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Abstract

Let T (X,Y) be the full transformation semigroup with restricted range. Define
TEX,Y)={OLETX,Y):V (x,y) EE,(xOLy0l)EE}
where E is a nontrivial equivalence on X. In this project, we give a necessary and

sufficient condition for TE(X,Y) to be regular and characterize Green’s relations on
Te(X,Y). Then we study it with the so-called natural order and determine when two
elements are related under this order. Moreover, we find elements of Tg(X,Y) which
are compatible with <. Also, the maximal and minimal elements are described.

Finally, we find the ranks of T(X,Y) when X is finite.
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Executive Summary

1. aAnudrAguaziuvaslynn
Green’s relations

Let S be a semigroup. The following definitions are due to J. A. Green. For any a,b€S,

he defined
alLb if and only U‘Slozslb,

or equivalently; aLb if and only if a=xb,b=ya for some X,yesl :
Dually, he defined

aRb to mean 051:b51,

or equivalently; aRb if and only if a=bx,b=ay for some x,yES1 .
And he defined

aJb to mean 51051=51b51,

or equivalently; aJb if and only if a=xby,b=uav for some ><,y,u,v€51
Finally, he defined

H=LNR and D=L°R
and obtained that the composition of L and R is commutative. This follows that D is
the join LVR, that is, D is the smallest equivalence relation containing L UR. Moreover,
HELEDE ) and HERESDE ). But, in commutative semigroups, we have H=L=R=D=J.
The relations L, R, H, D and J are called Green’s relations on S. For each a€S, we

denote L-class, R-class, H-class, D-class and J-class containing a by LO,RO,HO,DO and

J o, respectively. These relations are very important in the semigroup theory because
these are useful for understanding the nature of divisibility in a semigroup.

Natural partial order

The natural partial order on a semigroup has been developed in a number of steps. In
the terminology of A. H. Clifford and G. B. Preston [1], a band B is a semigroup in which

every element is an idempotent. On such a semigroup there is a natural (partial) order

relation defined by the rule
e<f if and only if e=ef=fe.



If the order relation < is compatible with the multiplication in B, in the sense that e<f
and g<h together imply that eg<fh, we shall say that B is a naturally ordered band. In
1966, J. M. Howie [3] described the structure of naturally ordered bands.
In the year 1952, V. Vagner [9] defined the natural order on an inverse semigroup S by
a<b if and only if a=eb for some e€E(S)
where E(S) is the set of all idempotents of S.
About 30 years later, R. E. Hartwig [2] and K. S. S. Nambooripad [5] independently
discovered the generalization of the above orders. They defined it on a regular
semigroup S by
as<b if and only if a=eb=bf for some e fEE(S). (1)
In 1986, the natural order on a regular semigroup was further extended to any
semigroup S by H. Mitsch [4]. He defined
a<b if and only if a=xb=by and xa=a for some x,y€S".
Let X be a set. A binary relation on the set X is a subset of XxX. The set of all binary
relations on X is denoted by B(X). Let O,BEB(X). We define the operation by the
composition,
aBz{(x,y)EXxX:(x,Z)Ea and (Z,y)EBfor some zEX}.
Then B(X) under composition is a semigroup. In 2006, C. Namnak and P. Preechasilp [6]
studied two natural partial orders, < and € on B(X) and characterized when two
elements of B(X) are related under these orders. The maximality, minimality, left
compatibility and right compatibility of elements were considered with respect to each
order.
Transformation Semigroups
In this part, we introduce the transformation semigroups and show some examples of
these semigroups.
A partial transformation semigroup is the collection of functions from a subset of X
into X with composition denoted by P(X). In addition, the semigroup T(X) and /(X) are
defined by:
TX)={OQLEP(X):dom OL=X},
IX)={QLEP(X):QL is injective}.



T(X) and (X) are called the full transformation semigroup and the symmetric inverse
semigroup, respectively. It is well-known that P(X) and T(X) are regular and /(X) is an
inverse semigroup.
To generalize the transformation semigroups, we introduce the transformation
semigroups with restriced range which are the generalization of transformation
semigroups. Let Y be a nonempty subset of X. We consider the subsemigroups of
P(X),T(X) and /(X) defined by:

PTIX,Y) ={OLEP):XOLE Y],

TX,Y) ={AETX):XAEY),

XY)  ={aEX):XAESY),
where XQU denotes the range of QL. In fact, if Y=X, then

PTUX,Y)=P(X), TIX,Y)=T(X) and I(X,Y)=I(X).
Finally, we consider the linear transformation semigroup.
Let V be any vector space, P(V) the set of all linear transformations Q.S—>T where S
and T are subspaces of V. Then we have P(V) under composition is a semigroup and it
is called the partial linear transformation semigroup. Moreover, the semigroups T(V)
and (V) are defined by:

TIV)={aEP(V):domOL=V},

I(V)={QLEP(V):QL is injective}.
It is well-known that P(V) and T(V) are regular and /(V) is an inverse semigroup.
Similarly to PTIX)Y), T(X,Y) and I(X,Y), we can defined the linear transformation
semigroups with restricted range as follows.
Let W be a subspace of a vector space V. Define:

PTLV,W) ={0LEP(V):VaC W,

W) ={aETV):VoL&EW),

VW) ={0lEW):VAEWS.
Let T(X) be the full transformation semigroup on a set X and E be a nontrivial
equivalence on X. Write

T, (X)={feT(X):V(x,y) € E,(f(x), f(y) € E},
then TE(X) is a subsemigroup of T(X). In 2005, H. Pei [7] discussed regularity of elements

and Green’s relations for TE(X). Then, in 2007, L. Sun, H. Pei and Z. Cheng [8] endowed

TE(X) with the so-called natural order and determined when two elements of TE(X)



are related under this order, then found out elements of TE(X) which are compatible
with < on TgX). Also, the maximal and minimal elements and the covering elements

were described.
Rank of Semigroups
In this part, we introduce the finite transformation semigroups and the rank of any
semigroups.
The rank of a semigroup S is the smallest number of elements required to generate S
defined by
rank(S)=minfALASS {A)=5}.
If S is generated by its idempotents E(S), then it is possible to define the idempotent
rank of S by
idrank(S)=min{|AASE(S),{A)=5}.

To study the transformation semigroups on a finite set with restricted range, define

PT, . = PT({1,2,...,n},{1,2,..r}),

T, =T(12,..,n},{1,2,..r}),

I, =1({L2,..,n},{1,2,..r}).

It is well-known that the ranks of Pn:PTn [ =l and TnzTn,

no nn are equal to 4, 3

n
and 3, respectively.

In this project, we aim to generalize the results of H. Pei [7] and L. Sun, H. Pei and Z.
Cheng [8] by define a transformation semigroup with restricted range that preserve an
equivalence as follows. Let T(X,Y) be the full transformation semigroup with restricted
range and £ a nontrivial equivalence on X. Define

T (X, Y)={f eT(X,Y):V(x,y) € E,(f(x), f(y) € E}.

We can see that if X=Y, then TE(X,Y)zTE(X) which is concluded that TE(X) is a special

case of TE(X,Y) . In this research, we give a necessary and sufficient condition for
TE(X,Y) to be regular and characterize Green’s relations on TE(X,Y) . Then we study

it with the so-called natural order < and then determine when two elements are
related under this order. Moreover, we find elements of this semigroup which are
compatible with <. Also, the maximal and minimal elements are described. Finally, we

find the ranks of TE(X,Y) when X is fintie.
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1 Introduction

The full transformation semigroup is the collection of all functions from a set X into X
with the composition which is denoted by T'(X). In 2008, J. Sanwong and W. Somma-
nee [7] studied the subsemigroup T(X,Y) of T(X) which is defined by

T(X,Y)={aeT(X):XaCY}

where Y is a fixed subset of X. In [7], they discussed the regularity of elements and
then determined the Green’s relations on 7'(X,Y). Moreover, they obtained a class of
maximal inverse subsemigroups of 7(X,Y). Furthermore, a natural partial order on
T(X,Y) was studied in some detail in [6, 10].

Let E be an equivalence on X. Write

Tg(X)={aeT(X):V(x,y) €E,(xa,ya) € E},

then 7g (X) is a subsemigroup of 7'(X). We see that Tg(X) is S(X), the semigroup of all
continuous self-maps of the topological space X for which all E-classes form a basis.
In 2005, H. Pei [5] studied regularity of elements and Green’s relations for Tg (X).

Now, we deal with the natural partial order or Mitsch’s order [4] on any semigroup
S defined by for a,b € S,

a < bif and only if a = xb = by, xa = a for some x,y € S'

where the notation S denotes a monoid obtained from S by adjoining an identity 1 if
necessary (S I'— § for a monoid S). In [6] and [10], the authors characterized the natural
partial order on the semigroup 7'(X,Y). In addition, they studied compatibility of its
elements and then found the maximal and minimal elements. In 2008, L. Sun, H. Pei
and Z. Cheng [9] endowed T (X) with Mitsch’s natural order and investigated when
two elements of Tz (X) are related under this order, then found elements which are
compatible. Finally, they described the maximal and minimal elements. Recently, in
2019, L. Sun [8] gave necessary and sufficient conditions for elements of T (X) to be
left or right compatible. In addition, H. Pei [2] studied the rank of 7¢(X). He showed
that the rank of 75 (X) is no more than 6.

Now, we aim to generalize the results of 7z (X) and T'(X,Y) by defining a trans-
formation semigroup with restricted range that preserve an equivalence as follows. Let
T(X,Y) be the full transformation semigroup with restricted range and E an equiva-
lence on X. Define

Te(X,Y)={aeT(X,Y):V(x,y) €E,(xa,yo) e E} =Tg(X)NT(X,Y).

Then Tz (X,Y) is a subsemigroup of T(X). It is clear that if X =Y, then Tg(X,Y) =
Tg(X), which means that Tg(X) is a special case of Tz (X,Y). Furthermore, if E is
the universal relation, £ = X x X, then Tg(X,Y) becomes T(X,Y). Moreover, it is
not difficult to check that T¢ (X,Y) is the semigroup of all continuous self-maps of the
topological space X for which all E-classes form a basis carrying X into a subspace Y
and is referred to as a semigroup of continuous functions (see [3] for details).

In this project, we give a necessary and sufficient condition for 7z (X,Y) to be reg-
ular and characterize Green'’s relations on Tg(X,Y). Moreover, we study 7¢ (X,Y) with
Mitsch’s natural partial order < and then determine when two elements are related un-
der this order. Also, we find elements of this semigroup which are compatible and then



describe maximal and minimal elements. Finally, we study the rank of a subsemigroup
of Tg(X,Y) in a special case.

Let X /E denote the quotient set of X and let Y be a subset of X. The restriction of
the equivalence E on Y, denoted by Ey, is defined by

Ey ={(x,y):x,y€Y,(x,y) EE} =EN(Y xXY).

For each o € Tg(X,Y), let

n(a)={ya l:yeXa}

be the partition of X induced by «. As in [5], for each A C X, we write
m(a)={M e n(a) : MNA # 0}.
We also define
f(a)={Mecrm(a):MNANY # 0}.

It is clear that 74 (o) is an appropriate extension of 74 () in the sense that if ¥ = X,
then 74 () = ma(or). Obviously, 4 (a) C ms(er). For each o € Tg(X,Y), define a
function o, : T(a@) — Xa by

Pa, = xo for each P € n(a) and each x € P.
We obtain the following lemma which will prove useful.

Lemma 1.1. Let @ € Tg(X,Y). Then for each B € X /E, there exists some B' € X /E
such that Boy C B'NY C B'. Consequently, for each A € X /E, Ao"" is either the empty
set or a union of some E-classes.

For each a € Tg(X,Y), let
E(a)={Aa"':AcX/E and Aa"" #0}.

We can see that E(a) is also a partition of X and x,y are contained in the same U €
E(o) if and only if (xct,ya) € E. Moreover, we define

Ey(a)={UNY:U € E(a) and UNY # 0}.

Obviously, if X =Y, then Ey (o) = E(a).

Let E be an equivalence relation on aset X and U,V subsets of X. Let ¢ : U — V. If
(u,u’) € E implies (uct,u’ o) € E for each u,u’ € U, then ¢ is said to be E-preserving.
In addition, for each u,u’ € U, if (u,u’) € E if and only if (uct,u’o) € E, then o is
called E*-preserving. We remark that if o is an E*-preserving bijection, then so is
al.

2 Regularity

In this section, we characterize regular elements in 7g(X,Y) and then give a necessary
and sufficient condition for Tg(X,Y) to be regular.

Theorem 2.1. Let o € Tg(X,Y). Then o is regular if and only if for all A € X /E, there
exists B€ X /E suchthat ANXa C (BNY)a.



Proof. Fix yg € Y. For each A € X /E, define a function 3 as follows. f ANXa =0,
define xf8 = y¢ for all x € A. If ANXa # 0, by assumption, there is a class B € X /E
such that ANX o C (BNY)a. Fix bg € BNY. For each x € ANX , there is an element
by € BNY such that x = b,a. Define

by ifxeAnXa

xp = :

by ifxeA\Xa.

It is not hard to see that 3 preserves E and X3 C Y. Hence, 8 € Tz(X,Y). We claim

that @ = affar. Let x € X. Then xa € AN X o for some E-class A and, by assumption,
ANXa C (BNY)a. By construction, xo = byy &, where by € BNY. Note that

xafa = (xa)Bo = b0 = xc.

Therefore, o = of o since x is arbitrary, as claimed.

Conversely, suppose that o is regular. Then o = affa for some 8 € Tg(X,Y). Let
A€X/E. Then AB C BNY for some B € X /E. We claim that ANXa C (BNY)a. Let
y€ANXa. Theny € A and y = xo for some x € X. We obtain that yf € AR C BNY.
Hence xaf € BNY which implies that y = xot = xafa € (BNY)a and the proof
completes. O

By the above theorem, if X =Y, then « is regular if and only if for all A € X /E,
there exists B € X /E such that ANX o C Bo.. Hence Theorem 2.1 is a generalization
of Corollary 2.3 in [5].

In [7], the authors defined a subset F of T(X,Y) by

F={aecTX,Y):XaaCYa}

and proved that F is the set of all regular elements in 7(X,Y). Moreover, they also
proved that F is the largest regular subsemigroup of 7'(X,Y).

Now, we define a subset Fg of Tg(X,Y) by a € Fg if @ € Tg(X,Y) and for each
A € X /E, there exists B € X /E such that Aa C (BNY)c. Itis easy to see that F = Fg if
E =X xX and Fg = Tg(X) if X =Y. In general, Fg, is a proper subset of FNTg(X,Y).
To see this, consider the following example.

Let X ={1,2,3,4,5} and Y = {1,2,4}. Define X /E = {A,B} by A= {1,2,3} and

B={4,5}. Let
o1 2345
“\11222)

Clearly, @ € FNTg(X,Y). We see that Aa = {1,2},(ANY)o = {1} and (BNY)ax =
{2}. Thus o ¢ Fg.

The subset Fr plays an essential role in the characterization of Green’s relations, as
shown in Section 3.

Lemma 2.2. Fg is a right ideal of Tg(X,Y). Consequently, it is a subsemigroup of
Te(X,Y).

Proof. Let o € Fg and 8 € Tg(X,Y). Then for each A € X /E, there is B € X /E such
that
Ao =(Aa)B C((BNY)a)B = (BNY)ap.

Thus aff € Fg. O



Remark 2.3. Fy contains the set of all regular elements in Tg(X,Y).

Proof. Let a € Tg(X,Y) be a regular element and A € X/E. Then Aac C BN X« for
some B € X /E and so there exists C € X /E such that A« C BNXa C (CNY)o since
o is regular. Hence o € Fg. O

In general, the set Fy is not a regular subsemigroup of 7g(X,Y). For example, let E
be an equivalence on X = {1,2,3,4} where X /E = {{1,2},{3},{4}} andY = {1,2,3}.

Define a € Tg(X,Y) by
(1234
112 1)

It is easy to check that @ € Fg but not regular. Consequently, the set of all regular
elements in 7z (X,Y) is a proper subset of Fg.

Next, we give a necessary and sufficient condition for 7 (X,Y) to be regular. Note
that if |Y| = 1, then Tx(X,Y) contains exactly one element and so T¢(X,Y) is regular.
Here, A(Y) stands for the diagonal relation on Y, that is, A(Y) = {(y,y): y €Y }.

Theorem 2.4. Let Y C X such that |Y| > 1. Then Tg(X,Y) is regular if and only if the
following statements hold.

(1) Foreach G € X/E, GNY is non-empty.
(2) EitherEy =A(Y)orE=XxXandX =Y.

Proof. (=) We prove by contrapositive. Suppose that there exists a class G with GNY
is empty. Since |Y| > 1, there are a,b € Y such that a # b. Define a function o : X — Y
by xao =a if x € Gand xat = b if x ¢ G. We can see that & € Tg(X,Y). Let A be the
class containing a. We obtain a € AN X . By the definition of ¢, for each B € X /E
such that BNY # 0, we have (BNY )o = {b} since (BNY)NG =0. Hencea ¢ (BNY )
which implies that ANXa & (BNY)a. Therefore, a is not regular by Theorem 2.1.

Assume that Ey # A(Y) and E # X x X. Then there is a class A # X such that
|ANY| > 1. Leta,b € ANY such that a # b. Define a function @ : X — Y by xa =a,
Vx € ANY and xa = b, Vx ¢ ANY. We can see that o € Tg(X,Y). Foreach B € X /E,
(BNY)a={a}if B=Aand (BNY)ot = {b} if B#A. We obtain ANXat = {a,b} ¢
(BNY)a for all class B. Hence o is not regular by Theorem 2.1.

Suppose that Ey # A(Y) and X # Y. Then there exists y € X \ Y. Since Ey # A(Y),
there is a class A such that [ANY| > 1. Leta,b € ANY such that a # b. Define a function
o:X —>Ybyxa=aifx=yand xa =D if x#y. Itis obvious that o € Tg(X,Y).
We see that for each B € X /E, (BNY)o = {b}. Therefore, ANXo = {a,b}  {b} =
(BNY)a which implies that ¢ is not regular.

(<) We can see that if E =X x X and X =Y, then Tg(X,Y) = T(X) is regular.
Now, we suppose that Ey = A(Y). Let ¢ € Tg(X,Y) and A € X/E. Then ANXa C
ANY = {a} for some a by (1). If ANXa # 0, then ANXa = {a} which implies
that a = xa for some x € X. Let B be a class containing x. Then BNY is non-empty
from which it follows that BNY = {b} for some b. Further, since (b,x) € E, we get
(ba,a) = (bo,xa) € E which follows that boo e ANX o = {a}. ThusANXa = {a} =
{ba} = (BNY)a. Therefore,  is regular. O

By Theorem 2.5 of [5], we obtain some properties of regular elements in 7g(X,Y)
as follows.

Theorem 2.5. Let o and B be regular elements in Tg (X,Y). Then the following state-
ments hold.



(1) If n(c) = 7(B), then E(ct) = E(B).

(2) If Xoo = X B, then for each A € X /E, there are B,C € X /E such that Aoc C Bf and
AB CCa.

3 Green’s Relations

In this section, we characterize Green’s relations on Tz (X,Y). We start this section by
recalling the definition of Green’s relations.
Let S be a semigroup. The following definitions are due to J. A. Green. For any
a,b € S, Define
(a,b) € & if and only if S'a = S'b,

or equivalently; (a,b) € . if and only if a = xb, b = ya for some x,y € S'.
Dually,
(a,b) € Z to mean aS' = bS",

or equivalently; (a,b) € Z if and only if a = bx,b = ay for some x,y € S' and then
define

(a,b) € # to mean S'aS' = §'bS",

or equivalently; (a,b) € ¢ if and only if a = xby, b = uav for some x,y,u,v € st
Finally,
H=LNHand D=L oX.

Note that the above relations are equivalence relations. The relation & is the join
LN X, that is, Z is the smallest equivalence relation containing .2 UZ. It is well-
knownthat ¥ = Lo% =% 0. L. Moreover, # C L CPC Fand st CHCPC
# . But, in commutative semigroups, we have 7’ = ¥ =% = 9 = _# . The relations
L, X, H, P and ¢ are called Green’s relations on S. For each a € S, we denote
ZL-class, #-class, F-class, Z-class and _¢Z -class containing a by L, Ry, Hy, D, and
Ja, respectively.

In general, if X # Y, then the semigroup Tz (X,Y) does not contain the identity
element. Hence Tg (X,Y)! # T (X,Y).

Now, we prove the following theorem which extends Theorem 3.1 of [5].

Theorem 3.1. Let o, € Tg(X,Y). Then the following statements are equivalent.
(1) (a,B) € Z.

(2) n(a) =n(B) and E(a) = E(B).
(3) There exists a bijective E*-preserving ¢ : Xoo — X B such that B = ot¢.

Proof. (1)=(2). Suppose that (&, ) € %. Then there are y,u € Tg(X,Y)! such that
oo=Pyand B =op. If a =, then n(a) = n(f) and E(ex) = E(B). If o # B, then
both y and p belong to T (X,Y) which implies that #(a) = n(f) and E(at) = E(B)
by Theorem 3.1 of [5].

(2)=(3). The proof also follows from Theorem 3.1 of [5].

(3)=-(1). The proof is an appropriate modification of the proof of (3)=-(1) in Theo-
rem 3.1 of [5]. In fact, suppose that there exists a bijective E*-preserving ¢ : Xa — X 8
such that § = a¢p. Foreach A € X /E, let A" = ANXa. If A’ = 0, define xu = y, for



eachx € A and yg €Y is fixed. If A’ #£ 0, then A’¢p = (ANX )9 C BNXP for some
class B since ¢ is E*-preserving. In the case A’ # 0, we fix by € BNX 3 and define u

by
x¢ if xeA’;
Xy = . ,
by if xeA\A.

It is easy to verify that u € Tg(X,Y) and B = ait. Similarly, we can show that oo = By
for some y € T (X,Y). O

Lemma 3.2. Let o, € Tg(X,Y). If n(a) = w(B), then either both o and B are in Fg,
or neither is in Fg.

Proof. Assume that w(a) = w(B) and let o € Fg. It suffices to show B € Fg. Let
A € X/E. Then Ao C (BNY)o for some class B. We claim that AB C (BNY)p.
Indeed, let a € A. Then there is x € X such that (a)B~! = (xa)a~! since (aB)B ' €
n(B) = n(a). Obviously, a € (aB)B~"' = (xa)a~! which implies that xa = aox €
Aa C (BNY)a. Thus xo = ba for some b € BNY. Hence b € (xa)or™! = (af)B~!
and so aff = bf € (BNY)P. Therefore, B € Fg. O

By Theorem 3.1 and Lemma 3.2, we have the following corollary.
Corollary 3.3. For o € Tg(X,Y), the following statements hold.
(1) If o € Fg, then Ry ={B € Fg : n(a) = n(B) and E(a) = E(B) }.
(2) Ifa € Tg(X,Y)\ Fg, then

Ro={BeTe(X,Y)\Fg:n(a) =n(B) and E(a)) = E(PB)}.

Now, we have already characterized Green’s %-relation of Tx(X,Y). To study
the remaining Green’s relations, we introduce some definitions for using throughout
this paper. Actually, we extend the notions of E-admissibility and E*-admissibility
presented in [5].

Let o, € Tg(X,Y) and let ¢ be a mapping from 7(ot) into (f3). We say that ¢ is
E-admissible if and only if for each A € X /E, there exists B € X /E such that

ma(a)¢ C TB(B).

Equivalently, ¢ : (&) — 7(B) is E-admissible if and only if for each A € X /E, there
exists B € X /E such that for each P € my (&), BNPPNY # 0.

If ¢ is a bijection such that ¢ and ¢! are E-admissible, then ¢ is called E*-
admissible.

We remark that if X = ¥, then the notions of E-admissibility (resp. E-admissibility)
and E-admissibility (resp. E*-admissibility) are the same.

Now, we determine Green’s . -relation on Tz (X,Y). The proof of the following
lemma is straightforward and so it is omitted.

Lemma 3.4. Let o, € Tg(X,Y). If for each A € X /E, there are B,C € X /E such that
Aa C BB and AB C Ca, then Xoo = X 3.

Theorem 3.5. Let o, B € Fg. Then the following statements are equivalent.

(1) (o,B) € L inTe(X,Y).



(2) Foreach A € X /E, there are B,C € X /E such that Aa C Bf3 and A C Ca.
(3) There is a bijective E*-admissible ¢ : (o) — m(B) such that o, = ¢ B,.

Proof. (1)=(2). Suppose that (a, ) € £. Then oo = yf and B = o for some y, 1t €
Tg(X,Y)'. If a = B, then (2) holds. If o # BB, then y,u € Tg(X,Y). The item (2)
follows by [5, Theorem 3.2].

(2)=-(3). Suppose (2) holds. Note that X = X3 by Lemma 3.4. Then for each
P € (), we have Pa, € Xao = X3. We can see that (Pa.)B~! € n(B). Define
¢ : w(a) = w(B) by P$ = (Pa,)B~". Ttis clear that ¢ is well-defined and o, = ¢ ..
Now, we show that ¢ is injective. Let P,P, € m(a) be such that Pi¢p = P,¢. Let
y € P. Then P, = ya and so P = (Pyaw)B~' = (yar)B~'. Since Pi¢ = P, we
have (ya)B~! = P,¢ = (P>o..)B~! which implies that ya = P>a.. Thus y € P> and
then P C P,. Similarly, we can show that P» C P;. To show that ¢ is surjective, let
Q € w(B). Then Q = xB~! for some x € X = Xa. Choose P =xo~! € m(a). We
obtain Q = xB~! = (Pa,.)B~! = P¢. Therefore, ¢ is a bijection.

Next, we show that ¢ is E-admissible. Let A € X/E. Then there is B € X /E such
that Aoc C Bf3 by the assumption. Hence there is a class D such that B C (DNY)fB
since B € Fg. Thus Aa C (DNY)B. Let P € my(ct). Then P € () and PNA # 0.
Choose x € PNA. Then Pa, =xoe CAa C (DNY)B from which it follows that xa =
yB for some 'y € DNY. We have y € DN (yB)B~' NY and then

yeDN(B)B 'nY=Dnxa)B~'nYy =DN(Po.)B~'NY =DNPHNY.

Thus ¢ is E-admissible since DNP¢ NY is non-empty. Finally, we prove that ¢ ~! is E-
admissible. Let P € () and Q € 7(B) be such that Q = P¢. We obtain Q = (Pa.) !
which implies that Q. = Pox. Hence

09~ =P=(Pa)a ' = (0B.)a .

By the same argument as ¢, we obtain ¢! is also E-admissible. Therefore, ¢ is E*-
admissible.

(3)=(1). Assume that (3) holds. For each A € X/E, there is B € X /E such that
for each P € ma (), BNPY NY # 0. For each x € A, let P, = (xat)ar~'. We can see
that P, € ms (). Then BNP,¢ NY # 0. Choose d, € BNP,¢ NY and define xy = d,.
First, we show that y € Tg(X,Y). Let (a,b) € E. Then a,b € A for some A € X /E.
By the definition of ¥, we obtain ay,by € B for some B € X/E. Thus (ay,by) € E.
Next, we prove that & = yB. Let x € A for some A € X/E. Then xyB = d,[3 where
d, € BNP.¢ NY for some B € X /E. Moreover, since d, € P9, we get d.3 = (P.¢)p..
Hence

xyB =d,B = (P.¢)B. = Pt = ((xa)a Vo, = xar.

Similarly, we can show that § = po for somep € Tg(X,Y). Therefore, (a,f) € Z.
O

By the above theorem, if X =Y, then we obtain Theorem 3.2 of [5].
Theorem 3.6. For o € Tg(X,Y), the following statements hold.
(1) Ifa € Tg(X,Y)\ Fg, then Ly = {a}.
(2) If o € FE, then

Ly ={B €Fg:(VA€X/E)(3B,C € X/E) Ao C BB and A C Car}.



Proof. Let o € Tg(X,Y) and let B € Ly. Then (o, ) € £ which implies that o = 3
and B = po for some y, i € Tp(X,Y)!. If y,u € Tg(X,Y), then for each A € X /E,
there are B,C € X /E such that Ao = Ay = Aypa C (BNY)a and A = Aua =
AuyB C (CNY)B. Thus a, P € Fg.

(WIfaeTg(X,Y)\ Fg,theny=1or u =1 and hence o = 3.

(2) If a € Fg, then there are two cases to consider. The case o = f8 is clear. If
o # B, then y,u € Tg(X,Y) and hence 8 € Fg. In addition, for each A € X /E, there are
B,C € X/E such that Aa C Bf3 and A C Co by Theorem 3.5. The other containment
is obvious. O

As a direct consequence of Corollary 3.3, Theorems 3.1, 3.5 and 3.6, we have the
following theorems.

Theorem 3.7. Let o, € Fg. Then the following statements are equivalent.
(1) (a,B) € H# inTg(X,Y).

(2) m(a)=n(B), E(a) =E(B) and for each A € X /E, there are B,C € X /E such that
Aa CBB and AB C Ca.

(3) There exist a bijective E*-admissible ¢ : m(ot) — m(B) such that &, = ¢ B, and a
bijective E*-preserving W : X o — X B such that B = oy.

Theorem 3.8. For a € Tg(X,Y), the following statements hold.
(1) Ifa € Tg(X,Y)\ Fg, then Hy = {a}.
(2) If o € F, then
Hy = {BeFg:n(a)=n(B),E(a)=E(B)and
(VA€ X/E)(3B,C € X/E) Aa C BB and AB C Cat}.
Now, we characterize Green’s Z relation.
Theorem 3.9. Let o, B € Fg. Then the following statements are equivalent.
(1) (a,f) € 2 inTg(X,Y).

(2) There is an E*-preserving bijection ® : Xa — X3 such that for each A € X /E,
there exist B,C € X /E with

AB C (BNY)a® and Aa C (CNY)BD L.

(3) There exist a bijective E*-admissible ¢ : t(a) — n(B) and a bijective E*-preserving
v : X — X B such that o,y = @ P..

Proof. (1)=(3). Suppose that (¢, ) € & in Tg(X,Y). Then there exists y € Tg(X,Y)
such that (o, y) € Z and (v, ) € .. By Theorem 3.1 and 3.5, there exist a bijective
E*-preserving W : X o — Xy such that y= ay and a bijective E*-admissible ¢ : 7t(y) —
7(B) such that ¥ = ¢ B.. In addition, we obtain 7(o) = 7(y) and Xy = X . Hence
¢ : (o) = n(B) and v : X — XB. Now, we show that o,y = ¢f3,.. We claim that
% = o y. Indeed, let xy~! € (y). Then (xy ')y, = x. From (o) = 7(y), there is
y € X such that xy~! = ya~! which implies that y = (yo~ et = (xy~')a.. Since



y € X, we get y = zo for some z € X. Thus z € ya~! = xy~! from which it follows
that zy = x = (xy!)¥.. We obtain

y Doy =yy=zay=zy=(xy .

Therefore, 0, W = ¥ = ¢ Bs.

(3)=(2). Assume that there exist a bijective £*-admissible ¢ : 7(a) — 7(f)
and a bijective E*-preserving ¥ : Xa — X3 such that o,y = ¢f.. Define an E*-
preserving bijection @ : Xt — X8 by x® = xy forall x € Xo. Let A € X/E. We have
mA(B)o~! C 7g(ax) for some B € X /E since ¢ ! : n(B) — m(«) is E*-admissible. We
claim that AB C (BNY)a®. Indeed, let a € A. Then (af8)B~" € m4(B) which implies
that (aB)B 19! € (ma(B))o ! C Aiz(ex). Hence (aB)B~'¢~! = (ba)o~! for some
b€ X and (ba)a ' NBNY # 0. There exists y € (ba)a~' NBNY and then bt = ya.
We see that

aB = (aB)B'B. = (aB)B "0 oty = (bo)a .y = bary

and so aff = boy =yoy € (BNY)ay = (BNY)ad. Therefore, AB C (BNY)ad.
Similarly, we can show that Aot C (CNY) B! for some class C.

(2)=(3). Assume that (2) holds. Define a function ¢ : (&) — 7(B) by (xa)a~'¢ =
(xa)®B~! for all x € X. Then ¢ is well-defined. We first show that ¢ is injec-
tive. Let (xa)or™ !, (ya)a ! be such that (xat)or™'¢ = (yot) o~ ' ¢p. Then (xa)PB~! =
(yo)®B~! and so xa = ya since @ is injective. Hence (xat)a™' = (yar)o~!. Next,
we prove the surjectivity of ¢. Let (xB)B~' € m(B). Then xB € AB C (BNY)ad for
some classes A and B. Then there is y € BNY such that ya® = x3. Thus (yo)a ™' ¢ =
(yo)®B~! = (xB)B~!. Therefore, ¢ is bijective.

Finally, we show that ¢ is E*-admissible. Let A € X /E. Then there exists C € X /E
such that Aot C (CNY)BP . Let (xat)or™! € ma(cx). Then (xa)a™' NA # @ which
implies that there is a € A such that aot = xa. Hence xa = aot € A C (CNY)BP~!
and so xa = cB® ! for some ¢ € CNY. Thus ¢ € xa®B ! = (xa)o~' ¢ which implies
that ¢ € (xa))a !¢ NCNY # 0 and so ¢ is E-admissible. On the other hand, let A €
X /E. Then there exists B € X /E such that AB C (BNY)a®. Let (xB)B! € ma(B).
Then (xB)B~'NA # 0 which implies that there is a € A such that a = x8. Hence
xp=af €AB C(BNY)ad and so xff = bo® for some b € BNY. Thus

be (bajo ! = (baja 99! = (ba)PB o~ = (xB)B 10!

which implies that b € (xB)B~ ¢! NBNY # 0. Therefore, ¢! is E-admissible.
Moreover, we define a function ¥ : X« — X 8 by xy = x® for each x € X &. It remains
to show that oty = ¢ .. Indeed, let (xa)a~' € w(c). Then

(xa)a Lo,y = xay = xad = (xa)®B !B, = (xa)o " 9 B..

(3) =(1). Assume that (3) holds. Define a function y: X — Y by xy = xay.
Since y is E*-preserving, we have v € Tg(X,Y). We first show that 7(y) = w(a).
Let A= xy ! € n(y). Then {x} = Ay = Aay which implies that A = xy~! since
v is a bijection. We obtain A = {y} where {y} = xy~! and then yy = x. Hence
A Cya~!. Letz € yo~!. Then zox = y from which it follows that zy = zay = yy =
x. Thus z € xy~! = A implies ya ' CA. So A =ya~! € n(a). We conclude that
7(y) C m(a). On the other hand, let B=aa ™' € n(a). Then Ba = {a} which implies
that By = Bay = {a}y = {b} for some b € Y. Hence B C by~ !. Let ¢ € by~!. Then
coy = ¢y = b from which it follows that {ca} = by~! = {a} since  is a bijection.



Then ca = a implies ¢ € ao~! = B. So by~! C B. We conclude that B = by~ € n(y).
Therefore, () C n(y) and then 7(y) = n(a). Moreover, since ¢ : n(y) = n(p)
is bijective £*-admissible and 7. = .y = ¢, we get (v,) € £ and Xy = X3 by
Theorem 3.5. Since y : X — XY is bijective E*-preserving and ¥ = 'y, we obtain
(a,y) € % by Theorem 3.1. Therefore, (¢, ) € 2. O

The above result extends Theorem 3.4 of [5]. In fact, we obtain an additional
characterization of the Z-relation in the case when X =Y, as shown in the following
corollary.

Corollary 3.10. Let o, 3 € Tg(X). Then the following statements are equivalent.
(1) (a,B) € 2.

(2) There is an E*-preserving bijection ® : X — X3 such that for each A € X /E,
there exist B,C € X /E with

AB C Ba® and Ao C CRP .

We remark that for condition (2) of Theorem 3.9 to be true, it suffices to check that
d is injective since the surjectivity of @ follows from the fact that for each A € X /E,
there exists B € X /E with
AB C (BNY)od.

Theorem 3.11. For a € Tg(X,Y), the following statements hold.

(1) If o« € Tg(X,Y) \ Fg, then
Do={BeTe(X,Y)\Feg:n(a) =7n(B) and E(at) = E()} = Rq.
(2) If o € Fg, then
Dy = {B € Fg : B satisfies (2) of Theorem 3.9}.

Proof. (1) Let a € Tg(X,Y)\ Fg and let B € Dy. Then there exists y € Tg(X,Y) such
that (a,y) € Z and (v,B) € £. Hence y € Tg(X,Y) \ Fg such that 7(o) = 7(y) and
E(a) = E(). Moreover, we obtain 8 = ysince Ly = {y}. Thus 8 € Tg(X,Y) \ Fg such
that (o) = w(B) and E(o) = E(B). The other containment is clear since Z C 2.

(2) Let @ € Fg and let 8 € Dy. Then there exists ¥ € Tg(X,Y) such that (a,y) € Z
and (y,B) € £. By Corollary 3.3 and Theorem 3.6, we obtain both y and 8 belong

to Fg. It is easy to see that 3 satisfies (2) of Theorem 3.9. The other containment is
clear. O

For each x € X, denote the equivalence class containing x by [x]. Now, we charac-
terize Green’s ¢ -relation. First, we prove the following lemmas.

Lemma 3.12. Let o, 8 € Tg(X,Y). Then the following statements are equivalent.

(1) There is an E-preserving surjection ® : X0t — X such that for each A € X /E
there exists B€ X /E with A C (BNY)a®.

(2) B =you for some y,u € Te(X,Y).

10



Proof. (1)=(2). Suppose that (1) holds. Note that for each A € X /E, (ANXa)® C B
for some B € X /E since @ is E-preserving. Furthermore, (ANXa)® C X CY so that
(ANXa)® C BNY. Now, we define a function p as follows. For each A € X /E such
that ANXa £ 0, (ANXo)® C BNY for some B € X/E. Choose b € BNY and define

b if xeA\Xa;
X =
H x® if xeAnXa.

Letxpu =xBifxe U{A € X/E:ANXa = 0}. Clearly, u € Tg(X,Y). Next, we define
a function y as follows. Let A € X/E. By the condition of @, there exists B € X /E
such that AB C (BNY)a®. Let x € A. Then x = ya® for some y € BNY. Define
xy=y. It then follows that y € Tg(X,Y) and 8 = you.

(2)=(1). Let B = yau for some y,u € Tg(X,Y). Fix yo € XB. If [x] N Xyor # 0,
choose xg € [x] N X yo for each x € X . Define a function ® : X — X3 by

xuif xeXvya;
x® = xu if x¢Xyaand [x]NXya # 0;
yo if F]NXya=0.

It is easy to verify that ® is E-preserving. Let A € X/E. There exists B € X /E such
that Ay C BNY. Therefore,

AB =Ayou =Ayod® C (BNY)ad.
In addition, we obtain that ® is surjective. O

As a direct consequence of Theorem 3.9, we obtain the following lemma.

Lemma 3.13. Let a,f3 € Fg. If (@,B) € 2 in Tg(X,Y), then there are E-preserving
surjections ® : Xoo — X3 and ¥ : X — X« such that for each A € X /E there exist
B,C € X /E with

AB C (BNY)ad and Aa C (CNY)BP.

Theorem 3.14. Let oo, € Tz (X,Y). Then (a,B) € # if and only if either
(1) m(a) =n(B) and E(a) = E(B); or

(2) there are E-preserving surjections @ : Xa — X and ¥ : X — X o such that for
each A € X /E there exist B,C € X /E with

AB C (BNY)ad® and Aa C (CNY)BW.

Proof. Assume that (o, ) € #. Then there exist ¥,8,A,1 € Tg(X,Y)' such that
oa=7vB6and B =Aau. If y=1=A, then o = 6 and B = au which implies
(a,B)eZCPD.1f6=1=u,then a = yB and B = Ao which implies (o, ) € £ C
2. Hence (1) or (2) holds by Theorem 3.11 and Lemma 3.13.

If {y,A}# {1} and {S,u} # {1}, then we have @ =N and f = pao for some
n,§,p,0 € Tg(X,Y). For example, if y=1=u and 1,6 € Tg(X,Y), then

a=PB8=Aadand B =Aa=ABs.

We have (2) holds by Lemma 3.12. The converse is clear by Theorem 3.1 and Lemma
3.12. O
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By using Lemma 3.13 with the same proof as given in the above theorem, we obtain
the following result.

Corollary 3.15. Let «,3 € Fg. Then (t,B) € ¢ in Tg(X,Y) if and only if there are
E-preserving surjections ®: Xa — X and ¥ : X — X & such that for each A € X /E
there exist B,C € X /E with

AB C (BNY)ad and Ao C (CNY)BW.

The above result leads to the following corollary which extends the result in [5].

Corollary 3.16. Let o, € Tg(X). Then (o,B) € _# if and only if there are E-
preserving surjections ® : Xoo — X and ¥ : X — X o such that for each A € X /E
there exist B,C € X /E with

AB CBo® and Aa C CBY.

Next, we aim to characterize the _# -relation on the finite case.

Lemma 3.17. Let o, € Tg(X,Y) be such that n(a) is finite. If 0 : w(o) — n(PB) and
¢ : n(B) — n(@) are bijective E-admissible, then 8 is E*-admissible.

Proof. The proof of this lemma follows the same steps as in Lemma 3.7 of [5]. For
the sake of completeness, we give the proof as follows. Note that 8¢ is a bijection
from 7(ct) onto m(e) which implies that O¢ is a permutation on 7(ct). Moreover,
since (o) is finite, we obtain (0¢)™ is the identity permutation for some natural
number m. We claim that (8¢)" is E-admissible for all natural number n. Indeed, let
A €X/E. There are B,C € X /E such that m4 ()0 C 7ig(f) and mp(B) ¢ C fic () since
0:m(a) = n(B) and ¢ : (B) — m(a) are E-admissible. We have

ma(a)0 C ig(B)e C mp(B)e C fic(a).

Thus ¢ is E-admissible. By induction, we conclude that (0¢)" is E-admissible for
all natural number n.

Since (8¢)™ is the identity permutation on 7(at), we obtain (8¢)” = 8¢ (0¢)" !
which implies that 8! = @(8¢)"~!. Moreover, since ¢ and (8 ¢)" ! are E-admissible,
by the same argument as above, we can show that 0! is E-admissible. Therefore, 0
is E*-admissible. O

Lemma 3.18. Let U,V C X be finite. If a.:U —V and B :V — U are surjective
E-preserving, then o, and B are bijective E*-preserving.

Proof. Ttis clear that a and f3 are bijective since U and V are finite sets. Let U /Ey =
{A1,A2,..., Ay} and V/Ey = {B},Ba,...,B,} be the sets of all distinct equivalence
classes of U and V, respectively. For each class B;, we see that B;a~! is non-empty
since « is surjective. Note that B;o.~! is a union of some classes in U /Ey. Let k; be
the number of classes which are contained in B;ar~!. It is not difficult to see that k; > 1
for all i and ky +ky + --- + k, = m. Hence m > n. Similarly, we can show that n > m
by using 8 and so m = n. Moreover, we have k; + k + - - - + k, = n which implies that
ki =ky=---=k,=1landhence U/Ey = {Bia~!,Boa™!,...,B,a'}. Now, we show
that « is E*-preserving. Let (xo,ya) € E. Then xa,yo € B for some class B € V/Ey
from which it follows that (xa)a ™!, (yo)oe™! € Ba~!. Thus x,y € Ba~! € U/Ey and
so (x,y) € E. Similarly, we can show that f3 is also E*-preserving. O
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From the above lemma, we obtain the following corollary.

Corollary 3.19. If Z is a finite set and o : Z — Z is bijective E-preserving, then o is
E*-preserving.

Now, we have the following result which covers Theorem 3.8 of [5].

Theorem 3.20. If a,f € Fg such that both X o. and X B are finite, then the following
statements are equivalent.

(1) (o,B) € Zin Te(X,Y).
(2) (a,B) € 7 inTe(X,Y).

(3) There are E*-preserving bijections ® : Xoo — X and ¥ : X3 — X o such that for
each A € X /E there exist B,C € X /E with

AB C (BNY)ad and Aa C (CNY)BW.

Proof. The implication (1)=-(2) is trivial.

(2)=(3). Assume that (¢, ) € # in Tg(X,Y). Then, by Corollary 3.15, there are
E-preserving surjections @ : Xor — X3 and ¥ : X B — X & such that for each A € X /E
there exist B,C € X /E with

AB C (BNY)ad and Aa C (CNY)BY.

By Lemma 3.18, we have ® and ¥ are bijective E*-preserving since X o and X3 are
finite.

(3)=(1). Define 6 : m(a) — n(B) by (xa)a™'6 = (xa)¥~'B~! for all x € X.
Then 6 is a well-defined bijection such that 88, = o, ¥ ~!. We only need to check that
6 is E*-admissible. Let A € X/E. Then there is C € X /E such that Ao C (CNY)BY
by assumption. Let P = (xat)or~! € my (). Then PNA # 0 which implies that there
exists a € PNA. We obtain xot = aot € (PNA)a C Aa C (CNY)BY from which it
follows that xor = ¢ for some ¢ € CNY. Hence

ce )P B InCnY = (xa)a"'ONCNY =PONCNY #0.

Thus 6 is bijective and E-admissible. On the other hand, define 7 : 7(8) — 7(c) by
(xB)B~ 't = (xB)® 'a~! forall x € X. Similarly, we can show that 7 is also bijective
and E-admissible. Hence 0 is E*-admissible by Lemma 3.17. Therefore, (a,f) € 2
by Theorem 3.9. O

Finally, we determine Green’s relations on the regular elements in 7Tg(X,Y).

Theorem 3.21. Let o, be regular elements in Tg(X,Y). If there exists a bijective
E*-preserving y : X — X B, then there is a bijective E*-admissible ¢ : n(a) — 7(B)
such that o,y = ¢ B..

Proof. The proof of this theorem is a slight modification of the proof of Theorem 3.12
of [5]. Actually, we define ¢ : 7(a) — m(B) by

P = (P, y)B, ! forall P € nt(ar).

Since a., ¥ and B, are bijective, we obtain ¢ is also bijective. Moreover, we can see
that o, ¥ = ¢B.. Now, we show that ¢ is E*-admissible. Let A € X /E and Ao = B'.
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Then Aot = B’ C B for some B € X/E by Lemma 1.1. We see that By =C' CC
for some C € X/E since y is E*-preserving. Moreover, since f3 is regular, we obtain
C' CCNXP C(DNY)P for some D € X /E by Theorem 2.1. We claim that 74 (o) ¢ C
7ip(B). Indeed, let P € ms (o). Then P, € A = B'. Hence Po,w € C' C (DNY)B
since B'y = C' and C' C (DNY)B. Hence Po NDNY = Pa, yB~'NDNY # 0 which
implies that P¢ € 7ip(B). We conclude that ¢ is E-admissible. Similarly, we have
¢! is also E-admissible since ¢ is bijective and ¢ ' = B,y ' !. Therefore, ¢ is
E*-admissible. O

Recall that the set of all regular elements in 7 (X,Y) is contained in Fg. Then we
get the following theorem.

Theorem 3.22. Let ., 3 be regular elements in Tg(X,Y). Then the following state-
ments hold.

(1) (a,B) € Z if and only if n(a) = n(P).

(2) (a,B) € L ifand only if Xt = X B.

(3) (a,B) € A if and only if t(a) = n(B) and X = X .

(4) (a,B) € Z if and only if there exists a bijective E*-preserving y : Xt — X B.

The proof of this theorem follows from Theorems 2.5 and 3.21 so it is omitted.
Moreover, if X =Y, then Theorem 3.13 of [5] is true.

4 Partial Order

Now, we give some notations which will be used throughout this paper. For each
o € Tg(X,Y) and A C X, the restriction of ¢ to A is denoted by ot|4. We adopt the
notation introduced in [1] namely, if @ € Tg(X,Y), then we write

(%)
o =
a;
and take as understood that the subscript i belongs to some unmentioned index set /,
the abbreviation {a;} denotes {a; : i € I'}, and that X& = {a;} and a;a ™! = X;.

Let U,V be subsets of X and o : U — V. If (u,u’) € E implies (ua,u’'at) € E for
each u,u’ € U, then « is said to be E-preserving.

Let 21 and ‘B be two collections of subsets of X. If for each A € 2, there exists
B €5 such that A C B, then 2l is said to refine B.

Recall that the natural partial order on any semigroup S is defined by

a < b if and only if a = xb = by, xa:aforsomex,yeS],
or equivalently,
a < bif and only if a = wb = bz,az = a for some w,z € st (1)

In this paper, we use (1) to define the partial order on the semigroup Tg(X,Y), that is
foreach a, f € Tg(X,Y)

o < B if and only if o = yB = Bu, o = ap for some y,u € T (X,Y)".
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We note that if ¥ C X, then Tg(X,Y) has no identity elements. Hence, in this case,
Te(X,Y)! # Tg(X,Y). In addition, < on Tz (X,Y) does not coincide with the restriction
of < on Tg(X). For example, let X = {1,2,3}, Y = {1,2} and X/E = {{1,2},{3}}.

Define
123 123
“(1 1 1)andﬁ<2 2 1)‘

(123 (123
Y=z 3 3 )8HL=11 1 3 )

then ¢ = Y = B, o = ap which implies that o < f in Tg(X) but we cannot find
Y € Tg(X,Y)! such that @ = yB. Hence & £ B in Tg(X,Y).

Now, we start this section with the characterization of < on Tg(X,Y) which extends
Theorem 2.1 of [9].

If we let

—_—

Theorem 4.1. Let o, € Tg(X,Y). Then a < B if and only if @ = B or the following
statements hold.

(1) E(B) refines E(o.) and nt(P) refines m(a).
(2) Foreachx € X, ifxp € Xa, then xoe = xf3.
(3) Foreach A € X /E, there is B € X /E such that Aocc C (BNY)B.

Proof. Assume that o < . Then there exist ¥, € Tg(X,Y)! such that o = yB = Bu
and o = ap. We can see that if y=1 or g = 1, then o« = 8. Now, suppose that
Y, € Tg(X,Y). Then (1) and (2) follow by Theorem 2.1 of [9]. To see (3), letA € X /E.
Then there is B € X /E such that Ay C BNY which implies that Ao = Ay C (BNY)B,
as required.

The proof of the converse is a slight modification of the proof of Theorem 2.1 of
[9]. Actually, suppose that (1), (2) and (3) hold. We note that, by (3), Xa C X. For
each A € X /E, define a function p as follows.

IfANXP =0, fix yg € Y and define zu = y for all z € A.

If ANXP # 0, we first define £ on ANXP. For each z € ANXP, there is x € X
such that z = xf3, so define zu = xa. To define u on A\ X B, fix zo € ANXP and define
zu =zou forallz € A\ XB.

To see that y is well-defined on A. Suppose that there is x' € X such that z =x'f8 =
xfB. Then x,x’ € z8~!. There exists y € X such that z8~! C ya~! since 7(B) refines
m(o). Hence xoo = xX'o¢ =y. Thus u is well-defined on A and then it is also well-
defined on X. Next, we show that u is E-preserving. Let x,y € A. If ANXJ = 0, then
(xp,yp) = (yo,¥0) € E. For ANXB # 0, there are three cases to consider.

If x,y € ANXf, then x = x'B and y = y'B for some x’,y’ € X from which it follows
that there exists U € E(f) such that x’,y’ € U. Moreover, since E(f) refines E(a),
there is V € E(a) such that U C V. Then x’,y’ € V = Ba~! for some B € X /E. Hence
X a,y o € Bimplies (xu,yu) = (Xa,y @) € E.

IfxeANXP andy € A\XP, then (xu,yu) = (xt,zoit) where zo € ANX P is fixed.
By the above case, we conclude that (xu,yu) = (xp,zoi) € E.

If x,y € A\ X, then (xu,yu) = (z04t,201) € E.

Thus p € Tg(X,Y). It is not hard to see that xfu = xa for each x € X by the
definition of . To show that & = oy, let x € X. There is y € X such that xa = yf8
since Xa C Xf. By (2), we have yor = yf3 which implies that

xop =ypu =ya=yp==xa.
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Finally, we define a function y: X — Y as follows. Let A € X/E. Then there is
B € X/E such that Ao C (BNY)P by (3). We obtain for each z € A, there isx € BNY
such that za = xf and define zy = x. To show that y is E-preserving, let (x,y) € E.
Then x,y € A for some E-class A. By the definition of ¥, we obtain xy,yy € B for some
B € X/E and so (xy,yy) € E. To see that @ = yf3, let z € X. Then zy = x for some x
with zat = xf3. Thus zyf = xf8 = za. Therefore, o < f3. O

Remark 4.2. If o, € Tg(X,Y) and o < B, then Xoo C X 3.

By the same proof as given in Corollary 2.2 of [9], we have the following result
immediately.

Corollary 4.3. Let a, 3 € Tg(X,Y) be such that o < B. Then the following statements
hold.

(1) If Xoo = X B, then o = B.
(2) Foreach P € (o), there exists P' € w(B) such that P' C P and Pa = P'.

(3) If n(a) = n(B), then oo = .

(4) ForeachU =Aa~" € E(a) such that A € X /E, there is V € E(B) such thatV CU
andUa=Voa CVB=ANX}.

S Compatibility

Recall that an element y € Tg(X,Y) is said to be left compatible with < if yo < ¥
for all o, B € Te(X,Y) such that o < . Right compatibility with < is defined dually.
In this part, we will find out elements of Tg(X,Y) which are compatible with < on
Te(X,Y). We remark that if |[Y| = 1, then |7g(X,Y)| = 1 which implies that an element
in Tg(X,Y) is left and right compatible. From now on, we assume that |Y| > 1.

Lemma 5.1. Let y€ Tg(X,Y). If Y /Ey is finite and Yy =Y, then 7y is regular.

Proof. Assume that Y /Ey is finite and Yy =Y. Write Y/Ey = {A|,As,...,A,}. We
can see that for each A; € Y/Ey, there exists unique A j€Y /Ey such that A; = A iv-
To show that 7y is regular, let A € X/E. If ANY =0, then ANXy = 0, so we are
done. fANY #0,then ANY € Y/Ey,so ANY = (BNY)y for some B € X /E. Thus
ANXyCANY =(BNY)y. O

For each x € X, denote the equivalence E-class containing x by [x].
Lemma 5.2. Ify € Tg(X,Y) is left compatible with respect to <, thenYy =Y.

Proof. We prove by contrapositive. Assume that Yy # Y. Then thereisy € Y \ Y.
Case 1. If |[y] N Y| = 1, there is z € Y such that z ¢ [y] since |Y| > 1. We define
o, € Tg(X,Y) by xae = y for all x € X and

xﬁz{ y ifx€y]

z otherwise.

We have E (o) = {X} = n(a) which implies that E(f) refines E() and (f) refines
m(e). Letxf € Xa. Then xff =y =xo. It is clear that Aot = {y} for all A € X /E
and hence Aa C ([y]NY)B. Thus a < B by Theorem 4.1. We see that Ay = {y} ¢
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{z} = (BNY)yP for all classes A and B which implies that yor £ yB. Hence ¥ is not
left compatible with < on Tg(X,Y).

Case 2. If |[[y|NY| > 1, there is z € [y]NY such that z # y. We define o, € Tg(X,Y)
by xax =y for all x € X and

oy ifx=y
B _{ z otherwise.

By the same argument as above, we obtain & < f8 but yor £ yB. Thus ¥ is not left
compatible with < on Tg(X,Y). O

Now, we give a notation which will be used in this part. Let A € X/E and y €
Te(X,Y). We define a subclass € (A) of Z2(ANXY), the power set of ANX7y, by

¢y(A)={CCANXy:CZ (GNY)yforall G € X/E}.

Clearly, 0 ¢ €,(A). Moreover, if €,(A) # 0, then ANXy € €y(A). We have known
that y is regular if and only if for each A € X /E, there is G € X /E such that ANXy C
(GNY)y. Therefore, in this case, €;(A) is empty for all class A. On the other hand, y
is not regular if and only if there is a class A such that €,(A) # 0.

Theorem 5.3. y € Tg(X,Y) is left compatible with respect to < if and only if the
following statements hold.

(1) Yy=Y.
(2) For each class A,B € X /E, |By\C| < |C\By| for all C € €y(A).

Proof. (=) Suppose that 7 is left compatible. Then Yy =Y by Lemma 5.2. Hence
Xy=Y =Y. To show (2), we assume to the contrary that there are classes A,B € X /E
and a set C € €y(A) such that [By\ C| > |C\ By|. Hence 7 is not regular which implies
that Y /Ey is infinite by Lemma 5.1. We note that

€(A)={CCANY:CZ (GNY)yforall G € X/E}.

Consider the following cases.

Case 1: By C C. Then 0 = |By\ C| > |C\ By| which implies that C = By. Write
C={c:iel}.

Subcase 1.1: C=ANY. Choose c € C and d € DNY for some class D # A (since
Y /Ey is infinite). We define functions o and 3 by

a:(ii X>C>andﬁ’:(g A>C X>A>.

Subcase 1.2: C C ANY. Choose a € (ANY)\C and d € DNY for some class
D # A. We define functions ¢ and 8 by

a(c,» X>c>andﬁ(c,» A\C X\A>'

o Ci a d

Case 2: C C By. Then |By\C| > |C\By| =0. If |By\ C| = 0, then it reduces to
case 1. We assume that C C By. Choose b € By\C and ¢ € C. Write C = {¢; : i € I}
and By\C = {b; : j € J}. We define functions « and 3 by

_( ¢ bj X\By _( ¢ bi X\By
a(c,' c b )andﬁ(ci bj b '
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Case 3: ByZ C and C ¢ By.

Subcase 3.1: ByNA =0and C =ANY. Then CN By = 0 which implies that |By| =
|By\C| > |C\By| =|C|. Choose c € C. Write C = {c;:i €I} and By={b;: j€J}.
Since |By| > |C], there is a surjection @ : By — C. Hence we can find an element b € By
such that ¢ = b@. Define functions o and 3 by

a:(i, bz;,(-P X\(CCUB}/))andB:<Z Z; A>C X\(AbUB))

Subcase 3.2: ByNA =0and C C ANY. Then CN By = 0 which implies that
|By| = |[BY\C| >|C\By| =|C|. Choose a € (ANY)\Candc € C. Write C={c;:i €I}
and By = {b; : j € J}. Since |By| > |C|, there is a surjection ¢ : By — C. Hence we
can find an element b € By such that ¢ = b@. Define functions a and f3 by

o= € bj X\(CUBy) and § — ¢ bj A\C X\(AUBy) .
Ci bj(P Cc Ci bj a b

Subcase 3.3: By CANY. We see that CUBY C ANY. Choose ¢ € C\ By. Write
C={ci:iel}and By\C={b;: j € J}. Since |By\C| > |C\ By|, there is a surjection
¢ : By\C — C\ By. Hence we can find an element b € By\ C such that ¢ = b@. Define
functions o and 8 by

w= (0 T Yaap= (0 G ),

For all cases, we see that o < 8. Then C = Bya C (GNY)ypP for some class G
since 7 is left compatible. We see that C C (G NY)y which contradicts to C € €,(A).
We conclude that for each class A,B € X /E, |By\ C| < |C\ By| forall C € €\(A).

(<) Let a, B € Tg(X,Y) be such that o < 8 with & # 8 and suppose that y €
T (X,Y) satisfies (1) and (2). We aim to show that Yo < ¥ by using Theorem 4.1.

(1) To show that E(yB) refines E(ya), let U = A(yB)~! € E(yB) for some A €
X/E. We have UyB = ANXyB C A and hence Uy C AB~! € E(B). Moreover, since
a < B, we have E(B) refines E (o) which implies that AB~! C Ba~! for some B € X /E
and so

Uyo C (AB Ha C (Ba o CB.

Thus U C B(ya) ! € E(ya). Therefore, E(yf) refines E(ya). Similarly, we can show
that (yf3) refines 7(ycr).

(2) Let x € X and xyf € Xya C Xa. Since oo < 8 and (xy)B € X, we have
xyB = xya.

(3) Let A € X/E. Then Aya C (BNY)P for some class B since oo < 3. By the
axiom of choice, we can find a subset C of BNY such that f3|¢ : C — Ay is a bijection.
Hence Cp = Aya. Note that C C BNY =BNYy C BNXYy. We claim that (C\ Ay)B C
(Ay\C)a. Indeed, let xB € (C\ Ay)B where x € C\ Ay. Then xf € C = Aya =
Ay\C)aU(AyNC)a. If xB € (AyNC)a, then x = ya for some y € AyNC. Clearly,
x#y. Weseethatyf3 € (AynC)B C CB =Ayo C X a which implies that yor = yf3 since
o < . Hence xf3 = yP which contradicts to the injectivity of B|c. So xf3 € (Ay\C)a.
Thus

AY\C| > [(47\ )] > [(C\AP)B| = [C\ A7l

which implies that C ¢ €,(B) by assumption (2). Hence C C (DNY)y for some class
D and thus Aya =Cf3 C (DNY)yB. O
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Consider the case X =Y. Let A € X /E and y € Tg(X). We see that
€y (A)={CCANXy:CZ Gyforall Ge X/E}.

By the above theorem, we obtain the following corollary which extends the result of

[9].

Corollary 5.4. y € Tg(X) is left compatible with respect to < if and only if the follow-
ing statements hold.

(1) 7 is surjective.

(2) For each class A,B € X /E,

By\ C| < |C\BY| for all C € T\(A).
Now, we consider right compatibility.

Theorem 5.5. Let |Y/Ey| =2, say Y/Ey = {A,B}. Then y € Tg(X,Y) is right com-
patible with < if and only if Y|y is injective or |Ay| =1 = |BYy|.

Proof. (=). We prove by contrapositive. Assume that y|y is not injective and |[Ay]| # 1.
Then there are b,c € Y such that by =y = ¢y for some y € Y. Consider the following
cases.

Case 1: b,c € A. Then there is a € A such that ay = x # y for some x € Y since
|Ay| > 1. Define o, B € Tg(X,Y) by

a:<[a1 X\C[ﬂ)andﬁ:([a]\{b} b X\M)_

a a b c

We see that oo < 8 and by =y = zay for some z € X \ [a]. Hence by € Xay but
boy = x # y = bfYy. Therefore ay « By which implies that ¥ is not right compatible
with <on Tg(X,Y).

Case 2: b € B and ¢ € A. Then there is a € A such that ay = x # y for some x € Y
since |Ay| > 1. Define a, 8 € Tg(X,Y) by

a=([§] X\b[a])andﬁ:<[al\a{c} ; X\b[a]>.

We see that o < 8 and ¢y =y = bay. Hence cfy € Xaybut cay=x#y=cfBy.
Therefore ay £ By which implies that 7 is not right compatible with < on T¢(X,Y).
Case 3: b € A and ¢ € B. The proof of this case is similar to Case 2.
Case 4: b,c € B. Then there is p,q € A such that py = m # n = gy for some
m,n €Y since |Ay| > 1. Define a, B € T (X,Y) by

a:(X\{C,q} {Céq})andﬁ:<X\([b]U{q}) Z [b]\b{c} C>.

p p ¢

We see that o < 8. Moreover, we obtain {b,c} C y(By)~" but b € m(ay)~! and
c € n(ovy)~!. Thus 7(B7) does not refine (awy). Therefore, ay % By which implies
that 7 is not right compatible with < on Tz (X,Y).

(<=). Suppose that Y|y is injective or |JAy| = 1 = |By|. Let at, B € Tg(X,Y) be such
that o < 8 with o # B. Clearly, if |Yy| = 1, then oy = By. Now, we assume that
|Yy] > 2. We aim to show that ay < By by using Theorem 4.1.

(1) LetU € E(B7). Then U = C(By)~" for some class C which implies that U8y C
C. Hence UB C Cy ' NY # 0. We conclude that Cy 'NY € Y/Ey or Cy ' NY =Y
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since |Y/Ey| =2. If Cy 'nY =Y, then C(By)~! =X = C(ay)~! from which it
follows that E(ay) = {X} = E(By). If Cy ' NY € Y /Ey, then there exists D € X /E
such that UB CCy 'NY =DNY and so U C DB~! € E(B). Moreover, since E(f3)
refines E (), there is V € E (o) such that U € DB~! C'V which implies that V = G ™!
for some class G. Thus there is a class H such that Vay C Gy C H. Wehave U CV C
H(ay)~' € E(avy) and so E(BYy) refines E(ay).

Next, we prove that () refines m(ay). We consider two cases as follows.

Case 1: y|y is injective. Let U = y(By)~' € n(By). Then UBy = {y} and so
UB Cyy~!. Then UB = {x} for some x € Y. Thus U C xf~! € 7(B) and then there
is zo~! € () such that U C xB~! C za~! since 7(B) refines (). We obtain
Ua = {z} which implies that Uay = {zy}. Therefore, U C (zy)(ay)~! € n(ory) and
so (B y) refines w(ay).

Case 2: |[Ay| =1 = |By|. Then Ay # By since |Yy| > 2. Note that A =A'NY and
B =B’ NY for some distinct classes A’ and B’ in X /E. We claim that 7(oy) = E(t).
Let U =y(ay)~! € m(ay). Then Uay = {y}. We see that either Uat CA or Ut C B.
Assume that Uot C A. Then U C Aa~! C A'a~!. We obtain yeUay C Ay from
which it follows that Ay = {y} since |Ay| = 1. Letx € A’a~'. Thenxat € A'NY = A
which implies that xay € Ay = {y}. Hence xay =y and so x € y(ay)~' =U. We
conclude that U = A’ac~! € E(o). Similarly, if Uot C B, then U = B'a~! € E(a).
Thus 7(ay) C E(a). On the other hand, let V = Ca~! € E(«t). Then Vaa CCNY
which implies that either Ve CCNY =Aor Va CCNY =B. Thus Vay C Ay or
VayC By. If Vay C Ay, then Vay = {z} = Ay for some z € Y since |Ay| = 1. Hence
V Cz(ay) ! Leta € z(awy)~!. Then aory =z and acx € Y = AUB. Clearly, act € A =
CNY since Ay # By. Hence a € Ca~! =V and so z(ary)~! C V. We conclude that
V =z(ay)~! € n(ay). Similarly, if Voy C By, then V = w(ay)~! € n(ay) where
{w} = By. Therefore, n(oy) = E(at). By the same proof, we obtain () = E(f).
Thus 7(fB7) refines w(ay) since E(B) refines E(ct).

(2) Let xBy € Xay. Then xBy = yay for some y € X. If y|y is injective, then
xf = ya € Xo which implies that x = xa. Thus xfy =xay. If [Ay| =1 = |By|,
then Ay # By since |Yy| > 2. Thus xf3,ya € A or xf,ya € B. Now, we assume that
xB,yo € A. Suppose to the contrary that xor € B. We see that xoo = zf3 and yo, = sf3 for
some z,s € Y by Theorem 4.1 (3). Hence zf3,sf € X implies z3 = za and sf3 = sa.
We obtain {s,x} CAB ! buts € Ao~! and x € Ba~! from which it follows that E(j3)
does not refine E(cr). It leads to a contradiction. Thus xa € A which implies that
xay = xPysince |[Ay| = 1. Similarly, if xf,ya € B, then we can show that xory = x3.

(3) Let A € X /E. By Theorem 4.1 (3), there is a class B such that Aoc C (BNY)f
and soAay C (BNY)By. O

Lemma 5.6. Let |Y /Ey|= 1. If y € Tg(X,Y) is right compatible with <, then |Yy| =1
or Y|y is injective.

Proof. 'We prove by contrapositive. Assume that [Yy| > 1 and }]y is not injective. Then
there are b,c € Y with b # ¢ such that by = y = ¢y for some y € Y. Moreover, there is

a € Y such that ay = x # y since |Yy| > 1. Clearly, a, b, ¢ are distinct elements in ¥ and
[a] = [b] = [c] € X/E since |Y /Ey| = 1. Define o, € Tg(X,Y) by

a:< @b} X\lad) ) and f < a b X\{ab} )

a b c

We see that @ < 8 and by =y = cay. Hence by € Xay but bay = x # y = bSy.
Therefore oy £ By which implies that ¥ is not right compatible with < on Tz (X,Y).
O
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Lemma 5.7. Let |Y /Ey| > 2. If y € Tg(X,Y) is right compatible with <, then |Yy| =1
or Y|y is injective.

Proof. We prove by contrapositive. Assume that [Yy| > 1 and y|y is not injective. Then
there exist b,c¢ € Y with b # ¢ such that by = ¢y =y for some y € Y. From |Yy| > 1,
there exists a € Y such that ay = x # y for some x € Y. Clearly, b # a # ¢. We consider
the following cases.

Case 1: [a] # [b] in X/E. We see that [a] U [b] C X since |X/E| > |V /Ey| > 2.
Define o, B € Tz (X,Y) by

e (U XN ) g () B XA )

a a b c

We see that @ < 8 and by =y = zay for some z € X \ ([a] U [b]). Hence by €
Xovy but bay = x #y = bBy. Therefore ay £ By which implies that  is not right
compatible with < on 7g(X,Y).

Case 2: [a] = [b] in X /E. Define o, € Tg(X,Y) by

a:([a] X\C[a]>andﬁ:<[a]\a{b} b X\[a]>.

a b c

We see that a < 8 and by =y = zoy for some z € X \ [a]. Hence bB7y € Xy but
boy = x # y = bfYy. Therefore ay « By which implies that ¥ is not right compatible
with <on Tg(X,Y). O

Lemma 5.8. Ify € Tg(X,Y) is right compatible, then Ey(y) =Y /Ey or |Ey(y)| = L.

Proof. We prove by contrapositve. Assume that Ey (y) # Y /Ey and |Ey(y)| > 2. Then
there is A € X /E such that Ay~ NY € Ey(y) is a union of some Ey-classes. Hence
there are distinct classes P,Q € X/E such that PNY and QNY are non-empty and
contained in Ay~! NY. Moreover, there is a class B such that By"! NY is non-empty
and A # B since |Ey(y)| > 2. Thus there is a class R C By~! such that RNY is non-
empty. We note that P # R # Q. Choose p € PNY, g€ QNY and r € RNY. Define
functions ¢, 8 € Tg(X,Y) by

am (2 X Y wap (0 0 X000

It is easy to verify that & < 3. We see that PBy={p}yC A and QB y={q}y C A which
implies that PUQ C A(By)~'. Furthermore, Pay = {p}y C A and Qay= {r}yCB
from which it follows that P C A(ay)~' and Q C B(ay)~!. Hence E(By) does not
refine E(ay) and thus 7 is not right compatible. O

Theorem 5.9. Let |Y /Ey| # 2. Then y € Tg(X,Y) is right compatible with respect to
< if and only if the following statements hold.

(1) |Yy| =1 orvyly is injective.
(2) Ey(’}/) = Y/Ey or |Ey(’)/)| =1.

Proof. (=) Assume that ¥ is right compatible. Then (2) holds by Lemma 5.8. More-
over, if |Y /Ey| # 2, then (1) holds by Lemmas 5.6 and 5.7.

(<) Assume that (1) and (2) hold. Let &, 8 € Tg(X,Y) be such that a < f8 with
o # B. Ttis clear that if [Yy] = 1, then oy = By for each &, § € Tg(X,Y). Thus, in this
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case, ¥ is right compatible. Now, we suppose that Y|y is injective. We aim to show that
ay < By by using Theorem 4.1.

(1) LetU € E(By). Then U = A(B7y)~! for some class A which implies that UBy C
A. Hence UB CAy 'NY € Ey(y). If |[Ey(y)| = 1, then Y CAy~!. Thus A(By)~' =
X = A(ay)~! from which it follows that E(ay) = {X} = E(By). If Ey(y) = Y /Ey,
then there exists B € X /E such that UB CAy 'NY =BNY andso U C BB~ € E(B).
Moreover, since E(f) refines E (o), there is V € E(a) such that U C V which implies
that V = Ca~! for some class C. Thus there is a class D such that Vay C Cy C D. We
have U CV C D(ay)~!' € E(ay) and so E(By) refines E(ay).

Let U =y(By)~! € n(By). Then UBy = {y} and so UB C yy~!. By the injectivity
of ]y, we obtain UB = {x} for some x € Y. Thus U C x~!' € 7(j) and then there is
za~! € n(f) such that U C xB~! C za~! since 7(B) refines 7(cr). We obtain U =
{z} which implies that Uay = {zy}. Therefore, U C (zy)(ay)~' € n(ay) and so
n(By) refines w(ay).

(2) Let xBy € Xay. Then xBy = yay for some y € X. By the injectivity of y|y, we
have xf3 = ya € X o which implies that x8 = xa.. Thus xBy = xay.

(3) Let A € X/E. By Theorem 4.1 (3), there is a class B such that Aoc C (BNY)f
and so Aay C (BNY)BYy. O

Finally, if X =Y, we have the following corollaries.

Corollary 5.10. Let |X/E| =2, say X /E = {A,B}. Theny € Tg(X) is right compatible
with < if and only if v is injective or |Ay| = 1 = |BY|.

Corollary 5.11. Let |X/E| # 2. Then y € Tg(X) is right compatible with respect to <
if and only if the following statements hold.

(1) 7 is a constant map or an injection.

(2) E(y)=X/E or [E(y)| = 1.

6 Maximal and Minimal Elements

In this section, we study maximal and minimal elements in 7g(X,Y) under the natu-
ral partial order <. The subsemigroup Fg of Tx(X,Y) plays an important role in the
characterization of maximal elements.

Lemma 6.1. Let o € Tg(X,Y). If & ¢ Fg, then a is maximal.

Proof. Let B € Tg(X,Y) be such that @ < . Assume that o # . Then for each
A€ X/E, Ao C (BNY)PB for some B € X/E by Theorem 4.1 (3). For each ac €
Aa C (BNY)P, there is b € BNY such that b = aa € Xa. Hence, by Theorem 4.1
(2), aoc =bB =ba € (BNY)a. We obtain Aa C (BNY ) which is a contradiction.
Therefore, o0 = . O

Now, we extend the notion of saturating presented in [9].

Definition 6.2. Let o € Tg(X,Y). A set U € E(a) is said to be Y -saturated if Uot =
ANY for some A € X /E.

We remark that if X =Y, then the notions of saturating and Y-saturating are the
same.
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Lemma 6.3. Let o € Fg be maximal and U € E(¢). Then U is Y -saturated or for each
E-classes A,C CU, if Ao C (CNY)a, then A=C.

Proof. We prove by contradiction. Assume that U = Go.~! is not Y -saturated and there

are distinct E-classes A,C C U such that Aa C (CNY)a. Thenthereisb € GNY \Ua.
We choose an element a € A and define a function 8 : X — Y by

b if x=a;
xﬁ:{ if x=a;

xot  otherwise.

It is clear that B € Tg(X,Y) and a # 3. We show that o < 3.

(1) Let V € E(B). Then V = MB~! for some E-class M. We assert that V C
Ma~' € E(a). Let x € V. Then x € M. If x # a, then xa = x € M which implies
that x € Ma~'. If x = a € A, then xat = a0t € Aot C (CNY)ox and so xo = ca for
some ¢ € CNY. Hence x = af =b € G. Then x € MNG. We obtain M = G and
xa=ca € Ca CUa C G from which it follows that x € Ga~! = Ma~!. Therefore,
E(B) refines E(a).

Let (xB)B~" € m(B). Assume that x # a. Then xf8 = xot. We claim that (xB)B~' C
(xa)o~' € m(ax). Letz € (xB)B~". Thenz8 =xB. If z=a, then xB =z8 =af = b
which is a contradiction since x # a. Hence z # a and zot = z8 = xf = xa. Thus
7€ (xa)a~!. Now, we suppose that x = a. We assert that (xf)B ! C (aa)a~! € n(a).
Indeed, let y € (xB)B~!. Then yB = xB = aff = b which implies that y = a. Hence
ya =ao and soy € (aa)o~!. Thus 7(B) refines 7(cx).

(2) Let xB € X . It is clear that x # a and then xa = x3.

(3) Let D € X/E. Assume that D # A. Then Da C (HNY)a for some E-class
H since o € Fg. Let xa € Da be such that x € D. Then x # a since D # A. Hence
xa =ya forsomey € HNY. If y=a, then x&t = yot = aor = b which is a contradiction
since x # a. Thus y # a and so xoe = yor = yf3 € (HNY)B which implies that Da C
(HNY)B. Now, we suppose that D = A. Let xot € Do be such that x € D = A. Then
xaeDa=Ao C (CNY)a=(CNY)P and hence Do C (CNY)B.

Therefore, o is not maximal which is a contradiction. O

Lemma 6.4. Let o € Fg be maximal and U € E(a). Then U is Y-saturated or 0.4 is
injective for each E-class A C U.

Proof. We prove by contradiction. Assume that U is not Y-saturated and there exists
E-class A C U such that a4 is not injective. Moreover, Ao C (CNY)e for some
C € X/E since o € Fg. If A # C, then « is not maximal by Lemma 6.3. Now, we
suppose that Ao C (ANY)a. Since U is not Y-saturated, we have Uat C BNY for
some B € X /E which implies that there is ¢ € BNY \ Ua. In addition, since |4 is not
injective, there exist distinct elements a € ANY and b € A such that aat = bo. Define

B:X—Yby
xﬁ:{c if x=b:

x0t  otherwise.

We can easily see that § € Ty (X,Y) and o # 3. We prove that o < 3 by using Theorem
4.1.

(1) LetV € E(B). Then V = CB~! for some C € X /E. We claim that V = Ca ™! €
E(a). Letx€ V. Then xB € C. If x # b, then xat = xB € C and so x € Ca~ . If
x =D, then xf3 = ¢ € B which implies that x§ € BNC # 0. Hence B = C. Moreover, we
obtain xot = b € B=Cand sox € Ca~!. Thus V C Ca~!. Conversely, let x € Co™!.
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Then xa € C. If x # b, then x8 = xa € C and hence x € CB~! = V. If x = b, then
xa = bo € B which implies that B = C. Moreover, we have xf§ = ¢ € B=C and so
x€CB ' =V. Thus Ca~! CV and then V = Ca~! € E(«). Therefore, E(f3) refines
E(a).

Let yB~! € m(B). Then there is x € yB~'. If x # b, then xat = x = y. We claim
that yB~' Cyo~!. Let p € yB~!. Then pB =y = xa € X from which it follows that
p#b. Hence pot = pB =yandso pcya! € n(a). Ifx=b,thenc=>bB =xf =y.
We claim that yB~! C (ac)a™!. Let p € yB~! =cB~'. Then pB = ¢ which implies
that p = b. Thus pot = bat = aa and so p € (aat)o™! € m(at). Therefore, () refines
().

(2) Let xB € Xa. It is easy to see that x # b and then xa = xf3.

(B)LetCeX/E. Then Ca C (DNY ) for some E-class D since ¢ € Fg. We claim
that (DNY)a C (DNY)B. Letxa € (DNY)a be such that x € DNY. If x # b, then
xa=xp € (DNY)B.Ifx=>b,thenx=>b € A and so A = D. Hence xot = bat = aa =
af € (ANY)B =(DNY)B. Thus, Ca C (DNY)a C (DNY)P.

Therefore, o is not maximal which is a contradiction. O

Definition 6.5. Let o € Tg(X,Y). A set U € E(a) is said to be Y-divisible if there
exist A,B,C € X/E such that AC U, CCU\A Aa C (CNY)a, BNXa =0 and
[BNY|>|Aa|.

Lemma 6.6. Let o € Fg. If o is maximal, then U is not Y -divisible for each U € E(a).

Proof. We prove by contrapositive. Assume that there is a Y-divisible set U € E(a).
Let A, B,C be as in Definition 6.5. Let ¢ : Ao — BNY be an arbitrary injection. Define

B:X—Yby
{xa(p if xeA;
xp = .
xa otherwise.

It is clear that B € Tg(X,Y) and o # . Next, we prove that o < 8 by using Theorem
4.1.

(1) LetV € E(B). Then V = DB~! for some D € X /E which implies that V3 C D.
If D=B,then V CACU € E(a). If D # B, then VNA = 0 from which it follows that
Vo =VB CD. Hence VC Do~ ! € E(a). Thus E(B) refines E(). Let M € ().
Then M = yB~! for some y =xf € XB. If y € B, then x € A and y = xf8 = xa¢. Since
¢ is injective, we have y¢ ! = {xat}. Define N = (y¢ N~ = (xa)o~! € (). Let
7€ M. Then z3 =y. Since y € B, we have z € A which implies that y = z8 = za¢.
Hence z € (y¢ ')a~! = N. Thus M C N. On the other hand, assume that y ¢ B. Let
w € M. Then y =wf and w ¢ A. Hence y = w3 = wa from which it follows that
w €y~ ! € m(a). We conclude that 7(3) refines ().

(2) Let x € X be such that x8 € X . It is obvious that x ¢ A. Hence xa = xf3.

(3)Let F € X/E. Then Fa C (GNY)a for some G € X /E since o € Fg. If G#A,
then Foo C (GNY)o = (GNY)B. If G = A, then

FaC(ANY)a CAaC (CNY)a=(CNY)B.
Therefore, o is not maximal. O

Theorem 6.7. Let o € Fg. Then o is maximal if and only if for each U € E(a), at
least one of the following conditions holds.
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(1) Both |4 is injective for each E-class A C U and for each E-classes A,C C U, if
Aa C(CNY)a, then A =C.

(2) U is not Y-divisible and U is Y -saturated.

Proof. Assume that ¢ is maximal and let U € E(a). If U is not Y-saturated, then (1)
holds by Lemmas 6.3 and 6.4. Otherwise, U is not Y-divisible by Lemma 6.6.

Conversely, let § € Tg(X,Y) be such that ¢ < § and U € E(a). We aim to prove
that Uax = U 8. We consider the following two cases.

Case 1: Assume that (1) holds. Let x € U be such that x € A for some E-class
A CU. Then xa € Aa.. We claim that Aa C (ANY)B. Letaa € Acx. Since o < 3, we
have Aot C (CNY)P for some C € X /E which implies that acc = ¢f3 for some ¢ € CNY.
Hence ¢ = ca by Theorem 4.1 (2). Thus act = co. € (CNY)a andso Aa C (CNY)a.
By assumption (1), we get A = C and hence Ax C (ANY)B. So xa = x'B for some
X € ANY. Again by Theorem 4.1 (2), we have x'a = ¥’ and then xa = x’&. Thus
x = x since o|4 is injective. Therefore, xat = X' = xf3 and then Ut = U S.

Case 2: U is not Y-divisible and Y -saturated. Then U = Aa~! such that Uax =ANY
for some A € X /E. By Corollary 4.3 (4), there is V € E(B) such that V C U and

ANY =Ua=VaCVB=ANXB CANY

which implies that Uot = Vo =V = ANY. We suppose to a contrary that U ¢ E(f3).
Since E(f) refines E(a) and U ¢ E(P), there is W € E(f) such that W # V and
W C U. Let B € X/E be such that BB~ =W. If BNXa # 0, then Ba~' € E(«)
and there isy € BNXa C BNXB = WP. Hence y = xf3 for some x € W. We obtain
xB =y € Xa implies xa = xB = y € B by Theorem 4.1 (2). Thus x € Ba~' from which
it follows that x € W N Ba~! # 0. We conclude that W C Ba~! since E(f) refines
E(o). Hence W CUNBa ™! # 0 and so U = Ba~! since E () is a partition of X. We
obtain Ao~! = U = Ba~! which implies that A=B. Thus V =AB~' =B~ =W
which is a contradiction. Hence BNX o = 0. Let D € X /E be such that D C W. Since
WB C BNY and n(P) refines m(ot), we have

|BOY| = [WB| = |DB| = [Dar|.

Since o < B, there is C € X /E such that Da C (CNY)B. Letx € D. Then xoe = yf3 for
some y € CNY. By Theorem 4.1 (2), we obtain yor = yf3. Hence xa =y € (CNY )
which implies that Doe C (CNY)a. We note that Da C Wa CUa C A and so 0 #
(CNY)aNA C CanA. Hence Co C A from which it follows that C C Aa~! = U. If
C =D, then
Do C (DNY)BCDBCWBCB

which is a contradiction since BNXa = 0. Thus C C U \ D. We conclude that U is
Y-divisible which is also a contradiction. Therefore, U € E(f3) from which it follows
that U =V andsoUa = UB.

By Corollary 4.3 (1), & = 8 and so o is maximal. O

Finally, we characterize minimal elements in 7¢ (X,Y).
Theorem 6.8. Let o € Tg(X,Y). Then o is minimal if and only if & is a constant map.

Proof. Assume that o is a constant map. Then X = {y} for some y €Y. Let €
Tg(X,Y) be such that § < a. Then X3 C X o = {y} which implies that x8 = y for all
x € X. Hence = a.

Conversely, suppose that o is not a constant map. Choose y € Y. Define f €
Tg(X,Y) by xp =y for all x € X. We can easily see that § < a. O
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7 The Rank of 75 (X,Y)

In this section, we use the notation introduced in [2]. Assume that the set X is {1,2,...,mn}
where m > 2 and n > 3. The equivalence E is defined by

E = (A] XA])U(A2 XAz)U---U(Am XAm)

where A; = {(i—)n+1,(i— )n+2,...,in},i=1,2,...,m.

By 7 = (12), we denote the permutation of X which maps 1 into 2, 2 into 1 and
maps x into x for y # 1,2. Moreover, by & = (1,2,...,n), we denote the permutation
of X which maps x into x+ 1 for 1 <x <n—1, ninto 1 and maps x into x for x ¢ A;.
Let 7, be the permutation of Y defined by

1 2 - n n+l1 n+2 --- 2n
n+l n+2 --- 2n 1 2 eeoon

where the image of each x > 2n is x. Let 7" = (n+ 1 n+2) be the permutation of X
which maps n+ 1 into n+2, n+2 into n+ 1 and maps x into x forx Zn+1,n+2. Let
&' =(n+1,n+2,...,2n) be the permutation of X which maps x into x+1 (n+1 <
x < 2n), 2n into n+ 1 and maps x into x for x ¢ Aj.

Let w € T(X) be defined by

=2, xx=x(x#1)

and denote 7w = [12]. In addition, define &, € Tg(X) by
if Am;
xf*z X ' x¢. "
x—(m—1)n otherwise

and write &, = (A1A;...A,;). We can see that £, is the permutation which maps A; into
A1 (1 <i<m) and maps A, into A;. Finally, define 7, € Tg(X) by

x+n if x€Ay;
X = .
X otherwise

and write 7, = [A1A;].
In [2], the author proved the following results.

Theorem 7.1 ([2], Theorem 3.7). Tg(X) = (1,&, 7, 1,, &, 7).

Corollary 7.2 ([2], Corollary 3.8). If m = 2 then the rank of Tg(X) is no more than 5.
If m > 3 the rank of Tg(X) is no more than 6.

Recall that, in [7], the authors defined a subset F of T(X,Y) by
F={aeTX,Y):XaCYa}.
Now, we consider the subsemigroup Fg of Tz (X,Y) defined by
Fg=FNTg(X).

We see that Fg C Fg. Clearly, if X =Y, then Fg = Tg(X) and if E = X x X, then
Fg = F. Moreover, Fr becomes T'(X) if X =Y and E = X x X. In this paper, we study
the rank of Fg in a special case when |X \ Y| = 1.
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From now on, assume that the subset ¥ of X is {1,2,...,mn} where m > 2 and
n > 3. The equivalence Ey of Y is defined by
E= (A1 xA)U(A2xA2)U---U (A X Ap)
where A; = {(i—)n+1,(i— 1)n+2,...,in},i=1,2,...,m.
The equivalence E of X is defined by
E= (A xA)U(Ay x Ap)U---U (A X Ap)

where A} = A U{1'}. Clearly, X \Y|=|[{l'}} =1and Tx(Y) = (1,&, 7, 7., &, ).
For each k < n, let ¢4 : X — Y be the map 1’ — k and x — x if x # 1’. Define
T=017,E =01, T=0\ T, T = ¢1Ts,, & = 91 & and T, = @1 7,.. We can see that ¢y (k <
n),7,&, 7,7, & and T, are in Fg.
By using Theorem 7.1, it is routinely to show that

E = <¢1 5 ¢27 ceey ¢n7fag7ﬁ7ﬁ7a7ﬁ>'
Hence, by Corollary 7.2, we obtain the following result immediately.

Corollary 7.3. If m = 2 then the rank of Fg is no more than 5+ n. If m > 3 the rank of
Fr is no more than 6 +n.
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Abstract

Let Y be a subset of X and T(X, Y) the set of all functions from X into Y. Then, under
the operation of composition, 7(X, Y) is a subsemigroup of the full transformation
semigroup 7(X). Let E be an equivalence on X. Define a subsemigroup 7:(X, Y) of

T(X, Y) by
T:(X,Y)={a e TX,Y) : V(x,y) € E, (xa,ya) € E}.

Then T(X, Y) is the semigroup of all continuous self-maps of the topological space
X for which all E-classes form a basis carrying X into a subspace Y. In this paper, we
give a necessary and sufficient condition for 7;(X, Y) to be regular and characterize
Green’s relations on Ty(X,Y). Our work extends previous results found in the
literature.

Keywords Transformation semigroups - Restricted range - Equivalence -

Regularity - Green’s relations

1 Introduction

The full transformation semigroup is the collection of all functions from a set X into

X with the composition which is denoted by 7(X). In 2008, Sanwong and Sommanee
[4] studied the subsemigroup T(X, Y) of T(X) which is defined by
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TX,Y)={a € TX) : Xa C Y}

where Y is a fixed subset of X. In [4], they discussed the regularity of elements and
then determined the Green’s relations on 7(X, Y). Moreover, they obtained a class of
maximal inverse subsemigroups of 7(X, Y). Furthermore, a natural partial order on
T(X, Y) was studied in some detail in [3, 6].

Let E be an equivalence on X. Write

TeX)={a €TX) : V(x,y) € E, (xa,ya) € E},

then T5(X) is a subsemigroup of 7(X). We see that T(X) is the semigroup of all
continuous self-maps of the topological space X for which all E-classes form a basis.
In 2005, Pei [2] studied regularity of elements and Green’s relations for 75(X). In
2008, Sun, Pei and Cheng [5] investigated T5(X) with the natural partial order.

Now, we aim to generalize the results of Pei [2], Sanwong and Sommanee [4]
by defining a transformation semigroup with restricted range that preserve an
equivalence as follows. Let 7(X, Y) be the full transformation semigroup with
restricted range and E an equivalence on X. Define

Ty X, Y)={aeTX,Y) : V(x,y) €EE,(xa,ya) EE} =Tp(X)NTX,Y).

Then Tgx(X,Y) is a subsemigroup of 7(X). It is clear that if X =Y, then
Te(X,Y) = Tp(X), which means that T(X) is a special case of Tz (X, Y). Furthermore,
if E is the universal relation, £ = X X X, then T;(X, Y) becomes T(X, Y). The latter
semigroup was studied in detail in [3, 4, 6]. Moreover, it is not difficult to check that
T(X,Y) is the semigroup of all continuous self-maps of the topological space X for
which all E-classes form a basis carrying X into a subspace Y and is referred to as a
semigroup of continuous functions (see [1] for details).

In this paper, we give a necessary and sufficient condition for 73 (X,Y) to be
regular and characterize Green’s relations on T;(X, Y).

Let X/E denote the quotient set of X and let Y be a subset of X. The restriction of
the equivalence E on Y, denoted by Ey, is defined by

E,={(xy :x,yeY,(x,y) EE} =En(Y XY).
For each a € Tp(X, Y), let
z(a) = {ya~' : y € Xa}
be the partition of X induced by a. As in [2], for each A C X, we write
o) ={M e n(a) : MNA #@}.
We also define
Fy@)={Mex(a) : MNANY # @}.

It is clear that 7, (a) is an appropriate extension of z, (@) in the sense that if ¥ = X,
then 7,(a) = m4(a). Obviously, 7,(a) C 7 (a). For each a € Tp(X,Y), define a
function ,, : z(a) - Xa by
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570 K. Sangkhanan, J. Sanwong

Pa, = xa for each P € zn(a) and each x € P.
We obtain the following lemma which will prove useful.

Lemma 1.1 Let a € T(X,Y). Then for each B € X/E, there exists some B' € X /E
such that Ba C B'nY C B'. Consequently, for each A € X/E, Aa™! is either the
empty set or a union of some E-classes.

Foreacha € Tp(X, Y), let
E(a) = {Aa™' : A€ X/E and Aa™" # 0}.

We can see that E(a) is also a partition of X and x, y are contained in the same
U € E(a) if and only if (xa, ya) € E.

Let E be an equivalence relation on a set X and U, V subsets of X. Let
a:U->V.If (u,u') € E implies (ua,u’a) € E for each u,u’ € U, then «a is said
to be E-preserving. In addition, for each u,u’ € U, if (u,u') € E if and only if
(ua,u' @) € E, then a is called E*-preserving. We remark that if « is an E*-preserving
bijection, then so is a~".

2 Regularity

In this section, we characterize regular elements in T.(X,Y) and then give a
necessary and sufficient condition for 7;(X, Y) to be regular.

Theorem 2.1 Let a € Tp(X,Y). Then a is regular if and only if for all A € X/E,
there exists B € X /E such that AnXa C (BN Y)a.

Proof Fix y, € Y. For each A € X/F, define a function g as follows. If A N Xa = @,
define xf = y, for all x € A. If A n Xa # @, by assumption, there is a class B € X/E
such that AnXa C (BNY)a. Fix by € BnY. For each x € AN Xa, there is an
element b, € BN Y such that x = b a. Define

X = b, ifxeAnXa
T\ by ifxE AN\ Xa.

It is not hard to see that § preserves E and Xf C Y. Hence, f € Tp(X, Y). We claim
that « = afa. Let x € X. Then xa € A N Xa for some E-class A and, by assumption,
ANXa C (BN Y)a. By construction, xa = b, a, where b,, € BN Y. Note that

xafa = (xa)pa = b, @ = xa.

Therefore, @ = afa since x is arbitrary, as claimed.

Conversely, suppose that a is regular. Then a = afa for some f € Ty(X,Y).
Let Ae€X/E. Then ABpCBNY for some BeX/E. We claim that
AnXaCBnY)a. Let ye AnXa. Then y€ A and y =xa for some x € X.
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We obtain that yf € A CBNY. Hence xaff € BNY which implies that
y =xa = xafa € (BN Y)a and the proof completes. a

By the above theorem, if X =Y, then a is regular if and only if for all
A € X/E, there exists B € X/E such that An Xa C Ba. Hence Theorem 2.1 is a
generalization of Corollary 2.3 in [2].

In [4], the authors defined a subset F of T(X, Y) by

F={aeTX,Y): XaCYa}

and proved that F is the set of all regular elements in 7(X, Y). Moreover, they also
proved that F is the largest regular subsemigroup of T(X, Y).

Now, we define a subset Fj; of Tp(X,Y) by a € F if @ € Ti(X,Y) and for each
A € X/E, there exists B € X/E such that Aa C (BN Y)a. It is easy to see that
F=Fyif E=XXXand F; = Tg(X)if X =Y. In general, F; is a proper subset of
FNnTp(X,Y). To see this, consider the following example.

Let X =1{1,2,3,4,5} and Y = {1,2,4}. Define X/E = {A,B} by A = {1,2,3}
and B = {4,5}. Let

Clearly, a € FNTy(X.,Y). We see that Aa={L,2},(AnY)a={1} and
BnNnY)a={2}. Thusa & Fp.

The subset Fp plays an essential role in the characterization of Green’s
relations, as shown in Sect. 3.

Lemma 2.2 F is a right ideal of Ty(X,Y). Consequently, it is a subsemigroup of
Te(X,Y).

Proof Leta € Fpand f € Tp(X,Y). Then for each A € X/E, there is B € X/E such
that
Aaf=Aa)p C(BNnY)a)f=BnY)ap.

Thus af € Fp. O

Remark 2.3 Fj, contains the set of all regular elements in T;(X, ).

Proof Let @ € T(X,Y) be a regular element and A € X/E. Then Aa C BN Xa for

some B € X/E and so there exists C € X/E such that Ae CBnNnXa C(CNY)a

since a is regular. Hence a € F,. O
In general, the set F; is not a regular subsemigroup of T;(X,Y). For example,

let £ be an equivalence on X = {1,2,3,4} where X/E = {{1,2},{3},{4}} and
Y ={1,2,3}. Define a € Tp(X, Y) by
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It is easy to check that a € F; but not regular. Consequently, the set of all regular
elements in T;(X, Y) is a proper subset of F/.

Next, we give a necessary and sufficient condition for T4,(X,Y) to be
regular. Note that if |Y| =1, then Ty(X,Y) contains exactly one element and
so Tp(X,Y) is regular. Here, A(Y) stands for the diagonal relation on Y, that is,
AY)={(y,y) 1 y€eY}

Theorem 2.4 LetY C X such that|Y| > 1. Then Ty(X, Y) is regular if and only if the
following statements hold.

(1) ForeachG € X/E,GNY is non-empty.
(2) EitherEy =AY)orE=XXXand X =Y.

Proof (=) We prove by contrapositive. Suppose that there exists a class G with
G NY is empty. Since |Y| > 1, there are a,b € Y such that a # b. Define a function
a:X—->Ybyxa=aif x&€ Gand xa =bif x &€ G. We can see that @ € Tp(X,Y).
Let A be the class containing a. We obtain a € A N Xa. By the definition of «, for
each B € X/E such that BNY # §J, we have (BN Y)a = {b} since (BN Y)NG = @.
Hence a & (BN Y)a which implies that A N Xa € (BN Y)a. Therefore, a is not
regular by Theorem 2.1.

Assume that Ey # A(Y) and E # X X X. Then there is a class A # X such that
[AnY| > 1 Let a,b€ ANY such that a # b. Define a function @ : X - Y by
xa=a, Vx€ANY and xa =b, Vx g AnY. We can see that a € Tx(X,Y). For
each Be X/E, (BNnY)a = {a}if B=A and (BN Y)a = {b} if B+# A. We obtain
AnXa = {a,b} € (BN Y)a for all class B. Hence «a is not regular by Theorem 2.1.

Suppose that E, # A(Y) and X # Y. Then there exists y e X\ Y. Since
Ey # A(Y), there is a class A such that[AN Y| > 1. Leta,b € AN Y such that a # b.
Define a function @ : X —» Y by xa = a if x =y and xa = b if x # y. It is obvious
that @ € Tp(X,Y). We see that for each B € X/E, (BnY)a = {b}. Therefore,
AnXa={a,b} ¢ {b} = (BN Y)a which implies that « is not regular.

(<) We can see that if E=XXX and X =Y, then Tp(X,Y)=T(X) is
regular. Now, we suppose that E, = A(Y). Let « € Tg(X,Y) and A € X/E. Then
ANnXa CANY = {a} for some a by (1). If AnXa # @, then AN Xa = {a} which
implies that a = xa for some x € X. Let B be a class containing x. Then BNY is
non-empty from which it follows that BNY = {b} for some b. Further, since
(b,x) € E, we get (ba,a) = (ba,xa) € E which follows that ba € AN Xa = {a}.
Thus AN Xa = {a} = {ba} = (BN Y)a. Therefore, « is regular. O

By Theorem 2.5 of [2], we obtain some properties of regular elements in
Tx(X,Y) as follows.
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Theorem 2.5 Let a and f be regular elements in Tp(X,Y). Then the following
statements hold.

(1) If n(a) = n(p), then E(a) = E(P).
(2) If Xa = XP, then for each A € X/E, there are B,C € X/E such that Aa C Bf
and Af C Ca.

3 Green’s relations

In this section, we characterize Green’s relations on 7(X, Y). We start this section
by recalling the definition of Green’s relations.

Let S be a semigroup. The following definitions are due to Green. For any
a,b € S, define

(a,b) € Zif and only if S'a = S'b,

or equivalently; (a, b) € . if and only if a = xb, b = ya for some x,y € S'.
Dually,

(a,b) € Z to mean aS' = bS',

or equivalently; (a, b) € Z if and only if a = bx, b = ay for some x,y € S L'and then
define

(a,b) € #tomean S'aS' = §'bS",

or equivalently; (a,b) € _¢ if and only if a = xby, b = uav for some x,y,u,v € S'.
Finally,

H=LNKand D = LoX.

Note that the above relations are equivalence relations. The relation & is the
join £V %, that is, & is the smallest equivalence relation containing ZU Z.
It is well-known that 7= _%0% = %o . Moreover, J'C £C Y C # and
JHCHCPC _J. Therelations £, Z, 7, 7 and ¢ are called Green'’s relations
on S. For each a € §, we denote .Z-class, #-class, -class, Z-class and _#-class
containinga by L,,R,, H,, D, and J,, respectively.

In general, if X # Y, then the semigroup 75(X, Y) does not contain the identity
element. Hence T (X, Y)' # Tp(X, Y).

Now, we prove the following theorem which extends Theorem 3.1 of [2].

Theorem 3.1 Let a, f € Tp(X,Y). Then the following statements are equivalent.

1) (a,p) €eZ.
(2) n(a) = z(B) and E(a) = E(p).
(3) There exists a bijective E*-preserving ¢ : Xa — X such that f = a¢.
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Proof

(1)=(2). Suppose that (a, ) € Z. Then there are y, u € T(X,Y)' such that
a=pfyand f=au. If a =pf, then z(a) = z(f) and E(a) = E(f). If a # f, then
both y and u belong to T;(X, Y) which implies that z(a) = #(f) and E(a) = E(f)
by Theorem 3.1 of [2].

(2)=(3). The proof also follows from Theorem 3.1 of [2].

(3)=(1). The proof is an appropriate modification of the proof of (3)=(1) in
Theorem 3.1 of [2]. In fact, suppose that there exists a bijective E*-preserving
¢ : Xa — Xp such that f=a¢p. For each A€ X/E, let A’ =AnXa. If
A’ =@, define xu =y, for each x €A and y, €Y is fixed. If A’ # @, then
A'p=(AnXa)p C BnXpP for some class B since ¢ is E*preserving. In the
case A’ # @, we fix by, € BN Xp and define u by

[ xpif xeA
ME by it xeA\A

It is easy to verify that y € Tp(X,Y) and f = au. Similarly, we can show that
a = fy forsomey € Tp(X, Y). O

Lemma3.2 Leta, f € Tp(X,Y). If () = n(p), then either both a and f are in F,
or neither is in Fp,.

Proof Assume that z(a) = #(f) and let @ € F. It suffices to show f € Fy. Let
A € X/E. Then Aa C (BN Y)a for some class B. We claim that Af C (BN Y)p.
Indeed, let a € A. Then there is x € X such that (af)f~' = (xa)a~! since
@p)p~' € n(p) = n(a). Obviously, a€ (ap)f~' = (xa)a~! which implies
that xa =ax € Aa C(BNY)a. Thus xa =ba for some beBnNY. Hence
b € (xa)a~! = (ap)p~'and so ap = bp € (BN Y)p. Therefore, p € Fy. O

By Theorem 3.1 and Lemma 3.2, we have the following corollary.
Corollary 3.3 Fora € Tg(X,Y), the following statements hold.

(1) Ifa € Fy, thenR, = {f € F;, : n(a) = () and E(a) = E(B)}.
() Ifa € T(X,Y)\ Fy, then

R,={B € T,(X.Y)\ F, : n(a) = n(f) and E() = E(B)}.

Now, we have already characterized Green’s Z-relation of Tp(X,Y). To study
the remaining Green’s relations, we introduce some definitions for using throughout
this paper. Actually, we extend the notions of E-admissibility and E*-admissibility
presented in [2].
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Leta, f € Tp(X,Y) and let ¢ be a mapping from z(a) into z(f). We say that ¢ is
E-admissible if and only if for each A € X/E, there exists B € X/E such that

mp()p C 7ip(p).

Equivalently, ¢ : z(a) — z(p) is E-admissible if and only if for each A € X/E,
there exists B € X/E such that for each P € 7 (@), BN PpNY # @.

If ¢ is a bijection such that ¢ and ¢! are E-admissible, then ¢ is called E*
-admissible.

We remark that if X =Y, then the notions of E-admissibility (resp. E
-admissibility) and E-admissibility (resp. E*-admissibility) are the same.

Now, we determine Green’s .Z-relation on T(X,Y). The proof of the following
lemma is straightforward and so it is omitted.

Lemma 3.4 Let a,f € Tp(X,Y). If for each A € X/E, there are B,C € X/E such
that Aa C Bf and Af C Ca, then Xa = Xp.

Theorem 3.5 Let @, f € Fy. Then the following statements are equivalent.

(1) (a,p) e LinTp(X,Y).
(2) Foreach A € X/E, there are B,C € X/E such that Aa C Bf and Ap C Ca.
(3) There is a bijective E*-admissible ¢ : n(a) — n(p) such that a, = ¢p,.

Proof

(1)=(2). Suppose that (a,f)€.Z. Then a=yp and f = pua for some
Yo i € Te(X,Y)\. If a = B, then (2) holds. If « # §, then y, u € Tx(X,Y). The
item (2) follows by [2, Theorem 3.2].

(2)=(3). Suppose (2) holds. Note that Xa = Xf by Lemma 3.4. Then for each
P € n(a), we have Pa, € Xa = Xp. We can see that (Pa,)f~" € n(p). Define
¢ : w(a) > x(f) by P = (Pa,)p". It is clear that ¢ is well-defined and
a, = ¢p,. Now, we show that ¢ is injective. Let P|,P, € n(a) be such that
P ¢ = Pyp. Let y € P,. Then P,a, = ya and so P;¢p = (P,a,)p~' = (ya)p~".
Since P ¢ = P,¢p, we have (ya)p~! = P,¢p = (P,a,)p~' which implies that
ya = P,a,. Thus y € P, and then P, C P,. Similarly, we can show that P, C P,.
To show that ¢ is surjective, let Q € z(f). Then Q = xf~! for some x € X = Xa.
Choose P = xa~! € n(a). We obtain Q = x~! = (Pa,)f~" = P¢. Therefore, ¢ is
a bijection.

Next, we show that ¢ is E-admissible. Let A € X/E. Then there is B € X/E such
that Aa C Bf by the assumption. Hence there is a class D such that Bf C (DN Y)p
since € Fgz. Thus Aa C(DNnY)p. Let Pe rny(a). Then P € z(a) and
PNA#@. Choose x € PNA. Then Pa, = xa C Aa C (DN Y)p from which it
follows that xa = yp for some y € DNY. We have y € DN (y#)f~! NY and then

yEDNOASL ' NY=Dn@a)f'nY=DnPa)f'nY=DnPHNY.
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Thus ¢ is E-admissible since D N P¢ NY is non-empty. Finally, we prove that
¢~!is E-admissible. Let P € z(a) and Q € 7(f) be such that Q = P¢. We obtain
0 = (Pa,)p~" which implies that Qf, = Pa,. Hence

0¢p~' =P =(Paya" =(0B)a".

By the same argument as ¢, we obtain ¢! is also E-admissible. Therefore, ¢ is
E*-admissible.

(3)=(1). Assume that (3) holds. For each A € X/E, there is B € X/E such that
for each P € m,(a), BN PpNY # @. For each x € A, let P, = (xa)a~'. We can
see that P, € 74 (a). Then BN P ,¢p NY # @. Choose d, € BN P,¢p N Y and define
xy =d,. First, we show that y € Tp(X,Y). Let (a,b) € E. Then a,b € A for
some A € X/E. By the definition of y, we obtain ay, by € B for some B € X/E.
Thus (ay, by) € E. Next, we prove that « = yf. Let x € A for some A € X/E.
Then xyfp =d,f where d. € BNP,¢NY for some B € X/E. Moreover, since
d, € P ¢, wegetd p = (P.¢)p,. Hence

xyf=dp = (PP, = Pa, = ((xa)a Ha, = xa.

Similarly, we can show that f = pua for some u € Ty(X,Y). Therefore,
(a,p) € Z. O

By the above theorem, if X = Y, then we obtain Theorem 3.2 of [2].

Theorem 3.6 Fora € T(X,Y), the following statements hold.

(1) IfaeTgX,Y)\ Fg, then L, = {a}.
(2) Ifa € Fg, then

L,={p €Fy: (VA€ X/E)3B,C € X/E) Aa C Bf and Af C Ca}.

Proof Let a € Tg(X,Y) and let peL,. Then (a,p) € ¥ which implies that
a=yp and = pa for some y,u € Tp(X,Y)\. If y, u € Tg(X,Y), then for each
A € X/E, there are B,C € X/E such that Aa =Aypf =Ayua C(BNY)a and
Afp =Apa =Auyp C(CnY)p. Thusa, p € Fp.

(1) faeTyX,Y)\ Fg, theny = lor y = 1and hence @ = f.

(2) Ifa € Fy, then there are two cases to consider. The case & = fis clear. If & # f,
then y, u € Tp(X,Y) and hence p € Fy. In addition, for each A € X/E, there
are B,C € X/E such that Aa C Bf and Ap C Ca by Theorem 3.5. The other
containment is obvious. O

As a direct consequence of Corollary 3.3, Theorems 3.1, 3.5 and 3.6, we have
the following theorems.
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Theorem 3.7 Let @, f € Fy. Then the following statements are equivalent.

(1) (a,p) e HinTg(X,Y).

(2) z(a) = n(p), E(e) = E(p)and foreach A € X/E, there are B, C € X /E such that
Aa C Bfand Af C Ca.

(3) There exist a bijective E*-admissible ¢ : n(a) — n(p) such that a, = ¢pp, and a
bijective E*-preserving v . Xa — X such that f = ay.

Theorem 3.8 Fora € Ti(X,Y), the following statements hold.

(1) Ifa e TgX,Y)\ Fg, then H, = {a}.
(2) Ifa € Fg, then

H, ={p € Fg : n(a) = z(p), E(a) = E(f) and
(VA € X/E)3B,C € X/E) Aa C Bf and Af C Ca}.

Now, we characterize Green’s & relation.

Theorem 3.9 Let a, f € Fy. Then the following statements are equivalent.

(1) (@,p)e ZinTyX,Y).
(2) There is an E*-preserving bijection @ . Xa — Xf such that for each A € X /E,
there exist B, C € X /E with

AB C (BN Y)ad and Aa C (C N Y)pd~".

(3) There exist a bijective E*-admissible ¢ : w(a) - n(P) and a bijective E*
-preserving v . Xa — X such that a,y = ¢p..

Proof

(1)=(3). Suppose that (o, f) € Z in T(X,Y). Then there exists y € Tp(X,Y)
such that (a,y) € Z and (7, f) € £. By Theorems 3.1 and 3.5, there exist a
bijective E*-preserving y : Xa — Xy such that y = ay and a bijective E*
-admissible ¢ : n(y) - #(f) such that y, = ¢p,. In addition, we obtain
7(a) = n(y) and Xy = Xp. Hence ¢ : n(a) —» n(f)and v : Xa — Xf. Now, we
show that a,y = ¢p,. We claim that y, = a,y. Indeed, let xy~! € z(y). Then
(xy Yy, = x. From z(a) = z(y), there is y € Xa such that xy~' = ya~! which
implies that y = (ya™Da, = (xy a,. Since y € Xa, we get y = za for some
7€ X. Thus z € ya=' = xy~! from which it follows that zy = x = (xy"Dy,. We
obtain
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Gy e,y =y =zay =z = @y )y,

Therefore, a,w =y, = ¢p..

(3)=(2). Assume that there exist a bijective E*-admissible ¢ : z(a) = 7(f)
and a bijective E*-preserving y : Xa — Xf such that a,y = ¢p,. Define an E*
-preserving bijection @ : Xa — Xf by x® = xy for all x € Xa. Let A € X/E.
We have 7z,(f)p~! C #g(a) for some B € X/E since ¢! : n(f) - n(a)
is E*admissible. We claim that Af C (BN Y)ad. Indeed, let a € A. Then
(ap)p~' € x,(B) which implies that (ap)f~'¢p~! € (x,(p))p~! C #g(a). Hence
@p)p~'¢~! = (ba)a! for some b € X and (ba)a~' NBNY #@. There exists
y € (ba)a—' N BN Y and then ba = ya. We see that

ap = (ap)p~' B, = @p)p' ¢ a,w = ba)a™ a,y = bay

and SO af = bay =yay € (BN Y)ay = (BN Y)ad. Therefore,
AP C (BN Y)ad. Similarly, we can show that Ae C (C N Y)pd~! for some class
C.
(2)=>(3). Assume that (2) holds. Define a function ¢ : z(a) — z(f) by
@a)a~'¢p = (xa)®P~! for all x € X. Then ¢ is well-defined. We first show
that ¢ is injective. Let (xa)a™',(ya)a™' be such that (xa)a~'¢ = (ya)a~'¢.
Then (xa)®f~! = (ya)®@p~' and so xa =ya since @ is injective. Hence
(xa)a~! = (ya)a~!. Next, we prove the surjectivity of ¢. Let (xp)f~! € z(p).
Then xf € Af C (BN Y)a® for some classes A and B. Then there is ye BNY
such that ya® =xp. Thus (ya)a~'¢p = (ya)®~! = (xp)p~'. Therefore, ¢ is
bijective.
Finally, we show that ¢ is FE*admissible. Let A € X/E. Then there
exists C € X/E such that Aa C(CNY)pd~". Let (xa)a~! € x,(a). Then
(xa)a~' N A # @ which implies that there is a € A such that aa = xa. Hence
xa =aa € Aa C(CNY)PD~! and so xa = cfP~! for some ¢ € CNY. Thus
¢ € xa®f~! = (xa)a~'¢ which implies that ¢ € (xa)a'¢ NCNY # @ and so ¢
is E-admissible. On the other hand, let A € X/E. Then there exists B € X/E such
that Af C (BN Y)ad. Let (xp)p~' € n,(f). Then (xp)p~' N A # @ which implies
that there is a € A such that aff = xf. Hence xf = aff € Af C (BN Y)a® and so
xf = bad for some b € BN Y. Thus

b€ (baya™" = (ba)a~'pp~" = (ba)®p~ '™ = (xp)p ' ¢~

which implies that b € (xf)f~'¢p~' N BN Y # @. Therefore, ¢~ is E-admissible.
Moreover, we define a function v : Xa — Xf by xy = x@ for each x € Xa. It
remains to show that a,y = ¢,. Indeed, let (xa)a~! € z(«). Then

(xa)a_la*t,u = xay = xad = (xa)®ﬂ_1ﬂ* = (xa)a_lqﬁﬂ*.

(3) =(1). Assume that (3) holds. Define a function y : X — Y by xy = xay.
Since y is E*-preserving, we have y € T(X,Y). We first show that #(y) = z(a).
Let A=xy~! € z(y). Then {x} = Ay = Aay which implies that Aa = xy~!
since y is a bijection. We obtain Aa = {y} where {y} = xy~! and then yy = x.
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Hence A Cya~!. Let z€ya~!. Then za =y from which it follows that

7y = zay = yy = x. Thus z € xy~! = A implies ya=! CA. So A = ya~! € n(a).
We conclude that z(y) C #(a). On the other hand, let B = aa~' € z(a). Then
Ba = {a} which implies that By = Bay = {a}y = {b} for some beY.
Hence B C by~!. Let ¢ € by~!. Then cay = cy = b from which it follows that
{ca} = by~! = {a} since y is a bijection. Then ca = a implies ¢ € aa™' = B.
So by~! € B. We conclude that B = by~! € 7(y). Therefore, z(a) C z(y) and
then 7(y) = z(a). Moreover, since ¢ : z(y) — z(f) is bijective E*-admissible
and y, = a,y = ¢p,, we get (y,p) € £ and Xy = Xp by Theorem 3.5. Since
v : Xa — Xy is bijective E*-preserving and y = ay, we obtain (a,y) € Z by
Theorem 3.1. Therefore, (a, f) € Z. O

The above result extends Theorem 3.4 of [2]. In fact, we obtain an additional
characterization of the Z-relation in the case when X = Y, as shown in the following
corollary.

Corollary 3.10 Let a, f € T(X). Then the following statements are equivalent.

1) (a.p) € 2.
(2) There is an E*-preserving bijection @ : Xa — Xf such that for each A € X/E,
there exist B, C € X /E with

AP C Ba® and Aa C CpD".
We remark that for condition (2) of Theorem 3.9 to be true, it suffices to check

that @ is injective since the surjectivity of @ follows from the fact that for each
A € X/E, there exists B € X/E with

AB C (BNY)ad.

Theorem 3.11 Fora € Ty(X,Y), the following statements hold.

(1) Ifa € Tg(X,Y)\ Fg, then
D, = {f € Ty(X,Y)\ Fy : 2(a) = x(f) and E(a) = E(p)} = R,
(2) Ifa € Fg, then
D, ={p € Fy : p satisfies (2) of Theorem 3.9}.

Proof
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(1) Leta € Tg(X,Y) \ Fgand let p € D,. Then there exists y € Tp(X, Y) such that
(a,y) € Z and (v, p) € L. Hencey € Tg(X,Y) \ Fg such that z(a) = z(y) and
E(a) = E(y). Moreover, we obtain # = y since L, = {y}. Thus f € Tp(X,Y) \ Fg
such that z(a) = #(f) and E(a) = E(f). The other containment is clear since
ZCD.

(2) Leta € Fgand let § € D,. Then there exists y € Tg(X, Y) such that (a,y) € Z
and (y, f) € Z. By Corollary 3.3 and Theorem 3.6, we obtain both y and g
belong to Fj. It is easy to see that § satisfies (2) of Theorem 3.9. The other
containment is clear.

O
For each x € X, denote the equivalence class containing x by [x]. Now, we
characterize Green’s _#-relation. First, we prove the following lemmas.
Lemma3.12 Leta, f € Tp(X, Y). Then the following statements are equivalent.

(1) There is an E-preserving surjection @ : Xa — Xp such that for each A € X/E
there exists B € X/E with Ap C (BN Y)ad.
(2) p=yrauforsomey,u € TyX,Y).

Proof

(1)=(2). Suppose that (1) holds. Note that for each A € X/E, (AnXa)® C B
for some B € X/FE since @ is E-preserving. Furthermore, (AN Xa)® CXFCY
so that (AN Xa)® C BNY. Now, we define a function u as follows. For each
A € X/E such that AN Xa # @, (AN Xa)® C BNY for some B € X/E. Choose
b € BNY and define

= b if xe A\ Xa;
K= x® if xeAnXa.

Let xu =xp if x€ |J{A € X/E : AnXa = @}. Clearly, u € Tp(X,Y). Next,
we define a function y as follows. Let A € X/E. By the condition of @, there
exists B € X/E such that Af C (BN Y)a®d. Let x € A. Then xf§ = ya® for some
y € BN Y. Define xy = y. It then follows thaty € Tp(X,Y) and f = yapu.
(2)=>(1). Let f = yau for some y, u € Tg(X,Y). Fix y, € Xp. If [x] n Xya # 0,
choose x; € [x] N Xya for each x € Xa. Define a function @ : Xa — Xf by

xu if x € Xya;
X® =1 xou if x & Xyaand [x] N Xya # 6,
yo if XINnXya=0.

It is easy to verify that @ is E-preserving. Let A € X/E. There exists B € X/E
such that Ay C Bn Y. Therefore,
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Af =Ayau =Aya® C (BNY)ad.

In addition, we obtain that @ is surjective. a
As a direct consequence of Theorem 3.9, we obtain the following lemma.

Lemma 3.13 Let a,f € Fg. If (o, f) € Z in Tp(X,Y), then there are E-preserving
surjections @ : Xa — Xpand¥ : Xf — Xa such that for each A € X /E there exist
B,C € X/E with

ApC(BNnY)a® and Aa C (CNY)pY.
Theorem 3.14 Leta,f € Tp(X,Y). Then (a, f) € / if and only if either

(1) #(a) = n(p) and E(a) = E(p); or
(2) there are E-preserving surjections @ : Xa - Xp and ¥ . Xf — Xa such that
foreach A € X/E there exist B,C € X/E with

AB C (BN Y)ad and Aa C (C N Y)FP.

Proof Assume that (a,f) € #. Then there exist y,8,4, 4 € Tg(X,Y)' such
that a =yf6 and f=Aau. If y=1=A4, then a=p6 and f = apu which
implies (a,f) EZC 2. If §=1=p, then a =yf and B = Aa which implies
(a,p) € £ C 2. Hence (1) or (2) holds by Theorem 3.11 and Lemma 3.13.

If {y,A} # {1} and {6, u} # {1}, then we have @« = nf{ and f = pac for some
n,¢,p,0 € Tp(X,Y). Forexample, ify =1 = pand 4,6 € Ty(X,Y), then

a=p6=Aadand f = Aa = ABS.

We have (2) holds by Lemma 3.12. The converse is clear by Theorem 3.1 and
Lemma 3.12. O

By using Lemma 3.13 with the same proof as given in the above theorem, we
obtain the following result.

Corollary 3.15 Let a, f € Fy. Then (a, ) € 7 in Tp(X,Y) if and only if there are
E-preserving surjections @ : Xa — Xp and ¥ : Xf — Xa such that for each
A € X/E there exist B, C € X /E with

ApC (BNnY)a® andAa C(CNY)pYP.
The above result leads to the following corollary which extends the result in [2].
Corollary 3.16 Let a,f € Tg(X). Then (a,p) € Z if and only if there are

E-preserving surjections @ : Xa — Xp and ¥ . Xf — Xa such that for each
A € X/E there exist B, C € X /E with
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Apf C Ba® and Aa C CpY¥.

Next, we aim to characterize the ¢-relation on the finite case.

Lemma 3.17 Let a, f € Tx(X, z/) be such that n(a) is jjnite. If0 : n(a) - n(p) and
@ : n(f) - n(a) are bijective E-admissible, then 0 is E*-admissible.

Proof The proof of this lemma follows the same steps as in Lemma 3.7 of [2]. For
the sake of completeness, we give the proof as follows. Note that 8¢ is a bijection
from z(a) onto z(a) which implies that 8¢ is a permutation on z(a). Moreover,
since z#(a) is finite, we obtain (f¢)™ is the identity permutation for some natural
number m. We claim that (0¢)" is E-admissible for all natural number n. Indeed,
let A € X/E. There are B, C € X/FE such that 7, ()8 C 75(f) and zz(f)p C 7o(a)
since 0 : x(a) - z(f)and ¢ : 7(f) — n(a)are E-admissible. We have

7,09 C (P C 15(P)p C 7ic(a).

Thus 6¢ is E-admissible. By induction, we conclude that (8¢)" is E-admissible for
all natural number .

Since ()™ is the identity permutation on z(e), we obtain (@)™ = 8p(H¢p)"!
which implies that 8= = @(6@)"~'. Moreover, since ¢ and (8¢)"~" are E-admissible,
by the same argument as above, we can show that 0~1is E-admissible. Therefore, 6
is E*-admissible. O

Lemma 3.18 Let U,V C X be finite. If a : U > V and p : V — U are surjective
E-preserving, then a and p are bijective E*-preserving.

Proof It is clear that « and f are bijective since U and V are finite sets. Let
U/E, ={A,A,,...,A,} and V/E, = {B,,B,,...,B,} be the sets of all distinct
equivalence classes of U and V, respectively. For each class B;, we see that B;a™!is
non-empty since a is surjective. Note that B;a~!is a union of some classes in U/Ey,.
Let k; be the number of classes which are contained in B;a~!. It is not difficult to see
that k; > 1for all i and k; + k, + --- + k, = m. Hence m > n. Similarly, we can show
that n > m by using g and so m = n. Moreover, we have k; + k, + -+ + k, = n which
implies that k; =k, = .- =k, = 1 and hence U/E; = {B,a”',B,a”!, ... ,B,a”'}.
Now, we show that « is E*-preserving. Let (xa,ya) € E. Then xa,ya € B for
some class B € V/E,, from which it follows that (xa)a~!, (ya)a=' C Ba~!. Thus
x,y € Ba~! € U/E,, and so (x,y) € E. Similarly, we can show that f is also E*
-preserving. O

From the above lemma, we obtain the following corollary.

Corollary 3.19 If Z is a finite set and a : Z — Z is bijective E-preserving, then a is
E*-preserving.

Now, we have the following result which covers Theorem 3.8 of [2].
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Theorem 3.20 If a, f € Fy such that both Xa and X are finite, then the following
statements are equivalent.

(1) (a,p) € ZinTg(X,Y).

(2) (a,p) € FinTp(X,Y).

(3) There are E*-preserving bijections @ . Xa — Xp and ¥ . Xf — Xa such that
foreach A € X /E there exist B,C € X/E with

AB C (BN Y)ad and Aa C (C N Y)FP.

Proof The implication (1)=(2) is trivial.

(2)=(3). Assume that (@, f) € ¢ in Tg(X,Y). Then, by Corollary 3.15, there
are E-preserving surjections @ : Xa — Xf and ¥ : Xf — Xa such that for each
A € X /E there exist B, C € X/E with

A C (BN Y)ad and Aa C (C N Y)FP.

By Lemma 3.18, we have @ and ¥ are bijective E*-preserving since Xa and X are
finite.

(3)=(1). Define 0 : z(a) = 7(f) by (xa)a~'0 = (xa)¥P !~ for all x € X. Then
6 is a well-defined bijection such that 8f, = a,%~!. We only need to check that #
is E*-admissible. Let A € X/E. Then there is C € X/E such that Aa C (C N Y)p¥
by assumption. Let P = (xa)a~! € 7y(a). Then PN A # @ which implies that there
exists a € PN A. We obtain xa = ax € (PNA)a C Aa C (C N Y)PY¥Y from which it
follows that xa = c¢f%¥ for some c € CN Y. Hence

ceE@aP I InCNnY =@a)a'dNnCNY=PONCNY #0.

Thus 0 is bijective and E-admissible. On the other hand, define = : 7(f) — z(a) by
(xﬂ)ﬂ 7= (xf)@ 'a~! for all x € X. Similarly, we can show that 7 is also bijective
and E-admissible. Hence 6 is E*-admissible by Lemma 3.17. Therefore, (a, f) € &
by Theorem 3.9. O

Finally, we determine Green’s relations on the regular elements in 73 (X, ¥).

Theorem 3.21 Let @, f§ be regular elements in Ty(X, Y). If there exists a bijective E*
-preserving v . Xa — Xf, then there is a bijective E*-admissible ¢ . n(a) — n(f)
such that a,y = ¢p,.

Proof The proof of this theorem is a slight modification of the proof of Theorem 3.12
of [2]. Actually, we define ¢ : n(a) — =(f) by

P = (Pa,y)p;" for all P € n(a).
Since a,, w and p, are bijective, we obtain ¢ is also bijective. Moreover, we can

see that a,y = ¢f,. Now, we show that ¢ is E*-admissible. Let A € X/E and
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Aa =B'. Then Aa =B’ CB for some B€ X/E by Lemma 1.1. We see that
B'w = C' C C for some C € X/E since y is E*-preserving. Moreover, since f is
regular, we obtain C' CCnNXB C (DNY)P for some D € X/E by Theorem 2.1.
We claim that z,(a)¢ C #,(B). Indeed, let P € z (). Then Pa, € Aa =B'.
Hence Pa,w € C’'C(DNY)p since By =C" and C' C(DnY)B. Hence
PpNDNY =Pa,wp~' nDNY # @ which implies that Pp € 7,,(). We conclude
that ¢ is E-admissible. Similarly, we have ¢! is also E-admissible since ¢ is
bijective and ¢~ = f,w~'a_ . Therefore, ¢ is E*-admissible. m|

Recall that the set of all regular elements in 74(X, Y) is contained in F. Then we
get the following theorem.

Theorem 3.22 Let a,f be regular elements in Tp(X,Y). Then the following
statements hold.

(1) (a,p) € Zif and only if r(a) = =(B).

2) (a,p) € Zifand only if Xa = Xp.

3) (a,p) € 7 ifand only if n(a) = n(f) and Xa = XP.

4) (a,P) € Z if and only if there exists a bijective E*-preserving v . Xa — Xp.

The proof of this theorem follows from Theorems 2.5 and 3.21 so it is omitted.
Moreover, if X = Y, then Theorem 3.13 of [2] is true.
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