

รายงานวิจัยฉบับสมบูรณ์

The influence of microbes isolated from Thai fermented foods and beverages on the metabolic fate of glucosinolates

โดย ผศ.ดร.วิจิตรา หลวงอินทร์

ชันวาคม 2560

สัญญาเลขที่ TRG5880096

รายงานวิจัยฉบับสมบูรณ์

The influence of microbes isolated from Thai fermented foods and beverages on the metabolic fate of glucosinolates

ผศ.ดร.วิจิตรา หลวงอินทร์

คณะเทคโนโลยี มหาวิทยาลัยมหาสารคาม

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย และมหาวิทยาลัยมหาสารคาม

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกว.และต้นสังกัดไม่จำเป็นต้องเห็นด้วยเสมอไป)

Abstract

Project Code: TRG5880096

Project Title: The influence of microbes isolated from Thai fermented foods and beverages on the

metabolic fate of glucosinolates

Investigator: Asst. Prof. Dr. Vijitra Luang-In Faculty of Technology, Mahasarakham University

E-mail Address: vijitra.luangin@gmail.com

Project Period: 2 years

Cancer has become the main cause of death in Thailand. Consumption of Cruciferous vegetables containing glucosinolate has been shown to reduce the cancer risks due to chemopreventive products namely isothiocyanate (ITC) generated by myrosinase-positive microbes in fermented foods. The aims of this work were to isolate and identify bacteria from eight Thai local fermented foods and beverages in Thailand with the capacity to metabolize glucosinolate using HPLC analysis and determine ITC using GC-MS analysis. The majority of ITC producers were Enterobacter and Enterococcus and the two highest ITC producers included Enterobacter xiangfangensis 4A2 (EX) from fermented fish and Enterococcus casseliflavus SB2 (EC) from fermented cabbage from 100% sinigrin degradation within 24 h. EC and EX were used to ferment Thai cabbage (Brassica oleracea L. var. capitata) containing glucoraphanin, glucoiberin and 4-hydroxy glucobrassicin for 3 days at 25°C. Sulforaphane and iberin produced by EX peaked at 294.1 and 117.4 µmol/100 g DW, respectively at day 1. Those produced by EC peaked at 242.6 and 51.7 µmol/100 g DW, respectively at day 2. These induced cabbage fermentations produced statistically higher chemopreventive ITCs than spontaneous cabbage fermentation over 3 days (p<0.01). Sulforaphane detected in induced cabbage fermentation with liquid portion were significantly (p<0.01) higher than fermented solid cabbage portion by almost three folds. However, extract of fermented cabbage (50 µg/mL) by EX at day 1 showed no antibacterial activity against Enterococcus faecium, Pseudomonas aeruginosa (PAO1), Klebsiella pneumonia, Escherichia coli and Candida albicans. Interestingly, the same extract showed 20.86% cytotoxicity towards lung cancer cell line NCI-H187. In addition, the same extract at 25 mg/mL exhibited 62% DPPH scavenging activity (DPPH assay), 6.51 mg FeSO₄/g dry weight (FRAP assay) and 5.21 mg VEAC/g dry weight (ABTS assay) which were higher than those in the extracts of cabbage by spontaneous fermentation. To conclude, Thai cabbage fermented by the selected bacterial culture for 1-2 days showed the potential as a functional food on the same par as kimchi and sauerkraut. One should consume a liquid portion of the fermented cabbage due to higher ITC level along with a solid portion to obtain the best health-promoting benefits from this functional food.

Keywords: Bacteria, Chemoprevention, Glucosinolate, Isothiocyanate, Myrosinase

บทคัดย่อ

Project Code: TRG5880096

Project Title : อิทธิพลของจุลินทรีย์ที่แยกได้จากอาหารและเครื่องดื่มหมักดองของไทยต่อการเมทาบอลิซึมของสา

รกลูโคซิโนเลต

Investigator : ผศ.ดร.วิจิตรา หลวงอินทร์ คณะเทคโนโลยี มหาวิทยาลัยมหาสารคาม

E-mail Address: vijitra.luangin@gmail.com

Project Period: 2 1

มะเร็งถือเป็นสาเหตุหลักในการคร่าชีวิตของประชากรในประเทศไทย การบริโภคผักตระกูลกะหล่ำที่อุดมไปด้วยสา รกลูโคซิโนเลทซึ่งมีฤทธิ์ต้านมะเร็งจากผลิตภัณฑ์เมแทบอไลท์ที่ชื่อว่า ไอโซไธโอไซยาเนท ที่ถูกสร้างขึ้นโดย จุลินทรีย์ที่มีเอนไซม์ไมโรซิเนส จุดประสงค์ของงานวิจัยนี้ คือ การคัดแยกและจำแนกจุลินทรีย์ที่มีเอนไซม์ไมโรซิเนส ในอาหารและเครื่องดื่มหมักดองในประเทศไทย โดยใช้เครื่อง HPLC เพื่อจำแนกเชื้อที่ย่อยสลายกลูโคซิโนเลทได้ และใช้เครื่อง GC-MS เพื่อศึกษาไอโซไธโอไซยาเนท จากผลการทดลอง พบว่า โดยส่วนใหญ่ จุลินทรีย์ที่ผลิตไอ โซไธโอไซยาเนทได้ คือ Enterobacter และ Enterococcus และเชื้อที่ผลิตไอโซไธโอไซยาเนทได้สูงที่สุด คือ Enterobacter xiangfangensis 4A2 (EX) จากปลาสัม และรองลงมา คือ Enterococcus casseliflavus SB2 (EC) จากผักกะหล่ำดอง หลังจากการบ่ม 24 ชั่วโมงกับซินิกริน ดังนั้น EX และ EC จึงถูกนำมาหมักผักกะหล่ำดอง (Brassica oleracea L. var. capitata) ซึ่งอุดมด้วยสารกลูโคไอเบอริน กลูโคราฟานินและ 4-ไฮดรอกซี่ กลูโคบราสซิ ชิน ที่อุณหภูมิ 25 องศาเซลเซียส เป็นเวลา 3 วัน พบว่าซัลโฟราเฟนและไอเบอรินถูกผลิตขึ้นโดย EX มีค่าสูงสุดที่ 294.1 และ 117.4 ไมโครโมล ต่อ 100 กรัมน้ำหนักผักแห้ง ตามลำดับ หลังการหมัก 1 วัน แต่ทว่าในกะหล่ำดองที่ หมักด้วย EC พบผลิตภัณฑ์สองอย่างนี้ถูกผลิตขึ้นสูงที่สุดที่ 242.6 และ 51.7 ไมโครโมล ต่อ 100 กรัมน้ำหนักผัก แห้ง ตามลำดับ ในวันที่ 2 การหมักผักกะหล่ำด้วยเชื้อที่คัดแยกมานี้ทำให้ได้ซัลโฟราเฟนและไอเบอรินที่สูงกว่าการ หมักแบบธรรมชาติ (p < 0.01) ในเวลาหมักทั้ง 3 วัน สิ่งที่น่าสนใจ คือ ในน้ำผักดองจะมีซัลโฟราเฟนและไอเบอรินที่ ัสูงกว่าในเนื้อผักดอง เกือบ 3 เท่า (p < 0.01) เมื่อนำสารสกัดจากผักดองที่หมักด้วย EX เป็นเวลา 1 วันไปทดสอบ กิจกรรมการต้านเชื้อก่อโรค พบว่าสารสกัดที่ความเข้มข้น 50 ไมโครกรัมต่อมิลลิลิตร ไม่สามารถยับยั้งเชื้อ Enterococcus faecium, Pseudomonas aeruginosa (PAO1), Klebsiella pneumonia, Escherichia coli แ ล ะ Candida albicans ได้ ส่วนผลการต้านเซลล์มะเร็ง พบว่าสารสกัดจากผักดองที่ความเข้มข้น 50 ไมโครกรัมต่อ มิลลิลิตร แสดง 20.86% cytotoxicity ต่อเซลล์มะเร็งปอด (NCI-H187) แต่ก็ยังไม่ถึง 50% จึงยังไม่ถือว่าเป็นพิษต่อ เซลล์มะเร็งปอด และไม่แสดงความเป็นพิษต่อเซลล์มะเร็งเต้านมและเซลล์ไตของลิง (Vero) อย่างไรก็ตาม สารสกัด ้ผักกะหล่ำดองโดย EX เป็นเวลา 1 วัน ที่ความเข้มข้น 25 มิลลิกรัมต่อมิลลิลิตร แสดงกิจกรรมต้านอนุมูลอิสระที่ 62% DPPH scavenging activity, 6.51 มิลลิกรัม FeSO₄ ต่อกรัมน้ำหนักแห้ง และ 5.21 มิลลิกรัม VEAC ต่อกรัม น้ำหนักแห้ง ซึ่งโดยรวม มีค่าสูงกว่ากิจกรรมต้านอนุมูลอิสระของกะหล่ำดองที่หมักโดยธรรมชาติ โดยสรุป ผักกะหล่ำ ดองของประเทศไทยที่ถูกหมักโดยเชื้อที่แยกมาได้นี้มีศักยภาพที่จะเป็นอาหารฟังค์ชันเทียบเท่ากิมจิของประเทศ เกาหลี และซาวเออร์เคราท์ของทวีปยุโรปได้ โดยควรทำการหมักเป็นเวลา 1-2 วัน และควรบริโภคน้ำผักดองด้วย เพราะว่ามีซัลโฟราเฟนและไอเบอรินในปริมาณที่สูง เพื่อยังผลให้เกิดประโยชน์ต่อสุขภาพของผู้บริโภคอย่างสูงสุด

คำสำคัญ : แบคทีเรีย, การต้านมะเร็ง, กลูโคซิโนเลต, ไอโซไธโอไซยาเนต, ไมโรซิเนส

The influence of microbes isolated from Thai fermented foods and beverages on the metabolic fate of glucosinolates

Objectives

- 1. To identify which microbe isolated from Thai fermented foods and beverages is able to degrade GSL.
- 2. To determine the degradation of GSLs in each Cruciferous plant extract by metabolism of microbes in isolation and combination i.e. microbial consortia.
- 3. To determine and optimize the production of the degradation products of GSLs in each Cruciferous plant extract by metabolism of microbes in isolation and combination.
- 4. To determine the antioxidant, antibacterial and anticancer activity of the fermented Cruciferous vegetables from metabolism of microbes in isolation and in combination.

Materials and Methods

1. Sample collection

Eight samples of fermented foods and beverages at the end of fermentative stage were purchased mainly from local markets in Mahasarakham, Thailand except for samples no. 7 and 8 for isolation of myrosinase-positive microbes. Samples (Fig. S1) included (1) Fermented cabbage (2) Picked onions (3) Fermented fish (4) Fermented pork (5) Fermented herbal drink (6) Fermented star fruit juice, (7) Water kefir from Nakhon Ratchasima and (8) Milk kefir from Kamphaeng Phet. Samples were stored at 4°C and analyzed within 24 h.

2. Isolation of GSL-metabolizing microbes

Solid food materials and liquid (5 g each, 10 g in total) or liquid beverage (10 ml) were weighed and mixed with 90 ml of sterile 0.85% NaCl solution. The mixture was homogenized in a sterile mortar and pestle for 5 min and mixed by vortexing for 5 min. The mixture was centrifuged at 4000g for 15 min and clear supernatant was obtained. Enrichment culture technique was used by inoculating 100 µl bacterial suspension into 900 µl LB broth containing 1 mM sinigrin for 2 days in anaerobic incubator and this step was repeated at day 4, 6 and 8 in fresh Luria-Bertani (LB) media (10 g Tryptone; 10 g NaCl; 5 g Yeast extract in 1 l). At day 10, 100 µl bacterial suspension was spread onto the selective minimal media M9 agar (1 M MgSO₄; 1 M CaCl₂; 50% Glucose; 1% Thiamine; 64 g Na₂HPO₄-7H₂O; 15 g KH₂PO₄; 2.5 g NaCl; 5.0 g NH₄Cl; 15 g agar in 1 l) containing 1 mM sinigrin and 2.5 mM barium acetate and incubated at 37°C for 72 h in the anaerobic incubator. Growth and opaque zone formation was an indicator of sinigrin degradation as seen from white precipitates of barium sulfate. This was a result of a release of sulfate group of GSL and thus GSL-metabolizing/myrosinase-positive isolates were selected from each food sample. Positive isolates were stored in 20% glycerol stocks in LB media at -80°C. All microbial isolates were deposited in the Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Thailand (WDCM 1160).

3. In vitro sinigrin incubation

Sinigrin (1 mM) was incubated with each selected bacterial culture (100 μ l, OD_{600nm} = 0.5) from the previous step in 100 μ l LB media at 37°C without shaking in anaerobic incubator for 24 h. Bacterial culture was centrifuged at 16000g for 5 min and then 100 μ l clear supernatant to be used for HPLC analysis and the other 900 μ l for GC-MS analysis were kept at -20°C until use.

4. Genomic DNA isolation and 16S rDNA gene analysis

Selected isolates with the confirmed positive results of GSL degradation from HPLC analysis were cultured overnight for gram-staining, genomic DNA extraction and PCR-based 16S rRNA gene analysis using universal primers following the previous report (Luang-In et al., 2014).

5. Phylogenetric tree construction

The nucleotide sequences of isolated bacterial 16S rDNA, from this study and previous findings were compared with entries in the GenBank database. Similarly, putative myrosinases of bacterial relatives in the GenBank database were compared with the characterized myrosinases. The sequences were aligned using MUSCLE (Edgar, 2004). Phylogenetic trees were constructed using the maximum-likelihood method and assessing the reliability the constructed phylogenetic tree with 1000 bootstrap replicates, implemented in the Molecular Evolutionary Genetics Analysis (MEGA) 7.0 software package (Kumar et al., 2015). The constructed phylogenetic trees of 16S rRNAs and proteins were drawn by FigTree software (v1.4.2) (Molecular evolution, phylogenetics and epidemiology, Edinburgh, Scotland, UK) [http://tree.bio.ed.ac.uk/software/figtree/].

6. Starter culture preparation

Each of the two selected bacteria was grown in 10 ml LB media overnight and centrifuged at 8,000 g for 15 min at 4°C. The cells were washed twice with overnight fermented sticky rice water (initial pH 6.0). The inoculum concentration of 10⁶ CFU/ml was inoculated in 3% (v/v) into the prepared cabbage-rice water jar (200 ml) to be fermented as mentioned below. Induced fermentations were defined by inoculation of either *Enterobacter xiangfangensis* 4A-2A3.1 (EX) or *Enterococcus casseliflavus* SB2X2 (EC) culture and spontaneous fermentations (N = Non-induced) were those without inoculation of either culture.

7. Cabbage fermentations

Thai white cabbage heads (*Brassica oleracea* L. var. capitata) were purchased from Pran Fresh Co. Ltd, Khon Kaen, Thailand. After removing core and outer layers, 3 kg of the cabbage heads from the same batch were separated into leaf pieces manually according to Thai local cabbage fermentation procedure. The spontaneous fermentation was performed by mixing torn plant materials well with 7% salt (w/v), washed with distilled water, and only 200 g solid plant materials were transferred into each replicate fermentation pot (200 ml glass container with lid already containing 200 mL fermented rice water pH 6.0 mixed with 7% salt). The salted cabbage materials were tightly pressed into the jars that were closed and kept at 25°C for 3 days without shaking. Triplicates were carried out throughout the study. The control

were those 200 g fresh cabbage heads separated into leaf pieces manually without fermentation at 0 h as the starting materials and they were determined for initial GSLs and initial ITC products to be compared with spontaneously fermented cabbage samples (N) and each of the cabbage fermentation induced by EX or EC.

8. Sampling and extraction of fermented cabbage

The fermentation experiment was carried out in parallel in 36 jars with triplicate in each of the three treatments (N, EC, and EX) from 0 to 3 days. Sampling was done at day 0, 1, 2 and 3, pH was measured immediately after opening the fermentation jars. For extraction of GSLs and ITC products, the whole samples from each jar collected as mentioned above were frozen at -80°C, dried in a freeze dryer, and processed accordingly for GSL and ITC analyses as mentioned below. For EC samples at day 2, half of cabbage leafy material and half of fermented liquid were taken separately for GSL and ITC determination to evaluate which part contained higher contents. Dried samples were ground to small pieces using a sterile mortar and pestle and weighed for extraction by 95% ethanol at concentration of 25 mg/ml at 25°C for 24 h. The mixture was centrifuged at 16000g for 5 min and clear supernatant was collected for antioxidant activity analyses.

9. Sample preparation and HPLC analysis to detect GSLs

The GSL extraction method was modified from the previous report (VicaŞ et al., 2011). Freeze dried samples (5 g) were ground and mixed with 5 ml of 70% methanol by shaking at 37°C for 5 min and the supernatant was collected after centrifugation at 8000g for 15 min. The remained solid sample was extracted again and the supernatant was mixed with the first extraction. The mixture was dried at 70°C in the oven and the dried residues were dissolved in 1 ml deionized water using vortex. One ml sample was processed in DEAE-25A anion exchange resin as previously described (Luang-In et al., 2014). HPLC-DAD system (Shimadzu, Japan) fitted with a Synergi 4u Hydro-RP 80A, 150 x 2 mm, 4.6 micron (Phenomenex Inc., Torrance, CA) protected with security guard column AQ C18 (4 x 3 mm), comprising of Shimadzu LC-20AC pumps, a SPD-M20A diode array detector and were used for GSL analysis using the following gradient: Water (Solvent A)-ACN (Solvent B) gradient 2% B (15 min), 2–25% B (2 min), 25–70% B (2 min), 70% B (2 min hold), 70–2% B (2 min), and 2% B (15 min) at a flow rate of 0.2 ml/min at 35°C. Eluent was monitored at A229 nm. Quantification of desulfo-glucosinolate (DS-GSL) was achieved using known response factors for each GSL relative to an external standard (sinigrin). Pure sinigrin (Sigma-Aldrich, Singapore), glucoraphanin, glucoiberin (Youchemicals Ltd., China) and 4-hydroxy glucobrassicin (Clearsynth, India) were purchased as standards.

10. Sample preparation and GC-MS analysis to detect degradation products

Freeze-dried samples (500 mg) were mixed with 3 mL dichloromethane (DCM) in test tubes with tight lids for 24 h at 250 rpm at room temperature. The mixture was centrifuged at 16100g for 5 min and the supernatant (1 ml) was added with 0.5 g magnesium, mixed and then was centrifuged at 16100g for 20 min. The clear supernatants were transferred into vials and kept at -20 °C till GC-MS analysis. A Shimadzu

QP2010 system and a capillary column, Agilent HP-5MS (5% Phenylmethylsiloxane, 30 m \times 0.25 mm i.d.; film thickness, 0.25 μ m) were used for ITC analysis. GC-MS analytic conditions were performed as previously reported (Luang-In et al., 2014). The temperature was kept at 50°C for 5 min and ramped to 150°C at 5°C/min for 25 min, and then ramped to 250°C at 5°C/min for 15 min. The total 40 min run was carried out with a flow rate of 1 ml/min, average velocity of 36 cm/s, pressure of 7.56 psi and injection volume of 1 μ l. Mass spectra were obtained by electron ionization (EI) over a range of 50–550 atomic mass units. Ion source temperature was 230°C, and the electron multiplier voltage was 70.1 eV. Authentic standards of allyl isothiocyanate and sulforaphane were purchased from Sigma-Aldrich Co. (Singapore). Identification was based on retention time and fragment ions (Table S1). Quantification of degradation products was calculated using an external standard curve of sulforaphane.

11. Antioxidant activity of the fermented cabbage

This was evaluated through the free radical scavenging effect on 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical as previously reported (Akowuah et al., 2005), FRAP assay (Benzie & Strain, 1996) and ABTS scavenging assay (Seeram et al., 2006) using 25 mg/ml freeze-dried extract dissolved in 95% ethanol as a starting solution.

12. Antimicrobial activity of the fermented cabbage extracts

The MIC assay were performed at Bioassay laboratory service (BIOTEC, Thailand) as follows. The reference pathogenic microbes (*Enterococcus faecium, Pseudomonas aeruginosa* (PAO1), *Klebsiella pneumonia, Escherichia coli* and *Candida albicans*) were grown in tryptic soy agar (TSA) at 37 °C for overnight. A single colony is inoculated in Mueller Hinton Broth (MHB) and incubated in a rotary shaker 200 rpm at 37°C for 30 min. Cells at a logarithmic growth were harvested and diluted to 2.5x10⁵ CFU/ml in MHB prior to assay. This assay is performed in 384-well plate in triplicate. Each well is added with 5 μl of 50 μg/ml of sample (or positive or negative control agents) and 45 μl of cell suspension. The positive control was amikacin or ofloxacin and the negative control was 0.5% dimethylsulfoxide (DMSO). Blank wells were added with 5 μl of 5% DMSO and 45 μl media. Plates are then incubated at 37 °C for 14 hours. Bacterial growth was observed by OD_{600nm} measurement using microplate reader. The OD units of test wells are subtracted with mean OD units of blank wells before calculation. Percent of bacterial inhibition is calculated by the following equation:

% Inhibition =
$$[1- (ODT/ ODC)] \times 100$$

The results of antimicrobial activity from Bioassay laboratory service (BIOTEC, Thailand) appeared negative, and thus not included for discussion.

13. Anticancer activity test of the fermented cabbage extracts

Resazurin microplate assay (REMA) was used carried out at Bioassay laboratory service (BIOTEC, Thailand). Human small-cell lung (NCI-H187), human breast adenocarcinoma (MCF-7) and human colon adenocarcinoma Caco2 cell line (ATCC HTB-37) were grown and maintained in a complete medium (Minimal essential medium (MEM) supplemented with 10% heat-inactivated fetal bovine serum, 2 mM Lglutamine, 0.1 mM non-essential amino acid, 0.1 IU/ml Insulin-Transferrin-Selenium-X, 1.5 g/L sodium bicarbonate, 100 unit/ml penicillin and 100 µg/ml streptomycin) and incubated at 37 °C humidified incubator with 5% CO₂. Cells at a logarithmic growth are harvested and diluted to 2x10⁴ cells /ml in complete medium prior to assay. The positive control was ellipticine and the negative control was 1% DMSO. This assay was performed in 96-well plate in four replicate wells. First, plates were seeded with 200 µl of cell suspension or blank medium into well, and incubated at 37°C humidified incubator with 5% CO2 for 48 h. Subsequently, culture medium was replaced with 200 µl of fresh medium containing test-compounds or 1% DMSO, and plates were further incubated for 24 h. After incubation period, the plates was added with 50 μl of 125 μg/ml resazurin solution and incubated at 37°C humidified incubator with 5% CO₂ for 4 h. Fluorescence was measured at 530 nm excitation and 590 nm emission wavelengths by using the bottomreading mode of fluorometer. The signal is subtracted with blank before calculation. The percentage of cytotoxicity was calculated by the following equation:

% Cytotoxicity =
$$[1-(FUT/FUC)] \times 100$$

The results of anticancer activity from Bioassay laboratory service (BIOTEC, Thailand) appeared negative, and thus not included for discussion.

14. Statistical analyses

Triplicates were used for each treatment. Results are expressed as means \pm standard deviation (SD). The significant differences between means are calculated by a one-way analysis of variance (ANOVA) and Duncan's multiple range test at p < 0.01 using SPSS package version 19.

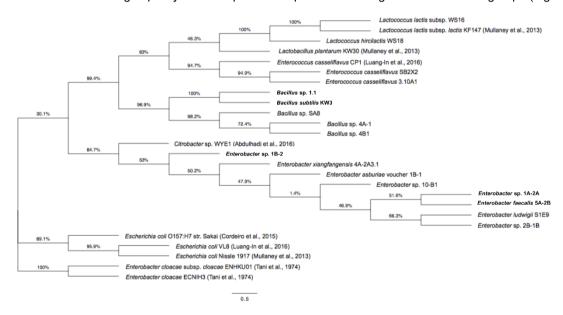
Results and Discussion

1. GSL-metabolizing bacteria from Thai fermented foods and drinks

Twenty-one bacterial isolates from 8 sources of Thai local fermented foods and beverages were identified as GSL-metabolizing bacteria using selective M9 agar containing sinigrin substrate and identified at subspecies level using 16S rRNA gene analysis. The results show that the greatest number of newly identified GSL-metabolizing bacterial species came from Thai fermented cabbage followed by Thai fermented fish resulting in isolation of 8 and 3 bacterial species, respectively (Table 1). When sinigrin was metabolized by bacterial myrosinase, the degradation product i.e. isothiocyanate namely allyl isothiocyanate (AITC) was expected. It was observed that most GSL-metabolizing bacteria were able to produce AITC from sinigrin metabolism (Table 1) using GC-MS and HPLC analyses, respectively. The majority of ITC-producing bacteria belong to the genera *Enterobacter* and *Enterococcus* with the two highest ITC producers named as *Ent. xiangfangensis* 4A-2A3.1 (EX) from fermented fish and *Ec. casseliflavus* SB2X2 (EC) from fermented cabbage producing 65 and 61 nmol AITC, respectively from

100% sinigrin degradation within 24 h (Table 1). Therefore, these two isolates were chosen as a starter culture to ferment cabbage in further experiment. Although bacteria belong to the same genus e.g. Enterobacter, they exhibited different GSL-metabolizing capacity therefore possibly different myrosinase activity (Table 1). AITC was unstable in the culture media (Luang-In & Rossiter, 2015) and thus AITC product formation never reached 100% product formation. The highest % product formation was found in EX with 65% product formation. However, Lactococcus hircilactis WS16, L. lactis WS18 and Bacillus sp. KW3 did not produce AITC from 77-80% sinigrin degradation suggesting they may have different GSL metabolic enzymes or mechanisms from other bacteria in metabolizing GSL, but not producing ITC. Two bacterial species were found in more than one sample. Enterobacter sp. 1A-1A with 92% identity to Enterobacter sp. Md1-53 was found in fermented cabbage, pickled onions and fermented juices. Enterobacter faecalis 5A-2B with 99% identity to Enterobacter faecalis NW A20 was present in both fermented cabbage and fermented herbal drink. Thus, there were 17 bacterial strains from 21 isolates from 8 fermented food/drink samples. All these 17 bacterial strains at subspecies level have not been reported as GSL metabolizer and/or ITC producers before, yet they shared the same genus or the same species as those identified previously. Previous findings showed a variety of GSL-metabolizing bacterial strains such as Bacillus thuringiensis (El-Shora et al., 2016), Actinomycetes isolated from cotton soil (Madhuri & Anuradha, 2015), E. coli VL8, Enterococcus casseliflavus CP1 isolated from human faeces (Luang-In et al., 2014), Lactobacillus plantarum KW30, Lactococcus lactis subsp. lactis KF147, Escherichia coli Nissle 1917 isolated from foods (Mullaney et al., 2013), Bifidobacterium pseudocatenulatum, B. adolescentis, B. longum (Cheng et al., 2004), Lb. agilis R16 (Palop-llanos et al., 1995), and known myrosinase-producer Ent. cloacae isolated from soil (Tani et al., 1974). In this work, all the identified 17 bacteria belong to the above reported genus including Bacillus, Lactococcus, Escherichia, Enterobacter and Enterococcus. Contrary to popular belief, Lc. hircilactis WS16 (100% identity to Lc. hircilactis DSM 28960) and Lc. lactis WS18 (98% identity to Lc. lactis RCB787) in this study did not produce ITC from GSL metabolism (Table 1). This result indicated that not all LAB are able to produce ITC as previously thought. Similarly, Mullaney et al. (2013) found that Lb. plantarum KW30 and Lc. lactis subsp.lactis KF147 did not produce any ITC from glucoraphanin, glucoerucin and glucoiberverin. Instead they generated sulforaphane nitrile as well as erucin nitrile and iberverin nitrile. Most isolated bacteria have the highest % identity to the closest relative bacteria originated from food sources and plants followed by human/animal guts and environments located in mostly Asia including China, India, Korea, Pakistan, Thailand and also other parts of the world including Italy, Belgium, Brazil and South Africa (Table 1). Although probiotic reports of both Ent. xiangfangensis and Ec. casseliflavus are scarce, the genome of Ent. xiangfangensis isolated from Chinese traditional sourdough was recently published (Gu et al., 2014). In addition, Ec. faecium-group and Ec. faecalis-group were also isolated at the early stages of fermentation of cauliflower fermentation (Paramithiotis et al., 2010) indicating that Enterococcus and Enterobacter were commonly found in fermented foods.

Table 1 Twenty bacterial isolates with glucosinolate-metabolizing capacity isolated from Thai local fermented foods and drinks


No.	Accession no.a	Species	Closet relative species ^b (% identity) /Accession no. ^c /Origin of isolate ^d	Sinigrin degradation (nmol) ^c	AITC product (nmol) ^e	% product formation ^f		
1. Fe	1. Fermented cabbage pH 3.87							
1	LC342980.1	Enterobacter sp. 1A-1A	Enterobacter sp. Md1-53 (92%) MF581459.1 Paeonia ostii root, China	73 ± 8	30 ± 5	41 ± 4		
2	LC342981.1	Enterobacter faecalis 5A-2B	Enterococcus faecalis NW A20 (99%) MG543833.1 Raw meat, South Africa	78 ± 7	39 ± 11	50 ± 14		
3	LC342982.1	Enterobacter asburiae 1B-1	Enterobacter asburiae voucher ST56 KT287073.1 100% Rumen China	75 ± 11	33 ± 8	44 ± 6		
4	LC342983.1	Enterobacter sp. 1B-2	Enterobacter sp. NU33 (96%) MG459258.1 Plant growth-promoting bacteria in sugarcane, Brazil	79 ± 5	41 ± 7	52 ± 8		
5	LC342984.1	Enterobacter ludwigii S1E9	Enterobacter ludwigii HTP04 (100%) KX024731.1 Isolated from shrimp gut, India	90 ± 8	50 ± 9	56 ± 7		
6	LC342985.1	Enterococcus casseliflavus SB2X2	Enterococcus casseliflavus HMF4406 (98%) KT984002.1 Jeotgal (salted fermented food), Korea Bacillus sp. SK123 (97%)	100 ± 0	61 ± 4	61 ± 6		
7	LC342986.1	Bacillus sp. SA8	KU060226.1 Honey bee apiary, Thailand Bacillus sp. BDU13 (96%)	79 ± 8	39 ± 7	49 ± 6		
8	LC342987.1	Bacillus sp. 1.1	JX847614.1 Microbial diversity from fermented fish, India	87 ± 10	42 ± 11	48 ± 10		
2. Pi	ckled onion pH	4.81						
9	LC342980.1	Enterobacter sp. 1A-1A	Enterobacter sp. Md1-53 (92%) MF581459.1 Paeonia ostii root, China	73 ± 5	40 ± 5	55 ± 4		
10	LC342988.1	Enterobacter sp. 2B-1B	Enterobacter sp. SR19 (100%) KF896099.1 Seawater sediment, Belgium	71 ± 0	39 ± 3	55 ± 6		
3. Fermented fish pH 4.60								
11	LC342989.1	Enterobacter xiangfangensis 4A-2A3.1	Enterobacter xiangfangensis W31 (100%) KP813789.1 Storm water bacteria in two urban lakes China	100 ± 0	65 ± 3	65 ± 4		
12	LC342990.1	Bacillus sp. 4A-1	Bacillus sp. S42 (100%) JX293317.1 Crystal tuff, China	71 ± 6	40 ± 4	56 ± 1		
13	LC342991.1	Bacillus sp. 4B1	Bacillus sp. SO5.17 (97%) KC867296.1 Mine drainage, Brazil	73 ± 4	42 ± 9	58 ± 13		
4. Fer	mented pork pl	H 4.73						
14	LC342992.1	Enterococcus casseliflavus 3.10A1	Enterococcus casseliflavus JFL12 (100%) KT343156.1 Fiber-degrading bacteria in rumen of Tibetan yak, China	74 ± 13	35 ± 8	47 ± 4		
5. Fermented herbal drink pH 2.80								
15	LC342981.1	Enterobacter faecalis 5A-2B	Enterococcus faecalis NW A20 (99%) MG543833.1	78 ± 7	35 ± 6	45 ± 5		
Raw meat, South Africa 6. Fermented juice pH 2.93								
	Juice p		Enterobacter sp. DBM3					
16	LC342993.1	Enterobacter sp. 10-B1	(97%) KT957440.1 Plutella xylostella larval gut, China	77 ± 5	34 ± 11	42 ± 16		

17	LC342980.1	Enterobacter sp. 1A-1A	Enterobacter sp. Md1-53 (92%) MF581459.1 Paeonia ostii root, China	73 ± 10	34 ± 8	47 ± 7	
7. W	7. Water kefir from Nakhon Ratchasima pH 5.94						
18	LC336444.1	Lactococcus hircilactis WS16	Lactococcus hircilactis DSM 28960 (100%) KJ201026.1 Goat milk, Italy	77 ± 4	nd	na	
19	LC336446.1	Lactococcus lactis WS18	Lactococcus lactis RCB787 (98%) KT260999.1 Bat guano, India	78 ± 3	nd	na	
8. M	8. Milk kefir from Kamphaeng Phet pH 5.23						
20	LC342994.1	Bacillus subtilis KW3	Bacillus subtilis MA-48 (93%) KX426648.1 Rhizospheric soil in desert, Pakistan	80 ± 9	nd	na	

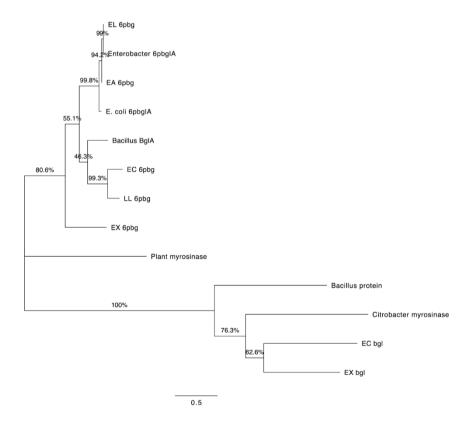
^a GenBank accession no. of our strains on NCBI website (http://www.ncbi.nlm.nih.gov/pubmed)

2. Phylogenetic tree of GSL-metabolizing bacteria

Phylogenetic tree shows 17 GSL-metabolizing bacteria isolated from this work and 9 reference bacteria with GSL-metabolizing capacity from the previous reports were categorized into 3 main groups (Fig. 1).

Fig. 1 Phylogenetic tree of GSL-metabolizing bacteria isolated from this work and the previous reports. It was inferred from 26 partial16S rRNA sequences from different bacteria by using the Maximum Likelihood method based on the Le_Gascuel_2008 model. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1,000 replicates) is shown next to the branches. The horizontal bar represents a distance of 0.5 substitutions per site. Evolutionary analyses were conducted in MEGA7 and the phylogenetic tree was drawn by using FigTree.

^b Closet relative species and identity (%) from BLAST search on NCBI website (http://www.ncbi.nlm.nih.gov/pubmed)


^c GenBank accession no. of closest relatives on NCBI website (http://www.ncbi.nlm.nih.gov/pubmed)

^d Origins of closet relative species i.e. where each bacterium was isolated from

^e Each isolate from fermented samples was cultured in LB medium containing 1 mM sinigrin for 24 h. After that sinigrin degradation and AITC production were determined by HPLC and GC-MS, respectively.

^f % product formation = [AITC product (nmol)/Sinigrin degradation (nmol)] x 100% nd = not detected; na = not available

The first and biggest group (30.1 % node) comprised of all bacteria from this work including LAB, Enterococcus and Bacillus along with the reference LAB (Mullaney et al., 2013) and Enterococcus (Luang-In et al., 2014) from the previous findings. The subgroup consisted of Enterobacter as well as reference Citrobacter (Albaser et al., 2016). The second group (89.1% node) included only 3 reference *E. coli* bacteria (Mullaney et al., 2013; Luang-In et al., 2014; Cordeiro et al., 2015). Similarly, the third group (100% node) included only 2 reference Enterobacter bacteria (Tani et al., 1974). From this result, it seems *Enterobacter* spp. isolated from this work were evolutionarily closely related to *Citrobacter* sp. WYE1 (Albaser et al., 2016) than *Enterobacter cloacae* (Tani et al., 1974). This is the first report of identifying *Ent. xiangfangensis*, *Ent. ludwigii*, *Ent. asburiae* and several new *Bacillus* spp. as ITC producers. Phylogenetic tree of putative myrosinase enzymes was also constructed (Fig. 2). Phylogenetic tree shows 9 putative myrosinase from the closet relative bacteria found in NCBI database and 4 characterized myrosinases from *Brassica juncea* plant (Accession no. AAG54074.1), *Citrobacter* sp. WYE1 (Accession no. ALM58466.1) (Albaser et al., 2016), *Ent. cloacae* EcWSU1 (Accession no. AEW75128) (Cordeiro et al., 2015) and *Escherichia coli* O157:H7 str. TW14359 6 (Accession no. ACT73612.1) (Cordeiro et al., 2015) were categorized into 3 main groups (Fig. 2).

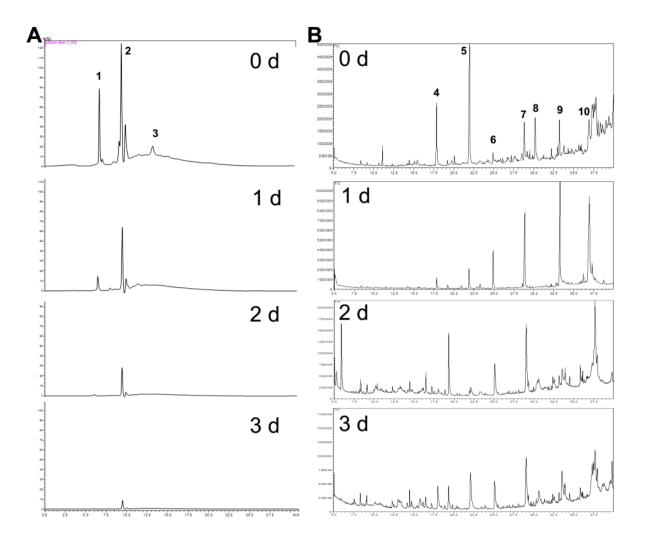


Fig. 2 Phylogenetic tree of putative myrosinases from the bacteria in this work and the previous reports. It was inferred from 13 amino acid sequences of putative myrosinases from different bacteria by using the Maximum Likelihood method based on the Le_Gascuel_2008 model. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1,000 replicates) is shown next to the branches. The horizontal bar represents a distance of 0.5 substitutions per site. Evolutionary analyses were conducted in MEGA7 and the phylogenetic tree was drawn by using FigTree.

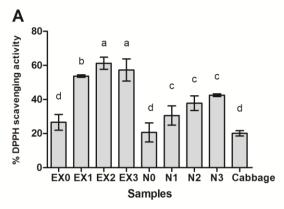
The first bacterial myrosinase group categorized into Glycosyl Hydrolase 1 (GH1) family consists of 6phospho-beta-glucosidases (6pbg) from the 2 reference myrosinases from Ent. cloacae EcWSU1 and E. coli O157:H7 str. TW14359 and those from the closet relative bacteria found in this work including Ent. ludwigii, Ent. xiangfangensis, Ent. asburiae, Ec. casseliflavus, Bacillus and Lc. lactis. On the other hand, the second bacterial myrosinase group categorized into GH3 family consists of beta-glucosidase (bgl) from the reference myrosinase from Citrobacter sp. WYE1 and those from the closet relative bacteria found in this work including Ent. xiangfangensis, Ec. casseliflavus and Bacillus. Clearly, plant myrosinase (GH1) was evolutionarily distinct from the other 2 bacterial myrosinase groups indicating differences in myrosinase evolution between plants and bacteria. Citrobacter sp. WYE1 myrosinase was active in vitro or in cell-free extract (Albaser et al., 2016); however those from Lb. agilis R16 (Llanos-Palop et al., 1995), E. coli O157:H7 (Cordeiro et al., 2015) and Ec. casseliflavus CP1 (Luang-In et al., 2014) were inactive in vitro, but only active in vivo or in intact cells. The closely evolved enzymes to Citrobacter sp. WYE1 myrosinase were Bacillus protein and 2 Bgl enzymes from Ent. xiangfangensis and Ec. casseliflavus (Fig. 2). These may be as active in vitro as Citrobacter sp. WYE1 myrosinase which will facilitate the study of myrosinase enzyme activity in vitro and hence decoding their amino acid sequences more easily than those only active in vivo.

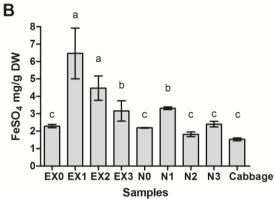
3. Chemopreventive ITC products from fermented cabbage

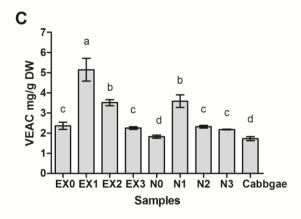
Ent. xiangfangensis (EX) and Ec. casseliflavus (EC) were used to ferment Thai cabbage containing three GSLs namely glucoiberin (GIB), glucoraphanin (GRP) and 4-hydroxy glucobrassicin (GBS) at 430.5, 615.1 and 108.5 µmol/100 g dry weight, respectively (Table 2) for 3 day at 25°C. In comparison with Chinese cabbage (in kimchi) that contained five types of GLSs of approximately 8.3 µmol/g dry weight including glucoalyssin, gluconapin, glucobrassicanapin, glucobrassicin, and 4-methoxyglucobrassicin (Kim et al., 2017), it was clear that our GSLs were present in higher amounts indicating that cabbages in various countries contain various kinds of GSLs (Table S3) in various amounts depending on environmental factors such as geographical location, temperature, solar radiation, humidity and climatic conditions (Bohinc & Trdan, 2012). Degradation products of the three GSLs namely Iberin nitrile (IBN), iberin (IBR), Sulforaphane (SFN) and indole 3-acetonitrile (IAN), respectively were already detected in fresh cabbage; however in less amounts than those in fermented samples (Table 2). The product generation was due to intrinsic plant myrosinase in cabbage coming into contact with GSL upon tissue damage during handling cabbage process and possibly GSL hydrolysis occurred. Table 2 shows gradual GSL degradations in all treatments; however the spontaneous cabbage fermentation produced less IBR and SFN at days 2-3 suggesting that bacterial culture present may be able to degrade GSLs, but not capable of producing ITCs. However, IBN was found in less amounts at days 2-3 in the induced fermentation of cabbage than the spontaneous one, and that was possibly due to presence of bacterial enzymes transforming nitrile products to other metabolites. GRP was degraded more rapidly in bacterial induced cabbage fermentations than the spontaneous one indicating the presence of specific GRP-metabolizing bacteria in the samples (Table 2). GBS totally disappeared at the end of day 1 due to its initial low content in cabbage (Fig. 3A; Table 2). The degradation products included those mentioned above as in fresh cabbage along with palmitic acid and linoleic acid (Fig. 3B). The IAN production in all treatments were similar at each day and gradually declined over time. The production of both chemopreventive IBR and SFN in EX-induced cabbage fermentation peaked at day 2 at 117.4 and 294.1 µmol/100 g dry weight, respectively which was significantly higher than IBR at 51.7 µmol/100 g dry weight, but not significantly higher than SFN at 242.6 µmol/100 g dry weight in EC-induced fermented cabbage at day 2. Overall degradation products in all treatments declined over 3 days and never reach 100% product formation (Table S2). This was possibly due to the unstable nature of ITCs in fermentation matrices (Luang-In & Rossiter, 2015). In addition, SFN content detected in the liquid portion of EC-induced cabbage fermentation at day 2 was significantly higher (p<0.01) than that found in the fermented cabbage solid portion by almost three folds (Table 2). This indicated that one should consume the liquid portion of the fermented cabbage along with the more commonly consumed fermented cabbage solid portion in Thailand to obtain the best health benefits from SFN. The pH values of the fermented cabbages at day 3 were 3.55 (N), 3.25 (EX) and 3.45 (EC) with no statistical difference (Fig. S2) and are similar to pH values of 3.27 - 3.67 of sauerkraut from Spanish cabbage over 7-day fermentation at 25°C by Lactobacillus plantarum (CECT 748) and Leuconostoc mesenteroides (CECT 219) (Table S3). Similarly, the ITC products including SFN at 39-49 µmol/100g dry weight, IBR, and IBR NIT were detected from metabolism of glucoraphanin and glucoiberin in sauerkraut from Spanish cabbage like in our product but in less amounts, except for allyl isothiocyanate (AITC) and allyl nitrile (ANIT) that were only found in their sauerkraut; however these products were not detected in their raw cabbage (Peñas et al., 2012) suggesting that fermentation was responsible for ITC and NIT productions. Similarly, sauerkraut made from cabbage grown in Finland produced SFN, AITC, ANIT and indole 3-carbinol (I3C) from glucoiberin, sinigrin and glucobrassicin, respectively (Tolonen et al., 2002). In contrast, sauerkraut made from cabbage grown in Germany only produced ascorbigen and I3C from glucoiberin, sinigirin, glucobrassicin, glucoraphanin and 4-methoxy glucobrassicin (Palani et al., 2016). SFN was also found in Korean kimchi, however in a less amount than in fresh cabbage (Kim et al., 1999), and sometimes not found at all (Hong & Kim, 2013). Different ITC production from different fermented cabbage products in various countries may be the result of different cultivars of cabbages used and bacterial species present in the fermentation. To ascertain functionality of Thai fermented cabbage in this work and for future commercial purposes, anticancer activity and antimicrobial activity of metabolites produced during induced cabbage fermentation as well as probiotic properties of both Ent. xiangfangensis and Ec. casseliflavus will be determined in the next project. In addition to ITCs as potential anticarcinogens, palmitic acid (16:0) and linoleic acid (18:2) as potential anticarcinogens or antimutagens (Nadathur et al., 1996; Bocca et al., 2010) were also present in fresh cabbage. After induced cabbage fermentation with either EC or EX for 3 days, palmitic acid and linoelic acid contents were increased by almost 5 folds and 10 folds, respectively (data not shown) suggesting induced fermentation added more nutritional value to cabbage than non-induced fermentation. Our finding was in accordance with the previous work showing that milk fermented with kefir had higher contents of healthy fatty acids when compared to unfermented milk (Guzel-Seydim et al., 2006). That was due to bacterial capacity to produce different fatty acids (Dykes et al., 1995) which employed the disassociated fatty acid synthesis II pathway, thus multiple discrete enzymes synthesize the fatty acid chain (White et al., 2005).

Fig. 3 (A) HPLC chromatograms of GSL profiles of fermented cabbage by EX from 0 – 3 days. (B) GC-MS chromatograms of metabolic profiles of fermented cabbage by EX from 0 – 3 days. HPLC peaks of GSLs; **1** Glucoiberin at 6.30 min, **2** Glucoraphanin at 9.44 min and **3** 4-Hydroxy glucobrassicin at 12.5 min. GC-MS peaks of products, **4** iberin nitrile at 17.9 min, **5** Pent-1,4-diene-3-one at 21.9 min, **6** iberin at 24.9 min, **7** sulforaphane at 28.9 min, **8** *indol-3-acetonitrile* at 30.2 min, **9** palmitic acid at 33.3 min and **10** linoleic acid at 36.9 min.

Table 2 Metabolism of glucosinoates in fermented cabbage with/without bacterial induction over 3 days.


Samples	Remaining GSL (μmol/ 100 g dry weight)				Products (μmol/ 100 g dry weight)					
Samples	GIB	GRP	GBS		IBN	IBR	SFN	IAN		
Cabbage	430.5±34.1aB	615.1±30.0aA	108.5±19.1aC		75.1±26.4aC	13.3±10.0bD	39.5±16.3dC	49.1±29.8abC		
N0	273.8±15.8bB	534.4±30.4abA	30.2±4.4bC		61.82±28.4abC	11.2±6.0bD	56.2±26.0dC	52.4±19.1abC		
N1	103.8±19.5cB	419.0±26.5cA	0.0+0.0cE		43.3±23.2abC	32.1±3.9bD	135.2±42.0abB	22.9±4.7abC		
N2	20.9±12.0dB	217.5±14.8deA	0.0+0.0cC		35.2±15.4abB	11.57±5.8bD	127.9±60.0abA	15.8±2.0bB		
N3	2.9±1.1dC	146.3±27.7deA	0.0+0.0cD		21.6±11.0bcB	8.6±3.9bB	112.2±52.0abA	10.7±3.1bB		
EC0	305.7±29.8bB	514.2±42.6bA	27.4±6.9bD		64.3±23.3abC	15.4±5.9bD	45.6±22.0dC	60.5±21.8aC		
EC1	91.8±17.3cC	359.9±31.8cdA	0.0+0.0cE		25.6±12.6abD	35.2±20.0bD	177.8±42.0abB	22.5±14.6abD		
EC2	21.0±9.3dB	211.0±27.7deA	0.0+0.0cD		6.4±2.1cC	51.7±35.9abB	242.6±40.0aA	14.7±11.9abB		
EC3	3.1±0.7dD	111±20.2fB	0.0+0.0cE		2.9±0.8cD	33.6±22.0bC	222.4±42.0aA	16.4±7.2abC		
EX0	305.2±13.0bB	536.6±29.1abA	31.6±7.8aC		65.2±20.2abC	12.5±4.0bD	48.6±30.0dC	55.3±20.2abC		
EX1	74.3±14.6cC	275.9±19.deA	0.0+0.0cF		26.6±12.3abD	117.4±41.9aB	294.1±44.0aA	7.7±3.7bE		
EX2	11.1±6.4dD	160.8±29.0eB	0.0+0.0cE		6.5±3.8cD	78.2±38.0abC	252.6±46.0aA	16.3±7.4abD		
EX3	2.4±0.6dD	85.3±24.7fB	0.0+0.0cE		13.8±3.1bcC	70.5±39.9abB	244.7±70.0aA	20.9±8.8abC		
EC2 solid	5.2±1.6dC	93.3±23.6fA	0.0+0.0cD		3.6±2.3cC	19.2±10.0bB	69.7±34.0cA	5.9±1.2bB		
EC2 liquid	16.3±7.5dC	117.7±34.4fB	0.0+0.0cF		3.5±0.7cE	30.8±22.0bC	173.3±48.0abA	10.4±1.3bD		


Cabbage = fresh cabbage; N = Non-induced with EX for 0-3 days (N0, N1, N2, N3); EC = induced with EC for 0-3 days (E0, E1, E2, E3);


EX = induced with EX for 0-3 days (E0, E1, E2, E3); EC2 solid = Solid portion of fermented cabbage of EC at day 2; EC2 liquid = Liquid portion of fermented cabbage of EC at day 2. Different small letters indicate significantly statistical differences in values in the column (p<0.01) and capital letters indicate significantly statistical differences in values in the row (p<0.01)

4. Antioxidant activity of fermented cabbage

Since EX-induced cabbage fermentations yielded the highest ITCs, they were used for antioxidant activity evaluation in comparison with the spontaneous ones. The results showed that EX-induced cabbage fermentations exhibited significantly higher %DPPH scavenging activity, FRAP activity and ABTS activity than those found in the spontaneous fermentations over 3 days (Fig. 4). In addition, antioxidant activities of fresh cabbage at day 0 were similar to those in both spontaneous and induced fermentations and increased over time indicating bacterial metabolism was responsible for increasing antioxidants in the fermented cabbage as well as the increase of ITCs (Table 2). Lactic-fermented cabbage in China, prepared by a dry-salt method and extracted with methanol, showed antioxidant activity of DPPH radical scavenging effect at 60% (Sun et al., 2009). This was similar to DPPH radical scavenging effect at 62.1% at day 2 by EX-induced fermentation (Fig. 4). In addition, Lactic-fermented red cabbage sprouts gave significantly higher antioxidant functionalities than those of their unfermented/control counterparts. Fermented red cabbage sprouts inoculated with Lb. plantarum had the highest antioxidant activities (DPPH scavenging: 70.92%; TEAC: 1.94 mM Trolox equivalent), which was almost two-fold higher than those of unfermented treatments. These results indicated that Lactobacillus fermentation and our Enterobacter fermentation could be applied as a method to improve the potent antioxidant activities of vegetables (Hunaefi et al., 2013).

Fig. 4 Antioxidant activities from fermented cabbage with/without bacterial induction over 3 days. EX = induced with EX for 0-3 days (E0, E1, E2, E3); N = Non-induced with EX for 0-3 days (N0, N1, N2, N3). Different small letters indicate significantly statistical differences in values (*p*<0.01).

Conclusions

Induced cabbage fermentation by *Ent. xiangfangensis* or *Ec. casseliflavus* produced higher contents of chemopreventive SFN and IBR than those from the spontaneous fermentation and fresh cabbage. Fermented liquid and solid portions from fermented cabbage should be combined for consumption at day 1 or 2 for the highest ITCs and no nitrile product providing the best health-promoting benefits. GSL-metabolizing bacteria isolated from Thai fermented foods can be used as a starter culture for a traditional

Thai fermented cabbage. This can then be promoted as a functional food with chemopreventive properties from ITC products like the fermented cabbage product counterparts from different countries e.g. sauerkraut and kimchi.

References

Akowuah, G.A., Ismail, Z., Norhayati, I., & Sadikun, A. (2005). The effects of different extraction solvents of varying polarities of polyphenols of *Orthosiphon stamineus* and evaluation of the free radical-scavenging activity. *Food Chemistry*, 93, 311–317.

Albaser, A., Kazana, E., Bennett, M., Cebeci, F., Luang-In, V., Spanu, P.D., & Rossiter, J.T. (2016). Discovery of a bacterial glycoside hydrolase family 3 (GH3) β-glucosidase with myrosinase activity from a *Citrobacter* strain isolated from soil. *Journal of Agriculture & Food Chemistry*, 64, 1520–1527.

Benzie, I.F.F. & Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP Assay. *Analytical Biochemistry*, 239, 70–76.

Bocca, C., Bozzo, F., Cannito, S., Colombatto, S., & Miglietta, A. (2010). CLA reduces breast cancer cell growth and invasion through ER and PI3K/Akt pathways. *Chemico-Biological Interaction*, *183*, 187–193.

Bohinc, T. & Trdan, S. (2012). Environmental factors affecting the glucosinolate content in Brassicaceae. *Journal of Food Agriculture and Environment, 10*, 357-360.

Cartea M.E., Francisco, M., Soengas, P., & Velasco, P. (2011) Phenolic compounds in Brassica vegetables. *Molecules*, *16*, 251-280.

Cheng, D.L., Hashimoto, K., & Uda, Y. (2004). *In vitro* digestion of sinigrin and glucotropaeolin by single strains of Bifidobacterium and identification of the digestive products. *Food and Chemical Toxicology, 42*, 351–357.

Cordeiro, R.P., Doria, J.H., Zhanel, G.G., Sparling, R., & Holley, R.A. (2015). Role of glycoside hydrolase genes in sinigrin degradation by *E. coli* O157:H7. *International Journal of Food Microbiology, 205*, 105-111.

Dykes, G.A., Cloete, T.E., & von Holy, A. (1995). Taxonomy of lactic acid bacteria associated with vacuum-package meat spoilage by multivariate analysis of cellular fatty acids. *International Journal of Food Microbiology*, 28, 89–100.

Edgar, R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Res*, *32*, 1792-1797.

El-Shora, H.M., El-Shobaky, A.M., & El-Atrozy, M.M. (2016). Activity of purified bacterial myrosinase and its essential residues. *International Journal of Current Microbiology* and *Applied Sciences*, *5*, 567-578.

Gu, C.T., Li, C.Y., Yang, L.J., & Huo, G.C. (2014). *Enterobacter xiangfangensis* sp. nov., isolated from Chinese traditional sourdough, and reclassification of *Enterobacter sacchari* Zhu et al. 2013 as Kosakonia sacchari comb. nov. *International Journal of Systematic and Evolutionary Microbiology*, 64, 2650-2656.

Guzel-Seydim, Z.B., Seydim, A.C., Greene, A.K., & TaŞ, T. (2006). Determination of antimutagenic properties of acetone extracted fermented milks and changes in their total fatty acid profiles including conjugated linoleic acids. *International Journal of Dairy Technology*, 59, 209–215.

Hayes, J.D., Kelleher, M.O., & Eggleston, I.M. (2008). The cancer chemopreventive actions of phytochemicals derived from glucosinolates. *European Journal of Nutrition*, *47*, 73–88.

Hong, E., & Kim, G.H. (2013). GC-MS Analysis of the extracts from Korean cabbage (*Brassica campestris* L. ssp. *pekinensis*) and its seed. *Preventive Nutrition and Food Science*, *18*, 218–221.

Hunaefi, D., Gruda, N., Riedel, H., Akumo, N.D., Thaw Saw, N.M.M., & Smetanska, I. (2013). Improvement of antioxidant activities in red cabbage sprouts by lactic acid bacterial fermentation. *Food Biotechnology*, 27, 279-302.

Khuhaprema, T., Attasara, P., Sriplung, H., et al (2012). Cancer in Thailand. Volume VI, 2004-2006. National Cancer Institude, Bangkok.

Kim, H.J., Lee, M.J., Jeong, M.H., & Kim, J.E. (2017). Identification and Quantification of Glucosinolates in Kimchi by Liquid Chromatography-Electrospray Tandem Mass Spectrometry. *International Journal of Analytical Chemistry*, doi.org/10.1155/2017/6753481

Kim, M.R., Lee, K.J., Kim, H.Y., Kim, J.H., Kim, Y.B., & Sok, D.E. (1999). Effect of various kimchi extracts on the hepatic glutathione S-transferase activity of mice. *Food Research International*, *31*, 389-394.

Kumar, S., Stecher, G., & Tamura, K. (2015). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. *Molecular Biology and Evolution*, 33, 1870-1874.

Madhuri, R.J. & Anuradha. (2015). Production of myrosinase enzyme by Actinomycetes isolated from cotton soil. *International Journal of Chemical Environmental and Biological Sciences*, *3*, 397-403.

Mullaney, J. A., Kelly, W., Mcghie, T. K., Ansell, J., & Heyes, J.A. (2013). Lactic acid bacteria convert glucosinolates to nitriles efficiently yet differently to Enterobacteriaceae. *Journal of Agriculture & Food Chemistry*, *61*, 3039–3046.

Li, F., Hullar, M.A. J., Schwarz, Y., & Lampe, J.W. (2009). Human gut bacterial communities are altered by addition of cruciferous vegetables to a controlled fruit- and vegetable-free diet. *Journal of Nutrition, 139*, 1685–1691.

Llanos-Palop, M., Smiths, J.P., & Brink, B.T. (1995). Degradation of sinigrin by *Lactobacillus agilis* strain R16. *International Journal of Food Microbiology*, 26, 219–229.

Luang-In, V., Albaser, A.A., Nueno-Palop, C., Narbad, A., Bennett, M., & Rossiter, J.R. (2016). Metabolism of glucosinolates and desulfo-glucosinolates by selected human gut bacteria. *Current Microbiology*, 73, 442-451.

Luang-In, V., Narbad, A., Nueno-Palop, C., Mithen, R., Bennett, M., & Rossiter, J. T. (2014) The metabolism of methylsulfinylalkyl- and methylthioalkyl-glucosinolates by a selection of human gut bacteria. *Molecular Nutrition & Food Research*. *58*, 875–883.

Luang-In, V., & Rossiter, J.T. (2015) Stability studies of isothiocyanates and nitriles in aqueous media. Songklanakarin Journal of Science & Technology, 37, 625–630.

Nadathur, S.R., Carney, J.R., Gould, S.J., & Bakalinsky, A.T. (1996). Palmitic acid is the major fatty acid responsible for significant anti-N-methyl-N`-nitro-N-nitrosoguanidine (MNNG) activity in yogurt. *Mutation Research*, 359, 179–189.

Palani, K., Harbaum-Piayda, B., Meske, D., Keppler, J.K., Bockelmann, W., Heller, K.J., & Schwarz, K. (2016). Influence of fermentation on glucosinolates and glucobrassicin degradation products in sauerkraut. *Food Chemistry*, 190, 755-762.

Paramithiotis, S., Hondrodimou, O.L., & Drosinos, E.H. (2010). Development of the microbial community during spontaneous cauliflower fermentation. *Food Research International*, *43*, 1098-1103.

Peñas, E., Pihlava, J.M., Vidal-Valverde, C., & Frias, J. (2012). Influence of fermentation conditions of *Brassica oleracea* L. var. capitata on the volatile glucosinolate hydrolysis compounds of sauerkrauts. *LWT - Food Science and Technology*, 48, 16-23.

Seeram, N.P., Adams, L.S., Zhang, Y., Lee, R., Sand, D., Scheuller, H.S. *et al.* (2006). Blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts inhibit growth and stimulate apoptosis of human cancer cells *in vitro*. *Journal of Agriculral & Food Chemistry*, *54*, 9329–9339.

Shapiro, T.A., Fahey, J.W., Wade, K.L., Stephenson, K.K., & Talalay, P. (2001). Chemoprotective glucosinolates and isothiocyanates of broccoli sprouts. *Cancer Epidemiology Biomarkers Prevention, 10*, 501–508.

Sun, Y.P., Chou, C.C., & Yu, R.C. (2009). Antioxidant activity of lactic-fermented Chinese cabbage. *Food Chemistry*, *115*, 912-917.

Tani, N., Ohtsuru, M., Hata, T. (1974). Isolation of myrosinase producing microorganism. *Agricultural and Biological Chemistry*, *38*, 1617–1622.

The Human Microbiome Project Consortium. (2012). Structure, function and diversity of the healthy human microbiome. *Nature*, 486, 207–214.

Tolonen, M., Taipale, M., Viander, B., Pihlava, J.M., Korhonen, H., & Ryhänen, E.L. (2002). Plant-derived biomolecules in fermented cabbage. Journal of Agricultural and Food Chemistry, 50, 6798-6803.

Traka, M. & Mithen, R. (2009). Glucosinolates, isothiocyanates and human health. *Phytochemistry Reviews*. 8. 269–282.

VicaŞ, S., RuginĂ, D., Leopold, L., Pintea, A., & Socaciu, C. (2011). HPLC fingerprint of bioactive compounds and antioxidant activities of *Viscum albumfrom* different host trees. *Notulae Botanicae, 39*, 48-57.

White, S.W., Zheng, J., Zhang, Y.M., & Rock, C.O. (2005). The structural biology of type II fatty acid biosynthesis. *Annual Review of Biochemistry*, 74, 791–831.

Output จากโครงการวิจัยที่ได้รับทุนจาก สกว.

1. ผลงานตีพิมพ์ในวารสารวิชาการนานาชาติ (ระบุชื่อผู้แต่ง ชื่อเรื่อง ชื่อวารสาร ปี เล่มที่ เลขที่ และหน้า) หรือผลงานตามที่คาดไว้ในสัญญาโครงการ

อยู่ระหว่างการพิจารณาโดยวารสาร Food Chemistry ซึ่งอยู่ในฐานข้อมูล ISI (Impact factor 2016 = 4.529) **Luang-In, V.**, Saengha, W., Udomwong, P., Gregory, M & Deeseenthum, S. (201X). Chemopreventive sulforaphane and iberin products in Thai cabbage fermented by myrosinase-positive bacterium.

2. การนำผลงานวิจัยไปใช้ประโยชน์

√ **ด้านสาธารณะ โดย** นิสิต และญาติของนิสิต นำผลการทดลองที่ว่า เราควรบริโภคน้ำผักดองด้วย เพราะว่ามีซัลโฟราเฟนและไอเบอรินในปริมาณที่สูงกว่าชิ้นผัก ดองเสียอีก ไปเผยแพร่ให้แก่บุคคลรอบข้าง ทำให้ญาติของนิสิตหันมาบริโภคน้ำผักดองด้วย แทนที่จะทิ้งไปเหมือน แต่ก่อน

√ **ด้านวิชาการ** โดย ผู้สนใจด้านวิชาการ นิสิต อาจารย์และบุคคลทั่วไป
.ผู้เข้าร่วมประชุมดิ้งค์ความรู้ใหม่จากการนำเสนอเผยแพร่ผลงานวิจัยทางโพสเตอร์และในเล่มรวมบทคัดย่อของการ
ประชุม The 4th International Postgraduate Symposium on Food, Agriculture & Biotechnology in ASEAN
2017 (IPSFAB2017), 30-31 August, 2017. Faculty of Technology, Mahasarakham University โดยมีผู้เข้าร่วม
ประชุมจากประเทศไทยและประเทศเพื่อนบ้านในอาเซียนกว่า 80 คน

โดย อาจารย์ และประเทศชาติ

ได้สร้างนักวิจัยรุ่นใหม่ในระดับปริญญาตรี 1 คน คือ นายวรโชติ แสงหา และขณะนี้นิสิตได้ศึกษาต่อในระดับปริญญา โท เพื่อทำงานวิจัยเป็นกำลังสำคัญของชาติต่อไป

3. อื่นๆ (เช่น ผลงานตีพิมพ์ในวารสารวิชาการในประเทศ การเสนอผลงานในที่ประชุมวิชาการ หนังสือ การจดสิทธิบัตร)

Luang-In, V., Saengha, W., Udomwong, P., Deeseenthum, S. & Rossiter, J.T. Glucosinolate-metabolizing bacteria isolated from Thai fermented foods as a starter culture for a traditional Thai fermented cabbage to produce chemopreventive sulforaphane and iberin. The 4th International Postgraduate Symposium on Food, Agriculture & Biotechnology in ASEAN 2017 (IPSFAB2017), 30-31 August, 2017. Faculty of Technology, Mahasarakham University, Thailand (Poster presentation)

Luang-In, V., Saengha, W., Udomwong, P., Deeseenthum, S. & Rossiter, J.T. Glucosinolate-metabolizing bacteria isolated from Thai fermented foods as a starter culture for a traditional Thai fermented cabbage to produce chemopreventive sulforaphane and iberin. TRF-OHEC Annual Congress 2017, 11-13 January, 2017. Petchaburi Province, Thailand (Poster presentation)

Appendix

Glucosinolate-metabolizing bacteria isolated from Thai fermented foods as a starter culture for a traditional Thai fermented cabbage to produce chemopreventive sulforaphane and iberin

Vijitra Luang-In^{a,*}, Worachot Saengha^a, Piyachat Udomwong^a, Sirirat Deeseenthum^a, John T. Rossiter^b

a Natural Antioxidant Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Khamriang, Kantarawichai, Mahasarakham 44150 Thailand ^b Faculty of Life Sciences, Imperial College London, Exhibition Rd, London SW7 2AZ, UK *Corresponding author E-mail: vijitra.l@msu.ac.th

INTRODUCTION

Recently, cancer has become the main cause of death in Thailand and consumption of Cruciferous vegetables has been shown to reduce the cancer risks due to chemopreventive products namely isothiocyanate (ITC) generated by plant myrosinase in chemopreventive products namely isotniocyanate (III.) generated by plant myrosinase in Cruciferous vegetables or myrosinase-positive microbes in human gut during glucosinolate (GSL) metabolism (Luang-In et al., 2014) (Fig. 1). Sulforaphane (SFN) has been the most studied and most effective chemopreventive agent exhibiting also other bloactivities. It is produced from glucoraphanin abundantly present in broccoli and cabbage. Hence we aimed to increase SFN products in Thai fermented cabbage for enhanced health benefits.

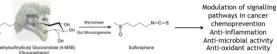


Fig. 1 GSL metabolized by myrosinase to produce SFN that has chemopreventive effects as well as other bioactivities

OBJECTIVES

- To isolate and identify GSL-metabolizing bacteria from eight local fermented foods and beverages in Thailand.
- To use GSL-metabolizing bacteria as a starter culture for a traditional Thai fermented cabbage to increase production of chemopreventive SFN and iberin (IBR).
- 3. To promote Thai fermented cabbage with increased ITC products as a functional food.

METHODOLOGY

1. Isolation of GSL-metabolizing bacteria 2. GSL degradation by HPLC analysis

Eight fermented foods in Thailand were collected (Fig. 2) for isolating GSL-metabolizing bacteria on M9 agar containing 1 mM sinigrin and 2.5 mM barium acetate. with white precipitate were selected.

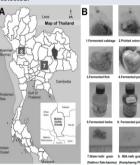


Fig. 2 (A) Location of 3 provinces in Thailand where fermented samples were collected. (B) List of Thai lo fermented foods and drinks used in this study.

3. Bacterial identification

Bacterial genomic DNA was extracted (Vivantis, Malaysia), analyszed by PCR-based 165 rRNA. Product was purified (Vivantis, Malaysia) and sequenced (1st BASE, Malaysia). Phylogenetic tree was constructed using MEGA 7.0 (Fig. 4).

Fig. 4 Steps of bacterial identification

5. Metabolite analysis

ITC products in samples were detected by GC-MS (Fig. 6). GSLs were detected by HPLC.

Each of 21 positive isolates was cultured their capacity to metabolize sinigrin by HPLC and to produce allyl isothiocyanate (AITC) by GC-MS (Fig. 3).

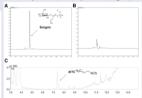



Fig. 3 Bacterial metabolism of sinigrin (A) HPLC chromatogram of sinigrin at 9.30 min at 0 h. (B) Sinigrin remained at 24 h. (C) GC-MS chromatogram of AITC product at 7.4 min at 24 h.

4. Fermentation of cabbage

E. xiangfangensis 4A2 (EX) from fermented fish and E. casseliflavus SB2 (EC) from fermented cabbage were chosen to induce cabbage fermentation vs spontaneous fermentation for 3 day at 25°C (Fig. 5). Cabbage (Brassical Control of Co 25°C (Fig. 5). Cabbage (*Brassica* oleracea L. var. capitata) was purchased from Pran Fresh Co. Ltd, Khon Kaen.

5 Induced cabbage fermentation by EX, EC-induced pontaneous fermentation for 3 day at 25°C. Samples e collected each day for freeze-drying process.

RESULTS & DISCUSSION

Seventeen bacterial species from 8 food samples were identified as GSL-metabolizing bacteria. A majority of ITC-producing bacteria were *Enterobacter* and *Enterococcus* and the two highest ITC producers included *E. xiangfangensis* 4A-2A3.1 (EX) from fermented fish and *E. caseslificaus* SBZX2 (EC) from fermented cabbage producing 62 and 60 mol AITC from 100% sinigrin degradation within 24 h (Fig. 7). AITC may be unstable in culture media and thus % product formation never reached 100%. However, Lactococcus hircilactis, L. lactis and Bacillus sp. KW3 did not produce ITC from 77-80% sinigrin degradation suggesting they may have different GSL metabolic enzymes or mechanisms to other bacteria in metabolizing GSL, but not producing ITC.

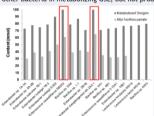
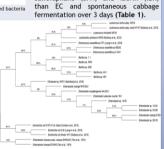



Fig. 7 GSL degradation and AITC production by selected bacteria

SFN peaked at 294.1 µmol/100 g DW SFN peaked at 244-1. Jumol/100 g DW and liberin (IBR) at 117.4 Jumol/100 g DW at day 1 by EX (Table 1). SFN peaked at 242.6 Jumol/100 g DW and IBR at 51.7 Jumol/100 g DW at day 2 by EC (Table 1). SFN detected in ECinduced cabbage fermentation with liquid portion was significantly (p < 0.01) higher than that in fermented solid cabbage portion by almost three folds. SFN and IBR were found in fresh cabbage as well, however in less content than fermented samples, due content than rermerted samples, due to endogenous myrosinase in cabbage getting into contact with GSL upon tissue damage during cabbage preparation and GSL hydrolysis occurred hence ITC products.

Phylogenetic tree shows these GSL-metabolizing bacteria were categorized into 3 main groups (Fig. 8). Some were in the same groups as previously reported GSL-metabolizing bacteria. This is the first report of identifying E. xiangfangensis, E. ludwigii, E. asburiae and several new Bacillus spp. as ITC producers. EC and EX were used to ferment cabbage containing glucoiberin (GIB), glucoraphanin (GRP) and 4-hydroxy glucobrassicin (GBS) for 3 day at 25°C. EX produced more sulforaphane (SFN) and iberin (IBR) than EC and spontaneous cabbage

Phylogenetic tree shows these GSL

Fig. 8 Phylogenetic tree of selected and reference bacteria

Table 1 Metabolism of glucosinoates in fermented cabbage with/without bacterial induction over 3 days.

Samples	Remaining GSL (µmol/ 100 g dry weight)			Products (µmol/ 100 g dry weight)				
Samples	GIB	GRP	GBS	IBN	IBR	SFN	IAN	
Cabbage	430.5±34.1aB	615.1±30.0aA	108.5±19.1aC	75.1±26.4aC	13.3±10.0bD	39.5±16.3dC	49.1±29.8abC	
N0	273.8±15.8bB	534.4±30.4abA	30.2±4.4bC	61.82±28.4abC	11.2±6.0bD	56.2±26.0dC	52.4±19.1abC	
N1	103.8±19.5cB	419.0±26.5cA	0.0+0.0cE	43.3±23.2abC	32.1±3.9bD	135.2±42.0abB	22.9±4.7abC	
N2	20.9±12.0dB	217.5±14.8deA	0.0+0.0cC	35.2±15.4abB	11.57±5.8bD	127.9±60.0abA	15.8±2.0bB	
N3	2.9±1.1dC	146.3±27.7deA	0.0+0.0cD	21.6±11.0bcB	8.6±3.9bB	112.2±52.0abA	10.7±3.1bB	
EC0	305.7±29.8bB	514.2±42.6bA	27.4±6.9bD	64.3±23.3abC	15.4±5.9bD	45.6±22.0dC	60.5±21.8aC	
EC1	91.8±17.3cC	359.9±31.8cdA	0.0+0.0cE	25.6±12.6abD	35.2±20.0bD	177.8±42.0abB	22.5±14.6abD	
EC2	21.0±9.3dB	211.0±27.7deA	0.0+0.0cD	6.4±2.1cC	51.7±35.9abB	242.6±40.0aA	14.7±11.9abB	
EC3	3.1±0.7dD	111±20.2fB	0.0+0.0cE	2.9±0.8cD	33.6±22.0bC	222.4±42.0aA	16.4±7.2abC	
EX0	305.2±13.0bB	536.6±29.1abA	31.6±7.8aC	65.2±20.2abC	12.5±4.0bD	48.6±30.0dC	55.3±20.2abC	
EX1	74.3±14.6cC	275.9±19.deA	0.0+0.0cF	26.6±12.3abD	117.4±41.9aB	294.1±44.0aA	7.7±3.7bE	
EX2	11.1±6.4dD	160.8±29.0eB	0.0+0.0cE	6.5±3.8cD	78.2±38.0abC	252.6±46.0aA	16.3±7.4abD	
EX3	2.4±0.6dD	85.3±24.7fB	0.0+0.0cE	13.8±3.1bcC	70.5±39.9abB	244.7±70.0aA	20.9±8.8abC	
EC2 solid	5.2±1.6dC	93.3±23.6fA	0.0+0.0cD	3.6±2.3cC	19.2±10.0bB	69.7±34.0cA	5.9±1.2bB	
EC2 liquid	16.3±7.5dC	117.7±34.4fB	0.0+0.0cF	3.5±0.7cE	30.8±22.0bC	173.3±48.0abA	10.4±1.3bD	

Example 16.347.362: 117.7434.418 0.0+0.0cF 3.540.7cE 30.842.200C 173.3448.0ab. 10.44.33b.)
Cabbage Firsh cabbage, N= Non-induced with EX for 0-3 days (N, N, N, N, N); EC induced with EX for 0-3 days (R, D, E, E, E, E); EX = induced with EX for 0-3 days (R, D, E, E, E, E); EC = solid = Solid portion of fermented cabbage of EX at day 2; ECI (paid = Solid portion of fermented cabbage of EX at day 2, ECI (pai

CONCLUSION

iced cabbage fermentation by EC or EX produced higher contents of chemopreventive SFN and IBR than those from spontaneous fermentation. Fermented liquid portion should be consumed alongside fermented solid cabbage portion from fermented cabbage collected at day 1 or 2 for the highest ITCs and best health-promoting benefits.

REFERENCES

Luang-In, V., Narbad, A., Nueno-Palop, C., Mithen, R., Bennett, M. & Rossiter, J. T. (2014) The metabolism of methylsulfinylalkyl- and methylthioalkyl-glucosinolates by a selection of human gut bacteria. *Molecular Nutrition & Food Research*. 58, 875-883.

ACKNOWLEDGEMENT

This research was financially supported by Thailand Research Fund 2015 with grant no. TRG5880096 and Mahasarakham University, Thailand.

Vijitra Luang-In <vijitra.luangin@gmail.com>

Thank you for your submission to Food Chemistry

Food Chemistry <eesserver@eesmail.elsevier.com> Reply-To: Food Chemistry <foodchem@eurofir.org> To: vijitra.luangin@gmail.com

25 December 2017 at 19:47

Dear Dr. Luang-in,

Your submission entitled Chemopreventive sulforaphane and iberin products from Thai cabbage fermented by myrosinase-positive bacterium has been received by Food Chemistry.

All manuscripts submitted to Food Chemistry are evaluated before a decision is made concerning whether or not to assign to a handling editor for consideration for peer review, based on scope, technical criteria and language. The status "Submitted to Journal" indicates that your paper is undergoing the initial technical check. When the manuscript has passed this technical check you will be notified that it has been given a number and assigned to an Editor, and the status in EES will change to "With Editor". Please also be advised that all papers are now being processed using Cross-Check plagiarism detection software (iThenticate).

Food Chemistry receives an average of 150 new manuscripts a week; There is currently a delay of 20-25 days before allocation to an editor for manuscripts that pass the technical checks.

For a more detailed description of the editorial process, please see Paper Lifecycle from Submission to Publication: http://help.elsevier.com/app/answers/detail/a_id/160/p/8045/

How can I track the progress of my submission?

You can track the status of your submission at any time at http://ees.elsevier.com/FOODCHEM

Once there, simply:

1. Enter your username: Your username is: vijitra.luangin@gmail.com

If you need to retrieve password details, please go to: http://ees.elsevier.com/FOODCHEM/automail_query.asp

- 2. Click on [Author Login]. This will take you to the Author Main Menu
- 3. Click on [Submissions Being Processed]

Many thanks again for your interest in Food Chemistry.

Kind regards, Elsevier Editorial System Food Chemistry

Elsevier Editorial System(tm) for Food

Chemistry

Manuscript Draft

Manuscript Number:

Title: Chemopreventive sulforaphane and iberin products from Thai cabbage fermented by myrosinase-positive bacterium

Article Type: Research Article (max 7,500 words)

Keywords: Antioxidant; Enterococcus; Enterobacter; Fermented foods, Isothiocyanate, Myrosinase

Corresponding Author: Dr. Vijitra Luang-in, PhD

Corresponding Author's Institution: Mahasarakham University

First Author: Vijitra Luang-in, PhD

Order of Authors: Vijitra Luang-in, PhD; Worachot Saengha; Piyachat

Udomwong; Matteo Gregori; Sirirat Deeseenthum

Abstract: The aims of this work were to isolate bacteria from Thai local fermented foods and beverages in Thailand with the capacity to metabolize glucosinolate and produce chemopreventive isothiocyanates (ITCs) and used the selected strains for cabbage fermentation. Enterobacter xiangfangensis 4A-2A3.1 (EX) from fermented fish and Enterococcus casseliflavus SB2X2 (EC) from fermented cabbage were the two highest ITC producers. Consequently, EC or EX was used to ferment Thai cabbage (Brassica oleracea L. var. capitata) containing glucoiberin, glucoraphanin and 4-hydroxy glucobrassicin for 3 days at 25°C. Different amounts of iberin nitrile, iberin, sulforaphane and indole 3-acetonitrile were produced by spontaneous cabbage fermentation, EX- and EC-induced fermentation. However, statistically higher ITCs were detected in the latter two (p<0.01) with high antioxidant activities. One should consume a liquid portion of the fermented cabbage due to higher ITC level along with a solid portion to obtain the best health-promoting benefits from this functional food.

1	Chemopreventive sulforaphane and iberin products from Thai cabbage fermented by
2	myrosinase-positive bacterium
3	
4	Vijitra Luang-In ^{a,*} , Worachot Saengha ^a , Piyachat Udomwong ^a , Matteo Gregori ^b ,
5	Sirirat Deeseenthum ^a
6	
7	
8	^a Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of
9	Technology, Mahasarakham University, Khamriang, Kantarawichai, Mahasarakham 44150
10	Thailand
11	^b Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2
12	7AY, UK
13	
14	*Corresponding author: Vijitra Luang-In, E-mail: vijitra.l@msu.ac.th Telephone no.
15	+66(0)43754085 ext. 1833, Fax no. +66(0)43754086
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

26 Abstract

27 The aims of this work were to isolate bacteria from Thai local fermented foods and beverages 28 in Thailand with the capacity to metabolize glucosinolate and produce chemopreventive 29 isothiocyanates (ITCs) and used the selected strains for cabbage fermentation. Enterobacter 30 xiangfangensis 4A-2A3.1 (EX) from fermented fish and Enterococcus casseliflavus SB2X2 31 (EC) from fermented cabbage were the two highest ITC producers. Consequently, EC or EX 32 was used to ferment Thai cabbage (Brassica oleracea L. var. capitata) containing glucoiberin, 33 glucoraphanin and 4-hydroxy glucobrassicin for 3 days at 25°C. Different amounts of iberin 34 nitrile, iberin, sulforaphane and indole 3-acetonitrile were produced by spontaneous cabbage 35 fermentation, EX- and EC-induced fermentation. However, statistically higher ITCs were 36 detected in the latter two (p<0.01) with high antioxidant activities. One should consume a 37 liquid portion of the fermented cabbage due to higher ITC level along with a solid portion to 38 obtain the best health-promoting benefits from this functional food.

39

40

Abbreviations

- 41 ABTS, 2,2'-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid); DPPH, 2,2-diphenyl-1-
- 42 picrylhydrazyl; EX, Enterobacter xiangfangensis; EC, Enterococcus casseliflavus; FRAP,
- 43 Ferric ion reducing antioxidant power; GBS, 4-hydroxy glucobrassicin; GIB, Glucoiberin;
- 44 GRP, Glucoraphanin; GSL, Glucosinolate; IAN, Indole 3-acetonitrile; IBN, Iberin nitrile;
- 45 IBR, Iberin; ITC, Isothiocyanate; SFN, Sulforaphane; VEAC, Vitamin C equivalent
- 46 antioxidant capacity.

47

48

Keywords

49 Antioxidant; Enterococcus; Enterobacter; Fermented foods, Isothiocyanate, Myrosinase

50

1. Introduction

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

Today, cancer has led to 60,000 deaths a year among the Thai population and has been continuously the first common cause of death since 2000 and is set to continue on. The first five types of common cancers found in Thai population include liver and bladder, lung, colon, breast and cervical cancers. It is predicted that in the next 21 years there will be 24-million patients diagnosed with cancer in Thailand (Khuhaprema et al., 2012). The change of Thai dietary habits to a more Western style is likely to be attributed to health problems including cancers. Chemopreventive scheme should be promoted and implemented among Thai population to fight against cancer. At present, the putative role on cancer chemoprevention of cruciferous vegetables is attributed to the bioactivity of glucosinolates (GSLs) degradation products, mainly isothiocyanates (ITCs) (Traka & Mithen, 2009) and also other classes of antioxidant bioactive phytochemicals including phenolic compounds and flavonoids (Cartea et al., 2011). ITCs have been shown to protect against the most common cancer types, such as breast, lung, colon and prostate cancers in both in vivo and in vitro studies (Hayes et al., 2008). Problems can arise when plant myrosinases are rapidly denatured by cooking, and thus GSL hydrolysis and the production of ITCs as health promoters becomes dependent on the activity of the human gut microflora with GSL-degrading ability (Shapiro et al., 2001). Each individual has a unique microflora composition (The Human Microbiome Project, 2012) that would give rise to substantial differences in the capacity of the microflora to confer antioxidant and/or anticancer effect from metabolizing GSLs into ITCs. Since microbial consortia in the human gut are mainly determined by the food we eat, it is believed that we can manipulate the gut microbiota for the sake of our own health (Li et al., 2009). Accumulating evidence suggests that certain bacterial strains of human origin including Bacteroides, Bifidobacterium, Lactobacilli can metabolize GSLs to ITCs and/or nitriles (Cheng et al., 2004; Luang-In et al., 2016). To date, bacterial myrosinase genes/enzymes have

been sought after. The 6-Phospho-β-glucosidase encoded by the genes *bglA* and *ascB* (family GH1), and *chbF* (family GH4) in *Escherichia coli* O157:H7 were found to be responsible for sinigrin metabolism (Cordeiro et al., 2015). Soil bacterial myrosinase in the family GH3 was extracted from cell-free extracts of *Citrobacter* strain (WYE1) and its amino acid sequence was identified (Albaser et al., 2016). These findings show that bacterial myrosinases from different GSL-metabolizing bacterial strains are diverse. In this work, we aimed to identify GSL-metabolizing microbes from Thai local fermented foods and beverages and used the highest ITC bacterial producers as a starter culture to ferment Thai cabbage containing GSLs to produce chemopreventive ITC products. This will help upgrade Thai fermented cabbage to be a functional food. The isolated microbes will provide the potential use as starter cultures of Thailand origin to produce health-beneficial vegetables fermented foods or drinks or used as probiotics supplements. This is certainly a way to obtain quality food products at low cost to ensure enhanced health-beneficial effects for the Thai population.

2. Materials and Methods

91 2.1. Sample collection

Eight samples of fermented foods and beverages at the end of fermentative stage were purchased mainly from local markets in Mahasarakham, Thailand except for samples no. 7 and 8 for isolation of myrosinase-positive microbes. Samples (Fig. S1) included (1) Fermented cabbage (2) Picked onions (3) Fermented fish (4) Fermented pork (5) Fermented herbal drink (6) Fermented star fruit juice, (7) Water kefir from Nakhon Ratchasima and (8)

97 Milk kefir from Kamphaeng Phet. Samples were stored at 4°C and analyzed within 24 h.

2.2. Isolation of GSL-metabolizing microbes

Solid food materials and liquid (5 g each, 10 g in total) or liquid beverage (10 ml) were weighed and mixed with 90 ml of sterile 0.85% NaCl solution. The mixture was homogenized in a sterile mortar and pestle for 5 min and mixed by vortexing for 5 min. The mixture was centrifuged at 4000g for 15 min and clear supernatant was obtained. Enrichment culture technique was used by inoculating 100 µl bacterial suspension into 900 µl LB broth containing 1 mM sinigrin for 2 days in anaerobic incubator and this step was repeated at day 4, 6 and 8 in fresh Luria-Bertani (LB) media (10 g Tryptone; 10 g NaCl; 5 g Yeast extract in 1 1). At day 10, 100 µl bacterial suspension was spread onto the selective minimal media M9 agar (1 M MgSO₄; 1 M CaCl₂; 50% Glucose; 1% Thiamine; 64 g Na₂HPO₄-7H₂O; 15 g KH₂PO₄; 2.5 g NaCl; 5.0 g NH₄Cl; 15 g agar in 1 l) containing 1 mM sinigrin and 2.5 mM barium acetate and incubated at 37°C for 72 h in the anaerobic incubator. Growth and opaque zone formation was an indicator of sinigrin degradation as seen from white precipitates of barium sulfate. This was a result of a release of sulfate group of GSL and thus GSLmetabolizing/myrosinase-positive isolates were selected from each food sample. Positive isolates were stored in 20% glycerol stocks in LB media at -80°C. All microbial isolates were deposited in the Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Thailand (WDCM 1160).

117

118

119

120

121

122

123

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

2.3. In vitro sinigrin incubation

Sinigrin (1 mM) was incubated with each selected bacterial culture (100 μ l, OD_{600nm} = 0.5) from the previous step in 100 μ l LB media at 37°C without shaking in anaerobic incubator for 24 h. Bacterial culture was centrifuged at 16000g for 5 min and then 100 μ l clear supernatant to be used for HPLC analysis and the other 900 μ l for GC-MS analysis were kept at -20°C until use.

2.4. Genomic DNA isolation and 16S rDNA gene analysis
Selected isolates with the confirmed positive results of GSL degradation from HPLC analysis
were cultured overnight for gram-staining, genomic DNA extraction and PCR-based 16S
rRNA gene analysis using universal primers following the previous report (Luang-In et al.,
2014).
2.5. Phylogenetric tree construction
The nucleotide sequences of isolated bacterial 16S rDNA, from this study and previous
findings were compared with entries in the GenBank database. Similarly, putative
myrosinases of bacterial relatives in the GenBank database were compared with the
characterized myrosinases. The sequences were aligned using MUSCLE (Edgar, 2004).
Phylogenetic trees were constructed using the maximum-likelihood method and assessing the
reliability the constructed phylogenetic tree with 1000 bootstrap replicates, implemented in
the Molecular Evolutionary Genetics Analysis (MEGA) 7.0 software package (Kumar et al.,
2015). The constructed phylogenetic trees of 16S rRNAs and proteins were drawn by FigTree
software (v1.4.2) (Molecular evolution, phylogenetics and epidemiology, Edinburgh,
Scotland, UK) [http://tree.bio.ed.ac.uk/software/figtree/].
2.6. Starter culture preparation
Each of the two selected bacteria was grown in 10 ml LB media overnight and centrifuged at
8,000 g for 15 min at 4°C. The cells were washed twice with overnight fermented sticky rice
water (initial pH 6.0). The inoculum concentration of 10^6 CFU/ml was inoculated in 3% (v/v)
into the prepared cabbage-rice water jar (200 ml) to be fermented as mentioned below.

Induced fermentations were defined by inoculation of either Enterobacter xiangfangensis 4A-

149 2A3.1 (EX) or Enterococcus casseliflavus SB2X2 (EC) culture and spontaneous

fermentations (N = Non-induced) were those without inoculation of either culture.

2.7. Cabbage fermentations

Thai white cabbage heads (*Brassica oleracea* L. var. capitata) were purchased from Pran Fresh Co. Ltd, Khon Kaen, Thailand. After removing core and outer layers, 3 kg of the cabbage heads from the same batch were separated into leaf pieces manually according to Thai local cabbage fermentation procedure. The spontaneous fermentation was performed by mixing torn plant materials well with 7% salt (w/v), washed with distilled water, and only 200 g solid plant materials were transferred into each replicate fermentation pot (200 ml glass container with lid already containing 200 mL fermented rice water pH 6.0 mixed with 7% salt). The salted cabbage materials were tightly pressed into the jars that were closed and kept at 25°C for 3 days without shaking. Triplicates were carried out throughout the study. The control were those 200 g fresh cabbage heads separated into leaf pieces manually without fermentation at 0 h as the starting materials and they were determined for initial GSLs and initial ITC products to be compared with spontaneously fermented cabbage samples (N) and each of the cabbage fermentation induced by EX or EC.

2.8. Sampling and extraction of fermented cabbage

The fermentation experiment was carried out in parallel in 36 jars with triplicate in each of the three treatments (N, EC, and EX) from 0 to 3 days. Sampling was done at day 0, 1, 2 and 3, pH was measured immediately after opening the fermentation jars. For extraction of GSLs and ITC products, the whole samples from each jar collected as mentioned above were frozen at -80°C, dried in a freeze dryer, and processed accordingly for GSL and ITC analyses as mentioned below. For EC samples at day 2, half of cabbage leafy material and half of

fermented liquid were taken separately for GSL and ITC determination to evaluate which part contained higher contents. Dried samples were ground to small pieces using a sterile mortar and pestle and weighed for extraction by 95% ethanol at concentration of 25 mg/ml at 25°C for 24 h. The mixture was centrifuged at 16000g for 5 min and clear supernatant was collected for antioxidant activity analyses.

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

174

175

176

177

178

2.9. Sample preparation and HPLC analysis to detect GSLs

The GSL extraction method was modified from the previous report (Vicas et al., 2011). Freeze dried samples (5 g) were ground and mixed with 5 ml of 70% methanol by shaking at 37°C for 5 min and the supernatant was collected after centrifugation at 8000g for 15 min. The remained solid sample was extracted again and the supernatant was mixed with the first extraction. The mixture was dried at 70°C in the oven and the dried residues were dissolved in 1 ml deionized water using vortex. One ml sample was processed in DEAE-25A anion exchange resin as previously described (Luang-In et al., 2014). HPLC-DAD system (Shimadzu, Japan) fitted with a Synergi 4u Hydro-RP 80A, 150 x 2 mm, 4.6 micron (Phenomenex Inc., Torrance, CA) protected with security guard column AQ C18 (4 x 3 mm), comprising of Shimadzu LC-20AC pumps, a SPD-M20A diode array detector and were used for GSL analysis using the following gradient: Water (Solvent A)-ACN (Solvent B) gradient 2% B (15 min), 2-25% B (2 min), 25-70% B (2 min), 70% B (2 min hold), 70-2% B (2 min), and 2% B (15 min) at a flow rate of 0.2 ml/min at 35°C. Eluent was monitored at A229 nm. Quantification of desulfo-glucosinolate (DS-GSL) was achieved using known response factors for each GSL relative to an external standard (sinigrin). Pure sinigrin (Sigma-Aldrich, Singapore), glucoraphanin, glucoiberin (Youchemicals Ltd., China) and 4-hydroxy glucobrassicin (Clearsynth, India) were purchased as standards.

198

197

2.10. Sample preparation and GC-MS analysis to detect degradation products

Freeze-dried samples (500 mg) were mixed with 3 mL dichloromethane (DCM) in test tubes with tight lids for 24 h at 250 rpm at room temperature. The mixture was centrifuged at 16100g for 5 min and the supernatant (1 ml) was added with 0.5 g magnesium, mixed and then was centrifuged at 16100g for 20 min. The clear supernatants were transferred into vials and kept at -20 °C till GC-MS analysis. A Shimadzu QP2010 system and a capillary column, Agilent HP-5MS (5% Phenylmethylsiloxane, 30 m × 0.25 mm i.d.; film thickness, 0.25 μm) were used for ITC analysis. GC-MS analytic conditions were performed as previously reported (Luang-In et al., 2014). The temperature was kept at 50°C for 5 min and ramped to 150°C at 5°C/min for 25 min, and then ramped to 250°C at 5°C/min for 15 min. The total 40 min run was carried out with a flow rate of 1 ml/min, average velocity of 36 cm/s, pressure of 7.56 psi and injection volume of 1 µl. Mass spectra were obtained by electron ionization (EI) over a range of 50-550 atomic mass units. Ion source temperature was 230°C, and the electron multiplier voltage was 70.1 eV. Authentic standards of allyl isothiocyanate and sulforaphane were purchased from Sigma-Aldrich Co. (Singapore). Identification was based on retention time and fragment ions (Table S1). Quantification of degradation products was calculated using an external standard curve of sulforaphane.

216

217

218

219

220

221

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

2.11. Antioxidant activity of the fermented cabbage

This was evaluated through the free radical scavenging effect on 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical as previously reported (Akowuah et al., 2005), FRAP assay (Benzie & Strain, 1996) and ABTS scavenging assay (Seeram et al., 2006) using 25 mg/ml freeze-dried extract dissolved in 95% ethanol as a starting solution.

222

223

2.12. Statistical analyses

224 Triplicates were used for each treatment. Results are expressed as means \pm standard deviation

225 (SD). The significant differences between means are calculated by a one-way analysis of

variance (ANOVA) and Duncan's multiple range test at p < 0.01 using SPSS package version

227 19.

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

226

3. Results and Discussion

3.1. GSL-metabolizing bacteria from Thai fermented foods and drinks

Twenty-one bacterial isolates from 8 sources of Thai local fermented foods and beverages were identified as GSL-metabolizing bacteria using selective M9 agar containing sinigrin substrate and identified at subspecies level using 16S rRNA gene analysis. The results show that the greatest number of newly identified GSL-metabolizing bacterial species came from Thai fermented cabbage followed by Thai fermented fish resulting in isolation of 8 and 3 bacterial species, respectively (Table 1). When sinigrin was metabolized by bacterial myrosinase, the degradation product i.e. isothiocyanate namely allyl isothiocyanate (AITC) was expected. It was observed that most GSL-metabolizing bacteria were able to produce AITC from sinigrin metabolism (Table 1) using GC-MS and HPLC analyses, respectively. The majority of ITC-producing bacteria belong to the genera Enterobacter and Enterococcus with the two highest ITC producers named as Ent. xiangfangensis 4A-2A3.1 (EX) from fermented fish and Ec. casseliflavus SB2X2 (EC) from fermented cabbage producing 65 and 61 nmol AITC, respectively from 100% sinigrin degradation within 24 h (Table 1). Therefore, these two isolates were chosen as a starter culture to ferment cabbage in further experiment. Although bacteria belong to the same genus e.g. Enterobacter, they exhibited different GSLmetabolizing capacity therefore possibly different myrosinase activity (Table 1). AITC was unstable in the culture media (Luang-In & Rossiter, 2015) and thus AITC product formation never reached 100% product formation. The highest % product formation was found in EX

with 65% product formation. However, Lactococcus hircilactis WS16, L. lactis WS18 and Bacillus sp. KW3 did not produce AITC from 77-80% sinigrin degradation suggesting they may have different GSL metabolic enzymes or mechanisms from other bacteria in metabolizing GSL, but not producing ITC. Two bacterial species were found in more than one sample. Enterobacter sp. 1A-1A with 92% identity to Enterobacter sp. Md1-53 was found in fermented cabbage, pickled onions and fermented juices. Enterobacter faecalis 5A-2B with 99% identity to Enterobacter faecalis NW A20 was present in both fermented cabbage and fermented herbal drink. Thus, there were 17 bacterial strains from 21 isolates from 8 fermented food/drink samples. All these 17 bacterial strains at subspecies level have not been reported as GSL metabolizer and/or ITC producers before, yet they shared the same genus or the same species as those identified previously. Previous findings showed a variety of GSL-metabolizing bacterial strains such as Bacillus thuringiensis (El-Shora et al., 2016), Actinomycetes isolated from cotton soil (Madhuri & Anuradha, 2015), E. coli VL8, Enterococcus casseliflavus CP1 isolated from human faeces (Luang-In et al., 2014), Lactobacillus plantarum KW30, Lactococcus lactis subsp. lactis KF147, Escherichia coli Nissle 1917 isolated from foods (Mullaney et al., 2013), Bifidobacterium pseudocatenulatum, B. adolescentis, B. longum (Cheng et al., 2004), Lb. agilis R16 (Palop-llanos et al., 1995), and known myrosinase-producer Ent. cloacae isolated from soil (Tani et al., 1974). In this work, all the identified 17 bacteria belong to the above reported genus including Bacillus, Lactococcus, Escherichia, Enterobacter and Enterococcus. Contrary to popular belief, Lc. hircilactis WS16 (100% identity to Lc. hircilactis DSM 28960) and Lc. lactis WS18 (98% identity to Lc. lactis RCB787) in this study did not produce ITC from GSL metabolism (Table 1). This result indicated that not all LAB are able to produce ITC as previously thought. Similarly, Mullaney et al. (2013) found that Lb. plantarum KW30 and Lc. lactis subsp.lactis KF147 did not produce any ITC from glucoraphanin, glucoerucin and glucoiberverin. Instead

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

they generated sulforaphane nitrile as well as erucin nitrile and iberverin nitrile. Most isolated bacteria have the highest % identity to the closest relative bacteria originated from food sources and plants followed by human/animal guts and environments located in mostly Asia including China, India, Korea, Pakistan, Thailand and also other parts of the world including Italy, Belgium, Brazil and South Africa (Table 1). Although probiotic reports of both *Ent. xiangfangensis* and *Ec. casseliflavus* are scarce, the genome of *Ent. xiangfangensis* isolated from Chinese traditional sourdough was recently published (Gu et al., 2014). In addition, *Ec. faecium*-group and *Ec. faecalis*-group were also isolated at the early stages of fermentation of cauliflower fermentation (Paramithiotis et al., 2010) indicating that Enterococcus and Enterobacter were commonly found in fermented foods.

3.2. Phylogenetic tree of GSL-metabolizing bacteria

Phylogenetic tree shows 17 GSL-metabolizing bacteria isolated from this work and 9 reference bacteria with GSL-metabolizing capacity from the previous reports were categorized into 3 main groups (Fig. 1). The first and biggest group (30.1 % node) comprised of all bacteria from this work including LAB, Enterococcus and Bacillus along with the reference LAB (Mullaney et al., 2013) and Enterococcus (Luang-In et al., 2014) from the previous findings. The subgroup consisted of Enterobacter as well as reference Citrobacter (Albaser et al., 2016). The second group (89.1% node) included only 3 reference *E. coli* bacteria (Mullaney et al., 2013; Luang-In et al., 2014; Cordeiro et al., 2015). Similarly, the third group (100% node) included only 2 reference Enterobacter bacteria (Tani et al., 1974). From this result, it seems *Enterobacter* spp. isolated from this work were evolutionarily closely related to *Citrobacter* sp. WYE1 (Albaser et al., 2016) than *Enterobacter cloacae* (Tani et al., 1974). This is the first report of identifying *Ent. xiangfangensis, Ent. ludwigii, Ent. asburiae* and several new *Bacillus* spp. as ITC producers. Phylogenetic tree of putative

myrosinase enzymes was also constructed (Fig. 2). Phylogenetic tree shows 9 putative myrosinase from the closet relative bacteria found in NCBI database and 4 characterized myrosinases from Brassica juncea plant (Accession no. AAG54074.1), Citrobacter sp. WYE1 (Accession no. ALM58466.1) (Albaser et al., 2016), Ent. cloacae EcWSU1 (Accession no. AEW75128) (Cordeiro et al., 2015) and Escherichia coli O157:H7 str. TW14359 6 (Accession no. ACT73612.1) (Cordeiro et al., 2015) were categorized into 3 main groups (Fig. 2). The first bacterial myrosinase group categorized into Glycosyl Hydrolase 1 (GH1) family consists of 6-phospho-beta-glucosidases (6pbg) from the 2 reference myrosinases from Ent. cloacae EcWSU1 and E. coli O157:H7 str. TW14359 and those from the closet relative bacteria found in this work including Ent. ludwigii, Ent. xiangfangensis, Ent. asburiae, Ec. casseliflavus, Bacillus and Lc. lactis. On the other hand, the second bacterial myrosinase group categorized into GH3 family consists of betaglucosidase (bgl) from the reference myrosinase from Citrobacter sp. WYE1 and those from the closet relative bacteria found in this work including Ent. xiangfangensis, Ec. casseliflavus and Bacillus. Clearly, plant myrosinase (GH1) was evolutionarily distinct from the other 2 bacterial myrosinase groups indicating differences in myrosinase evolution between plants and bacteria. Citrobacter sp. WYE1 myrosinase was active in vitro or in cell-free extract (Albaser et al., 2016); however those from Lb. agilis R16 (Llanos-Palop et al., 1995), E. coli O157:H7 (Cordeiro et al., 2015) and Ec. casseliflavus CP1 (Luang-In et al., 2014) were inactive in vitro, but only active in vivo or in intact cells. The closely evolved enzymes to Citrobacter sp. WYE1 myrosinase were Bacillus protein and 2 Bgl enzymes from Ent. xiangfangensis and Ec. casseliflavus (Fig. 2). These may be as active in vitro as Citrobacter sp. WYE1 myrosinase which will facilitate the study of myrosinase enzyme activity in vitro and hence decoding their amino acid sequences more easily than those only active in vivo.

323

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

3.3. Chemopreventive ITC products from fermented cabbage

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Ent. xiangfangensis (EX) and Ec. casseliflavus (EC) were used to ferment Thai cabbage containing three GSLs namely glucoiberin (GIB), glucoraphanin (GRP) and 4-hydroxy glucobrassicin (GBS) at 430.5, 615.1 and 108.5 μmol/100 g dry weight, respectively (Table 2) for 3 day at 25°C. In comparison with Chinese cabbage (in kimchi) that contained five types of GLSs of approximately 8.3 µmol/g dry weight including glucoalyssin, gluconapin, glucobrassicanapin, glucobrassicin, and 4-methoxyglucobrassicin (Kim et al., 2017), it was clear that our GSLs were present in higher amounts indicating that cabbages in various countries contain various kinds of GSLs (Table S3) in various amounts depending on environmental factors such as geographical location, temperature, solar radiation, humidity and climatic conditions (Bohinc & Trdan, 2012). Degradation products of the three GSLs namely Iberin nitrile (IBN), iberin (IBR), Sulforaphane (SFN) and indole 3-acetonitrile (IAN), respectively were already detected in fresh cabbage; however in less amounts than those in fermented samples (Table 2). The product generation was due to intrinsic plant myrosinase in cabbage coming into contact with GSL upon tissue damage during handling cabbage process and possibly GSL hydrolysis occurred. Table 2 shows gradual GSL degradations in all treatments; however the spontaneous cabbage fermentation produced less IBR and SFN at days 2-3 suggesting that bacterial culture present may be able to degrade GSLs, but not capable of producing ITCs. However, IBN was found in less amounts at days 2-3 in the induced fermentation of cabbage than the spontaneous one, and that was possibly due to presence of bacterial enzymes transforming nitrile products to other metabolites. GRP was degraded more rapidly in bacterial induced cabbage fermentations than the spontaneous one indicating the presence of specific GRP-metabolizing bacteria in the samples (Table 2). GBS totally disappeared at the end of day 1 due to its initial low content in cabbage (Fig. 3A; Table 2). The degradation products included those mentioned above as in fresh cabbage along with palmitic acid and linoleic acid (Fig. 3B). The IAN production in all treatments were similar at each day and gradually declined over time. The production of both chemopreventive IBR and SFN in EX-induced cabbage fermentation peaked at day 2 at 117.4 and 294.1 µmol/100 g dry weight, respectively which was significantly higher than IBR at 51.7 μmol/100 g dry weight, but not significantly higher than SFN at 242.6 μmol/100 g dry weight in EC-induced fermented cabbage at day 2. Overall degradation products in all treatments declined over 3 days and never reach 100% product formation (Table S2). This was possibly due to the unstable nature of ITCs in fermentation matrices (Luang-In & Rossiter, 2015). In addition, SFN content detected in the liquid portion of EC-induced cabbage fermentation at day 2 was significantly higher (p<0.01) than that found in the fermented cabbage solid portion by almost three folds (Table 2). This indicated that one should consume the liquid portion of the fermented cabbage along with the more commonly consumed fermented cabbage solid portion in Thailand to obtain the best health benefits from SFN. The pH values of the fermented cabbages at day 3 were 3.55 (N), 3.25 (EX) and 3.45 (EC) with no statistical difference (Fig. S2) and are similar to pH values of 3.27 - 3.67 of sauerkraut from Spanish cabbage over 7-day fermentation at 25°C by Lactobacillus plantarum (CECT 748) and Leuconostoc mesenteroides (CECT 219) (Table S3). Similarly, the ITC products including SFN at 39-49 µmol/100g dry weight, IBR, and IBR NIT were detected from metabolism of glucoraphanin and glucoiberin in sauerkraut from Spanish cabbage like in our product but in less amounts, except for allyl isothiocyanate (AITC) and allyl nitrile (ANIT) that were only found in their sauerkraut; however these products were not detected in their raw cabbage (Peñas et al., 2012) suggesting that fermentation was responsible for ITC and NIT productions. Similarly, sauerkraut made from cabbage grown in Finland produced SFN, AITC, ANIT and indole 3-carbinol (I3C) from glucoiberin, sinigrin and glucobrassicin, respectively (Tolonen et al., 2002). In contrast, sauerkraut made from

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

cabbage grown in Germany only produced ascorbigen and I3C from glucoiberin, sinigirin, glucobrassicin, glucoraphanin and 4-methoxy glucobrassicin (Palani et al., 2016). SFN was also found in Korean kimchi, however in a less amount than in fresh cabbage (Kim et al., 1999), and sometimes not found at all (Hong & Kim, 2013). Different ITC production from different fermented cabbage products in various countries may be the result of different cultivars of cabbages used and bacterial species present in the fermentation. To ascertain functionality of Thai fermented cabbage in this work and for future commercial purposes, anticancer activity and antimicrobial activity of metabolites produced during induced cabbage fermentation as well as probiotic properties of both Ent. xiangfangensis and Ec. casseliflavus will be determined in the next project. In addition to ITCs as potential anticarcinogens, palmitic acid (16:0) and linoleic acid (18:2) as potential anticarcinogens or antimutagens (Nadathur et al., 1996; Bocca et al., 2010) were also present in fresh cabbage. After induced cabbage fermentation with either EC or EX for 3 days, palmitic acid and linoelic acid contents were increased by almost 5 folds and 10 folds, respectively (data not shown) suggesting induced fermentation added more nutritional value to cabbage than non-induced fermentation. Our finding was in accordance with the previous work showing that milk fermented with kefir had higher contents of healthy fatty acids when compared to unfermented milk (Guzel-Seydim et al., 2006). That was due to bacterial capacity to produce different fatty acids (Dykes et al., 1995) which employed the disassociated fatty acid synthesis II pathway, thus multiple discrete enzymes synthesize the fatty acid chain (White et al., 2005).

394

395

396

397

398

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

3.4. Antioxidant activity of fermented cabbage

Since EX-induced cabbage fermentations yielded the highest ITCs, they were used for antioxidant activity evaluation in comparison with the spontaneous ones. The results showed that EX-induced cabbage fermentations exhibited significantly higher %DPPH scavenging activity, FRAP activity and ABTS activity than those found in the spontaneous fermentations over 3 days (Fig. 4). In addition, antioxidant activities of fresh cabbage at day 0 were similar to those in both spontaneous and induced fermentations and increased over time indicating bacterial metabolism was responsible for increasing antioxidants in the fermented cabbage as well as the increase of ITCs (Table 2). Lactic-fermented cabbage in China, prepared by a drysalt method and extracted with methanol, showed antioxidant activity of DPPH radical scavenging effect at 60% (Sun et al., 2009). This was similar to DPPH radical scavenging effect at 62.1% at day 2 by EX-induced fermentation (Fig. 4). In addition, Lactic-fermented red cabbage sprouts gave significantly higher antioxidant functionalities than those of their unfermented/control counterparts. Fermented red cabbage sprouts inoculated with *Lb. plantarum* had the highest antioxidant activities (DPPH scavenging: 70.92%; TEAC: 1.94 mM Trolox equivalent), which was almost two-fold higher than those of unfermented treatments. These results indicated that Lactobacillus fermentation and our Enterobacter fermentation could be applied as a method to improve the potent antioxidant activities of vegetables (Hunaefi et al., 2013)

4. Conclusions

Induced cabbage fermentation by *Ent. xiangfangensis* or *Ec. casseliflavus* produced higher contents of chemopreventive SFN and IBR than those from the spontaneous fermentation and fresh cabbage. Fermented liquid and solid portions from fermented cabbage should be combined for consumption at day 1 or 2 for the highest ITCs and no nitrile product providing the best health-promoting benefits. GSL-metabolizing bacteria isolated from Thai fermented foods can be used as a starter culture for a traditional Thai fermented cabbage. This can then be promoted as a functional food with chemopreventive properties from ITC

- 423 products like the fermented cabbage product counterparts from different countries e.g.
- 424 sauerkraut and kimchi.

426

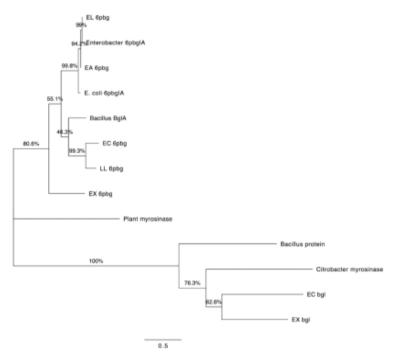
Acknowledgements

- 427 This research was financially supported by Thailand Research Fund 2015 (grant number
- 428 TRG5880096) and Mahasarakham University (MSU), Thailand. The authors would like to
- 429 thank Miss Orapan Kangkun, Miss Wansinee Wichatnam, Miss Hataitip Bunruang, Miss
- 430 Chanita Uparang for all their helps in this project, Mr. Theeraphan Chumroenphat for
- 431 technical assistance on HPLC and GC-MS facilities at the MSU central laboratory and lastly
- 432 Dr. John Rossiter for advice on the manuscript. Authors declare no conflicts of interest.

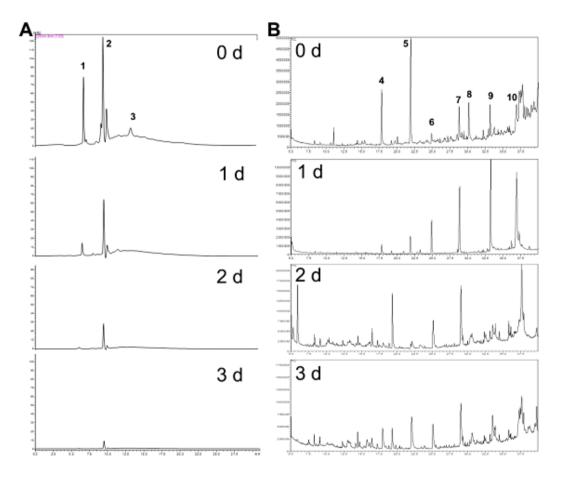
433

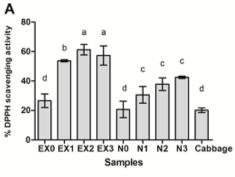
434 References

- Akowuah, G.A., Ismail, Z., Norhayati, I., & Sadikun, A. (2005). The effects of different
 extraction solvents of varying polarities of polyphenols of *Orthosiphon stamineus* and
 evaluation of the free radical-scavenging activity. *Food Chemistry*, 93, 311–317.
- Albaser, A., Kazana, E., Bennett, M., Cebeci, F., Luang-In, V., Spanu, P.D., & Rossiter, J.T.
 (2016). Discovery of a bacterial glycoside hydrolase family 3 (GH3) β-glucosidase with myrosinase activity from a *Citrobacter* strain isolated from soil. *Journal of Agriculture & Food Chemistry*, 64, 1520–1527.
- Benzie, I.F.F. & Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a
 measure of antioxidant power: The FRAP Assay. *Analytical Biochemistry*, 239, 70–76.
- Bocca, C., Bozzo, F., Cannito, S., Colombatto, S., & Miglietta, A. (2010). CLA reduces
 breast cancer cell growth and invasion through ER and PI3K/Akt pathways. *Chemico-Biological Interaction*, 183, 187–193.
- 447 Bohinc, T. & Trdan, S. (2012). Environmental factors affecting the glucosinolate content in 448 Brassicaceae. *Journal of Food Agriculture and Environment*, 10, 357-360.
- Cartea M.E., Francisco, M., Soengas, P., & Velasco, P. (2011) Phenolic compounds in Brassica vegetables. *Molecules*, 16, 251-280.
- 451 Cheng, D.L., Hashimoto, K., & Uda, Y. (2004). In vitro digestion of sinigrin and 452 glucotropaeolin by single strains of Bifidobacterium and identification of the digestive 453 products. Food and Chemical Toxicology, 42, 351–357.
- Cordeiro, R.P., Doria, J.H., Zhanel, G.G., Sparling, R., & Holley, R.A. (2015). Role of
 glycoside hydrolase genes in sinigrin degradation by E. coli O157:H7. International
 Journal of Food Microbiology, 205, 105-111.
- Dykes, G.A., Cloete, T.E., & von Holy, A. (1995). Taxonomy of lactic acid bacteria
 associated with vacuum-package meat spoilage by multivariate analysis of cellular fatty
 acids. *International Journal of Food Microbiology*, 28, 89–100.


- 460 Edgar, R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high 461 throughput. Nucleic Acids Res, 32, 1792-1797.
- El-Shora, H.M., El-Shobaky, A.M., & El-Atrozy, M.M. (2016). Activity of purified bacterial
 myrosinase and its essential residues. *International Journal of Current* Microbiology and Applied Sciences, 5, 567-578.
- Gu, C.T., Li, C.Y., Yang, L.J., & Huo, G.C. (2014). Enterobacter xiangfangensis sp. nov.,
 isolated from Chinese traditional sourdough, and reclassification of Enterobacter
 sacchari Zhu et al. 2013 as Kosakonia sacchari comb. nov. International Journal of
 Systematic and Evolutionary Microbiology, 64, 2650-2656.
- Guzel-Seydim, Z.B., Seydim, A.C., Greene, A.K., & Taş, T. (2006). Determination of
 antimutagenic properties of acetone extracted fermented milks and changes in their total
 fatty acid profiles including conjugated linoleic acids. *International Journal of Dairy* Technology, 59, 209–215.
- Hayes, J.D., Kelleher, M.O., & Eggleston, I.M. (2008). The cancer chemopreventive actions
 of phytochemicals derived from glucosinolates. *European Journal of Nutrition*, 47, 73–88.
- Hong, E., & Kim, G.H. (2013). GC-MS Analysis of the extracts from Korean cabbage
 (Brassica campestris L. ssp. pekinensis) and its seed. Preventive Nutrition and Food
 Science, 18, 218–221.
- Hunaefi, D., Gruda, N., Riedel, H., Akumo, N.D., Thaw Saw, N.M.M., & Smetanska, I.
 (2013). Improvement of antioxidant activities in red cabbage sprouts by lactic acid bacterial fermentation. Food Biotechnology, 27, 279-302.
- Khuhaprema, T., Attasara, P., Sriplung, H., et al (2012). Cancer in Thailand. Volume VI, 2004-2006. National Cancer Institude, Bangkok.
- Kim, H.J., Lee, M.J., Jeong, M.H., & Kim, J.E. (2017). Identification and Quantification of
 Glucosinolates in Kimchi by Liquid Chromatography-Electrospray Tandem Mass
 Spectrometry. *International Journal of Analytical Chemistry*,
 doi.org/10.1155/2017/6753481
- Kim, M.R., Lee, K.J., Kim, H.Y., Kim, J.H., Kim, Y.B., & Sok, D.E. (1999). Effect of
 various kimchi extracts on the hepatic glutathione S-transferase activity of mice. Food
 Research International, 31, 389-394.
- Kumar, S., Stecher, G., & Tamura, K. (2015). MEGA7: Molecular Evolutionary Genetics
 Analysis version 7.0 for bigger datasets. *Molecular Biology and Evolution*, 33, 1870 1874.
- 494 Madhuri, R.J. & Anuradha. (2015). Production of myrosinase enzyme by Actinomycetes 495 isolated from cotton soil. *International Journal of Chemical Environmental and* 496 Biological Sciences, 3, 397-403.
- Mullaney, J. A., Kelly, W., Mcghie, T. K., Ansell, J., & Heyes, J.A. (2013). Lactic acid
 bacteria convert glucosinolates to nitriles efficiently yet differently to Enterobacteriaceae.
 Journal of Agriculture & Food Chemistry, 61, 3039–3046.
- Li, F., Hullar, M.A. J., Schwarz, Y., & Lampe, J.W. (2009). Human gut bacterial
 communities are altered by addition of cruciferous vegetables to a controlled fruit- and
 vegetable-free diet. *Journal of Nutrition*, 139, 1685–1691.
- Llanos-Palop, M., Smiths, J.P., & Brink, B.T. (1995). Degradation of sinigrin by
 Lactobacillus agilis strain R16. International Journal of Food Microbiology, 26, 219–
 229.
- Luang-In, V., Albaser, A.A., Nueno-Palop, C., Narbad, A., Bennett, M., & Rossiter, J.R.
 (2016). Metabolism of glucosinolates and desulfo-glucosinolates by selected human gut
 bacteria. Current Microbiology, 73, 442-451.

- Luang-In, V., Narbad, A., Nueno-Palop, C., Mithen, R., Bennett, M., & Rossiter, J. T. (2014)
 The metabolism of methylsulfinylalkyl- and methylthioalkyl-glucosinolates by a selection of human gut bacteria. *Molecular Nutrition & Food Research*. 58, 875–883.
- Luang-In, V., & Rossiter, J.T. (2015) Stability studies of isothiocyanates and nitriles in
 aqueous media. Songklanakarin Journal of Science & Technology, 37, 625–630.
- Nadathur, S.R., Carney, J.R., Gould, S.J., & Bakalinsky, A.T. (1996). Palmitic acid is the
 major fatty acid responsible for significant anti-N-methyl-N'-nitro-N-nitrosoguanidine
 (MNNG) activity in yogurt. *Mutation Research*, 359, 179–189.
- Palani, K., Harbaum-Piayda, B., Meske, D., Keppler, J.K., Bockelmann, W., Heller, K.J., &
 Schwarz, K. (2016). Influence of fermentation on glucosinolates and glucobrassicin
 degradation products in sauerkraut. Food Chemistry, 190, 755-762.
- Paramithiotis, S., Hondrodimou, O.L., & Drosinos, E.H. (2010). Development of the
 microbial community during spontaneous cauliflower fermentation. Food Research
 International, 43, 1098-1103.
- Peñas, E., Pihlava, J.M., Vidal-Valverde, C., & Frias, J. (2012). Influence of fermentation
 conditions of *Brassica oleracea* L. var. capitata on the volatile glucosinolate hydrolysis
 compounds of sauerkrauts. *LWT Food Science and Technology*, 48, 16-23.
- Seeram, N.P., Adams, L.S., Zhang, Y., Lee, R., Sand, D., Scheuller, H.S. et al. (2006).
 Blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts
 inhibit growth and stimulate apoptosis of human cancer cells in vitro. Journal of
 Agriculral & Food Chemistry, 54, 9329–9339.
- Shapiro, T.A., Fahey, J.W., Wade, K.L., Stephenson, K.K., & Talalay, P. (2001).
 Chemoprotective glucosinolates and isothiocyanates of broccoli sprouts. Cancer
 Epidemiology Biomarkers Prevention, 10, 501–508.
- Sun, Y.P., Chou, C.C., & Yu, R.C. (2009). Antioxidant activity of lactic-fermented Chinese
 cabbage. Food Chemistry, 115, 912-917.
- Tani, N., Ohtsuru, M., Hata, T. (1974). Isolation of myrosinase producing microorganism.
 Agricultural and Biological Chemistry, 38, 1617–1622.
- The Human Microbiome Project Consortium. (2012). Structure, function and diversity of the healthy human microbiome. *Nature*, 486, 207–214.
- Tolonen, M., Taipale, M., Viander, B., Pihlava, J.M., Korhonen, H., & Ryhänen, E.L. (2002).
 Plant-derived biomolecules in fermented cabbage. *Journal of Agricultural and Food Chemistry*, 50, 6798-6803.
- 542 Traka, M. & Mithen, R. (2009). Glucosinolates, isothiocyanates and human health.
 543 Phytochemistry Reviews, 8, 269–282.
- Vicaş, S., Rugină, D., Leopold, L., Pintea, A., & Socaciu, C. (2011). HPLC fingerprint of
 bioactive compounds and antioxidant activities of *Viscum albumfrom* different host trees.
 Notulae Botanicae, 39, 48-57.
- White, S.W., Zheng, J., Zhang, Y.M., & Rock, C.O. (2005). The structural biology of type II fatty acid biosynthesis. *Annual Review of Biochemistry*, 74, 791–831.


554 FIGURES


Fig. 1 Phylogenetic tree of GSL-metabolizing bacteria isolated from this work and the previous reports. It was inferred from 26 partial16S rRNA sequences from different bacteria by using the Maximum Likelihood method based on the Le_Gascuel_2008 model. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1,000 replicates) is shown next to the branches. The horizontal bar represents a distance of 0.5 substitutions per site. Evolutionary analyses were conducted in MEGA7 and the phylogenetic tree was drawn by using FigTree.

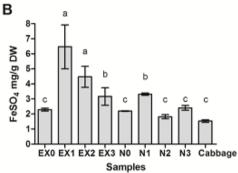


Fig. 2 Phylogenetic tree of putative myrosinases from the bacteria in this work and the previous reports. It was inferred from 13 amino acid sequences of putative myrosinases from different bacteria by using the Maximum Likelihood method based on the Le_Gascuel_2008 model. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1,000 replicates) is shown next to the branches. The horizontal bar represents a distance of 0.5 substitutions per site. Evolutionary analyses were conducted in MEGA7 and the phylogenetic tree was drawn by using FigTree.

Fig. 3 (A) HPLC chromatograms of GSL profiles of fermented cabbage by EX from 0 − 3 days. (B) GC-MS chromatograms of metabolic profiles of fermented cabbage by EX from 0 − 3 days. HPLC peaks of GSLs; **1** Glucoiberin at 6.30 min, **2** Glucoraphanin at 9.44 min and **3** 4-Hydroxy glucobrassicin at 12.5 min. GC-MS peaks of products, **4** iberin nitrile at 17.9 min, **5** Pent-1,4-diene-3-one at 21.9 min, **6** iberin at 24.9 min, **7** sulforaphane at 28.9 min, **8** indol-3-acetonitrile at 30.2 min, **9** palmitic acid at 33.3 min and **10** linoleic acid at 36.9 min.

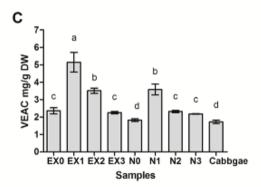


Fig. 4 Antioxidant activities from fermented cabbage with/without bacterial induction over 3 days. EX = induced with EX for 0-3 days (E0, E1, E2, E3); N = Non-induced with EX for 0-3 days (N0, N1, N2, N3). Different small letters indicate significantly statistical differences in values (p<0.01).

9 Table 1 Twenty bacterial isolates with glucosinolate-metabolizing capacity isolated from Thai local fermented foods and drinks

No.	Accession no. ^a	Species	Closet relative species ^b (% identity) /Accession no. ^c /Origin of isolate ^d	Sinigrin degradation (nmol) ^c	AITC product (nmol) °	% product formation ^f	
1. Fermented cabbage pH 3.87							
1	LC342980.1	Enterobacter sp. 1A-1A	Enterobacter sp. Md1-53 (92%) MF581459.1 Paeonia ostii root, China	73 ± 8	30 ± 5	41 ± 4	
2	LC342981.1	Enterobacter faecalis 5A-2B	Enterococcus faecalis NW A20 (99%) MG543833.1 Raw meat, South Africa	78 ± 7	39 ± 11	50 ± 14	
3	LC342982.1	Enterobacter asburiae 1B-1	Enterobacter asburiae voucher ST56 KT287073.1 100% Rumen China	75 ± 11	33 ± 8	44 ± 6	
4	LC342983.1	Enterobacter sp. 1B-2	Enterobacter sp. NU33 (96%) MG459258.1 Plant growth-promoting bacteria in sugarcane, Brazil Enterobacter ludwigii HTP04 (100%)	79 ± 5	41 ± 7	52 ± 8	
5	LC342984.1	Enterobacter ludwigii S1E9	KX024731.1 Isolated from shrimp gut, India	90 ± 8	50 ± 9	56 ± 7	
6	LC342985.1	Enterococcus casseliflavus SB2X2	Enterococcus casseliflavus HMF4406 (98%) KT984002.1 Jeotgal (salted fermented food), Korea Bacillus sp. SK123 (97%)	100 ± 0	61 ± 4	61 ± 6	
7	LC342986.1	Bacillus sp. SA8	Baculus sp. SK125 (97%) KU060226.1 Honey bee apiary, Thailand Bacillus sp. BDU13 (96%)	79 ± 8	39 ± 7	49 ± 6	
8	LC342987.1	Bacillus sp. 1.1	JX847614.1 Microbial diversity from fermented fish, India	87 ± 10	42 ± 11	48 ± 10	
2. P	ickled onion pH	4.81	,				
9	LC342980.1	Enterobacter sp. 1A-1A	Enterobacter sp. Md1-53 (92%) MF581459.1	73 ± 5	40 ± 5	55 ± 4	
10	LC342988.1	Enterobacter sp. 2B-1B	Paeonia ostii root, China Enterobacter sp. SR19 (100%) KF896099.1 Seawater sediment, Belgium	71 ± 0	39 ± 3	55 ± 6	
Seawater sediment, Belgium 3. Fermented fish pH 4.60							
11	LC342989.1	Enterobacter xiangfangensis 4A-2A3.1	Enterobacter xiangfangensis W31 (100%) KP813789.1 Storm water bacteria in two urban lakes China	100 ± 0	65 ± 3	65 ± 4	
12	LC342990.1	Bacillus sp. 4A-1	Bacillus sp. S42 (100%) JX293317.1 Crystal tuff, China	71 ± 6	40 ± 4	56 ± 1	
13	LC342991.1	Bacillus sp. 4B1	Bacillus sp. SO5.17 (97%) KC867296.1 Mine drainage, Brazil	73 ± 4	42 ± 9	58 ± 13	
4. Fe	rmented pork pl	H 4.73					
14	LC342992.1	Enterococcus casseliflavus 3.10A1	Enterococcus casseliflavus JFL12 (100%) KT343156.1 Fiber-degrading bacteria in rumen of Tibetan yak, China	74 ± 13	35 ± 8	47 ± 4	
5. Fe	rmented herbal	drink pH 2.80					
15	LC342981.1	Enterobacter faecalis 5A-2B	Enterococcus faecalis NW A20 (99%) MG543833.1 Raw meat, South Africa	78 ± 7	35 ± 6	45 ± 5	
6. Fermented juice pH 2.93							
16	LC342993.1	Enterobacter sp. 10-B1	Enterobacter sp. DBM3 (97%) KT957440.1 Plutella xylostella larval gut, China	77 ± 5	34 ± 11	42 ± 16	

17	LC342980.1	Enterobacter sp. 1A-1A	Enterobacter sp. Md1-53 (92%) MF581459.1 Paeonia ostii root, China	73 ± 10	34 ± 8	47 ± 7
7. W	ater kefir from	Nakhon Ratchasima pH 5.94				
18	LC336444.1	Lactococcus hircilactis WS16	Lactococcus hircilactis DSM 28960 (100%) KJ201026.1 Goat milk, Italy	77 ± 4	nd	na
19	LC336446.1	Lactococcus lactis WS18	Lactococcus lactis RCB787 (98%) KT260999.1 Bat guano, India	78 ± 3	nd	na
8. M	ilk kefir from K	amphaeng Phet pH 5.23				
20	LC342994.1	Bacillus subtilis KW3	Bacillus subtilis MA-48 (93%) KX426648.1 Rhizospheric soil in desert, Pakistan	80 ± 9	nd	na

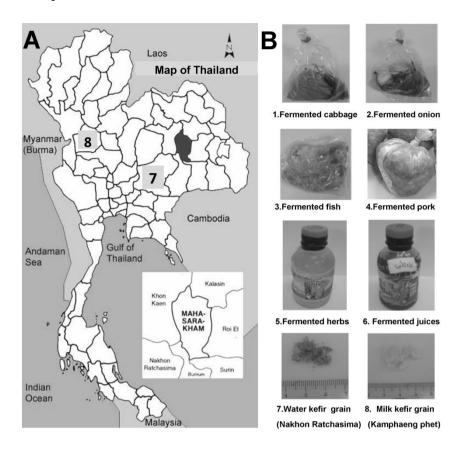
Table 2 Metabolism of glucosinoates in fermented cabbage with/without bacterial induction over 3 days.

Samples	Remaining GSL (μmol/ 100 g dry weight)			Products (µmol/ 100 g dry weight)			
Samples	GIB	GRP	GBS	IBN	IBR	SFN	IAN
Cabbage	430.5±34.1aB	615.1±30.0aA	108.5±19.1aC	75.1±26.4aC	13.3±10.0bD	39.5±16.3dC	49.1±29.8abC
N0	273.8±15.8bB	534.4±30.4abA	30.2±4.4bC	61.82±28.4abC	11.2±6.0bD	56.2±26.0dC	52.4±19.1abC
N1	103.8±19.5cB	419.0±26.5cA	0.0+0.0cE	43.3±23.2abC	32.1±3.9bD	135.2±42.0abB	22.9±4.7abC
N2	20.9±12.0dB	217.5±14.8deA	0.0+0.0cC	35.2±15.4abB	11.57±5.8bD	127.9±60.0abA	15.8±2.0bB
N3	2.9±1.1dC	146.3±27.7deA	0.0+0.0cD	21.6±11.0bcB	8.6±3.9bB	112.2±52.0abA	10.7±3.1bB
EC0	305.7±29.8bB	514.2±42.6bA	27.4±6.9bD	64.3±23.3abC	15.4±5.9bD	45.6±22.0dC	60.5±21.8aC
EC1	91.8±17.3cC	359.9±31.8cdA	0.0+0.0cE	25.6±12.6abD	35.2±20.0bD	177.8±42.0abB	22.5±14.6abD
EC2	21.0±9.3dB	211.0±27.7deA	0.0+0.0cD	6.4±2.1cC	51.7±35.9abB	242.6±40.0aA	14.7±11.9abB
EC3	3.1±0.7dD	111±20.2fB	0.0+0.0cE	2.9±0.8cD	33.6±22.0bC	222.4±42.0aA	16.4±7.2abC
EX0	305.2±13.0bB	536.6±29.1abA	31.6±7.8aC	65.2±20.2abC	12.5±4.0bD	48.6±30.0dC	55.3±20.2abC
EX1	74.3±14.6cC	275.9±19.deA	0.0+0.0cF	26.6±12.3abD	117.4±41.9aB	294.1±44.0aA	7.7±3.7bE
EX2	11.1±6.4dD	160.8±29.0eB	0.0+0.0cE	6.5±3.8cD	78.2±38.0abC	252.6±46.0aA	16.3±7.4abD
EX3	2.4±0.6dD	85.3±24.7fB	0.0+0.0cE	13.8±3.1bcC	70.5±39.9abB	244.7±70.0aA	20.9±8.8abC
EC2 solid	5.2±1.6dC	93.3±23.6fA	0.0+0.0cD	3.6±2.3cC	19.2±10.0bB	69.7±34.0cA	5.9±1.2bB
EC2 liquid	16.3±7.5dC	117.7±34.4fB	0.0+0.0cF	3.5±0.7cE	30.8±22.0bC	173.3±48.0abA	10.4±1.3bD

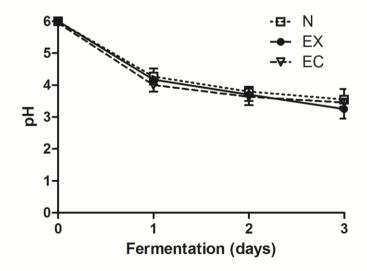
Cabbage = fresh cabbage; N = Non-induced with EX for 0-3 days (N0, N1, N2, N3); EC = induced with EC for 0-3 days (E0, E1, E2, E3);

 ^a GenBank accession no. of our strains on NCBI website (http://www.ncbi.nlm.nih.gov/pubmed)
 ^b Closet relative species and identity (%) from BLAST search on NCBI website (http://www.ncbi.nlm.nih.gov/pubmed)
 ^c GenBank accession no. of closest relatives on NCBI website (http://www.ncbi.nlm.nih.gov/pubmed)
 ^d Origins of closet relative species i.e. where each bacterium was isolated from

Origins of closer relative species i.e. where each bacterium was isolated from


e Each isolate from fermented samples was cultured in LB medium containing 1 mM sinigrin for 24 h. After that sinigrin degradation and AITC production were determined by HPLC and GC-MS, respectively.

f % product formation = [AITC product (nmol)/Sinigrin degradation (nmol)] x 100%


nd = not detected; na = not available

EX = induced with EX for 0-3 days (E0, E1, E2, E3); EC2 solid = Solid portion of fermented cabbage of EC at day 2; EC2 liquid = Liquid portion of fermented cabbage of EC at day 2. Different small letters indicate significantly statistical differences in values in the column (p<0.01) and capital letters indicate significantly statistical differences in values in the row (p<0.01)

Supplementary data

Fig. S1 (A) Location of Mahasarakham Province where most fermented samples were collected and Nakhon Ratchasima and Kamphaeng phet. (B) Thai local fermented foods and drinks used in this study.

Fig. S2 The pH values of fermented cabbage with/without bacterial induction over 3 days.

Table S1 Mass spectral (MS) data of metabolites detected in this work

Substrate	Degradation products ^a	MS spectra data m/z	T _R (min)*
Sinigrin (SNG)	Allyl-ITC (AITC)	99 (M ⁺), 72, 65	6.9
	Allyl-NIT (ANIT)	67 (M ⁺), 52	n.d.
Glucoiberin (GIB)	Iberin (IBR)	163 (M ⁺), 130, 116, 100, 72	24.9
	Iberin nitrile (IBR NIT)	131 (M ⁺), 115, 69, 61	17.9
NA	Pent-1,4-diene-3-one	82 (M ⁺), 64, 55	21.9
Glucoraphanin (GRP)	Sulforaphane (SFN)	177 (M ⁺), 160, 115, 72	28.9
	Sulforaphane nitrile (SFN NIT)	145(M ⁺), 128, 82, 55	ND
4-Hydroxy Glucobrassicin (GBS)	Indole-3-acetonitrile (IAN)	155 (M ⁺), 130, 101, 77, 51	30.2
NA	Palmitic acid	256 (M ⁺), 213, 129, 73, 60	33.3
NA	Linoleic acid	280 (M ⁺), 193, 151, 69, 55	36.9

^{*}Retention time at which degradation product was eluted as detected by GC-MS analysis.

^{**}These compounds were not available as authentic standards however they were detected in the reactions during bacterial fermentations. Their identifications were made according to previously reported retention time and fingerprint profiles (Vaughn *et al.*, 2005). NA, not available; n.d., not determined; ND, not detected.

Table S2 Percentage (%) production of degradation products upon glucosinolate metabolism during cabbage fermentation with/without induced bacterial culture over 3 days

Comples	% production			
Samples	IBN + IBR	SFN	IAN	
N0	46.6	69.6	92.5	
N1	17.0	79.2	30.3	
N2	11.4	43.0	23.8	
N3	7.1	34.1	19.1	
EC0	63.9	45.2	74.6	
EC1	18.0	69.7	39.2	
EC2	14.2	82.7	32.0	
EC3	8.5	73.1	15.1	
EX0	62.0	61.9	71.9	
EX1	40.4	86.7	7.1	
EX2	20.2	71.3	15.0	
EX3	19.7	52.1	19.3	
EC2 solid	5.4	14.2	11.0	
EC2 liquid	8.3	54.6	18.8	

Table S3 ITC products from different fermented cabbage products from different countries

Sample	GSL profiles	ITC products	pH at the end of fermentation	Fermentation method
Thai picked cabbage (white cabbage from Khon Kaen, Thailand)	Glucoiberin Glucoraphanin 4-hydroxy glucobrassicin	Iberin nitrile (IBN) Iberin (IBR) Sulforaphane (SFN) Indole-3-acetonitrile (IAN)	3.25-3.55 (3 days at 25 °C)	Spontaneous and induced fermentation by <i>Ec. casseliflavus</i> or <i>Ent. xiangfangensis</i> (This work)
Korean kimchi (white cabbage from Korea)	NA	2.2 ppm SFN (lower than fresh cabbage) 3-butenyl ITC 4-methylthiobutyl	4.53 (3 days at 20 °C)	Spontaneous (Kim et al., 1999)
Korean cabbage (Brassica campestris L. ssp. peckinensis, cultivar; 'Winter pride')	Gluconasturtiin Glucobrassicanapin 4-methyl-pentyl GSL Gluconapin	2-phenylethyl ITC 4-pentenyl ITC 4-methylpentyl ITC 3-Butenyl ITC	No fermentation	Fresh cabbage (Hong & Kim, 2013)
Sauerkraut (white cabbage cultivars Bronco and Megaton from Spain)	Sinigrin Glucoiberin Glucoraphanin	SFN (39-49 µmol/100g DW) IBR IBN allyl nitrile (ANIT) allyl isothiocyanate (AITC)	3.27 - 3.67 (7 days at 25 °C)	Lactobacillus plantarum (CECT 748) and Leuconostoc mesenteroides (CECT 219) by the Spanish Type Culture Collection (CECT, Valencia, Spain) (Peñas et al., 2012)
Sauerkraut (Brassica oleracea L. var. capitata cv. Lennox from Finland)	Sinigrin Glucoiberin Glucobrassicin	AITC ANIT SFN I3C	3.9 (3 days at 20 °C)	Spontaneous vs <i>Leuconostoc</i> mesenteroides and <i>Pediococcus</i> dextrinicus (1:1) (Tolonen et al., 2002)
Sauerkraut (Brassica oleracea L. var. capitata cv. Storema RZ and cv. Lennox from Germany)	Glucoiberin Sinigirin Glucobrassicin Glucoraphanin 4-Methoxy glucobrassicin	Ascorbigen (13.0 µmol/100 g FW) I3C (4.52 µmol/100g FW)	4 (9 days at 20 °C)	Spontaneous (Palani et al., 2016)