 4.2 show a sequence of ten polyhedral invariant sets iP , }10,...,1{i  
precomputed off-line. In this example, only ten polyhedral invariant sets are 
precomputed because iP  are almost constant for 10i . The red line represents the 

trajectory of the nominal system (4.2). Starting from the initial point T2]-  5-[' xx , 
the state of the nominal system at each time step is restricted to lie within a 
sequence of ten polyhedral invariant sets iP , }10,...,1{i  precomputed off-line. 
Finally, the state of the nominal system converges to the origin. 
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Fig. 4.2. A sequence of ten polyhedral invariant sets iP , }10,...,1{i  precomputed off-
line. 

 
The trajectory of the uncertain system with disturbance (4.1) is shown in Fig. 4.3. The 
region shown in green is the infeasible region of the state constraint 

𝕏  x{: ℝ2
}21]  0[| x . The red line corresponds to the trajectory of the nominal 

system (4.2). The cross section of a tube Z  precomputed off-line is shown in yellow. 
It is seen that the state of the uncertain system with disturbance at each time step is 
restricted to lie within a tube Z  whose center is the state of the nominal system 
that converges to the origin. Finally, the state of the uncertain system with 
disturbance is kept within a tube Z  whose center is at the origin.          
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Fig. 4.3. The trajectory of the uncertain system with disturbance. 

 
Figure 4.4 shows the control input as a function of sampling time. The region shown 

in yellow is 𝕌⊖KZ . The red line corresponds to the control input of the nominal 
system (4.2). The black line corresponds to the control input of the uncertain system 
with disturbance (4.1). It can be observed that the control input of the nominal 

system is restricted to lie within the region 𝕌⊖KZ  so that the control input of the 

uncertain system with disturbance satisfies the control constraint 𝕌  u{: ℝ }1| u .           

 
Fig. 4.4. The control input as a function of sampling time. 
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Case study 1.2 In this case study, the proposed algorithm is applied to a non-
isothermal continuous stirred tank reactor (CSTR) in which an irreversible exothermic 
reaction BA  takes place. The dimensionless modeling equations of this CSTR can 
be written as (Nagrath et al., 2002; Silva and Kwong, 1999) 
 

1
2

2
111

1 )

1

exp()( w
x

x
xxxq

d

dx
f 










                             (4.4) 

2
2

2
13222

2 )

1

exp()()( w
x

x
xxxxxq

d

dx
f 










       (4.5) 

3322331
3 )]()([ wxxxxq
d

dx
fc  


                       (4.6) 

 
where 1x  is the dimensionless concentration of reactant A , 2x  is the dimensionless 
reactor temperature and 3x  is the dimensionless cooling jacket temperature. The 
manipulated variable is the dimensionless coolant flow rate cq . The disturbances 
acting on the system are 1w , 2w  and 3w . By linearizing and discretizing (4.4) to (4.6) 
with a sampling period T , the following discrete-time state space model is 
obtained 
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where Sxkxkx 111 )()(  , Sxkxkx 222 )()(  , Sxkxkx 333 )()(  , 

cScc qkqkq  )()( , Swkwkw 111 )()(  , Swkwkw 222 )()(  , Swkwkw 333 )()(   and 
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

 . The model parameter values are shown in Table 4.1. The 

Damkohler number   is considered to be uncertain and its value is randomly time-
varying between 0648.0min   and 0792.0max  . The disturbances )(1 kw , )(2 kw  and 

)(3 kw  are randomly time-varying between -0.01 to 0.01. The constraints are 
5.0)(1 kx  and 0.1)( kqc . The weighting matrices in the cost function are IQ   

and 1.0R . The objective is to regulate the state from )0 ,5 ,0())0( ),0( ),0(( 321 xxx  
to the neighborhood of the origin by manipulating )(kqc . 
 
Table 4.1 The model parameter values. 
   

Parameter Value Parameter Value 

q  1.0   0.3 

fx1  1.0   8.0 

  0.0648-0.0792 
1  10 

  20 fx3  -1.0 

fx2  0.0 
2  1.0 

Sx1  0.8933 
Sw1  0.0 

Sx2  0.5193 
Sw2  0.0 

Sx3  -0.5950 
Sw3  0.0 

cSq  1.65   

 
Figure 4.5 shows a sequence of four polyhedral invariant sets iP , }4,...,1{i  
precomputed off-line. The polyhedral invariant sets are shown in yellow. 
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Fig.4.5. A sequence of four polyhedral invariant sets iP , }4,...,1{i   

precomputed off-line. 
 
Figure 4.6 shows the trajectory of the uncertain CSTR. The black line is the trajectory 
of the uncertain CSTR with disturbances (CSTR containing both time-varying 
parameter and disturbances). The red line is the trajectory of the uncertain CSTR with 
no disturbances (CSTR containing only time-varying parameter). It can be observed 
that the trajectory of the uncertain CSTR with disturbances lies in a sequence of 
tubes shown in yellow. Finally, the state of the uncertain CSTR with disturbances is 
steered to a tube whose center is at the origin. 
 

 
Fig. 4.6. The trajectory of the uncertain CSTR (The cross section of tube is shown in 
yellow). 
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The proposed algorithm will be compared with tube-based robust MPC algorithm of 
Mayne et al. (2005) in which the on-line optimization problem must be solved at 
each sampling time. In Mayne et al. (2005), only disturbances are included in the 
controller design so there is a mismatch between the model and the process when 
the time-varying parameter is present. From Figure 4.7, it is seen that the proposed 
algorithm is able to steer the state of the uncertain CSTR with disturbances to the 
neighborhood of the origin faster than the algorithm of Mayne et al. (2005).  
 

 
(a) dimensionless concentration of reactant A   (b) dimensionless reactor temperature 

   
 (c) dimensionless cooling jacket temperature (d) dimensionless coolant flow rate 
 
Fig.4.7. The control performance (a) dimensionless concentration of reactant A (b) 
dimensionless reactor temperature (c) dimensionless cooling jacket temperature and 
(d) dimensionless coolant flow rate. 
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The on-line computational time is shown in Table 4.2. It is seen that the proposed 
algorithm requires significantly less on-line computational time. The computations 
are performed using Intel Core 2 Duo (2.53 GHz), 2 GB RAM. 
 
Table 4.2 The on-line computational time. 
 

Algorithm 
On-line computational time 

for each step (seconds) 

Mayne et al. (2005) 0.067  

The proposed algorithm 0.015  
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(2) Results from the application of the developed algorithm to a simulation 
case study of polypropylene polymerization process with uncertain and highly 
exothermic polymerization reactions. 
 
In this section, the developed off-line tube-based robust MPC algorithm is applied to 
a simulation case study of polypropylene polymerization process containing 
uncertain parameters and disturbances. The objective is to control the reactor 
temperature )(T  and the cumulative mass average molecular weight of polymer 

)( ac
wM  by manipulating the mass flowrate of cooling water )( wm  and the mass 

flowrate of propylene monomer )( em . The cumulative mass average molecular 

weight of polymer )( ac
wM  can be controlled by monitoring the mass of polymer in 

the reactor )(Pol . The setpoints (with respect to the nominal values) for the mass of 
polymer in the reactor )(Pol  and the reactor temperature )(T  are 600 kg and -5 K, 
respectively. The results are presented in the form of deviation variables for the ease 
of understanding. 
 
Case study 2.1 The control performance when the kinetic constant for 
propagation rate ( pK ) and the heat of reaction ( H ) are uncertain.   
 
In this case study, the developed control algorithm is applied to a simulation case 
study of polypropylene polymerization process in which the kinetic constant for 
propagation rate )( pK  and the heat of reaction )( H  are uncertain. Figure 4.8 
shows the simulation results when the values of the kinetic constant for propagation 
rate )( pK  and the heat of reaction )( H  are both increased by 1%, 3% and 5% 
from the nominal values. It is seen that the controlled variables, which are the mass 
of polymer in the reactor )(Pol  and the reactor temperature )(T , can be regulated 
to the setpoints Pol 600 kg and T -5 K despite increased values of uncertainties. 
This is due to the fact that the developed control algorithm is able to ensure robust 
stability in the presence of uncertain parameters. 
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a) The mass of polymer in the reactor )(Pol  

 
b) The reactor temperature )(T  

Fig. 4.8 The controlled variables: a) the mass of polymer in the reactor )(Pol  and b) 
the reactor temperature )(T  when the values of the kinetic constant for propagation 
rate ( pK ) and the heat of reaction ( H ) are uncertain. 
 
Figure 4.9 shows the manipulated variables, which are the mass flowrate of 
propylene monomer )( em  and the mass flowrate of cooling water )( wm , when the 
values of the kinetic constant for propagation rate )( pK  and the heat of reaction 

)( H  are both increased by 1%, 3% and 5% from the nominal values. It can be 
observed from Fig. 4.9(a) that the values of the mass flowrate of propylene 
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monomer )( em  are high at the beginning of the process in order to steer the mass of 
polymer in the reactor )(Pol  to the setpoint. Then, the values of the mass flowrate 
of propylene monomer )( em  reach a steady state after 6 hr. Figure 4.9(b) shows the 
mass flowrate of cooling water )( wm  as a function of time. It is seen that values of 
the mass flowrate of cooling water )( wm  reach a steady state after 6 hr as the 
reactor temperature )(T  is regulated to the setpoint.  
 

 
a) The mass flowrate of propylene monomer )( em  

 
b) The mass flowrate of cooling water )( wm  
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Fig. 4.9. The manipulated variables: a) the mass flowrate of propylene monomer 
)( em  and b) the mass flowrate of cooling water )( wm  when the values of the kinetic 

constant for propagation rate ( pK ) and the heat of reaction ( H ) are uncertain. 
 

The cumulative mass average molecular weight of polymer )( ac
wM  in the reactor is 

shown in Fig. 4.10. It is seen that the cumulative mass average molecular weight of 

polymer )( ac
wM  can be regulated to the desired value of 1.57x105 g/mol for all 

cases. 

 
 

Fig. 4.10. The cumulative mass average molecular weight of polymer )( ac
wM  when 

the values of the kinetic constant for propagation rate ( pK ) and the heat of reaction 
( H ) are uncertain. 
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Case study 2.2 The control performance in the presence of the disturbance 
acting on the mass of polymer in the reactor )( Pold  and the disturbance acting 
on the reactor temperature )( Td . 
 
In this case study, the developed control algorithm is applied to a simulation case 
study of polypropylene polymerization process in the presence of the disturbance 
acting on the mass of polymer in the reactor )( Pold  and the disturbance acting on 
the reactor temperature )( Td . Figure 4.11 shows the simulation results when the 
disturbance acting on the mass of polymer in the reactor )( Pold  and the disturbance 
acting on the reactor temperature )( Td  are varied as 

)10sin(9 ),1sin(9 ),9sin(1.0 kkkdPol   and )1sin(9 ),0.1sin(9 ),9sin(01.0 kkkdT   where k  
is the simulation time step (hr). It is seen that the controlled variables, which are the 
mass of polymer in the reactor )(Pol  and the reactor temperature )(T , are regulated 
to the neighborhood of the setpoints Pol 600 kg and T -5 K. It should be noted 
that in the presence of the additive disturbances, the controlled variables can only 
be regulated to the neighborhood of the setpoints due to the nature of the 
disturbances. 
 

 
a) The mass of polymer in the reactor )(Pol  
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b) The reactor temperature )(T  

 
Fig. 4.11. The controlled variables: a) the mass of polymer in the reactor )(Pol  and 
b) the reactor temperature )(T  in the presence of the disturbance acting on the 
mass of polymer in the reactor )( Pold  and the disturbance acting on the reactor 
temperature )( Td . 
 
The manipulated variables, which are the mass flowrate of propylene monomer 

)( em  and the mass flowrate of cooling water )( wm , are shown in Fig. 4.12. In the 
presence of the additive disturbances, it can be observed that the mass flowrate of 
propylene monomer )( em  and the mass flowrate of cooling water )( wm  are both 
fluctuating around the steady-state values as the controlled variables are regulated 
to the neighborhood of the setpoints due to the effects of the disturbances.     
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a) The mass flowrate of propylene monomer )( em    

 
b) The mass flowrate of cooling water )( wm  

Fig. 4.12. The manipulated variables: a) the mass flowrate of propylene monomer 
)( em  and b) the mass flowrate of cooling water )( wm  in the presence of the 

disturbance acting on the mass of polymer in the reactor )( Pold  and the disturbance 
acting on the reactor temperature )( Td . 
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The cumulative mass average molecular weight of polymer )( ac
wM  in the reactor is 

shown in Fig. 4.13. It is seen that the cumulative mass average molecular weight of 

polymer )( ac
wM  can be regulated to the neighborhood of the desired value of 

1.57x105 g/mol despite the time-varying disturbances acting on the system. 
 

 
 

Fig. 4.13. The cumulative mass average molecular weight of polymer )( ac
wM  in the 

presence of the disturbance acting on the mass of polymer in the reactor )( Pold  and 
the disturbance acting on the reactor temperature )( Td . 
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(3) Results from the application of the developed algorithm to a partially 
simulated exothermic pilot plant reactor. 
 
In this section, the developed control algorithm is applied to a partially simulated 
exothermic pilot plant (PARSEX) reactor. The objective is to control the simulated 
reactor concentration C  and the reactor temperature T  by manipulating the 

simulated reactor feed concentration fC  and the flow rate of cooling water cwm
.

, 
respectively. The reaction is simulated in the computer while the heat transfer is 
really occurred in the reactor. Two case studies are conducted as follows 
 
Case study 3.1 The control performance when the pre-exponential factor ( ok ) 

and the heat of reaction ( H ) are uncertain. 
 
In this case study, the developed control algorithm is applied to the control of the 
simulated reactor concentration C  and the reactor temperature T  when the pre-
exponential factor ok  and the heat of reaction H  are uncertain. The values of the 
pre-exponential factor ok  and the heat of reaction H  are in the range between -
20% to +20% from the nominal values. Figure 4.14 shows the simulated reactor 
concentration C  and the reactor temperature T  when the values of pre-
exponential factor are uncertain in the range between -20% to +20% from the 
nominal values. The developed controller can drive the simulated reactor 
concentration and the reactor temperature to the set point despite the presence of 
uncertainty. It can be observed that high value of the pre-exponential factor (+20%) 
leads to the overshoot for both state variables.  
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a) The simulated reactor concentration  

 

 
b) The reactor temperature 

 
Figure 4.14 The simulated reactor concentration C  and the reactor temperature T  
when the values of pre-exponential factor ok  are uncertain in the range between -
20% to +20% from the nominal values. 
 
Figure 4.15 shows the simulated reactor concentration C  and the reactor 
temperature T  when the values of the heat of reaction H  are uncertain in the 
range between -20% to +20% from the nominal values. In the presence of 
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uncertainty in the heat of reaction, the simulated reactor concentration and the 
reactor temperature can be regulated to the set point. However, high value of the 
heat of reaction (+20%) causes the overshoot of the reactor temperature.  
 

   
a) The simulated reactor concentration  

 
b) The reactor temperature 

Figure 4.15 The simulated reactor concentration C  and the reactor temperature T  
when the values of the heat of reaction H  are uncertain in the range between  
-20% to +20% from the nominal values. 
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Case study 3.2 The control performance when the cooling water temperature 
( cwT ) and the reactor feed rate ( F ) are uncertain. 
 
In this case study, the developed control algorithm is applied to the control of the 
simulated reactor concentration C  and the reactor temperature T  when the cooling 
water temperature cwT  and the reactor feed rate F  are uncertain. The values of the 
cooling water temperature cwT  are in the range between -2% to +2% from the 
nominal values (the cooling water temperature cannot be further increased beyond 
+2% due to the limit in the heat transfer driving force). The values of the reactor 
feed rate F  are in the range between -20% to +20% from the nominal values. Figure 
4.16 shows the simulated reactor concentration C  and the reactor temperature T  
when the values of the cooling water temperature cwT  are uncertain in the range 
between -2% to +2% from the nominal values. High value of the cooling water 
temperature (+2%) has a small value of heat transfer driving force causing the 
sluggish response for the simulated reactor concentration and the reactor 
temperature.  
 

   
a) The simulated reactor concentration  
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b) The reactor temperature 

 
Figure 4.16 The simulated reactor concentration C  and the reactor temperature T  
when the values of the cooling water temperature cwT  are uncertain in the range 
between -2% to +2% from the nominal values. 
 
Figure 4.17 shows the simulated reactor concentration C  and the reactor 
temperature T  when the values of the reactor feed rate F  are uncertain in the 
range between -20% to +20% from the nominal values. High value (+20%) of the 
reactor feed rate F  leads to a small value of the residence time in the reactor. As 
the time that the substances spent in the reactor decrease, the slow responses of 
the simulated reactor concentration and the reactor temperature are obtained.   
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a) The simulated reactor concentration   

 
b) The reactor temperature 

Figure 4.17 The simulated reactor concentration C  and the reactor temperature T  
when the values of the reactor feed rate F  are uncertain in the range between -20% 
to +20% from the nominal values. 
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5. Conclusions 
 

This research presents a novel off-line tube-based robust model predictive 
control algorithm. In the presence of both uncertain parameters and disturbances, 
robust stability and constraint satisfaction can be guaranteed due to the fact that the 
trajectories of uncertain systems are restricted to lie in a sequence of tubes. The on-
line computational time is reduced because the optimization problems are solved 
off-line so the developed algorithm is applicable to fast dynamic systems.  

The applications of the developed algorithm are demonstrated in the control 
problem of uncertain polymerization process for polypropylene in which the values 
of reaction rate constants are uncertain. The presence of uncertain parameters can 
lead to an unexpected thermal runaway because the polymerization reactions taking 
place are fast and highly exothermic. In the case of uncertain kinetic constant and 
uncertain heat of reaction, the developed control algorithm can regulate the 
controlled variables, which are the mass of polymer in the reactor and the reactor 
temperature, to the desired set point by manipulating the mass flow rate of 
propylene monomer and the mass flow rate of cooling water, respectively. In the 
presence of the disturbances acting on the system, the developed control algorithm 
is able to regulate the mass of polymer in the reactor and the reactor temperature 
to the neighborhood of the desired set point so robust stability of the system can be 
guaranteed. The developed algorithm can systematically handle both uncertain 
parameters and disturbances. 

Finally, the developed control algorithm is applied to a partially simulated 
exothermic (PARSEX) reactor operated in the continuous mode. In the presence of 
uncertain parameters such as the reaction rate constant, heat of reaction, cooling 
water temperature and reactor feed rate, the developed control algorithm can 
regulate the reactor temperature to the set point despite uncertainty so robust 
stability of the system is ensured. 
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6. Recommendations for future research 
 
6.1 The state variables are assumed measurable in this research. In some 
applications, however, the state variables cannot be directly measured and only 
output variables can be measured. In next research, the output feedback controller 
should be developed to handle these situations. 
 
6.2 The region of tube is constant in this research. The control performance can be 
further improved by using time-varying tubes. 
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An Off-Line Formulation of Tube-Based Robust MPC
Using Polyhedral Invariant Sets

PORNCHAI BUMROONGSRI1 and SOORATHEP KHEAWHOM2

1Department of Chemical Engineering, Mahidol University, Nakhon Pathom, Thailand
2Department of Chemical Engineering, Chulalongkorn University, Bangkok, Thailand

In this paper, an off-line formulation of tube-based robust model predictive control (MPC) using polyhedral invariant sets is
proposed. A novel feature is the fact that no optimal control problem needs to be solved at each sampling time. Moreover, the
proposed tube-based robust MPC algorithm can deal with the linear time-varying (LTV) system with bounded disturbance. The
simulation results show that the state at each time step is restricted to lie within a tube whose center is the state of the nominal
LTV system that converges to the origin. Finally, the state is kept within a tube whose center is at the origin, so robust stability
is guaranteed. Satisfaction of the state and control constraints is guaranteed by employing tighter constraint sets for the nominal
LTV system.

Keywords: Bounded disturbance; Linear time-varying system; Robust stability; Tube-based robust MPC

Introduction

Tube-based robust model predictive control (MPC) is an
advanced control algorithm that can deal with model uncer-
tainty. The basic idea of tube-based robust MPC is to main-
tain a state trajectory of an uncertain system inside a
sequence of tubes (Rawlings and Mayne, 2009). Tube-based
robust MPC is motivated by the fact that a real state trajec-
tory differs from a state trajectory of a nominal system due
to uncertainty (Mayne and Langson, 2001). Chisci et al.
(2001) developed a tube-based robust model predictive
controller for the linear time-invariant (LTI) system subject
to bounded disturbance. The control law has the form
u¼Kxþ c, where K is obtained by solving an unconstrained
linear quadratic regulator (LQR) problem, x is the state, and
c is the vanishing input, that is, ci¼ 0 for i� control horizon.
The objective is to drive the state of an uncertain system to a
terminal set while using c as little as possible. Constraint ful-
fillment is guaranteed by replacing the original constraints
with more stringent ones. A larger control horizon implies
better control performance at the price of a higher computa-
tional load, so a suitable trade-off is required. Langson et al.
(2004) proposed tube-based robust MPC employing the
time-varying control inputs instead of the LTI control law.
A sequence of time-varying control inputs is obtained by
solving an optimal control problem subject to the additional
constraint sets in order to guarantee robust stability. Since

the control inputs are time-varying, the proposed MPC
algorithm can achieve better control performance than the
conventional tube-based MPC algorithm using the LTI con-
trol law. The price to be paid is the computational com-
plexity that increases with the prediction horizon.

Mayne et al. (2005) established robust exponential stab-
ility of the disturbance invariant set for the LTI system with
bounded disturbance. The optimal control problem solved
at each sampling time includes the initial state of the nom-
inal model as a decision variable. The result is that the value
function is zero in the disturbance invariant set so robust
exponential stability of the disturbance invariant set can be
established. The control law has the form u ¼ Kðx� �xxÞþ
�uu, where �xx and �uu are the state and control inputs of the nom-
inal system, respectively. Higher online computational time
is required because the optimal control problem with
increased decision variable has to be solved at each sampling
time. In the case when the state of the LTI system with
bounded disturbance is not exactly known, tube-based
robust MPC can be implemented based on the observer state
as proposed by Mayne et al. (2006). A simple Luenberger
observer is employed to estimate the state. The state esti-
mation and control errors at each time step are bounded
by minimal robust positively invariant sets. Hence, the
actual and observer states are restricted to lie within tubes
whose center is the state of the nominal system. The control
law has the form u ¼ Kðx̂x� �xxÞ þ �uu, where x̂x is the observer
state. The controller is based on the observer state so the
state �xx and control input �uu of the nominal system are subject
to tighter constraint sets than the case when the state is
exactly known. In Mayne et al. (2009), this idea is extended
to the case when the initial state estimation error does not lie
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in the minimal robust positively invariant set but it lies in the
time-varying set that converges to the minimal robust posi-
tively invariant set. In this case, higher online computational
time is required because the time-varying set is computed
online.

Tube-based robust MPC for tracking of LTI system with
bounded disturbance was presented by Limon et al. (2010).
The artificial steady variables are introduced as the decision
variables in the optimal control problem. If the target is
unreachable, the system will be steered to the neighborhood
of the artificial target. The proposed MPC algorithm is suit-
able for the system whose target is significantly changed.
However, the main drawback is that the proposed MPC
algorithm requires high online computational time because
some of the decision variables and constraints are intro-
duced to the optimal control problem. Gonzalez et al.
(2011) proposed tube-based robust MPC for tracking of lin-
ear time-varying (LTV) system subject to bounded disturb-
ance. The proposed MPC algorithm requires an additional
assumption that the time-varying parameter at each step
within the prediction horizon is known a priori. Then, a
reachable set at each time step is calculated instead of a dis-
turbance invariant set in order to reduce the conservative-
ness. Although the conservativeness is reduced, the
computational problem is more severe because both optimal
control problem and reachable set are computed online.

In this paper, an off-line formulation of tube-based robust
MPC using polyhedral invariant sets is proposed. The main
contributions are that: (i) we propose tube-based robust
MPC that solves all of the optimal control problems off-line,
so no optimal control problem needs to be solved online; (ii)
the proposed tube-based robust MPC algorithm can deal
with LTV system subject to bounded disturbance. Unlike
Gonzalez et al. (2011), the proposed algorithm does not
require an additional assumption that the time-varying para-
meter at each step within the prediction horizon is known a
priori. This article is organized as follows. The backgrounds
of the conventional tube-based robust MPC are described in
Backgrounds of Conventional Tube-Based Robust MPC sec-
tion. In An Off-Line Formulation of Tube-Based Robust
MPC Using Polyhedral Invariant Sets section, off-line
tube-based robust MPC is proposed. In Illustrative Example
section, the simulation results are presented. The conclusions
are then drawn in Conclusions section.

Nomenclature

Given two subsets X and Y of Rn, Minkowski set addition
and set difference are defined, respectively, by X�Y: ¼
fxþ yjx2X, y2Yg and X�Y: ¼fxjx�Y�Xg. The dis-
tance of a point x2R

n from a set Y�R
n is denoted by

d(x, Y): ¼ inffjx� yjjy2Yg where �j j denotes the Euclidean
norm. The distance of a point x2R

n from a point y2R
n

is denoted by d(x, y): ¼ jx� yj. For a matrix A, A> 0 means
that A is a positive-definite matrix and A< 0 means that A is
a negative-definite matrix. The spectral radius of a matrix A
is denoted by q(A). Convf � g denotes the convex hull of the
elements in f � g.

Backgrounds of Conventional Tube-Based Robust
MPC

In this section, some relevant backgrounds for the conven-
tional tube-based robust MPC are presented. Consider the
following discrete-time LTI system with disturbance

xþ ¼ Axþ Buþ w ð1Þ

where x2R
n is the state, u2R

m is the control input, w2R
n

is the bounded disturbance, and xþ2R
n is the successor

state. The system is subject to the state constraint x2X

and the control constraint u2U, where X�R
n and U�R

m

are compact, convex, and each set contains the origin as an
interior point. The disturbance is bounded, that is, w2W

where W�R
n is compact, convex, and contains the origin

as an interior point. The objective is to robustly stabilize
the system in Equation (1). The presence of a persistent dis-
turbance w means it is not possible to regulate the state x to
the origin. The best that can be hoped for is to regulate the
state to a neighborhood of the origin.

Let the nominal system be defined by

�xxþ ¼ A�xxþ B�uu ð2Þ

where �xx 2 Rn and �uu 2 Rm are the state and control inputs of
the nominal system, respectively. The predicted nominal state
trajectory and control sequence when the initial state is �xx0 are
denoted by �xx :¼ f�xx0; �xx1; . . . ; �xxNg and �uu :¼ f�uu0; �uu1; . . . ; �uuN�1g,
respectively, where N is the prediction horizon. Consider the
following equation which is the difference between Equations
(1) and (2)

xþ � �xxþ ¼ Aðx� �xxÞ þ Bðu� �uuÞ þ w ð3Þ
In order to counteract the effect of disturbance, the control

law u ¼ Kðx� �xxÞ þ �uu is employed, where K is the disturbance
rejection gain. The system in Equation (3) is rewritten as

xþ � �xxþ ¼ ðAþ BKÞðx� �xxÞ þ w ð4Þ

We will bound xþ � �xxþ by a robust positively invariant
set Z. The definition of Z for the LTI system with
disturbance is as follows:

Definition 1. The set Z�R
n is a robust positively invariant

set of the LTI system with disturbance xþ¼Axþw, if
AZ�W�Z for 8 x2Z and 8w2W.

For the system in Equation (4), it is clear that if K is
chosen such that q(AþBK)< 1, we can bound xþ � �xxþ

by a robust positively invariant set Z satisfying
(AþBK)Z�W�Z for 8ðx� �xxÞ 2 Z and 8 w2W. It is
desirable that Z be as small as possible. The minimal Z
can be calculated as (Kolmanovsky and Gilbert, 1998):

Z ¼ �
1

i¼0
ðAþ BKÞiW ¼W� ðAþ BKÞ

W� ðAþ BKÞ2W� ðAþ BKÞ3W� . . . ð5Þ
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If (AþBK) is nilpotent with index s, that is,
(AþBK)s¼ 0, then Z in Equation (5) can be finitely deter-
mined. In the case when (AþBK) is not nilpotent, Z in
Equation (5) can be approximated by using the method in
Raković (2005) and Raković et al. (2005).

Since xþ � �xxþ is bounded by Z, we can control the nom-
inal system �xxþ ¼ A�xxþ B�uu in such a way that LTI system
with disturbance xþ¼AxþBuþw satisfies the original state
and control constraints x2X and u2U, respectively. To
achieve this, the tighter constraint sets for the nominal sys-
tem are employed �xxi 2 X�Z, �uui 2 U�KZ for
i2f0, . . ., N� 1g. In order to ensure stability, an additional
terminal constraint is employed �xxN 2 X f � X�Z where
�XXf is the terminal constraint set. The cost function for a tra-
jectory of the nominal system �xxþ ¼ A�xxþ B�uu is

VNð�xx0; �uuÞ :¼
XN�1

i¼0
lð�xxi;�uuiÞ þ Vf ð�xxNÞ ð6Þ

where lð�xxi; �uuiÞ :¼ 1
2 ½�xxT

i Q�xxi þ �uuT
i R�uui	 is the stage cost;

Vf ð�xxNÞ :¼ 1
2

�xxT
NP�xxN is the terminal cost; Q, R, and P are

the positive definite weighting matrices. The terminal con-
straint set and the terminal cost must satisfy the following
usual assumptions (Mayne et al., 2000):

Assumption 1. ðAþBKÞ �XXf � �XXf ; �XXf �X�Z;KX f �U�;KZ.

Assumption 2. Vf ððAþ BKÞ�xxÞ þ lð�xx;K�xxÞ 
 Vf ð�xxÞ; 8�xx 2 �XXf .

In summary, at each sampling time the state x is mea-
sured and the following optimization problem is solved
online:

min
�xx0;�uu

VNð�xx0; �uuÞ ð7Þ

such that x 2 �xx0 � Z ð8Þ

�xxiþ1 ¼ A�xxi þ B�uui; i 2 f0; . . . ;N � 1g ð9Þ

�xxi 2 X� Z; �uui 2 U� KZ; i 2 f0; . . . ;N � 1g ð10Þ

�xxN 2 X f ð11Þ

Then, the control law u ¼ Kðx� �xxÞ þ �uu; �xx ¼ �xx0; �uu ¼ �uu0 is
implemented to the process.

An Off-Line Formulation of Tube-Based Robust MPC
Using Polyhedral Invariant Sets

It is seen that the conventional tube-based robust MPC in
Backgrounds of Conventional Tube-Based Robust MPC
section does not include a time-varying parameter in the
problem formulation. Moreover, the optimal control prob-
lem must be solved at each sampling time. In this section,
an off-line formulation of tube-based robust MPC is pre-
sented. No optimal control problem needs to be solved
online. Additionally, the time-varying parameter is included
in the problem formulation. Consider the following

discrete-time LTV system with disturbance

xþ ¼ Akxþ Bkuþ w ð12Þ

The descriptions for the state x2X, the control input
u2U, and the disturbance w2W are the same as in Back-
grounds of Conventional Tube-Based Robust MPC section.
The only difference is that, in this case, the matrices Ak and
Bk are not constant but they vary with the time-varying
parameter k. The time-varying parameter k can be measured
at each sampling time but its future values are uncertain. We
make the following assumption:

Assumption 3. ½AkBk	 2 Convf½AjBj	; 8j 2 1; 2; . . . ;Lg, where
½AjBj	 are vertices of the convex hull and L is the number of
vertices of the convex hull. The pair ½Aj Bj	 is controllable.

Let the nominal LTV system be defined by

x0þ ¼ Akx0 þ Bku0 ð13Þ

where x0 2R
n and u0 2R

m are the state and control inputs
of the nominal LTV system, respectively. The pre-
dicted state trajectory and control sequence when the initial
state is x00 are denoted by x0 :¼ fx00; x01; . . . ; x0Ng and
u0 :¼ fu00; u01; . . . ; u0N�1g, respectively. Consider the following
equation which is the difference between the systems in
Equations (12) and (13):

xþ � x0þ ¼ Akðx� x0Þ þ Bkðu� u0Þ þ w ð14Þ

In order to counteract the effect of disturbance, the con-
trol law u¼K(x� x0)þ u0 is employed where K is the dis-
turbance rejection gain. The system in Equation (14) is
rewritten as

xþ � x0þ ¼ ðAk þ BkKÞðx� x0Þ þ w ð15Þ

We will bound xþ� x0þ by a robust positively invariant
set Z. The definition of Z for the LTV system with disturb-
ance is as follows:

Definition 2. The set Z�R
n is a robust positively

invariant set of the LTV system with disturbance
xþ¼Akxþw, if AkZ�W�Z for 8 x2Z, 8w2W, and

8Ak 2 ConvfAj; 8j 2 1; 2; . . . ;Lg.

For the system in Equation (15), it is clear that if K satis-
fies (A

j
þB

j
K)TP(A

j
þB

j
K)�P< 0, 8 j2f1, . . ., Lg where P is

a Lyapunov matrix, then ðAk þ BkKÞT PðAk þ BkKÞ�
P < 0; 8½AkBk	 2 Convf½AjBj	; 8j 2 1; 2; . . . ;Lg and we can
bound xþ� x0þ by a robust positively invariant set Z satisfy-
ing (AkþBkK)Z�W�Z for 8(x� x0)2Z, 8w2W and

8½AkBk	 2 Convf½AjBj	; 8j 2 1; 2; . . . ;Lg. It is desirable that
Z be as small as possible. Unlike Equation (5), in the case
of the LTI system with disturbance, the minimal Z of the
LTV system with disturbance is Z ¼ �1i¼0 ðAk þ BkKÞi W.
Since ½AkBk	 2 Convf½AjBj	; 8j 2 1; 2; . . . ;Lg, the minimal
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Z of the LTV system with disturbance can be calculated as

Z ¼W� ConvfðAj þ BjKÞW; 8j 2 1; 2; . . . ;Lg
� ConvfðAj þ BjKÞðAl þ BlKÞ;W8j; l 2 1; 2; . . . ;Lg
� fConvðAj þ BjKÞðAl þ BlKÞðAm þ BmKÞ

W; 8j; l;m 2 1; 2; . . . ;Lg � . . . ð16Þ

Defining Fs :¼ �s�1
i¼0 ðAk þ BkKÞiW, F

s
can be properly

scaled for some finite integer s to obtain the outer approxi-
mation of Z in Equation (16). Since we can bound xþ�
x0þ by Z, the following proposition can be established:

Proposition 1. If x2x0 �Z and u¼K(x� x0)þ u0, then
xþ2 x0þ�Z for 8w2W and 8½AkBk	 2 Convf½AjBj	;
8j 2 1; 2; . . . ;Lg.

Proposition 1 states that the control law u¼K(x� x0)þ u0

keeps the state x of the LTV system with disturbance
xþ¼AkxþBkuþw close to the state x0 of the nominal
LTV system x0þ¼Akx0 þBku0. It is clear that if we can regu-
late x0 to the origin, then x must be regulated to a robust
positively invariant set Z whose center is at the origin. An
off-line robust MPC algorithm for the nominal LTV system
x0þ¼Akx0 þBku0 has been developed by Bumroongsri and
Kheawhom (2012). The problem of regulating the state x0

to the origin has been considered. In this approach, a
sequence of stabilizing feedback gains F

i
corresponding to

a sequence of polyhedral invariant sets P
i
, i¼f1, . . ., N

P
g,

where N
P

is the number of polyhedral invariant sets, is pre-
computed off-line by solving the optimal control problems
subject to LMI constraints (Boyd and Vandenberghe,
2004). At each sampling time, the state x0 is measured and
the smallest P

i
containing x0 is determined. Then, we set

the real-time stabilizing feedback gain F equal to F
i

and
apply the control law u0 ¼Fx0 to the process. The control
law u0 ¼Fx0 minimizes the following cost function:

V1ðx00; u0Þ :¼ max
½AkBk	2Convf½Aj Bj 	;8j21;2; ... ;Lg

X1
i¼0

x0Ti

Qx0i þ ðFx0iÞ
T RðFx0iÞ ð17Þ

where x0i is the state of the nominal LTV system at prediction
time i and Q and R are the positive-definite weighting
matrices. Additionally, the control law u0 ¼Fx0 ensures that
the Lyapunov function V(x0): ¼ x0T Px0 is a strictly decreas-
ing function satisfying

Vðx0þÞ � Vðx0Þ 
 �x0T Qx0 � ðFx0ÞT RðFx0Þ; 8½AkBk	 2
Convf½AjBj	; 8j 2 1; 2; . . . ;Lg ð18Þ

where P is a Lyapunov matrix. At each sampling time,
although the future values of the time-varying parameter k
in the prediction horizon (which is the infinite horizon in this
case) are unknown, the satisfaction of Equation (18) for the
stabilizing feedback gain F ensures that the time-varying set
of all future states Riþ1 ¼ ðAk þ BkFÞRi; Ro ¼ fx00g, con-
verges to the origin dð0;Riþ1Þ ! 0; 8½AkBk	 2 Conv

f½AjBj	; 8j 2 1; 2; . . . ;Lg. Hence, robust stability of the
nominal LTV system x0þ¼ (AkþBkF)x0 is guaranteed. In
order to guarantee satisfaction of the original state and con-
trol constraints, x2X and u2U, we must employ tighter
constraint sets for the nominal LTV system, that is, x0 2X�
Z and Fx0 2U�KZ. The control law u¼K(x� x0)þ u0 is
now rewritten as u¼K(x� x0)þFx0. An important
consequence is the following result:

Proposition 2 If x2x0 �Z, x0 2X� Z, and Fx0 2U�KZ,
then the control law u¼K(x� x0)þFx0 of the LTV system
with disturbance xþ¼AkxþBkuþw ensures satisfaction of
the original constraints x2X, u2U for 8w2W and

8½AkBk	 2 Convf½AjBj	; 8j 2 1; 2; . . . ;Lg.

Proposition 2 states that the control law u¼K(x� x0)þFx0

ensures satisfaction of the original state and control
constraints. In summary, off-line tube-based robust MPC for
LTV system with disturbance xþ¼AkxþBkuþw can be
formulated as follows:

Off-line:

Step 1: Calculate the disturbance rejection gain K satisfying
(A

j
þB

j
K)TP(A

j
þB

j
K)�P< 0, 8j2f1, . . ., Lg. Then,

calculate a tube Z in Equation (16).
Step 2: Calculate a sequence of stabilizing feedback gains F

i

and the corresponding sequence of polyhedral invariant
sets P

i
, i¼f1, . . ., N

P
g using the method in Bumroongsri

and Kheawhom (2012) with tighter constraint sets for
the nominal LTV system, that is, x0 2X� Z and
Fx0 2U�KZ.

Online:
At the first sampling time (t¼ 0) : Measure the state x and

the time-varying parameter k. Find the smallest polyhedral
invariant set P

i
containing the measured state x, set F¼F

i

and apply the control law u¼Fx to the process. Then, calcu-
late x0þ from x0þ¼ (AkþBkF)x. (Note that at the first sam-
pling time, x¼ x0 so the control law u¼K(x� x0)þFx0 is
reduced to u¼Fx.)

At each sampling time (t> 0) : Measure the state x and the
time-varying parameter k. Find the smallest polyhedral
invariant set P

i
containing x0 (which is calculated from the

previous step), set F¼F
i
, and apply the control law

u¼K(x� x0)þFx0 to the process. Then, calculate x0þ from
x0þ¼ (AkþBkF)x0.

Theorem 1. The proposed tube-based MPC algorithm steers
any initial state x of the system xþ¼AkxþBkuþw in a
sequence of polyhedral invariant setsP

i
, i¼f1, . . ., N

P
g to a

robust positively invariant set Z whose center is at the origin
and thereafter maintains the state in Z for 8w2W and

8½AkBk	 2 Convf½AjBj	; 8j 2 1; 2; . . . ;Lg.

Proof. Consider the following difference equation between
xþ¼AkxþBkuþw and x0þ¼Akx0 þBku0, where u¼K
(x� x0)þFx0 and u0 ¼Fx0,

xþ � x0þ ¼ ðAk þ BkKÞðx� x0Þ þ w ð19Þ

Tube-Based Robust MPC Using Polyhedral Invariant Sets 739



The disturbance rejection gain K satisfies (A
j
þB

j
K)T

P(A
j
þB

j
K)�P< 0, 8 j2f1, . . ., Lg so xþ� x0þ is bounded

by a robust positively invariant set Z, that is, xþ2 x0þ�Z.
Since the stabilizing feedback gain F ensures that the Lyapu-
nov function is a strictly decreasing function satisfying
Equation (18), the state x0þ must converge to the origin
d(x0þ, 0)! 0. Since xþ2x0þ�Z, xþ must converge to a tube
Z whose center is at the origin d(xþ, Z)! 0. Finally, the dis-
turbance rejection controller u¼Kx keeps the state within a
tube Z whose center is at the origin. &

Corollary 1. The state of the LTV system with disturbance
xþ¼AkxþBkuþw at each time step is restricted to lie
within a tube whose center is the state of the nominal LTV
system x0þ¼Ak x0 þBku0.

Remark 1. For any initial state x contained in the first poly-
hedral invariant set P

1
(which is largest in the sequence ofP

i
,

i¼f1, . . ., N
P
g), there exists a control law that is able to steer

the state to a tube Z whose center is at the origin by satisfy-
ing all state and control constraints x2X, u2U for 8w2W

and 8½AkBk	 2 Convf½Aj Bj	; 8j 2 1; 2; . . . ;Lg. Hence, the
region of attraction for the proposed MPC algorithm is P

1
.

Illustrative Example

Example 1. Consider the following LTV system with
bounded disturbance

xþ ¼ 1 1
0 k

� �
xþ 0:5

1

� �
uþ w ð20Þ

The state x2X, where X: ¼fx2R
2j[0 1]x
 2g; the

control u2U, where U: ¼fu2 jjuj 
 1g; the disturbance
w2W, where W :¼ fw 2 R2j½�0:1� 0:1T 
 w 
 ½0:10:1Tg;
and the time-varying parameter k2L, where
L:¼fk2Rj0.9
 k
 1.1g. The weighting matrices in the cost
function (Equation (17)) are given as Q¼ I and R¼ 0.01.
The following nominal LTV system:

x0þ ¼ 1 1
0 k

� �
x0 þ 0:5

1

� �
u0 ð21Þ

is subject to tighter state and control constraints, that is,
x0 2X� Z and u0 2U�KZ. The disturbance rejection gain
K ¼ ½�0:66� 1:33	 satisfies (A

j
þB

j
K)TP(A

j
þB

j
K)�P< 0,

8 j2f1,2g. The difference equation between Equations (20)
and (21) can be written as

xþ � x0þ ¼ 1 1
0 k

� �
ðx� x0Þ þ 0:5

1

� �
ðu� u0Þ þ w ð22Þ

The closed-loop system is simulated using the initial state

x ¼ x0 ¼ ½�5� 2	T. The time-varying parameter k and the
disturbance w are varied as k¼ 1þ 0.1sin(4k) and

w ¼ ½0:1 sinð4kÞ0:1 sinð4kÞ	T , respectively, where k2f1, . . .,
19g is the simulation horizon.

Figure 1 shows a robust positively invariant set Z pre-
computed off-line. The set Z is shown in yellow. The blue
line represents the trajectory of the difference Equation
(22). Starting from the origin, it is seen that the trajectory
of the difference equation is restricted to lie within the set Z.

Figure 2 shows a sequence of 10 polyhedral invariant set-
sP

i
, i2f1, . . ., 10g precomputed off-line. In this example,

only 10 polyhedral invariant sets are precomputed because
P

i
are almost constant for i> 10. The red line represents

the trajectory of the nominal LTV system (Equation (21)).
Starting from the initial point x ¼ x0 ¼ ½�5� 2	T, the state
of the nominal LTV system at each time step is restricted
to lie within a sequence of 10 polyhedral invariant sets P

i
,

i2f1, . . ., 10g precomputed off-line. Finally, the state of
the nominal LTV system converges to the origin.

Fig. 1. The robust positively invariant set Z precomputed
off-line. The set Z is shown in yellow.

Fig. 2. A sequence of 10 polyhedral invariant sets Pi, i2f1, . . ., 10g
precomputed off-line. The polyhedral invariant sets are shown in
yellow.
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The trajectory of the LTV system with disturbance
(Equation (20)) is shown in Figure 3. The region shown in
green is the infeasible region of the state constraint X: ¼
fx2R

2j[0 1]x
 2g. The red line corresponds to the trajectory
of the nominal LTV system (Equation (21)). The cross-section
of a tube Z precomputed off-line is shown in yellow. It is seen
that the state of the LTV system with disturbance at each time
step is restricted to lie within a tube Z whose center is the state
of the nominal LTV system that converges to the origin.
Finally, the state of the LTV system with disturbance is kept
within a tube Z whose center is at the origin.

Figure 4 shows the control input as a function of sam-
pling time. The region shown in yellow is U�KZ. The red
line corresponds to the control input of the nominal LTV
system (Equation (21)). The black line corresponds to the
control input of the LTV system with disturbance (Equation
(20)). It can be observed that the control input of the

nominal LTV system is restricted to lie within the region
U�KZ so that the control input of the LTV system with dis-
turbance satisfies the control constraint U: ¼fu2 jjuj 
 1g.

Figure 5 shows the trajectories of the LTV system with
disturbance (Equation (20)) when the disturbance w2W is
randomly time-varying. At each time step, the states of the
LTV system with random disturbance lie within a tube Z
whose center is the state of the nominal LTV system that
converges to the origin.

Example 2. In this example, the proposed algorithm is applied
to a non-isothermal continuous stirred tank reactor (CSTR)
in which an irreversible exothermic reaction A!B takes
place. The dimensionless modeling equations of this CSTR
can be written as (Silva and Kwong, 1999; Nagrath et al.,
2002)

dx1

ds
¼ qðx1f � x1Þ � ux1 exp

x2

1þ x2

c

 !
þ w1 ð23Þ

dx2

ds
¼ qðx2f � x2Þ � dðx2 � x3Þ þ bux1 exp

x2

1þ x2

c

 !
þ w2

ð24Þ

dx3

ds
¼ d1½qcðx3f � x3Þ þ dd2ðx2 � x3Þ	 þ w3 ð25Þ

where x
1

is the dimensionless concentration of reactant A, x
2

is the dimensionless reactor temperature, and x
3
is the dimen-

sionless cooling jacket temperature. The manipulated
variable is the dimensionless coolant flow rate q

c
. The distur-

bances acting on the system are w
1
, w

2
, and w

3
. By linearizing

Fig. 3. The trajectory of the system when k¼ 1þ 0.1sin(4k) and

w ¼ ½0:1 sinð4kÞ 0:1 sinð4kÞ	T. The infeasible region of state con-

Fig. 4. The control input satisfying the input constraint U: ¼
fu2R jjuj 
 1g. The tightened input constraint U�KZ is shown
in yellow. The original input constraint U is shown in green.

Fig. 5. The trajectories of the system when k¼ 1þ 0.1sin(4k)
and w are randomly time-varying. The infeasible region of state
constraint is shown in green. The cross-section of tube is shown
in yellow.
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and discretizing Equation (23) to Equation (25) with a
sampling period DT, the following discrete-time state space
model is obtained:

where �xx1ðkÞ ¼ x1ðkÞ � x1S, �xx2ðkÞ ¼ x2ðkÞ � x2S, �xx3ðkÞ ¼
x3ðkÞ � x3S, �qqcðkÞ ¼ qcðkÞ � qcS, �ww1ðkÞ ¼ w1ðkÞ � w1S,
�ww2ðkÞ ¼ w2ðkÞ � w2S, �ww3ðkÞ ¼ w3ðkÞ � w3S, and jðx2SÞ ¼
exp x2S=1þ x2S

c

� �
. The model parameter values are shown

in Table I. The Damkohler number / is considered to be
uncertain and its value is randomly time-varying between
u

min
¼ 0.0648 and u

max
¼ 0.0792. The disturbances �ww1ðkÞ,

�ww2ðkÞ, and �ww3ðkÞ are randomly time-varying between �0.01
and 0.01. The constraints are �xx1ðkÞj j 
 0:5 and
�qqcðkÞj j 
 1:0. The weighting matrices in the cost function in

Equation (17) are Q¼ I and R¼ 0.1. The objective is to regu-
late the state from ð�xx1ð0Þ; �xx2ð0Þ; �xx3ð0ÞÞ ¼ ð0; 5; 0Þ to the
neighborhood of the origin by manipulating �qqcðkÞ.

Figure 6 shows a sequence of four polyhedral invariant
sets P

i
, i2f1, . . ., 4g precomputed off-line. Figure 7 shows

the trajectory of the uncertain CSTR. The black line is the
trajectory of the uncertain CSTR with disturbances (CSTR
containing both time-varying parameter and disturbances).
The red line is the trajectory of the uncertain CSTR with

no disturbances (CSTR containing only time-varying
parameter). It can be observed that the trajectory of the
uncertain CSTR with disturbances lies in a sequence of tubes

Table I. The model parameter values in Example 2

Parameter Value Parameter Value

q 1.0 d 0.3
x1f 1.0 b 8.0
u 0.0648–0.0792 d1 10
c 20 x3f �1.0
x2f 0.0 d2 1.0
x1S 0.8933 w1S 0.0
x2S 0.5193 w2S 0.0
x3S �0.5950 w3S 0.0
qcS 1.65

Fig. 6. A sequence of four polyhedral invariant sets Pi, i2f1, . . ., 4g
precomputed off-line. The polyhedral invariant sets are shown in
yellow.

�xx1ðk þ 1Þ
�xx2ðk þ 1Þ
�xx3ðk þ 1Þ

2
64

3
75

¼

1þ DT ½�q� ujðx2SÞ	 �DT ux1Sjðx2SÞ
1þx2S

cð Þ2
� �

0

DT ½bujðx2SÞ	 1þ DT �q� dþ bujðx2SÞx1S

1þx2S
cð Þ2

� �
DTd

0 DTdd1d2 1� DT ½d1qcS þ dd1d2	

2
666664

3
777775

�xx1ðkÞ
�xx2ðkÞ
�xx3ðkÞ

2
64

3
75

þ
0

0

DTd1½x3f � x3S	

2
64

3
75�qqcðkÞ þ DT

1 0 0

0 1 0

0 0 1

2
64

3
75

�ww1ðkÞ
�ww2ðkÞ
�ww3ðkÞ

2
64

3
75

ð26Þ

Figure 7. The trajectory of the uncertain CSTR. The
cross-section of tube is shown in yellow.
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shown in yellow. Finally, the state of the uncertain CSTR
with disturbances is steered to a tube whose center is at
the origin.

The proposed algorithm will be compared with
tube-based robust MPC algorithm of Mayne et al. (2005)
in which the online optimization problem must be solved
at each sampling time. In Mayne et al. (2005), only distur-
bances are included in the controller design so there is a mis-
match between the model and the process when the
time-varying parameter is present. From Figure 8, it is seen
that the proposed algorithm is able to steer the state of the
uncertain CSTR with disturbances to the neighborhood of
the origin faster than the algorithm of Mayne et al. (2005).
Moreover, the proposed algorithm requires significantly
less online computational time, as shown in Table II. The

computations are performed using Intel Core 2 Duo
(2.53 GHz), 2 GB RAM.

Conclusions

In this paper, we present an offline tube-based robust MPC
algorithm using polyhedral invariant sets. All of the optimal
control problems are solved off-line so no optimal control
problem needs to be solved online. The simulation results
show that the state at each time step of the LTV system with
disturbance is restricted to lie within a tube whose center is
the state of the nominal LTV system that converges to the
origin. Hence, the state of the LTV system with disturbance
converges to a tube whose center is at the origin. Robust
stability and satisfaction of the state and control constraints
are guaranteed. In future work, the proposed algorithm can
be extended to the nonlinear system with bounded
disturbance.

Funding

This research project is supported by Mahidol University
and Thailand Research Fund (TRF).

Fig. 8. The control performance (a) dimensionless concentration of reactant A; (b) dimensionless reactor temperature; (c) dimen-
sionless cooling jacket temperature; and (d) dimensionless coolant flow rate.

Table II. The online computational time

Algorithm
Online computational
time for each step (s)

Mayne et al. (2005) 0.067
The proposed algorithm 0.015
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Nomenclature
x state
u input
c vanishing input
�xx state of nominal system
x̂x observer state
�uu input of nominal system
N prediction horizon
K disturbance rejection gain
Z robust positively invariant set
w disturbance
�XXf terminal constraint set

Q state weighting matrix
R input weighting matrix
k time-varying parameter
x0 state of nominal LTV system
u0 input of nominal LTV system
P Lyapunov matrix
P

i
polyhedral invariant set i

F
i

stabilizing feedback gain corresponding
to P

i

F real-time stabilizing feedback gain
V(x0) Lyapunov function of variable x0

Example 1
x

1
state 1 of LTV system with disturbance

x
2

state 2 of LTV system with disturbance
x01 state 1 of nominal LTV system
x02 state 2 of nominal LTV system
u input of LTV system with disturbance
u0 input of nominal LTV system

Example 2
x

1
dimensionless concentration of reactant A

x
2

dimensionless reactor temperature
x

3
dimensionless cooling jacket temperature

q dimensionless reactor feed-flow rate
q

c
dimensionless coolant flow rate

w
i

disturbance variable i
�xxiðkÞ deviation form of state i at time k
x

iS
equilibrium point of state i

x
1f

dimensionless reactor feed concentration
x

2f
dimensionless reactor feed temperature

x
3f

dimensionless cooling jacket feed
temperature

b dimensionless heat of reaction
c dimensionless activation energy
d dimensionless heat transfer coefficient
d

1
dimensionless volume ratio of reactor to
cooling jacket

d
2

dimensionless density� heat capacity ratio of
reactor to cooling jacket

/ Damkohler number
s dimensionless time

Mathematical Symbols
X�Y Minkowski set addition between X and Y
X�Y Minkowski set difference between X and Y

d(x, Y) distance of a point x from a set Y
d(x, y) distance of a point x from a point y
�j j Euclidean norm

A> 0 A is a positive-definite matrix
A< 0 A is a negative-definite matrix
q(A) spectral radius of a matrix A
Convf�g convex hull of the elements in f�g
Abbreviations
MPC model predictive control
LTI linear time-invariant
LQR linear quadratic regulator
LTV linear time-varying
LMI linear matrix inequality
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Mayne, D. Q., Raković, S. V., Findeisen, R., and Allgower, F. (2006).
Robust output feedback model predictive control of constrained lin-
ear systems, Automatica, 42, 1217–1222. doi:10.1016=j.automatica.
2006.03.005
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Robust Model Predictive Control with Time-varying Tubes
Pornchai Bumroongsri* and Soorathep Kheawhom

Abstract: This paper focuses on the problem of robustly stabilizing uncertain discrete-time systems subject to
bounded disturbances. The proposed tube-based model predictive controller ensures that all possible realizations of
the state trajectory lie in the time-varying tubes so robust stability and satisfaction of the state and input constraints
are guaranteed. The time-varying tubes are computed off-line so the on-line computational time is tractable. At each
sampling time, the precomputed time-varying tubes are included in the optimal control problem as the constraints
in the prediction horizon and only a quadratic programming problem is solved. In comparison to the algorithm that
calculates the time-varying tubes on-line, the proposed algorithm can achieve the same level of control performance
while the on-line computational time is greatly reduced.

Keywords: Bounded disturbances, model predictive controller, robust stability, time-varying tubes.

1. INTRODUCTION

Tube-based model predictive control (MPC) is an ad-
vanced control strategy that has been originally developed
to deal with bounded disturbances. Its basic idea is to re-
strict all possible realizations of the state trajectory in a
sequence of tubes so robust stability is ensured [1, 2].

Mayne et al. [3] proposed a tube-based MPC algorithm
that can ensure robust exponential stability of linear time-
invariant (LTI) systems with bounded disturbances. An
optimal control problem for the nominal systems (systems
without disturbances) is solved at each sampling time by
replacing the original constraint with more stringent one.
A tube used as a constraint in each prediction horizon is
a disturbance invariant set that includes all possible real-
izations of the disturbances for all future time steps. This
leads to the reduction of size of the feasible region for the
state and input constraints of the nominal system. Thus,
the conservative result may be obtained.

Limon et al. [4] proposed a tube-based MPC algorithm
for tracking of LTI systems with bounded disturbances.
The artificial steady state variables are introduced in the
optimal control problem as the decision variables. The
proposed algorithm is suitable for the case when the target
is significantly changed. If the target is unreachable, the
state will be driven to the neighborhood of the artificial
target instead. However, a tube used in the optimal control
problem for each prediction horizon is also overestimated
by including the effects of all possible realizations of the
disturbances for all future time steps.

Manuscript received April 14, 2016; revised August 4, 2016; accepted August 31, 2016. Recommended by Associate Editor Yingmin
Jia under the direction of Editor Myo Taeg Lim. This work was supported by Mahidol University and Thailand Research Fund (TRG5880084).
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lalongkorn University, 10330, Thailand (e-mail: soorathep.k@chula.ac.th).
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A tube-based MPC algorithm for linear time-varying
(LTV) systems with bounded disturbances has been de-
veloped by Bumroongsri [5]. The proposed control law is
a linear combination of two components. The first com-
ponent steers the state of the nominal LTV systems to the
origin. The second component keeps the state at each time
step of the LTV systems with bounded disturbances within
a tube whose center is the state of the nominal LTV sys-
tems. The disturbance invariant tube is precomputed off-
line and the optimal control problem is solved on-line with
tighter constraint sets. An off-line formulation of tube-
based robust MPC has been developed by Bumroongsri
and Kheawhom [6]. The proposed algorithm is also based
on the disturbance invariant tube that takes into account
the effects of all possible realizations of the disturbances
for all future time steps.

An idea to reduce the conservativeness by computing
on-line the time-varying tubes is introduced by Gonzalez
et al. [7]. Instead of precomputing the disturbance invari-
ant tube, the basic idea is to compute on-line the reachable
set. In addition to the optimal control problem solved at
each sampling time, the Minkowski sum algorithm has to
be implemented on-line which leads to increased compu-
tational complexity. Mayne et al. [8] introduced an idea
to use a time-varying tube for the case when the initial un-
certainty set for the unknown state is large. The size of
the tube is initially large and then converges to that of the
disturbance invariant tube. After reaching the steady state,
the size of the tube is still overestimated. This may lead to
the conservativeness due to the fact that the effects of the
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disturbances are included for all future time steps.
In this paper, robust MPC with time-varying tubes is

proposed. At each sampling time, the precomputed time-
varying tubes are included in the optimal control problem
as the constraints in the prediction horizon. The optimal
control problem solved on-line is quadratic programming
so the on-line computational time is tractable. The pro-
posed algorithm can ensure robust stability and satisfac-
tion of the state and input constraints for uncertain systems
with bounded disturbances. The uncertain parameters and
disturbances are not necessary to be measurable. This ar-
ticle is organized as follows: The problem statement is
presented in Section 2. The proposed algorithm is pre-
sented in Section 3. An illustrative example is presented
in Section 4. The conclusions are drawn in Section 5.

1.1. Nomenclature
Given two subsets X and Y of Rn, Minkowski set

addition and set difference are defined, respectively, by
X ⊕Y := {x+y|x ∈ X ,y∈Y} and X ⊖Y := {x|x⊕Y ⊆ X}.

2. PROBLEM STATEMENT

Consider the following uncertain discrete-time system
with bounded disturbance

x+ = Aλ x+Bλ u+w, (1)

where x ∈ Rn is the state, u ∈ Rm is the input, w ∈ Rn is
the disturbance and x+ ∈ Rn is the successor state. This
system is subject to the state constraint x ∈ X and the in-
put constraint u ∈ U where X⊂ Rn and U⊂ Rm are com-
pact, convex and each set contains the origin as an interior
point. The disturbance is bounded w ∈W where W⊂ Rn

is compact, convex and contains the origin as an interior
point. The matrices Aλ and Bλ satisfy

[Aλ Bλ ] ∈ Conv{[A1 B1], ..., [AL BL]}, (2)

where Conv{·} denotes the convex hull of all elements in
{·}, [A j B j] are the vertices of convex hull and L is the
number of vertices of convex hull. Any [Aλ Bλ ] is the lin-
ear combination of the vertices such that

[Aλ Bλ ] =
L

∑
j=1

λ j[A j B j], (3)

where [λ1,λ2, ...,λL] are the uncertain parameters satisfy-
ing ∑L

j=1 λ j = 1. The uncertain parameters and the distur-
bances are not necessary to be measurable. The presence
of bounded disturbance w means that it is only possible to
regulate the state x to the neighborhood of the origin. The
objective of this paper is to find the control law that is able
to maintain all possible realizations of the state trajectory
in the time-varying tubes despite the uncertain parameters

and disturbances while satisfying all of the state and in-
put constraints x ∈ X and u ∈ U. The definition for the
time-varying tube Zi is given as follows:

Definition 1: The set Zi ⊂ Rn is said to be a time-
varying tube for the system x+ = Ax+w if ∀x ∈ Zi implies
x+ ∈ Zi+1 for ∀i ≥ 0 and ∀w ∈W.

Instead of computing a tube Z as an outer approxi-
mation of the disturbance invariant set as proposed by
Raković et al. [9], a sequence of time-varying tubes is
computed off-line in this paper. At each sampling time,
the precomputed time-varying tubes are included in the
optimal control problem as the constraints in the predic-
tion horizon. By doing so, robust stability and satisfaction
of the state and input constraints are guaranteed while the
effect of the disturbance is not overestimated.

3. A SYNTHESIS APPROACH FOR ROBUST
MPC WITH TIME-VARYING TUBES

This section presents a synthesis approach to robust
MPC with time varying tubes. Consider the follow-
ing nominal system (system without uncertain parameters
[λ1,λ2, ...,λL] and disturbance w)

x+ = Ax+Bu, (4)

where A = 1
L ∑L

j=1 A j, B = 1
L ∑L

j=1 B j, x ∈ Rn and u ∈ Rm

are the state and input of the nominal system, respec-
tively. The predicted nominal state and input in the pre-
diction horizon from the initial state x0 are denoted by
X := {x0,x1, ...,xN} and U := {u0,u1, ...,uN−1}, respec-
tively, where N is the prediction horizon. Consider the
following system which is the difference between (1) and
(4)

x+− x+ = A(x− x)+B(u−u)+d, (5)

where the disturbance d is given by d := (Aλ − A)x +
(Bλ −B)u+w. Since x ∈ X, u ∈ U and w ∈W, it is seen
that d ∈ D where D := (Aλ −A)X⊕ (Bλ −B)U⊕W. In
order to deal with the disturbance d, the control law u =
u+K(x− x) is employed where K is the disturbance re-
jection gain satisfying (Aλ +Bλ K)T P(Aλ +Bλ K)−P < 0
for ∀[Aλ Bλ ] ∈ Conv{[A1 B1], ..., [AL BL]}. The Lyapunov
matrix P and the disturbance rejection gain K can be found
by solving the linear matrix inequality (LMI) optimization
problem [10]. The difference equation (5) can be rewritten
as

x+− x+ = (A+BK)(x− x)+d. (6)

The difference between x+ − x+ is usually bounded
within a disturbance invariant set Z ⊂ Rn [3–6]. The def-
inition for the disturbance invariant set Z is given as fol-
lows:
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Definition 2: The set Z ⊂Rn is said to be a disturbance
invariant set for the system (6) if (A+BK)Z ⊕D ⊆ Z for
∀(x− x) ∈ Z and ∀d ∈ D.

According to Kolmanovsky and Gilbert [11], the mini-
mal disturbance invariant tube Z is computed as

Z =
∞
⊕
i=0

(A+BK)iD

=D⊕ (A+BK)D⊕ (A+BK)2D
⊕ (A+BK)3D⊕ . . . . (7)

However, the use of the disturbance invariant tube Z
in the robust MPC formulation may lead to the conserva-
tive results due to the fact that the disturbance invariant
tube Z includes the effect of all possible realizations of
the disturbances for all future time steps. In this paper,
the time-varying tubes Zi as defined in Definition 1 are
computed off-line. At each sampling time, the precom-
puted time-varying tubes are included in the optimal con-
trol problem as the constraints in the prediction horizon.
The time-varying tube at each time step of the system (6)
can now be computed as follows

Zi+1 = (A+BK)Zi ⊕D for ∀i ≥ 0 and ∀(x− x) ∈ Zi,
(8)

where Z0 = {0}. It is seen that the time-varying tube Zi

converges to the disturbance invariant tube Z as i → ∞.
Thus, the use of the disturbance invariant tube Z in the ro-
bust MPC formulation is only a specific case of the synthe-
sis approach of robust MPC presented in this paper. The
idea of using the time-varying tubes is also developed by
Gonzalez et al. [7]. However, its main drawback is that
in addition to the optimal control problem solved at each
sampling time, the Minkowski sum algorithm has to be
implemented on-line which leads to increased computa-
tional complexity.

In order to ensure the satisfaction of the original state
and input constraints x ∈ X and u ∈ U for the proposed
algorithm, tighter constraint sets are imposed on the pre-
diction horizon of the nominal system, xi ∈ X⊖ Zi and
ui ∈ U⊖KZi. The cost function for the trajectory of the
nominal system is

VN(x0,U) :=
N−1

∑
i=0

l(xi,ui)+Vf (xN), (9)

where l(xi,ui) := 1
2 [x

T
i Qxi + uT

i Rui] is the stage cost,
Vf (xN) := 1

2 xT
NPf xN is the terminal cost, Q, R and Pf are

the positive definite weighting matrices. The proposed ro-
bust MPC algorithm with time-varying tubes can now be
formulated as follows:

Off-line: Compute the disturbance rejection gain K sat-
isfying (A j +B jK)T P(A j +B jK)−P < 0, ∀ j ∈ {1, ...,L}.
Then, compute a sequence of time-varying tubes Zi, i = 1,
2, ..., N according to (8) where N is the prediction horizon.

On-line: At each sampling time, the state x is measured
and the following optimal control problem is solved

min
x0,U

VN(x0,U) (10)

s.t. x0 = x (11)

xi+1 = Axi +Bui, i ∈ {0, ...,N −1} (12)

xi ∈ X⊖Zi, ui ∈ U⊖KZi, i ∈ {0, ...,N −1} (13)

xN ∈ X f ⊂ X⊖ZN . (14)

The additional terminal constraint (14) is employed
to ensure robust stability where X f is the terminal con-
straint set satisfying the following assumptions: (i) (A+
BK)X f ⊂ X f , X f ⊂ X⊖ ZN , KX f ⊂ U⊖ KZN , and (ii)
Vf ((A+BK)x)+ l(x,Kx)≤Vf (x), ∀x ∈ X f .

We can now establish our main result.

Theorem 1: The proposed robust MPC algorithm
steers any initial state x of the uncertain system with
bounded disturbance x+ = Aλ x + Bλ u + w in the time-
varying tubes Zi to the target set X f ⊕ZN while satisfying
the original state and input constraints, x ∈ X and u ∈ U.

Proof: Consider the optimal control problem (10) sub-
ject to the constraints (11) to (14), the constraint (14) en-
sures that the nominal state x must be driven to the termi-
nal target set X f . Since all possible state trajectories lie in
the time-varying tubes x ∈ x⊕Zi, i ∈ {0, ...,N}, the state x
must be driven to the target set X f ⊕ZN . Lastly, the satis-
faction of the tighten constraint sets for the state and input
of the nominal system xi ∈ X⊖Zi, ui ∈ U⊖KZi ensures
the satisfaction of the original state and input constraints.

4. AN ILLUSTRATIVE EXAMPLE

In this section, an implementation of the proposed al-
gorithm is illustrated. Consider the following uncertain
discrete-time system with bounded disturbance

x+ =Aλ x+Bλ u+w

=

[
1 1
0 1

]
x+

[
0.5
1

]
u+w. (15)

The system matrices Aλ = A =

[
1 1
0 1

]
and Bλ = B =[

0.5
1

]
. The state constraint is X := {x∈R2|[0 1]x≤ 2}.

The input constraint is U := {u ∈ R| |u| ≤ 1}. The distur-
bance is bounded within W := {w ∈ R2|[−0.1 −0.1]T ≤
w ≤ [0.1 0.1]T}. The nominal system can be written as

x+ = Ax+Bu =

[
1 1
0 1

]
x+

[
0.5
1

]
u. (16)

The difference between (15) and (16) can be written as

x+− x+ =A(x− x)+B(u−u)+d
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Fig. 1. The evolution of the size of the time-varying tube
Zi computed off-line.

=

[
1 1
0 1

]
(x− x)+

[
0.5
1

]
(u−u)+d,

(17)

where d ∈ D, D :=W. By using the control law u = u+
K(x− x), the difference system (17) can be rewritten as

x+− x+

= (A+BK)(x− x)+d

= (

[
1 1
0 1

]
+

[
0.5
1

]
[ −0.66 −1.33] )(x− x)+d,

(18)

where the K = [ −0.66 −1.33] is the disturbance re-
jection gain. The closed-loop system is simulated using
the initial state x = x = [−5 −2]T. The disturbance is var-
ied as d = w = [0.1sin(4k) 0.1sin(4k)]T where k is the
simulation time. The weighting matrices in the cost func-

tion are Q = I, R = 0.01 and Pf =

[
2.0066 0.5099
0.5099 1.2682

]
.

The prediction horizon is N = 12.
Fig. 1 shows the evolution of the size of the time-

varying tube Zi computed off-line where Z1, Z2 and Z3

are shown in yellow, green and red, respectively. It is seen
that the size of the time-varying tube Zi increases as the
time step i in the prediction horizon increases. However,
the size of the time-varying tube is nearly constant beyond
Z3.

Fig. 2 shows the state trajectories of the system. The
region shown in yellow is the infeasible region of the state
constraint X := {x ∈ R2|[0 1]x ≤ 2}. The terminal con-
straint set X f for the nominal state x is shown in blue. The
target set X f ⊕ZN for the state x is shown in red. The cross
section of the precomputed time-varying tube Zi is shown
in green. The black line is the predicted state trajectory
of the nominal system x+ = Ax+Bu with the prediction
horizon N = 12. The red line is the state trajectory of the
uncertain system with bounded disturbance. It is seen that
the state trajectory of the uncertain system with bounded
disturbance lies in the time-varying tube Zi precomputed

Fig. 2. The state trajectories of the system.

Fig. 3. The control inputs of the system.

Table 1. The on-line computational time.

Algorithms On-line CPU time per step
The proposed algorithm 0.043 s

Gonzalez et al. [7] 0.127 s

off-line. The center of the tube is the predicted state tra-
jectory of the nominal system.

Fig. 3 shows the control inputs of the system. The
infeasible region of the original input constraint U :=
{u ∈R| |u| ≤ 1} is shown in yellow. The black line is the
input u of the nominal system x+ = Ax+Bu with the pre-
diction horizon N = 12. The red line is the input u of the
uncertain system with bounded disturbance. It is seen that
the original input constraint is satisfied while the input of
the nominal system converges to the origin.

The proposed robust MPC algorithm with time-varying
tubes is compared with the tube-based MPC algorithm
proposed by Gonzalez et al. [7] where the Minkowski sum
algorithm has to be implemented on-line to find the time-
varying reachable sets. Fig. 4 shows the control perfor-
mance for the uncertain system with bounded disturbance.
It can be observed that nearly the same control perfor-
mance can be obtained while the on-line computational
time is greatly reduced as shown in Table 1.

The computations in Table 1 have been performed using
Intel Core 2 Duo (2.53 GHz), 2 GB RAM.
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(a) The state x1.

(b) The state x2.

Fig. 4. The control performance; (a) the state x1 and (b)
the state x2.

In Gonzalez et al. [7], the disturbance rejection gain
is computed on-line compensating the mismatch between
the real and the nominal state at each step within the pre-
diction horizon. The time-varying tube is computed at
each sampling time in accordance with the disturbance re-
jection gain. In the computation of the time-varying tube,
the Minkowski sum algorithm has to be implemented on-
line which leads to increased computational complexity.

In our proposed algorithm, the disturbance rejection
gain is computed off-line satisfying the Lyapunov stability
constraint. A sequence of the time-varying tubes is com-
puted off-line in accordance with the precomputed distur-
bance rejection gain. The reduction in the on-line com-
putational burden is obtained because a sequence of the
time-varying tubes is computed off-line so no Minkowski
sum algorithm has to be implemented at each sampling
time.

5. CONCLUSION

In this paper, robust MPC with time-varying tubes is
presented. All possible realizations of the state trajectory
of the uncertain systems with bounded disturbances are
guaranteed to lie within the time-varying tubes. The time-
varying tubes are computed off-line so no additional on-
line computational time is required. Only the quadratic
programming for the optimal control problem is solved at
each sampling time. In comparison to the algorithm that
calculates the time-varying tubes on-line, the proposed al-
gorithm can achieve the same level of control performance
while the on-line computational time is greatly reduced.
The proposed algorithm can be further extended to the
case when the exact state in unknown.
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ABSTRACT: Chemical processes are multivariable processes that change one or more chemical compounds 

to the desired products. Chemical processes are involved with many complex chemical reactions. Additionally, 

they usually contain some uncertain parameters and disturbances. In order to efficiently control these uncertain 

chemical processes, a multivariable control algorithm that can handle both uncertain parameters and 

disturbances needs to be developed. However, the control of systems in the presence of uncertain parameters 

and disturbances is a challenging control problem because it is difficult to guarantee both robust stability and 
constraint satisfaction. In this paper, a novel tube-based robust model predictive control algorithm is developed. 

The trajectories of the systems are restricted to lie in a sequence of tubes so robust stability and constraint 

satisfaction can be guaranteed in the presence of both uncertain parameters and disturbances. All of the 

optimization problems are solved off-line so the developed algorithm is applicable to fast dynamic systems. In 

order to demonstrate the applications of the developed algorithm, it is applied to a control problem of the 

continuous stirred tank reactor with uncertain parameters and disturbances.  
 

Keywords: Model Predictive Control; tubes; uncertain parameters; disturbances; robust stability; constraint 

satisfaction. 
 

1 Introduction 
Chemical processes are usually composed of a number of reactions. These reactions usually contain some 

uncertain parameters such as those in reaction rate constants and heat transfer coefficients. Moreover, they 

usually contain some disturbances such as measurement noises. Some chemical processes are fast and highly 

exothermic so inefficient handling of these uncertainties and disturbances may lead to unexpected thermal 

runaway of the system. For this reason, it is necessary to develop an efficient multivariable control algorithm 

that is able to ensure both robust stability and constraint satisfaction in the presence of uncertain parameters and 

disturbances. Additionally, it must be applicable to the control of fast dynamic reactions. 
Model predictive control (MPC) is an advanced control algorithm for multivariable processes. MPC is 

widely used in many chemical processes because input and output constraints are considered in a systematic 

manner. At each sampling time, MPC solves a finite horizon optimal control problem based on an explicit 

model of the process. Although an optimal control sequence is determined, only the first control action is 

applied to the process. Since models are only approximations of real processes, it is extremely important for 

MPC to be robust to uncertain parameters and disturbances. Moreover, only small computational time should be 

required so that it can be applied to fast dynamic processes. 

Off-line formulations of robust MPC have been developed to deal with uncertain parameters while ensuring 

the same level of control performance (Wan and Kothare, 2003; Ding et al., 2007). The main idea was to solve 

an optimization problem off-line to find a sequence of controller gains and the associated ellipsoidal invariant 

sets. At each sampling time, the real-time state feedback gain was computed by linear interpolation between the 

pre-computed feedback gains. Only uncertain parameters were considered in the MPC formulation so robust 
stability was not guaranteed in the presence of disturbances. An off-line MPC algorithm for linear parameter-

varying (LPV) systems was developed by Bumroongsri and Kheawhom (2012a). The real-time state feedback 

gain was calculated by linear interpolation between the pre-computed state feedback gains using the scheduling 

parameters. Bumroongsri and Kheawhom (2012b) proposed an off-line robust MPC algorithm based on 

polyhedral invariant sets instead of ellipsoidal invariant sets. A significantly larger stabilizable region was 

obtained. However, the effects of disturbances were neglected in the robust MPC formulation so robust stability 

could not be guaranteed in the presence of disturbances. In order to apply off-line robust MPC to uncertain 

chemical processes with disturbances, the effects of disturbances should be explicitly included in the MPC 

formulation. 

In the context of tube-based robust MPC, the effects of disturbances are explicitly included in the MPC 

formulation. Tube-based robust MPC is motivated by the fact that a real state trajectory differs from a state 
trajectory of a nominal system due to the effects of disturbances. Chisci et al. (2001) developed an on-line tube-
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based robust model predictive controller for linear time-invariant (LTI) systems subject to bounded 

disturbances. The objective was to drive the state of LTI system with bounded disturbances to a terminal set. 

Constraint fulfillment was guaranteed by replacing the original constraints with more stringent ones. Langson et 

al. (2004) proposed an on-line tube-based robust MPC employing the time-varying control inputs instead of the 

LTI control law. A sequence of time-varying control inputs was obtained by solving an optimal control problem 

subject to additional constraint sets. The proposed MPC algorithm could achieve better control performance 
than the conventional tube-based MPC algorithm using LTI control law. The price to be paid was the 

computational complexity that increased with the prediction horizon.  

  Tube-based robust MPC for tracking of LTI system with bounded disturbances was presented by Limon et 

al. (2010). The artificial steady-state variables were introduced as the decision variables in the optimization 

problem. If the target was unreachable, the system would be steered to the neighborhood of the artificial steady-

state point. High on-line computational time was required because some decision variables and constraints were 

introduced to the optimal control problem. Tube-based robust MPC for linear time-varying (LTV) systems with 

bounded disturbances was developed by Bumroongsri (2015). A novel feature was the fact that the developed 

algorithm could handle both time-varying parameters and disturbances. However, the optimization problem 

must be solved on-line at each sampling time. In order to apply tube-based robust MPC to fast dynamic 

processes, its off-line formulation needs to be developed. 

In this paper, an off-line synthesis approach for tube-based robust MPC is presented. The trajectories of 
systems with both uncertain parameters and disturbances are restricted to lie in a sequence of tubes so robust 

stability and constraint satisfaction are guaranteed. Additionally, no optimization problem needs to be solved 

on-line so the developed tube-based robust MPC algorithm is applicable to fast dynamic processes. This paper is 

organized as follows. The problem statement is presented in Section 2. The proposed synthesis approach for 

tube-based robust MPC is presented in Section 3. A numerical example is presented in Section 4. The 

conclusions are drawn in Section 5. 

   

2 Problem Statement 
Consider the following discrete-time system with uncertain parameters and disturbances 

 

wuBxAx             (1) 

 

where x ℝn
 is the state, u ℝm

 is the input, w ℝn
 is the disturbance and x ℝn

 is the successor state. The 

matrices A  and B  depend on an uncertain parameter vector   that is 

},...,2,1], [Conv{] [ LjBABA jj   where }  Conv{   is the convex hull of all elements in }  {  . The state 

constraint is x 𝕏. The input constraint is u 𝕌. The disturbances w  lie in the set 𝕎. Consider the following 

nominal system (the system without disturbances) defined by  

 

''' uBxAx             (2) 

 

where 'x ℝn
 and 'u ℝm

 are the state and input of the nominal system, respectively. The difference system 

between (1) and (2) is 
 

.)'()'(' wuuBxxAxx            (3) 

 

In order to deal with both uncertain parameters and disturbances, the control law ')'( uxxKu   is employed 

where '' Fxu   is the control law for the nominal system and K  is the disturbance rejection gain. The difference 

system (3) can be written as 

 

.)')((' wxxKBAxx                     (4) 

 

The trajectory of the difference system 
  'xx  is bounded by a robust positively invariant set Z  defined by  
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i
KBA )(Conv{

0

 



𝕎 },...,2,1, Lj

          
(5) 

 

where the symbol   denotes the Minkowski set addition.  The objective is to drive the nominal system (2) to 

the origin while maintaining the trajectory of the system with uncertain parameters and disturbances (1) in a 

sequence of tubes whose centers are the state of the nominal system (2). 

 

3 A Synthesis Approach for Tube-Based Robust MPC 
In this section, an off-line formulation for tube-based robust MPC is presented. If we can drive the state of the 

nominal system 'x  to the origin, the state of the uncertain system with uncertain parameters and disturbances 

x  must be driven to a tube Z  whose center is at the origin. An off-line formulation of robust MPC for nominal 

system was developed by Wan and Kothare (2003). A sequence of off-line feedback gains iF  corresponding to 

a sequence of invariant ellipsoids },...,1{,  Nii   was pre-computed by solving the linear matrix inequality 

(LMI) optimization problems. The real-time feedback gain F  was calculated at each sampling time by linear 

interpolation between the off-line feedback gains iF . Therefore, the state of the nominal system 'x  can be 

driven to the origin using the nominal control law '' Fxu  . 

In order to drive the state of the uncertain system with uncertain parameters and disturbances x  to the origin, 

the control law ')'( FxxxKu   is employed in this paper where K  is the disturbance rejection gain. The 

task of the disturbance rejection gain K  is to maintain the state of the uncertain system with uncertain 

parameters and disturbances x  in a sequence of tubes whose centers are the state of the nominal system 'x . 

When the nominal state 'x  is driven to the origin, the state of the uncertain system with uncertain parameters 

and disturbances x  must be driven to the neighborhood of the origin. Therefore, robust stability can be ensured. 

In order to ensure constraint satisfaction x𝕏 and u𝕌, tighter constraint sets for the nominal system 

'x 𝕏⊖ Z  and 'xFi 𝕌⊖ KZ  must be imposed where the symbol ⊖ denotes the Minkowski set difference. In 

summary, the developed tube-based robust MPC algorithm can be written as follows: 

 
Off-line step 1: Compute the disturbance rejection gain K  satisfying the Lyapunov stability constraint 

0)()(  PKBAPKBA jj
T

jj . 

 

Off-line step 2: Compute a sequence of off-line feedback gains iF  corresponding to a sequence of invariant 

ellipsoids },...,1{,  Nii   with tighter constraint sets x𝕏⊖ Z  and 'xFi 𝕌⊖ KZ . 

 

At the first sampling time )0( t : measure the state x  and the uncertain parameter  . Find the real-time 

feedback gain F  (that is the off-line feedback gain iF  of the smallest invariant ellipsoid i  containing the 

measured state x ). Apply the control law Fxu   to the process and compute 'x  from xFBAx )('    (At 

the first sampling time, 'xx   so the control law ')'( FxxxKu   is equal to Fxu  ). 

 

At each sampling time )0( t : measure the state x  and the uncertain parameter  . Find the real-time 

feedback gain  F  (that is the off-line feedback gain iF  of the smallest invariant ellipsoid i  containing the 

nominal state 'x  computed from the previous step). Apply the control law ')'( FxxxKu   to the process 

and compute 
'x  from ')(' xFBAx   . 

 

Remark 1: It is assumed that the state x  is measurable. For the case when the state x  is unmeasurable, an 

observer should be included in the controller design (Mayne et al., 2006).     

 

4 Numerical Example 
In this section, the developed algorithm is applied to a numerical case study of an uncertain CSTR where an 

irreversible exothermic reaction BA   is assumed to take place. A cooling jacket is used to adjust the reactor 

temperature.  The material and energy balances are as follows: 
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where AC  is the concentration of reactant A , Q  is the feed stream flowrate, V  is the reactor volume, AfC  is 

the concentration of reactant A  in feed stream, ok  is the pre-exponential factor, aE  is the activation energy, R  

is the gas constant, T  is the reactor temperature, fT  is the feed stream temperature, UA  is the overall heat 

transfer coefficient, H  is the heat of reaction, pC  is the heat capacity,   is the density, cT  is the coolant 

temperature, cfT  is the coolant feed temperature, cV  is the cooling jacket volume, c  is the coolant density, 

pcC  is the coolant heat capacity and cQ  is the coolant flowrate.             

 

The material and energy balances can be written in the dimensionless form as follows (Nagrath et al., 2002): 
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        (11) 

 

where 1x  is the dimensionless concentration of reactant A , 2x  is the dimensionless reactor temperature and 3x  

is the dimensionless coolant temperature. The manipulated variable is the dimensionless coolant flowrate cq . 

The following discrete-time state-space model is obtained by linearizing and discretizing (9)-(11) with a 

sampling period of T : 
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where Sxkxkx 111 )()(  , Sxkxkx 222 )()(  , Sxkxkx 333 )()(  , cScc qkqkq  )()(  and 
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x
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 .  The disturbances )(1 kw , )(2 kw  and )(3 kw  are added to the system to take into account 
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the effects of unmeasured disturbances. Their values are time-varying between -0.01 and 0.01. The Damkohler 

number   is uncertain and its value is time-varying between 0648.0min   and 0792.0max  . The objective 

is to drive the dimensionless state from the initial point )0 ,5- ,0(  to the neighborhood of the origin by adjusting 

)(kqc . The state constraint is 5.0)(1 kx  and the input constraint is 0.1)( kqc .The values of dimensionless 

parameters are shown in Table 1. 

 

Table 1. The values of dimensionless parameters. 

 

Parameters Values Parameters Values Parameters Values Parameters Values 

  20 q  1.0 cSq  1.0 1  10 

  8.0   0.3 Sx1  0.8933 2  1.0 

Sx2  0.5193 Sx3  -0.5950 fx3  -1.0   

 

A sequence of five invariant ellipsoids }5,...,1{, ii  computed off-line is shown in Fig.1. Each invariant 

ellipsoid i  has the corresponding off-line feedback gain iF  so the real-time feedback gain F  can be updated 

based on the distance from the origin.   

 
Figure 1. A sequence of five invariant ellipsoids. 

 

Figure 2 shows the tracjectories of the system. The trajectory of the uncertain CSTR with disturbances lies in 

a sequence of tubes whose centers are the state of the uncertain CSTR with no disturbances (nominal system). 

Therefore, robust stability and constraint satisfaction are ensured. 

 

 
Figure 2. The tracjectories of the system.  
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Figure 3 shows the dimensionless state variables. It is seen that the system is robustly stabilized since all 

states are driven to the neighborhood of the origin. 

 

  
 

Figure 3. The dimensionless state variables of the system. 

 

5 Conclusions 
In this paper, a synthesis approach for robust MPC is presented. The trajectories of system with both uncertain 

parameters and disturbances are restricted to lie in a sequence of tubes so robust stability and constraint 

satisfaction are guaranteed. Additionally, no optimization problem needs to be solved on-line so the developed 

tube-based robust MPC algorithm is applicable to fast dynamic processes. 
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