



# รายงานวิจัยฉบับสมบูรณ์

The first principle calculation of electronic, optical and thermoelectric properties of doped SrTiO<sub>3</sub> and nanostructures as a thermoelectric and photocatalytic material

โดย รศ. ดร. ไพโรจน์ มูลตระกูล

# สัญญาเลขที่MRG5880112

# รายงานวิจัยฉบับสมบูรณ์

The first principle calculation of electronic, optical and thermoelectric properties of doped SrTiO<sub>3</sub> and nanostructures as a thermoelectric and photocatalytic material

โดย รศ. ดร. ไพโรจน์ มูลตระกูล มหาวิทยาลัยขอนแก่น

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย มหาวิทยาลัยขอนแก่น

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกว.และต้นสังกัดไม่จำเป็นต้องเห็นด้วยเสมอไป)

#### **Abstract**

Project Code: MRG5880112

**Project Title :** The first principle calculation of electronic, optical and thermoelectric properties of doped SrTiO<sub>3</sub> and nanostructures as a thermoelectric and photocatalytic material

Investigator: Assoc. Prof. Dr. Pairot Moontragoon

E-mail Address: mpairo@kku.ac.th

Project Period: 2 years

**Keywords**: Doped SrTiO3; Thermoelectric material; photocatalytic material

In this work, 3 models of strontium titanate, including pure STO, N-doped STO and Ovacancy STO models, were investigated to study electronic and thermoelectric properties. Vienna Ab initio simulation package (VASP) which based on density functional theory was used to calculate electronic structure of strontium titanate with addition of Hubbard parameter (U) to treat the strong on-site Coulomb interaction in d-electron and thermoelectric properties were also investigated with BoltzTrap program. The results indicate that pure SrTiO<sub>3</sub> has energy band gap of 3.11 eV for GGA+U (U=8.7 eV) calculation which is underestimated compared with experimental value due to limitation of DFT. For Ndoped model, there are states induced above valence band resulting in band gap narrowing about 0.38 eV. Removing of Oxygen atom makes strontium titanate structure defect which lead to formation of a band below the conduction band. Thermoelectric results show that doping strontium titanate with Nitrogen and Oxygen vacancy can improve thermoelectrical efficient of strontium titanate because of larger ZT which increase with temperature. The rare earth elements doping on the STO could promote electrical conductivity per relaxation time of the STO and, the N-doped STO could obviously decrease band gap width of the STO from 3.17 to 2.72 eV. From this point, it is interesting that La and Dy doping on the STO would have an ability to improve electrical conductivity of the STO and being narrower of the Eg after N doping is an optional way to improve optical properties of the STO. These advantages could lead the STO to be more utilized in widely various field and higher efficiency applications for more benefits

#### บทคัดย่อ

งานวิจัยนี้ได้ศึกษาคุณสมบัติทางอิเล็กทรอนิกส์และเทอร์โมอิเล็กตริกของสารสตรอนเทียมไท ทาเนตของโครงสร้างสตรอนเทียมไททาเนตบริสทธิ์ โครงสร้างที่เจือด้วยไนโตรเจนและโครงสร้าง ที่มีช่องว่างในตำแหน่งของออกซิเจน ใช้โปรแกรม VASP ซึ่งเป็นโปรแกรมที่อาศัยพื้นฐานทฤษฎี ฟังก์ชันนัลความหนาแน่นในการคำนวณคุณสมบัติทางอิเล็กทรอนิกส์ โดยเพิ่มการพิจารณาค่าฮับ บาร์ดพารามิเตอร์เพื่อแก้ไขข้อบกพร่องของการคำนวณอันตรกิริยาคูลอมป์ของอิเล็กตรอนใน d ออร์บิทัล ส่วนคุณสมบัติทางเทอร์โมอิเล็กตริกคำนวณโดยใช้โปรแกรม BoltzTrap จากผลการ คำนวณคุณสมบัติทางอิเล็กทรอนิกส์โดยใช้ GGA+U (U=8.7 eV) พบว่าค่าช่องว่างพลังงานของ สตรอนเทียมไททาเนตบริสุทธิ์มีค่าเป็น 3.11 eV ซึ่งมีค่าน้อยกว่าผลจากการทดลอง อันเนื่องมา จากข้อจำกัดของ DFT ส่วนโครงสร้างที่เจือด้วยไนโตรเจนมีสถานะเกิดขึ้นเหนือแถบวาเลนซ์ เป็น ผลให้ช่องว่างพลังงานแคบลง 0.38 eV และโครงสร้างที่มีช่องว่างในตำแหน่งของออกซิเจนทำให้ เกิดความบกพร่องของโครงสร้างส่งผลให้เกิดสถานะขึ้นด้านล่างแถบการนำ นอกจากนั้นการเจือ ไนโตรเจนและช่องว่างในตำแหน่งของออกซิเจนยังทำให้เพิ่มประสิทธิภาพทางเทอร์โมอิเล็กทริก ค่า ZT ที่สูงขึ้น และเพิ่มขึ้นตามอุณหภูมิ การเจือธาตุในกลุ่มแรเอิร์ธ (La และ Dy) ลงในสตรอน เทียมไททาเนตเป็นการเพิ่มสภาพนำไฟฟ้าและการเจือไนโตรเจนเป็นการลดช่องว่าแถบพลังงาน จาก 3.17 เป็น 2.72 eV ซึ่งจากผลที่ได้นี้ทำให้สามารถประยุกต์ใช้สตรอนเทียมไททาเนตได้ใน หลายรูปแบบ

#### **ABSTRACT**

In this work, 3 models of strontium titanate, including pure STO, N-doped STO and O-vacancy STO models, were investigated to study electronic and thermoelectric properties. Vienna Ab initio simulation package (VASP) which based on density functional theory was used to calculate electronic structure of strontium titanate with addition of Hubbard parameter (U) to treat the strong on-site Coulomb interaction in d-electron and thermoelectric properties were also investigated with BoltzTrap program. The results indicate that pure SrTiO3 has energy band gap of 3.11 eV for GGA+U (U=8.7 eV) calculation which is underestimated compared with experimental value due to limitation of DFT. For N-doped model, there are states induced above valence band resulting in band gap narrowing about 0.38 eV. Removing of Oxygen atom makes strontium titanate structure defect which lead to formation of a band below the conduction band. Thermoelectric results show that doping strontium titanate with Nitrogen and Oxygen vacancy can improve thermoelectrical efficient of strontium titanate because of larger ZT which increase with temperature. The rare earth elements doping on the STO could promote electrical conductivity per relaxation time of the STO and, the N-doped STO could obviously decrease band gap width of the STO from 3.17 to 2.72 eV. From this point, it is interesting that La and Dy doping on the STO would have an ability to improve electrical conductivity of the STO and being narrower of the Eg after N doping is an optional way to improve optical properties of the STO. These advantages could lead the STO to be more utilized in widely various field and higher efficiency applications for more benefits.

# สารบัญ

| ัดย่อ (ภ | าษาไทย)                                                        |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ัดย่อ (ภ | าษาอังกฤษ                                                      | *)                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ı<br>ທູ  |                                                                |                                                                                                                                                                                                  | หน้า                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          |                                                                |                                                                                                                                                                                                  | หน้า                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| บทน้ำ    |                                                                |                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.1      | ที่มาและคว                                                     | ามสำคัญ                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.2      | วัตถุประสง                                                     | ค์ของงานวิจัย                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.3      | ขอบเขตขอ                                                       | งการศึกษา                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.4      | ประโยชน์ที่                                                    | คาดว่าจะได้รับ                                                                                                                                                                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ทฤษฎีเก็ | กี่ยวข้อง                                                      |                                                                                                                                                                                                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2.1      | สตรอนเทีย                                                      |                                                                                                                                                                                                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          | 2.1.1                                                          | โครงสร้างผลึกของสตรอนเทียมไททาเนต                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          | 2.1.2                                                          | โครงสร้างทางอิเล็กทรอนิกส์                                                                                                                                                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          | 2.1.3                                                          | คุณสมบัติเทอร์โมอิเล็กทริก                                                                                                                                                                       | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          | 2.1.4                                                          | การประยุกต์ใช้งาน                                                                                                                                                                                | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2.2      | ทฤษฎีฟังก์                                                     | ชันนัลความหนาแน่น                                                                                                                                                                                | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          | 2.2.1                                                          | ทฤษฎีบทของโฮเฮนเบิร์กและโคห์น                                                                                                                                                                    | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          | 2.2.2                                                          | สมการโคห์น-ชาม                                                                                                                                                                                   | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          | 2.2.3                                                          | ศักย์เทียม                                                                                                                                                                                       | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | 2.2.4                                                          | ระบบที่มีศักย์เป็นคาบ                                                                                                                                                                            | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | 2.2.5                                                          | การคำนวณแบบ DFT+U                                                                                                                                                                                | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2.3      | วัสดุเทอร์โม                                                   | มอิเล็กทริกส์                                                                                                                                                                                    | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | 2.3.1                                                          | ปรากฎการณ์เทอร์โมอิเล็กทริกส์                                                                                                                                                                    | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | 2.3.2                                                          | การคำนวณคุณสมบัติทางเทอร์โมอิเล็กทริกส์                                                                                                                                                          | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2.4      | การคำนวณ                                                       |                                                                                                                                                                                                  | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | ัดย่อ (ภ<br>บัทนำ<br>1.1<br>1.2<br>1.3<br>1.4<br>ทฤษฎีเ<br>2.1 | ับทนำ 1.1 ที่มาและคว 1.2 วัตถุประสง 1.3 ขอบเขตขอ 1.4 ประโยชน์ที่ ทฤษฎีเกี่ยวข้อง 2.1 สตรอนเทีย 2.1.1 2.1.2 2.1.3 2.1.4 2.2 ทฤษฎีฟังก์ 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.3 วัสดุเทอร์โร 2.3.1 2.3.2 | <ul> <li>วัตถุ</li> <li>บทนำ</li> <li>1.1 ที่มาและความสำคัญ</li> <li>1.2 วัตถุประสงค์ของงานวิจัย</li> <li>1.3 ขอบเขตของการศึกษา</li> <li>1.4 ประโยชน์ที่คาดว่าจะได้รับ</li> <li>ทฤษฎีเกี่ยวข้อง</li> <li>2.1 สตรอนเทียมไททาเนต</li> <li>2.1.1 โครงสร้างผลึกของสตรอนเทียมไททาเนต</li> <li>2.1.2 โครงสร้างพางอิเล็กทรอนิกส์</li> <li>2.1.3 คุณสมบัติเทอร์โมอิเล็กทริก</li> <li>2.1.4 การประยุกต์ใช้งาน</li> <li>2.2 ทฤษฎีฟังก์ชันนัลความหนาแน่น</li> <li>2.2.1 ทฤษฎีบทของโฮเฮนเบิร์กและโคห์น</li> <li>2.2.2 สมการโคห์น-ชาม</li> <li>2.2.3 ศักย์เทียม</li> <li>2.2.4 ระบบที่มีศักย์เป็นคาบ</li> <li>2.2.5 การคำนวณแบบ DFT+U</li> <li>2.3 วัสดุเทอร์โมอิเล็กทริกส์</li> <li>2.3.1 ปรากฎการณ์เทอร์โมอิเล็กทริกส์</li> <li>2.3.2 การคำนวณผุดผสมบัติทางเทอร์โมอิเล็กทริกส์</li> </ul> |

สารบัญ

| 3 | วิธีดำเนินการศึกษา |            |                                                         |    |
|---|--------------------|------------|---------------------------------------------------------|----|
|   | 3.1                | การคำนา    | วณคุณสมบัติทางอิเล็กทรอนิกส์                            | 24 |
|   |                    | 3.1.1      | ทดสอบค่าฮับบาร์ดพารามิเตอร์ที่เหมาะสมในการคำนวณ         | 24 |
|   |                    | 3.1.2      | คำนวณโครงสร้างที่เสถียร                                 | 25 |
|   |                    | 3.1.3      |                                                         | 26 |
|   |                    | 3.1.4      | การคำนวณโครงสร้างแถบพลังงาน                             | 26 |
|   | 3.2                | การคำนา    | วณคุณสมบัติทางเทอร์โมอิเล็กทริก                         | 26 |
| 4 | ผลกา               | รศึกษา แล  | ะอภิปรายผลการศึกษา                                      | 27 |
|   | 4.1                | ผลการคำ    | านวณคุณสมบัติทางอิเล็กทรอนิกส์ของสตรอนเทียมไททาเนต      | 27 |
|   |                    | 4.1.1      | ผลการทดสอบค่าฮับบาร์ดพารามิเตอร์ที่เหมาะสมในการคำนวณ    | 27 |
|   |                    | 4.1.2      | ผลการคำนวณความหนาแน่นสถานะ                              | 29 |
|   |                    | 4.1.3      | ผลการคำนวณโครงสร้างแถบพลังงาน                           | 31 |
|   | 4.2                | ผลการคำ    | านวณคุณสมบัติทางเทอร์โมอิเล็กทริกของสตรอนเทียมไททาเนต . | 37 |
|   |                    | 4.2.1      | ค่าสภาพนำไฟฟ้าต่อเวลาผ่อนคลาย                           | 37 |
|   |                    | 4.2.2      | ค่าสัมประสทธิ์ซีเบค                                     | 39 |
|   |                    | 4.2.3      | ค่าสภาพนำความร้อนต่อเวลาผ่อนคลาย                        | 41 |
|   |                    | 4.2.4      | ค่า figure of merit                                     | 42 |
| 5 | สรุปผ              | เลการศึกษา |                                                         | 46 |
|   | 5.1                | สรุปผลก    | ารคำนวณ                                                 | 46 |
|   | 5.2                | ข้อเสนอเ   |                                                         | 47 |

# สารบัญรูป

| รูปที่ |     |                                                                                                                                       | หน้า |
|--------|-----|---------------------------------------------------------------------------------------------------------------------------------------|------|
|        | 1.1 | การทำงานของเทอร์โมอิเล็กทริกส์                                                                                                        | 1    |
|        | 2.1 | ยูนิตเซลล์ในปริภูมิจริงของสตรอนเทียมไททาเนต สีเขียว สีฟ้า และสีแดง<br>แทนอะตอมสตรอนเทียม ไททาเนียม และออกซิเจนตามลำดับ                | 5    |
|        | 2.2 | โครงสร้างแถบพลังงานของสตรอนเทียมไททาเนต ซึ้งเป็นโครงสร้างของ<br>วัสดุกึ่งตัวนำที่มีช่องว่างพลังงานแบบไม่ตรง มีจุด CBM และ VBM ตรง     |      |
|        |     | กับ Γ และ R ตามลำดับ                                                                                                                  | 6    |
|        | 2.3 | โครงสร้างแถบพลังงานของสตรอนเทียมไททาเนต (a) โครงสร้างบริสุทธิ์ (b) โครงสร้างที่เจือด้วยอะตอมไนโตรเจน และ (c) โครงสร้างที่เจือด้วย     | _    |
|        | 0.4 | อะตอมแลนทานัม                                                                                                                         | 7    |
|        | 2.4 | การประยุกต์ใช้สตรอนเทียมไททาเนตเป็นตัวเร่งปฏิกิริยาเร่งด้วยแสง ซึ่ง                                                                   |      |
|        | a = | ใช้ในกระบวนการแยกน้ำเพื่อผลิตเชื้อเพลิงไฮโดรเจน                                                                                       | 8    |
|        | 2.5 | วอลเตอร์ คอห์น (Walter Kohn)(ซ้าย) ปีแอร์ โฮเฮนเบิร์ก (Pierre Ho-<br>henberg)(กลาง), และ ลู ชาม (Lu Sham)(ขวา) ผู้คิดค้นทฤษฎีฟังก์ชัน |      |
|        |     | นัลความหนาแน่นในปี 1964-1965                                                                                                          | 9    |
|        | 2.6 | แผนภาพแสดงวิธีการคำนวณด้วยวิธีทฤษฎีฟังก์ชันความหนาแน่นโดยการ                                                                          |      |
|        |     | สอดคล้องโดยตัวเอง                                                                                                                     | 11   |
|        | 2.7 | เปรียบเทียบฟังค์ชันคลื่นจริงของระบบ ( $\Psi_{AE}$ ) กับฟังก์ชันคลื่นเทียม ( $\Psi^{PS}$ )                                             |      |
|        |     | และศักย์จริง $(V^{AE})$ กับศักย์เทียม $(V^{PS})$                                                                                      | 12   |
|        | 2.8 | ปรากฏการณ์เพลเทียร์และปรากฏการณ์ชีเบค                                                                                                 | 15   |
|        | 2.9 | (a)-(c) กราฟฟังก์ชันหน้าต่างที่เป็นฟังก์ชันของพลังงานที่อุณหภูมิ 50,                                                                  |      |
|        |     | 100 และ 200 K (d)-(f) กราฟฟังก์ชันหน้าต่างที่เป็นฟังก์ชันของพลังงาน                                                                   |      |
|        |     | ลดทอน                                                                                                                                 | 19   |
|        | 3.1 | ระดับพลังงานของอิเล็กตรอนในออร์บิทัล 3d ของอะตอมไททาเนียมในโค                                                                         |      |
|        |     | รงสร้างสตรอนเทียมไททาเนต                                                                                                              | 24   |
|        | 3.2 | โครงสร้างสตรอนเทียมไททาเนตที่ประกอบด้วย 5 อะตอม ที่ใช้ในการทด<br>สอบค่าฮับบาร์ดพารามิเตอร์ที่เหมาะสม โดยทรงกลมสีฟ้าแทนอะตอมไม         |      |
|        |     | มานียม สีเขียวแทนอะตอมสตรอนเทียม และสีแดงแทนอะตอมออกซิเจน .                                                                           | 25   |

| 3.3 | โครงสร้างสตรอนเทียมไททาเนตที่ประกอบด้วย 40 อะตอม ที่ใช้ในการ<br>คำนวณคุณสมบัติทางอิเล็กทรอนิกส์ โดยทรงกลมสีฟ้าแทนอะตอมไททา<br>เนียม สีเขียวแทนอะตอมสตรอนเทียม สีแดงแทนอะตอมออกซิเจน และสี<br>เหลืองแทนอะตอมไนโตรเจน | 25 |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 3.4 | โซนบลูลวนและเส้นทางของจุดสมมาตรสูงสำหรับโครงสร้างผลึกแบบลูกบาศก์<br>26                                                                                                                                              |    |
| 4.1 | กราฟแสดงความหนาแน่นสถานะของโครงสร้างสตรอนเทียมไททาเนตที่<br>ประกอบด้วย 5 อะตอม เมื่อคำนวณโดยพิจารณาผลของสปิน                                                                                                        | 27 |
| 4.2 | DOS และ PDOS ของสตรอนเทียมไททาเนตโครงสร้างบริสุทธิ์ โครงสร้าง                                                                                                                                                       |    |
| 4.3 | ที่เจือด้วยไนโตรเจน และโครงสร้างที่มีช่องว่างในตำแหน่งของอะตอมออกซิเจน<br>โครงสร้างแถบพลังงานของโครงสร้างสตรอนเทียมไททาเนตบริสุทธิ์ที่ประกอบ                                                                        | 29 |
| 1.0 | ด้วย (a) 5 อะตอม และ (b) 40 อะตอม                                                                                                                                                                                   | 31 |
| 4.4 | โครงสร้างแถบพลังงานของสตรอนเทียมไททาเนต (a) โครงสร้างบริสุทธิ์                                                                                                                                                      |    |
|     | (b) โครงสร้างที่เจือด้วยในโตรเจน และ (c) โครงสร้างที่มีช่องว่างในตำแหน่ง                                                                                                                                            |    |
|     | ของอะตอมออกซิเจน                                                                                                                                                                                                    | 32 |
| 4.5 | โครงสร้างที่พลังงานต่ำสุด 40 อะตอมของ (a) STO และ (b) STO+Vo ที่                                                                                                                                                    |    |
|     | แทนสีฟ้า เขียว ชมพู แทนอะตอมของ Sr, Ti และ O ตามลำดับ DOS ของ                                                                                                                                                       |    |
|     | (c) STO และ (d) STO+Vo และ โครงสร้างแถบพลังงานของ (c) STO                                                                                                                                                           |    |
|     | และ (d) STO+Vo ด้วย Ef = 4.69 และ 7.80 eV สำหรับ STO และ STO                                                                                                                                                        |    |
|     | +Vo ตามลำดับ                                                                                                                                                                                                        | 33 |
| 4.6 | โครงสร้างที่พลังงานต่ำสุด 40 อะตอมของ (a) NSTO และ (b) NSTO                                                                                                                                                         |    |
|     | +Vo ที่แทนสีฟ้า เขียว ชมพู ม่วง แทนอะตอมของ Sr, Ti, O และ N ตาม                                                                                                                                                     |    |
|     | ลำดับ DOS ของ (c) LDSTO และ (d) LDSTO+Vo และ โครงสร้างแถบ                                                                                                                                                           |    |
|     | พลังงานของ (c) NSTO และ (d) NSTO+Vo ด้วย Ef = 4.49 และ 7.28                                                                                                                                                         |    |
|     | eV สำหรับ NSTO และ NSTO+Vo ตามลำดับ                                                                                                                                                                                 | 34 |
| 4.7 | โครงสร้างที่พลังงานต่ำสุด 40 อะตอมของ (a) LDSTO และ (b) LDSTO                                                                                                                                                       |    |
|     | +Vo ที่แทนสีฟ้า เขียว ชมพู เหลือง น้ำเงิน แทนอะตอมของ Sr, Ti, O, La                                                                                                                                                 |    |
|     | และ Dy ตามลำดับ DOS ของ (c) LDSTO และ (d) LDSTO+Vo และ                                                                                                                                                              |    |
|     | โครงสร้างแถบพลังงานของ (c) LDSTO และ (d) LDSTO+Vo ด้วย Ef                                                                                                                                                           |    |
|     | = 8.96 และ 8.81 eV สำหรับ LDSTO และ LDSTO+Vo ตามลำดับ                                                                                                                                                               | 35 |
| 4.8 | โครงสร้างที่พลังงานต่ำสุด 40 อะตอมของ (a) LaSTO และ (b) DySTO                                                                                                                                                       |    |
|     | +Vo ที่แทนสีฟ้า เขียว ชมพู เหลือง น้ำเงิน แทนอะตอมของ Sr, Ti, O,                                                                                                                                                    |    |
|     | La และ Dy ตามลำดับ DOS ของ (c) LaSTO และ (d) DySTO+Vo และ                                                                                                                                                           |    |
|     | โครงสร้างแถบพลังงานของ (c) LaSTO และ (d) DySTO+Vo ด้วย Ef =                                                                                                                                                         |    |
|     | 8.68 และ 8.35 eV สำหรับ LaSTO และ DySTO+Vo ตามลำดับ                                                                                                                                                                 | 36 |

| 4.9   | กราฟแสดงค่าสภาพน้า ไฟฟ้าต่อเวลาผ่อนคลายของสตรอนเทียม ไททา<br>เนตที่อุณหภูมิต่างๆ เส้นสีดำ แสดงค่าสภาพนำไฟฟ้าต่อเวลาผ่อนคลาย<br>ของสตรอนเทียมไททาเนตโครงสร้างบริสุทธิ์ สีแดง แทนโครงสร้างที่เจือ<br>ด้วยไนโตรเจน และสีน้ำเงินโครงสร้างที่มีช่องว่างในตำแหน่งของอะตอม |     |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|       | ออกซิเจนกรงสวางทุมของ ภาเนตาแทนงของอะตอม                                                                                                                                                                                                                            | 38  |
| 4.10  | กราฟแสดงค่าสัมประสทธิ์ซีเบคของสตรอนเทียมไททาเนตที่อุณหภูมิต่าง<br>ๆ เส้นสีดำ แสดงค่าสัมประสทธิ์ซีเบคของสตรอนเทียมไททาเนตโครงสร้าง                                                                                                                                   | 50  |
|       | บริสุทธิ์ สีแดง แทนโครงสร้างที่เจือด้วยไนโตรเจน และสีน้ำเงินโครงสร้าง                                                                                                                                                                                               |     |
|       | ที่มีช่องว่างในตำแหน่งของอะตอมออกซิเจน                                                                                                                                                                                                                              | 39  |
| 4.11  | ค่าสัมประสทธิ์ซีเบคของสตรอนเทียมไททาเนตที่อุณหภูมิต่าง ๆ เส้นสีดำ                                                                                                                                                                                                   |     |
|       | สีแดง และสีนำเงิน แทนค่าสัมประสทธิ์ซีเบคของสตรอนเทียมไททาเนต                                                                                                                                                                                                        |     |
|       | โครงสร้างบริสุทธิ์ โครงสร้างที่เจือด้วยไนโตรเจนและโครงสร้างที่มีช่องว่าง                                                                                                                                                                                            |     |
|       | ของอะตอมออกซิเจนตามลำดับ                                                                                                                                                                                                                                            | 41  |
| 4.12  | กราฟแสดงค่า figure of merit ของสตรอนเทียมไททาเนตที่อุณหภูมิต่าง                                                                                                                                                                                                     |     |
|       | ๆ เส้นสีดำ สีแดง และสีน้ำเงิน แสดงค่า figure of merit ของสตรอนเทียม                                                                                                                                                                                                 |     |
|       | ไททาเนตโครงสร้างบริสุทธิ์ โครงสร้างที่เจือด้วยไนโตรเจน และโครงสร้าง                                                                                                                                                                                                 |     |
|       | ที่มีช่องว่างในตำแหน่งของอะตอมออกซิเจน ตามลำดับ                                                                                                                                                                                                                     | 42  |
| 4.13  | สัมประสิทธิ์ซีเบกของ (a) โครงสร้างบริสุทธิ และ (b) ช่องว่างอ๊อกซิเจน,                                                                                                                                                                                               |     |
|       | สภาพนำไฟฟ้าต่อเวลาผ่อนคลายของ (c)โครงสร้างบริสุทธิ และ (d) ช่อง                                                                                                                                                                                                     |     |
|       | ว่างอ๊อกซิเจน และ สภาพนำความร้อนของอิเล็กตรอนต่อเวลาผ่อนคลาย                                                                                                                                                                                                        | 4.0 |
| 4 1 4 | ของ (e) โครงสร้างบริสุทธิ์ และ (f) ช่องว่างอ๊อกซิเจน                                                                                                                                                                                                                | 43  |
| 4.14  | ตัวประกอบกำลังต่อเวลาผ่อนคลายของ (a) โครงสร้างบริสุทธิ และ (b)<br>ช่องว่างอ๊อกซิเจน และ, ZT ของ (c) โครงสร้างบริสุทธิ และ (d) ช่องว่างอ๊                                                                                                                            |     |
|       | อยงากยยกอเขน และ, Z1 อยง (c) เพางสากบาลุทธ และ (u) อยงากย<br>อกซิเองเ                                                                                                                                                                                               | 11  |

# สารบัญตาราง


| ตารางที่ |                                                                                                                                  | หน้า |
|----------|----------------------------------------------------------------------------------------------------------------------------------|------|
| 2.1      | ตารางแสดงการคำนวณที่ได้จากการศึกษาโครงสร้างทางอิเล็กทรอนิกส์ของ<br>สตรอนเทียมไททาเนตโดยใช้วิธีต่าง ๆ                             | 7    |
| 2.2      | ตารางเปรียบเทียบคุณสมบัติของแบลเลียม เทลลูไลด์ ซิลิกอน และสตรอน<br>เทียมไททาเนต                                                  | 8    |
| 4.1      | ตารางเปรียบเทียบผลการคำนวณคุณสมบัติของโครงสร้างสตรอนเทียมไท<br>ทาเนต โดยพิจารณาและไม่พิจารณาสปิน                                 | 28   |
| 4.2      | ตารางแสดงค่าคงที่แลตทิช บัลค์มอลดูลัส และค่าช่องว่างพลังงานจากการ<br>คำนวณโดยใช้การประมาณแบบ LDA และ GGA ร่วมกับการใช้ค่าฮับบาร์ |      |
|          | ดพารามิเตอร์ค่าต่างๆ                                                                                                             | 28   |

#### บทที่ 1

# บทน้ำ

## 1.1 ที่มาและความสำคัญ

พลังงานเป็นปัจจัยที่สำคัญในการพัฒนาประเทศ ทั้งในด้านเศรษฐกิจ สังคม และ ความมั่นคง แหล่งพลังงานหลักที่ใช้ในปัจจุบันคือแหล่งพลังงานฟอสชิล ซึ่งเป็นแหล่งพลังงาน ที่มีอยู่จำกัด และใช้เวลาในการก่อตัวนานหลายล้านปี ทำให้ปริมาณพลังงานที่มีอยู่ไม่เพียงพอ ต่อความต้องการ ที่เพิ่มมากขึ้น พลังงานทางเลือกจึงเข้ามามีบทบาทสำคัญในการใช้เป็นแหล่ง พลังงานในอนาคต หนึ่งแหล่งพลังงานที่ได้รับความสนใจ มีการวิจัยและพัฒนาประสิทธิภาพ อย่างต่อเนื่อง คือพลังงาน ความร้อน ไม่ว่าจะเป็นพลังงานความร้อนตามธรรมชาติหรือพลังงาน ความร้อนที่เกิดจากมนุษย์ สร้างขึ้น เช่นความร้อนจากเครื่องยนต์หรือจากโรงงานอุตสาหกรรม ล้วนแต่เป็นพลังงานที่สูญเปล่า จึงได้มีการคิดค้นวัสดุที่สามารถนำพลังงานความร้อนเปลี่ยน เป็นพลังงานไฟฟ้า เรียกวัสดุชนิดนี้ ว่า วัสดุเทอร์โมอิเล็กทริก



รูปที่ 1.1: การทำงานของเทอร์โมอิเล็กทริกส์

ประสิทธิภาพของเทอร์โมอิเล็กทริกสามารถบอกได้ด้วยค่า figure of merit (ZT) วัสดุเทอร์ โมอิเล็กตริกที่ดีจะมีค่า ZT ประมาณ 1 เช่น  ${\rm Bi}_2{\rm Te}_3$ ,  ${\rm Sb}_2{\rm Te}_3$  หรือ  ${\rm PbTe}$  เป็นต้น แต่วัสดุเหล่า นี้มีความเป็นพิษ และสามารถทำงานได้ที่อุณหภูมิไม่สูงมากนัก [1] นักวิทยาศาสตร์จึงได้มองหา วัสดุใหม่ที่ไม่มีพิษ หาง่าย ราคาถูก และมีความเสถียร ซึ่งสตรอนเทียมไททาเนต เป็นวัสดุหนึ่ง

บทที $^{'}$ 1. บทนำ

ที่มีสมบัติดังที่กล่าวมา [2] อีกทั้งยังมีจุดหลอมเหลวสูง (2080 C) [3] ทำให้สามารถประยุกต์ ใช้งานได้ที่อุณหภูมิสูง แต่ข้อจำกัดของสตรอนเทียมไททาเนตบริสุทธิ์คือมีค่า ZT ต่ำ จึงมีการ พยายามเพิ่มประสิทธิภาพโดยการเจือธาตุอื่นเข้าไปในโครงสร้างหรือทำให้โครงสร้างมีช่องว่างของ ออกซิเจน [1], [4], [5], [6] นอกจากจะเพิ่มประสิทธิภาพทางเทอร์โมอิเล็กทริกแล้ว การทำโครง สร้างสตรอนเทียมไททาเนตเกิดช่องว่างในตำแหน่งของออกซิเจนยังทำให้สตรอนเทียมไททาเนตมี การนำไฟฟ้าที่ดีขึ้น [7], [8] ในโตรเจนเป็นธาตุที่มีอยู่เป็นจำนวนมากในธรรมชาติ มีราคาถูก ไม่มี พิษ อีกทั้งในงานวิจัยของ Wang และคณะ พบว่าการเจือไนโตรเจนช่วยปรับปรุงโครงสร้างทางอิเล็กทรอนิกของสตรอนเทียมไททาเนต คือมีช่องว่างพลังงานของวัสดุแคบลง ทำให้สตรอนเทียมไททาเนตมีประสิทธิภาพในการเป็นตัวเร่งปฏิกิริยาเร่งด้วยแสงที่ใช้ในกระบวนการแยกโมเลกุลน้ำ เพื่อผลิตเชื้อเพลิงไฮโดรเจนมากขึ้น [9] ในงานวิจัยนี้จึงสนใจศึกษาคุณสมบัติทางอิเล็กทรอนิกส์ และเทอร์โมอิเล็กทริกส์ของโครงสร้างสตรอนเทียมไททาเนตที่เจือด้วยไนโตรเจน และโครงสร้างที่ มีช่องว่างของออกซิเจน ในการสังเคราะห์วัสดุแต่ละครั้งนั้นสิ้นเปลืองทั้งทรัพยากร พลังงาน และ เวลา จึงสนใจที่จะคำนวณคุณสมบัติของสตรอนเทียมไททาเนต เพื่อช่วยทำนายผลการทดลอง วางแผน และกำหนดเงื่อนไขในการสังเคราะห์วัสดุ เพื่อให้ได้ผลการทดลองคุมค่า และเป็นไปตาม ที่คาดหวังมากที่สุด

## 1.2 วัตถุประสงค์ของงานวิจัย

- 1.2.1 คำนวณคุณสมบัติทางอิเล็กทรอนิกส์ เพื่อศึกษาความหนาแน่นสถานะ และโครงสร้างแถบ พลังงานของโครงสร้างสตรอนเทียมไททาเนตบริสุทธิ์ โครงสร้างที่เจือด้วยไนโตรเจน และโครงสร้าง ที่มีช่องว่างของออกซิเจน
- 1.2.2 คำนวณคุณสมบัติทางเทอร์โมอิเล็กทริกส์ของโครงสร้างสตรอนเทียมไททาเนตบริสุทธิ์ โครงสร้างที่เจือด้วยไนโตรเจน และโครงสร้างที่มีช่องว่างของออกซิเจน เพื่อศึกษาค่าสัมประสิทธิซี เบค ค่าสภาพนำไฟฟ้า ค่าสภาพนำความร้อน และค่า figure of merit

#### 1.3 ขอบเขตของการศึกษา

- 1.3.1 คำนวณคุณสมบัติทางอิเล็กทรอนิกส์ด้วยโปรแกรม VASP โดยประมาณเทอมพลังงาน แลกเปลี่ยนสัมพันธ์ LDA และ GGA
- 1.3.2 คำนวณคุณสมบัติทางเทอร์โมอิเล็กทริกส์ด้วยโปรแกรม BoltzTrap โดยใช้การประมาณ เวลาผ่อนคลายคงที่ (constant relaxation time approximation)

บทที่ 1. บทนำ

## 1.4 ประโยชน์ที่คาดว่าจะได้รับ

ทราบคุณสมบัติทางอิเล็กทรอนิกส์ และ เทอร์โมอิเล็กทริกของโครงสร้างสตรอนเทียมไททา เนต บริสุทธิ์ โครงสร้างที่เจือด้วยไนโตรเจน ธาตุในกลุ่มแรเอิร์ธ (La และ Dy) และโครงสร้างที่มีช่องว่างของออกซิเจน สามารถใช้เป็นข้อมูลเชิงทฤษฎีในการสังเคราะห์และประยุกต์ใช้งานในด้าน ต่าง ๆ

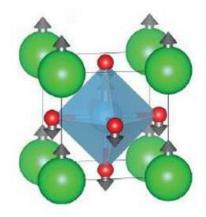
#### บทที่ 2

# ทฤษฎีเกี่ยวข้อง

ในบทนี้จึงจะกล่าวถึงคุณสมบัติทั่วไปของสตรอนเทียมไททาเนต และทฤษฎีที่เป็นพื้นฐานในการ คำนวณคุณสมบัติทางอิเล็กทรอนิกส์และเทอร์โมอิเล็กทริกส์ของสตรอนเทียมไททาเนต ซึ่งมีราย ละเอียดดังนี้

### 2.1 สตรอนเทียมไททาเนต

สตรอนเทียมไททาเนต มีสูตรทางเคมีว่า SrTiO<sub>3</sub> หรือเรียกสั้นๆ ว่า STO เป็นวัสดุที่มีโครงสร้าง แบบเพอร์โรฟสไกท์ (Perovskite) [10] ที่อุณหภูมิห้อง สตรอนเทียมไททาเนตแสดงคุณสมบัติ เพียโซอิเล็กทริกส์ (piezoelectric) และตัวนำยิ่งยวด (superconduction) และมีค่าคงที่ไดอิเล็ก ทริกสูง ทำให้สตรอนเทียมไททาเนตถูกนำไปประยุกต์ใช้งานอย่างหลากหลาย


#### 2.1.1 โครงสร้างผลึกของสตรอนเทียมไททาเนต

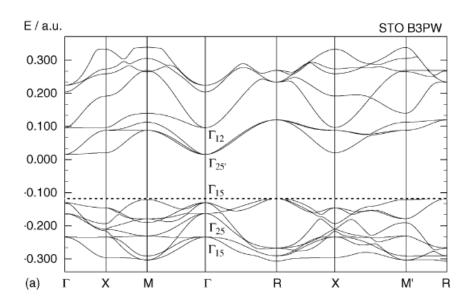
ที่อุณหภูมิห้อง สตรอนเทียมไททาเนตมีโครงสร้างผลึกแบบลูกบาศก์ (cubic) แต่ที่อุณหภูมิต่ำ กว่า 105 K สตรอนเทียมไททาเนตจะเปลี่ยนโครงสร้างเป็นเตตระโกนอล [11] ซึ่งการศึกษา คุณสมบัติในงานวิจัยนี้ ใช้สตรอนเทียมไททาเนตที่มีโครงสร้างผลึกแบบลูกบาศก์ จึงจะกล่าวถึง เฉพาะโครงสร้างผลึกแบบลูกบาศก์ในหัวข้อนี้ สำหรับสตรอนเทียมไททาเนตโครงสร้างแบบลูกบาศก์ มี space group แบบ Pm3m ค่าคงที่ แลตทิช 3.905  $\square$  และความหนาแน่น  $5.12~g/cm^3$  ซึ่งโครงสร้างของสตรานเทียมไททาเนต แสดงดังรูปที่ 2.1~ไททาเนียมแต่ละอะตอมเชื่อมอยู่กับอะตอมออกซิเจนทั้งหมด 6 อะตอม ส่วน อะตอมสตรอนเทียมถูกล้อมรอบไปด้วยทรงหกหน้า  $TiO_6~$ ที่ไททาเนียมทำพันธะโควาเลนซ์กับ ออกซิเจน ส่วนออกซิเจนกับอะตอมสตรอนเทียมทำพันธะไอออนิกกัน ทำให้โครงสร้างสตรอน เทียมไททาเนตแสดงคณสมบัติของทั้งพันธะโควาเลนซ์และไอออนิก

#### 2.1.2 โครงสร้างทางอิเล็กทรอนิกส์

สตรอนเทียมไททาเนตเป็นสารกึ่งตัวนำชนิดเอ็น (n-type semiconductor) ที่มีค่าช่องว่างพลังงาน กว้าง และเป็นช่องว่างพลังงานแบบไม่ตรง โดยมีจุดต่ำสุดของแถบการนำ (conduction band minimum: CBM) ตรงกับจุด Г และจุดสูงสุดของแถบวาแลนซ์ (valence band maximum: VBM) ตรงกับจุด R [12] ดังรูปที่ 2.2

โครงสร้างทางอิเล็กทรอนิกส์สามารถบอกชนิดของวัสดุ การครอบครองสถานะ และคุณสมบัติ ต่าง ๆ เช่น ค่าบัลค์มอลดูลัส และค่าช่องว่างพลังงาน สำหรับโครงสร้างสตรอนเทียมไททาเนต มี การศึกษาโครงสร้างทางอิเล็กทรอนิกส์โดยการคำนวณแบบต่าง ๆ ตัวอย่างผลการคำนวณโครงสร้าง ทางอิเล็กทรอนิกส์ของสตรอนเทียมไททาเนตโดยใช้วิธีต่าง ๆ แสดงดังตารางที่ 2.1

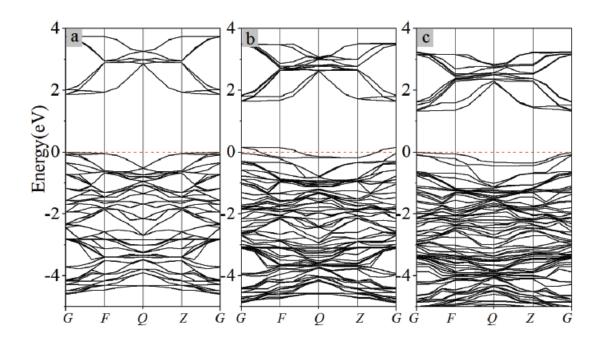



รูปที่ 2.1: ยูนิตเซลล์ในปริภูมิจริงของสตรอนเทียมไททาเนต สีเขียว สีฟ้า และสีแดง แทนอะตอม สตรอนเทียม ไททาเนียม และออกซิเจนตามลำดับ

ซึ่งการคำนวณโดยใช้ทฤษฎีฟังก์ชันนัลความหนาแน่นจะให้ผลการคำนวณรูปร่างของโครงสร้าง แถบพลังงานสอดคล้องกับผลการทดลอง แต่ค่าช่องว่างพลังงานที่ได้จะแคบกว่าค่าช่องว่างพลังงาน จากการทดลอง เนื่องจากข้อจำกัดของการพิจารณาคอร์อิเล็กตรอน

นอกจากนั้นการเจือสารอื่น หรือการทำให้เกิดความบกพร่องของโครงสร้างเช่น การทำให้อะตอม ในบางตำแหน่งหายไปจากโครงสร้าง เกิดเป็นช่องว่างในตำแหน่งต่าง ๆ ของโครงสร้าง ทำให้โครงสร้าง ทางอิเล็กทรอนิกส์และการนำไฟฟ้าของสตรอนเทียมไททาเนตเปลี่ยนแปลงไป เช่นในการศึกษา ของ Baibiao Huang และคณะ [15]ได้ศึกษาผลการเจือธาตุไนโตรเจน และแลนทานัม ในโครง สร้างสตรอนเทียมไททาเนต ซึ่งพบว่าการเจือธาตุทั้งสองทำให้สตรอนเทียมไททาเนตมีช่องว่าง พลังงานแคบลง จากที่เคยดูดกลืนแสงในย่าน UV ก็เปลี่ยนเป็นดูดกลืนแสงในย่านที่ตามองเห็น ซึ่งในแสงอาทิตย์มีแสงในย่านนี้มากกว่าย่าน UV ประมาณ 25 เท่า ทำให้สามารถประยุกต์ใช้ส ตรอนเทียมไททาเนตเป็นตัวเร่งปฏิกิริยาเร่งด้วยแสงในกระบวนการผลิตเชื้อเพลิงไนโตรเจนได้ อย่างมีประสิทธิภาพมากขึ้น

### 2.1.3 คุณสมบัติเทอร์โมอิเล็กทริก


สตรอนเทียมไททาเนตเป็นวัสดุเทอร์โมอิเล็กทริกที่ไม่มีความเป็นพิษ และมีความเสถียร สามารถ ประยุกต์ใช้งานที่อุณหภูมิได้ดี โดยประสิทธิภาพของวัสดุเทอร์โมอิเล็กทริกประเมินจากค่า figure of merit หรือ ZT ซึ่งมีคำนวณได้จาก  $\sigma S^2 T/\kappa$  วัสดุเทอร์โมอิเล็กตริกที่ดีจะมีค่า ZT ที่สูง นั่นคือ จะต้องมีค่าสภาพนำไฟฟ้าและค่าสัมประสิทธิซีเบคที่สูง แต่มีค่าสภาพนำความร้อนที่ต่ำ วัสดุที่มีค่า ZT สูง สตรอนเทียมไททาเนตเป็นวัสดุที่มีประสิทธิภาพทางเทอร์โมอิเล็กทริกต่ำ [12] เมื่อเทียบ กับวัสดุเทอร์โมอิเล็กทริกอื่นเช่น บิสมัสเทลลูไลด์ที่มีค่า ZT ประมาณ 1 จึงมีการเพิ่มประสิทธิภาพ ทางเทอร์โมอิเล็กทริกของสตรอนเทียมไททาเนตโดยการเจือหรือทำให้เกิดช่องว่างในตำแหน่ง



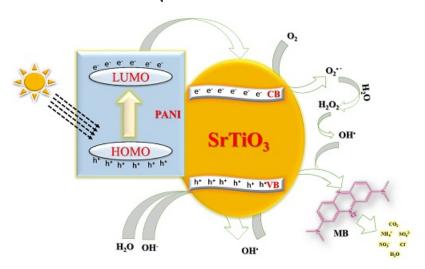
รูปที่ 2.2: โครงสร้างแถบพลังงานของสตรอนเทียมไททาเนต ซึ้งเป็นโครงสร้างของวัสดุกึ่งตัวนำที่ มีช่องว่างพลังงานแบบไม่ตรง มีจุด CBM และ VBM ตรงกับ Γ และ R ตามลำดับ

ตารางที่ 2.1: ตารางแสดงการคำนวณที่ได้จากการศึกษาโครงสร้างทางอิเล็กทรอนิกส์ของสตรอน เทียมไททาเนตโดยใช้วิธีต่าง ๆ

| ·                   | lactice constant        | Bulk modulus | Energy gap |      |
|---------------------|-------------------------|--------------|------------|------|
|                     | $\mathring{\mathbf{A}}$ | GPa          | eV         | ref. |
| PBE-GGA             | 3.946                   | 171          | 1.855      | [1]  |
| LDA                 | 3.866                   | 204          | 1.717      | [1]  |
| LDA+U               | 3.881                   | 198          | 2.026      | [1]  |
| (U=3.2eV, J=0.90eV) |                         |              |            |      |
| LDA+U               | 3.898                   | 189          | 2.351      | [1]  |
| (U=5.0eV, J=0.64eV) |                         |              |            |      |
| PBE-GGA             | 3.94                    | 169          | 1.99       | [12] |
| LDA                 | 3.86                    | 214          | 2.04       | [12] |
| OLCAO               | 3.931                   | 163          | 1.45       | [13] |
| FPLAPW              | 3.863                   | 203          | 1.84       | [14] |
| LDA                 | 3.899                   | 200          | 2.04       | [15] |
| PP-LDA              | 3.862                   | 186          | 2.17       | [16] |
| Expt.               | 3.900-3.905             | 174-183      | 3.25       | [1]  |



รูปที่ 2.3: โครงสร้างแถบพลังงานของสตรอนเทียมไททาเนต (a) โครงสร้างบริสุทธิ์ (b) โครงสร้าง ที่เจือด้วยอะตอมในโตรเจน และ (c) โครงสร้างที่เจือด้วยอะตอมแลนทานัม


ต่าง ๆของโครงสร้าง

ตารางที่ 2.2: ตารางเปรียบเทียบคุณสมบัติของแบลเลียม เทลลูไลด์ ซิลิกอน และสตรอนเทียมไท ทาเนต

| Properties         | Bismus Tellulide | Silicon       | Strontium titanate |
|--------------------|------------------|---------------|--------------------|
| σ(S/cm)            | $3.3x10^3$       | $9.1x10^{2}$  | $1x10^{3}$         |
| $S(\mu V/K)$       | 250              | 172           | 150                |
| $PF(\mu W/cmK^2)$  | 13               | 27            | 23                 |
| $m^*(m_0)$         | 0.37             | 0.33          | 0.2 - 6            |
| $n_{opt}(cm^{-3})$ | $1.7x10^{18}$    | $2x10^{20}$   | $3.8x10^{18}$      |
| $l(cm^2/Vs)$       | $1.2x10^{3}$     | $1.5x10^{3}$  | 6                  |
| $Nc(cm^{-3})$      |                  | $2.8x10^{19}$ | $5.0x10^{19}$      |
| $E_g(eV)$          | 0.13             | 1.1           | 3.1                |

## 2.1.4 การประยุกต์ใช้งาน

มีการประยุกต์ใช้งานสตรอนเทียมไททาเนตทั้งโครงสร้างบริสุทธิ์ โครงสร้างที่มีช่องว่างของอะตอม และโครงสร้างที่มีการเจือ ในหลากหลายลักษณะ เช่น ใช้เป็นขั้นแอโนดในเซลล์เชื้อเพลิง [17] ออกซิเจนเซนเซอร์ [18] ตัวเร่งปฏิกิริยาเร่งด้วยแสง [9] ซึ่งใช้ในกระบวนการแยกน้ำเพื่อผลิตเชื้อ เพลิงไฮโดรเจน [19] และใช้เป็นวัสดุเทอร์โมอิเล็กทริกส์ [1] เป็นต้น



รูปที่ 2.4: การประยุกต์ใช้สตรอนเทียมไททาเนตเป็นตัวเร่งปฏิกิริยาเร่งด้วยแสง ซึ่งใช้ใน กระบวนการแยกน้ำเพื่อผลิตเชื้อเพลิงไฮโดรเจน

# 2.2 ทฤษฎีฟังก์ชันนัลความหนาแน่น

การศึกษาคุณสมบัติของวัสดุในระดับอะตอมนั้นต้องอาศัยกลศาสตร์ควอนตัมในการแก้ปัญหา ของระบบหลายอนุภาคซึ่งเป็นระบบที่มีความซับซ้อน จึงจำเป็นต้องอาศัยการประมาณในรูปแบบ ต่าง ๆ เพื่อลดความซับซ้อนของระบบลง แต่ยังให้ผลการคำนวณที่แม่นยำ ทฤษฎีฮาร์ทรี-ฟอค์ก (Hartree Fock theory) ได้เขียนฟังก์ชันคลื่นของกลุ่มอิเล็กตรอนในรูป สเลเตอร์ดีเทอร์มิเนนต์ (Slater determinant) ทำให้ผลเฉลยที่ได้สามารถอธิบายอันตรกิริยาแลก เปลี่ยน (exchange interaction) และคุณสมบัติอสมมาตร (antisymmetric property)ของฟังก์ชัน คลื่นได้ แต่ผลการคำนวณจากทฤษฎีนี้ยังคลาดเคลื่อนอยู่มาก เนื่องจากขาดการพิจารณาผลจาก ความสัมพันธ์ของ (correlation effect) ของอนุภาค ด้วยข้อบกพร่องนี้จึงเกิดทฤษฎีฟังก์ชันนัล ความหนาแน่นขึ้น [20] โดยทฤษฎีนี้เกี่ยวข้องกับทฤษฎีบทของโฮเฮนเบิร์กและโคห์น และสมการ โคห์น-ชามซึ่งจะกล่าวถึงในลำดับต่อไป







รูปที่ 2.5: วอลเตอร์ คอห์น (Walter Kohn)(ซ้าย) ปีแอร์ โฮเฮนเบิร์ก (Pierre Hohenberg) (กลาง), และ ลู ชาม (Lu Sham)(ขวา) ผู้คิดค้นทฤษฎีฟังก์ชันนัลความหนาแน่นในปี 1964-1965

#### 2.2.1 ทฤษฎีบทของโฮเฮนเบิร์กและโคห์น

ทฤษฎีบทของโฮเฮนเบิร์กและโคห์น (Hohenberg-Kohn theorem) ถูกคิดค้นขึ้นในปี 1964 โดย ปีแอร์ โฮเฮนเบิร์ก (Pierre Hohenberg)และวอลเตอร์ คอห์น (Walter Kohn) ประกอบด้วย 2 ทฤษฎีบทดังนี้

ทฤษฎีบทที่ 1 มีความหนาแน่นอิเล็กตรอนเพียงรูปแบบเดียวที่ทำให้เกิดระดับพลังงานต่ำสุด ในสถานะพื้นของระบบ

ทฤษฎีบทที่ 2 ความหนาแน่นอิเล็กตรอนที่ทำให้พลังงานรวมของระบบมีค่าต่ำที่สุด คือความ หนาแน่นอิเล็กตรอนที่แท้จริง

#### 2.2.2 สมการโคห์น-ชาม

สมการโคห์น-ชาม (Kohn-Sham equation) เป็นสมการที่ใช้ในการหาผลเฉลยของสมการชโร ดิงเจอร์ของระบบหลายอนุภาคโดยอาศัยแนวคิดจากทฤษฎีบทของโฮเฮนเบิร์กและโคห์น จากการ ประมาณแบบบอร์น-โอเพนไฮเมอร์ (Born-Oppenheimer approximation) ที่ว่ามวลของนิวเคลียส หนักกว่ามวลของอิเล็กตรอนมาก จึงมีการประมาณว่านิวเคลียสอยู่นิ่งเมื่อเทียบกับอิเล็กตรอน ซึ่ง ทำให้สามารถเว้นการพิจารณาเทอมพลังงานจนล์ของนิวเคลียส และการเคลื่อนที่ของนิวเคลียส และอิเล็กตรอนเป็นอิสระต่อกัน [10] เนื่องจากคุณสมบัติของวัสดุขึ้นกับพลังงานส่วนที่มาจาก อิเล็กตรอนเท่านั้น พลังงานรวมของระบบหลายอนุภาคจึงเขียนได้เป็น

$$\label{eq:energy} \begin{split} \text{E}[n(r)] = & \ \text{T}_{\text{non}}[n(r)] + \frac{e^2}{4\pi\varepsilon_0} \int \int \frac{n(r)n(r')}{|r-r'|} dr dr' - \frac{e^2}{4\pi\varepsilon_0} \sum_{I=1}^N \frac{Z_I n(r)}{|R-r|} dr + \text{E}_{XC}[n(r)] \end{split} \tag{2.1}$$

เทอมแรกของด้านขวาของสมการ 2.1 เป็นเทอมของพลังงานจลน์ของอิเล็กตรอนที่ไม่มีอันตร กิริยาต่อกัน ถัดมาเป็นเทอมพลังงานศักย์ของอิเล็กตรอน พลังงานศักย์ระหว่างอิเล็กตรอนกับนิ วเครียส และพลังงานสัมพันธ์แลกเปลี่ยนสัมพันธ์ตามลำดับ

ทฤษฎีบทของโฮเฮนเบิร์กและโคห์นและการใช้วิธีวาริเอชันนัล (variational method) จะได้ สมการที่คล้ายสมการชโรดิงเจอร์ ดังสมการ2.2 เรียกสมการนี้ว่าสมการโคห์น-ชาม

$$\left[ -\frac{\hbar^2}{2m} \nabla_i^2 + V_{eff} \right] \psi_i^{KS} = E_i \psi_i^{KS} \tag{2.2}$$

 $\psi_i^{KS}$  เรียกว่า โคห์น-ชาม ออร์บิทัล (Kohn Sham orbitals) i คือดัชนีแบนด์(band index) และ  $E_i$  คือพลังงานที่สัมพันธ์กับดัชนีแนบด์นั้น ๆ

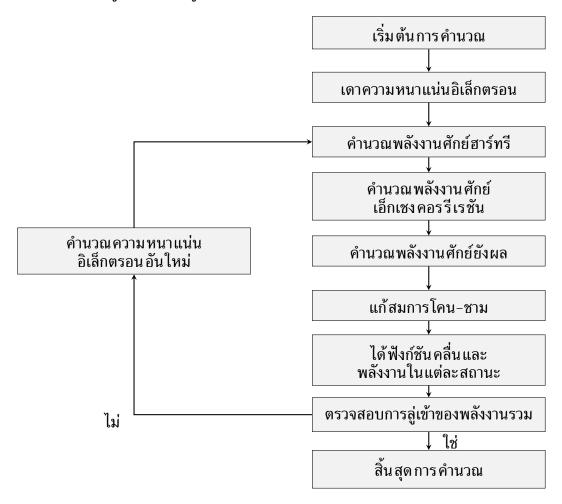
โดยที่ 
$$V_{eff}[n(r)] = V_{H}[n(r)] + V_{ext}[n(r)] + V_{XC}[n(r)]$$
 (2.3)

 $V_{
m eff}$  คือศักย์ยังผล

 $m V_H$  คือศักย์ฮาร์ทรี เป็นศักย์ไฟฟ้าเนื่องจากอันตรกิริยาระหว่างอิเล็กตรอน

วกกันหรือที่เรียกว่าการผสมเชิงเส้น (Linear mixing) ดังสมการ

 $V_{
m ext}$  คือศักย์ภายนอก เป็นศักย์ไฟฟ้าเนื่องจากอันตรกิริยาระหว่างอิเล็กตรอนกับนิวเคลียส  $V_{
m XC}$  คือศักย์แลกเปลี่ยนสัมพัยธ์


จะเห็นว่าสมการโคห์น-ชามมีลักษณะคล้ายกับสมการชโรดิงเจอร์ของระบบอนุภาคเดี่ยว ซึ่งมี ความซับซ้อนน้อยลง ผลเฉลยของสมการโคห์น-ชาม สามารถคำนวณโดยใช้กระบวณการสอดคล้อง โดย ตัวเอง (self consistent) ดังแผนภาพในรูปที่ 2.6 ซึ่งเป็นการแก้สมการที่อาศัยการทำซ้ำ หลาย ๆรอบ (iterative procedure) โดยที่รอบแรกของการคำนวณ พลังงานศักย์ยังผลจะถูกประมาณ ขึ้นมาก่อน ( $V_{\rm eff}({\bf r})$ ) และหลังจากนั้นฟังก์ชันคลื่นของอิเล็กตรอน ( $\psi_{\rm t}^{\rm KS}({\bf r})$ ) จะถูกคำนวณเพื่อ ที่จะคำนวณหาความหนาแน่นของอิเล็กตรอน ขั้นตอนต่อไปคือการคำนวณหาพลังงานศักย์ยังผล อันใหม่ เพื่อที่จะใช้ในการคำนวณในรอบใหม่ แต่ในทางปฏิบัติเรานิยมที่จะทำการผสมระหว่าง

พลังงานศักย์อันใหม่และอันเก่า โดยการนำบางส่วนของพลังงานอันใหม่และบางส่วนอันเก่ามาบ

$$V_{eff}^{new}\left(r\right) = \alpha V_{eff}^{new}\left(r\right) + (1-\alpha) V_{eff}^{old}\left(r\right) \tag{2.4} \label{eq:2.4}$$

เมื่อ  $\alpha$  คือ สัมประสิทธิ์ของการผสม หลังจากได้พลังงานศักย์ยังผลตัวใหม่ก็ทำการคำนวณ หาฟังก์ชันคลื่นและพลังงานของอิเล็กตรอนอีกครั้งจากสมการโคน-ชาม แล้วนำฟังก์ชันคลื่นที่ได้ มาคำนวณหาความหนาแน่นของอิเล็กตรอนอีกครั้ง เพื่อที่จะนำไปคำนวณหาพลังงานศักย์ยังผล ที่จะใช้ในรอบต่อไป ซึ่งการคำนวณจะทำเช่นนี้ไปเรื่อยๆ จนกระทั่งระบบลู่เข้าและผลต่างของ ค่าพลังงานของระบบของรอบนี้และรอบที่แล้วมีค่าน้อยกว่าค่าที่ยอมรับ นั่นแสดงว่าระบบลู่เข้า

แผนผังการคำนวณถูกแสดงไว้ดังรูปภาพข้างล่าง



รูปที่ 2.6: แผนภาพแสดงวิธีการคำนวณด้วยวิธีทฤษฎีฟังก์ชันความหนาแน่นโดยการสอดคล้อง โดยตัวเอง

การเลือกค่าสัมประสิทธ์การผสมนั้นต้องเลือกให้เหมาะสมเพราะถ้าเลือกให้มีค่ามากเกินไป ระบบของการสอดคล้องโดยตัวเอง ระบบจะลู่ออก แต่ถ้าเลือกให้มีค่าน้อยเกินไประบบจะใช้ จำนวนรอบของการคำนวณเยอะ

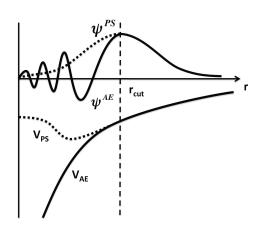
#### 2.2.3 ศักย์เทียม

ศักย์เทียม (pseudopotential) ถูกสร้างขึ้นมาเพื่อใช้อธิบายระบบแทนการใช้ศักย์ยังผล โดยศักย์ เทียมจะพิจาณาเฉพาะอิเล็กตรอนวงนอกสุดส่วนอิเล็กตรอนแกน (core electron) จะถูกพิจาณาว่า ถูกตรึงอยู่กับที่ ไม่สามารถหลุดออกนอกอะตอมได้ และเป็นกำบังศักย์ไฟฟ้าจากนิวเคลียสทำให้วา เลนซ์อิเล็กตรอนถูกพิจารณาว่าเคลื่อนที่ภายใต้พลังงานศักย์กำบัง (Screening potential)

จากรูปที่ 3.3 จะเห็นว่าที่ระยะ r มากกว่า  $r_{cut}$   $\Psi_{AE}=\Psi^{PS}$  และ  $V^{AE}=V^{PS}$  แต่ที่  $r\leqslant r_c$  จะมี  $\Psi_{AE}\neq\Psi^{PS}$  และ  $V^{AE}\neq V^{PS}$  และฟังค์ชันคลื่นจริงของระบบมีการกวัดแกว่ง จำเป็นต้อง ใช้ฟังก์ชันฐาน(basis function)จำนวนมากเพื่อประกอบเป็นฟังค์ชันคลื่น ซึ่งทำให้ใช้เวลาในการ คำนวณนานตามไปด้วย การใช้ฟังก์ชันคลื่นเทียมซึ่งเป็นฟังก์ชันคลื่นเรียบ(smooth wavefunction)

จึงช่วยให้ประหยัดทรัพยาการและเวลาในการคำนวณ โดยที่ผลกาคำนวณยังคงแม่นยำ โดยฟังก์ชัน คลื่นเทียมที่ดีควรมีลักษณะดังนี้

- 1. ที่ r มากกว่า  $r_{\rm cut}$  ฟังก์ชันคลื่นเทียมต้องเหมือนกับฟังก์ชันคลื่นที่แท้จริงและพลังงานรวม ของศักย์เทียมต้องเท่ากับพลังงานรวมที่ถูกต้อง
  - 2. ฟังก์ชันคลื่นเทียมและฟังก์ชันคลื่นที่แท้จริงต้องมีความต่อเนื่องที่  $r=r_{\rm cut}$
- 3. ประจุภายในทรงกลมรัศมี r<sub>cut</sub> ของทรงกลมที่สร้างจากฟังก์ชันคลื่นเทียมต้องมีค่าเท่ากับ ที่สร้างจากฟังก์ชันคลื่นที่แท้จริง
  - 4. ศักย์เทียมที่สร้างขึ้นต้องสามารถนำไปประยุกต์ใช้กับปัญหาที่ใกล้เคียงกันได้
- 5. สำหรับระบบที่มีอิเล็กตรอนจำนวนมากจำเป็นต้องรวมคุณสมบัติเชิงสัมพันธภาพ (rela-tivistic properties) ไว้ในศักย์เทียมที่สร้างขึ้นมาด้วย


#### 2.2.4 ระบบที่มีศักย์เป็นคาบ

ของแข็งมีการจัดเรียงอะตอมในลักษณะซ้ำ ๆ ทำให้ระบบนี้มีศักย์ที่มีลักษณะเป็นคาบ ฟังก์ชันคลื่น ของของแข็งสามารถอธิบายโดยใช้ทฤษฎีบทของบล๊อช (Bloch Theorem) ที่กล่าวว่า "ฟังฎชันคลื่น ของของแข็งมีค่าเท่ากับผลคูณของฟังค์ชันที่เป็นคาบและคลื่นระนาบ" ดังสมการ

$$\psi_k(\mathbf{r}) = \mathbf{u}_k(\mathbf{r})e^{\mathbf{i}\mathbf{k}\cdot\mathbf{r}} \tag{2.5}$$

เมื่อ k คือเวกเตอร์คลื่นในปริภูมิส่วนกลับ r คือตำแหน่งอะตอมในเซลล์หน่วย และ  $\mathfrak{u}_k(r)$  คือ ฟังก์ชันที่เป็นคาบ ซึ่งมีค่าเป็น

$$u_k(r) = \sum_G c_{k+G} e^{i(k+G) \cdot r}$$
 (2.6)



รูปที่ 2.7: เปรียบเทียบฟังค์ชันคลื่นจริงของระบบ ( $\Psi_{AE}$ ) กับฟังก์ชันคลื่นเทียม ( $\Psi^{PS}$ ) และศักย์ จริง( $V^{AE}$ ) กับศักย์เทียม ( $V^{PS}$ )

โดยที่ c<sub>k+G</sub> เป็นค่าคงที่ และ G คือเวกเตอร์ในปริภูมส่วนกลับ ทำให้ได้โคห์น-ชาม ออร์บิทัลของของแข็งในเป็น ทฤษฎีฟังก์ชันนัลความหนาแน่น

$$\psi_k^{KS}(r) = \sum_G c_{k+G} e^{i(k+G) \cdot r}$$
 (2.7)

จากสมการ 2.7 จะต้องกระจาย G ทั่วทั้งปริภูมิ แต่เนื่องจากคุณสมบัติของวัสดุเกี่ยวข้องกับช่วงพลังงานต่ำ(พลังงานใกล้ระดับพลังงานเฟอร์มี)ทำให้สามารถละการพิจารณาค่า G ที่พลังงานสูงได้ กำหนดค่า G สูงสุดเป็น N<sub>G</sub> ทำให้สมการ 2.7 กลายเป็น

$$\psi_{k}^{KS}(r) = \sum_{G_{i}=1}^{N_{G}} c_{k+G_{i}} e^{i(k+G_{i}) \cdot r}$$
 (2.8)

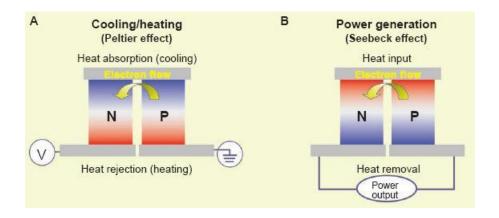
ในทางปฏิบัติการกำหนดจำนวณเวกเตอร์ G นั้นไม่ใช่เรื่องง่าน จึงคำหนดค่าพลังงานคัตออฟ (cutoff energy) แทนการกำหนดจำนวณเวกเตอร์ G โดยอาศัยความสัมพันธ์

$$E_{cut} = \frac{|k + G_{cut}|^2}{2}$$
 (2.9)

เมื่อแทน  $\psi_k^{KS}(\mathbf{r})$  จากสมการ 2.8 ในสมการโคห์น-ชาม และแก้สมการดังกล่าวจะได้ค่าไอเกน และโคห์น-ชาม ออร์บิทัลอย่างละ  $N_G$  ค่า สำหรับค่า k หนึ่งค่า ซึ่งหากเขียนกราฟความสัมพันธ์ ระหว่างค่าไอเกนและเวกเตอร์คลื่นจะได้โครงสร้างแถบพลังงานของวัสดุ

#### 2.2.5 การคำนวณแบบ DFT+U

ทฤษฎีฟังก์ชันนัลความหนาแน่นมีข้อบกพร่องในการคำนวณแรงคูลอมป์ระหว่างอิเล็กตรอนใน ระบบที่มีอิเล็กตรอนใน 3d หรือ 5f ออร์บิทัล การคำนวณแบบ DFT+U จึงมีการพิจารณาแรงคู ลอมป์ในฮาร์มิลโตเนียนของ DFT เพื่อแก้ไขข้อบกพร่องดังกล่าว [21] โดยในงานของ Dudarev และ Liechtenstein [22] ได้นิยามฟังก์ชันนัลของ DFT+U ไว้ดังนี้


$$E_{DFT+U} = E_{DFT} + \frac{U-J}{2} \sum_{\sigma} Tr \left[ \rho^{\sigma} - \rho^{\sigma} \rho^{\sigma} \right]$$
 (2.10)

เมื่อ U คือ ฮับบาร์ดพารามิเตอร์ (Hubbard parameter) J คือ screened Stoner-like exchange parameter

# 2.3 วัสดุเทอร์โมอิเล็กทริกส์

### 2.3.1 ปรากฏการณ์เทอร์โมอิเล็กทริกส์

วัสดุเทอร์โมอิเล็กทริกเป็นวัสดุกึ่งตัวนำ ที่มีอิเล็กตรอนเกินหรือมีตำแหน่งว่างใน โครงสร้าง เมื่อ ได้รับพลังงานความร้อนจะมีการถ่ายเทพลังงานความร้อนจากบริเวณที่อุณหภูมิสูงไปยัง บริเวณที่ อุณหภูมิต่ำ ด้วยโฟนอนและประจุไฟฟ้าภายในวัสดุ โดยการเคลื่อนที่ของประจุไฟฟ้านี้ทำให้เกิด กระแสไฟฟ้าขึ้น เรียกปรากฏการณ์นี้ว่าปรากฏการณ์เทอร์โมอิเล็กทริก ซึ่งเกี่ยวข้องกับปรากฏการณ์ซีเบค ปรากฏการณ์เพลเทียร์ และปรากฏการณ์ทอมสัน



รูปที่ 2.8: ปรากฏการณ์เพลเทียร์และปรากฏการณ์ซีเบค

#### ปรากฏการณ์ซีเบค (Seebeck effect)

ปรากฏการณ์ซีเบคเป็นปรากฏการณ์ที่อธิบายการเกิดกระแสไฟฟ้าจากความแตกต่างของอุณหภูมิ ในวัสดุ โดยความแตกต่างของอุณหภูมิทำให้เกิดการเคลื่อนที่ของอิเล็กตรอนจากบริเวณที่มีอุณหภูมิ สูงไปบริเวณที่มีอุณหภูมิต่ำ ทำให้บริเวณที่มีอุณหภูมิสูงเกิดโฮลและเป็นขั้นไฟฟ้าบวก ส่วนบริเวณ ที่มีอุณหภูมิต่ำเป็นขั้วไฟฟ้าลบ เกิดแรงดันไฟฟ้า และกระแสไฟฟ้าขึ้น เรียกค่าความต่างศักย์ไฟฟ้า ต่ออุณหภูมิว่า สัมประสิทธิ์ซีเบค (Seebeck coefficient) ซึ่งเขียนเป็นสมการได้ดังนี้

$$S = -\frac{\Delta V}{\Delta T} \tag{2.11}$$

เมื่อ S คือ สัมประสิทธิ์ซีเบค  $\Delta V$  คือความต่างศักย์ไฟฟ้าของสองบริเวณในวัสดุ และ  $\Delta T$  คือ ผลต่างของอุณหภูมิ

#### ปรากฏการณ์เพลเทียร์ (Peltier effect)

ปรากฏการณ์นี้ถูกค้นพบโดย 2 นักวิทยาศาสตร์ชาวฝรั่งเศษ French Watchmake และ Jean Char Athanase Peltier โดยพวกเขาได้ทำการทดลองผ่านกระแสไฟฟ้าเข้าไปในโลหะสองชนิดที่ ต่างกัน ทำให้เกิดความแตกต่างของอุณหภูมิ ซึ่งเป็นผลมาจากคุณสมบัติของวัสดุแต่ละชนิด ทำให้ เมื่ออิเล็กตรอนเคลื่อนที่ผ่านรอยต่อระหว่างโลหะทั้งสองจะคายความร้อนให้ปลายด้านหนึ่ง และ ดูดกลืนความร้อนจากปลายอีกด้าน ซึ่งหลักการของปรากฏการณ์นี้ได้ถูกนำไปใช้ในระบบหล่อเย็น

#### ปรากฏการณ์ทอมสัน (Thomson effect)

วิลเลียม ทอมสัน (William Thomson) หรือ หลอด เคลวิน (Lord Kelvin) ได้กล่าวว่า " เมื่อ มีกระแสไฟฟ้าผ่านตัวนำสองจุดที่มีอุณหภูมิต่างกัน ทิศทางความร้อนขึ้นอยูกับการไหลของกระแส ไฟฟ้าจากจุดเย็นไปจุดร้อนหรือจากจุดร้อนไปจุดเย็น " ซึ่งปรากฏการณ์นี้เกี่ยวข้องกับอัตราการส่ง ผ่านความร้อนแบบผันกลับได้ ที่เกิดจากการผานกระแสไฟฟ้าเข้าไปในวัสดุที่มีความแตกต่างของ อุณหภูมิ

ตัวแปรที่เป็นตัวบ่งชี้ประสิทธิภาพของวัสดุเทอร์โมอิเล็กทริกเรียกว่า Figure of Merit หรือค่า ZT ซึ่งเป็นปริมาณที่ไม่มีหน่วยและขึ้นกับอุณหภูมิ มีความสัมพันธ์ดังนี้

$$ZT = \frac{\sigma S^2 T}{\kappa} \tag{2.12}$$

เมื่อ S คือสัมประสิทธิ์ซีเบค o คือสภาพนำไฟฟ้าของอิเล็กตรอน k คือสภาพนำความร้อนของ อิเล็กตรอนและโฟนอน ดังนั้นวัสดุที่มีค่า ZT สูงจะต้องมีค่าสัมประสิทธิ์ซีเบคสูง นั่นหมายถึงมีการ ขนย้ายประจุไฟฟ้ามาก ต้องมีความต้านทานต่ำ หรือมีการนำไฟฟ้าที่ดี เพื่อลดการสูญเสียพลังงาน ไฟฟ้ากลับไปเป็นพลังงานความร้อน และเป็นวัสดุที่นำความร้อนได้ไม่ดี

### 2.3.2 การคำนวณคุณสมบัติทางเทอร์โมอิเล็กทริกส์

การคำนวณคุณสมบัติที่เกี่ยวกับการขนส่งอิเล็กตรอนในของแข็ง (solid) มักจะอาศัยทฤษฎีการ ตอบสนองเชิงเส้น (linear response theory) ซึ่งเป็นทฤษฎีที่ไม่คำนึงถึงสถานะเชิงควอนตัมของ ระบบ ในทฤษฎีนี้ จะเปลี่ยนการเปลี่ยนแปลงของการกระจายอิเล็กตรอน (electron distribution) ที่เกิดจากสนามภายนอก เช่น เกรเดียนต์ของอุณหภูมิ สนามแม่เหล็ก สนามไฟฟ้า ให้อยู่ในรูป ฟังก์ชันของพลังงาน โดยประมาณว่าการเปลี่ยนแปลงของการกระจายอิเล็กตรอนและฟังก์ชันของ พลังงานมีความสัมพันธ์กันแบบเชิงเส้น สำหรับกรณีเทอร์โมอิเล็กทริกส์ จะพิจารณาผลของผลของ สนามแม่เหล็ก (E) และเกรเดียนต์ของอุณหภูมิ ( $\nabla T$ ) ต่อการกระจายของอิเล็กตรอน ซึ่งเทอม กระแสไฟฟ้า J ประกอบด้วยสองเทอมดังสมการ 2.13

$$J = K_0 E - \frac{1}{|e|T} K_1(-\nabla T)$$
 (2.13)

ซึ่งฟังก์ชัน K<sub>n</sub> หาได้จาก

$$K_{n} = \int_{-\infty}^{\infty} \sigma(\varepsilon, T) (\varepsilon - \mu)^{n} \left( -\frac{\partial f_{FD}(\varepsilon, T)}{\partial \varepsilon} \right) d\varepsilon$$
 (2.14)

เมื่อ  $\sigma(\varepsilon,T)$ , e,  $f_{FD}$  และ  $\mu$  คือ สภาพนำไฟฟ้าเชิงสเปกตรัม (spectral conductivity), ค่า ประจุไฟฟ้าของอิเล็กตรอน, ฟังก์ชันการกระจายแบบเฟอร์มิ-ดิแรก (Fermi-direc distrbution function) และ ศักย์ทางเคมี (Chemical potential) ตามลำดับ ซึ่งศักย์ทางเคมีของอิเล็กตรอนนำ ไฟ้าเป็นฟังก์ชันของอุณหภูมิ นิยามจากผลต่างระหว่างพลังงานของระบบที่มีอิเล็กตรอน N ตัว กับ ระบบที่มี N+1 อิเล็กตรอน ที่อุณหภูมิใด ๆ บางครั้งศักย์ทางเคมีถูกเรียกว่า ระดับเฟอร์มิ (fermi lavel) เนื่องจากมีค่าเท่ากับพลังงานเฟอร์มิ (fermi energy) ที่ศูนย์สัมบูรณ์ (absolute zero) และ ค่าจะค่อย ๆ ห่างออกจากระดับพลังานเฟอร์มิมากขึ้นเมื่ออุณหภูมิสูงขึ้น

เนื่องจากอิเล็กตรอนแต่ละตัวขนพลังงาน ( $\varepsilon-\mu$ ) สามารถคำนวณกระแสที่ไหลเนื่องจากอิเล็กตรอน ได้โดยการคูณด้านขวาของสมการ 2.13 ด้วย  $-(\varepsilon-\mu)/|e|$  จะได้

$$J_{Qel} = -\frac{1}{|e|} K_1 E - \frac{1}{e^2 T} K_2 (-\nabla T)$$
 (2.15)

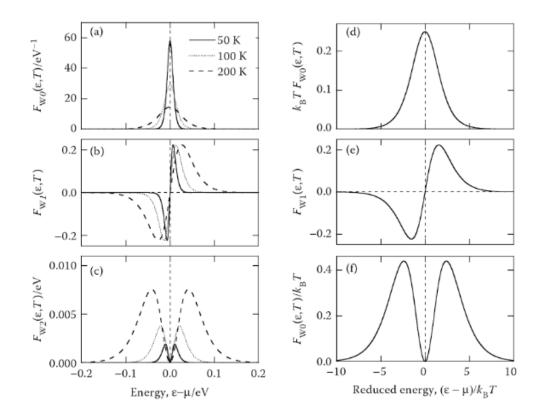
ซึ่งจะสามารถสร้างสมการที่นิยามค่าสภาพนำไฟฟ้า ค่าสภาพนำความร้อนเนื่องจากอิเล็กตรอน และค่าสัมประสิทธิ์ซีเบค ได้โดยอาศัยความสัมพันธ์ของสมการ 2.13 สมการ 2.15 และสมการดัง ต่อไปนี้

$$J = \sigma E \tag{2.16}$$

$$J_{Qel} = \kappa_{el}(-\nabla T) \tag{2.17}$$

$$E = S\nabla T \tag{2.18}$$

สมการที่แสดงค่าสภาพนำไฟ้าคำนวณโดยพิจารณาสมการ 2.13 และ 2.16 ในกรณีที่ไม่มีเกร เดียนต์ของอุณหภูมิ เช่นเดียวกับค่าสภาพนำความร้อนเนื่องจากอิเล็กตรอนที่ได้จากการพิจารณา สมการ 2.15 และ 2.17 ส่วนการคำนวณค่าสัมประสิทธิ์ซีเบคอาศัยความสัมพันธ์ของ E และ  $\nabla T$  จากสมการ 2.13 ภายใต้การสมมติว่าไม่มีกระแสไฟฟ้า สมการที่แสดง  $\sigma(T)$ , S(T) และ  $\kappa_{el}(T)$  สามารถเขียนได้ดังสมการ 2.19 – 2.21 ซึ่งทั้ง 3 สมการนี้เป็นสมการต้นแบบที่ใช้อธิบาย คุณสมบัติทางเทอร์โมอิเล็กทริกส์ของวัสดุ


$$\sigma(T) = \int \sigma(\varepsilon, T) \left[ -\frac{\partial f_{FD}(\varepsilon, T)}{\partial \varepsilon} \right] d\varepsilon$$
 (2.19)

$$S(T) = -\frac{1}{|e|T} \frac{\int \sigma(\epsilon, T)(\epsilon - \mu) \{-\partial f_{FD}(\epsilon, T)/\partial \epsilon\} d\epsilon}{\int \sigma(\epsilon, T) \{-\partial f_{FD}(\epsilon, T)/\partial \epsilon\} d\epsilon}$$
 (2.20)

$$\kappa_{e}(\mathsf{T}) = \frac{1}{e^{2}\mathsf{T}} \int \sigma(\varepsilon,\mathsf{T}) (\varepsilon-\mu)^{2} \left\{ \frac{-\partial f_{\mathsf{FD}}(\varepsilon,\mathsf{T})}{\partial \varepsilon} \right\} d\varepsilon - \frac{1}{e^{2}\mathsf{T}} \frac{\int \left[ \sigma(\varepsilon,\mathsf{T}) (\varepsilon-\mu) \left\{ \partial f_{\mathsf{FD}}(\varepsilon,\mathsf{T}) / \partial \varepsilon \right\} d\varepsilon \right]^{2}}{\int \sigma(\varepsilon,\mathsf{T}) \left\{ -\partial f_{\mathsf{FD}}(\varepsilon,\mathsf{T}) / \partial \varepsilon \right\} d\varepsilon} (2.21)$$

สมการ 2.19 - 2.21 ประกอบไปด้วยเทอม  $\sigma(\varepsilon,T)$  และฟังก์ชันหน้าต่าง (window function) ที่สามารถเขียนอยู่ในรูป  $F_{Wn}(\varepsilon,T)=(\varepsilon-\mu)^n(-\partial f_{FD}(\varepsilon,T)/\partial \varepsilon)$  ฟังก์ชันนี้ถูกเรียกว่าฟังก์ชัน หน้าต่าง เนื่องจากเป็นฟังก์ชันที่มีค่าสูงในช่วงพลังงานแคบ ๆ และมีศูนย์กลางอยู่ที่ศักย์ทางเคมี  $\mu$  ดังรูป 2.9 ฟังก์ชันหน้าต่างมีเพียงเทอมของฟังก์ชันการกระจายแบบเฟอร์มิ-ดิแรก ทำให้สามารถ คำนวณค่าฟังก์ชันหน้าต่างที่อุณหภูมิใด ๆ ได้ไม่ยาก

จากสมการ 2.19 อาจกล่าวได้้ว่า สภาพนำไฟฟ้าของวัสดุ  $(\sigma(T))$  สามารถคำนวณได้จากผล รวมของค่าเฉลี่ย  $\sigma(\varepsilon,T)$  คูณกับ ฟังก์ชัน  $F_{W0}(\varepsilon,T)$  ซึ่งจะเห็นว่า ฟังก์ชัน  $F_{W0}(\varepsilon,T)$  เป็นเสมือน ฟังก์ชันการกระจายที่บ่งบอกความน่าจะเป็นของ  $\sigma(\varepsilon,T)$  โดยฟังก์ชันนี้ที่มีพีคหนึ่งพีคที่  $\mu$  มีค่า ความกว้างพีคที่ครึ่งค่าสูงสุด (full width at half maximum: FWHM) ประมาณ 3.5  $k_BT$  โดย ความกว้างนี้มีค่าเพิ่มขึ้นตามอุณหภูมิ [23]



รูปที่ 2.9: (a)-(c) กราฟฟังก์ชันหน้าต่างที่เป็นฟังก์ชันของพลังงานที่อุณหภูมิ 50, 100 และ 200 K (d)-(f) กราฟฟังก์ชันหน้าต่างที่เป็นฟังก์ชันของพลังงานลดทอน

ค่าสัมประสิทธิซีเบค S(T) ในสมการ 2.20 อธิบายด้วยฟังก์ชันหน้าต่าง  $F_{W0}(\epsilon,T)$  และ  $F_{W1}(\epsilon,T)$  โดยฟังก์ชัน $F_{W0}(\epsilon,T)$  ซึ่งเป็นตัวหารในสมการสามารถเปลี่ยนให้อยู่ในรูป  $\sigma(T)$  และ ฟังก์ชัน  $F_{W1}(\epsilon,T)$  เป็นฟังก์ชันคี่ มีค่าสูงสุดทางด้านบวก และมีค่าตำสุดทางด้านลบที่  $\epsilon-\mu$  ประมาณ 1.6  $k_BT$  และ -1.6  $k_BT$  ตามลำดับ ค่าสัมประสิทธิซีเบคสามารถนิยามจากผลต่างของ  $\sigma(\epsilon,T)$  ที่สองตำแหน่งนี้ นั่นหมายถึงค่าสัมประสิทธิซีเบคจะมีค่ามากเมื่อมีค่า  $\sigma(\epsilon,T)$  ที่  $\epsilon-\mu=1.6$   $k_BT$  มีค่ามากกว่าหรือน้อยกว่าที่  $\epsilon-\mu=-1.6$   $k_BT$  มากๆ

ส่วนค่าสภาพน้ำความร้อน  $\kappa_e(T)$  เทอมที่สองของด้านซ้ายของสมการ 2.21 สามารถเขียนได้ เป็น  $-S^2\sigma T$  :7j เทอมนี้มีค่าน้อยมากเมื่อเทียบกับเทอมแรก จึงจะละเว้นการพิจารณาเทอมนี้ ส่วน เทอมแรกเกี่ยวข้องกับฟังก์ชัน  $F_{W2}(\epsilon,T)$  ที่มีพีคสองพีคที่  $\epsilon-\mu$  ประมาณ 2.4  $k_BT$  และ -2.4  $k_BT$  โดยค่าสภาพนำความร้อนสามารถนิยามได้จาก ค่าเฉลี่ยของ  $\sigma(\epsilon,T)$  บริเวณรอบ ๆ  $\epsilon-\mu=\pm 2.4~k_BT$ 

#### คุณสมบัติทางเทอร์โมอิเล็กทริกของโลหะ

ทฤษฎีของบลอชและโบทซ์มานน์ (Bloch-boltzmann theory) ได้นิยามสภาพนำไฟฟ้าเชิง สเปกตรัมเป็นฟังก์ชันของความหนาแน่นสถานะของอิเล็กตรอน ความเร็วกลุ่ม และเวลาผ่อนคลาย สำหรับระบบที่เป็นไอโซโทรปิก σ(ε, T) เขียนได้ดังนี้

$$\sigma(\varepsilon, \mathsf{T}) = \frac{e^2}{3} \mathsf{N}(\varepsilon) \mathsf{v}^2(\varepsilon) \mathsf{\tau}(\mathsf{T}) \tag{2.22}$$

สำหรับโลหะทั่วไป มีการประมาณค่า  $\sigma(\varepsilon,\mathsf{T})$  เป็นฟังก์ชันเชิงเส้นของพลังงาน ดังนี้

$$\sigma(\epsilon, T) \approx \sigma(\mu, T) + (\epsilon - \mu) [\partial \sigma(\epsilon, T) / \partial \epsilon]_{\epsilon = \mu}$$
 (2.23)

แต่เนื่องจากเทอมหลังฟังก์ชันคี่ จึงทำให้เทอมนี้หายไปจากการอินทิเกรตตามสมการ 2.19 ทำให้เหลือเพียงเทอมแรก ดังสมการ 2.24 ซึ่งเป็นเทอมของสภาพนำไฟฟ้าเชิงสเปกตรัมที่เป็น ฟังก์ชันของศักย์ทางเคมี นั่นหมายถึงคุณสมบัติทางเทอร์โมอิเล็กทริกของโลหะไม่ได้พิจารณา เฉพาะอิเล็กตรอนที่ศักย์ทางเคมี แต่ยังพิจารณาอิเล็กตรอนรอบศักย์ทางเคมีด้วย

$$\sigma(\epsilon,T) = \sigma(\mu,T) \tag{2.24}$$

ส่วนค่าสัมประสิทธุซีเบคของโลหะ ภายใต้การประมาณ  $\sigma(\epsilon,T)$  ดังสมการ 2.23 และในการอิ นทิเกรตสมการ 2.20 อาศัยความสัมพันธ์

$$\int (\varepsilon - \mu) F_{W1}(\varepsilon, T) d\varepsilon = \int F_{W2}(\varepsilon, T) d\varepsilon = \frac{k_B^2 T^2 \pi^2}{3}$$
 (2.25)

จะได้สูตรของมอธ (mott formula) ที่แสดงค่าสัมประสิทธุซีเบคของโลหะที่แปรผันตรงกับ อุณหภูมิดังนี้

$$S(T) = -\frac{\pi^2 k_B^2 T}{3 |e|} \left( \frac{\partial \ln \sigma(\epsilon, T) / \partial \epsilon}{\partial \epsilon} \right)_{\epsilon - \mu} \tag{2.26}$$

ส่วนสภาพน้ำความร้อนของอิเล็กตรอนของโลหะสามารถอธิบายโดยใช้กฎของ Wiedemann-Franz law ซึ่งเป็นสมการที่มาจากการลดรูปสมการ 2.21 โดยละเว้นการพิจารณาเทอมหลังเนื่องจาก มีค่าน้อยมากเมื่อเทียบกับเทอมแรก และใช้การประมาณ  $\sigma(\varepsilon,T)$  ดังสมการ 2.23

$$\kappa_{el} = \frac{1}{e^2 T} \int \sigma(\epsilon, T) F_{W2}(\epsilon, T) d\epsilon = \frac{\pi^2 k_B^2 T}{3e^2} \sigma(\mu, T) = L \sigma(\mu, T) T \qquad (2.27)$$

เมื่อ L คือ Lorenz number ซึ่งเป็นค่าคงที่ มีค่าเป็น  $\frac{\pi^2 k_B^2 T}{3e^2}$ 

#### คุณสมบัติทางเทอร์โมอิเล็กทริกของสารกึ่งตัวนำ

สำหรับวัสดุประเภทสารกึ่งตัวนำ สภาพนำไฟฟ้าของอิเล็กตรอนอธิบายด้วยสมการ

$$\sigma = \frac{ne^2\tau}{m^*} = ne\mu_m \tag{2.28}$$

โดยที่  $m^*$  และ  $\mu_m$  แทนมวลยังผล (effective mass) และ สภาพคล่องตัวของพาหะ (carrier mobility) ตามลำดับ ซึ่งสมการนี้มีเงื่อนไขว่า สภาพนำไฟฟ้าเชิงสเปกตรัมจะต้องเป็นฟังก์ชัน เชิงเส้นของพลังงาน มีการประมาณรูปร่างของการกระจายโมเมนตัม-พลังงาน ของแถบพลังงาน ใกล้ ๆ ศักย์ทางเคมีเป็นพาราโบลาที่มี  $\epsilon=\hbar^2k^2/(2m^*)$  แต่ที่อุณหภูมิสูง อิเล็กตรอนมีการครอบ ครอบสถานะในช่วงพลังงานที่กว้างขึ้น สมการ 2.28 จึงไม่เหมาะสมนัก ดังนั้นในการคำนวณ คุณสมบัติทางเทอร์โมอิเล็กทริกของสารกึ่งตัวนำจึงมีการประมาณทั้งฟังก์ชันการกระจายแบบเฟอร์ มิ-ดิแรก และสภาพนำไฟฟ้าเชิงสเปกตรัมเป็น

$$f_{FD}(\varepsilon, T) = \frac{1}{1 + \exp\left(\frac{\varepsilon - \mu}{k_B T}\right)} \cong \exp\left(-\frac{\varepsilon - \varepsilon_{edg}}{k_B T}\right)$$
 (2.29)

$$\sigma(\varepsilon, T) \propto \left(\varepsilon - \varepsilon_{\text{edg}}\right)^{\frac{3}{2} + \gamma}$$
 (2.30)

ซึ่งจะใช้การประมาณทั้งสองในการอธิบายค่าสัมประสิทธิซีเบค โดยฟังก์ชันการกระจายแบบ เฟอร์มิ-ดิแรกในสมการ 2.29 สามารถใช้ได้กับช่วงพลังงานที่ห่างจากศักย์ทางเคมีที่ถูกกำหนดให้ เป็นค่าพลังงานที่ขอบของ  $\varepsilon_{edg}$  จากสมการ 2.28 และความสัมพันธ์ของความหนาแน่นสถานะของ อิเล็กตรอนและความเร็วกลุ่มจากโมเดลแถบพลังงานพาราโบลา  $N(\varepsilon) \propto (\varepsilon - \varepsilon_{edg})^{1/2}$ ,  $\nu(\varepsilon) \propto (\varepsilon - \varepsilon_{edg})^{1/2}$  และ  $\tau \propto (\varepsilon - \varepsilon_{edg})^{\gamma}$  จะได้ค่าสัมประสิทธิซีเบคเป็น

$$S(T) = -\frac{k_B}{|e|} \left( \frac{5}{2} + \gamma + \frac{\mu - \epsilon_{edg}}{k_B T} \right)$$
 (2.31)

ส่วนค่าสภาพนำความร้อนของอิเล็กตรอนของวัสดุกึ่งตัวนำอธิบายได้ด้วย Wiedemann-Franz law เช่นเดียวกับในโลหะ

## 2.4 การคำนวณคุณสมบัติทางเทอร์โมอิเล็กทริกด้วยโปรแกรม Boltz-Trap

BoltzTrap เป็นโปรแกรมที่ใช้ในการคำนวณคุณสมบัติทางเทอร์โมอิเล็กทริกของวัสดุโดยอาศัย ทฤษฎีการขนส่งของโบล์ทมานน์ (Boltzmann transport theory ) โดยสัมประสิทธิ์การขนส่ง (transport coefficient)สามารถคำนวณได้จากสภาพนำไฟฟ้าในแต่ละทิศทางของผลึกที่ขึ้นกับพลังงาน ดังนี้

$$\sigma_{\alpha\beta}(T;\mu) = \frac{1}{\Omega} \int \sigma_{\alpha\beta}(\epsilon) \left[ -\frac{\partial f_{\mu}(T;\epsilon)}{\partial \epsilon} \right] d\epsilon$$
 (2.32)

$$\nu_{\alpha\beta}(\textbf{T};\boldsymbol{\mu}) = \frac{1}{e\textbf{T}\Omega}\int\sigma_{\alpha\beta}(\boldsymbol{\epsilon})(\boldsymbol{\epsilon}-\boldsymbol{\mu})\left[-\frac{\delta\textbf{f}_{\boldsymbol{\mu}}(\textbf{T};\boldsymbol{\epsilon})}{\delta\boldsymbol{\epsilon}}\right]d\boldsymbol{\epsilon} \tag{2.33}$$

$$\kappa_{\alpha\beta}(\text{T};\mu) = \frac{1}{e^2\text{T}\Omega}\int\sigma_{\alpha\beta}(\epsilon)(\epsilon-\mu)^2\left[-\frac{\partial\text{f}_{\mu}(\text{T};\epsilon)}{\partial\epsilon}\right]d\epsilon \tag{2.34}$$

เมื่อ  $\kappa_{\alpha\beta}(T;\mu)$  คือสภาพนำความร้อน โดยในการคำนวณด้วย BoltzTrap จะละเว้นการพิจารณา สภาพนำความร้อนของโฟนอน ดังนั้นสภาพนำความร้อนในที่นี้จึงหมายถึงสภาพนำความร้อนของ เฉพาะอิเล็กตรอนเท่านั้น, e คือค่าประจุไฟฟ้าของอิเล็กตรอน, T คืออุณหภูมิ,  $\Omega$  คือปริมาตรใน บริลลวนโซน และสภาพนำไฟฟ้าในแต่ละทิศทางของผลึกที่ขึ้นับพลังงาน  $\sigma_{\alpha\beta}(\epsilon)$  หาได้จาก

$$\sigma_{\alpha\beta}(\epsilon) = \frac{1}{N} \sum_{i,k} \sigma_{\alpha\beta}(i,k) \frac{\delta(\epsilon - \epsilon_{i,k})}{\delta\epsilon}$$
 (2.35)

เมื่อ  $\varepsilon$  คือพลังงาน, N คือจำนวนเวกเตอร์คลื่น(k) โดย  $\sigma_{\alpha\beta}(i,k)$  หาได้จาก

$$\sigma_{\alpha\beta}(\textbf{i},\textbf{k}) = e^2 \tau_{\textbf{i},\textbf{k}} \nu_{\alpha}(\textbf{i},\textbf{k}) \nu_{\beta}(\textbf{i},\textbf{k}) \tag{2.36}$$

 $au_{i,k}$  คือเวลาผ่อนคลาย(relaxation time) และความเร็วกลุ่ม (group velocity)  $u_{lpha}(i,k)$  สามารถ คำนวณจาก

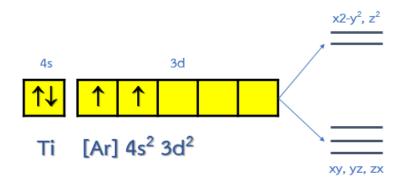
$$\nu_{\alpha}(i,k) = \frac{1}{\hbar} \frac{\partial^{2} \epsilon_{i,k}}{\partial k_{\beta} \partial k_{\mu}}$$
 (2.37)

ส่วนค่าสัมประสิทธิ์ซีเบค สามารถคำนวณได้จากสมการ

$$S_{ij} = \left(\sigma^{-1}\right)_{\alpha i} \nu_{\alpha j} \tag{2.38}$$

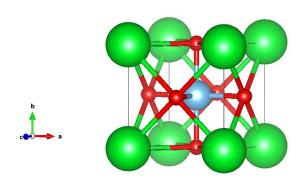
จากสมการ 2.32 - 2.34 จะเห็นว่าค่า  $\sigma_{\alpha\beta}(T;\mu)$ ,  $\nu_{\alpha\beta}(T;\mu)$  และ  $\kappa_{\alpha\beta}(T;\mu)$  ต่างติดตัวแปร  $\tau_{i,k}$  ซึ่งวัสดุต่างชนิดกันจะมีค่า  $\tau_{i,k}$  ที่ต่างกัน และโปรแกรม BoltzTrap ไม่สามารถคำนวณค่านี้ได้ เพื่อให้ง่ายต่อการคำนวณ ในการคำนวณด้วยโปรแกรม BoltzTrap จึงประมาณให้ค่าดังกล่าวเป็น ค่าคงที่ ซึ่งทำให้ค่าสัมประสิทธิ์ซีเบคที่ได้ ไม่ขึ้นกับ  $\tau_{i,k}$  ดังสมการที่ 4.4

#### บทที่ 3


# วิธีดำเนินการศึกษา

งานวิจัยนี้ได้คำนวณคุณสมบัติทางอิเล็กทรอนิกส์ของสตรอนเทียมไททาเนตด้วยโปรแกรม VASP ซึ่งมีหลักการคำนวณอยู่บนพื้นฐานของทฤษฎีฟังก์ชันนัลความหนาแน่นที่ใช้คลื่นระนาบเป็นฟังก์ชันฐาน และใช้การประมาณแบบความหนาแน่นอิเล็กกตรอนแบบความหนาแน่นเฉพาะที่และแบบ เกรเดียนต์ทั่วไป และใช้โปรแกรม Boltztap ในการคำนวณคุณสมบัติทางเทอร์โมอิเล็กทริก การ คำนวณคุณสมบัติในแต่ละด้านมีรายละเอียดการคำนวณดังนี้

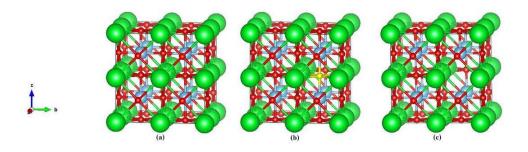
# 3.1 การคำนวณคุณสมบัติทางอิเล็กทรอนิกส์


## 3.1.1 ทดสอบค่าฮับบาร์ดพารามิเตอร์ที่เหมาะสมในการคำนวณ

การคำนวณโดยใช้ทฤษฎีฟังก์ซันนัลความหนาแน่นมีข้อจำกัดในการคำนวณแรงผลักที่รุนแรงระหว่าง อิเล็กตรอนในออร์บิทัล 3d และ 5f ที่มีระยะห่างระหว่างระดับพลังงานของอิเล็กตรอนในออร์ บิทัลน้อย จึงจำเป็นต้องเพิ่มการพิจารณาค่าฮับบาร์ดพารามิเตอร์ (Hubbard parameter) ร่วมกับ การคำนวณด้วย DFT เพื่อแก้ไขข้อจำกัดดังกล่าว ดังนั้นจึงจำเป็นต้องทดสอบเพื่อหาค่าฮับบาร์ด พารามิเตอร์ที่เหมาะสมที่จะใช้ในการคำนวณ



รูปที่ 3.1: ระดับพลังงานของอิเล็กตรอนในออร์บิทัล 3d ของอะตอมไททาเนียมในโครงสร้างส ตรอนเทียมไททาเนต


ในการทดสอบหาค่าฮับบาร์ดพารามิเตอร์ที่เหมาะสม จะใช้โครงสร้างสตรอนเทียมไททาเนตที่ ประกอบด้วย 5 อะตอมในการคำนวณค่าคงที่แลตทิช บัลค์มอลดูลัส และช่องว่างพลังงาน ด้วยค่า ฮับบาร์ดพารามิเตอร์ค่าต่าง ๆ ร่วมกับการประมาณเทอมพลังงานแลกเปลี่ยนสัมพันธ์แบบ LDA และ GGA แล้วเปรียบเทียบผลการคำนวณกับค่าที่ได้จากการทดลอง โดยค่าฮับบาร์ดพารามิเตอร์ ที่เหมาะสมคือค่าที่ให้ผลการคำนวณสอดคล้องกับผลการทดลองมากที่สุด

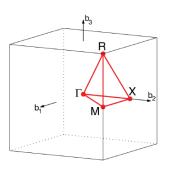


รูปที่ 3.2: โครงสร้างสตรอนเทียมไททาเนตที่ประกอบด้วย 5 อะตอม ที่ใช้ในการทดสอบค่าฮับ บาร์ดพารามิเตอร์ที่เหมาะสม โดยทรงกลมสีฟ้าแทนอะตอมไมมานียม สีเขียวแทนอะตอมสตรอน เทียม และสีแดงแทนอะตอมออกซิเจน

#### 3.1.2 คำนวณโครงสร้างที่เสถียร

ในการคำนวณโครงสร้างที่เสถียรจะใช้โครงสร้างสตรอนเทียมไททาเนตที่ประกอบด้วย 40 อะตอม (supercell 2x2x2) และเปลี่ยนแปลงตำแหน่งของอะตอมในโครงสร้างจนกระทั่งมีแรงกระทำต่อ ไอออนมีค่าเข้าใกล้ศูนย์ โดยก่อนการคำนวณจะต้องมีการทดสอบการลู่เข้าของพลังงานเพื่อหา พลังงานคัตออฟและจำนวนจุด k ที่เหมาะสมในการคำนวณ




รูปที่ 3.3: โครงสร้างสตรอนเทียมไททาเนตที่ประกอบด้วย 40 อะตอม ที่ใช้ในการคำนวณ คุณสมบัติทางอิเล็กทรอนิกส์ โดยทรงกลมสีฟ้าแทนอะตอมไททาเนียม สีเขียวแทนอะตอมสตรอน เทียม สีแดงแทนอะตอมออกซิเจน และสีเหลืองแทนอะตอมไนโตรเจน

### 3.1.3 คำนวณความหนาแน่นสถานะ

ในขั้นตอนนี้จะใช้โครงสร้างที่เสถียรและเงื่อนไขที่เหมาะสมที่ได้จากขั้นตอนก่อนหน้านี้ ในการ คำนวณความหนาแน่นสถานะ และนำไปเขียนกราฟความหนาแน่นสถานะที่พลังงานต่าง ๆ

### 3.1.4 การคำนวณโครงสร้างแถบพลังงาน

เมื่อคำนวณความหนาแน่นสถานะเสร็จแล้ว จะใช้ฟังก์ชันคลื่นที่ได้จากการคำนวณความหนาแน่น สถานะไปคำนวณพลังงานของอิเล็กตรอนที่เวกเตอร์ k ต่างๆ ตามเส้นทางของจุดที่มีสมมาตร สูง ซึ่งโครงสร้างสตรอนเทียมไททาเนตที่ใช้มีโครงร้างผลึกแบบลูกบาศก์ที่มีเส้นทางของจุดที่มี สมมาตรสูงเป็น Г-X-M-Г-R-X-M-R [24]

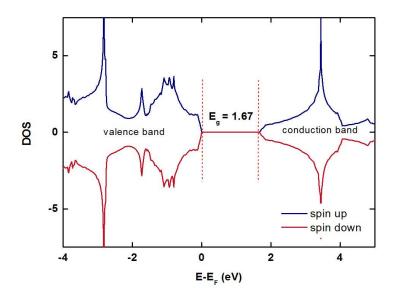


CUB path: Γ-X-M-Γ-R-X|M-R

รูปที่ 3.4: โซนบลูลวนและเส้นทางของจุดสมมาตรสูงสำหรับโครงสร้างผลึกแบบลูกบาศก์

## 3.2 การคำนวณคุณสมบัติทางเทอร์โมอิเล็กทริก

คุณสมบัติทางเทอร์โมอิเล็กทริกซ์ที่จะคำนวณประกอบไปด้วย ค่าสัมประสทธิ์ซีเบค สภาพนำไฟฟ้า สภาพนำความร้อน และค่า figure of merit ในการคำนวณค่าสัมประสทธิ์ซีเบค สภาพนำไฟฟ้าต่อ เวลาผ่อนคลาย และสภาพนำความร้อนต่อเวลาผ่อนคลาย จะคำนวณโดยใช้โปรแกรม Blotztrap จากนั้นนำค่าสัมประสทธิ์ซีเบค สภาพนำไฟฟ้า และสภาพนำความร้อน ไปใช้คำนวณค่า figure of merit


## บทที่ 4

# ผลการศึกษา และอภิปรายผลการศึกษา

## 4.1 ผลการคำนวณคุณสมบัติทางอิเล็กทรอนิกส์ของสตรอนเทียมไท ทาเนต

## 4.1.1 ผลการทดสอบค่าฮับบาร์ดพารามิเตอร์ที่เหมาะสมในการคำนวณ

จากการคำนวณความหนาแน่นของโครงสร้างสตรอนเทียมไททาเนตโดยพิจารณาผลของสปิน ได้ ผลการคำนวณดังรูปที่ 4.1



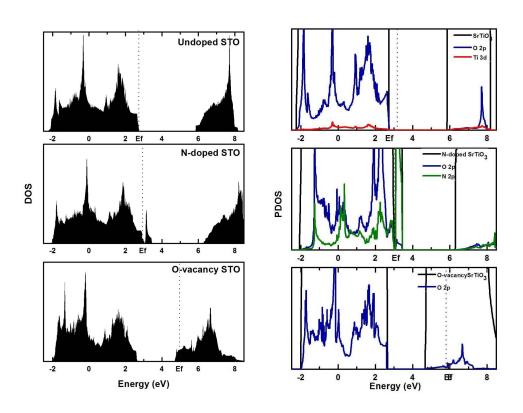
รูปที่ 4.1: กราฟแสดงความหนาแน่นสถานะของโครงสร้างสตรอนเทียมไททาเนตที่ประกอบด้วย 5 อะตอม เมื่อคำนวณโดยพิจารณาผลของสปิน

จากความหนาแน่นสถานะในรูปที่ 4.1 พบว่ามีช่องว่างพลังงานระหว่างแถบวาแลนซ์และแถบ การนำ นั่นแสดงให้เห็น่าโครงสร้างสตรอนเทียมไททาเนตเป็นโครงสร้างของวัสดุกึ่งตัวนำ เมื่อ พิจารณาความหนาแน่นสถานะของสปินอัพและสปินดาวน์ พบว่าความหนาแน่นสถานะมีความ สมมูลกัน ทำให้โครงสร้างนี้ไม่มีความเป็นแม่เหล็ก และเมื่อคำนวณความหนาแน่นสถานะของ โครงสร้างโดยไม่พิจารณาผลของสปินพบว่าความหนาแน่นสถานะมีรูปร่างเช่นเดียวกับผลการ คำนวณโดยพิจารณาสปิน อีกทั้งยังให้ผลการคำนวณค่าคงที่แลตทิช ค่าบัลค์มอลดูลัส และค่าช่อง ว่างพลังานเท่ากับการคำนวณโดยพิจารณาผลของสปินดังแสดงในตารางที่ 4.1 ดังนั้นในขั้นตอน ต่อ ๆไป จะละเว้นการพิจาณาสปินในการคำนวณ เพื่อเป็นการประหยัดเวลา และทรัพยากรในการ คำนวณ

ตารางที่ 4.1: ตารางเปรียบเทียบผลการคำนวณคุณสมบัติของโครงสร้างสตรอนเทียมไททาเนต โดยพิจารณาและไม่พิจารณาสปิน

| 4 PR 1 PP P I P P P P P P P P P P P P P P P |                |                |               |                 |  |
|---------------------------------------------|----------------|----------------|---------------|-----------------|--|
|                                             |                | ค่าคงที่แลตทิซ | บัลค์มอลดูลัส | ช่องว่างพลังงาน |  |
|                                             |                | (A)            | (GPa)         | (eV)            |  |
|                                             | พิจารณาสปิน    | 3.9509         | 173.71        | 1.6730          |  |
|                                             | ไม่พิจารณาสปิน | 3.9509         | 173.71        | 1.6756          |  |

เมื่อคำนวณค่าคงที่แลตทิช ค่าบัลค์มอลดูลัส และค่าช่องว่างพลังงาน ของโครงสร้างสตรอน เทียมไททาเนตโดยการประมาณเทอมพลังงานสัมพันธ์แลกเปลี่ยนแบบ LDA และ GGA ร่วมกับ การพิจารณาค่าฮับบาร์ดพารามิเตอร์ค่าต่าง ๆ โดยไม่พิจารณาผลของสปิน ได้ผลการคำนวณดัง ตารางที่ 4.2

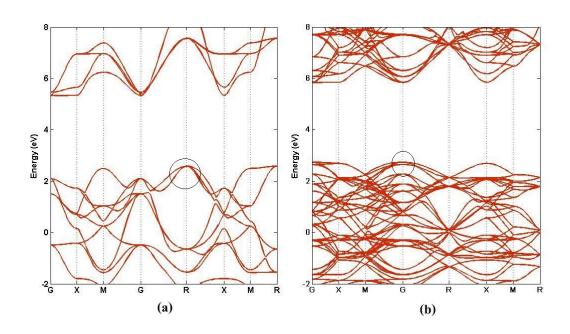

ตารางที่ 4.2: ตารางแสดงค่าคงที่แลตทิช บัลค์มอลดูลัส และค่าช่องว่างพลังงานจากการคำนวณ โดยใช้การประมาณแบบ LDA และ GGA ร่วมกับการใช้ค่าฮับบาร์ดพารามิเตอร์ค่าต่างๆ

|                    | ค่าคงที่แลตทิซ | บัลค์มอลดูลัส ค่าช่องว่างพลังงาน ค่าช่ |          | ค่าช่องว่างพลังงาน |
|--------------------|----------------|----------------------------------------|----------|--------------------|
|                    | (Å)            | (GPa)                                  | G-G (eV) | G-R (eV)           |
| LDA                | 3.87           | 206.27                                 | 3.06     | 2.62               |
| LDA+6.0            | 3.92           | 175.80                                 | 2.88     | 2.46               |
| LDA+7.0            | 3.93           | 171.08                                 | 3.09     | 2.65               |
| LDA+7.7            | 3.94           | 167.82                                 | 3.24     | 2.79               |
| LDA+7.8            | 3.94           | 166.35                                 | 3.26     | 2.81               |
| LDA+8.0            | 3.94           | 166.43                                 | 3.32     | 2.86               |
| GGA                | 3.95           | 173.71                                 | 1.74     | 1.44               |
| GGA+6.0            | 4.01           | 151.93                                 | 2.74     | 2.12               |
| GGA+7.0            | 4.02           | 148.87                                 | 2.91     | 2.44               |
| GGA+8.0            | 4.03           | 145.98                                 | 3.07     | 2.63               |
| GGA+8.6            | 4.04           | 144.34                                 | 3.10     | 2.61               |
| GGA+8.7            | 4.00           | 181.21                                 | 3.26     | 2.75               |
| GGA+8.8            | 4.04           | 143.79                                 | 3.09     | 2.59               |
| GGA+9.0            | 4.04           | 143.26                                 | 3.07     | 2.57               |
| GGA+10.0           | 4.05           | 140.75                                 | 2.99     | 2.48               |
| การทดลอง [25] [26] | 3.91           | 174-183                                | 3.75     | 3.25               |

จากตาราง 4.2 เงื่อนไข ที่เหมาะสมสำหรับใช้ในการคำนวณคุณสมบัติของโครงสร้างสตรอน เทียมไททาเนตมากที่สุดคือเงื่อนไขที่ใช้การประมาณเทอมพลังงานแลกเปลี่ยนสัมพันธ์แบบ GGA ร่วมกับค่าฮับบาร์ดพารามิเตอร์ 8.7 eV เนื่องจากเงื่อนไขดังกล่าวให้ผลการคำนวณช่องว่างพลังงาน ใกล้เคียงกับผลการทดลองมากที่สุด ทั้งยังให้ค่าบัลค์มอลดูลัสอยู่ในช่วงที่สอดคล้องกับการทดลอง และค่าคงที่แลตทิชที่ได้จากการคำนวณคลาดเคลื่อนไปจากผลการทดลองเพียง 3.32 เปอร์เซ็นต์

### 4.1.2 ผลการคำนวณความหนาแน่นสถานะ

เมื่อทดสอบการลู่เข้าของพลังงานและคำนวณโครงสร้างที่เสถียรของสตรอนเทียมไททาเนตโครงสร้าง ที่ประกอบด้วย 8 ยูนิตเชลล์ โดยใช้ GGA+U (U=8.7 eV) และใช้ค่าพลังงานคัตออฟ 360 eV จำนวนจุด k เป็น 25x25x25 จากนั้นใช้โครงสร้างดังกล่าวในการคำนวณความหนาแน่นสถานะ โดยใช้เงื่อนไขการคำนวณเดียวกัน ได้ผลการคำนวณดังกราฟในรูปที่ 4.2

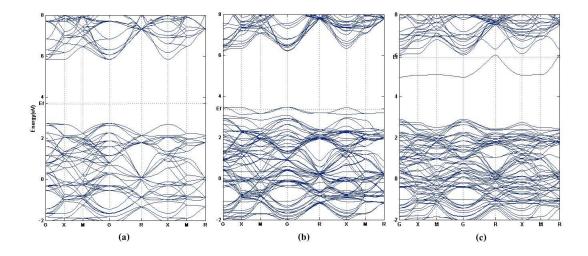



รูปที่ 4.2: DOS และ PDOS ของสตรอนเทียมไททาเนตโครงสร้างบริสุทธิ์ โครงสร้างที่เจือด้วย ในโตรเจน และโครงสร้างที่มีช่องว่างในตำแหน่งของอะตอมออกซิเจน

จากความหนาแน่นสถานะในรูปที่ 4.2 จะเห็นว่าการเจือไนโตรเจนลงไปแทนในตำแหน่งของ ออกซิเจนในโครงสร้างสตรอนเทียมไททาเนตและการเอาทำให้เกิดช่องว่างในตำแหน่งของออกซุิ เจนออกทำให้ช่องว่างพลังงานระหว่างแถบวาเลนซ์และแถบการนำแคบลง ซึ่งการเจือไนโตรเจน ทำให้โครงสร้างมีค่าช่องว่างพลังงานแคบลง 0.32 eV ส่วนโครงสร้างที่มีช่องว่างในตำแหน่งของอ อกซุเจนมีช่องว่างพลังงานแคบลง 1.09 eV

เมื่อพิจารณา PDOS ของสตรอนเทียมไททาเนตแต่ละโครงสร้าง จะเห็นว่าขอบของแถบวา เลนซ์ของโครงสร้างบริสุทธิ์เกิดจากสถานะของ O 2p ส่วนขอบของแถบการนำเกิดจากสถานะของ O 2p และ Ti 3d เมื่อเจือไนโตรเจนเข้าไปในโครงสร้างสตรอนเทียมไททาเนต บริเวณขอบของแถบ วาเลนซ์มีสถานะของ N 2p เพิ่มเข้ามา ทำให้ความหนาแน่นสถานะมีรูปร่างเปลี่ยนไป และมีช่อง ว่างพลังงานแคบลง ส่วนการทำให้เกิดช่องว่างในตำแหน่งของออกซิเจนในโครงสร้างทำให้ความหนาแน่นสถานะของสถานะ O 2p เปลี่ยนแปลงไป และเป็นสาเหตุของการมีมีช่องว่างพลังงานที่ แคบลง

## 4.1.3 ผลการคำนวณโครงสร้างแถบพลังงาน

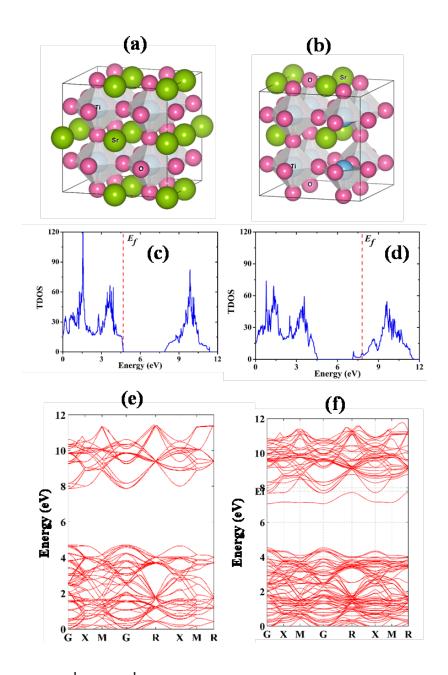



รูปที่ 4.3: โครงสร้างแถบพลังงานของโครงสร้างสตรอนเทียมไททาเนตบริสุทธิ์ที่ประกอบด้วย (a) 5 อะตอม และ (b) 40 อะตอม

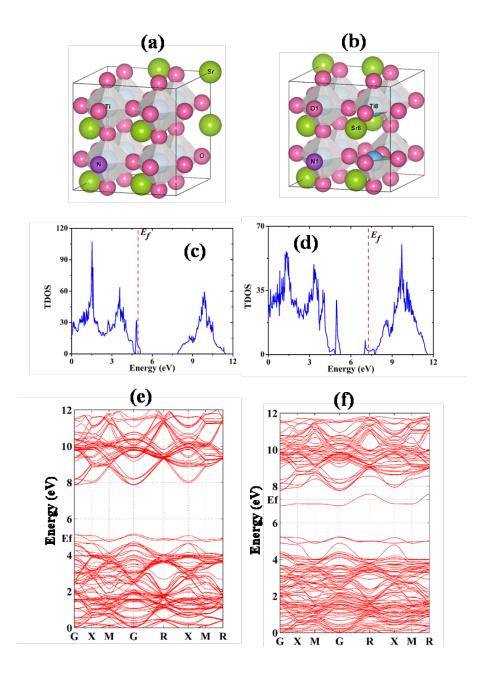
จากโครงสร้างแถบพลังงานของโครงสร้างสตรอนเทียมไททาเนตที่ประกอบด้วย 5 อะตอม ใน รูปที่ 4.3 (a) จะเห็นว่าโครงสร้างสตรอนเทียมไททาเนตมีช่องว่างพลังงานแบบไม่ตรง (indirect band gap) เนื่องจากตำแหน่งต่ำสุดของของแถบการนำ (conduction band minimum: CBM) และ ตำแหน่งสูงสุดของแถบพลังงานวาเลนซ์ (valence band maximum: VBM) อยู่ที่ตำแหน่ง k คนละ ตำแหน่งกัน โดยมีตำแหน่ง CBM ตรงกับจุดแกมมา(G) และ VBM ตรงกับจุด R ค่าช่องว่าง พลังงานที่ได้มีค่าเป็น 2.75 eV

สำหรับโครงสร้าง supercell 2x2x2 ซึ่งเป็นโครงสร้างที่มีขนาดใหญ่ในปริภูมิจริงแต่มีขนาดเล็ก ในปริภูมิส่วนกลับ ทำให้โครงสร้างแถบพลังงานมีลักษณะพับทบกันดังรูป 4.3 (b) ซึ่งตำแหน่ง VBM ที่ตรงกับจุด R ในโครงสร้างแถบพลังงานของโครงสร้าง 1 ยูนิตเซลล์ มีการพับทบมาตรง กับ G ในโครงสร้างแถบพลังงานของโครงสร้าง supercell 2x2x2 (บริเวณที่วงกลมในรูป) โดยมีค่าช่องว่างระหว่างตำแหน่ง CBM และ VBM เป็น 3.11 eV

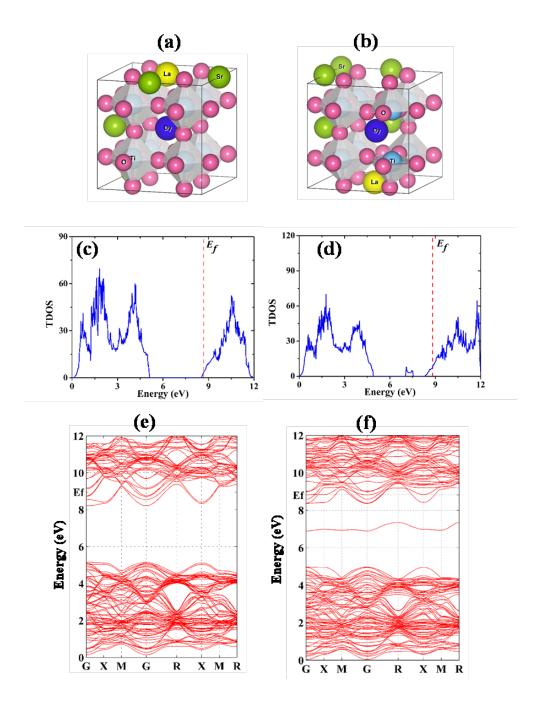
ในการทดลอง ค่าช่องว่างพลังงานของสตรอนเทียมไททาเนตมีค่าเป็น 3.25 eV [25] [26] จะ เห็นว่าผลที่ได้จากการคำนวณให้ค่าช่องว่างพลังงานน้อยกว่าที่ควรจะเป็น เนื่องจากในการคำนวณ โครงสร้างแถบพลังงานโดยใช้ทฤษฎีฟังก์ชันนัลความหนาแน่น พิจารณาเฉพาะผลของอิเล็กตรอน วงนอกสุด ขาดการพิจารณาผลของการ screening ของคอร์อิเล็กตรอน ทำให้คำนวณค่าช่องว่าง พลังงานได้น้อยกว่าที่ควรจะเป็น



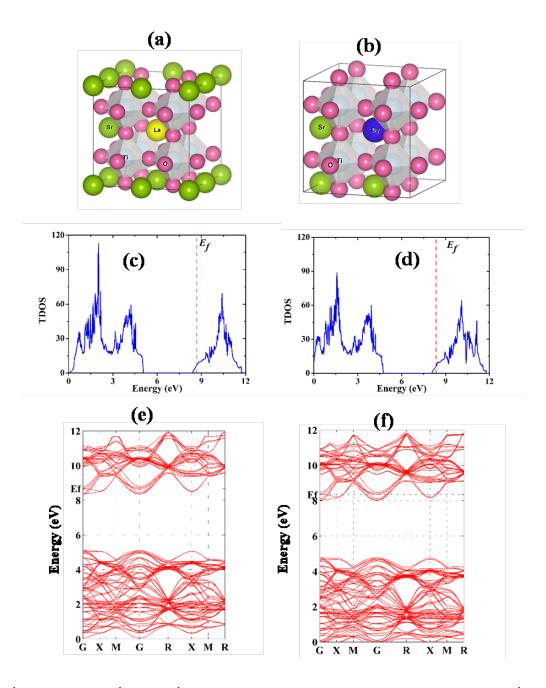

รูปที่ 4.4: โครงสร้างแถบพลังงานของสตรอนเทียมไททาเนต (a) โครงสร้างบริสุทธิ์ (b) โครงสร้าง ที่เจือด้วยไนโตรเจน และ (c) โครงสร้างที่มีช่องว่างในตำแหน่งของอะตอมออกซิเจน


การเจืออะตอมในโตรเจนที่มีอิเล็กตรอนวงนอกสุด 5 ตัว ลงไปในตำแหน่งของออกซิเจนที่มี อิเล็ตรอนวงนอกสุด 6ตัว ทำให้เกิดโฮล และมีสถานะผู้รับ (acceptor state) เกิดขึ้นเหนือแถบวา เลนซ์ดังรูปที่ 4.4 (b) ค่าช่องว่างพลังงานระหว่างจุดต่ำสุดของแถบการนำและจุดสูงสดของแถบวา เลนซ์เป็น 2.73 eV ซึ่งแคบกว่าค่าช่องว่างพลังงานของโครงสร้างบริสุทธิ์ 0.38 eV

ส่วนการนำอะตอมออกซิเจนออกไปจากโครงสร้างเพื่อทำให้มีช่องว่างในโครงสร้าง ด้วยความ บกพร่องของโครงสร้างนี้ทำให้เกิดสถานะขึ้นด้านล่างแถบการนำดังรูปที่ 4.4 (c) ทำให้มีค่าช่อง ว่างพลังงานแคบลงเหลือเพียง 2.05 eV ซึ่งแคบกว่าช่อง่างพลังงานของโครงสร้างบริสุทธิ์ 1.06 eV


จากการพิจารณา DOS และ โครงสร้างแถบพลังงาน จะสังเกตเห็นการเปลี่ยนแปลงหลังจากที่ มีการดึงอ็อกซิเจนออกจากโครงสร้าง จะเกิดสถานะที่ตำแหน่ง 7 eV และเลื่อนตำแหน่งของ Ef เข้า ไกล้แถบการนำ ซึ่งอาาจะทำให้สารเปลี่ยนจากสารกึ่งตำนำไปเป็นโลหะ นอกจากนี้การดึงอ็อกซิเจน ออกและการเลื่อนตำแหน่งของ Ef ก็ยังพบได้เมื่อมีการเจือบางธาตุ เช่น La และ Dyเข้าไปใน STO ซึ่งการปลี่ยนแปลงนี้อาจจะส่งผลต่อสัมบัติทางด้านเทอร์โมอิเล็กตริกของสารเหล่านี้ ซึ่งจะศึกษาน หัวข้อถัดไป




รูปที่ 4.5: โครงสร้างที่พลังงานต่ำสุด 40 อะตอมของ (a) STO และ (b) STO+Vo ที่แทนสีฟ้า เขียว ชมพู แทนอะตอมของ Sr, Ti และ O ตามลำดับ DOS ของ (c) STO และ (d) STO+Vo และ โครงสร้างแถบพลังงานของ (c) STO และ (d) STO+Vo ด้วย Ef = 4.69 และ 7.80 eV สำหรับ STO และ STO+Vo ตามลำดับ



รูปที่ 4.6: โครงสร้างที่พลังงานต่ำสุด 40 อะตอมของ (a) NSTO และ (b) NSTO+Vo ที่แทนสีฟ้า เขียว ชมพู ม่วง แทนอะตอมของ Sr, Ti, O และ N ตามลำดับ DOS ของ (c) LDSTO และ (d) LDSTO+Vo และ โครงสร้างแถบพลังงานของ (c) NSTO และ (d) NSTO+Vo ด้วย Ef = 4.49 และ 7.28 eV สำหรับ NSTO และ NSTO+Vo ตามลำดับ



รูปที่ 4.7: โครงสร้างที่พลังงานต่ำสุด 40 อะตอมของ (a) LDSTO และ (b) LDSTO+Vo ที่แทน สีฟ้า เขียว ชมพู เหลือง น้ำเงิน แทนอะตอมของ Sr, Ti, O, La และ Dy ตามลำดับ DOS ของ (c) LDSTO และ (d) LDSTO+Vo และ โครงสร้างแถบพลังงานของ (c) LDSTO และ (d) LDSTO+Vo ด้วย Ef = 8.96 และ 8.81 eV สำหรับ LDSTO และ LDSTO+Vo ตามลำดับ



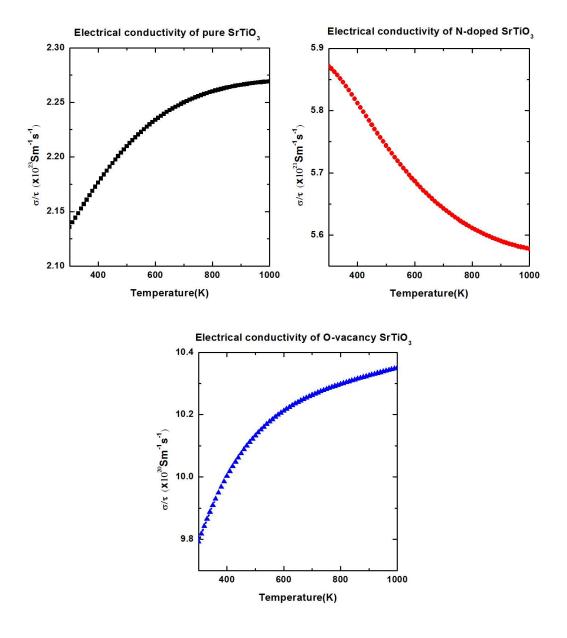
รูปที่ 4.8: โครงสร้างที่พลังงานต่ำสุด 40 อะตอมของ (a) LaSTO และ (b) DySTO+Vo ที่แทนสี ฟ้า เขียว ชมพู เหลือง น้ำเงิน แทนอะตอมของ Sr, Ti, O, La และ Dy ตามลำดับ DOS ของ (c) LaSTO และ (d) DySTO+Vo และ โครงสร้างแถบพลังงานของ (c) LaSTO และ (d) DySTO +Vo ด้วย Ef = 8.68 และ 8.35 eV สำหรับ LaSTO และ DySTO+Vo ตามลำดับ

## 4.2 ผลการคำนวณคุณสมบัติทางเทอร์โมอิเล็กทริกของสตรอนเทียม ไททาเนต

### 4.2.1 ค่าสภาพนำไฟฟ้าต่อเวลาผ่อนคลาย

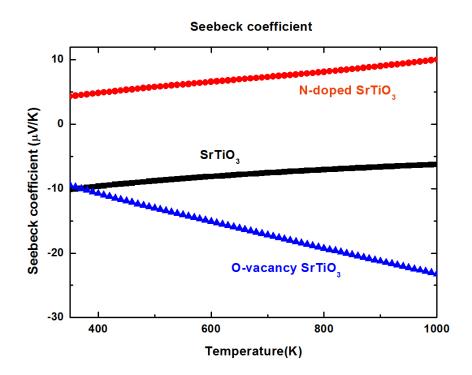
สำหรับการคำนวณโดยใช้โปรแกรม BoltzTrap ค่าสภาพนำไฟฟ้าและสภาพนำความร้อนที่ได้จะ ติดตัวแปรเวลาผ่อนคลาย  $(\tau)$  ซึ่งเป็นค่าที่ไม่สามารถคำนวณได้จากโปรแกรมนี้ แต่มีการประมาณ ให้เป็นค่าคงที่สำหรับวัสดุแต่ละชนิด โดยแต่ละโครงสร้างก็จะมีค่า  $\tau$  แตกต่างกันออกไป

จากกราฟสภาพนำไฟฟ้าต่อเวลาผ่อนคลายของโครงสร้างสตรอนเทียมไททาเนตทั้งสามโครงสร้าง จากรูปที่ 4.9 จะเห็นว่าค่าสภาพนำไฟฟ้าต่อเวลาผ่อนคลายของโครงสร้างบริสุทธิ์มีค่าสูงกว่า โครงสร้างที่เจือด้วยนโตรเจนและโครงสร้างที่มีช่องว่างของออกซิเจนมาก แต่เนื่องจากค่าที่ได้จาก การคำนวณเป็นค่าที่ติดเวลาผ่อนคลาย ซึ่งแม้จะมีการประมาณให้เป็นค่าคงที่ในแต่ละโครงสร้าง แต่เนื่องจากแต่ละโครงสร้างมีเวลาผ่อนคลายที่แตกต่างกัน และเป็นค่าที่ไม่สามารถคำนวณได้จาก โปรแกรม Boltztrap จึงยากที่จะเปรียบสภาพนำไฟฟ้าและสภาพนำความร้อนต่อเวลาผ่อนคลาย ของโครงสร้างที่แตกต่างกัน ในงานวิจัยนี้จึงจะพิจารณาเฉพาะแนวโน้มของสภาพนำไฟฟ้าและ สภาพนำความร้อนที่อุณหภูมิต่าง ๆ


สำหรับวัสดุประเภทสารกึ่งตัวนำ สภาพนำความร้อนสามารถอธิบายได้โดยอาศัยความสัมพันธ์

$$\sigma = ne^2 \tau / m^* \tag{4.1}$$

เมื่อ n, e,  $\tau$  และ  $m^*$  คือจำนวณพาหะ ค่าประจุของอิเล็กตรอน เวลาผ่อนคลาย และมวลยังผล ตามลำดับ ซึ่งจำนวนพาหะ และเวลาผ่อนคลายเป็นตัวแปรที่ขึ้นกับอุณหภูมิ สำหรับวัสดุกึ่งตัวนำ เมื่ออุณหภูมิเพิ่มขึ้น ระบบจะมีพลังงานในการกระตุ้นอิเล็กตรอนจากแถบวาเลนซ์ไปแถบการนำ มากขึ้น โดยจำนวนพาหะจะเพิ่มขึ้นตามอุณหภูมิด้วยแฟกเตอร์  $\exp(-E_g/2kT)$  ส่วนเวลาผ่อน คลายเป็นตัวแปรที่แปรผกผันกับอุณหภูมิ


จากกราฟค่าสภาพนำไฟฟ้าต่อเวลาผ่อนคลายของสตรอนเทียมไททาเนตแต่ละโครงสร้างใน รูปที่ 4.9 เห็นว่าค่าสภาพนำไฟฟ้าที่อุณหภูมิต่างๆ ของสตรอนเทียมไททาเนตแต่ละโครงสร้างบริสุทธิ์ และโครงสร้างที่มีช่องว่างในตำแหน่งของออกซิเจนมีแนวโน้มเพิ่มขึ้นตามอุณหภูมิ เนื่องจากมี จำนวนพาหะเพิ่มขึ้นเมื่ออุณหภูมิเพิ่มขึ้น แต่โครงสร้างบริสุทธิ์มีขนาดของสภาพนำไฟฟ้าต่อเวลา ผ่อนคลายมากกว่าโครงสร้างที่มีช่องว่างของออกซิเจน จากงานของ Jifeng Sun and David J. Singh [27] ที่พบว่า  $\tau \propto n^{-1/3}$  โครงสร้างสตรอนเทียมไททาเนตบริสุทธิ์ที่มีจำนวนพาหะน้อย จึงมีเวลาผ่อนคลายมาก ซึ่งนี่อาจเป็นเหตุผลที่ทำให้โครงสร้างสตรอนเตียมไททาเนตบริสุทธิ์มี ขนาดของสภาพนำไฟฟ้าต่อเวลาผ่อนคลายมากกว่าโครงสร้างอื่นๆ

ส่วนโครงสร้างที่เจือด้วยในโตรเจน ถึงแม้การเจือด้วนในโตรเจนจะทำให้ค่าช่องว่างพลังงาน แคบลงและมีจำนวนพาหะเพิ่มมากขึ้น แต่เมื่ออุณหภูมิเพิ่มขึ้น เทอมของเวลาผ่อนคลายซึ่งแปร ผกผันกับอุณหภูมิมีผลมากกว่า จึงทำให้โครงสร้างที่เจือด้วยในโตรเจนมีแนวโน้มค่าสภาพนำไฟฟ้า ลดลงเมื่ออุณหภูมิเพิ่มขึ้น



รูปที่ 4.9: กราฟแสดงค่าสภาพนำไฟฟ้าต่อเวลาผ่อนคลายของสตรอนเทียมไททาเนตที่อุณหภูมิ ต่าง ๆ เส้นสีดำ แสดงค่าสภาพนำไฟฟ้าต่อเวลาผ่อนคลายของสตรอนเทียมไททาเนตโครงสร้าง บริสุทธิ์ สีแดง แทนโครงสร้างที่เจือด้วยไนโตรเจน และสีน้ำเงินโครงสร้างที่มีช่องว่างในตำแหน่ง ของอะตอมออกซิเจน

## 4.2.2 ค่าสัมประสทธิ์ซีเบค

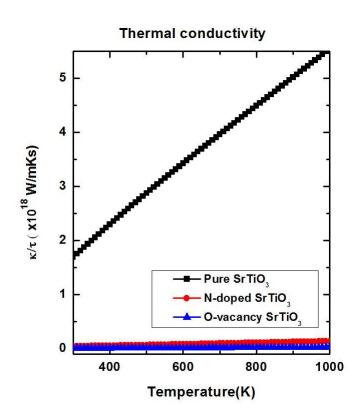


รูปที่ 4.10: กราฟแสดงค่าสัมประสทธิ์ซีเบคของสตรอนเทียมไททาเนตที่อุณหภูมิต่าง ๆ เส้นสีดำ แสดงค่าสัมประสทธิ์ซีเบคของสตรอนเทียมไททาเนตโครงสร้างบริสุทธิ์ สีแดง แทนโครงสร้างที่เจือ ด้วยไนโตรเจน และสีน้ำเงินโครงสร้างที่มีช่องว่างในตำแหน่งของอะตอมออกซิเจน

จากผลการคำนวณค่าสัมประสิทธิ์ซีเบคโดยใช้โปรแกรม Boltztrap พบว่าค่าสัมบูรณ์ของสัมประสิทธิ์ ซีเบคของโครงสร้างสตรอนเทียมไททาเนตบริสุทธิ์มีค่าลดลงเมื่ออุณหภูมิสูงขึ้น ส่วนโครงสร้างที่ เจือด้วยไนโตรเจนและโครงสร้างที่มีช่องว่างของออกซิเจนมีค่าเพิ่มขึ้นตามอุณหภูมิ

สำหรับวัสดุกึ่งตัวนำ ค่าสัมประสิทธิ์ซีเบคอธิบายได้ด้วยสมการ 2.31 ซึ่ง H.J.Goidsmid และ J.W.Sharp [28] ได้เขียนสมการนี้ในรูปแบบที่ง่ายขึ้น โดยอธิบายค่าสัมประสิทธิ์ซีเบคด้วยช่องว่าง พลังงานดังสมการ

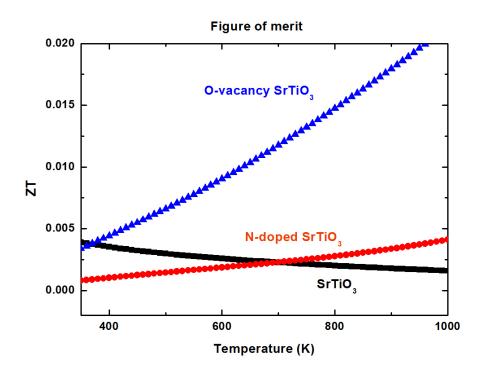
$$S = \frac{E_g}{k_B T} \tag{4.2}$$


จะเห็นว่าแนวโน้มของค่าสัมประสิทธิ์ซีเบคของโครงสร้างสตรอนเทียมไททาเนตบริสุทธิ์สอดคล้อง กับความสัมพันธ์ความสัมพันธ์ข้างต้น

จากโครงสร้างแถบพลังงานของโครงสร้างสตรอนเทียมไททาเนตที่เจือด้วยไนโตรเจนและที่ มีช่องว่างของออกซิเจนในรูปที่ 4.4 (b) และ 4.4 (c) จะเห็นว่าระดับพลังงานเฟอร์มิของทั้ง สองโครงสร้างไม่ได้อยู่ในช่วงพลังงานที่เป็นช่องว่างระหว่างแถบวาเลนซ์และแถบการนำ แต่อยู่ที่ ตำแหน่งพลังงานที่เกิดสถานะที่เพิ่มขึ้นมาจากการเจือและข้อบกพร่องของโครงสร้าง ซึ่งลักษณะ ระดับพลังงานเฟอร์มิที่อยู่ในระดับพลังงานที่มีสถานะอยู่นี้เป็นพฤติกรรมของโลหะ ในการอธิบาย แนวโน้มของค่าสัมประสิทธิ์ซีเบคของโครงสร้างที่มีการเจือไนโตรเจนและโครงสร้างที่มีช่องว่างของ ออกซิเจนด้วยสมการ 4.3

$$S = \frac{8\pi^2 k_B^2}{3eh^2} m^* T \left(\frac{\pi}{3n}\right)^{2/3}$$
 (4.3)

เป็นสมการ 4.3 เป็นสมการสำหรับอธิบายค่าสัมประสิทธิ์ซีเบคของโลหะ โดยค่าสัมประสิทธิ์ ซีเบคขึ้นกับทั้งอุณหภูมิและจำนวนพาหะ แต่จากสมการจะเห็นว่าเลขชี้กำลังของอุณหภูมิมากกว่า เลขชี้กำลังของความหนาแน่นพาหะ n จึงทำให้ค่าค่าสัมประสิทธิ์ซีเบคขึ้นกับอุณหภูมิมากกว่า ทำให้ แนวโน้มของค่าสัมประสิทธิ์ซีเบคของโครงสร้างสตรอนเทียมไททาเนตที่เจือด้วยไนโตรเจนและที่มี ช่องว่างของออกซิเจนเพิ่มขึ้นตามอุณหภูมิ


## 4.2.3 ค่าสภาพน้ำความร้อนต่อเวลาผ่อนคลาย



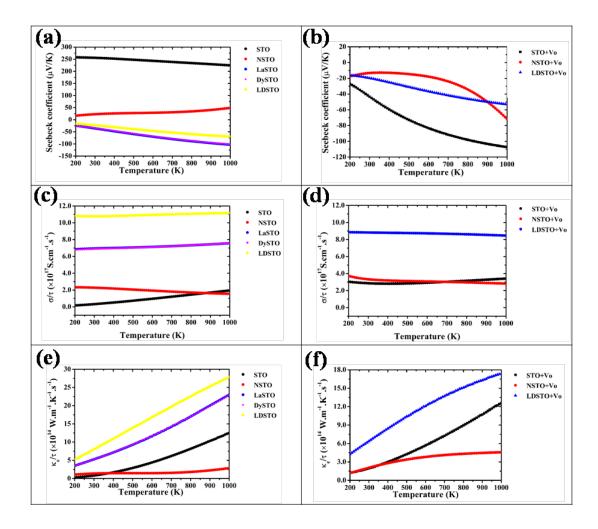
รูปที่ 4.11: ค่าสัมประสทธิ์ซีเบคของสตรอนเทียมไททาเนตที่อุณหภูมิต่าง ๆ เส้นสีดำ สีแดง และสี นำเงิน แทนค่าสัมประสทธิ์ซีเบคของสตรอนเทียมไททาเนตโครงสร้างบริสุทธิ์ โครงสร้างที่เจือด้วย ในโตรเจนและโครงสร้างที่มีช่องว่างของอะตอมออกซิเจนตามลำดับ

สภาพนำความร้อนของวัสดุอธิบายได้ด้วยความสัมพันธ์ของ Wiedemann-Franz ได้นิยามสภาพ นำความร้อนเป็น  $\kappa_e=L\sigma T$  ซึ่งสภาพนำความร้อนขึ้นกับอุณหภูมิ ทำให้สภาพนำความร้อนของ ทั้งสามโครงสร้างมีแนวโน้มเพิ่มขึ้นเมื่ออุณหภูมิเพิ่มขึ้น นอกจากจะขึ้นกับอุณหภูมิแล้วสภาพนำความร้อนยังขึ้นกับสภาพนำไฟฟ้าของวัสดุ จากกราฟสภาพนำไฟฟ้าในรูปที่ 4.9 จะเห็นว่าสภาพ นำไฟฟ้าของโครงสร้างบริสุทธิ์มีค่ามากกว่าโครงสร้างที่เจือ ในโตรเจน และโครงสร้างที่มีช่องว่าง ออกซิเจนมาก ทำให้มีสภาพนำความร้อนมากกว่าตามไปด้วย ส่วนโครงสร้างที่เจือด้วยในโตรเจน ถึงแม้จะมีค่าสภาพนำไฟฟ้าลดลงตามอุณหภูมิแต่ลดลงไม่มาก อุณหภูมิจึงมีผลต่อสภาพนำความ ร้อนมากกว่า ทำให้สภาพนำความร้อนของโครงสร้างที่เจือด้วยในโตรเจน เก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก็บมีการเก

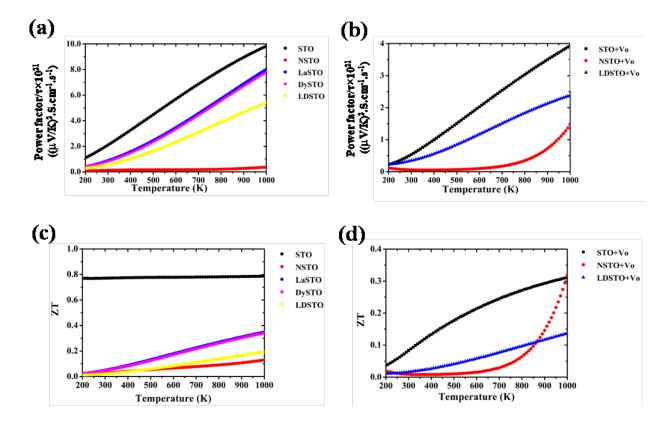
## 4.2.4 ค่า figure of merit



รูปที่ 4.12: กราฟแสดงค่า figure of merit ของสตรอนเทียมไททาเนตที่อุณหภูมิต่าง ๆ เส้นสีดำ สี แดง และสีน้ำเงิน แสดงค่า figure of merit ของสตรอนเทียมไททาเนตโครงสร้างบริสุทธิ์ โครงสร้าง ที่เจือด้วยไนโตรเจน และโครงสร้างที่มีช่องว่างในตำแหน่งของอะตอมออกซิเจน ตามลำดับ


ค่า figure of merit เป็นปริมาณที่ใช้บอกประสิทธิภาพของวัสดุเทอร์โมอิเล็กทริกส์ มีความ สัมพันธ์กับค่าสัมประสิทธิซีเบค ค่าสภาพนำไฟฟ้า และสภาพนำความร้อนดังสมการ

$$ZT = \frac{\sigma S^2 T}{\kappa} \tag{4.4}$$


จากกราฟค่า figure of merit ของโครงสร้างสตรอนเทียมไททาเนตบริสุทธิ์(เส้นสีดำ) มีค่าลด ลงเมื่ออุณหภูมิเพิ่มขึ้น เนื่องจากสตรอนเทียมไททาเนตบริสุทธิ์มีอัตราการเพิ่มขึ้นของสภาพนำ ความร้อนที่สูง ในขณะที่สภาพนำไฟฟ้าและสัมประสิทธิ์ซีเบคมีอัตราการเพิ่มขึ้นที่ไม่มากนัก เมื่อ อุณภูมิเพิ่มขึ้นจึงทำให้มีค่า figure of merit ลดลง

โครงสร้างสตรอนเทียมไททาเนตที่เจือด้วยไนโตรเจนและโครงสร้างที่มีช่องว่างในตำแหน่งขอ งออกซุเจนมีค่าสัมประสิทธิ์ซีเบคที่เพิ่มขึ้นตามอุณหภูมิ มีค่าสภาพนำความร้อนที่ต่ำ และถึงแม้ โครงสร้างที่เจือด้วยไนโตรเจนจะมีค่าสภาพนำไฟฟ้าลดลง แต่ลดลงด้วยอัตราที่ไม่มาก ทำให้ค่า figure of merit ยังเพิ่มขึ้นเมื่อเพิ่มอุณหภูมิ

จากผลการคำนวณในรูปที่ 4.14 สำหรับโครงสร้างที่บริสุทธิ STO แสดงค่า ZT ประมาณ 0.7 ในช่วงอุณหภูมิจาก 200 K ถึง 1000 K โดยที่อุณหภูมิ 200 K โครงสร้างที่เจือด้วยธาตุต่างๆ



รูปที่ 4.13: สัมประสิทธิ์ซีเบกของ (a) โครงสร้างบริสุทธิ และ (b) ช่องว่างอ๊อกซิเจน, สภาพนำ ไฟฟ้าต่อเวลาผ่อนคลายของ (c)โครงสร้างบริสุทธิ และ (d) ช่องว่างอ๊อกซิเจน และ สภาพนำความ ร้อนของอิเล็กตรอนต่อเวลาผ่อนคลายของ (e) โครงสร้างบริสุทธิ และ (f) ช่องว่างอ๊อกซิเจน



รูปที่ 4.14: ตัวประกอบกำลังต่อเวลาผ่อนคลายของ (a) โครงสร้างบริสุทธิ และ (b) ช่องว่างอ๊อก ซิเจน และ, ZT ของ (c) โครงสร้างบริสุทธิ และ (d) ช่องว่างอ๊อกซิเจน

จะมีค่า ZT ประมาณ 0 และมีค่าเพิ่มขึ้นเมื่ออุณหภูมิเพิ่มขึ้น จนที่อุณหภูมิ 1000 K ค่า ZT ของ NSTO, LaSTO, DySTO และ LDSTO เป็น 0.13, 0.35, 0.34 และ 0.19 ตามลำดับ จากข้อมูล นี้สรุปได้ว่า STO ที่เจือด้วย La และ Dy มีค่า ZT ที่ไกล้เคียงกันและรองลงมาจากสาร STO บริ สุทธิ ตามมาด้วย STO ที่เจือด้วย Co และ N สำหรับโครงสร้างที่มีช่องว่างอ็อกซิเจน ทั้ง STO บริ สุทธิและที่เจือด้วยธาตุต่าง ๆ จะมีค่า ZT เพิ่มขึ้นเมื่ออุณหภูมิเพิ่มขึ้น STO+Vo มีค่า ZT เท่ากับ 0.31 ที่ 1000 K ขณะที่ LDSTO+Vo มีค่า ZT 0.14 ถึงแม้ว่า NSTO+Vo จะเริ่มที่ค่า ZT เป็น 0.02 ที่ 200 K แต่มีค่าเพิ่มขึ้นเรื่อยในช่วง 200-800 K และเพิ่มขึ้นอย่างมากที่อุณหภูมิมากกว่า 800 K จนกระทั่งมีค่า ZT เป็น 0.32 ซึ่งมากกว่า STO+Vo ซึ่งจากจุดนี้อาจจะแสดงว่าการเจือ N ลงใน STO เหมาะที่จะนำไปประยุกต์ที่อุณหภูมิสูง และเมื่อเปรียบเทียบค่า ZT ของ STO บริสุทธิ และที่เจือด้วย NSTO+Vo มีค่า ZT มากกว่า NSTO ซึ่งอาจจะเป็นข้อได้เปรียบสำหรับโครงสร้าง N เจือลงใน STO เพราะความไม่สมบูรณ์ของโครงสร้างแบบนี้จะสามารถเตรียมได้ง่สายกว่าโครง บริสุทธิ และในทางข้าม LDSTO+Vo และ STO+Vo มีค่า ZT น้อยกว่าโครงสร้างบริสุทธิ

## บทที่ 5

# สรุปผลการศึกษา

## 5.1 สรุปผลการคำนวณ

ในการคำนวณคุณสมบัติทางอิเล็กทรอนิกส์ของสตรอนเทียมไททาเนตโดยใช้โปรแกรม VASP มี การคำนวณอันตรกิริยาคูลอมป์ใน d อิเล็กตรอนได้มากกว่าความเป็นจริง เพื่อแก้ไขข้อบกพร่อง นี้จึงพิจารณาฮับบาร์ดพารามิเตอร์ร่วมกับการประมาณเทอมพลังงานแลกปเลี่ยนสัมพันธ์ทั้งแบบ LDA และ GGA ซึ้งเงื่อนไขที่สอดคล้องกับผลการทดลองมากที่สุดคือเงื่อนไขที่ใช้การประมาณ เทอมพลังงานแลกปเลี่ยนสัมพันธ์แบบ GGA ร่วมกับค่าฮับบาร์ดพารามิเตอร์ 8.7 eV และเมื่อ คำนวณความหนาแน่นสถานะและโครงสร้างแถบพละังงานโดยใช้พลังงานคุตออฟ 360 eV และ จำนวนจุด k เป็น 23x23x23 จากผลการคำนวณพบว่าลักษณะความหนาแน่นสถานะและรูป ร่างของโครงสร้างแถบพลังงานที่ได้จากการคำนวณสอดคล้องกับผลการทดลอง แต่ค่าช่องว่าง พลังงานที่คำนวณได้จะแคบกว่าผลการทดลอง เนื่องจากข้อจำกัดของทฤษฎีฟังก์ชันนัลวามหนา แน่น และการเจือในโตรเจนและการทำให้เกิดช่องว่างในโครงสร้างในตำแหน่งของออกซิเจนทำให้ สตรอนเทียมไททาเนตมีค่าช่องว่างพลังงานแคบลง เมื่อพิจารณาจากโครงสร้างแถบพลังงานจะ เห็นสถานะผู้รับขึ้นเหนือแถบวาเลนซ์ของโครงสร้างที่เจือด้วยในโตรเจน ส่งผลให้ช่องว่างพลังงาน ของโครงสร้างนี้แคบลง 0.83 eV ส่วนโครงสร้างที่มีช่องว่างของออกซิเจนมีค่าช่องว่างพลังงาน แคบลง 1.07 eV เนื่องจากเกิดสถานะเพิ่มขึ้นด้านล่างของแถบการนำอันเนื่องมาจากความบกพร่อง ของโครงสร้าง

ผลการคำนวณค่า figure of merit ซึ่งคำนวณมาจากค่าสภาพนำความร้อน สภาพนำไฟฟ้า สัมประสิทธิ์ซีเบค โครงสร้างสตรอนเทียมไททาเนตบริสุทธิ์มีอัตราการเพิ่มของสภาพนำความร้อน ต่ออุณหภูมิที่สูง ทำให้ค่า figure of merit ลดลงเมื่ออุณหภูมิเพิ่มขึ้น ส่วนโครงสร้างที่เจือด้วย ในโตรเจนและโครงสร้างที่มีช่องว่างของออกซิเจนมีค่าสัมประสิทธิ์ซีเบคที่เพิ่มตามอุณหภูมิ และมี ค่าสภาพนำความร้อนที่ต่ำ ถึงแม้โครงสร้างที่เจือด้วยในโตรเจนมีพฤติกรรมการนำไฟฟ้าคล้ายกับ โลหะ คือมีนำไฟฟ้าได้แย่ลงที่อุณหภูมิสูง แต่ค่า figure of merit ของทั้งสองโครงสร้างเพิ่มขึ้นตาม อุณหภูมิ ซึ่งช่วยให้สตรอนเทียมไททาเนตมีประสิทธิภาพทางเทอร์โมอิเล็กทริกส์และเหมาะสำหรับ การประยุกต์ใช้งานที่อุณหภูมิสูงมากยิ่งขึ้น [29] โครงสร้างสตรอนเทียมไททาเนตบริสุทธิ์เป็นสาร กึ่งตัวนำแต่เมื่อเกิดช่องว่างของอ็อกซิเจนจะแสดงสมบัติเป็นโลหะ สำหรับช่องว่างออ๊อกซิเจนที่ เกิดขึ้นในโครงสร้างของสตรอนเทียมไททาเนตที่เจือด้วย N La Dy และ เจือร่วม La และ Dy จะ เปลี่ยนจากสารกึ่งตัวนำไปเป็นตัวนำ และเป็นการเพิ่มสภาพนำความร้อนและสภาพนำไฟฟ้า แต่ใน

ขณะที่การดึงอ็อกซิเจนออกจากโครงสร้างเป็นการลดสภาพนำความร้อนและสภาพนำไฟฟ้า และ ค่า ZT และการเจือ N เป็นการทำวิศกรรมของโครงสร้างแถบพลังงานของสตรอนเทียมไททาเนต เพื่อที่จะสามารถเพิ่มประสิทธิภาพของอุปกรณ์ที่ใช้เกี่ยวแสงอาทิตย์ได้

## 5.2 ข้อเสนอแนะ

- 5.3.1 เนื่องจากการคำนวณคุณสมบัติทางอิเล็กทรอนิกส์โดยใช้ DFT ให้ค่าช่องว่างพลังงานที่ น้อยกว่าที่ควรจะเป็น จึงควรลองคำนวณคำนวณคุณสมบัติทางอิเล็กทรอนิกส์โดยใช้ GW ซึ่งมี ความแม่นยำในการคำนวณค่าช่องว่างพลังงาน เพื่อเปรียบเทียบกับผลการคำนวณโดยใช้ DFT+U ที่ได้จากงานวิจัยนี้
- 5.3.2 การคำนวณโดยใช้โปรแกรม BoltzTrap ขาดการพิจารณาผลของโฟนอน จึงอาจมีเพิ่ม การคำนวณในส่วนนี้เข้าไป เพื่อให้ผลการาคำนวณแม่นยำมากยิ่งขึ้น
- 5.3.3 ศึกษาผลของตำแหน่งของออกซิเจนที่ถูกแทนด้วยอะตอมไนโตรเจนหรือช่องว่างต่อ คุณสมบัติทางอิเล็กทรอนิกส์และเทอร์โมอิเล็กทริกส์เพิ่มเติม

# บรรณานุกรม

- [1] A Kinaci CS, Cag $\square$ n T. Electronic transport properties of SrTiO3 and its alloys:  $Sr_{1\square_{x}}La_{x}TiO_{3}$  and  $SrTi_{1\square_{x}}M_{x}O_{3}$  (M=Nb,Ta). PHYSICAL REVIEW B. 2010;82(15):1-8.
- [2] Zhilun Lu DCS Huairuo Zhang, Reaney IM. High-Figure-of-Merit Thermoelectric La-Doped A-Site-Deficient SrTiO<sub>3</sub> Ceramics. American Chemical Society. 2016;28:925-935.
- [3] Sun J, Singh DJ. Thermoelectric properties of n-type SrTiO<sub>3</sub>. APL Materials. 2016;4(10):1-6.
- [4] et al AK. Effect of oxygen vacancies in the SrTiO3 substrate on the electrical properties of the LaAlO<sub>3</sub> /SrTiO<sub>3</sub> interface. Physical Review. 2007;75:1-4.
- [5] Sikam P, Moontragoon P, Sararat C, Karaphun A, Swatsitang E, Pinitsoontorn S, et al. {DFT} calculation and experimental study on structural, optical and magnetic properties of Co-doped SrTiO3. Applied Surface Science. 2018;p. -.
- [6] Sikam P, Moontragoon P, Jumpatam J, Pinitsoontorn S, Thongbai P, Kamwanna T. Structural, Optical, Electronic and Magnetic Properties of Fe-Doped ZnO Nanoparticles Synthesized by Combustion Method and First-Principle Calculation. Journal of Superconductivity and Novel Magnetism. 2016 Dec;29(12):3155-3166.
- [7] Smith AGH. Structural and Defect Properties of Strontium Titanate. Department of Chemistry, University College London; 2011.
- [8] N H Chan RKS, Smyth DM. Nonstoichiometry in SrTiO<sub>3</sub>. Journal of the Electrochemical Society. 1981;128:1762–1769.
- [9] et al YYM. Effect of nitrogen doping on optical properties and electronic structures of SrTiO<sub>3</sub> films. Applied Physics Letters. 2006;89:231922.
- [10] Aschauer U, Spaldin NA. Competition and cooperation between antiferrodistortive and ferroelectric instabilities in the model perovskite SrTiO3. Journal of Physics: Condensed Matter;26(12):122203.

บรรณานุกรม 49

[11] Fang X. Phase Transitions in Strontium Titanate. Department of Physics, University of Illinois at Urbana-Champaign;.

- [12] et al SP. Bulk properties and electronic structure of SrTiO3, BaTiO3, PbTiO3 per-ovskites: an ab initio HF/DFT study. Computational Materials Science. 2004;29:165–178.
- [13] Mo SD, Ching WY, Chisholm MF, Duscher G. Electronic structure of a grain-boundary model in SrTiO<sub>3</sub>. Phys Rev B. 1999 Jul;60:2416-2424.
- [14] Fabricius G, Peltzer y Blanca EL, Rodriguez CO, Ayala AP, de la Presa P, Lopez Garcia A. Electronic structure of cubic SrHfO<sub>3</sub>: Ferroelectric stability and detailed comparison with SrTiO<sub>3</sub>. Phys Rev B. 1997 Jan;55:164–168.
- [15] Luo W, Duan W, Louie SG, Cohen ML. Structural and electronic properties of n-doped and p-doped SrTiO<sub>3</sub>. Phys Rev B. 2004 Dec;70:214109.
- [16] K L Zhao DC, Li DX. First principles study of interface structure and electronic property of Au/SrTiO3(0 0 1). Computational Materials Science. 2010;50:98–104.
- [17] Q Ma DS F Tietz, Stover D. Y-Substituted SrTiO3-YSZ Composites as Anode Materials for Solid Oxide Fuel Cells: Interaction Between SYT and YSZ. Journal of Power Sources. 2010;195:1920 1925.
- [18] Gerblinger J, Meixner H. Fast Oxygen Sensors Based on Sputtered Strontium Titanate. Sensors and Actuators B. 1991;4:99–102.
- [19] S Shahabuddin SM N Muhamad Sarih, Ching J. SrTiO3 Nanocube–Doped Polyaniline Nanocomposites with Enhanced Photocatalytic Degradation of Methylene Blue under Visible Light. Polymers. 2016;8(2):27.
- [20] Zangwill A. A half century of density functional theory. Physics Today. 2015;68(7): 34-39.
- [21] Hafner J. Ab-Initio Simulations of Materials Using VASP: Density-Functional Theory and Beyond. Computational Chemistry. 2008;29(13):2044-2078.
- [22] Lei Wang TM, Ceder G. Oxidation energies of transition metal oxides within the GGA +U framework. Physical Review B. 2006;73(19):1-5.
- [23] Rowe DM. Materials, Preparation, and Characterization in Thermoelectrics. CRC Press; 2012.
- [24] มูลตระกูล. วัสดุศาสตร์เชิงคำนวณเบื้องต้น Introduction To Computational Materials Science. ภาควิชาฟิสิกส์ คณะวิทยาศาสตร์ มหาวิทยาลัยขอนแก่น; 2014.
- [25] C E Ekuma JM M Jarrell, Bagayako D. First principle electronic, structural, elastic, and optical properties of strontium titanate. AIP Advances. 2012;2(1):1-14.

บรรณานุกรม

[26] van Benthem K, French CEH. Bulk electronic structure of SrTiO<sub>3</sub> Experiment and theory. Applied Physics. 2001;90:6156.

- [27] Sun J, Singh DJ. Thermoelectric properties of n-type SrTiO3. APL Materials. 2016;4:104803.
- [28] Goidsmid HJ, Sharp JW. Estimation of the Thermal Band Gap of a Semiconductor from Seebeck Measurements. Electronic Materials. 1999;28(27):869–872.
- [29] Sikam P, Sararat C, Moontragoon P, Kaewmaraya T, Maensiri S. Enhanced thermoelectric properties of N-doped ZnO and SrTiO3: A first-principles study. Applied Surface Science. 2018;.



Contents lists available at ScienceDirect

## **Applied Surface Science**

journal homepage: www.elsevier.com/locate/apsusc



### Full Length Article

# DFT calculation and experimental study on structural, optical and magnetic properties of Co-doped SrTiO<sub>3</sub>



Pornsawan Sikam <sup>a</sup>, Pairot Moontragoon <sup>a,b,c,d,\*</sup>, Chayanin Sararat <sup>a</sup>, Attaphol Karaphun <sup>a</sup>, Ekaphan Swatsitang <sup>a,b,c</sup>, Supree Pinitsoontorn <sup>a,b,c</sup>, Prasit Thongbai <sup>a,b,c</sup>

- <sup>a</sup> Department of Physics, Khon Kaen University, Khon Kaen 40002, Thailand
- b Integrated Nanotechnology Research Center (INRC), Department of Physics, Khon Kaen University, Khon Kaen 40002, Thailand
- c Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage, Khon Kaen University, Khon Kaen 40002, Thailand
- <sup>d</sup> Thailand Center of Excellence in Physics, Commission on Higher Education, Bangkok 10400, Thailand

### ARTICLE INFO

#### Article history: Received 15 October 2017 Revised 14 February 2018 Accepted 15 February 2018 Available online 22 February 2018

Keywords: Co-doped SrTiO<sub>3</sub> Hydrothermal DFT DMS Photocatalyst

### ABSTRACT

SrTiO<sub>3</sub> (STO) is an attractive material that offers a wide range of technological applications, e.g., ferroelectricity, solar cell and photocatalysis. An application that the STO might be utilized is diluted magnetic semiconductors. Here, we would like to improve magnetic property of the STO by Ti site substitution using Co atoms. In this work, we present the structural, optical and magnetic properties of perfect and oxygen defect structures of STO and Co-doped SrTiO<sub>3</sub> via experimental and theoretical aspects. In firstprinciples calculation, the structural properties, electronic band structure and magnetic properties of undoped STO and Co-doped STO supercells have been investigated by density functional theory using GGA with Hubbard model scheme (GGA+U) on Vienna Ab initio Simulation Package (VASP). In calculation detail, pure phase of STO with nanometer scale size of undoped STO and Co-doped STO have been synthesized using hydrothermal technique. The findings obtained from DFT computation reveal that the new states in gap between the valence band and conduction band of the STO were induced after Co atom was doped into the host structure. These impurity states narrow the band gap corresponding to experimental results. In addition, band splitting was observed on O defect and dopant systems, indicating that missing O and doping Co on STO could induce magnetization on none-magnetic material of STO. In case of synthesized powder, ferromagnetic behaviors are determined in the dopant system annealed in Ar. Additionally, another appreciated point of Co doping is that surface area of the STO is improved. Thus, it is expected that the surface activity, such as photocatalytic performance, of the STO will be enhanced. From all referred results, they introduce that the Co-doped STO might be a potential candidate to be a photocatalyst for the high photocatalytic performance under visible light radiation and the diluted magnetic semiconductor in spintronic devices.

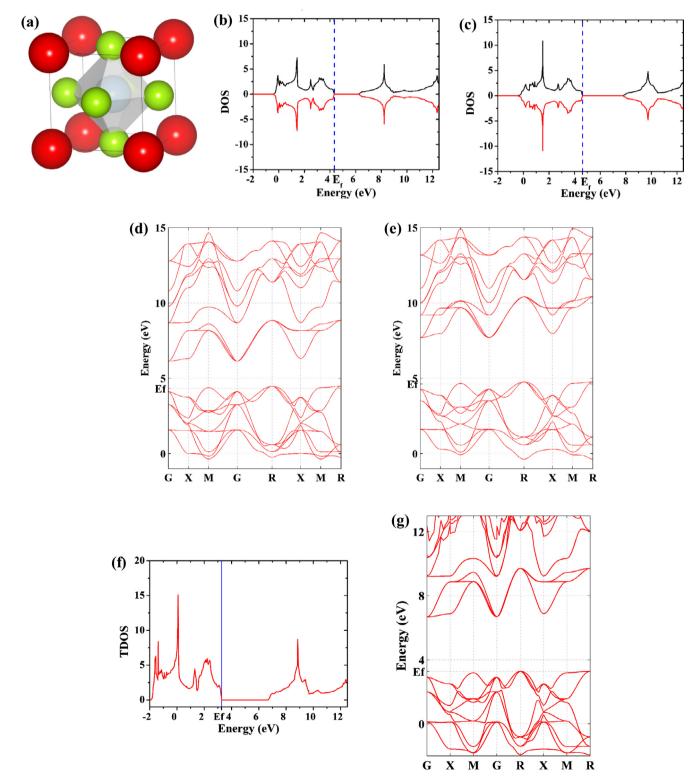
© 2018 Elsevier B.V. All rights reserved.

#### 1. Introduction

SrTiO<sub>3</sub> (STO), a semiconductor with 3.2 eV [1] of indirect band gap ( $E_g$ ) and a perovskite structure material, receives aplenty attention from scientists. In current, because of outstanding properties of the STO, the scientists attempt to improve properties to enhance performance of STO applications such as dye-sensitized solar cell [2,3], photocatalyst activity [4], water splitting [5,6], hydrogen production [7] and, thermoelectric devices [8]. Among these, there has been a growing interest in using STO as a catalyst

E-mail address: mpairo@kku.ac.th (P. Moontragoon).

for photocatalytic processes because of its semiconducting feature, thermal stability and photocorrossion resistance. However, the band gap of this oxide corresponds to the UV light which is only a minor portion (around 4%) of the entire solar spectrum. This factor remarkably limits the photocatalytic performance of STO. To overcome the hindrance, a possible way to enhance the efficiency is to engineer the band gap in order to appropriately match the energy of visible and infrared light by means of introducing impurity.


However, the STO still has disadvantages, for example, it has no magnetism (diamagnetic behavior) at room temperature and  $E_g$  is according to ultraviolet range, just 4% of solar radiation. Here, we also would like to improve magnetic properties of the STO to be more applications such as diluted magnetic semiconductors

 $<sup>\</sup>ast$  Corresponding author at: Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.

(DMSs) which is a class of spintronic devices. Our previous work, Sikam et al. [9] and Moontragoon et al. [10], found that iron (Fe) and manganese (Mn) doping on ZnO structure could induce magnetic behavior on the non-magnetic material of ZnO. In case of 3d electron material doping on the STO, report of experiment by Karaphun et al. [11,12], and Siddheswaran et al. [13] points out that 3d transition metal doping on the STO structure could induce

magnetic behavior on the diamagnetic material. Therefore, in this work, Co, which is 3d electron transition, would be doped into the STO structure then, structure, magnetism and, electronic band structure will be observed.

In addition to the magnetism, the Co-doped SrTiO<sub>3</sub> is expected to present more specific surface area than the undoped STO because of defect on the surface induced by effort to replace the



**Fig. 1.** (a) optimized structure, DOS calculated using (b) GGA and (c) GGA+U, and band structure calculated using (d) GGA and (e) GGA+U of an unit-cell STO.  $E_f$  addressing at 1.66 and 2.94 eV for GGA and GGA+U approaches, respectively. Moreover, calculated (f) DOS and (g) band structure using HSE hybrid functional with  $E_f$  locating at 3.27 eV.

host site by added impurity atoms. This is inspired by the report of Lu et al. [14]. They reported that when the STO was doped by BiFeO<sub>3</sub>, particles were smaller, leading to greater surface area and active surface. Additionally, the photocatalytic performance of hydrogen production of the doped STO is larger than that of the pure STO, approximately ten times under UV-visible radiation. Moreover, being greater of photocatalytic activity after Co was doped on the STO (thin film) is reported by Ichihara et al. [15] that the Co-doped STO illustrates higher photocatalytic activity for methyl blue under visible light radiation of 460 nm. In the same trend to Fe-implanted STO reported by Lobacheva et al. [16], adding other atom (Fe) on the host STO brings about O vacancy and

**Table 1**The calculated bulk modulus and energy band gap.

|                   | Bulk modulus (GPa) | Energy band gap |          |
|-------------------|--------------------|-----------------|----------|
|                   |                    | G-G (eV)        | G-R (eV) |
| GGA               | 173.71             | 1.74            | 1.44     |
| GGA+6.0           | 151.93             | 2.74            | 2.12     |
| GGA+7.0           | 148.87             | 2.91            | 2.44     |
| GGA+8.0           | 145.98             | 3.07            | 2.63     |
| GGA+8.6           | 144.34             | 3.10            | 2.61     |
| GGA+8.7           | 181.21             | 3.26            | 2.75     |
| GGA+8.8           | 143.79             | 3.09            | 2.59     |
| GGA+9.0           | 143.26             | 3.07            | 2.57     |
| GGA+10.0          | 140.75             | 2.99            | 2.48     |
| Experimental data | 174-183 [27,28]    | 3.75 [29]       | 3.25[29] |

more surface defect. Therefore, effect of the Co adding to the particle size and surface area will be observed in this work.

Another problem of the STO is that it is not easy to prepare the perovskite structure of the SrTiO<sub>3</sub> without secondary phase. The secondary phases that have been examined are SrCO<sub>3</sub> [4], Sr (NO<sub>3</sub>) [15], Sr<sub>2</sub>TiO<sub>4</sub> [18]. Materialists employ various methods to prepare nanoparticles such as hydrothermal [4,11,19], combustion [17,20,21] and, simple polymer solution route [18]. Among these, the hydrothermal synthesis can successfully synthesis pure phase of the STO as the reports of Karaphun et al. [11] and Zhang et al. [19]. In addition, high temperature is not required to chemical react in the hydrothermal process because massive pressure within Teflon-lined autoclave can support chemical reaction of substance. Thus, this work would like to study of STO and Co-doped STO nanoparticles prepared by hydrothermal method using Ti P25 (compositing phase of anatase and rutile) as titanium source because anatase and rutile phases show different energy band gap that could lead material to absorb wider range light, resulting in high performance under solar radiation utilization. Also, Ishikawa et al. [21] reported that the SrTiO<sub>3</sub> structure can be prepared using the anatase and rutile phases. Therefore, it is interesting that how optical band gap and structure of the STO synthesized by mixing phase of TiO<sub>2</sub> would be.

In addition, we pay attention to oxygen defects on the STO structure because the oxygen vacancy on the structure could improve optical and magnetic properties of the STO, suggested

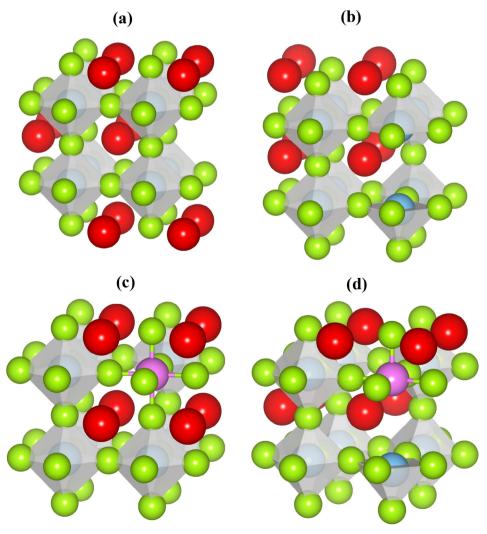



Fig. 2. Optimized super-cell of (a) STO, (b) O defect of STO, (c) Co-doped STO, (d) O defect of Co-doped STO structures.

by Tan et al. [22] and Krithiga et al. [23]. Therefore, properties of the prepared samples annealed in Ar to observe oxygen vacancy influence on the undoped STO and Co-doped STO structures will be considered in this work too.

In case of calculation, density functional theory or DFT method is widely utilized to calculate and examine properties of material because it can reduce complicate in many-body system calculation. The DFT is based on approximation that potential energy depends

on electron density. However, energy band gap obtained from the DFT is far from experimental value, for example, the  $E_{\rm g}$  of SrTiO<sub>3</sub> as 0.83 eV, calculated by Carlotto et al. [24], which underestimates than experiment value (3.2 eV). To correct this problem, Hubbard parameter (U) for 3d transition element are added in the calculation through effective Hubbard parameter or  $U_{\rm eff}$ , difference of on-site coulomb interaction (U) and strength of the on-site Coulomb interaction (J). After the U is added, the  $E_{\rm g}$  of the STO is

Table 2
Lattice parameters of the calculated forty-atom systems via GGA and GGA+U calculation.

| Structure          | Lattice parameters (a | Lattice parameters (angstrom) |      | $Magnetization  (\mu_B)$ |
|--------------------|-----------------------|-------------------------------|------|--------------------------|
|                    | a                     | С                             |      |                          |
| STO                | 3.91246               | 3.91249                       | 1.79 | 0.000                    |
| STO+U              | 3.91246               | 3.91249                       | 3.05 | 0.001                    |
| Co-doped STO       | 3.90122               | 3.90131                       | 0.52 | 1.001                    |
| Co-doped STO+U     | 3.90122               | 3.90131                       | 1.55 | 0.893                    |
| O defect of CSTO+U | 3.85452               | 3.85615                       | 1.57 | 1.000                    |

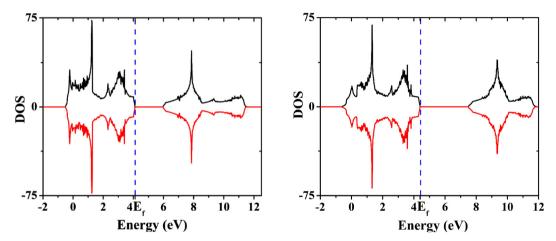



Fig. 3. DOS of forty-atom STO calculated using (left) GGA and (right) GGA+U where  $E_f$  located at 4.12 and 4.41 eV for GGA and GGA+U calculations, respectively.

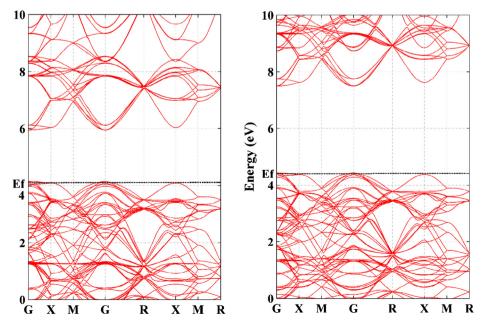



Fig. 4. Band structure of eight-unit cell of STO calculated using (left) GGA and (right) GGA+U where E<sub>f</sub> located at 4.12 and 4.41 eV for GGA and GGA+U calculations, respectively.

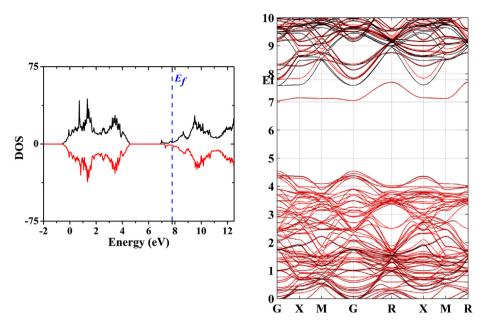



Fig. 5. (left) DOS and (right) band structure of O defect on STO super-cell structure calculated using GGA+U where  $E_f$  located at 7.79 eV.

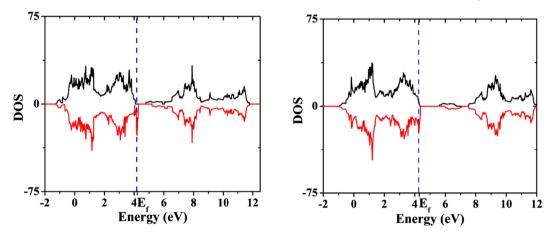



Fig. 6. DOS of forty-atom Co-doped STO calculated using (left) GGA and (right) GGA+U where E<sub>f</sub> located at 4.20 and 4.29 eV for GGA and GGA+U calculations, respectively.

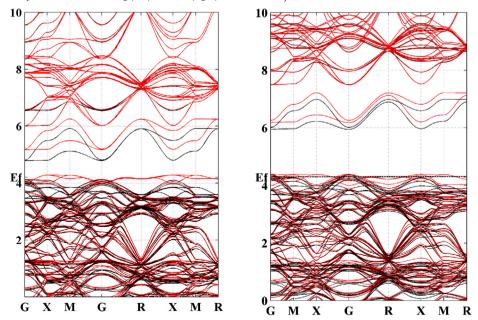
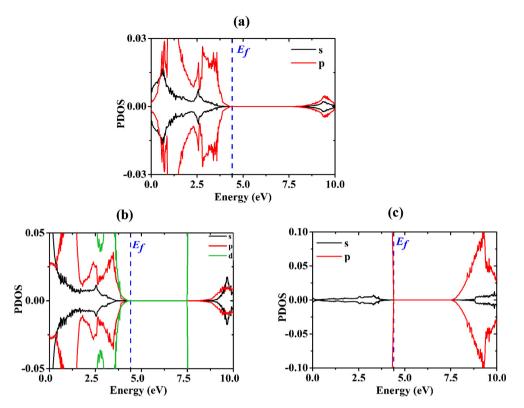
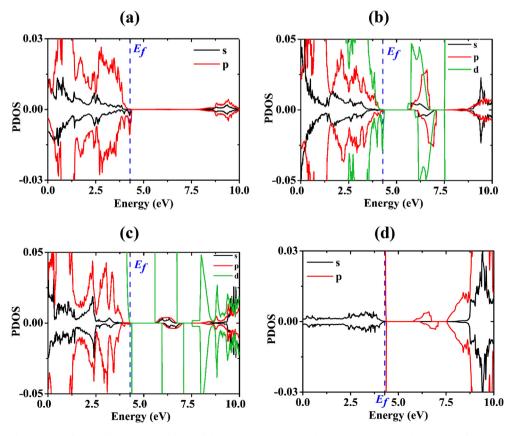





Fig. 7. Band structure of Co-doped STO super-lattice structures calculated using (left) GGA and (right) GGA+U where  $E_f$  located at 4.20 and 4.29 eV for GGA and GGA+U calculations, respectively.



**Fig. 8.** PDOS of (a) Sr, (b) Ti and (c) O of the  $SrTiO_3$  calculated using GGA+U method with  $E_f$  of 4.41 eV.



**Fig. 9.** PDOS of (a) Sr, (b) Ti, (c) Co and (d) O of the Co-doped SrTiO<sub>3</sub> calculated using GGA+U method with  $E_f$  of 4.29 eV.

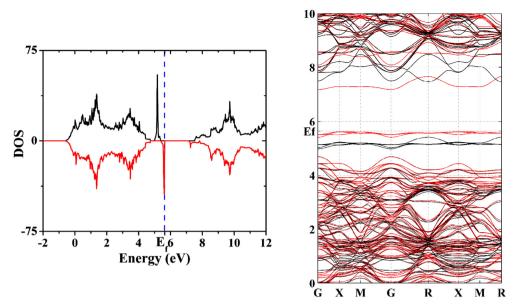



Fig. 10. (left) DOS and (right) band structure of O defect on STO super-lattice modeling structure calculated using GGA+U where E<sub>f</sub> located at 5.64 eV.

wider as 1.33 eV [24]. From this, the parameter U of Ti and Co is utilized to calculate optimized structure, magnetization, density of states (DOS) and band structure of the STO and Co-doped STO.

From above referred problems, this work would like to study the STO and Co-doped STO whether doping cobalt influence on magnetic behavior of the STO or not and, how structural and optical properties of the STO are after the cobalt was doped into the STO structure. In addition to perfect structure, oxygen imperfect system would be also studied. Thus, aim of this work is to

characterize the structural, optical, and magnetic properties of the undoped and doping Co on the SrTiO<sub>3</sub> both the perfect and oxygen defect structure both experimental and theoretical investigations. In the experiment, the nanoparticles of the STO and Co-doped STO will be prepared using hydrothermal method then, annealed in normal air and Ar gas. In the calculation, optimized structure, density of states, band structures and magnetization of the STO and Co-doped STO would be investigated by the DFT study using the VASP code.

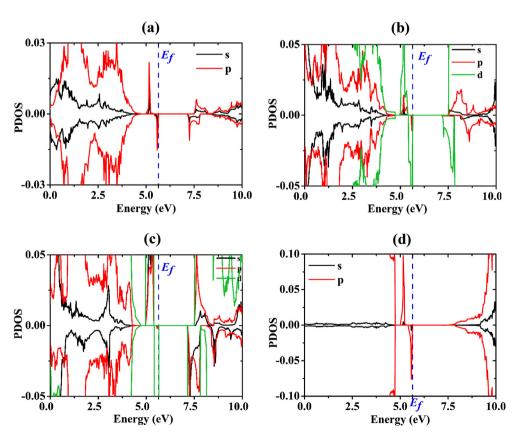



Fig. 11. PDOS of (a) Sr, (b) Ti, (c) Co and (d) O of the O defect on Co-doped SrTiO<sub>3</sub> calculated using GGA+U method with  $E_F$  of 5.64 eV.

### 2. Experimental details

#### 2.1. Synthesis details

Nanopowder of  $SrTi_{1-x}Co_xO_3$  (x = 0.125) were prepared using hydrothermal synthesis. Solutions of SrO<sub>6</sub>N<sub>2</sub> (99.0%, Aldrich), TiO<sub>2</sub>-P25 (99.5%, Aldrich) and Co(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O (99.99%, Aldrich) were mixed together and stirred at room temperature for 3 h. Then, 10 M of potassium hydroxide (KOH) was added to the solution and continually stirred for 24 h. After that, the solution was poured into Teflon-lined stainless steel autoclave for hydrothermal treatment hold at 200 °C for 24 h. Next, precipitate was washed to eliminate contaminant, e.g. KNO<sub>3</sub> and hydrocarbon, using ethanol and deionized (DI) water several times. Then, the precipitate would be dried in an oven at 80 °C. After that, powder of as-synthesized undoped and Co-doped SrTiO<sub>3</sub> would be obtained. Finally, the assynthesized powder was annealed in air and argon gas at 800 °C holding for 3 h. In case of undoped samples, the STO was prepared the same route to the doped samples but the Co(NO<sub>3</sub>)<sub>2</sub>.6H<sub>2</sub>O was not added.

### 2.2. Characterizations

The structure of pure STO and Co-doped STO samples were characterized by an X-ray diffraction (XRD) technique using Xray diffractometer (PANalytical, EMPYREAN) and element composition of prepared samples were analyzed by an energydispersive X-ray spectroscopy (EDX) analysis via energydispersive X-ray spectroscopy (SNE-4500 M, SEC). Morphology were studied using scanning electron microscope (SEM) and transmission electron microscope (TEM). SEM micrographs were performed by the scanning electron microscopy (SNE-4500 M, SEC). Both TEM images and selected area electron diffraction (SAED) analysis were conducted using the transmission electron microscopy (FEI Tecnai G<sup>2</sup>). The optical band gap was determined using absorbance mode of UV-Vis spectroscopy (UV-3101PC, Shimadzu). The magnetic behaviors were examined using a vibrating sample magnetometer or VSM, (Versa Lab VSM mode, Quantum Design) in an applied field from -10,000 to +10,000 Oe. Elemental mapping was detected using focused Ion Beam (FIB) technology on scanning electron microscope (SEM) or FIB-SEM (FEI Helios Nanolab G3 CX Dual Beam). In case of the surface area, it was analyzed using Brunauer, Emmett and Teller or BET technique (Autosorb-1 Quantachrome). Additionally, elemental percentage of Ti and Co was measured using inductively coupled plasma optical emission spectrometry or ICP-OES.

### 3. Computational details

Perfect and oxygen vacancy structure of undoped STO were modeled as a  $2\times2\times2$  super-cell which corresponds to a supercell of eight times as large as the size, containing 40 atoms, of a primitive unit cell in base plane direction. Then, a site of Ti was replaced by Co, called Co-doped STO or CSTO. The orbitals of Sr  $(4s^24p^65s^2)$ , Ti $(3p^64s^23d^2)$ , O $(2s^22p^4)$  and Co $(3d^84s^1)$  were treated as valence electrons. Calculation was performed using Vienna Ab initio Simulation Package (VASP) [25]. A  $19\times19\times19$  k-point mesh in the Brillouin zone and the cutoff energy of the plane wave of 360 eV were employed. Projector-augmented plane wave pseudopotential method (PAW) [26] within of the generalized gradient approximation with Hubbard model (GGA+U) since coulomb interaction  $U_{\rm eff}$  of Co and Ti as 3.1 and 8.7 eV, respectively. Scheme of the Perdew–Burke–Ernzerh of PBE has been used to treat exchange and correlation energy to explore the optimized structures, density

of states, band structure as well as magnetization of the STO after the cobalt atoms were added in to the structure.

#### 4. Results and discussion

An optimized unit cell of STO are shown in Fig. 1(a). Lattice parameter a obtained from optimization is 3.87765 angstrom. DOS and band structure of five atoms calculated using GGA are shown in Fig. 1(b) and (d), respectively.  $E_g$  of the STO is 1.66 eV. The  $E_g$  obtained from the GGA calculation is very underestimate compared to the experimental report (3.2 eV of the  $E_g$ ). To improve interaction of electrons in systems, Hubbard parameter (U) would be added in the calculation.

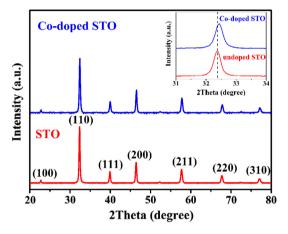
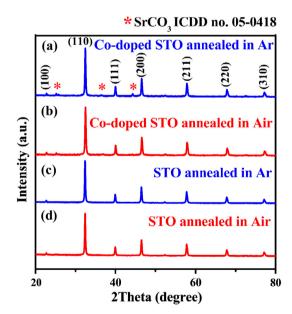




Fig. 12. XRD patterns of as-prepared (down) STO and (up) Co-doped STO.

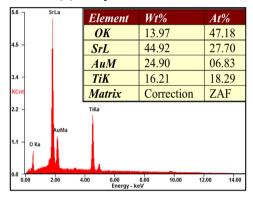


**Fig. 13.** XRD patterns of Co-doped STO (a) annealed in Ar and (b) annealed in air and, STO (c) annealed in Ar and (d) annealed in air.

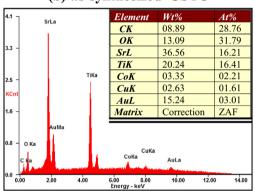
**Table 3**Average particle size obtained from the TEM images and, specific surface area and pore volume of the prepared samples measured by BET technique.

| Samples              | Particle<br>size (nm) | Surface area (m²/g) | Pore volume (cc/g) |
|----------------------|-----------------------|---------------------|--------------------|
| STO annealed in air  | 65.94                 | 15.43               | 0.3453             |
| CSTO annealed in air | 51.68                 | 19.38               | 0.3179             |
| STO annealed in Ar   | 58.70                 | 16.06               | 0.3452             |
| CSTO annealed in Ar  | 41.39                 | 18.49               | 0.2976             |

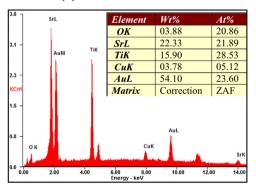
Next, the Hubbard parameter (U) for Ti would be tested using k-point grid of  $21 \times 21 \times 21$ . Table 1 is showing bulk modulus of


**Table 4**Obtained experimental data of prepared STO and CSTO.

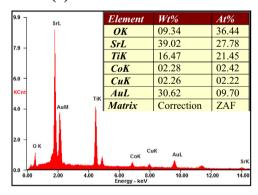
| Samples              | Lattice parameters a (angstrom) | $E_g$ (eV) | Magnetism at 300 K |
|----------------------|---------------------------------|------------|--------------------|
| As-prepared STO      | 3.91094                         | 3.13       | Diamagnetism       |
| As-prepared CSTO     | 3.90730                         | 3.07       | Diamagnetism       |
| STO annealed in air  | 3.90664                         | 3.09       | Paramagnet         |
| CSTO annealed in air | 3.90046                         | 3.08       | Paramagnet +       |
|                      |                                 |            | Ferromagnetism     |
| STO annealed in Ar   | 3.90591                         | 3.15       | Diamagnetism +     |
|                      |                                 |            | Ferromagnetism     |
| CSTO annealed in Ar  | 3.90215                         | 3.11       | Ferromagnetism     |


GGA and GGA+U calculations. Comparing the bulk modulus and energy gap (G to G and G to R) obtained from the calculation to experiment reports, 8.7 eV of U leads the bulk modulus and band gap of STO to be closed to the experiment data (174–183 GPa). From this point, this work would utilize U of 8.7 eV for Ti in the calculation.

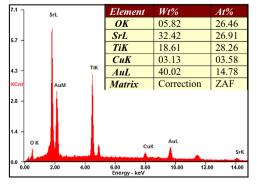
After adding U in the calculation (U = 8.7 eV for Ti), the  $E_g$  is wider to 2.94 eV because bottom states of conduction band shift to higher energy, as shown in Fig. 1(c, e). Here, adding U could improve on-site coulomb interaction of valence electrons of the systems to be closer to the experimental report. Additionally, indirect band gap, where VCM locates at R point and CBM locates at G point, of the STO calculated using the GGA and GGA+U approaches are observed in Fig. 1(d, e). This indirect band gap of the STO is according to experimental report of Fu et al. [30].


### (a) as-synthesized STO




### (b) as-synthesized CSTO




### (c) STO annealed in Air



### (d) CSTO annealed in Air



### (e) STO annealed in Ar



### (f) CSTO annealed in Ar




Fig. 14. EDX analysis of as-prepared (a) STO and (b) Co-doped STO, annealing in air of (c) STO and (d) Co-doped STO and, annealing in Ar of (e) STO and (f) Co-doped STO.

(a)

### As- synthesized STO

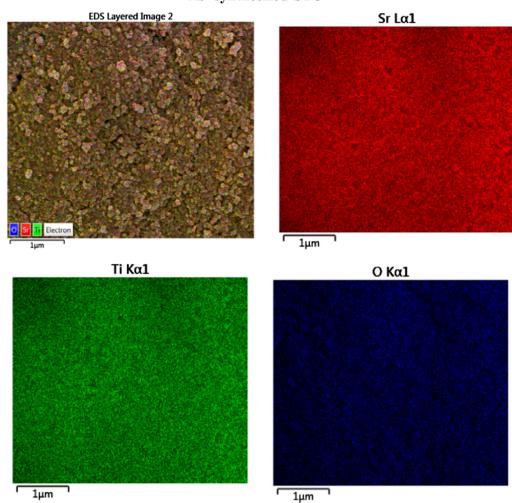



Fig. 15. Elemental mapping of (a) as-synthesized STO, (b) STO annealed in normal air and (c) STO annealed in Ar.

Calculated DOS of the unit-cell STO using HSE hybrid functional advised by Heyd, Scuseria, and Ernzerhof [31] are represented in Fig. 1(f). The  $E_g$  obtained from this method is 3.40 eV. Comparing the HSE to the GGA+U calculation results, the DOS obtained from two approaches are similar. Nonetheless, the HSE method still give band width closer to the experimental report. The calculation using the HSE method has undoubtedly been beneficial, there, nevertheless, is good reason to be concerned about drawback. The calculation using the HSE hybrid functional has to utilize much more resource than the DFT approach. Calculation of forty-atom STO and dopant systems is overload of our computer. To solve this problem, because calculated results of the GGA+U is not significantly different from the HSE hybrid functional calculation, this work would report and discuss the results calculated using GGA+U method.

The following step, super-cell modelling, consisting forty atoms, will be studied. Optimized structures of pure STO, an oxygen defect of the STO structure, an atom of Co doping on the STO (Co-doped STO or CSTO), and a site of oxygen vacancy on the Co-doped STO are represented in Fig. 2(a), (b), (c) and (d), respectively. Lattice parameters obtained from structural optimization of the STO, Co-doped STO and O defect on the CSTO calculated using GGA and GGA+U approaches are shown in Table 2. Here, the obtained *a* of

the STO is larger than that of experimental report (ICDD no. 35-0734, a = c = 3.9050 angstrom) about 0.19%. Comparing DOS of the STO calculated using GGA study and GGA+U calculation, as represented in Fig. 3(left), and Fig. 3(right), respectively, the DOS calculated using GGA and GGA+U are the same but conduction band states shift to higher states (from 6.0 to 7.6 eV), resulting in larger gap, same trend to 5 atoms systems.

Calculated band structures along any paths on first Brillouin zone of face centered cubic structures of the STO using the GGA and GGA+U were illustrated in Fig. 4(left) and (right). Both of them show similar band structure which valence band maximum (VBM) and conduction band minimum (CBM) is at the same point, Gamma (G). Comparing the  $E_{\rm g}$  of the GGA and GGA+U calculation, the  $E_g$  of the GGA+U is larger because the  $E_g$  calculated by GGA and GGA+U approaches exhibits 1.79 and 3.05 eV, respectively. These results indicate that added U of 8.7 eV for Ti does not change band model of the STO system but it leads the  $E_g$  to be wider and closer to experimental data (about 3.2 eV). Because on-site column interaction of 3d orbitals of Ti is not correct, adding U could correct this interaction. Therefore, 8.7 eV of  $U_{\text{eff}}$  is acceptable to correct the on-site coulomb of the Ti. To observe properties of the studied structure of the STO and Co-doped STO, this work will be conducted on add-

# (b) STO annealed in normal air

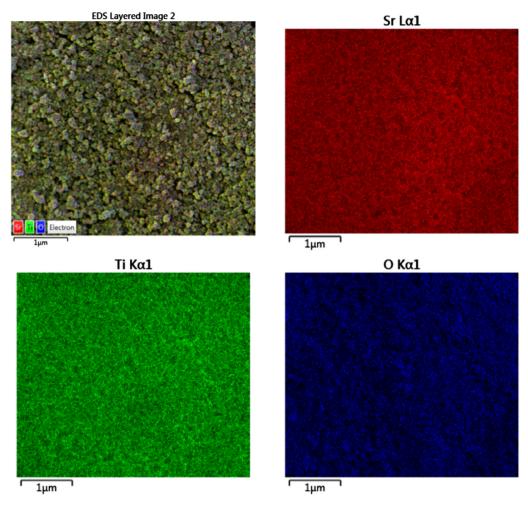



Fig. 15 (continued)

ing U approach. Although the STO is an indirect material (from experimental reported by Wu et al. [1]), the same point of the VBM and CBM at G point is due to Brillouin zone folding in small size systems. It cause G point acts as if it is the VBM and CBM. Nevertheless, indirect band gap semiconductor of the STO is confirming in Fig. 1(d, e) as explained already before.

DOS and band structure of oxygen imperfect structure of the STO are shown in Fig. 5(left) and (right), respectively. Here,  $E_g$  cannot be determined because the Fermi level ( $E_f$ ) is locating in conduction band. O defect in the structure could cause magnetism in the STO because asymmetry of spin up and spin down states, and spin difference in band structure. Magnetization obtained from GGA+U calculation is 0.4649  $\mu_B$ . This one points out that the diamagnetic STO could be magnetic material if there is oxygen vacancy in the system.

In the Co doping on the STO structure,  $U_{\rm eff}$  = 3.1 eV, U = 4.0 eV and J = 0.9 eV, of Co atom is employed in this calculation, as report of Wehling et al. [32]. Comparing DOS of Co-doped STO calculated using GGA and GGA+U approaches as represented in Fig. 6(left) and (right), respectively, appearing of step stone, which is located between valence band and conduction band, are observed when U of the Co and Ti are added in the calculation. As seen in band

structure of GGA and GGA+U calculations shown in Fig. 7(left) and (right), respectively, once adding U of Co and Ti, conduction states shift to higher energy, in the same direction to the pure STO systems. It results to wider  $E_g$  of the system to 1.55 eV, as shown in Table 2.

Influence of titanium site replacement by cobalt atom on band structure calculated via the GGA+U of perfect structure will be discussed as follow. Comparing the band structure of the pure STO (Fig. 4(right)) to the Co-doped STO (Fig. 7(right)), the splitting states of spin up and spin down states, showing existence of unpaired electrons, is not absolutely observed in the STO system but is explored in the Co-doped STO. This result is according to the DOS that the STO does not show asymmetry while the Co-doped STO exhibits inequality of number of spin up and spin down states, corresponding to report of Zhou et al. [33]. These evidences indicate that the STO is a non-magnetic compound while the Co-doped STO might represent magnetic behavior. In addition, states locating between valence band and conduction band after added Co content, which are observed in the DOS, are also found in the band structure. The Co doping in the system causes resulting in more number of hole in the system, leading to new states formation near  $E_f$ . A following result from the occurring new states is narrower  $E_g$ . Therefore, it is

# (c) STO annealed in Ar

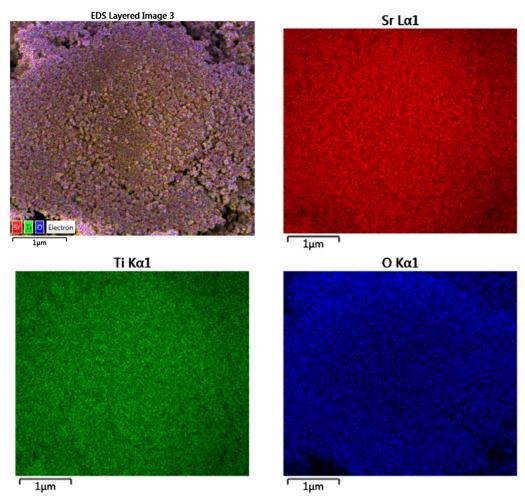



Fig. 15 (continued)

possible that optical band gap energy of the Co-doped STO will represent less width of the  $E_g$  than that of the undoped STO in experimental results. The new states would be acceptor states which are resulting from hole doping of substituted Ti site by Co atom.

Considering projected density of states (PDOS) of the pure STO to the dopant systems as illustrated in Figs. 8 and 9, respectively, PDOS of the STO is showing that inequality of spin electrons of the Sr, Ti and O are not explored. The p orbital of O is the VBM and d orbital of Ti is the CBM of this system. Comparing PDOS of pure systems to the doped STO, it is obviously showing that adding Co content extremely results to PDOS of the Ti. Here, the step stone of the Codoped STO system cause from electrons of Co and Ti. After Co content was doped into the STO structure, states of p orbital of the Sr at  $E_f$  is induced, asymmetry of spin electrons of d orbital of the Ti and Co, and p orbital of the O were observed. New states between gap is resulting from the Ti, Co, and O. It is possible that the d orbital of the Co could interact to host atoms and lead to band engineering. Here, it indicates that cause of narrower  $E_g$  of the dopant system is from the Co atom adding. These evidences confirm that the d orbital of Co could effect to electron states of the other atoms in the systems, leading to change in  $E_g$  and magnetism of the material.

Next, DOS and band structure of the O vacancy of the CSTO structure as shown in Fig. 10(left) and (right), respectively, would be considered. Comparing band structure of O defect of pure and doped STO (as shown in Fig. 5(right) and 10(right), respectively), states are similar except the new states locating near  $E_f$ . Here, Co atoms doping on the STO could induce the new states which would lead  $E_g$  of the O defect of CSTO system to less band width than that of the O imperfect structure of STO, same result to perfect structure. However, indirect  $E_{\rm g}$  of the O defect of CSTO structure is still wider than perfect structure. Finally, considering PDOS of the O defect of the CSTO as shown in Fig. 11, the states below  $E_f$  is resulting from Sr, Ti, Co and O atoms. Also, extremely asymmetry of the Ti and Co are observed. From this point, O defect could cause magnetism in the CSTO system. New states near  $E_f(5.0-6.4 \text{ eV})$  are observed in all atoms. It is possible that missing of O atom results in electron alignment and electron interaction of the system. Comparing magnetization of the CSTO to the O defect on the CSTO structure as shown in Table 2, the O vacancy system shows more magnetization. This magnetism was described by Venkatesan et al. [34], Coey et al. [35], Ren et al. [36] and Krithiga et al. [23]. They suggested that magnetism can be induced by oxygen vacancy for oxide semiconductor. This mechanism is F-center

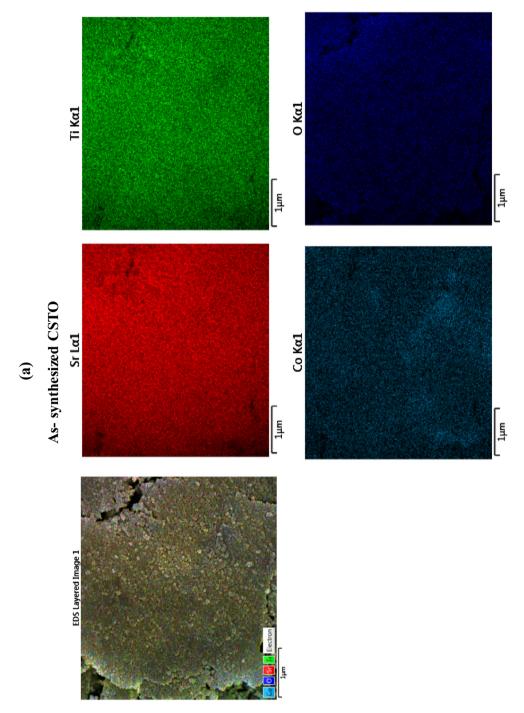



Fig. 16. Elemental mapping of (a) as-synthesized Co-doped STO, (b) Co-doped STO annealed in normal air and (c) Co-doped STO annealed in Ar.

exchange mechanism when electrons are trapped in oxygen vacancy in the lattice. All data from first-principles calculation is concluded in Table 2.

XRD patterns of as-prepared samples are shown in Fig. 12. All diffraction peaks are according to standard data of perovskite structure of SrTiO<sub>3</sub> (ICDD no. 35-0734), for example, at 2theta of 32.40, 46.49, and 57.80 degree corresponds to (1 1 0), (2 0 0), and (2 1 1) planes, respectively, while secondary peaks are not observed. Thus, the perovskite structure of the STO is a main phase of synthesized powder. However, shifting peaks of the doped

structure to the undoped STO are observed, as shown in inset graph of Fig. 12. The shifting peak to larger 2theta is confirming the other atom doping on the STO structure. After annealing, the XRD patterns were represented in Fig. 13. The perovskite structure of SrTiO<sub>3</sub> is still the main phase of the undoped STO and Co-doped STO powders that are annealed in both normal air and Ar gas. Secondary phase of SrCO<sub>3</sub> structure (ICDD no. 05-0418) is not observed in the STO but is examined in Co-doped systems, as labeled by stars (\*). Appearing of the SrCO<sub>3</sub> in the dopant system might be because the Co contents inhibit the SrTiO<sub>3</sub> structure

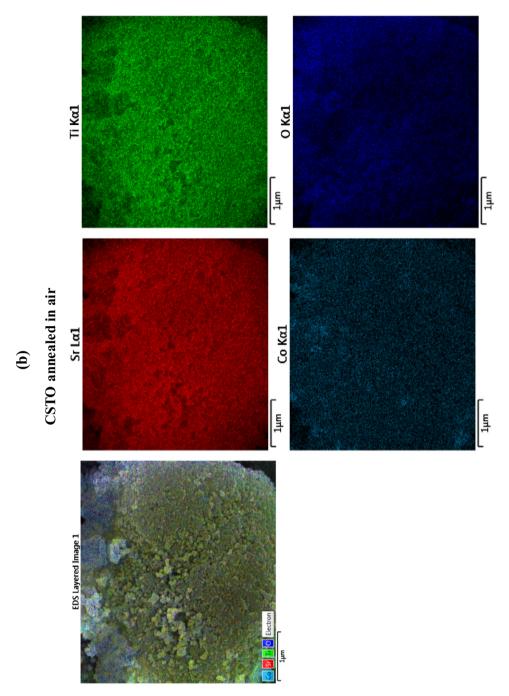



Fig. 16 (continued)

formation. It results in the structure formation of residue of the Sr content to C and O. The reason that the  $SrCO_3$  is not observed when the powders were not annealed might be because the  $SrCO_3$  requires high temperature (more than  $80\,^{\circ}C$ ) for structure formation. The impurity phase of the  $SrCO_3$  is also observed in the prepared STO using hydrothermal by Karaphun et al. [37] and Huang et al. [4]. There are some interesting reasons described the existence of the  $SrCO_3$  when the  $SrTiO_3$  is doping by other atoms. For instance, literatures written by of Guo et al. [38] and Huang et al. [4] suggested that the  $SrCO_3$  formation might be resulting from chemical reaction of  $Sr^{2+}$  and  $CO_3^{2-}$  where the  $CO_3^{2-}$  are forming from  $CO_2$  in air and  $OH^-$ . Nevertheless, Lee

et al. [18] found that the SrCO<sub>3</sub> appears when the STO was synthesized using temperature of 600 °C and, the SrCO<sub>3</sub> is not observed when prepared powers were heated at 1200–1300 °C. Thus, the SrCO<sub>3</sub> might not be able to form the structure when heat treatment is conducted at very high temperature. In addition, Carlotto et al. [39] supposed that a factor leading to the SrCO<sub>3</sub> is O vacancy inducing from added Co. Additionally, the SrCO<sub>3</sub> is also observed on other transition atom adding on the SrTiO<sub>3</sub>, for example, Feimplanted SrTiO<sub>3</sub> reported by Lobacheva et al. [16]. Nevertheless, the SrCO<sub>3</sub> is a diamagnetic compound so it does not effect to magnetism of the prepared samples. Lattice parameter *a* of prepared samples obtained from XRD peaks are listed in Table 4.

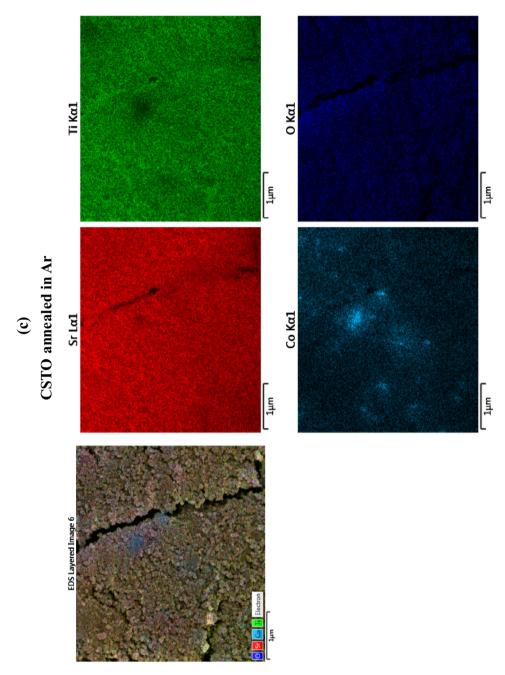



Fig. 16 (continued)

Existence of Co atoms on the STO structure were examined using EDX technique. Elements of the prepared samples are represented in Fig. 14. Because Au was coated on sample surface to improve electrical conductivity of the sample and Cu substrate was utilized as sample holder to analyze the samples using the EDX analysis, the Au and Cu would be detected as components of the synthesized samples. Considering atom percentage of the as-synthesized undoped STO as represented in Fig. 14(a), there are only substrate were detected as 27.70, 18.29 and 47.18 for Sr, Ti and O, respectively, same direction to the annealed samples as represented in Fig. 14(c, e). In case of as-synthesized Co-doped structure, as seen in Fig. 14(b), the Sr, Ti and O which are host elements were detected with high atom percentage of 25.37,

14.49 and 53.35, respectively, with not abundantly percentage of Co, in the same trend to annealed samples as seen in Fig. 14(d, f). These results are confirming the existence of Co atoms on the STO structure. Nevertheless, the percentage as shown in Fig. 14 is only relative percentage. It is not a mole percentage. Nonetheless, exact percentage of the Ti and Co was measured using the ICP-OES technique. The detected percentage of Ti and Co is 0.94 and 0.06, respectively.

Additionally, distributions of elements in the prepared samples are detected via elemental mapping using FIB-SEM technique, as seen in Figs. 15 and 16. Considering the STO as seen in Fig. 15(a-c), obtained elemental mapping are demonstrating the same distributions of Sr, Ti and O whole the detected area.

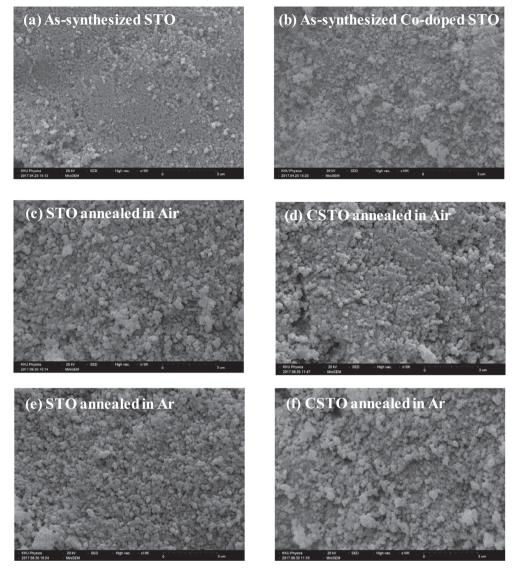



Fig. 17. SEM micrographs of as-prepared (a) STO and (b) Co-doped STO, annealing in air of (c) STO and (d) Co-doped STO and, annealing in Ar of (e) STO and (f) Co-doped STO.

Nevertheless, lower oxygen content is detected in the sample annealed in Ar, as seen in black area. This result is well-known that because annealing in Ar gas results in less oxygen quantity in the samples, leading to O vacancies.

In case of the doped STO, both as-synthesized and annealed samples are observed uniform distributions of Sr, Ti, Co and O, as showed in Fig. 16(a, b). In case of composition mapping of sample annealed in Ar gas as presented in Fig. 16(c), less distribution of the Co is explored. Comparing elemental mapping of annealed sample in difference atmosphere, this is pointing that annealing in Ar truly effects to added impurity which could result to properties of samples. Turning to detected cluster of the Co in Co-doped STO annealed in Ar, this is possible that Ar gas flowing leads to oxygen vacancies in the perovskite structure. Less oxygen quantity is not enough to form the perovskite structure anymore. This results to measured slightly Co residue.

Morphology of prepared samples was investigated using SEM and TEM techniques. The SEM images of the synthesized samples using hydrothermal method were illustrated in Fig. 17. Comparing particle size to scale, all prepared powders are in nanometer scale size both the undoped STO and Co-doped STO. Considering the

SEM micrographs of dopant systems as presented in Fig. 17(b, d, f), the particles of the doped structure show more aggregation and less homogenous shape than that of the undoped STO as illustrated in Fig. 17(a, c, e).

In case of the TEM analysis, Most of as-prepared particles both undoped and doped STO are cubic shape, as seen in Fig. 18. Particles of the as-prepared STO, as seen in Fig. 18(a), have average size of 43.12 nm. In case of as-synthesized doped STO, average particle size is 39.05 nm, as shown in Fig. 18(c). Here, particles are smaller when Co was doped into the STO. This result is according to the SEM images and report of Karaphun et al. [37]. It is possible that the Co contents inhibit structural formation of the STO, resulting in structural distortion and different particle-shape formation of the Co-doped STO powder compared to the undoped structure. TEM images of annealing in air of STO and CSTO, as represented in Fig. 19(a) and (c), respectively, synthesized particles are cubic shape for both the STO and CSTO. Average particle size of the STO is 65.94 nm while particles of the CSTO is a little smaller than that of the STO, as 51.68 nm, same trend to as-prepared samples. One observed view from annealing in normal air is that particle shape shows a little change from exactly cubic to a little distortion

# as-synthesized STO



# as-synthesized CSTO

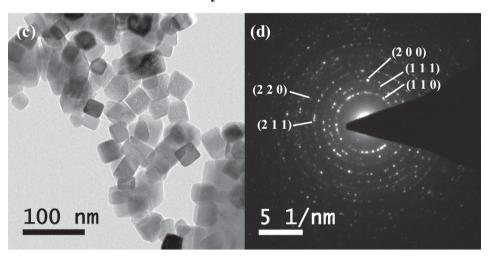
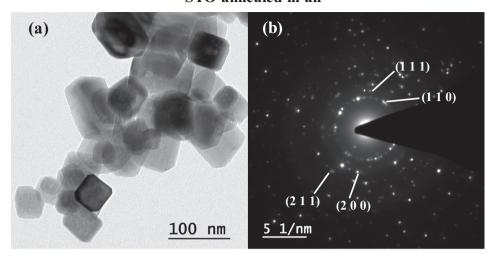




Fig. 18. TEM images of as-prepared (a) STO and (c) Co-doped STO and, SAED patterns of as-prepared (b) STO and (d) Co-doped STO.

cubic, compared to as-synthesized samples. This might be due to very high pressure at high temperature (800 °C). Such high pressure could lead particle shape to change. However, average particle size of the samples annealed in air are larger than the assynthesized samples might be because of much aggregation of small particles and grain combination of fine particles, resulting in larger particle size. Next, influence of annealing in Ar gas will be discussed. TEM images of the STO and CSTO annealed in Ar are represented in Fig. 20(a) and (c), respectively. Particle size of the STO and CSTO annealed in Ar as 58.70 and 41.39 nm, respectively. Here, it is obviously seen that O vacancy in the system could effect to particle size. As assumed that the less O might be not enough for the perovskite structure formation of the particles. This leads to the obtained structures are not perfect like as synthesized and annealed in normal air samples, as the observed important evidence of the smaller particle size, compared to the as-synthesized samples. To obviously illustrate difference of particle size at difference thermal treatment, the particle size of prepared samples is concluded in Table 3. In the presence of SAED analysis, all SAED patterns of the STO and CSTO are corresponding to plane of perovskite structure of the SrTiO<sub>3</sub> (ICDD no. 35-0734), as shown in Figs. 18–20.

From the BET study as seen in Table 3, it is observed that the Codoped STO shows obviously larger specific surface area and, less pore volume than the undoped STO. This is due to the fact that added Co contents to replace the Ti site results in defects on the material owning to unequal of ionic radius and oxidation number of Ti and Co. Considering effect of annealed atmosphere of undoped STO on the surface area, samples annealed in Ar shows higher surface area and less pore volume. A possible reason of the obtained bigger specific surface area and smaller pore volume is particle size. Smaller particle size could lead to the greater specific surface area. Nonetheless, the Co-doped STO samples show opposite trend to the undoped STO. As illustrated, the Co-doped STO annealed in Ar shows less pore volume and particle size, compared to the Co-doped STO annealed in normal air, but the specific surface area is smaller than the annealed in air. This point obviously presents that missing of the O exactly effects to specific sur-

# STO annealed in air



# CSTO annealed in air

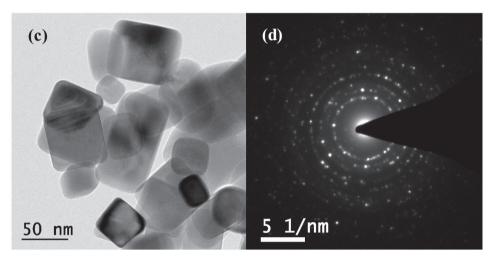
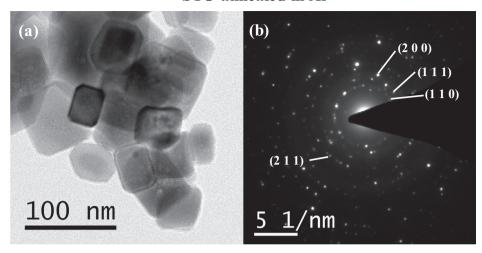



Fig. 19. TEM images of (a) STO, (c) Co-doped STO annealed in air and, SAED patterns of.

face area. This might be resulting from host structure cannot be formed when there is not enough O in the system, resulting in structural distortion as seen in shifting peaks of XRD patterns and particle distortion as seen in TEM image.

Therefore, from the study of surface properties of the prepared samples, we see that adding the Co atoms resulting in the less particle size and more specific surface area, according to the report of Lu et al. [14], Ichihara et al. [15] and Lobacheva et al. [16]. Thus, a benefit of this work is that the Co-doped STO could successfully promote the surface area of the STO because of less pore volume of the prepared samples. An obviously benefit of the obtained greater surface area, after Co atoms were added into the STO structure, is larger surface activity, expected to promote the photocatalytic activity of the STO.


After that, absorption range of the prepared samples will be studied as follow to answer the question that whether the synthesized samples could absorb Sun radiation and are able to utilized under solar spectrum or not.

Optical band gap energy of the STO and Co-doped STO were examined by UV and visible light absorbance detected using

UV-visible spectroscopy. Graphs of  $(\alpha h v)^{1/2}$  for indirect band gap material on vertical axis versus photon energy (hv) on horizontal axis were plotted then, band-gap width will be obtained from xaxis interception point where  $\alpha$  is the absorbance coefficient, h the Planck's constant and v the light frequency. As represented in Fig. 21,  $E_g$  of the STO and Co-doped STO is 3.13 and 3.07 eV, respectively. After heat treatment in normal air, the  $E_{\rm g}$  of the STO decreases to 3.09 eV and of the CSTO is a little increasing to 3.08 eV. The  $E_g$  of the STO obtained from experiment is close to the GGA+U calculation. Here, the heat treatment bring about more orderly atom. The more orderly arrangement of atoms in lattice effects to band structure of the system so the  $E_g$  is changed. From the band width, we see that CSTO shows narrower  $E_g$  than that of the undoped STO when annealed in both air and Ar. A point that we has observed is annealing in Ar, resulting in wider band-gap which is according to the firstprinciples calculation of dopant systems as discussed before.

In the presence of magnetism of prepared samples, VSM technique was employed to measure magnetization (M) of the samples with varying external field (H). Room temperature M-H curve

# STO annealed in Ar



# CSTO annealed in Ar

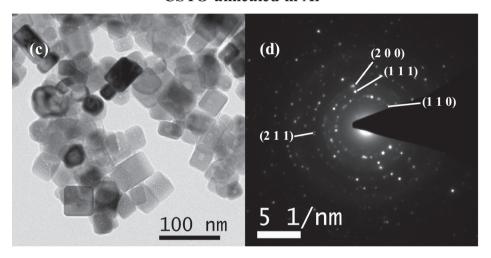
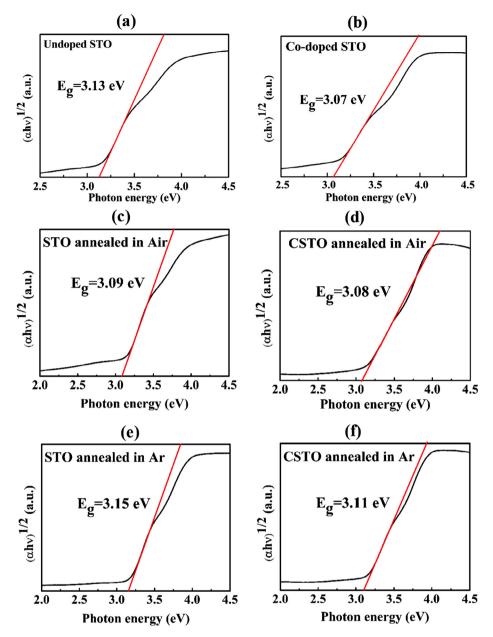



Fig. 20. TEM images of (a) STO, (c) Co-doped STO annealed in Ar and, SAED patterns of.


determined at +10,000 to -10,000 Oe was observed and plotted graphs as shown in Fig. 22.

As-synthesized samples show diamagnetic characteristic both the STO and Co-doped STO, as shown in Fig. 22(a) and (b), respectively, where magnetization of the STO is approximately one-third times of Co-doped STO at 10,000 Oe of external field. The characterized diamagnetism of the STO is according to the magnetization of 0.001  $\mu_B$  obtained from the first-principles calculation. Although the STO is composed of 3d transition of the Ti atom, electron alignment of the Ti<sup>4+</sup> is [Ar] so the STO is non-magnetic material, according to PDOS of the STO as seen in Fig. 8.

After annealed in air, transformation of diamagnetic behavior to paramagnet of the doped STO is observed, as represented in Fig. 22 (c). It would be possible that the heat treatment could improve atom arrangement in the lattice. Then, magnetic moment in the lattice could more interact to neighborhood magnetic moment, resulting in more number of magnetic-moment alignment in the same direction to external field. It is cause of paramagnetic behavior in the STO, and transformation to mixing phase of paramagnetic and ferromagnetic characteristic when Co contents were added

into the STO structure, as seen in Fig. 22(d), because the asprepared CSTO shows more  $\it M$  than that of the STO. This result is according to report of Karaphun et al. [11]. After the curve was split, there are two shapes of the  $\it M\text{-}H$  curves of paramagnet and ferromagnetism as shown in inset graph (i) and (ii) of Fig. 22(d), respectively. In this point, it could be assumed that the CSTO annealed in air could show ferromagnetic behavior which is according to the calculation results that magnetization is approximately 0.893  $\mu_B$ , resulting from 3d electrons of the Co atom interacting to the host atoms.

An interesting point is after annealed in Ar, the STO, as seen in Fig. 22(e), shows combination of two-magnetic curve of diamagnetic and ferromagnetic after split off the graph as seen in inset graph (i) and (ii) of as Fig. 22(e), respectively. Appearing of the mixing magnetic phases might be resulting from some lattices could change magnetic alignment but some lattices cannot after the heat treatment with inert gas flowing because all of powders cannot face heat and gas flowing in the same temperature and volume completely, bringing about oxygen vacancy could not occur in all lattice of the samples. However, the observed



**Fig. 21.** Graphs of photon energy versus  $(\alpha h \nu)^{1/2}$  of (a) as-prepared STO, (b) as-prepared Co-doped STO, (c) STO annealed in air, (d) Co-doped STO annealed in air, (e) STO annealed in Ar and, (f) Co-doped STO annealed in Ar.

ferromagnetic-characteristic curve is corresponding to the first-principles calculation of the O defect structure of the STO, as discussed before that oxygen vacancy could be induced magnetic behavior by the F-centered mechanism.

Magnetism of the doped samples are according to calculated results as explained before that after added Co atoms into the STO structure, magnetism in the non-magnetic STO would be induced as seen that sample annealed in air shows maxing phase of paramagnetic and ferromagnetic behavior, small hysteresis loop with not saturated magnetization. In this work, it is surprising that ferromagnetism is observed in the Codoped STO powders which are annealed in Ar. Saturated magnetization ( $M_s$ ) and coercive force ( $H_c$ ) are 5.417 emu/g and 104.42 Oe, respectively. The obtained  $M_s$  equals to 0.150  $\mu_B$ .

Nevertheless, the GGA+U of the imperfect structure of the CSTO shows magnetization of  $1.000\,\mu_B$ . This underestimation might result from any defect in the synthesized sample. Electron alignment of cobalt is [Ar]  $3d^7$   $4s^2$ . Two oxidation states of the Co are  $Co^{2+}$ , [Ar]  $3d^7$  called cobaltous, and  $Co^{3+}$ , [Ar]  $3d^6$  called cobaltic. It is possible that when  $Ti^{4+}$  site was substituted by Co atom, inequality of charge might induce defect, such as cation or anion vacancy, in lattice. This, ferromagnetism at room temperature in the imperfect lattice of the Co-doped STO might be resulting from F-center mechanism, as discussed before, which is resulting in magnetism in material at room temperature such as room-temperature ferromagnetism in K-doped ZnO [23]. All obtained experimental data was represented in Table 4.

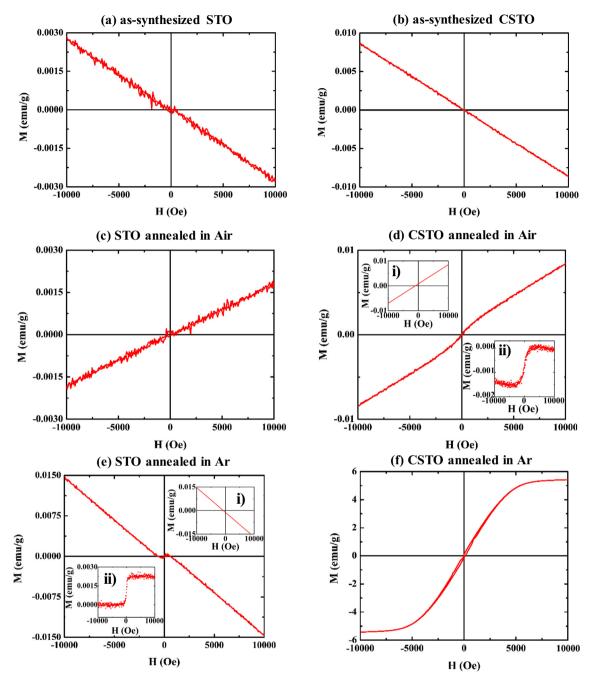



Fig. 22. Room temperature *M-H* curves of (a) as-prepared STO, (b) as-prepared Co-doped STO, (c) STO annealed in air, (d) Co-doped STO annealed in air with inset graphs of i) paramagnetic and ii) ferromagnetic characteristics and, (f) Co-doped STO annealed in Ar.

# 5. Conclusions

Perovskite structure of STO and Co-doped STO was prepared using hydrothermal method. The synthesized nanoparticles show narrower energy gap, more specific surface area and more magnetization when the Co contents were doped into the STO structure. According to first-principles calculation, DOS and band structures obviously point out that the narrower  $E_g$  of the doped system is due to new states forming in gap and, magnetism after Co doping on the STO structure is due to inequality of spin down and spin up states. These appreciate properties would be resulting from unpaired electrons of Co atoms. In addition, O vacancy could effect to properties of the material. The O vacancy could cause more magnetic and wider  $E_g$  of the Co-doped STO system. From all, it

is possible that 3d transition of Co atoms doping on the nonmagnetic structure would induce magnetism and create new states which will lead the material to be more applications such as good spintronic devices, high photocatalyst activity, great thermoelectric performance and, outstanding solar cell activity. The best condition for application as DMS is the Co-doped STO annealed in Ar due to observed ferromagnetic behavior while the Co-doped STO annealed in air is more suitable to be as great photocatalyst because of very high specific area and narrowest band gap.

# Acknowledgments

Funding for this work is provided by The Thailand Research Fund (TRF) under Grant No. TRG5880112, Integrated Nanotechnol-

ogy Research Center (INRC), Khon Kaen University, Thailand, the Nanotechnology Center (NANOTEC), NSTDA, Ministry of Science and Technology, Thailand, through its program of Center of Excellence Network, National Research Council of Thailand (NRCT), Science Achievement Scholarship of Thailand (SAST).

### References

- [1] G. Wu et al., Hydrothermal synthesis and visible-light-driven photocatalytic degradation for tetracycline of Mn-doped SrTiO<sub>3</sub> nanocubes, Appl. Surf. Sci. 333 (2015) 39–47.
- [2] P. Jayabal et al., A facile hydrothermal synthesis of SrTiO<sub>3</sub> for dye sensitized solar cell application, J. Alloys Compd. 586 (2014) 456–461.
- [3] Y. Okamoto et al., SrTiO<sub>3</sub>/TiO<sub>2</sub> composite electron transport layer for perovskite solar cells, Mater. Lett. 187 (2017) 111–113.
- [4] S.-T. Huang et al., Hydrothermal synthesis of SrTiO<sub>3</sub> nanocubes: Characterization, photocatalytic activities, and degradation pathway, J. Taiwan Inst. Chem. Eng. 45 (4) (2014) 1927–1936.
- [5] R. Niishiro, S. Tanaka, A. Kudo, Hydrothermal-synthesized SrTiO<sub>3</sub> photocatalyst codoped with rhodium and antimony with visible-light response for sacrificial H<sub>2</sub> and O<sub>2</sub> evolution and application to overall water splitting, Appl. Catal. B 150 (2014) 187–196.
- [6] Y. Sakata et al., Photocatalytic property of metal ion added SrTiO<sub>3</sub> to overall H<sub>2</sub>O splitting, Appl. Catal. A 521 (2016) 227–232.
- [7] K. Yu et al., Novel three-dimensionally ordered macroporous SrTiO<sub>3</sub> photocatalysts with remarkably enhanced hydrogen production performance, Appl. Catal. B 200 (2017) 514–520.
- [8] H. Muta, K. Kurosaki, S. Yamanaka, Thermoelectric properties of rare earth doped SrTiO<sub>3</sub>, J. Alloys Compd. 350 (1) (2003) 292–295.
- [9] P. Sikam et al., Structural, optical, electronic and magnetic properties of Fedoped ZnO nanoparticles synthesized by combustion method and first-principle calculation, J. Supercond. Novel Magn. 29 (12) (2016) 3155–3166.
- [10] P. Moontragoon, S. Pinitsoontorn, P. Thongbai, Mn-doped ZnO nanoparticles: preparation, characterization, and calculation of electronic and magnetic properties, Microelectron. Eng. 108 (Suppl. C) (2013) 158–162.
- [11] A. Karaphun et al., Effect of Co cations and oxygen vacancy on optical and magnetic properties of SrTi<sub>1-x</sub>Co<sub>x</sub>O<sub>3</sub> nanoparticles prepared by the hydrothermal method, J. Mater. Sci.: Mater. Electron. 28 (11) (2017) 8294– 8303
- [12] A. Karaphun, S. Hunpratub, E. Swatsitang, Effect of annealing on magnetic properties of Fe-doped SrTiO<sub>3</sub> nanopowders prepared by hydrothermal method, Microelectron. Eng. 126 (2014) 42–48.
- [13] R. Siddheswaran et al., Structural and magnetic properties of the transition metals (TMCo, Ni) and Nb co-doped SrTiO<sub>3</sub> thin films, Mater. Res. Bull. 83 (2016) 193–200.
- [14] L. Lu, M. Lv, G. Liu, X. Xu, Photocatalytic hydrogen production over solid solutions betweenBiFeO<sub>3</sub> and SrTiO<sub>3</sub>, Appl. Surf. Sci. 391 (2017) 535–541.
- [15] F. Ichihara, Y. Murata, H. Ono, C. Choo, K. Tanaka, Characterization of SrTiO<sub>3</sub> target doped with Co ions, SrCo<sub>x</sub>Ti<sub>1-x</sub>O<sub>3-δ</sub>, and their thin films prepared by pulsed laser ablation (PLA) in water for visible light response, Appl. Surf. Sci. 419 (2017) 126–137.
- [16] O. Lobacheva, Y.M. Yiu, N. Chen, T.K. Sham, L.V. Goncharova, Changes in local surface structure and Sr depletion in Fe-implanted SrTiO<sub>3</sub> (0 0 1), Appl. Surf. Sci. 393 (2017) 74–81.

- [17] T. Klaytae, P. Panthong, S. Thountom, Preparation of nanocrystalline SrTiO<sub>3</sub> powder by sol-gel combustion method, Ceram. Int. 39 (2013) S405–S408.
- [18] S.J. Lee, P. Thiyagarajan, M.J. Lee, Synthesis and characterization of strontium titanate powder via a simple polymer solution route, J. Ceram. Process. Res. 9 (4) (2008) 385–388.
- [19] Y. Zhang, L. Zhong, D. Duan, Single-step hydrothermal synthesis of strontium titanate nanoparticles from crystalline anatase titanium dioxide, Ceram. Int. 41 (10) (2015) 13516–13524.
- [20] G. Saito et al., Glycine-nitrate-based solution-combustion synthesis of SrTiO<sub>3</sub>, J. Alloys Compd. 652 (2015) 496–502.
- [21] H. Ishikawa et al., Combustion synthesis of SrTiO<sub>3</sub> using different raw materials, J. Alloys Compd. 454 (1) (2008) 384–388.
- [22] H. Tan et al., Oxygen vacancy enhanced photocatalytic activity of pervoskite SrTiO<sub>3</sub>, ACS Appl. Mater. Interf. 6 (21) (2014) 19184–19190.
- Sr1iO<sub>3</sub>, ACS Appl. Mater. Intert. 6 (21) (2014) 19184–19190.
   R. Krithiga, S. Sankar, V. Arunkumar, F-center-mediated ferromagnetic ordering in K-doped ZnO, J. Supercond. Novel Magn. 29 (1) (2016) 245–251.
- [24] S. Carlotto et al., Adsorption of small molecules at the cobalt-doped SrTiO<sub>3</sub>(0 0 1) surface: a first-principles investigation, Surf. Sci. 633 (2015) 68–76.
- [25] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1) (1996) 15–50.
- [26] P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50 (24) (1994) 17953–17979.
- [27] K.H. Hellwege, A.M. Hellwege, N.D.a.F.R.i.S.a.T., Landolt-Börnstein, New Series Group III, Ferroelectrics and Related Substances, vol. 3, Springer Verlag, Berlin, 1969
- [28] T. Mitsui, S.E. Nomura, N.D.a.F.R.i.S.a.T., Landolt-Börnstein, New Series, Group III, Crystal and Solid State Physics, vol. 16, Springer Verlag, Berlin, 1982.
- [29] K. van Benthem, C. Elsässer, R.H. French, Bulk electronic structure of SrTiO<sub>3</sub>: experiment and theory, J. Appl. Phys. 90 (12) (2001) 6156–6164.
- [30] Q. Fu et al., Band-engineered SrTiO<sub>3</sub> nanowires for visible light photocatalysis, J. Appl. Phys. 112 (10) (2012).
- [31] J. Heyd, G.E. Scuseria, M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118 (18) (2003) 8207–8215.
- [32] T.O. Wehling, A.I. Lichtenstein, M.I. Katsnelson, Transition-metal adatoms on graphene: influence of local Coulomb interactions on chemical bonding and magnetic moments, Phys. Rev. B 84 (23) (2011) 235110.
- [33] X. Zhou, J. Shi, C. Li, Effect of metal doping on electronic structure and visible light absorption of SrTiO<sub>3</sub> and NaTaO<sub>3</sub> (Metal = Mn, Fe, and Co), J. Phys. Chem. C 115 (16) (2011) 8305–8311.
- [34] M. Venkatesan et al., Anisotropic ferromagnetism in substituted zinc oxide, Phys. Rev. Lett. 93 (17) (2004) 177206.
- [35] J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides, Nat. Mater. 4 (2) (2005) 173–179.
- [36] Z. Ren et al., Room-temperature ferromagnetism in Fe-doped PbTiO<sub>3</sub> nanocrystals, Appl. Phys. Lett. 91 (6) (2007) 063106.
- [37] K. Attaphol et al., Characterization and dielectric properties of SrTi<sub>1-x</sub>Mn<sub>x</sub>O<sub>3</sub> ceramics, Jpn. J. Appl. Phys. 54 (6S1) (2015) 06FH09.
- [38] L. Guo et al., Microwave hydrothermal synthesis of barium titanate powders, Mater. Lett. 60 (24) (2006) 3011–3014.
- [39] S. Carlotto, M.M. Natile, A. Glisenti, A. Vittadini, Adsorption of CO and formation of carbonates at steps of pure and Co-doped SrTiO<sub>3</sub> surfaces by DFT calculations, Appl. Surf. Sci. 364 (2016) 522–527.

FISEVIER

Contents lists available at ScienceDirect

# **Applied Surface Science**

journal homepage: www.elsevier.com/locate/apsusc



# Full Length Article

# Enhanced thermoelectric properties of N-doped ZnO and SrTiO<sub>3</sub>: A first-principles study



Pornsawan Sikam<sup>a</sup>, Chayanin Sararat<sup>a</sup>, Pairot Moontragoon<sup>a,b,c,d,\*</sup>, Thanayut Kaewmaraya<sup>a,b</sup>, Santi Maensiri<sup>e</sup>

- <sup>a</sup> Department of Physics, Khon Kaen University, Khon Kaen 40002, Thailand
- b Integrated Nanotechnology Research Center (INRC), Department of Physics, Khon Kaen University, Khon Kaen 40002, Thailand
- <sup>c</sup> Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage, Khon Kaen 40002, Thailand
- <sup>d</sup> Thailand Center of Excellence in Physics, Commission on Higher Education, Bangkok 10400, Thailand
- <sup>e</sup> School of Physics, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand

# ARTICLE INFO

Article history: Received 15 October 2017 Revised 15 February 2018 Accepted 19 February 2018 Available online 21 February 2018

Keywords:
Photocatalytic activity
Thermoelectric properties
N-doped ZnO
N-doped SrTiO<sub>3</sub>
DFT
Boltzmann transportation

# ABSTRACT

This work presents electronic and thermoelectric properties of ZnO and SrTiO<sub>3</sub> in the presence of nitrogen impurity have been investigated by means of the theoretical first-principles calculations. It is found that N-doped ZnO has a smaller band gap compared to the pure counterpart. This material also exhibits the enhanced thermoelectric properties of the positive Seebeck coefficient and higher electrical conductivity per relaxation time. Furthermore, SrTiO<sub>3</sub> with nitrogen impurity possess the smaller energy gaps. For thermoelectric properties, ZT of undoped SrTiO<sub>3</sub> decreases as temperature increases. Nevertheless, ZT of N-doped SrTiO<sub>3</sub> increases with temperature. Therefore, the introduction of nitrogen impurity to ZnO and SrTiO<sub>3</sub> is an alternative way to improve their thermoelectric efficiencies.

© 2018 Elsevier B.V. All rights reserved.

# 1. Introduction

Nowadays, there are a number of solar spectrum utilizations such as solar cell, photocatalysis and so on. ZnO and SrTiO<sub>3</sub>, nonmagnetic compounds, ecological friendly materials and n-type semiconductors with wide direct band gap [1,2], have rigorously got attention for applications as transparent electronics, ultraviolet (UV) light emitters, piezoelectric devices, chemical sensors, solar cells [3], gas sensors [4], varistors [5], and transistors [6]. Although, the ZnO have three structures, the most stable structure at room temperature is wurtzite phase [7,8]. An application of ZnO and SrTiO<sub>3</sub> is a photocatalyst in photocatalytic process for wastewater treatment and water splitting to hydrogen produce. An increasing in population results in more resource demand, more waste and more released pollution, such as waste water, air pollution. From the reasons given above, science knowledge is an utilized way to solve and recover these problems. The photocatalytic process is one of the potential solution employed to treat the wastewater because it can separate molecular pollution from compound to

E-mail address: mpairo@kku.ac.th (P. Moontragoon).

ions. Two compounds which get attention to be applied as photocatalyst are the ZnO and SrTiO<sub>3</sub> because they have gap between valence band and conduction band as 3.37 and 3.87 eV for the ZnO and SrTiO<sub>3</sub>, respectively [1,2]. However, a disadvantage to be considered is that energy gap of the zinc oxide and SrTiO<sub>3</sub> is according to ultraviolet radiation, which is only 4% of solar spectrum. To obtain higher photocatalytic performance under solar radiation, zinc oxide and SrTiO<sub>3</sub> are expected to absorb visible light because it is about 43% of solar radiation. A well-known method to modify energy gap is doping other elements into host structures. In case of Nitrogen-doping in zinc oxide structure, there are reports that it shows narrow  $E_g$  and p-type nature [9-11]. For instance, narrower E<sub>g</sub>, higher photocatalytic activity and more magnitude of photocurrent under the visible light radiation of the ZnO when nitrogen contents were doped into the zinc oxide structure. Because of these advantages, the N-doped ZnO is studied to apply as catalyst in photocatalytic process.

Moreover, the photocatalytic activity of the N-doped SrTiO<sub>3</sub> will also been studied. Xu et al. [2] reported that the N-doped SrTiO<sub>3</sub> shows more specific surface area than the SrTiO<sub>3</sub>. Additionally, higher photocatalytic performance under UV radiation of the N-doped SrTiO<sub>3</sub> than that of the SrTiO<sub>3</sub> is observed. Moreover, it is surprising that the N-doped SrTiO<sub>3</sub> shows more photocatalytic

 $<sup>\</sup>ast$  Corresponding author at: Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.

activity than the TiO<sub>2</sub>-P25 which is widely studied as photocatalyst. Because the N-doped SrTiO<sub>3</sub> shows higher photocatalytic performance than the pure SrTiO<sub>3</sub> and TiO<sub>2</sub>, the N-doped SrTiO<sub>3</sub> is an efficiency promising catalyst for photocatalytic application. From these results, it is possible that doping N can successfully improve photocatalytic performance of the SrTiO<sub>3</sub> under UV radiation.

In the presence of calculation method, density functional theory or DFT is assuming that  $V_{eff}$  is depending on just density of electrons. In case of difference of the DFT and Hartree-Fock approximations, the Hartree-Fock is supposing that free electrons are independent, leading to Schrodinger's equation depending on the wave function. Thus, this method could lead the Hamiltonian to being easier. A negative aspect of this technique is that behavior of electrons in systems will be not similar to the fact because there is no electron correlation. To cure this problem, the DFT calculation is used to explain the Schrodinger's equation. This treats that the Schrodinger's equation is more attaching to the density of electrons than the wave function. Thus, the density functional theory is one of functional employed to decrease the complication of the potential energy. Nonetheless, the Hartree-Fock approximation is suitable for the systems consisting of not much number of electrons. Moreover, this approximation provides more precise data than the DFT calculation. The written Schrodinger's equation under this term is known as Kohn-Sham's equation, as

$$\left\{-\frac{\hbar^2}{2m}\nabla^2 + V_i^{\text{eff}}(\vec{r})\right\}\psi_i(\vec{r}) = E_i\psi_i(\vec{r})$$

where  $V_i^{eff}(\vec{r})$  is effective potential. The potential of the DFT is defined that it depends on the electron density  $(\rho(\vec{r}))$ .

$$\begin{split} V^{\textit{eff}}(\vec{r}) &= V_{\textit{ion}} + \frac{e^2}{4\pi\varepsilon_0} \int d\vec{r}' \frac{\rho(\vec{r})}{|\vec{r}|} - \vec{r}' | + V_{\textit{xc}}(\vec{r}) \quad \text{where } \rho(\vec{r}) \\ &= \sum_{i}^{N} |\psi_i(\vec{r})|^2 \end{split}$$

 $V_{ion}$  is the potential of the nuclei screened by core electrons. Moreover, pseudopotential is used to explain potential of valence electrons. This is owning to the fact that only valence electrons can freely move in systems and react to other atoms but core electrons are localized. Additionally,  $V_{xc}(\vec{r})$  is the exchange and correlation potential, functional of electron density. The exchange-correlation functional is defined as difference of the exact ground-state energy and non-interacting kinetic energy functional with interaction of the electrons.

The direct energy conversion between heat and electricity based on thermoelectric effects without moving parts is attractive form any applications in power generation and heat pumping. The efficiency of the thermoelectric energy conversion is an increasing in function of the materials non dimensional figure of merit ZT [12,13],

$$ZT = \frac{S^2 \sigma T}{\kappa_e + \kappa_n}$$

where  $\sigma$  is the electrical conductivity, S is the Seebeck coefficient, T is the temperature,  $\kappa_e$  is the electronic thermal conductivity, and  $\kappa_e$  is the lattice thermal conductivity. Therefore, a good thermoelectric material must be a large Seebeck coefficient, high electrical conductivity and low thermal conductivity. The combination of these properties can be obtained from semiconducting materials, or by adjustment doping level of solid solution alloys because of their band structure and electronic properties at high temperatures.

Considering thermoelectric properties of doped ZnO and SrTiO<sub>3</sub>, they are recently paid attention due to their demonstration of high

ZT in medium temperature range comparable to some of good thermoelectric materials such as lead telluride. In addition to their high figure-of-merit, their abundance in nature and non-toxic features make them even more attractive. Therefore, doped ZnO and SrTiO<sub>3</sub> has attracted increasing interest as thermoelectric materials as an environmental compatible material.

The thermoelectric efficiency of the ZnO and SrTiO<sub>3</sub> alloys, however, is still low when compared to Bi<sub>2</sub>Te<sub>3</sub> and Bi<sub>2</sub>Se<sub>3</sub>. Therefore, many researchers try to improve the thermoelectric efficiency of this alloy, i.e. by taking advantage of a nanostructure. There are many reports suggested that the power factor can be increased by taking advantage of quantum confinement effects, such as quantum wells, quantum wires and quantum dots, because when the size of system has reached nanometer scale, the quantum effect will play important roll, i.e. the density of electronic states (DOS) can split and become narrow. For example, Venkatasubramanian et al. [14] has shown that Bi<sub>2</sub>Te<sub>3</sub>/Sb<sub>2</sub>Te<sub>3</sub> superlattices with a high-ZT value of up to 2.4, and Harman et al. [15] also has supported this idea by reporting PbSeTe/ PbTe quantum-dot superlattices with a ZT value of greater than 3.0 at about 570 K. It has been proven that nanostructures enhance the thermoelectric figure of merit of semiconductors in comparison with bulk. For example, single nanowires (NWs) exhibit higher ZT than bulk materials. The longer SiGe nanowire array gives a higher Seebeck coefficient. Nanostructures provide a chance to disconnect the linkage between thermal and electrical transport by introducing some new scattering mechanisms for ZT enhancement. These nanostructures, however, cannot be fabricated readily and are more expensive than the bulk. There is another approach to improve efficiency of the thermoelectric properties of ZnO is adding heavy-ion atoms, such as rare earth atoms, into the crystal, because the doped giant atoms could create point defect which is heavy-ion with large vibration amplitude contained within partially filled structural sites to scatter phonons within the unit cell crystal. Therefore, the thermal conductance of thermoelectric material will decrease when increasing defecting atoms. However, the added heavy atom is not abundant in nature and is expensive, and some atoms are toxic. Another idea of increasing ZT is introducing nanocomposite materials or grain boundary because increasing grain boundary scattering throughout system could decrease the thermal conductivity, due to the scattering the propagation of phonons by the grain boundary which is smaller than the average free path of phonons. However, it is also carrier (electrons or holes) scattering at small crystallite sizes as well which results in a significant decreasing in charge carrier mobility and electronic conductivity. Therefore, the compromised crystallite sizes and grain boundary are keys of an improvement of the ZT but the process to control the size of grain boundary is complicated.

In case of the thermoelectric properties of SrTiO<sub>3</sub>, Sun and Singh [16] reported in 2016 that the ZT of undoped STO is 0.7 at 1400 K, calculated using BoltzTraP code. Additionally, the reported narrower band gap, after N contents were added into the SrTiO<sub>3</sub>, is an important clue that the thermoelectric properties of the N-doped SrTiO<sub>3</sub> might be different from the undoped SrTiO<sub>3</sub> because the change in band structure could lead to change in the thermoelectric properties. This is well-known that the Seebeck coefficient is functional of energy gap ( $E_g$ ) as equational of  $S_{max}$  is around  $E_g/2$ -e $T_{max}$  where  $S_{max}$  is the maximum value of magnitude of the Seebeck coefficient, e the carrier charge and  $T_{max}$  the absolute temperature when  $S_{max}$  achieves the maximum value [17].

Therefore, the main purpose of this project is to find simple method to improve the thermoelectric efficiency of ZnO and SrTiO<sub>3</sub> by introducing p-type ZnO and SrTiO<sub>3</sub> thermoelectric semiconductor by doping nitrogen, which could cause the steeper density of states resulting from nearly degenerate valence bands near the band edge. The temperature dependence of the thermoelectric

transport properties of p-type N-doped ZnO and SrTiO<sub>3</sub> was studied in detail by using first-principles theory to calculate the electronic, optical and thermoelectric properties of the N-doped ZnO and SrTiO<sub>3</sub>. In the thermoelectric properties aspect, the results will lead to the relationship between thermoelectric properties, including figure of merit (ZT), electrical conductivity, thermal conductivity, in order to find the best condition for improving the thermoelectric efficiency of the N-doped ZnO and SrTiO<sub>3</sub>. Moreover, we also calculate the electronic properties, electron density and density of states, changing of density of states to obtain energy band gap.

# 2. Computational details

In this work, N-doped ZnO and N-doped SrTiO<sub>3</sub>, were modeled by  $2\times2\times2$  supercells which contain 32 atoms of ZnO hexagonal wurzite structure and 40 atoms of SrTiO<sub>3</sub> perovskite structure, as shown in Fig. 1. The orbitals of N(4s²2p³), Zn(3d¹0⁴4s²), Sr (4s²4p⁶5s²), Ti (3p⁶4s²3d²) and O(2s²2p⁴) were treated as valence electrons. N-doped ZnO and SrTiO<sub>3</sub> were modeled by replacing a N atom to the position of an O atom. The corresponding doping concentrations are 6.25% and 4.17% for N-doped ZnO and N-doped SrTiO<sub>3</sub>, respectively.

First-principles calculations based on the density functional theory were carried out using Vienna Ab initio Simulation Package (VASP) code [18] within projected augmented plane wave (PAW) [19]. The generalized gradient approximation with Hubbard model (GGA + U) scheme was used as the exchange-correlation functional to deal with the strongly-localized d-orbital. A  $21 \times 21 \times 21$  mesh Monkhorst-Pack in k-point mesh and a plane wave with cutoff energy of 400 eV used to assure convergent results were utilized for the doped ZnO super-cell calculation. In case of the SrTiO<sub>3</sub>, A  $23 \times 23 \times 23$  Monkhorst-Pack in k-point grid and energy cutoff as 360 eV were used. All the calculations were spin-polarized. However, we found that both N-doped ZnO and N-doped SrTiO<sub>3</sub> are nonmagnetic because of the negligibly small magnetic moments. Therefore, the effect of spin was not considered in the subsequent calculations of thermoelectric properties.

According to the electronic structure from the VASP calculation, we obtained the energy  $(\epsilon_{n,\mathbf{k}})$  of the alloys in various wave vector (k) and band (n). Then, we used the semi-classical Boltzmann transportation theory in BoltzTraP [20–24] program for find thermoelectric properties of the materials. The calculations started with the construction of the effective potential, including the pseudopotential, the Hartree potential and the exchange-correlation potential. The GGA + U with coulomb interaction  $U_{\rm eff}$  of Zn and Ti as 9.0 and 8.7 eV, respectively, in the scheme of Perdew-Burke-Ernzerh (PBE) was employed to treat more exchange and correlation energy. Then, the effects of N doping in the ZnO and SrTiO3 systems on the density of states, electronic structure and thermoelectric properties were investigated.

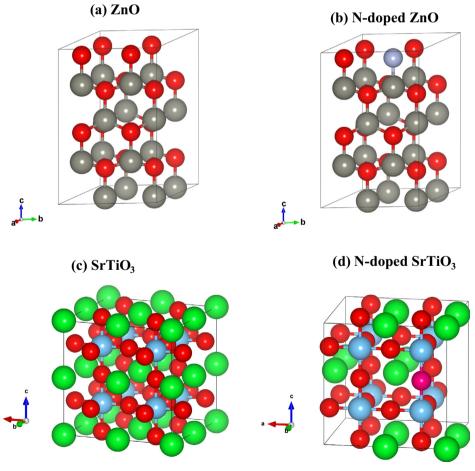
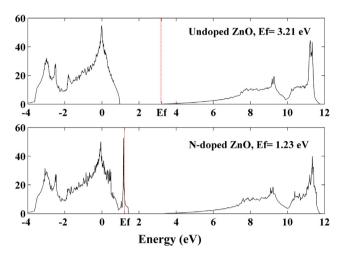




Fig. 1. Simulated structures of (a) zinc oxide and (b) nitrogen-doped zinc oxide with gray ball of the zinc, red the oxygen and, blue the nitrogen atoms, (c) SrTiO<sub>3</sub> and (d) N-doped SrTiO<sub>3</sub> with green ball of the Sr, blue of the Ti, red of the O and pink of the N. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

## 3. Results and discussion

## 3.1. N-doped ZnO

In this work, the 32 atoms of both zinc oxide and nitrogendoped zinc oxide structures were simulated by first-principles calculation as shown in Fig. 1. An oxygen atom was replaced by a nitrogen atom then, its structure was optimized. According to the



**Fig. 2.** Total density of states of (up) undoped ZnO and (down) N-doped ZnO where  $E_f$  is Fermi level. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

optimized structure, as shown in Fig. 1(b), the lattice parameters, c/a ratio, of N-doped ZnO is more than that of the undoped ZnO due to larger atomic radius of nitrogen. Compared DOS of the pure ZnO, Fig. 2(up), to DOS of dopant system, Fig. 2(down), we see that there are new states above valence band of nitrogen-doped zinc oxide. For the new states, electrons in these states can jump to conduction band more easily than valence electrons of the pure zinc oxide system. It results in more electrical conductivity. The ptype doping of nitrogen, the number of holes will be produced and they will create new state near valence states as acceptor level. Besides, in case of photocatalytic process, more number of generated carriers cause more photocatalytic degradation of adsorptive removal such as methyl orange and methylene blue. Partial DOS and projected DOS of Zn, O and N atoms of ZnO and N-doped ZnO systems were shown in Figs. 3 and 4. Fermi level of the ZnO and N-doped ZnO systems is at 3.21 and 1.23 eV, accordingly. As seen in Fig. 3. DOS of Zn and O is not much different and, there is not much empty states near the Fermi level. It results in not much number of electron or hole could occupy states around the Fermi level. Consequently, the ZnO cannot transfer carriers easily and quickly then, electrical and electronic thermal conductivities are not appreciate. Comparing Fig. 3 to Fig. 4, Zn atoms show unlike partial DOS when N atoms was doped into system. In Fig. 4(b), it is the DOS of Zn atom locating near N atom. Moreover, O illustrates a little change in DOS too. After N atom was doped into the system, the Fermi level was shifted from 3.21 to 1.23 eV and states locating near the Fermi level are d orbital of Zn and p orbital of O and N. It is possible that carriers could occupy empty states around the Fermi level then, it is easy to jump to upper states (conduction band). As a result, the N-doped ZnO might show more electrical and electronic thermal conductivity than the ZnO.

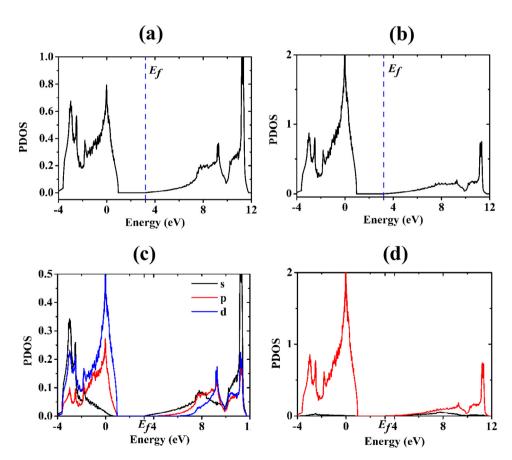



Fig. 3. Partial DOS of (a) Zn and (b) O where dash lines show Fermi level and projected DOS of (c) Zn and (d) O of ZnO which black lines show the s orbital, red lines the p orbital and blue line the d orbital.

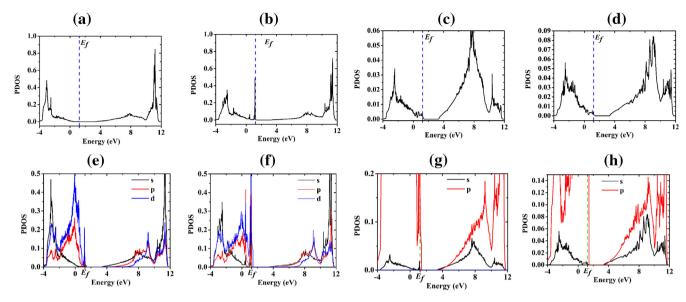
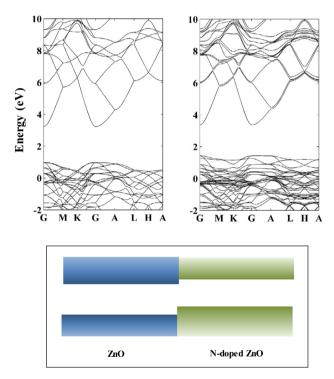




Fig. 4. Partial DOS of (a) and (b) Zn, (c) O and (d) N and projected DOS of (e) and (f) Zn, (g) O and (h) N atoms in N-doped ZnO with dash line of Fermi level.

The calculated band structures of the zinc oxide and the Ndoped ZnO are shown in Fig. 5. The direct energy gap of ZnO is 2.24 eV, which is underestimated value of energy bad gap when compared to experimental result (3.34 eV). It is due to weak particle interaction. This system is direct band gap because maximum energy of valence band and minimum energy of conduction band is at the same wave vector of zero (Gamma point). Because the new states above valence states, it results in narrower energy gap of N-doped ZnO, 1.92 eV, than the pure ZnO. From calculated both DOS and band structures, they confirm that the photocatalytic activity of N-doped ZnO should be higher than the pure ZnO because of being narrower of energy band gap and new states near Fermi level which is according to experimental reports. The narrower  $E_{\sigma}$  of the N-doped ZnO leads to more number of carriers jumping to upper band than the pure zinc oxide. In addition, Das et al. [11] reported that nitrogen doping turn zinc oxide from ntype to p-type nature. This result introduces that nitrogen doping can extend applications of zinc oxide and the calculated results of this work can confirm the p-type nature of the N-doped ZnO because there are new states from 2p orbital of nitrogen atom located near the valence band edge. Therefore, there is valence band offset between pure ZnO and N-doped ZnO and it could be exploited as heteros-junction as show in Fig. 4. According to the energy band structure and density of states, the effective mass of the pure ZnO and N-doped ZnO can be calculated from parabolic dispersion relation, i.e.  $m^* = \hbar^2 (\partial^2 \varepsilon / \partial k^2)^{-1}$ , it shows that doped ZnO has higher mobility than the pure ZnO. These results show a new class of semiconductors, zinc oxynitride (ZnON), which could be used as thin film transistors (TFTs) material to provide highperformance, low-cost, and low power-consumption displays.

Thermoelectric properties as a function of chemical potential ( $\mu$ ) at any temperautres of undoped and nitrogen-doped zinc oxide were shown in Figs. 6 and 7 where  $E_f$  is Fermi level. Plots of Seebeck coefficient as a function of chemical potential  $\mu$  and temperature of pure ZnO and N-doped ZnO are shown in Fig. 6(a) and (b), respectively. First, at energy level where chemical potential equals to electrochemical potential  $E_f$ , the ZnO represents about -242.3  $\mu$ V/K. However, at  $\mu$ - $E_f$  as more than zero (n-type doping), magnitude of the Seebeck coefficient is less and converge to zero. On the other hand, when  $\mu$ - $E_f$  is less than zero (p-type doping), the magnitude of Seebeck coefficient raises and reaches the highest value at  $\mu$ - $E_f$  = -0.05 Ry of 2390.2  $\mu$ V/K at 250 K and 1063.7  $\mu$ V/K at



**Fig. 5.** Band structures of (left) pure ZnO, (right) N-doped ZnO where Fermi level of the ZnO and N-doped ZnO systems is at 3.21 and 1.23 eV, respectively, and (down) Band alignment of pure ZnO/N-doped ZnO heterostructure.

800 K. The Seebeck coefficient of the doped ZnO shows higher Seebeck coefficient when  $\mu$ -E $_f$  is more than zero, reaching 818.1  $\mu$ V/K at 800 K for  $\mu$ -E $_f$  = 0.05 Ry.

In the presence of electrical conductivity per relaxation time, the ZnO shows higher values with  $\mu$ -E $_f$  increasing and reaches maximum values when  $\mu$ -E $_f$  equals to 0.05 Ry. On the other hand, the N-doped ZnO shows decreasing in  $\sigma/\tau$  with  $\mu$ -E $_f$  increasing when  $\mu$ -E $_f$  is more than zero. However, the  $\sigma/\tau$  shows increasing values with  $\mu$ -E $_f$  increasing when  $\mu$ -E $_f$  is less than zero. From these graphs, the  $\sigma/\tau$  is hardly depending on temperature. It is advantage that the  $\sigma/\tau$  is not worse when it is used at high temperature. In the same direction to  $\sigma/\tau$ , the ZnO shows more  $\kappa_e/\tau$  with  $\mu$ -E $_f$ 

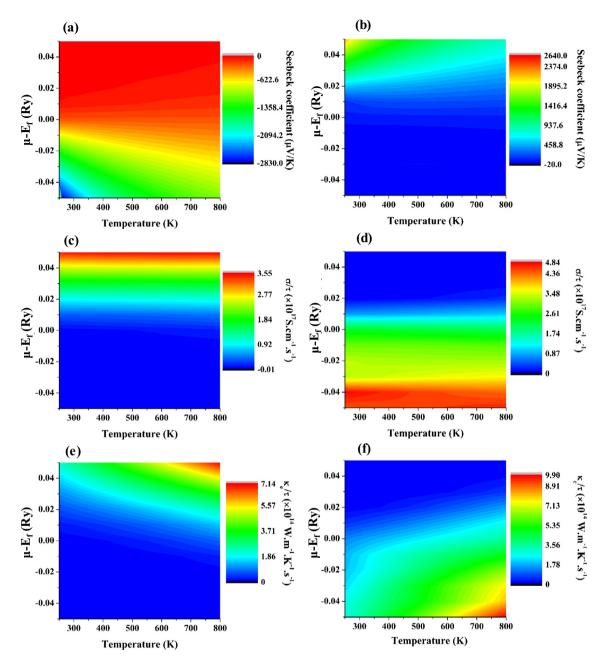
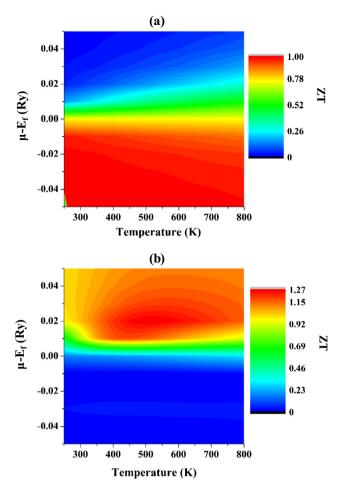



Fig. 6. Plot of thermoelectric properties depending on temperature at any chemical potential of Seebeck coefficient of (a) pure ZnO and (b) N-doped ZnO, electrical conductivity per relaxation time of (c) pure ZnO and (d) N-doped ZnO and, electronic thermal conductivity per relaxation time of (e) pure ZnO and (f) N-doped ZnO.


increasing when  $\mu\text{-}E_f$  is more than zero and, less with  $\mu\text{-}E_f$  decreasing when  $\mu\text{-}E_f$  is less than zero. However, the N-doped ZnO shows more  $\kappa_e/\tau$  as well as  $\mu\text{-}E_f$  decreasing when  $\mu\text{-}E_f$  is less than zero while less  $\kappa_e/\tau$  with  $\mu\text{-}E_f$  increasing is observed when  $\mu\text{-}E_f$  is more than zero. Whatever, the  $\kappa_e/\tau$  is a function of temperature, differing from  $\sigma/\tau$ . The more temperature results in increasing in  $\kappa_e/\tau$  for both the pure ZnO and the N-doped ZnO. This is a problem for applying these materials at high temperature.

The ZT of the pure ZnO is higher when it was doped by p-type material. It is converging to 1.0 when  $\mu\text{-}E_f$  decreases to -0.05 Ry. However, for n-type doping, the ZT reduces with  $\mu\text{-}E_f$  increasing. In the presence of the N-doped ZnO, the ZT raises with  $\mu\text{-}E_f$  increasing. The maximum value of the ZT of N-doped ZnO is at  $\mu\text{-}E_f$  as about 0.02 of 400–650 K. It is possible that N-doped ZnO material is a promising material to be applied as thermoelectric device for application at high temperature. Considered ZT of p-type doping of the ZnO, the p-type doping of ZnO should show higher ZT than

the pure ZnO. Then, considered the N-doped ZnO at  $\mu$  = E<sub>f</sub>, the ZT of the N-doped ZnO is lower than that of the pure ZnO. This opposes to the p-type doping of ZnO. It might be due to not much doping concentration of nitrogen on ZnO structure in this work.

Thermoelectric properties at Fermi level of ZnO and N-doped ZnO are represented in Fig. 8(a)–(d). In Fig. 8(a), the undoped zinc oxide shows negative value of Seebeck coefficient indicating n-type conduction with magnitude of 242.3  $\mu V/K$  while the N-doped ZnO shows positive value. The Seebeck coefficient of the ZnO is not much change with temperature varying from 200 to 1000 K. On the other hand, the Seebeck coefficient of the N-doped ZnO, p-type conduction, is proportional to the temperature. Increasing in the temperature brings about high Seebeck coefficient. A maximum thermopower of dopant system is 83.1  $\mu V/K$  at 1000 K.

From an equation of Seebeck coefficient S that  $S = \frac{8\pi^2 k_B^2 m^* T}{3eh^2} \left(\frac{\pi}{3n}\right)^{3/2}$  where  $k_B$  is the Boltzmann's constant, e is the carrier charge, h is



**Fig. 7.** Dimensionless figure of merit (ZT) as function of temperature at any chemical potentials of (a) undoped ZnO and (b) nitrogen-doped zinc oxide.

the Planck's constant, m\* is the effective mass, T is the absolute temperature and, n is the carrier concentration [22]. At 1000 K, the ZnO show more magnitude of Seebeck coefficient than the N-doped ZnO. It might be owing to more number of carriers of the dopant system, over hole carrier of nitrogen atom replacement in oxygen site, than that of the pure zinc oxide. As the inverse proportion of the S to carrier concentration, the magnitude of Seebeck coefficient of the N-doped ZnO system is less than that of the pure zinc oxide. Influent of temperature to the Seebeck coefficient, the increasing in temperature leads to more number of generated carriers, bringing about more Seebeck coefficient magnitude according to trend of Seebeck coefficient of the N-doped ZnO.

Electrical conductivity per relaxation time varying with temperature of ZnO and N-doped ZnO as shown in Fig. 8(b), the pure ZnO shows the highest value of  $1.63 \times 10^{16} \, \mathrm{S \cdot cm^{-1} \cdot s^{-1}}$  at 1000 K while the less value is  $1.5 \times 10^{17} \, \mathrm{S \cdot cm^{-1} \cdot s^{-1}}$  at 200 K, electrical conductivity per relaxation time increasing with temperature. The electrical conductivity is a function of carrier concentration n, carrier mobility  $\mu$  and electronic charge e as  $\sigma = \mathrm{ne}\mu$  [22]. Increasing in temperature results in more kinetic energy of carrier so electron concentration and carrier mobility will be raised with temperature increasing then, the electrical conductivity is higher. However, relaxation time is depending on temperature parameter. Increasing in temperature brings about less relaxation time. Therefore, the pure ZnO system shows more electrical conductivity per relaxation time when temperature increases. However, the N-doped ZnO represents inverse proportion of  $\sigma/\tau$  to the temperature. At 200 K, it

illustrates  $2.33 \times 10^{17}~{\rm S\cdot cm^{-1}\cdot s^{-1}}$  then, it decreases to be  $2.02 \times 10^{17}~{\rm S\cdot cm^{-1}\cdot s^{-1}}$  at  $1000~{\rm K}$ . It is possible that a lot of hole carrier generated brings about high carrier concentration and low mobility, resulting in less electrical conductivity per relaxation time. More electrical conductivity per relaxation time might be on account of more number of carrier of the dopant system. Among the N-doped ZnO and pure ZnO, the N-doped ZnO shows more carrier concentration, resulting in less relaxation time and bringing about more  $\sigma/\tau$ .

Thermal conductivity  $\kappa$  is composed of electron part  $\kappa_e$  and lattice vibration (phonon) part  $\kappa_p$ , as  $\kappa = \kappa_e + \kappa_p$ . From BoltzTraP calculation, only  $\kappa_e$  could be calculated while  $\kappa_p$  could not be. Fig. 8(c) shows electronic thermal conductivity per relaxation time of Ndoped ZnO and pure ZnO. Trend of  $\kappa_e$  is increasing with temperature for both the pure ZnO and the doped ZnO. It can be explained using relationship of  $\kappa_e$  and T as  $\kappa_e$ =L $\sigma$ T where L is the Lorenz factor (2.4  $\times$  10<sup>-8</sup>·J<sup>2</sup>·K<sup>-2</sup>·C<sup>-2</sup> for free electron), which depends on carrier concentration [25]. The N-doped ZnO shows more electronic thermal conductivity per relaxation time than that of the ZnO. 1000 K gives maximum values of  $\kappa_e/\tau$  as  $1.27\times 10^{14}$  and  $4.34\times$  $10^{14} \text{ W} \cdot \text{m}^{-1} \cdot \text{K}^{-1} \cdot \text{s}^{-1}$  for the doped ZnO and the pure ZnO, respectively. It is owing to the electronic thermal conductivity is a function of carrier concentration that  $\kappa_e$ =ne $\mu$ LT. At the same temperature, there is more carrier concentration of the dopant system than that of the pure system. It is resulting in more  $\kappa_e$  of the Ndoped ZnO than the undoped ZnO.

Dimensionless figure of merit ZT is utilized to explain efficiency of thermal to electrical energy transformation. In Fig. 8(d), high ZT value about 0.75 is observed in ZnO while maximum ZT of N-doped ZnO is 0.32. The dopant system, only 0.16 of ZT is observed at 200 K and, it reaches the highest ZT of 0.32 at 1000 K. The ZT increasing with temperature, the high ZT, high ability to transform thermal energy to electrical energy, of the ZnO is due to high Seebeck coefficient and less electronic thermal conductivity per relaxation time, while the not much values of ZT of the dopant system is owing to high  $\kappa_e/\tau$  and low magnitude of Seebeck coefficient.

From studied results, doped nitrogen atom on ZnO structure are showing more outstanding thermoelectric properties than the pure ZnO especially increasing in electrical conductivity of the ZnO and, turning n-type conduction to p-type conductivity material.

After that, the calculated results from BoltztraP code will be compared to experimental results reported by Qu et al. [26]. From experimental report, the magnitude of S of the undoped ZnO is raising with temperature from  $-225 \mu V/K$  and reach the peak at temperature of 500 °C as  $-260 \mu V/K$ . Next, the magnitude is falling down to -175 to  $-260 \,\mu\text{V/K}$  at 800 °C. From this point, the obtained S from BoltztraP code is closed to experimental data, at 500 °C or 723 K. In case of the ZT, the ZT of calculated results shows the same trend to the experimental data, quite stable in range from 100 to 800 °C. However, the computed ZT from DFT method is much difference from the experimental side. The presented ZT is 0.75 and around 0.01 fpr computed studied and experimental data, respectively. A cause of underestimate value might be resulting from Fermi level provided from VASP because the obtained Fermi level of the VASP package is defined as the highest state of valence band. Maybe, the shown E<sub>f</sub> points might not the exact Fermi level of the material. Additionally, there are a number of atoms in the prepared samples, exactly more than the calculated model. More number of carriers could illustrate greater number of the TE properties. Nonetheless, although the exact number might not be equal to the experimental reports, the obtained trends could tell us that how the TE properties will be when temperature changes and other atoms are doped into the structure. It is important due to the fact that the trend could inform us how to improve TE properties of the materials then, the experimental study will be conducted as follow to check the results to get the most out of it.

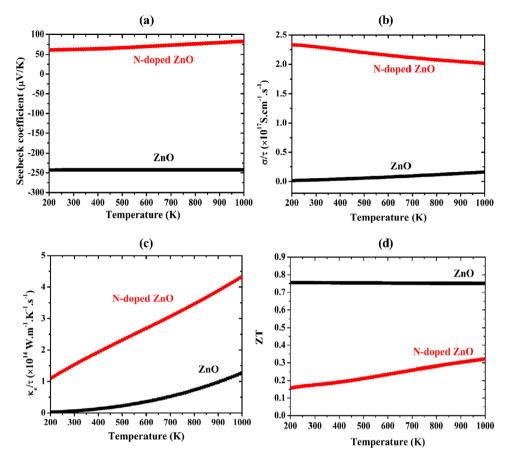



Fig. 8. Thermoelectric properties of pure ZnO and N-doped ZnO of (a) Seebeck coefficient, (b) electrical conductivity per relaxation time, (c) electrical thermal conductivity per relaxation time and (d) ZT.

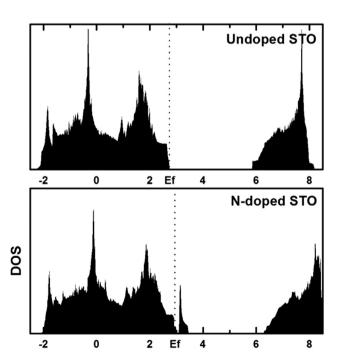



Fig. 9. Total density of states of (up) undoped  $SrTiO_3$  and (down) N-doped  $SrTiO_3$  where  $E_{\rm f}$  is Fermi level.

# 3.2. N-doped SrTiO<sub>3</sub>

Density of states and band structures of the SrTiO<sub>3</sub> and N-doped SrTiO<sub>3</sub> are represented in Figs. 9 and 10. Comparing DOS of two systems, it is obviously illustrated that adding N atom effects to DOS of the SrTiO<sub>3</sub>. Additionally, direct band gap of the SrTiO<sub>3</sub> is observed in the band structure. This is due to the fact that band would be rolled up in the supercell calculations. Obtained energy band gap from the band structure of the pure and nitrogendoped SrTiO<sub>3</sub> are 3.11 and 2.73 eV, respectively. Comparing the experimental results, band gap of the SrTiO<sub>3</sub> is around 3.87 eV, indirect band gap [2]. The underestimated number of the gap is because only valence electrons are considered in the density func-

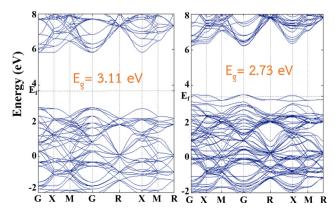



Fig. 10. Band structures of (left) undoped SrTiO<sub>3</sub> and (right) N-doped SrTiO<sub>3</sub>.

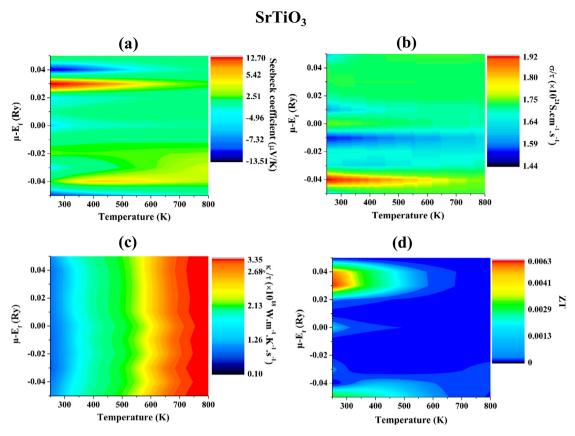



Fig. 11. Plot of thermoelectric properties depending on temperature at any chemical potential of Seebeck coefficient of the SrTiO<sub>3</sub>.

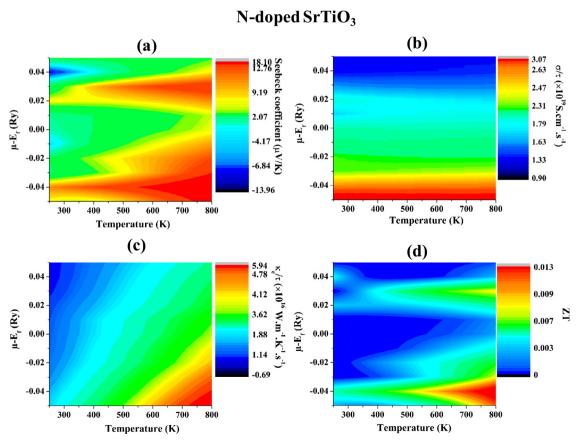



Fig. 12. Plot of thermoelectric properties depending on temperature at any chemical potential of Seebeck coefficient of the N-doped SrTiO<sub>3</sub>.

tional theory calculation while screening of core electrons is not considered. Therefore, the obtained gap is not exactly equal to the experimental report. Nevertheless, trend of optical properties resulting from the gap change when other atoms were added into the systems could be predicted using the DFT study. The results show that in the case of the N-doped SrTiO<sub>3</sub>, there are some acceptor states which are introduced above the valence band and decreasing energy gap 0.38 eV. The forming acceptor states upper the valence band of the N-doped SrTiO<sub>3</sub> are claimed that they are originated by hole carriers, increased by replacing O site by N atom. Therefore, from explained reasons, adding N atom into the SrTiO<sub>3</sub> will be able to improve thermoelectric properties of the SrTiO<sub>3</sub> because more carriers and dominant change of band structures.

Figs. 11–13 are plotting thermoelectric properties as a function of chemical potential  $(\mu)$  at any temperatures of undoped and nitrogen-doped SrTiO3. Considering the TE properties of the SrTiO3 as seen in Fig. 11, Seebeck coefficient at point of chemical potential equaling to electrochemical potential  $E_f$  is  $-5.64~\mu\text{V/K}$  at 250 K, then it becomes to be as  $-2.30~\mu\text{V/K}$  at 800 K, trending to decrease with temperature climbing as seen in blue area changing to light green. Considering at  $\mu\text{-E}_f$  as more than zero, if the  $\mu\text{-E}_f$  is in range of 0.03 Ry, the Seebeck coefficient will bit the maximum point of 11.6  $\mu\text{V/K}$  at 250 K. After that, it will reduce with temperature raising. In case of p-type doping, the maximum number of the S is 5.12  $\mu\text{V/K}$  at 430 K. In this view, both n-type and p-type doping could improve the magnitude of S and, the n-type doping could give the greater absolute number of S than the p-type. In case of the

electrical conductivity per relaxation time and thermal conductivity per relaxation time, the  $\sigma/\tau$  reaches the maximum value at  $\mu\text{-}E_f$  is around -0.04 Ry while the  $\kappa_e/\tau$  remains constant no matter what the  $\mu\text{-}E_f$  will be. Finally, the ZT will be considered. The ZT of the SrTiO3 is increasing, obviously seen in range of 250–300 K, when it was modified by n-type and p-type doping, but the n-type doping could give the greater ZT of the SrTiO3 than the p-type doping because the n-type doping provide the highest ZT when the  $\mu\text{-}E_f$  is 0.03 Ry.

After that, considering TE proterties with structrue of N-doped SrTiO $_3$  as represented in Fig. 12, outstanding points of the S is at  $\mu$ -E $_f$  = -0.05 and 0.02 Ry because value is 7.73 and 7.99  $\mu$ V/K, respectively, at 250 K. Additionally, at  $\mu$ -E $_f$  = 0.04 Ry the highest of magnitude of the S is observed as 9.43  $\mu$ V/K. Thus, n-type and p-type doping could provide the higher absolute S. Considering the  $\sigma$ / $\tau$  and  $\kappa_e$ / $\tau$ , when the  $\mu$ -E $_f$  is less than zero, it could provide greater  $\sigma$ / $\tau$  which will be benefit for the ZT. However, a drawback point is that the  $\kappa_e$ / $\tau$  is also higher. In case of the ZT, it is obviously seen that both n-type doping and p-type doping could trend to increase the ZT of the N-doped SrTiO $_3$ .

From all TE properties of undoped and N-doped  $SrTiO_3$  as considered above, they confirm that both n-type and p-type doping could improve TE properties because more number of carriers effect to the TE properties. More number of carries is similar to trucks. This means that goods could be more loaded and shorter taken time to transport if there are more trucks.

Considering the thermoelectric properties at the Fermi level of the pure and N-doped SrTiO<sub>3</sub>, the Seebeck coefficient are negative

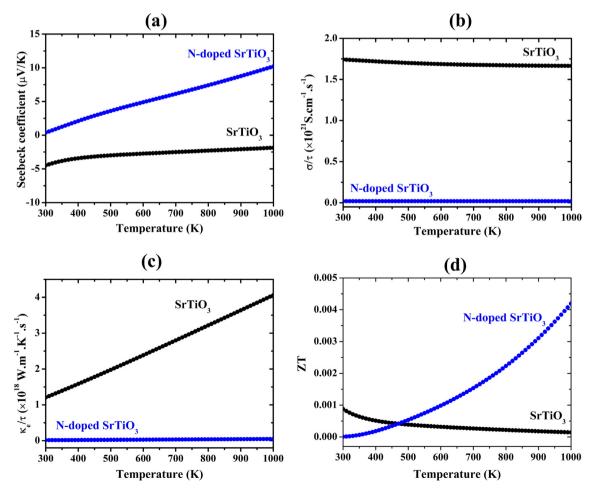



Fig. 13. Thermoelectric properties of pure SrTiO<sub>3</sub> and N-doped SrTiO<sub>3</sub>: a) Seebeck coefficient, (b) electrical conductivity per relaxation time, (c) thermal conductivity (electronic) per relaxation time and (d) ZT.

value for pure SrTiO<sub>3</sub> and, positive value for N-doped SrTiO<sub>3</sub> whole studied temperature range. This is pointing out that electrons are major carriers of pure SrTiO<sub>3</sub> systems, and holes are major carriers of N-doped SrTiO<sub>3</sub>. Thus, they could be concluded that the SrTiO<sub>3</sub> system are n-type semiconductors while the N-doped SrTiO<sub>3</sub> shows p-type semiconductor. In case of the N-doped SrTiO<sub>3</sub>, the p-type nature of the Seebeck coefficient is according to the band structure as mentioned before. Magnitude of the Seebeck coefficient of pure SrTiO<sub>3</sub> decreases with greater temperature from 4.50 to  $1.87 \mu V/K$  at 1000 K. On the other hand, larger temperature results in higher magnitude number of the Seebeck coefficient where the maximum value is  $10.21 \,\mu\text{V/K}$  at  $1000 \,\text{K}$  for the Ndoped SrTiO<sub>3</sub>. From this point, we can see that N doping on the SrTiO<sub>3</sub> brings about larger magnitude of the Seebeck coefficient at high temperature. This is due to the fact that the increase in more difference of carriers brings about larger magnitude of Seebeck coefficient, as shown in Fig. 13(a).

In case of the electrical and electronic thermal conductivity as seen in Fig. 13(b) and (c), electronic thermal conductivity per relaxation time and ratio of electrical conductivity and relaxation time of N-doped SrTiO3 stay stable, a little more than zero. Nonetheless, the SrTiO3 represents dominant value of both the  $\sigma/\tau$  and  $\kappa_e/\tau$  as shown as the black lines. A benefit of the SrTiO3 is greater electrical conductivity, but a disadvantage is that higher thermal conductivity/relaxation time, compared to N-doped SrTiO3. Therefore, the figure of merit or ZT will be considered as follow to observe the ability to convert heat to electrical energy of these structures.

Considering the ZT, trend of the SrTiO<sub>3</sub> falls with greater temperature while that of the N-doped SrTiO<sub>3</sub> are increasing with temperature. Although the ZT of the N-doped SrTiO<sub>3</sub> might be less than the pure SrTiO<sub>3</sub> in range of temperature as 300–480 K, the N-doped SrTiO<sub>3</sub> is demonstrating a good trend with temperature increasing and the more ZT than the SrTiO<sub>3</sub> at temperature above 480 K. In detail, the SrTiO<sub>3</sub> begins with 0.001 and end as 0.000 at T = 1000 K while the N-doped SrTiO<sub>3</sub> starts at zero and finishes as 0.04 at 1000 K. This trend is according to the Seebeck coefficient as considered before because the ZT is direct proportional to the Seebeck coefficient. From these points, they are guiding that the SrTiO<sub>3</sub> does not convenient for utilization at high temperature, but N-doped SrTiO<sub>3</sub> could be. Thus, the N-doped SrTiO<sub>3</sub> would be new expectation to be applied as high efficiency thermoelectric materials for using at high temperature.

Comparing to the experimental result reported by Liu et al. [27], from the report the ZT of bulk STO starts with  $-450~\mu\text{V/K}$  at 300 K then, the absolute S shows a little going down with temperature increasing. This trend is according to the computed S of this work although the magnitude of S is not equal. In case of the ZT, from the BoltztraP calculation, the ZT values are quite stable (the ZT of 0.001 at 300 K), same trend to the experimental report with the ZT of less than 0.0125. Here, we see that trends of the obtained TE properties of the SrTiO $_3$  from calculation approach and experimental study are similar. Nonetheless, the underestimate value of calculation results compared to the experimental data might be from the Fermi level and more number of the atoms as discussed above.

# 4. Conclusion

In summary, electronic and thermoelectric properties of ZnO and SrTiO<sub>3</sub> in the presence of nitrogen impurity have been investigated by means of the first-principles calculations. It is found that N-doped ZnO has a smaller band gap compared to the pure counterpart because of the localized impurity states located near the valence band (i.e., p-type character). Furthermore, N-doped ZnO exhibits the enhanced thermoelectric properties of the positive Seebeck coefficient and higher electrical conductivity per relax-

ation time. Similarly, SrTiO<sub>3</sub> with nitrogen impurity possess the smaller energy gaps. For thermoelectric properties, ZT of undoped SrTiO<sub>3</sub> decreases as temperature increases. Nevertheless, ZT of N-doped SrTiO<sub>3</sub> increases with temperature, confirming that O site replacement by N atom can improve thermoelectric efficiency.

# Acknowledgments

Funding for this work is provided by The Thailand Research Fund (TRF) under Grant No. TRG5880112, Integrated Nanotechnology Research Center (INRC), Khon Kaen University, Thailand, the Nanotechnology Center (NANOTEC), NSTDA, Ministry of Science and Technology, Thailand, through its program of Center of Excellence Network, National Research Council of Thailand (NRCT) and, Science Achievement Scholarship of Thailand (SAST).

### References

- [1] C. Aydın, M.S.A. El-sadek, K. Zheng, I.S. Yahia, F. Yakuphanoglu, Synthesis, diffused reflectance and electrical properties of nanocrystalline Fe-doped ZnO via sol-gel calcination technique, Opt. Laser Tech. 48 (2013) 447–452.
- [2] J. Xu, Y. Wei, Y. Huang, J. Wang, X. Zheng, Z. Sun, et al., Solvothermal synthesis nitrogen doped SrTiO<sub>3</sub> with high visible light photocatalytic activity, Ceram. Int. 40 (2014) 10583–10591.
- [3] K.C. Choi, E.J. Lee, Y.K. Baek, D.C. Lim, Y.C. Kang, Y.D. Kim, K.H. Kim, J.P. Kim, Y.K. Kim, Morphologically controlled ZnO nanostructures as electron transport materials in polymer-based organic solar cells, Electrochim. Acta 180 (2015) 435–441.
- [4] S.A. Vanalakar, V.L. Patil, N.S. Harale, S.A. Vhanalakar, M.G. Gang, J.Y. Kim, P.S. Patil, J.H. Kim, Controlled growth of ZnO nanorod arrays via wet chemical route for NO<sub>2</sub> gas sensor applications, Sensor Actuator B Chem. 221 (2015) 1195–1201
- [5] M.H. Wang, X.Y. Ma, W. Jiang, F. Zhou, Synthesis of doped ZnO nanopowders in alcohol-water solvent for varistors applications, Mater. Lett. 121 (2014) 149– 151
- [6] Y.W. Heo, L.C. Tien, Y. Kwon, D.P. Norton, S.J. Pearton, B.S. Kang, F. Ren, Depletion-mode ZnO nanowire field-effect transistor, Appl. Phys. Lett. 85 (2004) 2274.
- [7] B.U. Haq, R. Ahmed, A. Shaari, S. Goumri-Said, GGA+U investigations of impurity d-electrons effects on the electronic and magnetic properties of ZnO, J. Magn. Magn. Mater. 362 (2014) 104–109.
- [8] B.U. Haq, A. Afaq, R. Ahmed, S. Naseem, A comprehensive DFT study of zinc oxide in different phases, Int. J. Mod. Phys. C 23 (2012) 1250043.
- [9] X. Yang, A. Wolcott, G. Wang, A. Sobo, R.C. Fitzmorris, F. Qian, J.Z. Zhang, Y. Li, Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting, Nano Lett. 9 (2009) 2331–2336.
- [10] X. Zong, C. Sun, H. Yu, Z.G. Chen, Z. Xing, D. Ye, G.Q. Lu, X. Li, L. Wang, Activation of photocatalytic water oxidation on N-doped ZnO bundle-like nanoparticles under visible Light, J. Phys. Chem. C 117 (2013) 4937–4942.
- [11] S. Das, S. Patra, J.P. Kar, A. Roy, A. Ray, J.M. Myoung, Origin of p-type conductivity for N-doped ZnO nanostructure synthesized by MOCVD method, Mater. Lett. 161 (2015) 701–704.
- [12] T. Tsubota, M. Ohtaki, K. Eguchi, H. Arai, Thermoelectric properties of Al-doped ZnO as a promising oxide material for high-temperature thermoelectric conversion, J. Mater. Chem. 7 (1997) 85–90.
- [13] S. Jantrasee, S. Pinitsoontorn, P. Moontragoon, First-principles study of the electronic structure and thermoelectric properties of Al-doped ZnO, J. Electron. Mate. 43 (2014) 1689–1696.
- [14] R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O'Quinn, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature 413 (2001) 597–602.
- [15] T.C. Harman, M.P. Walsh, B.E. Laforge, G.W. Turner, Nanostructured Thermoelectric Materials, J. Electron. Mater. 34 (2005) L19–L22.
- [16] J. Sun, D.J. Singh, Thermoelectric properties of n-type  $SrTiO_3$ , APL Mater. 4 (2016) 104803.
- [17] H.J. Goldsmid, J.W. Sharp, Estimation of the thermal band gap of a semiconductor from seebeck measurements, J. Electron. Mater. 28 (1999) 869–872.
- [18] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1996) 15–50.
- [19] P.E. Blochl, Projector augmented-wave method, Phys. Rev. B. 50 (1994) 17953–17979.
- [20] G.K.H. Madsen, D.J. Singh, BoltzTraP. A code for calculating band-structure dependent quantities, Comput. Phys. Comm. 175 (2006) 67–71.
- [21] X. Qu, W. Wang, S. Lv, D. Jia, Thermoelectric properties and electronic structure of Al-doped ZnO, Solid State Comm. 151 (2011) 332–336.
- [22] P. Sikam, P. Moontragoon, J. Jumpatam, S. Pinitsoontorn, P. Thongbai, T. Kamwanna, Structural, optical, electronic and magnetic properties of Fe-doped ZnO nanoparticles synthesized by combustion method and first-principle calculation, J. Supercond. Novel Magn. 29 (2016) 3155–3166.

- [23] S. Jantrasee, S. Pinitsoontorn, P. Moontragoon, Thermoelectric properties of Aldoped ZnO: experiment and simulation, J. Semiconduct. 37 (2016) 092002.
   [24] S. Jantrasee, S. Pinitsoontorn, P. Moontragoon, Optical and magnetic properties
- [24] S. Jantrasee, S. Pinitsoontorn, P. Moontragoon, Optical and magnetic properties of doped ZnO: experimental and simulation, J. Optoelectron. Adv. Mater. 18 (2016) 1033.
- [25] G.J. Snyder, E.S. Toberer, Complex thermoelectric materials, Nat. Mater. 7 (2008) 105–114.
- [26] X. Qu, W. Wang, S. Lv, D. Jia, Thermoelectric properties and electronic structure of Al-doped ZnO, Solid State Commun. 151 (2011) 332–336.
  [27] D. Liu, Y. Zhang, H. Kang, J. Lia, Z. Chen, T. Wang, Direct preparation of La-
- [27] D. Liu, Y. Zhang, H. Kang, J. Lia, Z. Chen, T. Wang, Direct preparation of Ladoped SrTiO<sub>3</sub> thermoelectric materials by mechanical alloying with carbon burial sintering, J. Eur. Ceram. Soc. 38 (2018) 807–811.

# ARTICLE IN PRESS

Ceramics International xxx (xxxx) xxx-xxx



Contents lists available at ScienceDirect

# Ceramics International

journal homepage: www.elsevier.com/locate/ceramint



# Giant dielectric permittivity and dielectric relaxation behaviour in $(Fe_{1/2}Nb_{1/2})_xTi_{1-x}O_2$ ceramics

Theeranuch Nachaithong<sup>a</sup>, Wattana Tuichai<sup>a</sup>, Pairot Moontragoon<sup>a,b,\*</sup>, Narong Chanlek<sup>c</sup>, Prasit Thongbai<sup>a</sup>

- a Integrated Nanotechnology Research Center (INRC), Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
- b Thailand Center of Excellence in Physics, Commission on Higher Education, Bangkok 10400, Thailand
- <sup>c</sup> Synchrotron Light Research Institute (Public Organization), 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand

## ARTICLE INFO

Keywords: Rutile – TiO<sub>2</sub> Giant dielectric permittivity Nonlinear I-V characteristic

# ABSTRACT

In this work, the giant dielectric properties and dielectric relaxation behaviour in  $(Fe_{1/2}Nb_{1/2})_xTi_{1.x}O_2$  (x=0–0.1) ceramics prepared by a conventional solid state reaction method were investigated. Pure phase of rutile- $TiO_2$  was obtained in all ceramic compositions. Dense ceramic microstructure without porosity was achieved in the sintered ceramics. High dielectric permittivity of  $>10^3$  was obtained. The existence of  $Ti^{4+}$  and  $Ti^{3+}$  was confirmed by X-ray photoelectron spectroscopy. The thermally activated dielectric relaxation behaviour in  $(Fe_{1/2}Nb_{1/2})_xTi_{1.x}O_2$  ceramics was observed and attributed to the electron hopping mechanism.

# 1. Introduction

In recent years, dielectric oxides that can exhibit high dielectric permittivity of  $\epsilon'>10^3$  (giant dielectric oxides) have been widely studied owing to their potentially useful in many applications, especially for multilayer ceramic capacitors (MLCCs) [1]. Additionally, the fascinating dielectric behaviour of any giant dielectric material has stimulated the research activity in this area. Many models were proposed to describe a high dielectric response in giant dielectric oxides such as internal barrier layer capacitor (IBLC), surface barrier layer capacitor (SBLC), polaronic electron hopping models as well as Schottky barrier at sample-electrode contact [2–6].

 $In^{3+}/Nb^{5+}$  co-doped rutile  $TiO_2$  (INTO) ceramic was reported to be a new giant dielectric oxide that can exhibit high-performance giant dielectric properties with low dielectric loss tangent (tan $\delta$ ) [1]. Very high  $\epsilon'$  (6  $\times$  10  $^4$ ) and tan $\delta\approx0.02$  were accomplished inINTO ceramics. Accordingly, a new concept for explaining the giant dielectric response in INTO ceramics was reported. Free electrons produced by  $Nb^{5+}$  doping ions were localized in complex defect clusters, which was produced by  $In^{3+}$  doping. This was referred to as an electron–pinned defect dipole (EPDD) model [1]. When an electric field was applied to INTO ceramics, the strong polarization of free electrons was produced in defect clusters, giving rise to very high  $\epsilon'$  value and low tan $\delta$ . It was further reported that other  $TiO_2$  –based systems such as  $Ga^{3+}/Nb^{5+}$ 

[2],  $\mathrm{Bi^{3+}/Nb^{5+}}$  [7],  $\mathrm{Al^{3+}/Nb^{5+}}$  [8],  $\mathrm{Sm^{3+}/Ta^{5+}}$  [9],  $\mathrm{V^{3+}/Ta^{5+}}$  [10], and  $\mathrm{Ga^{3+}/Ta^{5+}}$  [11] can also exhibit the giant dielectric properties. Accordingly, many models have been reasonably used proposed to explain the overall giant dielectric properties of these co-doped  $\mathrm{TiO_2}$  ceramics [1–3,7,8,11,12]. The origin of the giant dielectric response in  $\mathrm{TiO_2}$ -based is still unclear now.

In the work, the giant dielectric properties and dielectric relaxation behaviour of a new  ${\rm TiO_2}$ -based system, i.e.,  ${\rm Fe}^{3\,+}/{\rm Nb}^{5\,+}$  co-doped  ${\rm TiO_2}$  (FNTO) ceramics, were investigated. The phase composition and microstructure of the sintered ceramics were characterized. The origin of the giant dielectric response was discussed in details.

# 2. Experimental & theoretical details

 $({\rm Fe_{1/2}Nb_{1/2}})_x{\rm Ti_{1.x}O_2}$  ceramics (where  $x=0.01,~0.025,~0.05,~{\rm and}~0.10$ , which were referred to as 1%FNTO, 2.5%FNTO, 5%FNTO, 10% FNTO ceramics, respectively), were prepared by a solid state reaction method. First, TiO<sub>2</sub>, Nb<sub>2</sub>O<sub>5</sub>, and Fe<sub>2</sub>O<sub>3</sub> were mixed by wet – ball milling in ethanol for 24 h. Second, the mixture was heated to evaporate ethanol. Third, dried mixed powders were pressed into pellets. Finally, the pellets were sintered at 1300–1400 °C for 5 h.

The sintered FNTO ceramics were characterized by X-ray diffraction technique (XRD, PANalytical, EMPYREAN), scanning electron microscope (SEM, SNE4500M) and X-ray photoelectron spectroscopy (XPS,

E-mail address: mpairo@kku.ac.th (P. Moontragoon).

https://doi.org/10.1016/j.ceramint.2018.08.118

0272-8842/  $\ensuremath{\mathbb{G}}$  2018 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

<sup>\*</sup> Correspondence to: Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), Research Network of NANOTEC- KKU (RNN), Khon Kaen University, Khon Kaen 40002. Thailand.

T. Nachaithong et al. Ceramics International xxx (xxxxx) xxx-xxx

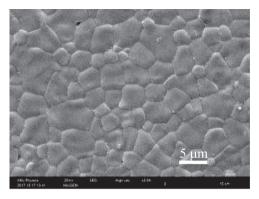



Fig. 1. SEM image of 10%FNTO ceramic sintered at 1300 °C for 5 h.

PHI5000 Versa Probe II, ULVAC-PHI, Japan) at the SUT-NANOTEC-SLRI Joint Research Facility, Synchrotron Light Research Institute (SLRI), Thailand. The dielectric properties were measured using a KEYSIGHT E4990A Impedance Analyzer over the frequency and temperature ranges of  $10^2$ – $10^7$  Hz and -60–210 °C, respectively.

# 3. Results and discussion

Fig. 1 shows the microstructure of the 10%FNTO ceramic sintered at 1300 °C for 5 h. Highly dense microstructure was observed. Porosity and abnormal grain growth were not observed. The average grain size was about 5  $\mu m$ . Fig. 2 demonstrates the XRD patterns of  $(Fe_{1/2}Nb_{1/2})_xTi_{1-x}O_2$  ceramics with different co-doping concentrations sintered at 1300 °C for 5 h. Single phase of rutile –  $TiO_2$  was detected in all XRD patterns. This means that both of Fe and Nb dopants can substitute on Ti sites

To explain the dielectric properties of FNTO ceramics, the existence of  ${\rm Ti}^{3+}$  and oxygen vacancy should be confirmed. The XPS technique was used to characterize, as shown in Figs. 3 and 4 for Ti2p and O1s, respectively. The XPS peaks at the binding energy of  $\sim 458.53$  and  $\sim 457.70\,{\rm eV}$  were assigned as  ${\rm Ti}^{4+}$  and  ${\rm Ti}^{3+}$ , respectively [1]. The existence of  ${\rm Ti}^{3+}$  is generally resulted from Nb<sup>5+</sup> doping ions due to the charge compensation. For the O1s profiles, the major peak at 529.99 eV was assigned to the oxygen lattice (Ti – O bond) [1]. The peaks at 531.4 and 532.67 eV were assigned to oxygen lattices and oxygen vacancies, respectively [1,11]. It is likely that the oxygen vacancies in  ${\rm TiO}_2$  might be produced by  ${\rm Fe}^{3+}$  doping ions. Both of  ${\rm Ti}^{3+}$  and oxygen vacancies were confirmed to exist.

The dielectric properties of  $(Fe_{1/2}Nb_{1/2})_xTi_{1-x}O_2$  ceramics at room temperature are shown in Fig. 5. In the frequency range below  $10^4$  Hz, very high values of  $\epsilon'$  were obtained in all sintered ceramics. In this frequency range,  $\epsilon'$  slightly increased with increasing co-doping

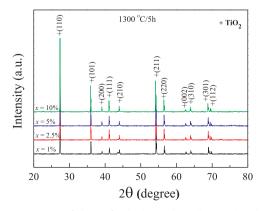



Fig. 2. XRD patterns of  $(Fe_{1/2}Nb_{1/2})_xTi_{1\cdot x}O_2$  (FNTO) ceramics sintered at 1300  $^{\circ}C$  for 5 h.

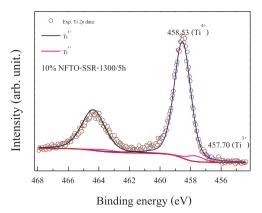



Fig. 3. XPS spectrum of 10%FNTO ceramic for Ti2p, (b) O1s.

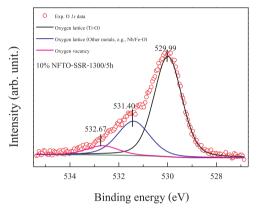



Fig. 4. XPS spectrum of 10%FNTO ceramic for O1s.

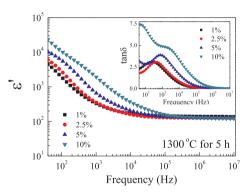



Fig. 5. Frequency dependence of  $\epsilon'$  at RT of  $(Fe_{1/2}Nb_{1/2})_xTi_{1.x}O_2$  ceramics with different co-doping concentrations sintered at 1300 °C for 5 h; inset shows the frequency dependence of  $tan\delta$  at RT.

concentration. A step-like decrease in  $\epsilon'$  appeared. As shown in the inset,  $\tan\delta$  peaks were observed, corresponding to the observed step-like decrease in  $\epsilon'$ . This dielectric characteristic is signified to dielectric relaxation behaviour.

In the frequency range higher than  $10^5$  Hz, the  $\epsilon'$  values of all sintered ceramics were independent on frequency and nearly the same in value. For all sintered ceramics, their  $\epsilon'$  values were about  $10^2$ , which is the intrinsic value of undoped TiO<sub>2</sub> [13]. This result indicated that Fe<sup>3+</sup>/Nb<sup>5+</sup> co-doping ions have an effect on the dielectric response of TiO<sub>2</sub> only in a low frequency range.

The frequency depednence of the dielectric properties at different temperatures was further investigated. Fig. 6, for the 1%FNTO ceramic, the step-like decrease in  $\varepsilon'$  shifted to high frequencies as temperature increased, corresponding to the movement of  $\tan\delta$  peaks. This is the thermally activated dielectric relaxation process [14]. Note that this

T. Nachaithong et al. Ceramics International xxx (xxxxx) xxx-xxx

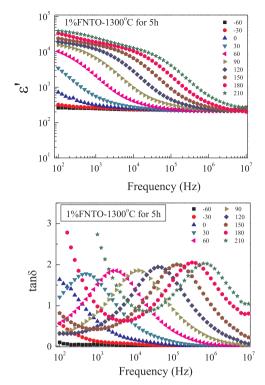



Fig. 6. Frequency dependence of the dielectric properties ( $\epsilon'$  and  $\tan\delta$ ) at different temperatures for the 1%FNTO ceramic.

dielectric behaviour in the 1%FNTO ceramic is similar to other codoping concentrations [not shown]. It was observed that the giant dielectric response of FNTO ceramics was dominated in a high temperature range only. The overall dielectric properties of FNTO ceramics are totally different from those of other  ${\rm TiO_2\text{-}based}$  systems [4,6,9,12,15–19].

Hu et al. [2,8] have proposed that EPDD clusters cannot be occurred in the Al<sup>3+</sup>/Nb<sup>5+</sup> co – doped TiO<sub>2</sub> ceramics because the ionic radius of the Al<sup>3+</sup> was smaller than that of host Ti<sup>4+</sup> ion. The triangular shaped complex defect of  $Al_2^{3+} - V_O^* - Ti^{3+}$ , in which  $V_O^*$  must be originated from substitution of  $Al^{3+}$  [ $Al_2O_3(2TiO_2) \rightarrow 2Al_{Ti} + V_O^* + 2O_O$ ], cannot be produced. As demonstrated in Figs. 5 and 6, the giant dielectric properties can be observed only in a temperature range of higher than RT. At -60 °C, the giant dielectric behaviour vanished. This result is contrast to that observed in other co-doped TiO2 systems, at which the giant dielectric properties can be observed even at a low temperature of -200 °C [1,2]. Thus, the origin of the giant dielectric response in the FNTO ceramics may be different from that of other TiO<sub>2</sub>-based systems. According to the impedance spectroscopy analysis [not shown], the giant dielectric response of FNTO ceramics may not be caused by the IBLC effect because of their high resistivity of the grains. Considering the temperature dependence of the dielectric behaviour, the EPDD effect is clearly related to this observation in FNTO ceramics. According to the XPS result, the giant dielectric response in FNTO ceramics may be related to electron hopping between Ti<sup>4+</sup> and Ti<sup>3+</sup> and/or Fe<sup>3+</sup> and  $Fe^{2+}$ .

# 4. Conclusions

 $(Fe_{1/2}Nb_{1/2})_xTi_{1-x}O_2$  ceramics with different co-doping concentrations were successfully prepared by a conventional solid state reaction method. Single phase of rutile- $TiO_2$  was achieved in all sintered ceramics. The sintered ceramics were highly dense. The  $(Fe_{1/2}Nb_{1/2})_xTi_{1-x}O_2$  ceramics exhibited high dielectric permittivity in the range of  $10^3$ – $10^5$  at temperature higher than RT. The giant dielectric response

and thermally activated dielectric relaxation behaviour in  $(Fe_{1/2}Nb_{1/2})_xTi_{1-x}O_2$  ceramics was observed and described to the electron hopping mechanism, rather than IBLC or EPDD models.

## Acknowledgements

This study was financially supported by The Thailand Research Fund (TRF) under Grant No. TRG5880112, the Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), Khon Kaen University and the National Nanotechnology Center (NANOTEC), NSTDA, Ministry of Science and Technology, Thailand, through its program of Research Network NANOTEC (RNN), the National Research Council of Thailand (NRCT). The authors would like to thank the SUTNANOTEC-SLRI (BL5.1) Joint Research Facility for use of their XPS facility. T.N. would like to thank the Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program (Grant No. PHD/0114/2559) for his Ph.D. scholarship.

### References

- [1] W. Hu, Y. Liu, R.L. Withers, T.J. Frankcombe, L. Norén, A. Snashall, M. Kitchin, P. Smith, B. Gong, H. Chen, J. Schiemer, F. Brink, J. Wong-Leung, Electron-pinned defect-dipoles for high-performance colossal permittivity materials, Nat. Mater. 12 (9) (2013) 821–826.
- [2] W. Dong, W. Hu, A. Berlie, K. Lau, H. Chen, R.L. Withers, Y. Liu, Colossal dielectric behavior of Ga + Nb Co-doped rutile TiO<sub>2</sub>, ACS Appl. Mater. Interfaces 7 (45) (2015) 25321–25325.
- [3] T. Nachaithong, P. Kidkhunthod, P. Thongbai, S. Maensiri, Surface barrier layer effect in (In + Nb) co-doped TiO<sub>2</sub> ceramics: an alternative route to design low dielectric loss, J. Am. Ceram. Soc. 100 (4) (2017) 1452–1459.
- [4] X.W. Wang, B.H. Zhang, L.Y. Sun, W.N. Qiao, Y.D. Hao, Y.C. Hu, X.E. Wang, Colossal dielectric properties in (Ta<sub>0.5</sub>Al<sub>0.5</sub>)<sub>x</sub>Ti<sub>1-x</sub>O<sub>2</sub> ceramics, J. Alloy. Compd. 745 (2018) 856–862.
- [5] W. Tuichai, P. Srepusharawoot, E. Swatsitang, S. Danwittayakul, P. Thongbai, Giant dielectric permittivity and electronic structure in (Al + Sb) co-doped TiO<sub>2</sub> ceramics, Microelectron. Eng. 146 (2015) 32–37.
- [6] X. Zhu, L. Yang, J. Li, L. Jin, L. Wang, X. Wei, Z. Xu, F. Li, The dielectric properties for (Nb,In,B) co-doped rutile TiO<sub>2</sub> ceramics, Ceram. Int. 43 (8) (2017) 6403–6409.
- [7] X. Cheng, Z. Li, J. Wu, Colossal permittivity in ceramics of TiO<sub>2</sub> Co-doped with niobium and trivalent cation, J. Mater. Chem. A 3 (11) (2015) 5805–5810.
- [8] W. Hu, K. Lau, Y. Liu, R.L. Withers, H. Chen, L. Fu, B. Gong, W. Hutchison, Colossal dielectric permittivity in (Nb+Al) codoped rutile TiO<sub>2</sub> ceramics: compositional gradient and local structure, Chem. Mater. 27 (14) (2015) 4934–4942.
- 9] Z. Li, J. Wu, W. Wu, Composition dependence of colossal permittivity in (Sm<sub>0.5</sub>Ta<sub>0.5</sub>)<sub>x</sub>Ti<sub>1.x</sub>O<sub>2</sub> ceramics, J. Mater. Chem. C 3 (35) (2015) 9206–9216.
- [10] W. Tuichai, S. Danwittayakul, N. Chanlek, P. Thongbai, Effects of sintering temperature on microstructure and giant dielectric properties of (V + Ta) co-doped TiO<sub>2</sub> ceramics, J. Alloy. Compd. 725 (Supplement C) (2017) 310–317.
- [11] W. Tuichai, N. Thongyong, S. Danwittayakul, N. Chanlek, P. Srepusharawoot, P. Thongbai, S. Maensiri, Very low dielectric loss and giant dielectric response with excellent temperature stability of Ga<sup>3+</sup> and Ta<sup>5+</sup> co-doped rutile-TiO<sub>2</sub> ceramics, Mater. Des. 123 (2017) 15–23.
- [12] W. Tuichai, S. Danwittayakul, N. Chanlek, P. Srepusharawoot, P. Thongbai, S. Maensiri, Origin(s) of the apparent colossal permittivity in (In<sub>1/2</sub>Nb<sub>1/2</sub>)<sub>x</sub>Ti<sub>1-x</sub>O<sub>2</sub>: clarification on the strongly induced Maxwell-Wagner polarization relaxation by DC bias. RSC Adv. 7 (1) (2017) 95–105.
- [13] C.C. Homes, T. Vogt, Colossal permittivity materials: doping for superior dielectrics, Nat. Mater. 12 (9) (2013) 782–783.
- [14] Y. Lin, L. Jiang, R. Zhao, C.-W. Nan, High-permittivity core/shell stuctured NiO-based ceramics and their dielectric response mechanism, Phys. Rev. B 72 (1) (2005).
- [15] Y. Yu, Y. Zhao, T.-D. Zhang, R.-X. Song, Y.-L. Zhang, Y.-L. Qiao, W.-L. Li, W.-D. Fei, Low dielectric loss induced by coupling effects of donor-acceptor ions in (Nb+Al) co-doped rutile TiO2 colossal permittivity ceramics, Ceram. Int. 44 (6) (2018) 6866–6871.
- [16] W. Tuichai, S. Danwittayakul, N. Chanlek, P. Thongbai, S. Maensiri, High-performance giant-dielectric properties of rutile TiO<sub>2</sub> co-doped with acceptor-Sc<sup>3+</sup> and donor-Nb<sup>5+</sup> ions, J. Alloy. Compd. 703 (2017) 139–147.
- [17] X.-g. Zhao, P. Liu, Effects of sintering atmosphere on microstructure and dielectric properties of (Yb + Nb) co-doped rutile TiO<sub>2</sub> ceramics, J. Alloy. Compd. 715 (2017) 170–175
- [18] Z. Li, X. Luo, W. Wu, J. Wu, Niobium and divalent-modified titanium dioxide ceramics: colossal permittivity and composition design, J. Am. Ceram. Soc. 100 (7) (2017) 3004–3012.
- [19] B. Guo, P. Liu, X. Cui, Y. Song, Enhancement of breakdown electric field and DC bias of (In<sub>0.5</sub>Nb<sub>0.5</sub>)<sub>0.005</sub>(Ti<sub>1-x</sub>Zr<sub>x</sub>)<sub>0.995</sub>O<sub>2</sub> colossal permittivity ceramics, J. Alloy. Compd. 740 (2018) 1108–1115.

# ORIGINAL PAPER



# Structural, Optical, Electronic and Magnetic Properties of Fe-Doped ZnO Nanoparticles Synthesized by Combustion Method and First-Principle Calculation

Pornsawan Sikam<sup>1</sup> · Pairot Moontragoon<sup>1,2,3</sup> · Jutapol Jumpatam<sup>1</sup> · Supree Pinitsoontorn<sup>1,2,3</sup> · Prasit Thongbai<sup>1,2,3</sup> · Theerasak Kamwanna<sup>1,2,3</sup>

Received: 7 August 2016 / Accepted: 13 August 2016 / Published online: 22 August 2016 © Springer Science+Business Media New York 2016

**Abstract** In this work, pure and Fe-doped ZnO were investigated in both experimental and theoretical aspects. The  $Zn_{1-x}Fe_xO$  (x = 0.000, 0.0625, and 0.125) nanoparticles were prepared by a combustion method. The crystal structures were characterized by the X-ray diffraction (XRD) and selected area electron diffraction (SAED) analysis, morphology by the scanning electron microscope (SEM) and transmission electron microscopy (TEM) techniques, elemental analysis or chemical characterization by energy-dispersive X-ray spectroscopy (EDS or EDX), magnetic behavior by vibrating sample magnetometer (VSM), and optical band gap by ultraviolet-visible (UV-Vis) spectroscopy. In the first principle calculation, the structural properties, density of states (DOS), electronic band structure, and magnetic property of pure ZnO and Zn<sub>1-x</sub>Fe<sub>x</sub>O have been investigated by means of density functional theory with local density approximation (LDA), general gradient approximation (GGA), as well as LDA and GGA with Hubbard model scheme (LDA + U and GGA + U), packaged in the Vienna Ab initio Simulation Package (VASP).

The calculation was performed using self-consistent projected augmented plane wave (PAW). The zinc oxide was modeled using  $2 \times 2 \times 2$  super-cell in ideal hexagonal wurtzite structure. The prepared samples of pure ZnO and  $Zn_{1-x}Fe_xO$  with iron concentration of 6.25 and 12.5 % by mole have a phase of the hexagonal wurtzite structure with particle size in nanometer scale. The calculation results indicate that the pure ZnO has direct energy band gap of 2.24 eV for GGA + U calculation in the scheme of Perdew–Burke– Ernzerh of PBE, which are underestimated when compared to the results from the experiment part,  $E_g = .17$  eV. The calculated magnetic dipole moments of the  $Zn_{1-x}Fe_xO$ when the iron contents (x) are 0.000, 0.0625, and 0.125 equal to 0.00, 3.91, and 7.83  $\mu_b$  respectively. The density of states of dopant systems shows an intermediate band from d orbital of iron atoms located near the valence band. This indicates that small amount of doped iron engineers the band structure. These results show that the doped iron atoms seem to play an important role for the appearance of intermediate band and magnetism.

**Keywords** Diluted magnetic semiconductor · Fe-doped ZnO · Spintronics

# 1 Introduction

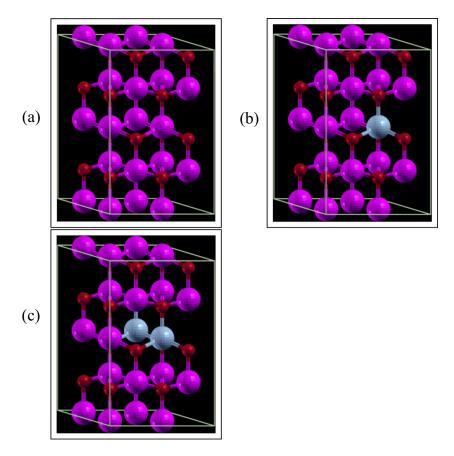
For a decade, ZnO, a non-magnetic, ecological friendly material, and n-type semiconductor with widely direct band gap of 3.37 eV [1], has rigorously attracted research attention for its exceptional properties and resourceful applications in transparent electronics, ultraviolet (UV) light emitters, piezoelectric devices, chemical sensors, solar cells [2], gas sensors [3], varistors [4], and transistors [5]. For example, it can be used as transparent conducting glass



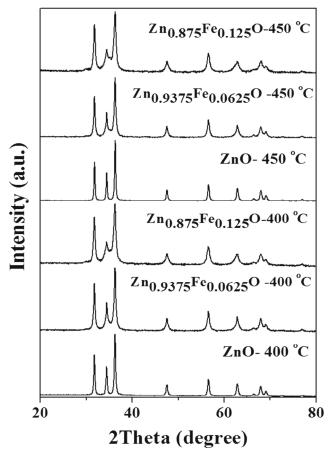
<sup>☐</sup> Pairot Moontragoon mpairo@kku.ac.th

Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand

Integrated Nanotechnology Research Center (INRC), Department of Physics, Khon Kaen University, Khon Kaen, 40002, Thailand


Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage, Khon Kaen, Thailand

for displays and photovoltaic panels instead of indium tin oxide (ITO) which is more expensive. The zinc oxide is widely used in various technological applications because it is inexpensive material, abundant availability in nature, and thermally stable. There are three structures of zinc oxide which are a stable hexagonal wurtzite, a metastable cubic zinc blende, and a high-pressure rock salt [6, 7]. Due to the most stable structure at room temperature of wurtzite phase, there are many literatures regarding wurtzite applications. Its challenge is that if we can improve ZnO features, then it will be used in more ways than currently possible. Such as magnetic behavior, magnetism in ZnO will lead ZnO to be a potential candidate for the emerging spintronics.


Spintronic or spin-based electronic is a technology which is improved from the role play of spin electron in materials and exploit spin properties instead of or in addition to electron charges and can take advantage of electronic, optical, and magnetic properties of semiconductors and use the spin of electron instead of the charge of electron for reading, writing data, and transferring the information to integrate with traditional semiconductor technology. Therefore, this technology needs room temperature ferromagnetic materials. Additionally, transition-doped ZnO materials are not expensive, relatively abundant, chemically stable, easy to prepare, and non-toxic, and especially, there are number

of researches showing room temperature ferromagnetism of doped ZnO. One of the magnetic material classes is diluted magnetic semiconductor (DMS). It is being replaced of some fractions of atoms in a non-magnetic host such as ZnO, TiO2, and SnO2 by transition metal (TM) or rare earth ions [6, 8]. It is an effective application in the spintronic devices such as data storage devices and information processing devices [6]. ZnO-based DMS are widely studied in terms of both theoretical and experimental studies, for example, the ferromagnetic behavior at the room temperature of TM-doped ZnO when TM are V, Ag, Cr, Mn, and Fe [6, 8–15]. Not only magnetic behavior but also optical property is investigated. For example, Ul Haq et al. [6] reported that V-doped ZnO is n-type and Ag-doped ZnO is p-type conductivity. Besides, Fe ion is doped on zinc oxide as well. They expected that 3d-electrons of Fe will improve the electrical, optical, and magnetic properties of ZnO. Other studies confirm iron ions can modify ZnO features. For example, Liu et al. [16] reported that ferromagnetism of Fe-doped ZnO nanoparticles depends on iron concentration. For energy band gap, there are controversial results regarding the effect of percent concentration of iron ions to energy band gap of Fe-doped ZnO. Liu et al. showed an increasing in Fe concentration until 3 % increases the energy band gap; on the other hand, Ciciliati et al. [10] reported the increase

**Fig. 1** The crystal structures of Fe-doped zinc oxide (Fe<sub>x</sub>Zn<sub>1-x</sub>O) **a** x = 0.000, **b** x = 0.0625, and **c** x = 0.125 where *pink* represents the Zn atoms, *red* the O atoms and, *light blue* the Fe atoms







**Fig. 2** XRD patters of Fe-doped zinc oxide (Fe $_x$ Zn $_{1-x}$ O) with x=0.000, x=0.0625, and x=0.125 nanopowder calcined at 400 and 450 °C

in iron concentration until 10 % results in being narrower of energy band gap.

Nanomaterial is greatly popular nowadays because of enormous surface per volume. There are a lot of methods to prepare nanomaterial such as combustion [9], sol-gel [10], and hydrothermal [17] methods. Among these, the combustion method is an excellent choice to synthesize Fedoped ZnO because this method takes less time and has less cost and easy-to-prepare nanoparticles. Therefore, this work would like to observe structural, electronic, and magnetic properties of 6.25 and 12.5 % concentration by mole of Fedoping on ZnO both theoretical and experimental aspects. The Fe-doped and pure ZnO were calculated by density functional theory (DFT). The projector augmented wave (PAW) [18] pseudopotential method was used on the Vienna Ab initio Simulation Package (VASP) software package [19]. Moreover, in this research, for nanoparticle synthesis, doped and pure zinc oxide were prepared by a combustion method using zinc acetate as the zinc source, oxygen gases in air as the oxygen source, and iron acetate as the doping agent and iron source. Then, its crystal structures were

**Table 1** Summary of calculated lattice parameters from XRD peaks of  $Zn_{1-x}Fe_xO$  powder calcined at 450 °C with x = 0.000, 0.0625 and 0.125

| Samples    | Lattice parameters (Å) |       |
|------------|------------------------|-------|
|            | a                      | c     |
| x = 0.000  | 3.249                  | 5.207 |
| x = 0.0625 | 3.249                  | 5.206 |
| x = 0.125  | 3.251                  | 5.202 |

characterized by X-ray diffraction (XRD) and selected area electron diffraction (SAED) analysis, composition elements by energy-dispersive X-ray spectroscopy (EDX), morphology by scanning electron microscope (SEM) and transmission electron microscopy (TEM) techniques, magnetic properties by vibrating sample magnetometer (VSM)investigation, and optical band gap by ultraviolet-visible (UV-Vis) spectroscopy study.

# 2 Experimental Details

# 2.1 Synthesis Details

The  $Zn_{1-x}Fe_xO$  (x = 0.000, 0.0625, and 0.125) nanoparticles were prepared by a solution combustion method. Zn(CH<sub>3</sub>CO<sub>2</sub>)<sub>2</sub> was dissolved in 40 mL of deionized (DI) water and stirred at room temperature. Then, solution of Fe(C<sub>5</sub>H<sub>7</sub>O<sub>2</sub>)<sub>3</sub> with 10 mL of DI water and 10 mL of ethanol was added to the solution during the being stirred. After that, solution of a gram of citric acid in 10 mL of ethanol and solution of a gram of polyethylene glycol (PEG) in 20 mL ethanol were mixed into the previous solution while being stirred continually. Finally, 20 mL of DI and 20 mL of ethanol were added. The final solution was still stirred and heated at 220 °C. After that, it was taken into an oven with 350 °C for an hour. After cooling down, precursors will be obtained. The precursor was calcined at 400 and 450 °C at normal atmosphere with 8 h for holding. The obtained powders were characterized by the XRD technique to identify crystal structures, the EDX analysis to determine composition element, the SEM photographs to study morphology, VSM study to observe magnetism, and UV-Vis spectroscopy to investigate absorbance under illumination of ultraviolet and visible spectra.

# 2.2 Characterizations

The structure and element composition of pure ZnO and  $Zn_{1-x}Fe_xO$  samples were characterized by the X-ray diffraction (PANalytical, EMPYREAN) and the energy-dispersive



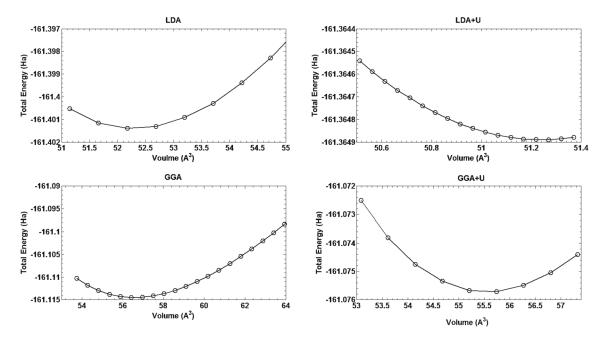



Fig. 3 Total energy and volume for structural optimization by using LDA, LDA + U, GGA, and GGA + U

X-ray spectroscopy (EMAX x-act, Horiba), respectively. In the presence of morphology, SEM micrographs were performed by the scanning electron microscopy (S-3000N, Hitachi). Both TEM images and SAED analysis were conducted using the transmission electron microscopy (FEI Tecnai  $G^2$ ). The optical band gap was determined using absorbance mode of UV-Vis spectroscopy (UV-3101PC, Shimadzu). The magnetic behavior of the calcined Zn<sub>1-x</sub>Fe<sub>x</sub>O powders were examined at 50–300 K using a vibrating sample magnetometer (Versa Lab VSM mode, Quantum Design) in an applied field from -10,000 to +10,000 Oe.

# 2.3 Computational Details

In this calculation, the pure ZnO and Fe-doped ZnO  $(Fe_x Zn_{(1-x)}O)$  with Fe content x = 0.000, 0.625, and 0.125, as shown in Fig. 1, were modeled as ideal hexagonal wurtzite structure with a  $2 \times 2 \times 2$  super-cell which corresponds to a super-cell of eight times as large as the size of a primitive wurtzite unit cell in base plane direction. The orbitals of Fe( $3d^64s^2$ ), Zn( $3d^{10}4s^2$ ), and O( $2s^22p^4$ ) were treated as valence electrons. The effects of Fe-doping in a ZnO system on the electronic structure and magnetic property were investigated using projector-augmented plane wave pseudopotential method (PAW) within the general gradient approximation with Hubbard model where coulomb interaction  $U_{\rm eff}$  of Zn and Fe was 9.0 and 5.91 eV, respectively, using the Vienna Ab initio Simulation Package (VASP) with the generalized gradient approximation where Hubbard model (GGA + U) in the scheme of the Perdew–Burke–Ernzerh of PBE has been used to treat more exchange and correlation energy to explore the structural and electrical properties as well as the possibility of ferromagnetism as observed in recent experiments. In calculation, a  $11 \times 11 \times 11$  k-point mesh in the Brillouin zone and the cutoff energy of the plane wave of 400 eV were employed.

# 3 Results and Discussion

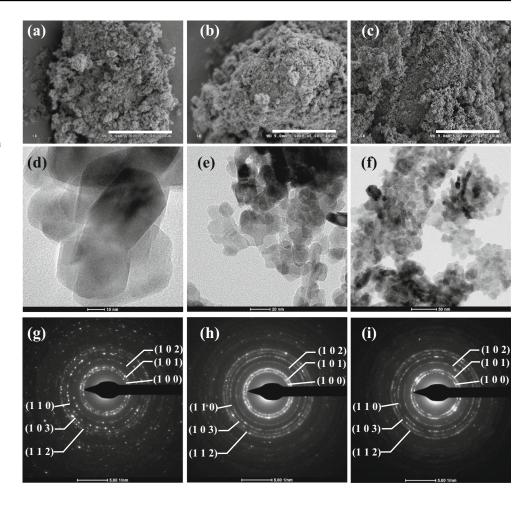

The prepared samples have been characterized the crystal structures and phase formation by using XRD technique, as shown in Fig. 2. X-ray diffraction patterns of the calcined samples at 400 and 450 °C of pure ZnO and Fe-doped ZnO are corresponding to wurtzite structure of ZnO of ICDD no. 36-1451 with no secondary phase. When we compared undoped ZnO to doped ZnO calcined at 450 °C, we found

 Table 2
 The optimized lattice parameters of four atoms of pure zinc oxide

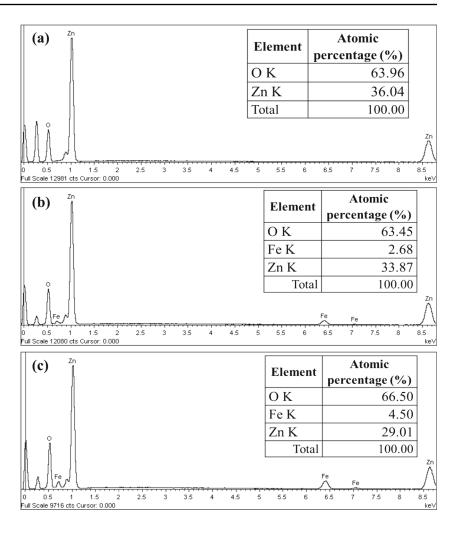
| Method  | Lattice parameters (Å) |       |
|---------|------------------------|-------|
|         | a                      | c     |
| LDA     | 3.200                  | 5.100 |
| LDA + U | 3.180                  | 5.073 |
| GGA     | 3.280                  | 5.250 |
| GGA + U | 3.260                  | 5.250 |
| PBE     | 3.123                  | 5.043 |



Fig. 4 SEM images of a pure ZnO and iron-doped zinc oxide with  $\mathbf{b}$  x=0.0625 and  $\mathbf{c}$  x=0.125, TEM images of  $\mathbf{d}$  pure ZnO, and iron-doped zinc oxide with  $\mathbf{e}$  x=0.0625 and  $\mathbf{f}$  x=0.125 and SAED patterns of  $\mathbf{g}$  pure ZnO, and iron-doped zinc oxide with  $\mathbf{h}$  x=0.0625 and  $\mathbf{i}$  x=0.125 with calcination at 400 °C



that XRD patterns of pure ZnO are smoother than Fe-doped ZnO. Moreover, the peak intensity of pure ZnO is sharper. It illustrates that pure ZnO are more crystalline than doped ZnO. It indicates that the crystallinity of the ZnO decreases because of Fe-doping. This result is similar to Lui et al. [16]. Lattice parameters of synthesized samples are calculated from XRD peaks and shown in Table 1.


The calculated values of lattice parameters of  $Zn_{1-x}Fe_xO$ samples are comparable to the values reported in literature (a = 3.242 and c = 5.195 Å) [4] and ICDD card no. 36-1451 (a = 3.249 and c = 5.206 Å). These results are in good agreement with the optimized structure calculation, as show in Fig. 3. When we compared lattice parameters of pure zinc oxide to iron-doped zinc oxide, we see that an increase in iron content brings about the lattice parameter a increases while lattice parameter c decreases. In theoretical evaluation of the optimized structural properties of ZnO, the total energy of hexagonal wurtzite unit cell (containing four atoms) was calculated using LDA, LDA + U, GGA, and GGA + U schemes via ABINIT code and GGA + U in the PBE via VASP code around the optimized volume and then the lattice parameters were calculated by fitting the calculated total energies in various unit cell volumes into Birch-Murnaghan equation of state. The optimized lattice parameters values of ZnO are reported in Table 2.

The morphology of the calcined samples at 400 °C is shown in SEM and TEM images as Fig. 4a–f. Particle size of all synthesized samples are in nanometer scale, less than 70 nm. It indicates that prepared samples are nanoparticles of hexagonal shape with lattice fringe of pure zinc oxide. When iron contents were doped into zinc oxide structure, particle shape converts from hexagonal to spherical-like shape with a few rod shapes. Fe-doping ions have a remarkable effect on the particle size of  $Zn_{1-x}Fe_xO$  samples. The decrease in particles size of the  $Zn_{1-x}Fe_xO$  system may be due to the ability of Fe ions to inhibit the crystal growth rate of ZnO. Substitution of Fe ions into ZnO lattice can produce some defects. Therefore, variation in defect concentration can cause a change in the rate of crystal growth.

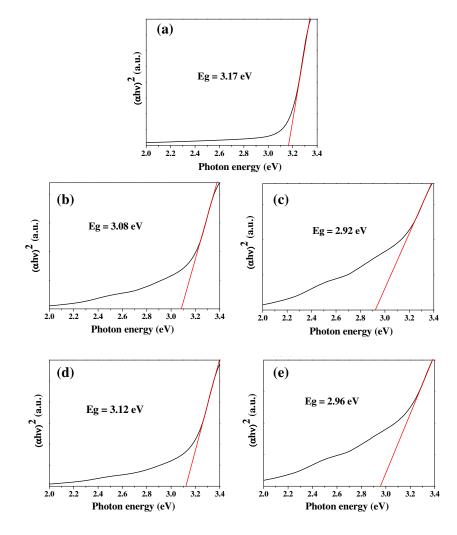
In case of SAED study, ring diffraction patterns of prepared samples indicate that all of synthesized particles are polycrystalline material. From XRD patterns, we see that all of prepared samples are zinc oxide structure of hexagonal wurtzite as main structure which planes such as (1 0 0), (1 0 1), (1 0 2) are observed in diffraction patterns as shown



Fig. 5 Energy dispersive X-ray (EDX) spectra of **a** pure zinc oxide and Fe-doped ZnO with iron concentration of **b** 6.25 and **c** 12.5 %, respectively, calcined at 400 °C



in Fig. 4g-i. Some light spots are observed in the pure ZnO sample. It would be because of larger particle size of the pure ZnO than the Fe-doping systems which is according to the particles size from TEM images that the pure ZnO nanoperticles are the biggest, the second is 6.25 %, and the last is 12.5 %, respectively.

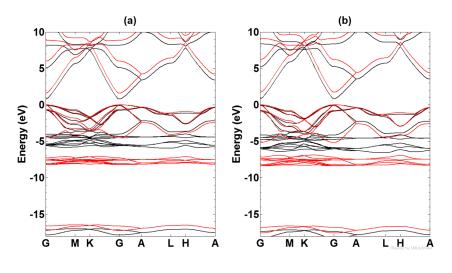

The energy dispersive X-ray analysis (EDX) technique, however, is employed in order to detect the element composition of synthesized  $Zn_{1-x}Fe_xO$  samples. The EDX spectra and atomic percentage of pure zinc oxide and doped zinc oxide with iron content of 6.25 and 12.5 % by mole calcined at 400 °C are shown in Fig. 5. It confirms an existence of iron content in dopant system.

To examine band gap energy  $(E_{\rm g})$ , an absorbance mode under UV-Vis spectra of the synthesized nanopowders was conducted. From absorption spectra of ZnO in Fig. 6, the direct band gap are obtained by extrapolating the plots of  $(\alpha h v)^2$  to the vertical versus h v to the horizontal. The values of energy gap of the calcined at 450 °C samples are around 3.17, 3.08, and 2.92 eV for the pure ZnO and the Fe-doped ZnO with x=0.0625 and 0.125, respectively, as shown in Fig. 6a–c. Band structure of zinc oxide was

calculated using LAD, LDA + U, GGA, and GGA + U and represented in Fig. 7. From this, we see that Hubbard scheme gives narrower  $E_g$ . According to the energy band structure (Fig. 8) and the density of states (DOS) (Fig. 9) calculated by the GGA + U in the scheme of PBE, they indicate that the pure ZnO has a direct energy band gap of 2.24 eV, which is in good agreement with the other calculations. However, the energy band gap is still underestimated, compared with the experimental value (a direct wide-band gap of 3.17 eV). It is due to the density functional theory. From the experimental values of optical band gap of calcined at 450 °C nanoparticles as shown in Fig. 6a-c, it shows that the added iron content brings about being narrower of energy band gap in zinc oxide. It indicates that the  $E_g$  decrease of iron-doped zinc oxide with increasing of the iron concentration might be due to the energy state of d orbital from Fe atoms which located between the valence band and the conduction band to be an intermediate band as shown in partial DOS (PDOS) in Fig. 10. Therefore, the electrons occupying in these states can play an important role in electronic properties of this material. Also, the optical band gap of Fe-doped ZnO calcined at 400 °C was



Fig. 6 Optical band gap of calcination at  $450\,^{\circ}\mathrm{C}$  of a pure ZnO and Fe-doped ZnO with iron content of b 6.25 % and c 12.5 % and calcination at  $400\,^{\circ}\mathrm{C}$  of Fe-doped ZnO with iron content of d 6.25 % and e 12.5 %




investigated. The  $E_{\rm g}$  values of the calcination at 450 and 400 °C of  ${\rm Zn_{1-x}Fe_xO}$  samples for x=0.0625 are 3.08 and 3.12 eV, respectively, and for x=0.125 are 2.92 and 2.96 eV, respectively, as shown in Fig. 6. From these, we see that the calcination at higher temperature brings about being narrower of energy band gap. It is because of

more aggregation when the powders were calcined at high temperature.

The magnetic properties of the Fe-doped zinc oxide are described as follows. According to the GGA + U calculation, the magnetization of pure ZnO, Fe<sub>0.0625</sub>Zn<sub>0.9375</sub>O and Fe<sub>0.125</sub>Zn<sub>0.875</sub>O has magnetic moments of 0.00, 3.91, and

Fig. 7 The calculated band structure of pure crystal ZnO with a LDA (black solid line) LDA + U (red solid line) and b GGA (black solid line) and GGA + U (red solid line)





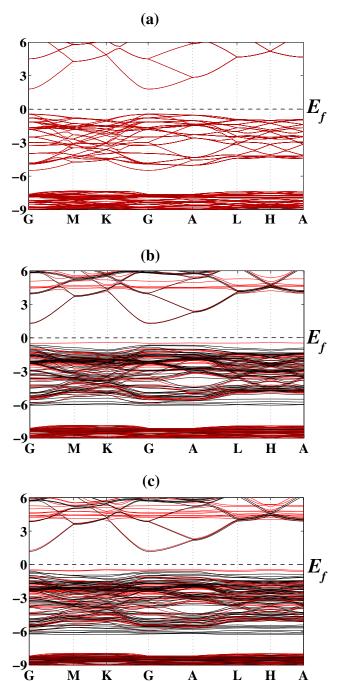
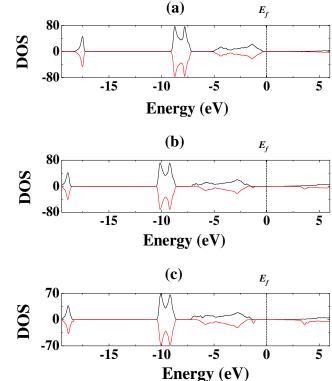
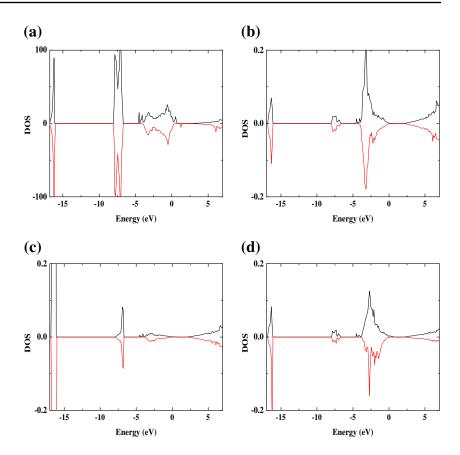




Fig. 8 The calculated band structure a pure and Fe-doped ZnO, **b** with Fe content of 0.0625 and **c** Fe content of 0.125 by using GGA + U (black and red lines represent energy level of spin up and spin down, respectively)

7.83  $\mu_b$ , respectively. In case of pure zinc oxide, this can be explained as the fact that the electrons in the zinc atoms and oxygen atoms are paired electrons (spin up and spin down) in the 3d orbital and the 2p orbital, respectively, whereas there are four unpaired electrons in the 3d orbital of Fe atom.




**Fig. 9** The calculated density of states (*DOS*) of **a** pure zinc oxide and Fe-doped ZnO, **b** with Fe content of 0.0625 and **c** Fe content of 0.125

Therefore, the total net spin of pure zinc oxide is zero, but not for Fe-doped ZnO, whereas the appearance ferromagnetism in Fe-doped ZnO can be described as superexchange theory which the exchange interaction happens only on the Fe and O sides, not on Zn and O sides. Therefore, there are still four unpaired electrons (spin up electrons or spin down electrons) located in the 3d orbital of Fe atoms as shown in Fig. 11. Difference of the spin up and spin down electron is shown in partial DOS of Fe in Fig. 10d. In the experimental aspect, the magnetic properties of all Zn<sub>1-x</sub>Fe<sub>x</sub>O powders were examined from 50 K to room temperature using a VSM technique. The relationship between magnetization (M) and applied magnetic field (H) was observed to study magnetic property of synthesized nanoparticles. M-H curves examined at room temperature of 6.25 and 12.5 % of iron-doped zinc oxide calcined at 400 and 450 °C are represented in Fig. 12a, b. The pure zinc oxide shows diamagnetic behavior while the  $Zn_{1-x}Fe_xO$  of x = 0.0625 shows paramagnetic behavior and x = 0.125 shows superparamagnetic behavior. The diamagnetism of pure ZnO is because zinc oxide has no magnetic dipole moment which is in good agreement with the calculated results, the magnetic dipole moment of pure ZnO as 0.00  $\mu_b$ . Besides, M-H curves



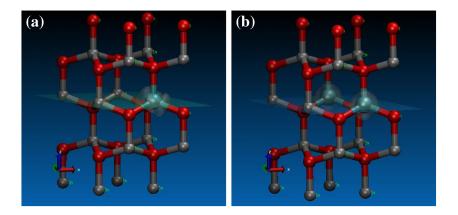
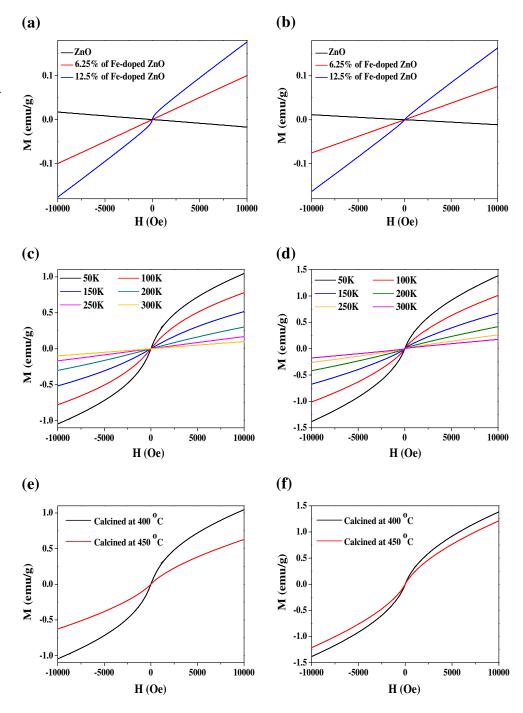
Fig. 10 a The total DOS of 6.25 % of Fe-doped ZnO and the partial DOS of b zinc, c oxygen, and d iron atoms



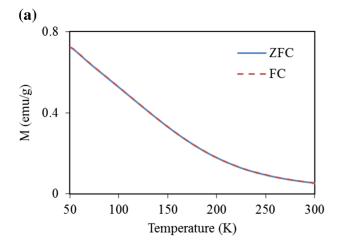
were conducted at 50–300 K of Fe-doped ZnO are shown in Fig. 12c, d. The 6.25 % of Fe-doped ZnO samples calcined at 400 and 450 °C show superparamagnetic behavior at 50 to 150 K. The superparamagnetism of iron-doped zinc oxide is confirmed by M-T curves (plotting of magnetization versus temperature) in zero filed cooled (ZFC) and field cooled (FC) modes in an applied field of 5000 Oe at 50–300 K as shown in Fig. 13. From that, blocking temperature

may be lower than 50 K. It results in the doped zinc oxide samples show superparamagnetic behavior. The superparamagnetism may be due to a very small particle size of prepared samples which is in nanometer scale as TEM images in Fig. 4. At above 150 K, the linearity of the VSM result of 6.25 % of Fe-doped ZnO indicates the paramagnetic behavior. For 12.5 % of Fe-doped ZnO, remanence magnetization ( $M_T$ ) shows the maximum value at 50 K of

Fig. 11 The isosurface of difference between spin up electron density and spin down electron density (spin up–spin down) of  $Fe_xZn_{1-x}O$  when a x = 0.0625 and b x = 0.125





Fig. 12 The specific magnetization as a function of applied field measured at room temperature of pure ZnO and Fe<sub>x</sub>Zn<sub>1-x</sub>O samples calcined at a 400 °C and b 450 °C, measured at from 50 to 300 K of Fe<sub>x</sub>Zn<sub>1-x</sub>O with iron content of c 6.25 % and d 12.5 % and measured at 50 K of Fe<sub>x</sub>Zn<sub>1-x</sub>O with  $\mathbf{e} x = 0.0625$  and  $\mathbf{f} x = 0.125$ 



examination. It indicates that magnetism of prepared samples decreases with temperature increasing. Also, M-H curves at 50 K of 6.25 and 12.5 % of Fe-doped ZnO were determined and shown in Fig. 12e, f). The results show influence of calcination temperature to magnetic behavior of prepared nanoparticles. When we compared  $M_{\rm r}$  of the calcined iron-doped zinc oxide at 400 to 450 °C, the doped zinc

oxide nanoparticles of calcination at 400 °C show more  $M_r$  values. It indicates that temperature calcination effects on magnetism. The high temperature calcination may effect on magnetic moment alignment and destroy magnetism of synthesized samples. From the study of magnetic property, the magnetization of  $Zn_{1-x}Fe_xO$  nanoparticles increases with increasing in Fe-doping concentration.





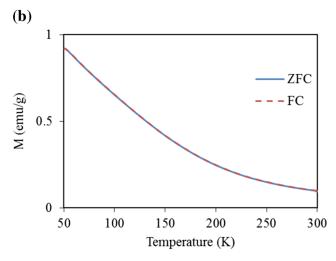



Fig. 13 Zero field cooled (ZFC) and field cooled (FC) curves of calcined at 400 °C iron-doped zinc oxide with iron content of a 6.25 % and b 12.5 %

#### 4 Conclusion

In summary, the  $Zn_{1-x}Fe_xO$  nanoparticles with x=0.000, 0.0625, and 0.125 had been prepared by a combustion method. The XRD analysis showed the pure ZnO and  $Zn_{1-x}Fe_xO$  with a temperature calcination of 400 and 450 °C samples are zincite hexagonal structure as the main phase with lattice parameters a of 3.25 and c of 5.21 Å for the both pure ZnO and the  $Zn_{0.9375}Fe_{0.0625}O$  and a of 3.25 Å and c of 5.20 Å for the  $Zn_{0.875}Fe_{0.125}O$  which are in good agreement with the calculated results from the structural optimization. The morphology of the  $Zn_{1-x}Fe_xO$  nanoparticles was characterized by SEM and TEM techniques. The prepared nanoparticles convert from hexagonal-like shape to spherical-like shape when iron was added. The electronic structure and magnetic property of Fe-doped ZnO

had been investigated by means of the first principle calculations based on general gradient approximation with Hubbard model (GGA + U) in the scheme of PBE. We had used super-cell method to model ZnO doped with 6.25 and 12.5 % of iron. The results showed that the pure and the doped zinc oxide systems are semiconductor. The pure ZnO has energy band gap of 2.24 eV and that of Fe-doped ZnO systems decrease with the atomic fraction of iron. According to partial density of states, there are strong interaction between 3d orbital of O and 2p orbital of Fe which may affect to the decreasing of energy band gap of Fe-doped ZnO and induce the energy band occurring between the valence and conduction band. The results also point out that the magnetic moments increase with the atomic fraction of iron and play important role in occurrence and stability of superparamagnetism of ZnO. According to the electronic and magnetic properties, therefore, Fe-doped ZnO potentially is a promising magneto-electronic material and it can be used for photocatalytic materials [20, 21] and nanometer scale spintronics device material [22].

Acknowledgments Funding for this work is provided by Thailand Research Fund under Grant No. TRG5880112; TRF Senior Research Scholar (Grant No. RTA5680008; TRF Senior Research Scholar (Grant No. RTA5680008); Integrated Nanotechnology Research Center (INRC), Khon Kaen University, Thailand; the Nanotechnology Center (NANOTEC); NSTDA, Ministry of Science and Technology, Thailand, through its program of Center of Excellence Network; Institute of the Promotion of Teaching Science and Technology (IPST); and Science Achievement Scholarship of Thailand (SAST).

# References

- Aydın, C., Abd El-sadek, M.S., Zheng, K., Yahia, I.S., Yakuphanoglu, F.: Synthesis, diffused reflectance and electrical properties of nanocrystalline Fe-doped ZnO via sol–gel calcination technique. Optic Laser Tech. 48, 447–452 (2013)
- Choi, K.C., Lee, E.J., Baek, Y.K., Lim, D.C., Kang, Y.C., Kim, Y.D., Kim, K.H., Kim, J.P., Kim, Y.K.: Morphologically controlled ZnO nanostructures as electron transport materials in polymer-based organic solar cells. Electrochim. Acta 180, 435– 441 (2015)
- Vanalakar, S.A., Patil, V.L., Harale, N.S., Vhanalakar, S.A., Gang, M.G., Kim, J.Y., Patil, P.S., Kim, J.H.: Controlled growth of ZnO nanorod arrays via wet chemical route for NO<sub>2</sub> gas sensor applications. Sensor Actuator B Chem. 221, 1195–1201 (2015)
- Wang, M.H., Ma, X.Y., Jiang, W., Zhou, F.: Synthesis of doped ZnO nanopowders in alcohol–water solvent for varistors applications. Mater. Lett. 121, 149–151 (2014)
- Heo, Y.W., Tien, L.C., Kwon, Y., Norton, D.P., Pearton, S.J., Kang, B.S., Ren, F.: Depletion-mode ZnO nanowire field-effect transistor. Appl. Phys. Lett. 85, 2274 (2004)



- Haq, B.U., Ahmed, R., Shaari, A., Goumri-Said, S.: GGA + U investigations of impurity d-electrons effects on the electronic and magnetic properties of ZnO. J. Magn. Magn. Mater. 362, 104–109 (2014)
- Haq, B.U., Afaq, A., Ahmed, R., Naseem, S.: A comprehensive DFT study of zinc oxide in different phases. Int. J. Mod. Phys. C 23, 1250043 (2012)
- Liu, Y., Yang, J., Guan, Q., Yang, L., Zhang, Y., Wang, Y., Feng, B., Cao, J., Liu, X., Yang, Y., Wei, M.: Effects of Cr-doping on the optical and magnetic properties in ZnO nanoparticles prepared by sol–gel method. J. Alloy Comp. 486, 835–838 (2009)
- Silambarasan, M., Saravanan, S., Soga, T.: Effect of Fe-doping on the structural, morphological and optical properties of ZnO nanoparticles synthesized by solution combustion process. Physica E 71, 109–116 (2015)
- Ciciliati, M.A., Silva, M.F., Fernandes, D.M., de Melo, M.A.C., Hechenleitner, A.A.W., Pineda, E.A.G.: Fe-doped ZnO nanoparticles: synthesis by a modified sol–gel method and characterization. Mater. Lett. 159, 84–86 (2015)
- Karamat, S., Rawat, R.S., Lee, P., Tan, T.L., Ramanujan, R.V.: Structural, elemental, optical and magnetic study of Fe doped ZnO and impurity phase formation. Progr. Nat. Sci. 24, 142–149 (2014)
- Saleha, R., Prakosoa, S.P., Fishli, A.: The influence of Fe doping on the structural, magnetic and optical properties of nanocrystalline ZnO particles. J. Magn. Magn. Mater. 324, 665–670 (2012)
- Moontragoon, P., Pinitsoontorn, S., Thongbai, P.: Mn-doped ZnO nanoparticles: preparation, characterization, and calculation of electronic and magnetic properties. Microelectron. Eng. 108, 158– 162 (2013)

- Jantrasee, S., Pinitsoontorn, S., Moontragoon, P.: First-principles study of the electronic structure and thermoelectric properties of Al-doped ZnO. J. Electron. Mater. 43, 1689–1696 (2014)
- Labauyai, S., Promarak, V., Maensiri, S.: Optical properties of Mg<sub>x</sub>Zn<sub>1-x</sub>O nanoparticles synthesized by a direct thermal decomposition route. Optoelectron. Adv. Mater. Rapid Commun. 2, 798– 801 (2008)
- Liu, C., Meng, D., Pang, H., Wu, X., Xie, J., Yu, X., Chen, L., Liu, X.: Influence of Fe-doping on the structural, optical and magnetic properties of ZnO nanoparticles. J. Magn. Magn. Mater. 324, 3356–3360 (2012)
- Senol, S.D., Ozturk, O., Terzioglu, C.: Effect of boron doping on the structural, optical and electrical properties of ZnO nanoparticles produced by the hydrothermal method. Ceram. Int. 41, 11194–11201 (2015)
- Blochl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994)
- Kresse, G., Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mat. Sci. 6, 15–50 (1996)
- Choi, Y.I., Jung, H.J., Shin, W.G., Sohn, Y.: Band gap-engineered ZnO and Ag/ZnO by ball-milling method and their photocatalytic and Fenton-like photocatalytic activities. Appl. Surf. Sci. 356, 615–625 (2015)
- Dhahri, R., Hjiri, M., El Mir, L., Bonavita, A., Iannazzo, D., Leonardi, S.G., Neri, G.: CO sensing properties under UV radiation of Ga-doped ZnO nanopowders. Appl. Surf. Sci. 355, 1321– 1326 (2015)
- Pan, F., Song, C., Liu, X.J., Yang, Y.C., Zeng, F.: Ferromagnetism and possible application in spintronics of transition-metal-doped ZnO films. Mater. Sci. Eng. R Rep. 62, 1–35 (2008)





Contents lists available at ScienceDirect

# **Computer Physics Communications**

journal homepage: www.elsevier.com/locate/cpc



# Finite-difference calculation of the electronic structure of artificial graphene, the 2D hexagonal $Al_wGa_{1-w}As/GaAs$ structure with tunable interactions



Ruhan Thirayatorn <sup>a</sup>, Pairot Moontragoon <sup>a,b,\*</sup>, Vittaya Amornkitbamrung <sup>a,b</sup>, Santi Meansiri <sup>c</sup>, Zoran Ikonic <sup>d</sup>

- <sup>a</sup> Department of Physics, Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- b Integrated Nanotechnology Research Center (INRC), Department of Physics, Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- <sup>c</sup> School of Physics, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
- <sup>d</sup> School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK

#### ARTICLE INFO

#### Article history: Received 2 December 2014 Received in revised form 9 February 2015 Accepted 10 February 2015 Available online 17 February 2015

Keywords: Artificial graphene Massless Dirac particle 2-dimensional energy dispersion relation Band structure engineering

#### ABSTRACT

The energy dispersion relation of two dimensional hexagonal lattice of GaAs quantum wires embedded in  $Al_wGa_{1-w}As$  matrix, called artificial graphene, was calculated by the finite difference method with periodic boundary conditions. The validity of the finite difference based code was checked by comparing the bound state energies of various two dimensional systems with appropriate boundary conditions with analytic solutions or the results obtained by COMSOL software, which uses the finite element method, and a very good agreement was found. The energy dispersion relation calculated for artificial graphene structure shows massless Dirac particles, characteristic for real graphene. Therefore, artificial graphene-like structures have properties similar to those of real graphene, and are tailorable by appropriate structure engineering.

© 2015 Elsevier B.V. All rights reserved.

#### 1. Introduction

Graphene, a two-dimensional (2D) hexagonal crystalline allotrope with a regular sp2-bonding of carbon, has been attracting the research attention due to a variety of its unique properties, being a strong, light, nearly transparent material, and an excellent conductor of heat and electricity [1,2]. In particular, it shows an unusual feature in its 2D band structure, with massless Dirac fermions (Dirac cones), showing intrinsically ultrahigh carrier mobilities, since the quasiparticles in it behave like relativistic elementary particles with zero rest mass [3,4]. Due to these outstanding characteristics, graphene shows extraordinary potential for device applications, like graphene transistors for high-frequency electronics, flexible touch-screen devices, smart windows, batteries, fuel cells, photovoltaic cells and supercapacitors based on graphene, and also has a prospect of replacing metals in the manufacture of aircraft and cars by graphene–plastic composites.

Artificial graphene (a common name for honeycomb lattice materials or structures) provides a tunable platform for investigating massless Dirac quasiparticles, such as their behavior under electric field, magnetic field and band engineering methods [5–9]. These structures can be fabricated by advanced nanoscale fabrication technology processes, which enable high quality low-dimensional nanoscale patterns that can be precisely controlled. Examples of artificial graphene structures, which were designed and fabricated, are synthetic nanopatterned GaAs heterostructures with ultrahigh-mobility 2D electron gas [10–16]. These were successfully fabricated by, firstly, using an electron beam nanolithography to produce an array of Nickel disks with the honeycomb geometry, and then by etching away the material outside the disks by inductive-coupled reactive ion etching. Scanning tunneling microscope (STM) was used to pattern the Oxygen and Carbon atoms of CO molecules in a honeycomb pattern. Another example of artificial graphene is based on atoms or molecule manipulated by crystalline-like laser trapping of ultracold atoms. The honeycomb photonic crystal induced by laser irradiation is based on the change

<sup>\*</sup> Corresponding author at: Department of Physics, Science, Khon Kaen University, Khon Kaen, 40002, Thailand. E-mail address: mpairo@kku.ac.th (P. Moontragoon).

of refractive index. In this work, we calculate the band structures and energy dispersion relation of an artificial graphene of 2D confined electrons in the  $Al_wGa_{1-w}As/GaAs/Al_wGa_{1-w}As$  system.

#### 2. Computational method

In this work the artificial graphene based on quantum wire nanostructure, i.e. the honeycomb structure of  $Al_wGa_{1-w}As/GaAs/Al_wGa_{1-w}$ . As is considered, with the Al content (w) equal to 0.20. The effective mass method is employed to solve the envelope function Schrödinger equation. The conduction band discontinuity between  $Al_wGa_{1-w}As$  and GaAs is taken as 0.79w (eV) for w < 0.41 [17–19]. Interdiffusion leads to smoothing of the initially abrupt Al content profile around the interface. In case of cylindrical symmetry the exact analytical solution for the interdiffusion profile exists [20], but is somewhat involved, and the Al profile in the layer plane,  $w_{xy}(x, y)$ , was here approximated by a simpler expression:

$$w_{xy}(x,y) = \frac{-w}{e^{\beta \left(\sqrt{(x-x_0)^2 + (y-y_0)^2} - R_{\rm M}\right)} + 1} + w.$$

Therefore, the two dimensional potential profile in the xy plane, V(x, y), is described by

$$V(x,y) = -\frac{0.79w}{e^{\beta\left(\sqrt{(x-x_0)^2 + (y-y_0)^2} - R_M\right)} + 1},\tag{1}$$

where  $\beta$  is the reciprocal diffusion length parameter,  $(x_0, y_0)$  is the center of the GaAs wire, and  $R_M$  the wire radius, as shown in Fig. 1(a). According to the periodicity of this structure, we choose a 2D unit cell as a rhomboid with basis vectors  $\mathbf{a}_1 = \frac{L\sqrt{3}}{2}\hat{\mathbf{i}} + \frac{L}{2}\hat{\mathbf{j}}$  and  $\mathbf{a}_2 = \frac{L\sqrt{3}}{2}\hat{\mathbf{i}} - \frac{L}{2}\hat{\mathbf{j}}$ . The lattice constant is  $L = \sqrt{3}d_0$ , where  $d_0$  is the distance between two neighboring GaAs wires, as shown in Fig. 1(b). Within the effective mass method, the 2D electron energies and envelope wavefunctions are found from

$$\left\{ -\frac{\hbar^2}{2} \left( \nabla \cdot \frac{1}{m^* m_e} \nabla \right) + V \right\} \psi = \epsilon \psi \tag{2}$$

where  $m_e$  is the free electron mass,  $m^*$  is the position-dependent effective mass, according to the Al content ( $m^* = 0.063 + 0.083w$  for w < 0.41) [17–19], and has the similar smooth profile as the potential:

$$m^*(x,y) = 0.063 + 0.083w - \frac{0.083w}{e^{\beta(\sqrt{(x-x_0)^2 + (y-y_0)^2} - R_M)} + 1}.$$
(3)

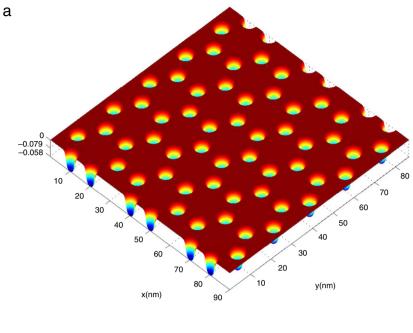
According to the chosen unit cell, new coordinates (u,v) were introduced to simplify the implementation of periodic boundary conditions: u and v are the coordinates along  $\mathbf{a}_1$  and  $\mathbf{a}_2$  directions, where  $\vec{a}_1$  and  $\vec{a}_2$  are the 2D lattice basis vectors,  $\vec{a}_1 = \frac{\sqrt{3}\hat{L}\hat{l}}{2} + \frac{L}{2}\hat{j}$  and  $\vec{a}_2 = \frac{\sqrt{3}\hat{L}\hat{l}}{2} - \frac{L}{2}\hat{j}$ . Therefore, u and v take values between 0 and L, and are related to rectangular coordinates x and y as:

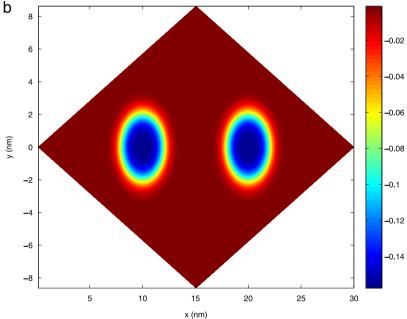
$$\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{3}}{3} & 1 \\ \frac{\sqrt{3}}{3} & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \tag{4}$$

while (u, v) can be transformed back to (x, y) as

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{\sqrt{3}}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}.$$
 (5)

The Schrödinger equation can now be written in the new coordinate system, e.g. in the constant effective mass case the kinetic energy part is


$$\begin{split} -\nabla^2 \psi \; &= \, -\frac{\partial^2 \psi}{\partial x^2} - \frac{\partial^2 \psi}{\partial y^2} \\ &= \, -\frac{4}{3} \left\{ \frac{\partial^2 \psi}{\partial u^2} + \frac{\partial^2 \psi}{\partial v^2} - \frac{\partial^2 \psi}{\partial u \partial v} \right\}. \end{split}$$


In order to solve it, the finite difference method has been employed. The terms  $\frac{\partial^2 \psi}{\partial u^2}$ ,  $\frac{\partial^2 \psi}{\partial v^2}$ , and  $\frac{\partial^2 \psi}{\partial u \partial v}$  are written in finite difference form as

$$\left(\frac{\partial^{2} \psi}{\partial u^{2}}\right)_{i,j} = \frac{\psi_{i+1,j} - 2\psi_{i,j} + \psi_{i-1,j}}{(\Delta u)^{2}}$$

$$\left(\frac{\partial^{2} \psi}{\partial v^{2}}\right)_{i,j} = \frac{\psi_{i,j+1} - 2\psi_{i,j} + \psi_{i,j-1}}{(\Delta v)^{2}}$$

$$\left(\frac{\partial^{2} \psi}{\partial u \partial v}\right)_{i,j} = \frac{1}{4\Delta u \delta v} \left\{\frac{\psi_{i+1,j+1} - \psi_{i+1,j-1}}{-\psi_{i-1,j+1} + \psi_{i-1,j-1}}\right\}.$$





 $\textbf{Fig. 1.} \quad \text{The potential profile of (a) two dimensional hexagonal lattice } Al_{0.2}Ga_{0.8}As/GaAs/Al_{0.2}Ga_{0.8}As, \text{ and (b) within a rhomboidal unit cell.}$ 

Therefore, the finite-difference form of the 2D Schrödinger equation in the (u, v) coordinates is:

$$-\frac{\hbar^{2}}{2m} \left\{ \frac{\psi_{i-1,j} - 2\psi_{i,j} + \psi_{i+1,j}}{(\Delta u)^{2}} + \frac{\psi_{i,j-1} - 2\psi_{i,j} + \psi_{i,j-1}}{(\Delta v)^{2}} - \frac{\psi_{i+1,j+1} - \psi_{i+1,j-1} - \psi_{i-1,j+1} + \psi_{i-1,j-1}}{4\Delta u \delta v} \right\} + V_{i,j} \psi_{i} = \epsilon \psi_{i,j}$$

$$\left\{ \begin{pmatrix} (-h_{u}\psi_{i-1,j} + 2h_{u}\psi_{i,j} - h_{u}\psi_{i+1,j}) \\ + (-h_{v}\psi_{i,j-1} + 2h_{v}\psi_{i,j} - h_{v}\psi_{i,j+1}) \\ + h_{uv}\psi_{i+1,j+1} - h_{uv}\psi_{i+1,j-1} \\ -h_{uv}\psi_{i-1,j+1} + h_{uv}\psi_{i-1,j-1} \end{pmatrix} + V_{i,j}\psi_{i,j} = \epsilon \psi_{i,j}$$

$$\left\{ \begin{pmatrix} -h_{u}\psi_{i,j-1} - h_{u}\psi_{i+1,j-1} \\ -h_{u}\psi_{i-1,j+1} + h_{u}\psi_{i-1,j-1} \\ + (2h_{u} + 2h_{v} + V_{i,j})\psi_{i,j} \\ -h_{u}\psi_{i+1,j} - h_{u}\psi_{i,j+1} \\ + h_{uv}\psi_{i+1,j+1} - h_{uv}\psi_{i+1,j-1} \\ -h_{uv}\psi_{i-1,j+1} + h_{uv}\psi_{i-1,j-1} \end{pmatrix} \right\} = \epsilon \psi_{i,j}$$

$$h_{u} = \frac{\hbar^{2}}{\hbar u^{2}}, h_{v} = \frac{\hbar^{2}}{\hbar u^{2}}, h_{uv} = \frac{\hbar^{2}}{\hbar u^{2}}, \text{ and } V_{i,j} = V(u, v).$$

where  $h_u=\frac{\hbar^2}{2m(\Delta u)^2}$ ,  $h_v=\frac{\hbar^2}{2m(\Delta v)^2}$ ,  $h_{uv}=\frac{\hbar^2}{8m(\Delta u)(\Delta v)}$ , and  $V_{i,j}=V(u,v)$ .

**Table 1**The state energies of infinitely deep square wire and of a finite-barrier circular wire, calculated by finite difference method (FDM), finite element method (FEM) with COMSOL package [21], and from the analytic solution [22].

| Structure                                     | States | State energy (eV) |         |                   |
|-----------------------------------------------|--------|-------------------|---------|-------------------|
|                                               |        | FDM               | FEM     | Analytic solution |
| Infinite square wire                          | 1      | 0.1646            | 0.1646  | 0.1646            |
|                                               | 2      | 0.4113            | 0.4115  | 0.4115            |
|                                               | 3      | 0.4113            | 0.4115  | 0.4115            |
|                                               | 4      | 0.6580            | 0.6585  | 0.6585            |
| Finite circular wire ( $R_M = 4 \text{ nm}$ ) | 1      | -0.0731           | -0.0743 | -0.0758           |
| Finite circular wire ( $R_M = 5 \text{ nm}$ ) | 1      | -0.0947           | -0.0949 | -0.0907           |
|                                               | 2      | -0.0129           | -0.0132 | -0.0336           |
|                                               | 3      | -0.0129           | -0.0132 | -0.0336           |

#### 2.1. Validity of the method

In order to check the validity of this method, and of the code developed for it, we have first calculated the bound state energies of three systems: (1) single quantum wire, (2) double quantum wire with rectangular box boundary conditions, and (3) double quantum wire with rhomboidal box boundary conditions.

## 2.1.1. Single quantum wire

The bound state energies of a 2D infinitely deep square wire with  $L_x = L_y = 8$  nm, and of a finite-barrier circular wire with radius of 4 nm and depth of -0.79w eV in a square box, were calculated, assuming a constant effective mass  $m^* = 0.063 + \frac{0.083w}{2}$ , by using the finite difference method, and were compared against the values obtained by the finite element method or from the analytic solution. The results are shown in Table 1 and indicate the validity of the developed code and the finite difference method.

#### 2.1.2. Double quantum wires

Using a constant effective mass  $m^* = 0.063 + \frac{0.083w}{2}$ , we have also calculated the bound state energies of GaAs double cylindrical quantum wires (with a radius of 4, 5, and 6 nm) which were separated by  $d_0 = \frac{L\sqrt{3}}{3}$  nm, embedded in Al<sub>1-w</sub>Ga<sub>w</sub>As matrix of rectangular shape (box) of the size  $L_x = 30\sqrt{3}$  nm and  $L_y = 30$  nm, as shown in Fig. 2(a), and of rhomboidal shape with L = 30 nm, and with the interdiffusion parameter  $\beta = 3$ , as shown in Fig. 2(b).

In the case of rhomboidal box, the envelope wave functions were gridded along the u and v directions. The Dirichlet boundary conditions are  $\psi_{i,0} = \psi_{i,N} = 0$  (i = 0, 1, 2, 3, ..., N), and  $\psi_{0,j} = \psi_{N,j} = 0$  (j = 0, 1, 2, 3, ..., N). Therefore, the wavefunction  $\psi_{i,j}$ , i,j=1,2,3,...,N-1, can be calculated from  $H\psi=\epsilon\psi$  when H is a symmetric matrix of size  $(N-1)^2\times(N-1)^2$ , and the content of upper triangle of this matrix is:

$$H = \begin{bmatrix} A_1 & B & 0 & 0 & \cdots & 0 & 0 & 0 \\ B^T & A_2 & B & 0 & \cdots & 0 & 0 & 0 \\ 0 & B^T & A_3 & B & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & B^T & A_{N-3} & B & 0 \\ 0 & 0 & 0 & 0 & 0 & B^T & A_{N-2} & B \\ 0 & 0 & 0 & 0 & 0 & 0 & B^T & A_{N-1} \end{bmatrix}$$

$$(6)$$

where the matrices  $A_i$  and B are

$$A_{j} = \begin{bmatrix} c_{1,j} & -h_{v} & 0 & 0 & \cdots & 0 & 0 & 0 \\ -h_{v} & c_{2,j} & -h_{v} & 0 & \cdots & 0 & 0 & 0 \\ 0 & -h_{v} & c_{3,j} & -h_{v} & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & -h_{v} & c_{N-3,j} & -h_{v} & 0 \\ 0 & 0 & 0 & 0 & 0 & -h_{v} & c_{N-2,j} & -h_{v} \\ 0 & 0 & 0 & 0 & 0 & 0 & -h_{v} & c_{N-1,j} \end{bmatrix}$$

$$(7)$$

and

$$B = \begin{bmatrix} h_{u} & h_{uv} & 0 & 0 & \cdots & 0 & 0 & 0 \\ -h_{uv} & h_{u} & h_{uv} & 0 & \cdots & 0 & 0 & 0 \\ 0 & -h_{uv} & h_{u} & h_{uv} & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & -h_{uv} & h_{u} & h_{uv} & 0 \\ 0 & 0 & 0 & 0 & -h_{uv} & h_{u} & h_{uv} \\ 0 & 0 & 0 & 0 & 0 & -h_{uv} & h_{u} & h_{uv} \\ 0 & 0 & 0 & 0 & 0 & -h_{uv} & h_{u} & h_{uv} \\ 0 & 0 & 0 & 0 & 0 & -h_{uv} & h_{u} & h_{uv} \\ 0 & 0 & 0 & 0 & 0 & -h_{uv} & h_{u} & h_{uv} \\ 0 & 0 & 0 & 0 & 0 & -h_{uv} & h_{u} & h_{uv} \\ 0 & 0 & 0 & 0 & 0 & -h_{uv} & h_{u} & h_{uv} \\ 0 & 0 & 0 & 0 & 0 & 0 & -h_{uv} & h_{u} & h_{uv} \\ 0 & 0 & 0 & 0 & 0 & 0 & -h_{uv} & h_{u} \\ 0 & 0 & 0 & 0 & 0 & 0 & -h_{uv} & h_{u} \\ 0 & 0 & 0 & 0 & 0 & 0 & -h_{uv} & h_{u} \\ 0 & 0 & 0 & 0 & 0 & 0 & -h_{uv} & h_{u} \\ 0 & 0 & 0 & 0 & 0 & 0 & -h_{uv} & h_{u} \\ 0 & 0 & 0 & 0 & 0 & 0 & -h_{uv} & h_{u} \\ 0 & 0 & 0 & 0 & 0 & 0 & -h_{uv} & h_{u} \\ 0 & 0 & 0 & 0 & 0 & 0 & -h_{uv} & h_{u} \\ 0 & 0 & 0 & 0 & 0 & 0 & -h_{uv} & h_{u} \\ 0 & 0 & 0 & 0 & 0 & 0 & -h_{uv} & h_{u} \\ 0 & 0 & 0 & 0 & 0 & 0 & -h_{uv} & h_{u} \\ 0 & 0 & 0 & 0 & 0 & 0 & -h_{uv} & h_{u} \\ 0 & 0 & 0 & 0 & 0 & 0 & -h_{uv} & h_{u} \\ 0 & 0 & 0 & 0 & 0 & 0 & -h_{uv} & h_{u} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -h_{uv} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -h_{uv} \\ 0 & 0 & 0 & 0 & 0 & 0 & -h_{uv} & h_{u} \\ 0 & 0 & 0 & 0 & 0 & 0 & -h_{uv} \\ 0 & 0 & 0 & 0 & 0 & 0 & -h_{uv} \\ 0 & 0 & 0 & 0 & 0 & 0 & -h_{uv} \\ 0 & 0 & 0 & 0 & 0 & 0 & -h_{uv} \\ 0 & 0 & 0 & 0 & 0 & 0 & -h_{uv} \\ 0 & 0 & 0 & 0 & 0 & 0 & -h_{uv} \\ 0 & 0 & 0 & 0 & 0 & 0 & -h_{uv} \\ 0 & 0 & 0 & 0 & 0 & 0 & -h_{uv} \\ 0 & 0 & 0 & 0 & 0 & 0 & -h_{uv} \\ 0 & 0 & 0 & 0 & 0 & 0 & -h_{uv} \\ 0 & 0 & 0 & 0 & 0 & 0 & -h_{uv} \\ 0 & 0 & 0 & 0 & 0 & 0 & -h_{uv} \\ 0 & 0 & 0 & 0 & 0 & 0 & -h_{uv} \\ 0 & 0 & 0 & 0 & 0 & 0 & -h_{uv} \\ 0 & 0 & 0 & 0 & 0 & 0 & -h_{uv} \\ 0 & 0 & 0 & 0 & 0 & 0 & -h_{uv} \\ 0 & 0 & 0 & 0 & 0 & -h_{uv} \\ 0 & 0 & 0 & 0 & 0 & 0 & -h_{uv} \\ 0 & 0 & 0 & 0 & 0 & -h_{uv} \\ 0 & 0 & 0 & 0 & 0 & -h_{uv} \\ 0 & 0 & 0 & 0 & 0 & -h_{uv} \\ 0 & 0 & 0 & 0 & 0 & -h_{uv} \\ 0 & 0 & 0 & 0$$

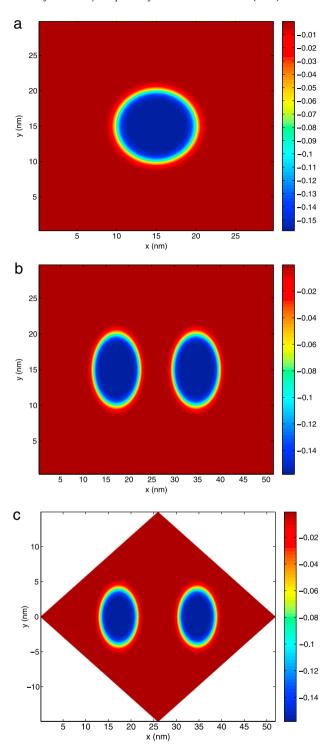



Fig. 2. The potential profile of (a) single and double cylindrical  $Al_{0.2}Ga_{0.8}As/GaAs/Al_{0.2}Ga_{0.8}As$  quantum wires, with (b) rectangular boundary conditions, and (c) with rhomboidal boundary conditions.

where the sizes of matrices  $A_j$  and B are  $(N-1)\times (N-1)$ , and  $c_{i,j}=2h_u+2h_v+V_{i,j}$ . The eigenvalues and eigenvectors of H are the state energies and the envelope wave functions, the latter given in the (u,v) coordinate system, i.e.  $\psi_{i,j}=\{\psi_{1,1},\psi_{1,2},\psi_{1,3},\ldots,\psi_{1,N-1},\psi_{2,1},\psi_{2,2},\psi_{2,3},\ldots,\psi_{2,N-1},\ldots,\psi_{N-1,1},\psi_{N-1,2},\psi_{N-1,3},\ldots,\psi_{N-1,N-1}\}$ .

In case of rectangular box, the envelope wave functions were grided along x and y directions, and the parameters were transformed as  $h_u \Rightarrow h_y = \frac{h^2}{2m(\Delta y)^2}$ ,  $h_v \Rightarrow h_x = \frac{h^2}{2m(\Delta y)^2}$ ,  $h_{uv} \Rightarrow h_x = 0$ , and  $V_{i,j} = V(x,y)$ . The results were compared against the state energies and wavefunctions obtained from the COMSOL software [21], which uses the finite element method, Fig. 3(a), (b) and Table 2. The two methods are in good agreement, particularly for low-energy states, and the described finite difference method was further employed for this structure.

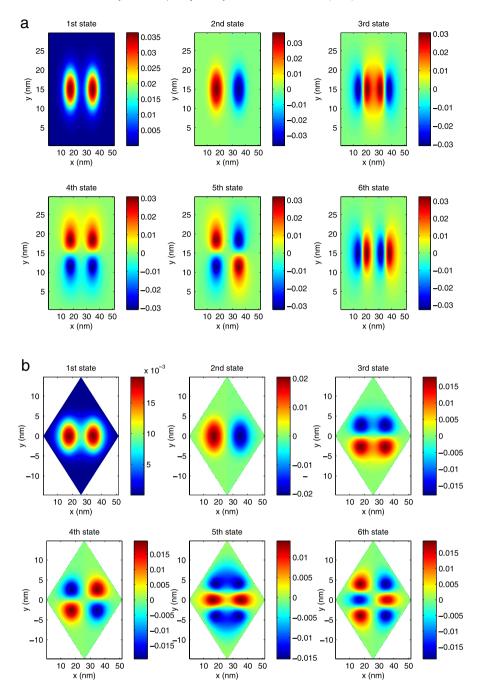



Fig. 3. The envelope wave functions of double GaAs cylindrical quantum wires embedded in  $Al_{0.2}Ga_{0.8}As$  matrix, with (a) rectangular boundary conditions, and (b) rhomboidal boundary conditions, calculated by the finite difference method.

#### 3. Results

## 3.1. 2D energy band structure

The periodic potential  $V(\mathbf{r})$  with period of L in both u and v directions, shown in Fig. 1(b), has the property:

$$V(\mathbf{r}) = V(\mathbf{r} + \mathbf{R}) \tag{9}$$

where **R** is any translation vector for this unit cell. The wave functions then must satisfy the Bloch conditions, i.e. the wave functions can be written as the product of a periodic function  $u(\vec{r})$  and  $e^{i\vec{k}\cdot\vec{r}}$ 

$$\psi_{\vec{i}}(\vec{r}) = u_{\vec{i}}(\vec{r})e^{i\vec{k}\cdot\vec{r}},\tag{10}$$

and where the periodicity of  $u_{\vec{k}}(\vec{r})$  is the same as that of the potential. Therefore, the particle wave functions in each period differ only by the phase factor  $e^{i\vec{k}\cdot\vec{R}}$ , i.e.

$$\psi_{\vec{\iota}}(\vec{r}) = \psi_{\vec{\iota}}(\vec{r} + \vec{R})e^{-i\vec{k}\cdot\vec{R}},\tag{11}$$

**Table 2**The state energies of double cylindrical quantum wire with rhomboidal and rectangular box boundary conditions, calculated by finite difference method (FDM) and finite element method (FEM) with COMSOL package.

| $R_M$ (nm) | States | State energy (eV) |         |             |         |  |
|------------|--------|-------------------|---------|-------------|---------|--|
|            |        | Rhomboid          |         | Rectangular |         |  |
|            |        | FDM               | FEM     | FDM         | FEM     |  |
| 4          | 1      | -0.0648           | -0.0713 | -0.0721     | -0.0720 |  |
|            | 2      | -0.0545           | -0.0705 | -0.0714     | -0.0713 |  |
|            | 3      | -0.0095           | 0.0139  | -0.0088     | 0.0088  |  |
|            | 4      | 0.0053            | 0.0236  | 0.0113      | 0.0114  |  |
|            | 5      | 0.0331            | 0.0302  | 0.0153      | 0.0154  |  |
|            | 6      | 0.0520            | 0.0302  | 0.0167      | 0.0167  |  |
| 5          | 1      | -0.0856           | -0.0924 | -0.0932     | -0.0931 |  |
|            | 2      | -0.0751           | -0.0916 | -0.0925     | -0.0924 |  |
|            | 3      | -0.0388           | -0.0121 | -0.0154     | -0.0153 |  |
|            | 4      | -0.0267           | -0.0055 | -0.0128     | -0.0127 |  |
|            | 5      | 0.0131            | -0.0031 | -0.0110     | -0.0108 |  |
|            | 6      | 0.0327            | -0.0031 | -0.0079     | -0.0077 |  |
| 6          | 1      | -0.1015           | -0.1070 | -0.1081     | -0.1083 |  |
|            | 2      | -0.0895           | -0.1059 | -0.1071     | -0.1072 |  |
|            | 3      | -0.0622           | -0.0394 | -0.0422     | -0.0420 |  |
|            | 4      | -0.0505           | -0.0333 | -0.0395     | -0.0390 |  |
|            | 5      | -0.0150           | -0.0317 | -0.0382     | -0.0380 |  |
|            | 6      | -0.0001           | -0.0317 | -0.0351     | -0.0350 |  |

where **k** is the wave vector (crystal momentum). The Hamiltonian matrix H is a Hermitian matrix of size of  $N^2 \times N^2$ , where N is the number of grid points along u and v directions, and its matrix elements are

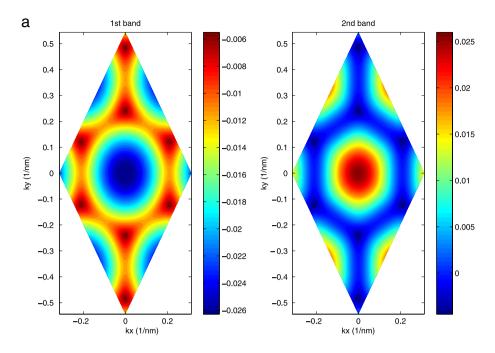
$$H = \begin{bmatrix} A_1 & B & 0 & 0 & \cdots & 0 & 0 & C \\ B^{\dagger} & A_2 & B & 0 & \cdots & 0 & 0 & 0 \\ 0 & B^{\dagger} & A_3 & B & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & B^{\dagger} & A_{N-2} & B & 0 \\ 0 & 0 & 0 & 0 & 0 & B^{\dagger} & A_{N-1} & B \\ C^{\dagger} & 0 & 0 & 0 & 0 & 0 & R^{\dagger} & A_{N} \end{bmatrix}$$

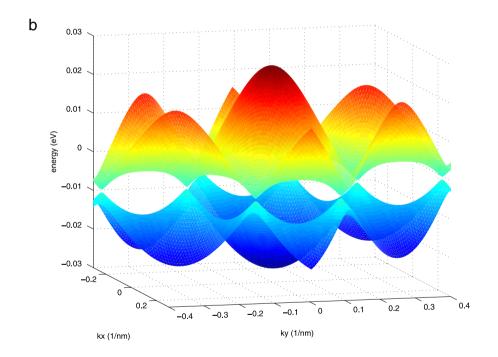
$$(12)$$

where the matrices  $A_i$  and B are

$$A_{j} = \begin{bmatrix} c_{1,j} & -h_{v} & 0 & 0 & \cdots & 0 & 0 & -h_{v}f_{v} \\ -h_{v} & c_{2,j} & -h_{v} & 0 & \cdots & 0 & 0 & 0 \\ 0 & -h_{v} & c_{3,j} & -h_{v} & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & -h_{v} & c_{N-2,j} & -h_{v} & 0 \\ 0 & 0 & 0 & 0 & 0 & -h_{v} & c_{N-1,j} & -h_{v} \\ -h_{v}f^{*} & 0 & 0 & 0 & 0 & 0 & -h_{v} & c_{N-1,j} & -h_{v} \\ -h_{v}f^{*} & 0 & 0 & 0 & 0 & 0 & -h_{v} & c_{N-1,j} & -h_{v} \end{bmatrix}$$

$$(13)$$


and


$$B = \begin{bmatrix} h_{u} & h_{uv} & 0 & 0 & \cdots & 0 & 0 & -h_{uv}f_{v} \\ -h_{uv} & h_{u} & h_{uv} & 0 & \cdots & 0 & 0 & 0 \\ 0 & -h_{uv} & h_{u} & h_{uv} & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & -h_{uv} & h_{u} & h_{uv} & 0 \\ 0 & 0 & 0 & 0 & 0 & -h_{uv} & h_{u} & h_{uv} \\ h_{uv}f_{v}^{*} & 0 & 0 & 0 & 0 & -h_{uv} & h_{u} \end{bmatrix}$$

$$(14)$$

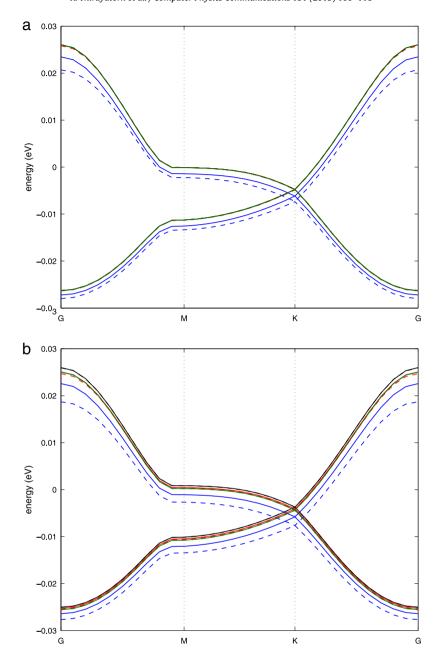
where  $C = f_u B$ ,  $f_u = e^{ik_u L}$ ,  $f_v = e^{ik_v L}$ , and the sizes of matrices B and C are  $N \times N$ .

The eigenvalues and eigenvectors of the Hamiltonian matrix are the state energies and wavefunctions of band n and wave vector  $\vec{k} = (k_u, k_v) = \left(\{-\frac{\vec{b}_1}{2}, \dots, \frac{\vec{b}_1}{2}\}, \{-\frac{\vec{b}_2}{2}, \dots, \frac{\vec{b}_2}{2}\}\right)$ , as shown in Figs. 4 and 5. In order to check the validity of this method for the periodic boundary conditions, the results were compared with those obtained with the, more conventional for periodic structures, plane wave basis functions expansion (formally a linear variational method) as was employed in [9]. In the plane wave method the wavefunction is written as





 $\textbf{Fig. 4.} \ \ \text{The energy dispersion for a rhomboidal unit cell artificial graphene } Al_{0.2}Ga_{0.8}As/GaAs/Al_{0.2}Ga_{0.8}As \ structure.$ 

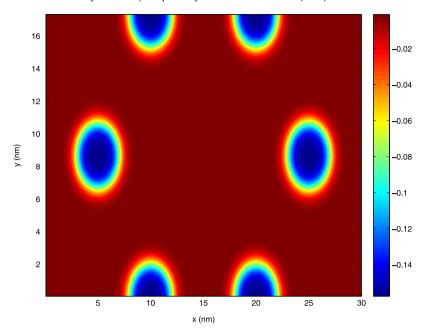

$$\psi_{n,\vec{k}}(\vec{r}) = \sum_{\vec{G}} c_{\vec{G}} \frac{1}{\sqrt{\Omega}} e^{i(\vec{k}+\vec{G})\cdot\vec{r}},\tag{15}$$

where  $c_{\vec{G}}$  are the plane wave amplitude coefficients. The Hamiltonian matrix,  $H_{\vec{G}.\vec{G}'}$ , will be

$$H_{\vec{G},\vec{C}'} = \frac{\hbar^2}{2m} (\vec{k} + \vec{G})^2 \delta_{\vec{G},\vec{C}'} + V(\vec{G} - \vec{C}'), \tag{16}$$

where  $\vec{G}$  are the reciprocal lattice vectors and  $V(\vec{G}-\vec{G}')$  is the Fourier transform of the potential  $V(\vec{r})$ , calculated as the 2D Fourier transform of the honeycomb potential (shown in Fig. 1, and with Eq. (1)), with the rhomboidal unit cell defining the structure periodicity. The eigenvalues of the Hamiltonian matrix for any particular wave vector  $\vec{k}$  are the band energies.

Examples of results obtained by the finite difference method and the plane wave method are shown in Fig. 5. The agreement between the two is generally very good. In case of sharp boundaries (almost no interdiffusion,  $\beta = 100$ ), the number of space grid points in the




**Fig. 5.** The band structure of rhomboidal unit cell artificial graphene  $Al_{0.2}Ga_{0.8}As/GaAs/Al_{0.2}Ga_{0.8}As$  along special high-symmetry directions in the two-dimensional hexagonal Brillouin zone (G = (0, 0),  $M = (1/\sqrt{3}, 0)2\pi/a$ ,  $K = (0, 2/3)2\pi/a$ ), calculated by finite difference (solid lines) and plane wave method (dashed lines) in the case of (a) large interdiffusion,  $\beta = 3$  and (b) small interdiffusion,  $\beta = 100$ . The blue, black, red and green lines correspond to the number of grid points of 8, 16, 32 and 64, respectively, in each direction, or to the number of plane waves of  $8^2$ ,  $16^2$ ,  $32^2$  and  $64^2$ . The energy is measured from the conduction band edge of the matrix material, because the potential, Eq. (1), was defined in this manner. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

finite difference method, and the number of waves in the plane wave method, required for well converged results, are both larger than the what is needed in case of large interdiffusion. The convergence of the finite difference method improves (requiring a smaller number of grid points) for sharp boundaries, while the convergence of the plane wave method improves for large interdiffusion. However, the overall computation time is still smaller with the finite difference than with the plane wave method for any realistic case we have tested (having 8, 16, 32 and 64 grid points per direction, or a total of  $8^2$ ,  $16^2$ ,  $32^2$  and  $64^2$  plane waves), regardless of the level of interdiffusion.

# 3.2. Effect of position-dependent effective mass

In the previous subsection the two-dimensional band structure of artificial graphene was calculated, but the effective mass was assumed constant. In order to include the effect position-dependent effective mass, we have simplified the problem by changing the unit cell from rhomboidal to rectangular, with basis vectors  $\vec{a}_1 = L_x \hat{i} = 3d_0 \hat{i}$  and  $\vec{a}_2 = L_y \hat{j} = \sqrt{3}d_0 \hat{j}$ , as shown in Fig. 6.



**Fig. 6.** The smoothed potential profile in a rectangular unit cell of artificial graphene  $Al_{0.2}Ga_{0.8}As/GaAs/Al_{0.2}Ga_{0.8}As$ .

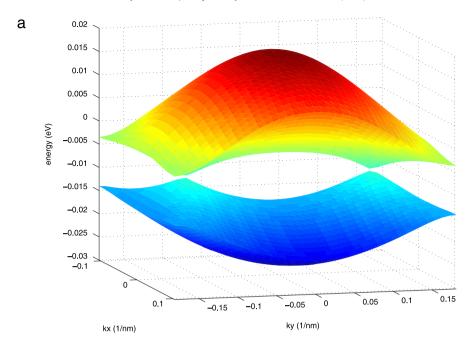
The 2D Schrödinger equation

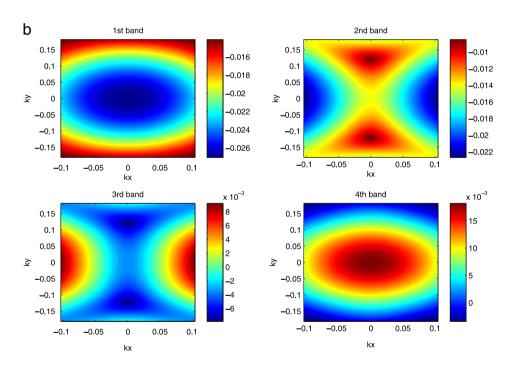
$$-\frac{\hbar^2}{2} \left\{ \frac{\partial}{\partial x} \left( \frac{1}{m^*(x,y)} \frac{\partial}{\partial x} \psi \right) + \frac{\partial}{\partial y} \left( \frac{1}{m^*(x,y)} \frac{\partial}{\partial y} \psi \right) \right\} + V(x,y)\psi = \epsilon \psi,$$

was written in finite difference form as [23]

$$\begin{cases} +h_x \left( -\frac{\psi_{i-1,j}}{m_{i-\frac{1}{2},j}} + \frac{\psi_{i,j}}{m_{i-\frac{1}{2},j}} + \frac{\psi_{i,j}}{m_{i+\frac{1}{2},j}} - \frac{\psi_{i+1,j}}{m_{i+\frac{1}{2},j}} \right) \\ +h_y \left( -\frac{\psi_{i,j-1}}{m_{i,j-\frac{1}{2}}} + \frac{\psi_{i,j}}{m_{i,j-\frac{1}{2}}} + \frac{\psi_{i,j}}{m_{i,j+\frac{1}{2}}} - \frac{\psi_{i,j+1}}{m_{i,j+\frac{1}{2}}} \right) \end{cases} + V_{i,j}\psi_{i,j} = \epsilon \psi_{i,j},$$

or


$$\left\{ -\frac{h_{y}\psi_{i,j-1}}{m_{i,j-\frac{1}{2},j}} + \left( +\frac{h_{x}}{m_{i-\frac{1}{2},j}} + \frac{h_{x}}{m_{i+\frac{1}{2},j}} + \frac{h_{y}}{m_{i,j-\frac{1}{2}}} + \frac{h_{y}}{m_{i,j+\frac{1}{2}}} + V_{i,j} \right) \psi_{i,j} - \frac{h_{x}\psi_{i+1,j}}{m_{i+\frac{1}{2},j}} \right\} = \epsilon \psi_{i,j},$$

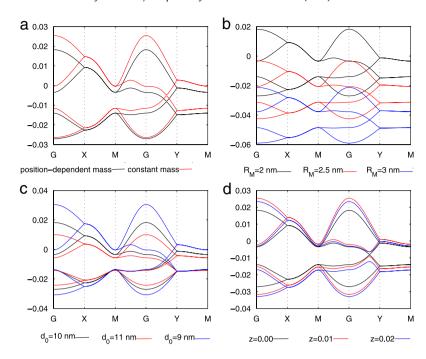

$$\left( -\frac{h_{y}\psi_{i,j+1}}{m_{i,j+\frac{1}{2}}} \right)$$

where the effective mass  $m^*(x,y) = m(x,y)m_e$ ,  $h_x = \frac{\hbar^2}{2m_e(\Delta x)^2}$ , and  $h_y = \frac{\hbar^2}{2m_e(\Delta y)^2}$ , while  $N_x$  and  $N_y$  are the number of grid points in x and y directions, respectively. The Hamiltonian matrix, H, is a square Hermitian matrix of size  $N_x N_y \times N_x N_y$ , and the upper triangle matrix elements are

$$H = \begin{bmatrix} A_1 & B_1 & 0 & 0 & \cdots & 0 & 0 & C \\ A_2 & B_2 & 0 & 0 & \cdots & 0 & 0 \\ & A_3 & B_3 & 0 & 0 & \cdots & 0 \\ & & & \ddots & & & & \\ & & & A_{Ny-3} & B_{Ny-3} & 0 & 0 \\ & & & & A_{Ny-2} & B_{Ny-2} & 0 \\ & & & & & A_{Ny-1} & B_{Ny-1} \\ & & & & & & A_{Ny-1} & A_{Ny-1} \end{bmatrix}$$

$$(17)$$






 $\textbf{Fig. 7.} \ \ \text{The energy dispersion for rectangular unit cell artificial graphene Al} \\ Al_{0.8}Ga_{0.2}As/GaAs/Al_{0.8}Ga_{0.2}As.$ 

where

$$A_{j} = \begin{bmatrix} c_{1,j} & r_{1,j} & 0 & 0 & \cdots & 0 & 0 & l_{1,j}f_{x} \\ & c_{2,j} & r_{2,j} & 0 & 0 & \cdots & 0 & 0 \\ & & c_{3,j} & r_{3,j} & 0 & 0 & \cdots & 0 \\ & & & \ddots & & & & \\ & & & c_{N_{x}-3,j} & r_{N_{x}-3,j} & 0 & 0 & \\ & & & & c_{N_{x}-2,j} & r_{N_{x}-2,j} & 0 & \\ & & & & c_{N_{x}-1,j} & r_{N_{x}-1,j} & \\ & & & & & c_{N_{x}-1,j} & c_{N_{x},j} \end{bmatrix}$$

$$(18)$$



**Fig. 8.** (a) The influence of the position-dependent effective mass on the band structure along special high-symmetry directions in the two-dimensional rectangular Brillouin zone (G = (0,0),  $M = (0.5,0.5)2\pi/a$ ,  $X = (0.5,0)2\pi/a$ ,  $Y = (0,0.5)2\pi/a$ ) of rectangular unit cell artificial graphene  $Al_{1-w}Ga_wAs/Al_{1-z}Ga_zAs/Al_{1-w}Ga_wAs$ , and the band structure tunability achievable by varying: (b) the wire radius ( $R_M$ ), (c) the cell size ( $d_0$ ), and (d) the Al content (z) in wires only at site A sublattice of the honeycomb lattice structure. The energy is measured from the conduction band edge of the matrix material, because the potential, Eq. (1), was defined in this manner.

$$B_{j} = \begin{bmatrix} d_{1,j} & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ & d_{2,j} & 0 & 0 & \cdots & 0 & 0 & 0 \\ & & d_{3,j} & 0 & 0 & \cdots & 0 & 0 \\ & & & \ddots & & & & & \\ & & & d_{N_{x}-3,j} & 0 & 0 & 0 & 0 \\ & & & & & d_{N_{x}-2,j} & 0 & 0 & 0 \\ & & & & & & d_{N_{x}-1,j} & 0 & 0 \end{bmatrix}$$

$$(19)$$

$$C = f_{y} \begin{bmatrix} u_{1,j} & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ & u_{2,j} & 0 & 0 & \cdots & 0 & 0 & 0 \\ & & u_{3,j} & 0 & 0 & \cdots & 0 & 0 \\ & & & & \ddots & & & & \\ & & & & u_{N_{x}-3,j} & 0 & 0 & 0 & 0 \\ & & & & & u_{N_{x}-2,j} & 0 & 0 & 0 \\ & & & & & & u_{N_{x}-1,j} & 0 & 0 \\ & & & & & & & u_{N_{x}-1,j} & 0 \end{bmatrix}$$

$$(20)$$

with

$$c_{i,j} = \left( + \frac{h_x}{m_{i-\frac{1}{2},j}} + \frac{h_x}{m_{i+\frac{1}{2},j}} + \frac{h_y}{m_{i,j-\frac{1}{2}}} + \frac{h_y}{m_{i,j+\frac{1}{2}}} + V_{i,j} \right)$$

$$u_{i,j} = -\frac{h_y}{m_{i,j-\frac{1}{2}}}, \qquad l_{i,j} = -\frac{h_x}{m_{i-\frac{1}{2},j}}, \qquad r_{i,j} = -\frac{h_x}{m_{i+\frac{1}{2},j}}, \qquad d_{i,j} = -\frac{h_y}{m_{i,j+\frac{1}{2}}}$$

and  $f_y = e^{ik_yL_y}$ ,  $f_X = e^{ik_xL_x}$ . The sizes of matrices  $B_j$ ,  $B_j^{\dagger}$ , C, and  $C^{\dagger}$  are  $N_x \times N_x$ . The eigenvalues and eigenvectors of the Hamiltonian matrix are the state energies and wavefunction of band n for wave vector  $\vec{k} = (k_x, k_y) = (\{-\frac{\pi}{L_x}, \dots, \frac{\pi}{L_x}\}, \{-\frac{\pi}{L_y}, \dots, \frac{\pi}{L_y}\})$ . An example calculation of this type, shown in Fig. 7(a), shows the influence of the position-dependent effective mass on the

An example calculation of this type, shown in Fig. 7(a), shows the influence of the position-dependent effective mass on the band structure of rectangular unit cell artificial graphene  $Al_{1-w}Ga_wAs/Al_{1-z}Ga_zAs/Al_{1-w}Ga_wAs$ . There are only quantitative differences, compared to the constant effective mass case (and these will depend on this constant mass value taken), but the band structure does show Dirac points in the position-dependent mass as well.

To illustrate the band engineering possibilities in artificial graphene, Fig. 8(b), (c) shows the band structures obtained for different values of wire radii  $R_M$  and cell sizes  $d_0$  (distance between two neighboring GaAs wires). Yet another way of band structure tuning, offered by artificial graphene, is by band gap opening at the Dirac points. This is achievable by breaking the symmetry, i.e. the equivalence of sites

A and B in the hexagonal lattice, via changing the Al content only in the wires at site A sublattice of the honeycomb lattice structure, as illustrated in Fig. 8(d).

#### 4. Conclusions

The energy dispersion relation for artificial graphene, the two dimensional hexagonal lattice of  $Al_wGa_{1-w}As/GaAs/Al_wGa_{1-w}As$ , was calculated by finite difference method. The effect of aluminum interdiffusion between GaAs quantum wires and the Al<sub>w</sub>Ga<sub>1-w</sub>As matrix was taken into account by smoothing the potential and effective mass profiles between the two layers. The validity of the finite difference method and the developed code was checked by comparing the bound state energies with analytic solutions in the case of single quantum wire or, in cases of double quantum wires with constant or discontinuous effective mass, with the results obtained from the finite element based COMSOL software. The energy dispersion relation of the artificial graphene shows massless Dirac particles and offers band structure engineering possibilities.

#### Acknowledgments

Funding for this work is provided by Thailand Research Fund (TRF) under Grant No. RTA5680008, TRF Senior Research Scholar (Grant No. RTA5680008), Integrated Nanotechnology Research Center (INRC), Khon Kaen University (KKU) and the Institute of the Promotion of Teaching Science and Technology (IPST), the Nanotechnology Center (NANOTEC), NSTDA, Ministry of Science and Technology, Thailand, through its program of Center of Excellence Network.

#### References

- [1] K.S. Novoselov, V.I. Fal'ko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A roadmap for graphene, Nature 490 (2012) 192-200.
- L. Britnell, R.V. Gorbachev, A.K. Geim, L.A. Ponomarenko, A. Mishchenko, M.T. Greenaway, T.M. Fromhold, K.S. Novoselov, L. Eaves, Resonant tunnelling and negative differential conductance in graphene transistors, Nature Commun. 4 (2013) 1794.
- [3] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene. Nature 438 (2005) 197-200
- Y. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry's phase in graphene, Nature 438 (2005) 201–204.
- [5] Yuan Jian-Hui, Zhang Jian-Jun, Zeng Qi-Jun, Zhang Jun-Pei, Cheng Ze, Confined state and electronic transport in an artificial graphene-based tunnel junction, Commun. Theor. Phys. 56 (2011) 1135.
- [6] L. Nadvornik, M. Orlita, N.A. Goncharuk, L. Smrcka, V. Novak, V. Jurka, K. Hruska, Z. Vyborny, Z.R. Wasilewski, M. Potemski, K. Vyborny, From laterally modulated two-dimensional electron gas towards artificial graphene, New J. Phys. 14 (2012) 053002.

  T. Uehlinger, G. Jotzu, M. Messer, D. Greif, W. Hofstetter, U. Bissbort, T. Esslinger, Artificial graphene with tunable interactions, Phys. Rev. Lett. 111 (2013) 185307.
- [8] E. Rasanen, C.A. Rozzi, S. Pittalis, G. Vignale, Electron-electron interactions in artificial graphene, Phys. Rev. Lett. 108 (2012) 246803.
- 9 M. Gibertini, A. Singha, V. Pellegrini, M. Polini, G. Vignale, A. Pinczuk, Engineering artificial graphene in a two-dimensional electron gas, Phys. Rev. B 79 (2009) 241406(R).
- [10] M. Polini, F. Guinea, M. Lewenstein, H.C. Manoharan, V. Pellegrini, Artificial honeycomb lattices for electrons, atoms and photons, Nature Nanotechnol. 8 (2013) 625–633. [11] L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, T. Esslinger, Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice, Nature 483 (2012)
- 302–305. [12] K.K. Gomes, Warren Mar, W. Ko, F. Guinea, H.C. Manoharan, Designer Dirac fermions and topological phases in molecular graphene, Nature 483 (2012) 306–310.
- [13] J. Simon, M. Greiner, Condensed-matter physics: a duo of graphene mimics, Nature 483 (2012) 282–284.
- [14] J. Peng, S.S. Li, Band structures of graphene hexagonal lattice semiconductor quantum dots, Appl. Phys. Lett. 97 (2010) 242105.
- 15] L.A. Ponomarenko, R.V. Gorbachev, G.L. Yu, D.C. Elias, R. Jalil, A.A. Patel, A. Mishchenko, A.S. Mayorov, C.R. Woods, J.R. Wallbank, M. Mucha-Kruczynski, B.A. Piot, M. Potemski, I.V. Grigorieva, K.S. Novoselov, F. Guinea, V.I. Falko, A.K. Geim, Cloning of Dirac fermions in graphene superlattices, Nature 497 (2013) 594-597.
- [16] E.S. Reich, Graphene knock-offs probe ultrafast electronics, Nature 497 (2013) 422–423.
- [17] S.C. Jain, D.J. Roulston, Solid-State Electron. 34 (5) (1991) 453-465.
- [18] A.K. Saxena, J. Phys. C 13 (23) (1980) 4323-4334.
- [19] M. Levinshtein, Handbook Series on Semiconductor Parameters, Vol. 2, World Scientific, 1996.
- [20] V.L. Aziz-Aghchegala, V.N. Mughnetsyan, A.A. Kirakosyan, Effect of interdiffusion on electronic states in one-layer quantum ring superlattice, Physica E 64 (2014) 51–56.
- [21] COMSOL Inc., 2013. COMSOL Multiphysics User?s Guide, 2013. Version 4.3b, COMSOL AB, Stockholm, Sweden.
- T. Kirkman, Finite round square well bound states, January 21 2015. Retrieved from http://www.physics.csbsju.edu/QM/square.09.html.
- [23] P. Harrison, Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures, third ed., Wiley, 2009.