

Abstract

Thalassemia is a genetic and hereditary disorder, and represents a major public health issue worldwide, especially in tropical and subtropical countries including Thailand. Since defects in expression and synthesis of alpha and beta hemoglobins are implicated in thalassemia, understanding how globin switching is regulated and how expression of globin genes is tightly controlled by epigenetics are necessary for translating the knowledge toward therapeutic applications by turning on expression of unaffected or non-mutated globin genes such as hemoglobins zeta and gamma to replace defected alpha and beta globins, respectively. An increasing number of findings have discovered several long non-coding RNAs (lncRNAs), which possess epigenetic-associated function such as regulation of histone modification. In particular, the lncRNA steroid receptor RNA activator (SRA) has been shown to form a complex with the chromatin architectural transcription factor CTCF, which is involved in repression of globin genes via chromatin insulation mechanism. Notably, the lncRNA SRA and its associated RNA helicase DDX5 have been reported to repress expression of a reporter gene controlled by chicken beta-globin insulator. Nonetheless, how SRA regulates histone modification patterns has been elusive. The primary goal of the proposed work is to elucidate a possible role of the lncRNA SRA in regulation of histone modification, in particular histone lysine 4 and 27 trimethylation (H3K4me3 and H3K27me3). Moreover, whether SRA represses globin genes was also determined. The outcome of this proposed work will provide not only a fundamental knowledge of how histone modification is regulated by a lncRNA, but also novel therapeutic strategies aiming at inducing expression of alpha- or beta-like globin genes by manipulating the functionality of SRA. Therefore, the outcome will benefit thalassemic community in general such as researchers, clinicians and patients.

บทคัดย่อ

ราลัสซีเมียเป็นโรคที่ถ่ายทอดทางพันธุกรรม เป็นปัญหาสุขภาพของประชากรในหลายเชื้อชาติ โดยเฉพาะประเทศไทยในโซนร้อนที่รวมถึงประเทศไทยด้วย เนื่องจากสาเหตุของการเกิดโรคราลัสซีเมีย มีความเกี่ยวข้องกับความผิดปกติของการสร้างฮีโมโกลบินสายอัลฟ้าและสายเบต้า ความเข้าใจในกระบวนการการสับเปลี่ยนการแสดงออกของยีนโกลบินและการควบคุมการแสดงออกของยีนโกลบินโดยกระบวนการอิพิเจนติกส์ จึงเป็นต่อการประยุกต์ความองค์ความรู้นี้สู่การรักษาโดยการระดับการแสดงออกของยีนโกลบินที่ไม่ได้เกิดความผิดปกติ เช่น การระดับการแสดงออกของยีนโกลบินเซต้า และยีนโกลบินแคมม่า เพื่อแทนที่ยีนโกลบินอัลฟ้า และยีนโกลบินเบต้า ตามลำดับ มีงานวิจัยจำนวนมากที่ได้ค้นพบ long non-coding RNAs (lncRNAs) ที่เกี่ยวข้องกับการควบคุมกลไกทางอิพิเจนติกส์ หนึ่งในจำนวนนั้น คือ steroid receptor RNA activator (SRA) ซึ่งเป็น lncRNA ที่ทำงานร่วมกับทรานส์คิริปชั่นแฟคเตอร์ CTCF ซึ่งยับยั้งการแสดงออกของยีนโกลบิน ที่สำคัญ คือ SRA และเอนไซม์ที่ทำให้อาร์เอ็นเอคลายเกลียว DDX5 ถูกรายงานว่ามีความเกี่ยวข้องกับการยับยั้งการแสดงออกของยีนโกลบิน เช่นกัน อย่างไรก็ตาม ปัจจุบันยังไม่มีความเข้าใจว่า lncRNA SRA มีความเกี่ยวข้องกับการควบคุมอิพิเจนติกส์หรือไม่ ดังนั้น เป้าหมายหลักของงานวิจัยนี้ คือ เพื่อศึกษาบทบาทของ SRA ในการควบคุมการทำงานของกระบวนการเติมหมู่เมทิลที่ตำแหน่งไลซีน 4 และไลซีน 27 ให้โปรตีนฮิสโตน H3 นอกจากนี้ หน้าที่ของ SRA ในการยับยั้งการแสดงออกของยีนโกลบิน ยังได้ถูกตรวจสอบด้วย ผลลัพธ์ที่ได้จากการวิจัยนี้ น่าจะทำให้เกิดองค์ความรู้ที่เกี่ยวกับ การควบคุมอิพิเจนติกส์โดย lncRNA และ ยังส่งผลให้เกิดการพัฒนาวิธีการระดับการแสดงออกของยีนโกลบินที่คล้ายกับยีนโกลบินอัลฟ้า และยีนโกลบินเบต้าโดยการควบคุมการทำงานของ SRA ดังนั้น ผลลัพธ์ ดังกล่าวนี้จึงเป็นประโยชน์ต่อนักวิจัย แพทย์ และผู้ป่วยราลัสซีเมีย