เอกสารแนบหมายเลข 2

รูปแบบ Abstract (บทคัดย่อ)

Project Code: TRG5880093

(รหัสโครงการ)

Project Title: การรักษาโรคเท้าช้างแนวทางใหม่โดยการฟื้นฟูภูมิคุ้มกันของโฮสต์

(ชื่อโครงการ)

Investigator: ผศ. คร. อรภัค เรี่ยมทอง ภาควิชาชีวโมเลกุลและพันธุศาสตร์โรคเขตร้อน คณะ

เวชศาสตร์เขตร้อน มหาวิทยาลัยมหิดล

(ชื่อนักวิจัย)

E-mail Address: onrapak.rea@mahidol.ac.th

Project Period : 2 গ্র

(ระยะเวลาโครงการ)

Abstract

In combination, chemotherapy and vaccination should afford effective control of human filariasis. BALB/c mice and gerbils (Meriones unguiculatis), two animal disease models, are commonly used to evaluate filarial vaccine candidates. However, the relevance of the information gained from these species to the human immune response has not been investigated. Hence, we used an immunoproteomic approach to identify the Brugia malayi immunogens that induce antibody production in microfilaremic humans, infected gerbils, and B. malayi-immunized BALB/c mice. Among the 44 proteins in an adult B. malayi extract, 11 (heat shock protein 70, intermediate filament protein, Bm9307, aldehyde dehydrogenase, chaperonin-like protein HSP60 family, transglutaminase, independent phosphoglycerate mutase isoform 1, tubulin beta-1 chain, BmFKBP59, enolase and disorganized muscle protein 1) were commonly recognized by the three host species sera. The other 33 proteins showed differential immunogenicity across the species. Therefore, translation of the immunological data obtained from the two rodent species to humans needs careful consideration because immunogenic proteins in the model hosts may not be human immunogens. Several microfilarial-specific antigens formed circulating immune complexes with antibodies from the microfilaremic humans, raising the possibility of this being an immune evasion mechanism used by circulating microfilariae to avoid antibodies, complement attack and antibody-dependent cell-mediated immunity.

Keywords: Animal models of filariasis, *Brugia malayi*, immunome, immune complex, lymphatic filariasis, LC-MS/MS, microfilaremia.

(คำหลัก)

บทคัดย่อ

การควบคุมโรคเท้าช้างเพื่อให้ได้ประสิทธิภาพควรเลือกการผสมผสานทั้งการให้ยาและวัคซีน หน BALB/c

และ gerbil (Meriones unguiculatis) เป็นสัตว์ทคลองที่ใช้มาในการศึกษาวักซีน โรคเท้าช้าง อย่างไรก็ตามไม่

เคยมีการศึกษามาก่อนว่าข้อมูลที่ได้จากสัตว์ทั้งสองชนิดนี้จะสอดคล้องกับมนุษย์เพียงใด ดังนั้น การทดลอง

นี้จึงใช้เทคนิค immunoproteomics เพื่อระบุ immunogens ของพยาธิ Brugia malayi โคยใช้แอนติบอดีจาก

คน ใช้ที่มี microfilaria แอนติบอดีจาก gerbil ที่ติดเชื้อ และแอนติบอดีจากหนูที่ถูกกระตุ้นภูมิคุมกันด้วย \emph{B} .

malayi lysate จากการทดลองพบว่า 44 immunogens โดยโปรตีน 11 ชนิด ได้แก่ heat shock protein 70.

intermediate filament protein, Bm9307, aldehyde dehydrogenase, chaperonin-like protein HSP60 family,

transglutaminase, independent phosphoglycerate mutase isoform 1, tubulin beta-1 chain, BmFKBP59,

enolase and disorganized muscle protein 1 สามารถทำปฏิกิริยากับแอนติบอดีจากคน หนู BALB/c และ

gerbil ได้เหมือนกัน อีก 33 immunogens มีความสามารถทำปฏิกิริยากับแอนติบอดีจากคน หนู BALB/c และ

gerbil ได้ต่างกัน ดังนั้น การส่งต่อความรู้จากสัตว์ทดลองไปใช้กับมนุษย์จึงต้องทำด้วยความระมัดระวัง

นอกจากนี้แอนติเจนที่อยู่ใน circulating immune complexes จากเลือดของคนถูกระบุชนิดอีกด้วย

คำหลัก: สัตว์ทคลอง โรคเท้าช้าง แมสสเปคโทรเมตรี

Objectives

In this study, an immunoproteomic approach was used to identify and compare the B. malayi

immunogens that induce antibody production in humans (the definitive host), gerbils (a

permissive animal model used commonly for large-scale production of parasites and for

studying host immune responses) and mouse (a naturally refractory species). Additionally,

we sought to identify the B. malayi antigens that were trapped in the circulating immune

complexes from the microfilaremic subjects. The information gained from this study should

provide useful guidelines of relevance to the current animal models used for studying