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Abstract 

 

Let T (X,Y) be the full transformation semigroup with restricted range. Define  

TE(X,Y)={aÎT(X,Y):"(x,y) ÎE,(xa,ya)ÎE} 

where E is a nontrivial equivalence on X. In this project, we give a necessary and 

sufficient condition for TE(X,Y) to be regular and characterize Green’s relations on 

TE(X,Y). Then we study it with the so-called natural order and determine when two 

elements are related under this order. Moreover, we find elements of TE(X,Y) which 

are compatible with £. Also, the maximal and minimal elements are described. 

Finally, we find the ranks of TE(X,Y) when X is finite.  
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Executive Summary 

 

1. ความสําคัญและท่ีมาของปัญหา  

Green’s relations 

Let S be a semigroup. The following definitions are due to J. A. Green. For any a,b∈S, 

he defined  

aLb if and only if S1a=S1b,  

or equivalently; aLb if and only if a=xb,b=ya for some x,y∈S1 . 

Dually, he defined  

aRb to mean aS1=bS1, 

or equivalently; aRb if and only if a=bx,b=ay for some x,y∈S1 . 

And he defined  

aJb to mean S1aS1=S1bS1, 

or equivalently; aJb if and only if a=xby,b=uav for some x,y,u,v∈S1 . 

Finally, he defined  

H=L∩R and D=L∘R 

and obtained that the composition of L and R is commutative. This follows that D is 

the join L∨R, that is, D is the smallest equivalence relation containing L∪R. Moreover, 

H⊆L⊆D⊆J and H⊆R⊆D⊆J. But, in commutative semigroups, we have H=L=R=D=J. 

The relations L, R, H, D and J are called Green’s relations on S. For each a∈S, we 

denote L-class, R-class, H-class, D-class and J-class containing a by La,Ra,Ha,Da and 

Ja, respectively. These relations are very important in the semigroup theory because 

these are useful for understanding the nature of divisibility in a semigroup.  

Natural partial order 

The natural partial order on a semigroup has been developed in a number of steps. In 

the terminology of A. H. Clifford and G. B. Preston [1], a band B is a semigroup in which 

every element is an idempotent. On such a semigroup there is a natural (partial) order 

relation defined by the rule  

e≤f if and only if e=ef=fe. 



If the order relation ≤ is compatible with the multiplication in B, in the sense that e≤f 

and g≤h together imply that eg≤fh, we shall say that B is a naturally ordered band. In 

1966, J. M. Howie [3] described the structure of naturally ordered bands. 

In the year 1952, V. Vagner [9] defined the natural order on an inverse semigroup S by  

a≤b if and only if a=eb for some e∈E(S) 

where E(S) is the set of all idempotents of S. 

About 30 years later, R. E. Hartwig [2] and K. S. S. Nambooripad [5] independently 

discovered the generalization of the above orders. They defined it on a regular 

semigroup S by  

a≤b if and only if a=eb=bf for some e,f∈E(S). (1) 

In 1986, the natural order on a regular semigroup was further extended to any 

semigroup S by H. Mitsch [4]. He defined  

a≤b if and only if a=xb=by and xa=a for some x,y∈S1. 

Let X be a set. A binary relation on the set X is a subset of X×X. The set of all binary 

relations on X is denoted by B(X). Let α,β∈B(X). We define the operation by the 

composition,  

αβ={(x,y)∈X×X:(x,z)∈α and (z,y)∈β for some z∈X}. 

Then B(X) under composition is a semigroup. In 2006, C. Namnak and P. Preechasilp [6] 

studied two natural partial orders, ≤ and ⊆, on B(X) and characterized when two 

elements of B(X) are related under these orders. The maximality, minimality, left 

compatibility and right compatibility of elements were considered with respect to each 

order. 

Transformation Semigroups 

In this part, we introduce the transformation semigroups and show some examples of 

these semigroups. 

A partial transformation semigroup is the collection of functions from a subset of X 

into X with composition denoted by P(X). In addition, the semigroup T(X) and I(X) are 

defined by:  

   T(X)={α∈P(X):dom α=X}, 

   I(X)={α∈P(X):α is injective}. 



T(X) and I(X) are called the full transformation semigroup and the symmetric inverse 

semigroup, respectively. It is well-known that P(X) and T(X) are regular and I(X) is an 

inverse semigroup. 

To generalize the transformation semigroups, we introduce the transformation 

semigroups with restriced range which are the generalization of transformation 

semigroups. Let Y be a nonempty subset of X. We consider the subsemigroups of 

P(X),T(X) and I(X) defined by:  

   PT(X,Y) ={α∈P(X):Xα⊆Y}, 

   T(X,Y) ={α∈T(X):Xα⊆Y}, 

   I(X,Y) ={α∈I(X):Xα⊆Y}, 

where Xα denotes the range of α. In fact, if Y=X, then  

PT(X,Y)=P(X), T(X,Y)=T(X) and I(X,Y)=I(X). 

Finally, we consider the linear transformation semigroup. 

Let V be any vector space, P(V) the set of all linear transformations α:S→T where S 

and T are subspaces of V. Then we have P(V) under composition is a semigroup and it 

is called the partial linear transformation semigroup. Moreover, the semigroups T(V) 

and I(V) are defined by:  

   T(V)={α∈P(V):domα=V}, 

   I(V)={α∈P(V):α is injective}. 

It is well-known that P(V) and T(V) are regular and I(V) is an inverse semigroup. 

Similarly to PT(X,Y), T(X,Y) and I(X,Y), we can defined the linear transformation 

semigroups with restricted range as follows. 

Let W be a subspace of a vector space V. Define:  

   PT(V,W) ={α∈P(V):Vα⊆W}, 

   T(V,W) ={α∈T(V):Vα⊆W}, 

   I(V,W) ={α∈I(V):Vα⊆W}. 

Let T(X) be the full transformation semigroup on a set X and E be a nontrivial 

equivalence on X. Write  

 
then TE(X) is a subsemigroup of T(X). In 2005, H. Pei [7] discussed regularity of elements 

and Green’s relations for TE(X). Then, in 2007, L. Sun, H. Pei and Z. Cheng [8] endowed 

TE(X) with the so-called natural order and determined when two elements of TE(X) 

},))(),((,),(:)({)( EyfxfEyxXTfXTE ÎÎ"Î=



are related under this order, then found out elements of TE(X) which are compatible 

with ≤ on TE(X). Also, the maximal and minimal elements and the covering elements 

were described. 

Rank of Semigroups 

In this part, we introduce the finite transformation semigroups and the rank of any 

semigroups. 

The rank of a semigroup S is the smallest number of elements required to generate S 

defined by  

rank(S)=min{|A|:A⊆S,〈A〉=S}. 

If S is generated by its idempotents E(S), then it is possible to define the idempotent 

rank of S by  

idrank(S)=min{|A|:A⊆E(S),〈A〉=S}. 

To study the transformation semigroups on a finite set with restricted range, define  

 

 

. 

It is well-known that the ranks of Pn=PTn,n , In=In,n  and Tn=Tn,n  are equal to 4, 3 

and 3, respectively. 

In this project, we aim to generalize the results of H. Pei [7] and L. Sun, H. Pei and Z. 

Cheng [8] by define a transformation semigroup with restricted range that preserve an 

equivalence as follows. Let T(X,Y) be the full transformation semigroup with restricted 

range and E a nontrivial equivalence on X. Define 

. 

We can see that if X=Y, then TE(X,Y)=TE(X)  which is concluded that TE(X) is a special 

case of TE(X,Y) . In this research, we give a necessary and sufficient condition for 

TE(X,Y)  to be regular and characterize Green’s relations on TE(X,Y) . Then we study 

it with the so-called natural order ≤ and then determine when two elements are 

related under this order. Moreover, we find elements of this semigroup which are 

compatible with ≤. Also, the maximal and minimal elements are described. Finally, we 

find the ranks of TE(X,Y)  when X is fintie. 
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2. วัตถุประสงค์  

2.1 To obtain a necessary and sufficient condition for TE(X,Y)  to be regular and the 

characterization of Green’s relations on TE(X,Y) .  

2.2 To obtain the characterization of the natural partial order on TE(X,Y) .  

2.3 To obtain the rank of TE(X,Y)  when X is finite.  

3. ระเบียบวิธีวิจัย  

3.1 Study the new research articles and books in the topic of the regularity and 

Green’s relations on transformation semigroups with restricted range and the ranks 

of transformation semigroups with restricted range. 

3.2 Send the work to the mentor for advise and revising.  

3.3 Write an article and submit to the international journal.  

 

 

 



4. แผนการดําเนินงานวิจัยตลอดโครงการในแต่ละช่วง 6 เดือน  

  

Research Plan Period month 

  

1. Study the new research articles and books in the topic of the 

regularity and Green’s relations on transformation semigroups 

with restricted range. 

2. Obtain a necessary and sufficient condition for TE(X,Y)  to 

be regular and the characterization of Green’s relations on 

TE(X,Y) . 

3. Check, edit, revise the work and contact the mentor for an 

advise 

 

1-6 

4. Write an article and submit to the international journal. 

5. Study the new research articles and books in the natural 

partial order on transformation semigroups with restricted range. 

7-12 

6. Obtain the characterization of the natural partial order on 

TE(X,Y) . 

7. Check, edit, revise the work and contact the mentor for an 

advise 

8. Study the new research articles and books in the the ranks of 

transformation semigroups with restricted range. 

13-18 

9. Obtain the rank of TE(X,Y)  when X is finite. 

10. Check, edit, revise the work and contact the mentor for an 

advise 

11. Write an article and submit to the international journal. 

19-24 

5. ผลงาน/หัวข้อเร่ืองท่ีตีพิมพ์ในวารสารวิชาการระดับนานาชาติ  

ช่ือเร่ืองท่ีตีพิมพ์:  Regularity and Green’s relations on semigroups 

of transformations with restricted range that preserve an equivalence  

ช่ือวารสารท่ีตีพิมพ์: Semigroup Forum  
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1 Introduction
The full transformation semigroup is the collection of all functions from a set X into X
with the composition which is denoted by T (X). In 2008, J. Sanwong and W. Somma-
nee [7] studied the subsemigroup T (X ,Y ) of T (X) which is defined by

T (X ,Y ) = {α ∈ T (X) : Xα ⊆ Y}

where Y is a fixed subset of X . In [7], they discussed the regularity of elements and
then determined the Green’s relations on T (X ,Y ). Moreover, they obtained a class of
maximal inverse subsemigroups of T (X ,Y ). Furthermore, a natural partial order on
T (X ,Y ) was studied in some detail in [6, 10].

Let E be an equivalence on X . Write

TE(X) = {α ∈ T (X) : ∀(x,y) ∈ E,(xα,yα) ∈ E},

then TE(X) is a subsemigroup of T (X). We see that TE(X) is S(X), the semigroup of all
continuous self-maps of the topological space X for which all E-classes form a basis.
In 2005, H. Pei [5] studied regularity of elements and Green’s relations for TE(X).

Now, we deal with the natural partial order or Mitsch’s order [4] on any semigroup
S defined by for a,b ∈ S,

a ≤ b if and only if a = xb = by, xa = a for some x,y ∈ S1

where the notation S1 denotes a monoid obtained from S by adjoining an identity 1 if
necessary (S1 = S for a monoid S). In [6] and [10], the authors characterized the natural
partial order on the semigroup T (X ,Y ). In addition, they studied compatibility of its
elements and then found the maximal and minimal elements. In 2008, L. Sun, H. Pei
and Z. Cheng [9] endowed TE(X) with Mitsch’s natural order and investigated when
two elements of TE(X) are related under this order, then found elements which are
compatible. Finally, they described the maximal and minimal elements. Recently, in
2019, L. Sun [8] gave necessary and sufficient conditions for elements of TE(X) to be
left or right compatible. In addition, H. Pei [2] studied the rank of TE(X). He showed
that the rank of TE(X) is no more than 6.

Now, we aim to generalize the results of TE(X) and T (X ,Y ) by defining a trans-
formation semigroup with restricted range that preserve an equivalence as follows. Let
T (X ,Y ) be the full transformation semigroup with restricted range and E an equiva-
lence on X . Define

TE(X ,Y ) = {α ∈ T (X ,Y ) : ∀(x,y) ∈ E,(xα,yα) ∈ E}= TE(X)∩T (X ,Y ).

Then TE(X ,Y ) is a subsemigroup of T (X). It is clear that if X = Y , then TE(X ,Y ) =
TE(X), which means that TE(X) is a special case of TE(X ,Y ). Furthermore, if E is
the universal relation, E = X ×X , then TE(X ,Y ) becomes T (X ,Y ). Moreover, it is
not difficult to check that TE(X ,Y ) is the semigroup of all continuous self-maps of the
topological space X for which all E-classes form a basis carrying X into a subspace Y
and is referred to as a semigroup of continuous functions (see [3] for details).

In this project, we give a necessary and sufficient condition for TE(X ,Y ) to be reg-
ular and characterize Green’s relations on TE(X ,Y ). Moreover, we study TE(X ,Y ) with
Mitsch’s natural partial order ≤ and then determine when two elements are related un-
der this order. Also, we find elements of this semigroup which are compatible and then
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describe maximal and minimal elements. Finally, we study the rank of a subsemigroup
of TE(X ,Y ) in a special case.

Let X/E denote the quotient set of X and let Y be a subset of X . The restriction of
the equivalence E on Y , denoted by EY , is defined by

EY = {(x,y) : x,y ∈ Y,(x,y) ∈ E}= E ∩ (Y ×Y ).

For each α ∈ TE(X ,Y ), let

π(α) = {yα−1 : y ∈ Xα}

be the partition of X induced by α . As in [5], for each A ⊆ X , we write

πA(α) = {M ∈ π(α) : M∩A 6= /0}.

We also define
π̃A(α) = {M ∈ π(α) : M∩A∩Y 6= /0}.

It is clear that π̃A(α) is an appropriate extension of πA(α) in the sense that if Y = X ,
then π̃A(α) = πA(α). Obviously, π̃A(α) ⊆ πA(α). For each α ∈ TE(X ,Y ), define a
function α∗ : π(α)→ Xα by

Pα∗ = xα for each P ∈ π(α) and each x ∈ P.

We obtain the following lemma which will prove useful.

Lemma 1.1. Let α ∈ TE(X ,Y ). Then for each B ∈ X/E, there exists some B′ ∈ X/E
such that Bα ⊆ B′∩Y ⊆ B′. Consequently, for each A ∈ X/E, Aα−1 is either the empty
set or a union of some E-classes.

For each α ∈ TE(X ,Y ), let

E(α) = {Aα−1 : A ∈ X/E and Aα−1 6= /0}.

We can see that E(α) is also a partition of X and x,y are contained in the same U ∈
E(α) if and only if (xα,yα) ∈ E. Moreover, we define

EY (α) = {U ∩Y : U ∈ E(α) and U ∩Y 6= /0}.

Obviously, if X = Y , then EY (α) = E(α).
Let E be an equivalence relation on a set X and U,V subsets of X . Let α : U →V . If

(u,u′) ∈ E implies (uα,u′α) ∈ E for each u,u′ ∈U , then α is said to be E-preserving.
In addition, for each u,u′ ∈ U , if (u,u′) ∈ E if and only if (uα,u′α) ∈ E, then α is
called E∗-preserving. We remark that if α is an E∗-preserving bijection, then so is
α−1.

2 Regularity
In this section, we characterize regular elements in TE(X ,Y ) and then give a necessary
and sufficient condition for TE(X ,Y ) to be regular.

Theorem 2.1. Let α ∈ TE(X ,Y ). Then α is regular if and only if for all A ∈ X/E, there
exists B ∈ X/E such that A∩Xα ⊆ (B∩Y )α .
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Proof. Fix y0 ∈ Y . For each A ∈ X/E, define a function β as follows. If A∩Xα = /0,
define xβ = y0 for all x ∈ A. If A∩Xα 6= /0, by assumption, there is a class B ∈ X/E
such that A∩Xα ⊆ (B∩Y )α . Fix b0 ∈ B∩Y . For each x ∈ A∩Xα , there is an element
bx ∈ B∩Y such that x = bxα . Define

xβ =

{
bx if x ∈ A∩Xα
b0 if x ∈ A\Xα.

It is not hard to see that β preserves E and Xβ ⊆ Y . Hence, β ∈ TE(X ,Y ). We claim
that α = αβα . Let x ∈ X . Then xα ∈ A∩Xα for some E-class A and, by assumption,
A∩Xα ⊆ (B∩Y )α . By construction, xα = bxα α , where bxα ∈ B∩Y . Note that

xαβα = (xα)βα = bxα α = xα.

Therefore, α = αβα since x is arbitrary, as claimed.
Conversely, suppose that α is regular. Then α = αβα for some β ∈ TE(X ,Y ). Let

A ∈ X/E. Then Aβ ⊆ B∩Y for some B ∈ X/E. We claim that A∩Xα ⊆ (B∩Y )α . Let
y ∈ A∩Xα . Then y ∈ A and y = xα for some x ∈ X . We obtain that yβ ∈ Aβ ⊆ B∩Y .
Hence xαβ ∈ B∩Y which implies that y = xα = xαβα ∈ (B∩Y )α and the proof
completes.

By the above theorem, if X = Y , then α is regular if and only if for all A ∈ X/E,
there exists B ∈ X/E such that A∩Xα ⊆ Bα . Hence Theorem 2.1 is a generalization
of Corollary 2.3 in [5].

In [7], the authors defined a subset F of T (X ,Y ) by

F = {α ∈ T (X ,Y ) : Xα ⊆ Y α}

and proved that F is the set of all regular elements in T (X ,Y ). Moreover, they also
proved that F is the largest regular subsemigroup of T (X ,Y ).

Now, we define a subset FE of TE(X ,Y ) by α ∈ FE if α ∈ TE(X ,Y ) and for each
A ∈ X/E, there exists B ∈ X/E such that Aα ⊆ (B∩Y )α . It is easy to see that F = FE if
E = X ×X and FE = TE(X) if X =Y . In general, FE is a proper subset of F ∩TE(X ,Y ).
To see this, consider the following example.

Let X = {1,2,3,4,5} and Y = {1,2,4}. Define X/E = {A,B} by A = {1,2,3} and
B = {4,5}. Let

α =

(
1 2 3 4 5
1 1 2 2 2

)
.

Clearly, α ∈ F ∩TE(X ,Y ). We see that Aα = {1,2},(A∩Y )α = {1} and (B∩Y )α =
{2}. Thus α /∈ FE .

The subset FE plays an essential role in the characterization of Green’s relations, as
shown in Section 3.

Lemma 2.2. FE is a right ideal of TE(X ,Y ). Consequently, it is a subsemigroup of
TE(X ,Y ).

Proof. Let α ∈ FE and β ∈ TE(X ,Y ). Then for each A ∈ X/E, there is B ∈ X/E such
that

Aαβ = (Aα)β ⊆ ((B∩Y )α)β = (B∩Y )αβ .

Thus αβ ∈ FE .
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Remark 2.3. FE contains the set of all regular elements in TE(X ,Y ).

Proof. Let α ∈ TE(X ,Y ) be a regular element and A ∈ X/E. Then Aα ⊆ B∩Xα for
some B ∈ X/E and so there exists C ∈ X/E such that Aα ⊆ B∩Xα ⊆ (C∩Y )α since
α is regular. Hence α ∈ FE .

In general, the set FE is not a regular subsemigroup of TE(X ,Y ). For example, let E
be an equivalence on X = {1,2,3,4} where X/E = {{1,2},{3},{4}} and Y = {1,2,3}.
Define α ∈ TE(X ,Y ) by

α =

(
1 2 3 4
1 1 2 1

)
.

It is easy to check that α ∈ FE but not regular. Consequently, the set of all regular
elements in TE(X ,Y ) is a proper subset of FE .

Next, we give a necessary and sufficient condition for TE(X ,Y ) to be regular. Note
that if |Y | = 1, then TE(X ,Y ) contains exactly one element and so TE(X ,Y ) is regular.
Here, ∆(Y ) stands for the diagonal relation on Y , that is, ∆(Y ) = {(y,y) : y ∈ Y}.

Theorem 2.4. Let Y ⊆ X such that |Y |> 1. Then TE(X ,Y ) is regular if and only if the
following statements hold.

(1) For each G ∈ X/E, G∩Y is non-empty.

(2) Either EY = ∆(Y ) or E = X ×X and X = Y .

Proof. (⇒) We prove by contrapositive. Suppose that there exists a class G with G∩Y
is empty. Since |Y |> 1, there are a,b ∈Y such that a 6= b. Define a function α : X →Y
by xα = a if x ∈ G and xα = b if x /∈ G. We can see that α ∈ TE(X ,Y ). Let A be the
class containing a. We obtain a ∈ A∩Xα . By the definition of α , for each B ∈ X/E
such that B∩Y 6= /0, we have (B∩Y )α = {b} since (B∩Y )∩G= /0. Hence a /∈ (B∩Y )α
which implies that A∩Xα ⊈ (B∩Y )α . Therefore, α is not regular by Theorem 2.1.

Assume that EY 6= ∆(Y ) and E 6= X ×X . Then there is a class A 6= X such that
|A∩Y |> 1. Let a,b ∈ A∩Y such that a 6= b. Define a function α : X → Y by xα = a,
∀x ∈ A∩Y and xα = b, ∀x /∈ A∩Y . We can see that α ∈ TE(X ,Y ). For each B ∈ X/E,
(B∩Y )α = {a} if B = A and (B∩Y )α = {b} if B 6= A. We obtain A∩Xα = {a,b}⊈
(B∩Y )α for all class B. Hence α is not regular by Theorem 2.1.

Suppose that EY 6= ∆(Y ) and X 6=Y . Then there exists y ∈ X \Y . Since EY 6= ∆(Y ),
there is a class A such that |A∩Y |> 1. Let a,b∈A∩Y such that a 6= b. Define a function
α : X → Y by xα = a if x = y and xα = b if x 6= y. It is obvious that α ∈ TE(X ,Y ).
We see that for each B ∈ X/E, (B∩Y )α = {b}. Therefore, A∩Xα = {a,b} ⊈ {b} =
(B∩Y )α which implies that α is not regular.

(⇐) We can see that if E = X ×X and X = Y , then TE(X ,Y ) = T (X) is regular.
Now, we suppose that EY = ∆(Y ). Let α ∈ TE(X ,Y ) and A ∈ X/E. Then A∩Xα ⊆
A∩Y = {a} for some a by (1). If A∩Xα 6= /0, then A∩Xα = {a} which implies
that a = xα for some x ∈ X . Let B be a class containing x. Then B∩Y is non-empty
from which it follows that B∩Y = {b} for some b. Further, since (b,x) ∈ E, we get
(bα,a) = (bα,xα) ∈ E which follows that bα ∈ A∩Xα = {a}. Thus A∩Xα = {a}=
{bα}= (B∩Y )α . Therefore, α is regular.

By Theorem 2.5 of [5], we obtain some properties of regular elements in TE(X ,Y )
as follows.

Theorem 2.5. Let α and β be regular elements in TE(X ,Y ). Then the following state-
ments hold.
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(1) If π(α) = π(β ), then E(α) = E(β ).

(2) If Xα = Xβ , then for each A ∈ X/E, there are B,C ∈ X/E such that Aα ⊆ Bβ and
Aβ ⊆Cα .

3 Green’s Relations
In this section, we characterize Green’s relations on TE(X ,Y ). We start this section by
recalling the definition of Green’s relations.

Let S be a semigroup. The following definitions are due to J. A. Green. For any
a,b ∈ S, Define

(a,b) ∈ L if and only if S1a = S1b,

or equivalently; (a,b) ∈ L if and only if a = xb,b = ya for some x,y ∈ S1.
Dually,

(a,b) ∈ R to mean aS1 = bS1,

or equivalently; (a,b) ∈ R if and only if a = bx,b = ay for some x,y ∈ S1 and then
define

(a,b) ∈ J to mean S1aS1 = S1bS1,

or equivalently; (a,b) ∈ J if and only if a = xby,b = uav for some x,y,u,v ∈ S1.
Finally,

H = L ∩R and D = L ◦R.

Note that the above relations are equivalence relations. The relation D is the join
L ∨R, that is, D is the smallest equivalence relation containing L ∪R. It is well-
known that D =L ◦R =R ◦L . Moreover, H ⊆L ⊆D ⊆J and H ⊆R ⊆D ⊆
J . But, in commutative semigroups, we have H =L =R =D =J . The relations
L , R, H , D and J are called Green’s relations on S. For each a ∈ S, we denote
L -class, R-class, H -class, D-class and J -class containing a by La,Ra,Ha,Da and
Ja, respectively.

In general, if X 6= Y , then the semigroup TE(X ,Y ) does not contain the identity
element. Hence TE(X ,Y )1 6= TE(X ,Y ).

Now, we prove the following theorem which extends Theorem 3.1 of [5].

Theorem 3.1. Let α,β ∈ TE(X ,Y ). Then the following statements are equivalent.

(1) (α,β ) ∈ R.

(2) π(α) = π(β ) and E(α) = E(β ).

(3) There exists a bijective E∗-preserving ϕ : Xα → Xβ such that β = αϕ .

Proof. (1)⇒(2). Suppose that (α,β ) ∈ R. Then there are γ,µ ∈ TE(X ,Y )1 such that
α = βγ and β = αµ . If α = β , then π(α) = π(β ) and E(α) = E(β ). If α 6= β , then
both γ and µ belong to TE(X ,Y ) which implies that π(α) = π(β ) and E(α) = E(β )
by Theorem 3.1 of [5].

(2)⇒(3). The proof also follows from Theorem 3.1 of [5].
(3)⇒(1). The proof is an appropriate modification of the proof of (3)⇒(1) in Theo-

rem 3.1 of [5]. In fact, suppose that there exists a bijective E∗-preserving ϕ : Xα → Xβ
such that β = αϕ . For each A ∈ X/E, let A′ = A∩Xα . If A′ = /0, define xµ = y0 for
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each x ∈ A and y0 ∈ Y is fixed. If A′ 6= /0, then A′ϕ = (A∩Xα)ϕ ⊆ B∩Xβ for some
class B since ϕ is E∗-preserving. In the case A′ 6= /0, we fix b0 ∈ B∩Xβ and define µ
by

xµ =

{
xϕ if x ∈ A′;
b0 if x ∈ A\A′.

It is easy to verify that µ ∈ TE(X ,Y ) and β = αµ . Similarly, we can show that α = βγ
for some γ ∈ TE(X ,Y ).

Lemma 3.2. Let α,β ∈ TE(X ,Y ). If π(α) = π(β ), then either both α and β are in FE ,
or neither is in FE .

Proof. Assume that π(α) = π(β ) and let α ∈ FE . It suffices to show β ∈ FE . Let
A ∈ X/E. Then Aα ⊆ (B∩Y )α for some class B. We claim that Aβ ⊆ (B∩Y )β .
Indeed, let a ∈ A. Then there is x ∈ X such that (aβ )β−1 = (xα)α−1 since (aβ )β−1 ∈
π(β ) = π(α). Obviously, a ∈ (aβ )β−1 = (xα)α−1 which implies that xα = aα ∈
Aα ⊆ (B∩Y )α . Thus xα = bα for some b ∈ B∩Y . Hence b ∈ (xα)α−1 = (aβ )β−1

and so aβ = bβ ∈ (B∩Y )β . Therefore, β ∈ FE .

By Theorem 3.1 and Lemma 3.2, we have the following corollary.

Corollary 3.3. For α ∈ TE(X ,Y ), the following statements hold.

(1) If α ∈ FE , then Rα = {β ∈ FE : π(α) = π(β ) and E(α) = E(β )}.

(2) If α ∈ TE(X ,Y )\FE , then

Rα = {β ∈ TE(X ,Y )\FE : π(α) = π(β ) and E(α) = E(β )}.

Now, we have already characterized Green’s R-relation of TE(X ,Y ). To study
the remaining Green’s relations, we introduce some definitions for using throughout
this paper. Actually, we extend the notions of E-admissibility and E∗-admissibility
presented in [5].

Let α,β ∈ TE(X ,Y ) and let ϕ be a mapping from π(α) into π(β ). We say that ϕ is
Ẽ-admissible if and only if for each A ∈ X/E, there exists B ∈ X/E such that

πA(α)ϕ ⊆ π̃B(β ).

Equivalently, ϕ : π(α)→ π(β ) is Ẽ-admissible if and only if for each A ∈ X/E, there
exists B ∈ X/E such that for each P ∈ πA(α), B∩Pϕ ∩Y 6= /0.

If ϕ is a bijection such that ϕ and ϕ−1 are Ẽ-admissible, then ϕ is called Ẽ∗-
admissible.

We remark that if X =Y , then the notions of E-admissibility (resp. Ẽ-admissibility)
and Ẽ-admissibility (resp. Ẽ∗-admissibility) are the same.

Now, we determine Green’s L -relation on TE(X ,Y ). The proof of the following
lemma is straightforward and so it is omitted.

Lemma 3.4. Let α,β ∈ TE(X ,Y ). If for each A ∈ X/E, there are B,C ∈ X/E such that
Aα ⊆ Bβ and Aβ ⊆Cα , then Xα = Xβ .

Theorem 3.5. Let α,β ∈ FE . Then the following statements are equivalent.

(1) (α,β ) ∈ L in TE(X ,Y ).
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(2) For each A ∈ X/E, there are B,C ∈ X/E such that Aα ⊆ Bβ and Aβ ⊆Cα .

(3) There is a bijective Ẽ∗-admissible ϕ : π(α)→ π(β ) such that α∗ = ϕβ∗.

Proof. (1)⇒(2). Suppose that (α,β ) ∈ L . Then α = γβ and β = µα for some γ,µ ∈
TE(X ,Y )1. If α = β , then (2) holds. If α 6= β , then γ,µ ∈ TE(X ,Y ). The item (2)
follows by [5, Theorem 3.2].

(2)⇒(3). Suppose (2) holds. Note that Xα = Xβ by Lemma 3.4. Then for each
P ∈ π(α), we have Pα∗ ∈ Xα = Xβ . We can see that (Pα∗)β−1 ∈ π(β ). Define
ϕ : π(α)→ π(β ) by Pϕ = (Pα∗)β−1. It is clear that ϕ is well-defined and α∗ = ϕβ∗.
Now, we show that ϕ is injective. Let P1,P2 ∈ π(α) be such that P1ϕ = P2ϕ . Let
y ∈ P1. Then P1α∗ = yα and so P1ϕ = (P1α∗)β−1 = (yα)β−1. Since P1ϕ = P2ϕ , we
have (yα)β−1 = P2ϕ = (P2α∗)β−1 which implies that yα = P2α∗. Thus y ∈ P2 and
then P1 ⊆ P2. Similarly, we can show that P2 ⊆ P1. To show that ϕ is surjective, let
Q ∈ π(β ). Then Q = xβ−1 for some x ∈ Xβ = Xα . Choose P = xα−1 ∈ π(α). We
obtain Q = xβ−1 = (Pα∗)β−1 = Pϕ . Therefore, ϕ is a bijection.

Next, we show that ϕ is Ẽ-admissible. Let A ∈ X/E. Then there is B ∈ X/E such
that Aα ⊆ Bβ by the assumption. Hence there is a class D such that Bβ ⊆ (D∩Y )β
since β ∈ FE . Thus Aα ⊆ (D∩Y )β . Let P ∈ πA(α). Then P ∈ π(α) and P∩A 6= /0.
Choose x ∈ P∩A. Then Pα∗ = xα ⊆ Aα ⊆ (D∩Y )β from which it follows that xα =
yβ for some y ∈ D∩Y . We have y ∈ D∩ (yβ )β−1 ∩Y and then

y ∈ D∩ (yβ )β−1 ∩Y = D∩ (xα)β−1 ∩Y = D∩ (Pα∗)β−1 ∩Y = D∩Pϕ ∩Y.

Thus ϕ is Ẽ-admissible since D∩Pϕ ∩Y is non-empty. Finally, we prove that ϕ−1 is Ẽ-
admissible. Let P∈ π(α) and Q∈ π(β ) be such that Q=Pϕ . We obtain Q=(Pα∗)β−1

which implies that Qβ∗ = Pα∗. Hence

Qϕ−1 = P = (Pα∗)α−1 = (Qβ∗)α−1.

By the same argument as ϕ , we obtain ϕ−1 is also Ẽ-admissible. Therefore, ϕ is Ẽ∗-
admissible.

(3)⇒(1). Assume that (3) holds. For each A ∈ X/E, there is B ∈ X/E such that
for each P ∈ πA(α), B∩Pϕ ∩Y 6= /0. For each x ∈ A, let Px = (xα)α−1. We can see
that Px ∈ πA(α). Then B∩Pxϕ ∩Y 6= /0. Choose dx ∈ B∩Pxϕ ∩Y and define xγ = dx.
First, we show that γ ∈ TE(X ,Y ). Let (a,b) ∈ E. Then a,b ∈ A for some A ∈ X/E.
By the definition of γ , we obtain aγ,bγ ∈ B for some B ∈ X/E. Thus (aγ,bγ) ∈ E.
Next, we prove that α = γβ . Let x ∈ A for some A ∈ X/E. Then xγβ = dxβ where
dx ∈ B∩Pxϕ ∩Y for some B ∈ X/E. Moreover, since dx ∈ Pxϕ , we get dxβ = (Pxϕ)β∗.
Hence

xγβ = dxβ = (Pxϕ)β∗ = Pxα∗ = ((xα)α−1)α∗ = xα.

Similarly, we can show that β = µα for someµ ∈ TE(X ,Y ). Therefore, (α,β ) ∈ L .

By the above theorem, if X = Y , then we obtain Theorem 3.2 of [5].

Theorem 3.6. For α ∈ TE(X ,Y ), the following statements hold.

(1) If α ∈ TE(X ,Y )\FE , then Lα = {α}.

(2) If α ∈ FE , then

Lα = {β ∈ FE : (∀A ∈ X/E)(∃B,C ∈ X/E) Aα ⊆ Bβ and Aβ ⊆Cα}.
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Proof. Let α ∈ TE(X ,Y ) and let β ∈ Lα . Then (α,β ) ∈ L which implies that α = γβ
and β = µα for some γ,µ ∈ TE(X ,Y )1. If γ,µ ∈ TE(X ,Y ), then for each A ∈ X/E,
there are B,C ∈ X/E such that Aα = Aγβ = Aγµα ⊆ (B∩Y )α and Aβ = Aµα =
Aµγβ ⊆ (C∩Y )β . Thus α,β ∈ FE .

(1) If α ∈ TE(X ,Y )\FE , then γ = 1 or µ = 1 and hence α = β .
(2) If α ∈ FE , then there are two cases to consider. The case α = β is clear. If

α 6= β , then γ,µ ∈ TE(X ,Y ) and hence β ∈ FE . In addition, for each A ∈ X/E, there are
B,C ∈ X/E such that Aα ⊆ Bβ and Aβ ⊆Cα by Theorem 3.5. The other containment
is obvious.

As a direct consequence of Corollary 3.3, Theorems 3.1, 3.5 and 3.6, we have the
following theorems.

Theorem 3.7. Let α,β ∈ FE . Then the following statements are equivalent.

(1) (α,β ) ∈ H in TE(X ,Y ).

(2) π(α) = π(β ), E(α) = E(β ) and for each A ∈ X/E, there are B,C ∈ X/E such that
Aα ⊆ Bβ and Aβ ⊆Cα .

(3) There exist a bijective Ẽ∗-admissible ϕ : π(α)→ π(β ) such that α∗ = ϕβ∗ and a
bijective E∗-preserving ψ : Xα → Xβ such that β = αψ .

Theorem 3.8. For α ∈ TE(X ,Y ), the following statements hold.

(1) If α ∈ TE(X ,Y )\FE , then Hα = {α}.

(2) If α ∈ FE , then

Hα = {β ∈ FE : π(α) = π(β ),E(α) = E(β ) and

(∀A ∈ X/E)(∃B,C ∈ X/E) Aα ⊆ Bβ and Aβ ⊆Cα}.

Now, we characterize Green’s D relation.

Theorem 3.9. Let α,β ∈ FE . Then the following statements are equivalent.

(1) (α,β ) ∈ D in TE(X ,Y ).

(2) There is an E∗-preserving bijection Φ : Xα → Xβ such that for each A ∈ X/E,
there exist B,C ∈ X/E with

Aβ ⊆ (B∩Y )αΦ and Aα ⊆ (C∩Y )βΦ−1.

(3) There exist a bijective Ẽ∗-admissible ϕ : π(α)→ π(β ) and a bijective E∗-preserving
ψ : Xα → Xβ such that α∗ψ = ϕβ∗.

Proof. (1)⇒(3). Suppose that (α,β ) ∈ D in TE(X ,Y ). Then there exists γ ∈ TE(X ,Y )
such that (α,γ) ∈ R and (γ,β ) ∈ L . By Theorem 3.1 and 3.5, there exist a bijective
E∗-preserving ψ : Xα →Xγ such that γ =αψ and a bijective Ẽ∗-admissible ϕ : π(γ)→
π(β ) such that γ∗ = ϕβ∗. In addition, we obtain π(α) = π(γ) and Xγ = Xβ . Hence
ϕ : π(α)→ π(β ) and ψ : Xα → Xβ . Now, we show that α∗ψ = ϕβ∗. We claim that
γ∗ = α∗ψ . Indeed, let xγ−1 ∈ π(γ). Then (xγ−1)γ∗ = x. From π(α) = π(γ), there is
y ∈ Xα such that xγ−1 = yα−1 which implies that y = (yα−1)α∗ = (xγ−1)α∗. Since
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y ∈ Xα , we get y = zα for some z ∈ X . Thus z ∈ yα−1 = xγ−1 from which it follows
that zγ = x = (xγ−1)γ∗. We obtain

(xγ−1)α∗ψ = yψ = zαψ = zγ = (xγ−1)γ∗.

Therefore, α∗ψ = γ∗ = ϕβ∗.
(3)⇒(2). Assume that there exist a bijective Ẽ∗-admissible ϕ : π(α) → π(β )

and a bijective E∗-preserving ψ : Xα → Xβ such that α∗ψ = ϕβ∗. Define an E∗-
preserving bijection Φ : Xα → Xβ by xΦ = xψ for all x ∈ Xα . Let A ∈ X/E. We have
πA(β )ϕ−1 ⊆ π̃B(α) for some B ∈ X/E since ϕ−1 : π(β )→ π(α) is Ẽ∗-admissible. We
claim that Aβ ⊆ (B∩Y )αΦ. Indeed, let a ∈ A. Then (aβ )β−1 ∈ πA(β ) which implies
that (aβ )β−1ϕ−1 ∈ (πA(β ))ϕ−1 ⊆ π̃B(α). Hence (aβ )β−1ϕ−1 = (bα)α−1 for some
b ∈ X and (bα)α−1 ∩B∩Y 6= /0. There exists y ∈ (bα)α−1 ∩B∩Y and then bα = yα .
We see that

aβ = (aβ )β−1β∗ = (aβ )β−1ϕ−1α∗ψ = (bα)α−1α∗ψ = bαψ

and so aβ = bαψ = yαψ ∈ (B∩Y )αψ = (B∩Y )αΦ. Therefore, Aβ ⊆ (B∩Y )αΦ.
Similarly, we can show that Aα ⊆ (C∩Y )βΦ−1 for some class C.

(2)⇒(3). Assume that (2) holds. Define a function ϕ : π(α)→ π(β ) by (xα)α−1ϕ =
(xα)Φβ−1 for all x ∈ X . Then ϕ is well-defined. We first show that ϕ is injec-
tive. Let (xα)α−1,(yα)α−1 be such that (xα)α−1ϕ = (yα)α−1ϕ . Then (xα)Φβ−1 =
(yα)Φβ−1 and so xα = yα since Φ is injective. Hence (xα)α−1 = (yα)α−1. Next,
we prove the surjectivity of ϕ . Let (xβ )β−1 ∈ π(β ). Then xβ ∈ Aβ ⊆ (B∩Y )αΦ for
some classes A and B. Then there is y ∈ B∩Y such that yαΦ = xβ . Thus (yα)α−1ϕ =
(yα)Φβ−1 = (xβ )β−1. Therefore, ϕ is bijective.

Finally, we show that ϕ is Ẽ∗-admissible. Let A ∈ X/E. Then there exists C ∈ X/E
such that Aα ⊆ (C∩Y )βΦ−1. Let (xα)α−1 ∈ πA(α). Then (xα)α−1 ∩A 6= /0 which
implies that there is a ∈ A such that aα = xα . Hence xα = aα ∈ Aα ⊆ (C∩Y )βΦ−1

and so xα = cβΦ−1 for some c∈C∩Y . Thus c∈ xαΦβ−1 = (xα)α−1ϕ which implies
that c ∈ (xα)α−1ϕ ∩C∩Y 6= /0 and so ϕ is Ẽ-admissible. On the other hand, let A ∈
X/E. Then there exists B ∈ X/E such that Aβ ⊆ (B∩Y )αΦ. Let (xβ )β−1 ∈ πA(β ).
Then (xβ )β−1 ∩A 6= /0 which implies that there is a ∈ A such that aβ = xβ . Hence
xβ = aβ ∈ Aβ ⊆ (B∩Y )αΦ and so xβ = bαΦ for some b ∈ B∩Y . Thus

b ∈ (bα)α−1 = (bα)α−1ϕϕ−1 = (bα)Φβ−1ϕ−1 = (xβ )β−1ϕ−1

which implies that b ∈ (xβ )β−1ϕ−1 ∩ B ∩Y 6= /0. Therefore, ϕ−1 is Ẽ-admissible.
Moreover, we define a function ψ : Xα → Xβ by xψ = xΦ for each x ∈ Xα . It remains
to show that α∗ψ = ϕβ∗. Indeed, let (xα)α−1 ∈ π(α). Then

(xα)α−1α∗ψ = xαψ = xαΦ = (xα)Φβ−1β∗ = (xα)α−1ϕβ∗.

(3) ⇒(1). Assume that (3) holds. Define a function γ : X → Y by xγ = xαψ .
Since ψ is E∗-preserving, we have γ ∈ TE(X ,Y ). We first show that π(γ) = π(α).
Let A = xγ−1 ∈ π(γ). Then {x} = Aγ = Aαψ which implies that Aα = xψ−1 since
ψ is a bijection. We obtain Aα = {y} where {y} = xψ−1 and then yψ = x. Hence
A ⊆ yα−1. Let z ∈ yα−1. Then zα = y from which it follows that zγ = zαψ = yψ =
x. Thus z ∈ xγ−1 = A implies yα−1 ⊆ A. So A = yα−1 ∈ π(α). We conclude that
π(γ)⊆ π(α). On the other hand, let B = aα−1 ∈ π(α). Then Bα = {a} which implies
that Bγ = Bαψ = {a}ψ = {b} for some b ∈ Y . Hence B ⊆ bγ−1. Let c ∈ bγ−1. Then
cαψ = cγ = b from which it follows that {cα} = bψ−1 = {a} since ψ is a bijection.
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Then cα = a implies c ∈ aα−1 = B. So bγ−1 ⊆ B. We conclude that B = bγ−1 ∈ π(γ).
Therefore, π(α) ⊆ π(γ) and then π(γ) = π(α). Moreover, since ϕ : π(γ) → π(β )
is bijective Ẽ∗-admissible and γ∗ = α∗ψ = ϕβ∗, we get (γ,β ) ∈ L and Xγ = Xβ by
Theorem 3.5. Since ψ : Xα → Xγ is bijective E∗-preserving and γ = αψ , we obtain
(α,γ) ∈ R by Theorem 3.1. Therefore, (α,β ) ∈ D .

The above result extends Theorem 3.4 of [5]. In fact, we obtain an additional
characterization of the D-relation in the case when X = Y , as shown in the following
corollary.

Corollary 3.10. Let α,β ∈ TE(X). Then the following statements are equivalent.

(1) (α,β ) ∈ D .

(2) There is an E∗-preserving bijection Φ : Xα → Xβ such that for each A ∈ X/E,
there exist B,C ∈ X/E with

Aβ ⊆ BαΦ and Aα ⊆CβΦ−1.

We remark that for condition (2) of Theorem 3.9 to be true, it suffices to check that
Φ is injective since the surjectivity of Φ follows from the fact that for each A ∈ X/E,
there exists B ∈ X/E with

Aβ ⊆ (B∩Y )αΦ.

Theorem 3.11. For α ∈ TE(X ,Y ), the following statements hold.

(1) If α ∈ TE(X ,Y )\FE , then

Dα = {β ∈ TE(X ,Y )\FE : π(α) = π(β ) and E(α) = E(β )}= Rα .

(2) If α ∈ FE , then

Dα = {β ∈ FE : β satisfies (2) of Theorem 3.9}.

Proof. (1) Let α ∈ TE(X ,Y )\FE and let β ∈ Dα . Then there exists γ ∈ TE(X ,Y ) such
that (α,γ) ∈ R and (γ,β ) ∈ L . Hence γ ∈ TE(X ,Y ) \FE such that π(α) = π(γ) and
E(α) = E(γ). Moreover, we obtain β = γ since Lγ = {γ}. Thus β ∈ TE(X ,Y )\FE such
that π(α) = π(β ) and E(α) = E(β ). The other containment is clear since R ⊆ D .

(2) Let α ∈ FE and let β ∈ Dα . Then there exists γ ∈ TE(X ,Y ) such that (α,γ) ∈R
and (γ,β ) ∈ L . By Corollary 3.3 and Theorem 3.6, we obtain both γ and β belong
to FE . It is easy to see that β satisfies (2) of Theorem 3.9. The other containment is
clear.

For each x ∈ X , denote the equivalence class containing x by [x]. Now, we charac-
terize Green’s J -relation. First, we prove the following lemmas.

Lemma 3.12. Let α,β ∈ TE(X ,Y ). Then the following statements are equivalent.

(1) There is an E-preserving surjection Φ : Xα → Xβ such that for each A ∈ X/E
there exists B ∈ X/E with Aβ ⊆ (B∩Y )αΦ.

(2) β = γαµ for some γ,µ ∈ TE(X ,Y ).
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Proof. (1)⇒(2). Suppose that (1) holds. Note that for each A ∈ X/E, (A∩Xα)Φ ⊆ B
for some B ∈ X/E since Φ is E-preserving. Furthermore, (A∩Xα)Φ ⊆ Xβ ⊆Y so that
(A∩Xα)Φ ⊆ B∩Y . Now, we define a function µ as follows. For each A ∈ X/E such
that A∩Xα 6= /0, (A∩Xα)Φ ⊆ B∩Y for some B ∈ X/E. Choose b ∈ B∩Y and define

xµ =

{
b if x ∈ A\Xα;
xΦ if x ∈ A∩Xα.

Let xµ = xβ if x ∈
∪
{A ∈ X/E : A∩Xα = /0}. Clearly, µ ∈ TE(X ,Y ). Next, we define

a function γ as follows. Let A ∈ X/E. By the condition of Φ, there exists B ∈ X/E
such that Aβ ⊆ (B∩Y )αΦ. Let x ∈ A. Then xβ = yαΦ for some y ∈ B∩Y . Define
xγ = y. It then follows that γ ∈ TE(X ,Y ) and β = γαµ .

(2)⇒(1). Let β = γαµ for some γ,µ ∈ TE(X ,Y ). Fix y0 ∈ Xβ . If [x]∩Xγα 6= /0,
choose x0 ∈ [x]∩Xγα for each x ∈ Xα . Define a function Φ : Xα → Xβ by

xΦ =


xµ if x ∈ Xγα ;
x0µ if x /∈ Xγα and [x]∩Xγα 6= /0;
y0 if [x]∩Xγα = /0.

It is easy to verify that Φ is E-preserving. Let A ∈ X/E. There exists B ∈ X/E such
that Aγ ⊆ B∩Y . Therefore,

Aβ = Aγαµ = AγαΦ ⊆ (B∩Y )αΦ.

In addition, we obtain that Φ is surjective.

As a direct consequence of Theorem 3.9, we obtain the following lemma.

Lemma 3.13. Let α,β ∈ FE . If (α,β ) ∈ D in TE(X ,Y ), then there are E-preserving
surjections Φ : Xα → Xβ and Ψ : Xβ → Xα such that for each A ∈ X/E there exist
B,C ∈ X/E with

Aβ ⊆ (B∩Y )αΦ and Aα ⊆ (C∩Y )βΨ.

Theorem 3.14. Let α,β ∈ TE(X ,Y ). Then (α,β ) ∈ J if and only if either

(1) π(α) = π(β ) and E(α) = E(β ); or

(2) there are E-preserving surjections Φ : Xα → Xβ and Ψ : Xβ → Xα such that for
each A ∈ X/E there exist B,C ∈ X/E with

Aβ ⊆ (B∩Y )αΦ and Aα ⊆ (C∩Y )βΨ.

Proof. Assume that (α,β ) ∈ J . Then there exist γ,δ ,λ ,µ ∈ TE(X ,Y )1 such that
α = γβδ and β = λαµ . If γ = 1 = λ , then α = βδ and β = αµ which implies
(α,β )∈R ⊆D . If δ = 1 = µ , then α = γβ and β = λα which implies (α,β )∈L ⊆
D . Hence (1) or (2) holds by Theorem 3.11 and Lemma 3.13.

If {γ,λ} 6= {1} and {δ ,µ} 6= {1}, then we have α = ηβζ and β = ρασ for some
η ,ζ ,ρ,σ ∈ TE(X ,Y ). For example, if γ = 1 = µ and λ ,δ ∈ TE(X ,Y ), then

α = βδ = λαδ and β = λα = λβδ .

We have (2) holds by Lemma 3.12. The converse is clear by Theorem 3.1 and Lemma
3.12.
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By using Lemma 3.13 with the same proof as given in the above theorem, we obtain
the following result.

Corollary 3.15. Let α,β ∈ FE . Then (α,β ) ∈ J in TE(X ,Y ) if and only if there are
E-preserving surjections Φ : Xα → Xβ and Ψ : Xβ → Xα such that for each A ∈ X/E
there exist B,C ∈ X/E with

Aβ ⊆ (B∩Y )αΦ and Aα ⊆ (C∩Y )βΨ.

The above result leads to the following corollary which extends the result in [5].

Corollary 3.16. Let α,β ∈ TE(X). Then (α,β ) ∈ J if and only if there are E-
preserving surjections Φ : Xα → Xβ and Ψ : Xβ → Xα such that for each A ∈ X/E
there exist B,C ∈ X/E with

Aβ ⊆ BαΦ and Aα ⊆CβΨ.

Next, we aim to characterize the J -relation on the finite case.

Lemma 3.17. Let α,β ∈ TE(X ,Y ) be such that π(α) is finite. If θ : π(α)→ π(β ) and
φ : π(β )→ π(α) are bijective Ẽ-admissible, then θ is Ẽ∗-admissible.

Proof. The proof of this lemma follows the same steps as in Lemma 3.7 of [5]. For
the sake of completeness, we give the proof as follows. Note that θφ is a bijection
from π(α) onto π(α) which implies that θφ is a permutation on π(α). Moreover,
since π(α) is finite, we obtain (θφ)m is the identity permutation for some natural
number m. We claim that (θφ)n is Ẽ-admissible for all natural number n. Indeed, let
A ∈ X/E. There are B,C ∈ X/E such that πA(α)θ ⊆ π̃B(β ) and πB(β )φ ⊆ π̃C(α) since
θ : π(α)→ π(β ) and φ : π(β )→ π(α) are Ẽ-admissible. We have

πA(α)θφ ⊆ π̃B(β )φ ⊆ πB(β )φ ⊆ π̃C(α).

Thus θφ is Ẽ-admissible. By induction, we conclude that (θφ)n is Ẽ-admissible for
all natural number n.

Since (θφ)m is the identity permutation on π(α), we obtain (θφ)m = θφ(θφ)m−1

which implies that θ−1 =φ(θφ)m−1. Moreover, since φ and (θφ)m−1 are Ẽ-admissible,
by the same argument as above, we can show that θ−1 is Ẽ-admissible. Therefore, θ
is Ẽ∗-admissible.

Lemma 3.18. Let U,V ⊆ X be finite. If α : U → V and β : V → U are surjective
E-preserving, then α and β are bijective E∗-preserving.

Proof. It is clear that α and β are bijective since U and V are finite sets. Let U/EU =
{A1,A2, . . . ,Am} and V/EV = {B1,B2, . . . ,Bn} be the sets of all distinct equivalence
classes of U and V , respectively. For each class Bi, we see that Biα−1 is non-empty
since α is surjective. Note that Biα−1 is a union of some classes in U/EU . Let ki be
the number of classes which are contained in Biα−1. It is not difficult to see that ki ≥ 1
for all i and k1 + k2 + · · ·+ kn = m. Hence m ≥ n. Similarly, we can show that n ≥ m
by using β and so m = n. Moreover, we have k1 + k2 + · · ·+ kn = n which implies that
k1 = k2 = · · ·= kn = 1 and hence U/EU = {B1α−1,B2α−1, . . . ,Bnα−1}. Now, we show
that α is E∗-preserving. Let (xα,yα) ∈ E. Then xα,yα ∈ B for some class B ∈V/EV
from which it follows that (xα)α−1,(yα)α−1 ⊆ Bα−1. Thus x,y ∈ Bα−1 ∈U/EU and
so (x,y) ∈ E. Similarly, we can show that β is also E∗-preserving.
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From the above lemma, we obtain the following corollary.

Corollary 3.19. If Z is a finite set and α : Z → Z is bijective E-preserving, then α is
E∗-preserving.

Now, we have the following result which covers Theorem 3.8 of [5].

Theorem 3.20. If α,β ∈ FE such that both Xα and Xβ are finite, then the following
statements are equivalent.

(1) (α,β ) ∈ D in TE(X ,Y ).

(2) (α,β ) ∈ J in TE(X ,Y ).

(3) There are E∗-preserving bijections Φ : Xα → Xβ and Ψ : Xβ → Xα such that for
each A ∈ X/E there exist B,C ∈ X/E with

Aβ ⊆ (B∩Y )αΦ and Aα ⊆ (C∩Y )βΨ.

Proof. The implication (1)⇒(2) is trivial.
(2)⇒(3). Assume that (α,β ) ∈ J in TE(X ,Y ). Then, by Corollary 3.15, there are

E-preserving surjections Φ : Xα → Xβ and Ψ : Xβ → Xα such that for each A ∈ X/E
there exist B,C ∈ X/E with

Aβ ⊆ (B∩Y )αΦ and Aα ⊆ (C∩Y )βΨ.

By Lemma 3.18, we have Φ and Ψ are bijective E∗-preserving since Xα and Xβ are
finite.

(3)⇒(1). Define θ : π(α) → π(β ) by (xα)α−1θ = (xα)Ψ−1β−1 for all x ∈ X .
Then θ is a well-defined bijection such that θβ∗ = α∗Ψ−1. We only need to check that
θ is Ẽ∗-admissible. Let A ∈ X/E. Then there is C ∈ X/E such that Aα ⊆ (C∩Y )βΨ
by assumption. Let P = (xα)α−1 ∈ πA(α). Then P∩A 6= /0 which implies that there
exists a ∈ P∩A. We obtain xα = aα ∈ (P∩A)α ⊆ Aα ⊆ (C∩Y )βΨ from which it
follows that xα = cβΨ for some c ∈C∩Y . Hence

c ∈ (xα)Ψ−1β−1 ∩C∩Y = (xα)α−1θ ∩C∩Y = Pθ ∩C∩Y 6= /0.

Thus θ is bijective and Ẽ-admissible. On the other hand, define τ : π(β )→ π(α) by
(xβ )β−1τ = (xβ )Φ−1α−1 for all x ∈ X . Similarly, we can show that τ is also bijective
and Ẽ-admissible. Hence θ is Ẽ∗-admissible by Lemma 3.17. Therefore, (α,β ) ∈ D
by Theorem 3.9.

Finally, we determine Green’s relations on the regular elements in TE(X ,Y ).

Theorem 3.21. Let α,β be regular elements in TE(X ,Y ). If there exists a bijective
E∗-preserving ψ : Xα → Xβ , then there is a bijective Ẽ∗-admissible ϕ : π(α)→ π(β )
such that α∗ψ = ϕβ∗.

Proof. The proof of this theorem is a slight modification of the proof of Theorem 3.12
of [5]. Actually, we define ϕ : π(α)→ π(β ) by

Pϕ = (Pα∗ψ)β−1
∗ for all P ∈ π(α).

Since α∗, ψ and β∗ are bijective, we obtain ϕ is also bijective. Moreover, we can see
that α∗ψ = ϕβ∗. Now, we show that ϕ is Ẽ∗-admissible. Let A ∈ X/E and Aα = B′.
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Then Aα = B′ ⊆ B for some B ∈ X/E by Lemma 1.1. We see that B′ψ = C′ ⊆ C
for some C ∈ X/E since ψ is E∗-preserving. Moreover, since β is regular, we obtain
C′ ⊆C∩Xβ ⊆ (D∩Y )β for some D ∈ X/E by Theorem 2.1. We claim that πA(α)ϕ ⊆
π̃D(β ). Indeed, let P ∈ πA(α). Then Pα∗ ∈ Aα = B′. Hence Pα∗ψ ∈ C′ ⊆ (D∩Y )β
since B′ψ =C′ and C′ ⊆ (D∩Y )β . Hence Pϕ ∩D∩Y = Pα∗ψβ−1 ∩D∩Y 6= /0 which
implies that Pϕ ∈ π̃D(β ). We conclude that ϕ is Ẽ-admissible. Similarly, we have
ϕ−1 is also Ẽ-admissible since ϕ is bijective and ϕ−1 = β∗ψ−1α−1

∗ . Therefore, ϕ is
Ẽ∗-admissible.

Recall that the set of all regular elements in TE(X ,Y ) is contained in FE . Then we
get the following theorem.

Theorem 3.22. Let α,β be regular elements in TE(X ,Y ). Then the following state-
ments hold.

(1) (α,β ) ∈ R if and only if π(α) = π(β ).

(2) (α,β ) ∈ L if and only if Xα = Xβ .

(3) (α,β ) ∈ H if and only if π(α) = π(β ) and Xα = Xβ .

(4) (α,β ) ∈ D if and only if there exists a bijective E∗-preserving ψ : Xα → Xβ .

The proof of this theorem follows from Theorems 2.5 and 3.21 so it is omitted.
Moreover, if X = Y , then Theorem 3.13 of [5] is true.

4 Partial Order
Now, we give some notations which will be used throughout this paper. For each
α ∈ TE(X ,Y ) and A ⊆ X , the restriction of α to A is denoted by α|A. We adopt the
notation introduced in [1] namely, if α ∈ TE(X ,Y ), then we write

α =

(
Xi
ai

)
and take as understood that the subscript i belongs to some unmentioned index set I,
the abbreviation {ai} denotes {ai : i ∈ I}, and that Xα = {ai} and aiα−1 = Xi.

Let U,V be subsets of X and α : U → V . If (u,u′) ∈ E implies (uα,u′α) ∈ E for
each u,u′ ∈U , then α is said to be E-preserving.

Let A and B be two collections of subsets of X . If for each A ∈ A, there exists
B ∈B such that A ⊆ B, then A is said to refine B.

Recall that the natural partial order on any semigroup S is defined by

a ≤ b if and only if a = xb = by, xa = a for some x,y ∈ S1,

or equivalently,

a ≤ b if and only if a = wb = bz,az = a for some w,z ∈ S1. (1)

In this paper, we use (1) to define the partial order on the semigroup TE(X ,Y ), that is
for each α,β ∈ TE(X ,Y )

α ≤ β if and only if α = γβ = β µ , α = αµ for some γ,µ ∈ TE(X ,Y )1.
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We note that if Y ⊊ X , then TE(X ,Y ) has no identity elements. Hence, in this case,
TE(X ,Y )1 6= TE(X ,Y ). In addition, ≤ on TE(X ,Y ) does not coincide with the restriction
of ≤ on TE(X). For example, let X = {1,2,3}, Y = {1,2} and X/E = {{1,2},{3}}.
Define

α =

(
1 2 3
1 1 1

)
and β =

(
1 2 3
2 2 1

)
.

If we let

γ =

(
1 2 3
3 3 3

)
and µ =

(
1 2 3
1 1 3

)
,

then α = γβ = β µ , α = αµ which implies that α ≤ β in TE(X) but we cannot find
γ ′ ∈ TE(X ,Y )1 such that α = γ ′β . Hence α ≰ β in TE(X ,Y ).

Now, we start this section with the characterization of ≤ on TE(X ,Y ) which extends
Theorem 2.1 of [9].

Theorem 4.1. Let α,β ∈ TE(X ,Y ). Then α ≤ β if and only if α = β or the following
statements hold.

(1) E(β ) refines E(α) and π(β ) refines π(α).

(2) For each x ∈ X, if xβ ∈ Xα , then xα = xβ .

(3) For each A ∈ X/E, there is B ∈ X/E such that Aα ⊆ (B∩Y )β .

Proof. Assume that α ≤ β . Then there exist γ,µ ∈ TE(X ,Y )1 such that α = γβ = β µ
and α = αµ . We can see that if γ = 1 or µ = 1, then α = β . Now, suppose that
γ,µ ∈ TE(X ,Y ). Then (1) and (2) follow by Theorem 2.1 of [9]. To see (3), let A∈X/E.
Then there is B ∈ X/E such that Aγ ⊆ B∩Y which implies that Aα = Aγβ ⊆ (B∩Y )β ,
as required.

The proof of the converse is a slight modification of the proof of Theorem 2.1 of
[9]. Actually, suppose that (1), (2) and (3) hold. We note that, by (3), Xα ⊆ Xβ . For
each A ∈ X/E, define a function µ as follows.

If A∩Xβ = /0, fix y0 ∈ Y and define zµ = y0 for all z ∈ A.
If A∩Xβ 6= /0, we first define µ on A∩Xβ . For each z ∈ A∩Xβ , there is x ∈ X

such that z = xβ , so define zµ = xα . To define µ on A\Xβ , fix z0 ∈ A∩Xβ and define
zµ = z0µ for all z ∈ A\Xβ .

To see that µ is well-defined on A. Suppose that there is x′ ∈ X such that z = x′β =
xβ . Then x,x′ ∈ zβ−1. There exists y ∈ Xα such that zβ−1 ⊆ yα−1 since π(β ) refines
π(α). Hence xα = x′α = y. Thus µ is well-defined on A and then it is also well-
defined on X . Next, we show that µ is E-preserving. Let x,y ∈ A. If A∩Xβ = /0, then
(xµ,yµ) = (y0,y0) ∈ E. For A∩Xβ 6= /0, there are three cases to consider.

If x,y ∈ A∩Xβ , then x = x′β and y = y′β for some x′,y′ ∈ X from which it follows
that there exists U ∈ E(β ) such that x′,y′ ∈ U . Moreover, since E(β ) refines E(α),
there is V ∈ E(α) such that U ⊆V . Then x′,y′ ∈V = Bα−1 for some B ∈ X/E. Hence
x′α,y′α ∈ B implies (xµ,yµ) = (x′α,y′α) ∈ E.

If x ∈ A∩Xβ and y ∈ A\Xβ , then (xµ,yµ) = (xµ,z0µ) where z0 ∈ A∩Xβ is fixed.
By the above case, we conclude that (xµ,yµ) = (xµ,z0µ) ∈ E.

If x,y ∈ A\Xβ , then (xµ,yµ) = (z0µ,z0µ) ∈ E.
Thus µ ∈ TE(X ,Y ). It is not hard to see that xβ µ = xα for each x ∈ X by the

definition of µ . To show that α = αµ , let x ∈ X . There is y ∈ X such that xα = yβ
since Xα ⊆ Xβ . By (2), we have yα = yβ which implies that

xαµ = yβ µ = yα = yβ = xα.
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Finally, we define a function γ : X → Y as follows. Let A ∈ X/E. Then there is
B ∈ X/E such that Aα ⊆ (B∩Y )β by (3). We obtain for each z ∈ A, there is x ∈ B∩Y
such that zα = xβ and define zγ = x. To show that γ is E-preserving, let (x,y) ∈ E.
Then x,y ∈ A for some E-class A. By the definition of γ , we obtain xγ,yγ ∈ B for some
B ∈ X/E and so (xγ,yγ) ∈ E. To see that α = γβ , let z ∈ X . Then zγ = x for some x
with zα = xβ . Thus zγβ = xβ = zα . Therefore, α ≤ β .

Remark 4.2. If α,β ∈ TE(X ,Y ) and α ≤ β , then Xα ⊆ Xβ .

By the same proof as given in Corollary 2.2 of [9], we have the following result
immediately.

Corollary 4.3. Let α,β ∈ TE(X ,Y ) be such that α ≤ β . Then the following statements
hold.

(1) If Xα = Xβ , then α = β .

(2) For each P ∈ π(α), there exists P′ ∈ π(β ) such that P′ ⊆ P and Pα = P′β .

(3) If π(α) = π(β ), then α = β .

(4) For each U = Aα−1 ∈ E(α) such that A ∈ X/E, there is V ∈ E(β ) such that V ⊆U
and Uα =V α ⊆V β = A∩Xβ .

5 Compatibility
Recall that an element γ ∈ TE(X ,Y ) is said to be left compatible with ≤ if γα ≤ γβ
for all α,β ∈ TE(X ,Y ) such that α ≤ β . Right compatibility with ≤ is defined dually.
In this part, we will find out elements of TE(X ,Y ) which are compatible with ≤ on
TE(X ,Y ). We remark that if |Y |= 1, then |TE(X ,Y )|= 1 which implies that an element
in TE(X ,Y ) is left and right compatible. From now on, we assume that |Y |> 1.

Lemma 5.1. Let γ ∈ TE(X ,Y ). If Y/EY is finite and Y γ = Y , then γ is regular.

Proof. Assume that Y/EY is finite and Y γ = Y . Write Y/EY = {A1,A2, . . . ,An}. We
can see that for each Ai ∈ Y/EY , there exists unique A j ∈ Y/EY such that Ai = A jγ .
To show that γ is regular, let A ∈ X/E. If A∩Y = /0, then A∩ Xγ = /0, so we are
done. If A∩Y 6= /0, then A∩Y ∈ Y/EY , so A∩Y = (B∩Y )γ for some B ∈ X/E. Thus
A∩Xγ ⊆ A∩Y = (B∩Y )γ .

For each x ∈ X , denote the equivalence E-class containing x by [x].

Lemma 5.2. If γ ∈ TE(X ,Y ) is left compatible with respect to ≤, then Y γ = Y .

Proof. We prove by contrapositive. Assume that Y γ 6= Y . Then there is y ∈ Y \Y γ .
Case 1. If |[y]∩Y | = 1, there is z ∈ Y such that z /∈ [y] since |Y | > 1. We define

α,β ∈ TE(X ,Y ) by xα = y for all x ∈ X and

xβ =

{
y if x ∈ [y]
z otherwise.

We have E(α) = {X}= π(α) which implies that E(β ) refines E(α) and π(β ) refines
π(α). Let xβ ∈ Xα . Then xβ = y = xα . It is clear that Aα = {y} for all A ∈ X/E
and hence Aα ⊆ ([y]∩Y )β . Thus α ≤ β by Theorem 4.1. We see that Aγα = {y} ⊈
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{z} = (B∩Y )γβ for all classes A and B which implies that γα ≰ γβ . Hence γ is not
left compatible with ≤ on TE(X ,Y ).

Case 2. If |[y]∩Y |> 1, there is z∈ [y]∩Y such that z 6= y. We define α,β ∈ TE(X ,Y )
by xα = y for all x ∈ X and

xβ =

{
y if x = y
z otherwise.

By the same argument as above, we obtain α ≤ β but γα ≰ γβ . Thus γ is not left
compatible with ≤ on TE(X ,Y ).

Now, we give a notation which will be used in this part. Let A ∈ X/E and γ ∈
TE(X ,Y ). We define a subclass Cγ(A) of P(A∩Xγ), the power set of A∩Xγ , by

Cγ(A) = {C ⊆ A∩Xγ : C ⊈ (G∩Y )γ for all G ∈ X/E}.

Clearly, /0 /∈ Cγ(A). Moreover, if Cγ(A) 6= /0, then A∩Xγ ∈ Cγ(A). We have known
that γ is regular if and only if for each A ∈ X/E, there is G ∈ X/E such that A∩Xγ ⊆
(G∩Y )γ . Therefore, in this case, Cγ(A) is empty for all class A. On the other hand, γ
is not regular if and only if there is a class A such that Cγ(A) 6= /0.

Theorem 5.3. γ ∈ TE(X ,Y ) is left compatible with respect to ≤ if and only if the
following statements hold.

(1) Y γ = Y .

(2) For each class A,B ∈ X/E, |Bγ \C|< |C \Bγ| for all C ∈ Cγ(A).

Proof. (⇒) Suppose that γ is left compatible. Then Y γ = Y by Lemma 5.2. Hence
Xγ =Y =Y γ . To show (2), we assume to the contrary that there are classes A,B ∈ X/E
and a set C ∈ Cγ(A) such that |Bγ \C| ≥ |C \Bγ|. Hence γ is not regular which implies
that Y/EY is infinite by Lemma 5.1. We note that

Cγ(A) = {C ⊆ A∩Y : C ⊈ (G∩Y )γ for all G ∈ X/E}.

Consider the following cases.
Case 1: Bγ ⊆ C. Then 0 = |Bγ \C| ≥ |C \Bγ| which implies that C = Bγ . Write

C = {ci : i ∈ I}.
Subcase 1.1: C = A∩Y . Choose c ∈C and d ∈ D∩Y for some class D 6= A (since

Y/EY is infinite). We define functions α and β by

α =

(
ci X \C
ci c

)
and β =

(
ci A\C X \A
ci c d

)
.

Subcase 1.2: C ⊊ A∩Y . Choose a ∈ (A∩Y ) \C and d ∈ D∩Y for some class
D 6= A. We define functions α and β by

α =

(
ci X \C
ci c

)
and β =

(
ci A\C X \A
ci a d

)
.

Case 2: C ⊆ Bγ . Then |Bγ \C| ≥ |C \Bγ| = 0. If |Bγ \C| = 0, then it reduces to
case 1. We assume that C ⊊ Bγ . Choose b ∈ Bγ \C and c ∈ C. Write C = {ci : i ∈ I}
and Bγ \C = {b j : j ∈ J}. We define functions α and β by

α =

(
ci b j X \Bγ
ci c b

)
and β =

(
ci b j X \Bγ
ci b j b

)
.
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Case 3: Bγ ⊈C and C ⊈ Bγ .
Subcase 3.1: Bγ∩A= /0 and C = A∩Y . Then C∩Bγ = /0 which implies that |Bγ|=

|Bγ \C| ≥ |C \Bγ|= |C|. Choose c ∈C. Write C = {ci : i ∈ I} and Bγ = {b j : j ∈ J}.
Since |Bγ| ≥ |C|, there is a surjection φ : Bγ →C. Hence we can find an element b∈ Bγ
such that c = bφ . Define functions α and β by

α =

(
ci b j X \ (C∪Bγ)
ci b jφ c

)
and β =

(
ci b j A\C X \ (A∪Bγ)
ci b j c b

)
.

Subcase 3.2: Bγ ∩A = /0 and C ⊊ A∩Y . Then C ∩Bγ = /0 which implies that
|Bγ|= |Bγ \C| ≥ |C\Bγ|= |C|. Choose a∈ (A∩Y )\C and c∈C. Write C = {ci : i∈ I}
and Bγ = {b j : j ∈ J}. Since |Bγ| ≥ |C|, there is a surjection φ : Bγ → C. Hence we
can find an element b ∈ Bγ such that c = bφ . Define functions α and β by

α =

(
ci b j X \ (C∪Bγ)
ci b jφ c

)
and β =

(
ci b j A\C X \ (A∪Bγ)
ci b j a b

)
.

Subcase 3.3: Bγ ⊆ A∩Y . We see that C∪Bγ ⊆ A∩Y . Choose c ∈ C \Bγ . Write
C = {ci : i ∈ I} and Bγ \C = {b j : j ∈ J}. Since |Bγ \C| ≥ |C\Bγ|, there is a surjection
φ : Bγ \C →C\Bγ . Hence we can find an element b ∈ Bγ \C such that c = bφ . Define
functions α and β by

α =

(
ci b j X \ (C∪Bγ)
ci b jφ c

)
and β =

(
ci b j X \ (C∪Bγ)
ci b j b

)
.

For all cases, we see that α ≤ β . Then C = Bγα ⊆ (G∩Y )γβ for some class G
since γ is left compatible. We see that C ⊆ (G∩Y )γ which contradicts to C ∈ Cγ(A).
We conclude that for each class A,B ∈ X/E, |Bγ \C|< |C \Bγ| for all C ∈ Cγ(A).

(⇐) Let α,β ∈ TE(X ,Y ) be such that α ≤ β with α 6= β and suppose that γ ∈
TE(X ,Y ) satisfies (1) and (2). We aim to show that γα ≤ γβ by using Theorem 4.1.

(1) To show that E(γβ ) refines E(γα), let U = A(γβ )−1 ∈ E(γβ ) for some A ∈
X/E. We have Uγβ = A∩Xγβ ⊆ A and hence Uγ ⊆ Aβ−1 ∈ E(β ). Moreover, since
α ≤ β , we have E(β ) refines E(α) which implies that Aβ−1 ⊆Bα−1 for some B∈X/E
and so

Uγα ⊆ (Aβ−1)α ⊆ (Bα−1)α ⊆ B.

Thus U ⊆ B(γα)−1 ∈ E(γα). Therefore, E(γβ ) refines E(γα). Similarly, we can show
that π(γβ ) refines π(γα).

(2) Let x ∈ X and xγβ ∈ Xγα ⊆ Xα . Since α ≤ β and (xγ)β ∈ Xα , we have
xγβ = xγα .

(3) Let A ∈ X/E. Then Aγα ⊆ (B∩Y )β for some class B since α ≤ β . By the
axiom of choice, we can find a subset C of B∩Y such that β |C : C → Aγα is a bijection.
Hence Cβ = Aγα . Note that C ⊆ B∩Y = B∩Y γ ⊆ B∩Xγ . We claim that (C\Aγ)β ⊆
(Aγ \C)α . Indeed, let xβ ∈ (C \Aγ)β where x ∈ C \Aγ . Then xβ ∈ Cβ = Aγα =
(Aγ \C)α ∪ (Aγ ∩C)α . If xβ ∈ (Aγ ∩C)α , then xβ = yα for some y ∈ Aγ ∩C. Clearly,
x 6= y. We see that yβ ∈ (Aγ∩C)β ⊆Cβ =Aγα ⊆Xα which implies that yα = yβ since
α ≤ β . Hence xβ = yβ which contradicts to the injectivity of β |C. So xβ ∈ (Aγ \C)α .
Thus

|Aγ \C| ≥ |(Aγ \C)α| ≥ |(C \Aγ)β |= |C \Aγ|.

which implies that C /∈ Cγ(B) by assumption (2). Hence C ⊆ (D∩Y )γ for some class
D and thus Aγα =Cβ ⊆ (D∩Y )γβ .
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Consider the case X = Y . Let A ∈ X/E and γ ∈ TE(X). We see that

Cγ(A) = {C ⊆ A∩Xγ : C ⊈ Gγ for all G ∈ X/E}.

By the above theorem, we obtain the following corollary which extends the result of
[9].

Corollary 5.4. γ ∈ TE(X) is left compatible with respect to ≤ if and only if the follow-
ing statements hold.

(1) γ is surjective.

(2) For each class A,B ∈ X/E, |Bγ \C|< |C \Bγ| for all C ∈ Cγ(A).

Now, we consider right compatibility.

Theorem 5.5. Let |Y/EY | = 2, say Y/EY = {A,B}. Then γ ∈ TE(X ,Y ) is right com-
patible with ≤ if and only if γ|Y is injective or |Aγ|= 1 = |Bγ|.

Proof. (⇒). We prove by contrapositive. Assume that γ|Y is not injective and |Aγ| 6= 1.
Then there are b,c ∈ Y such that bγ = y = cγ for some y ∈ Y . Consider the following
cases.

Case 1: b,c ∈ A. Then there is a ∈ A such that aγ = x 6= y for some x ∈ Y since
|Aγ|> 1. Define α,β ∈ TE(X ,Y ) by

α =

(
[a] X \ [a]
a c

)
and β =

(
[a]\{b} b X \ [a]

a b c

)
.

We see that α ≤ β and bβγ = y = zαγ for some z ∈ X \ [a]. Hence bβγ ∈ Xαγ but
bαγ = x 6= y = bβγ . Therefore αγ ≰ βγ which implies that γ is not right compatible
with ≤ on TE(X ,Y ).

Case 2: b ∈ B and c ∈ A. Then there is a ∈ A such that aγ = x 6= y for some x ∈ Y
since |Aγ|> 1. Define α,β ∈ TE(X ,Y ) by

α =

(
[a] X \ [a]
a b

)
and β =

(
[a]\{c} c X \ [a]

a c b

)
.

We see that α ≤ β and cβγ = y = bαγ . Hence cβγ ∈ Xαγ but cαγ = x 6= y = cβγ .
Therefore αγ ≰ βγ which implies that γ is not right compatible with ≤ on TE(X ,Y ).

Case 3: b ∈ A and c ∈ B. The proof of this case is similar to Case 2.
Case 4: b,c ∈ B. Then there is p,q ∈ A such that pγ = m 6= n = qγ for some

m,n ∈ Y since |Aγ|> 1. Define α,β ∈ TE(X ,Y ) by

α =

(
X \{c,q} {c,q}

p q

)
and β =

(
X \ ([b]∪{q}) q [b]\{c} c

p q b c

)
.

We see that α ≤ β . Moreover, we obtain {b,c} ⊆ y(βγ)−1 but b ∈ m(αγ)−1 and
c ∈ n(αγ)−1. Thus π(βγ) does not refine π(αγ). Therefore, αγ ≰ βγ which implies
that γ is not right compatible with ≤ on TE(X ,Y ).

(⇐). Suppose that γ|Y is injective or |Aγ|= 1 = |Bγ|. Let α,β ∈ TE(X ,Y ) be such
that α ≤ β with α 6= β . Clearly, if |Y γ| = 1, then αγ = βγ . Now, we assume that
|Y γ| ≥ 2. We aim to show that αγ ≤ βγ by using Theorem 4.1.

(1) Let U ∈ E(βγ). Then U =C(βγ)−1 for some class C which implies that Uβγ ⊆
C. Hence Uβ ⊆ Cγ−1 ∩Y 6= /0. We conclude that Cγ−1 ∩Y ∈ Y/EY or Cγ−1 ∩Y = Y
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since |Y/EY | = 2. If Cγ−1 ∩Y = Y , then C(βγ)−1 = X = C(αγ)−1 from which it
follows that E(αγ) = {X} = E(βγ). If Cγ−1 ∩Y ∈ Y/EY , then there exists D ∈ X/E
such that Uβ ⊆ Cγ−1 ∩Y = D∩Y and so U ⊆ Dβ−1 ∈ E(β ). Moreover, since E(β )
refines E(α), there is V ∈E(α) such that U ⊆Dβ−1 ⊆V which implies that V =Gα−1

for some class G. Thus there is a class H such that V αγ ⊆ Gγ ⊆ H. We have U ⊆V ⊆
H(αγ)−1 ∈ E(αγ) and so E(βγ) refines E(αγ).

Next, we prove that π(βγ) refines π(αγ). We consider two cases as follows.
Case 1: γ|Y is injective. Let U = y(βγ)−1 ∈ π(βγ). Then Uβγ = {y} and so

Uβ ⊆ yγ−1. Then Uβ = {x} for some x ∈ Y . Thus U ⊆ xβ−1 ∈ π(β ) and then there
is zα−1 ∈ π(α) such that U ⊆ xβ−1 ⊆ zα−1 since π(β ) refines π(α). We obtain
Uα = {z} which implies that Uαγ = {zγ}. Therefore, U ⊆ (zγ)(αγ)−1 ∈ π(αγ) and
so π(βγ) refines π(αγ).

Case 2: |Aγ| = 1 = |Bγ|. Then Aγ 6= Bγ since |Y γ| ≥ 2. Note that A = A′∩Y and
B = B′∩Y for some distinct classes A′ and B′ in X/E. We claim that π(αγ) = E(α).
Let U = y(αγ)−1 ∈ π(αγ). Then Uαγ = {y}. We see that either Uα ⊆ A or Uα ⊆ B.
Assume that Uα ⊆ A. Then U ⊆ Aα−1 ⊆ A′α−1. We obtain y ∈ Uαγ ⊆ Aγ from
which it follows that Aγ = {y} since |Aγ|= 1 . Let x ∈ A′α−1. Then xα ∈ A′∩Y = A
which implies that xαγ ∈ Aγ = {y}. Hence xαγ = y and so x ∈ y(αγ)−1 = U . We
conclude that U = A′α−1 ∈ E(α). Similarly, if Uα ⊆ B, then U = B′α−1 ∈ E(α).
Thus π(αγ) ⊆ E(α). On the other hand, let V = Cα−1 ∈ E(α). Then V α ⊆ C ∩Y
which implies that either V α ⊆ C ∩Y = A or V α ⊆ C ∩Y = B. Thus V αγ ⊆ Aγ or
V αγ ⊆ Bγ . If V αγ ⊆ Aγ , then V αγ = {z}= Aγ for some z ∈ Y since |Aγ|= 1. Hence
V ⊆ z(αγ)−1. Let a ∈ z(αγ)−1. Then aαγ = z and aα ∈Y = A∪B. Clearly, aα ∈ A =
C∩Y since Aγ 6= Bγ . Hence a ∈ Cα−1 = V and so z(αγ)−1 ⊆ V . We conclude that
V = z(αγ)−1 ∈ π(αγ). Similarly, if V αγ ⊆ Bγ , then V = w(αγ)−1 ∈ π(αγ) where
{w} = Bγ . Therefore, π(αγ) = E(α). By the same proof, we obtain π(βγ) = E(β ).
Thus π(βγ) refines π(αγ) since E(β ) refines E(α).

(2) Let xβγ ∈ Xαγ . Then xβγ = yαγ for some y ∈ X . If γ|Y is injective, then
xβ = yα ∈ Xα which implies that xβ = xα . Thus xβγ = xαγ . If |Aγ| = 1 = |Bγ|,
then Aγ 6= Bγ since |Y γ| ≥ 2. Thus xβ ,yα ∈ A or xβ ,yα ∈ B. Now, we assume that
xβ ,yα ∈ A. Suppose to the contrary that xα ∈ B. We see that xα = zβ and yα = sβ for
some z,s ∈ Y by Theorem 4.1 (3). Hence zβ ,sβ ∈ Xα implies zβ = zα and sβ = sα .
We obtain {s,x} ⊆ Aβ−1 but s ∈ Aα−1 and x ∈ Bα−1 from which it follows that E(β )
does not refine E(α). It leads to a contradiction. Thus xα ∈ A which implies that
xαγ = xβγ since |Aγ|= 1. Similarly, if xβ ,yα ∈ B, then we can show that xαγ = xβγ .

(3) Let A ∈ X/E. By Theorem 4.1 (3), there is a class B such that Aα ⊆ (B∩Y )β
and so Aαγ ⊆ (B∩Y )βγ .

Lemma 5.6. Let |Y/EY |= 1. If γ ∈ TE(X ,Y ) is right compatible with ≤, then |Y γ|= 1
or γ|Y is injective.

Proof. We prove by contrapositive. Assume that |Y γ|> 1 and γ|Y is not injective. Then
there are b,c ∈ Y with b 6= c such that bγ = y = cγ for some y ∈ Y . Moreover, there is
a ∈Y such that aγ = x 6= y since |Y γ|> 1. Clearly, a,b,c are distinct elements in Y and
[a] = [b] = [c] ∈ X/E since |Y/EY |= 1. Define α,β ∈ TE(X ,Y ) by

α =

(
{a,b} X \{a,b}

a c

)
and β =

(
a b X \{a,b}
a b c

)
.

We see that α ≤ β and bβγ = y = cαγ . Hence bβγ ∈ Xαγ but bαγ = x 6= y = bβγ .
Therefore αγ ≰ βγ which implies that γ is not right compatible with ≤ on TE(X ,Y ).
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Lemma 5.7. Let |Y/EY |> 2. If γ ∈ TE(X ,Y ) is right compatible with ≤, then |Y γ|= 1
or γ|Y is injective.

Proof. We prove by contrapositive. Assume that |Y γ|> 1 and γ|Y is not injective. Then
there exist b,c ∈ Y with b 6= c such that bγ = cγ = y for some y ∈ Y . From |Y γ| > 1,
there exists a ∈Y such that aγ = x 6= y for some x ∈Y . Clearly, b 6= a 6= c. We consider
the following cases.

Case 1: [a] 6= [b] in X/E. We see that [a]∪ [b] ⊊ X since |X/E| ≥ |Y/EY | > 2.
Define α,β ∈ TE(X ,Y ) by

α =

(
[a]∪ [b] X \ ([a]∪ [b])

a c

)
and β =

(
[a] [b] X \ ([a]∪ [b])
a b c

)
.

We see that α ≤ β and bβγ = y = zαγ for some z ∈ X \ ([a]∪ [b]). Hence bβγ ∈
Xαγ but bαγ = x 6= y = bβγ . Therefore αγ ≰ βγ which implies that β is not right
compatible with ≤ on TE(X ,Y ).

Case 2: [a] = [b] in X/E. Define α,β ∈ TE(X ,Y ) by

α =

(
[a] X \ [a]
a c

)
and β =

(
[a]\{b} b X \ [a]

a b c

)
.

We see that α ≤ β and bβγ = y = zαγ for some z ∈ X \ [a]. Hence bβγ ∈ Xαγ but
bαγ = x 6= y = bβγ . Therefore αγ ≰ βγ which implies that γ is not right compatible
with ≤ on TE(X ,Y ).

Lemma 5.8. If γ ∈ TE(X ,Y ) is right compatible, then EY (γ) = Y/EY or |EY (γ)|= 1.

Proof. We prove by contrapositve. Assume that EY (γ) 6=Y/EY and |EY (γ)| ≥ 2. Then
there is A ∈ X/E such that Aγ−1 ∩Y ∈ EY (γ) is a union of some EY -classes. Hence
there are distinct classes P,Q ∈ X/E such that P∩Y and Q∩Y are non-empty and
contained in Aγ−1 ∩Y . Moreover, there is a class B such that Bγ−1 ∩Y is non-empty
and A 6= B since |EY (γ)| ≥ 2. Thus there is a class R ⊆ Bγ−1 such that R∩Y is non-
empty. We note that P 6= R 6= Q. Choose p ∈ P∩Y , q ∈ Q∩Y and r ∈ R∩Y . Define
functions α,β ∈ TE(X ,Y ) by

α =

(
P X \P
p r

)
and β =

(
P Q X \ (P∪Q)
p q r

)
.

It is easy to verify that α ≤ β . We see that Pβγ = {p}γ ⊆A and Qβγ = {q}γ ⊆A which
implies that P∪Q ⊆ A(βγ)−1. Furthermore, Pαγ = {p}γ ⊆ A and Qαγ = {r}γ ⊆ B
from which it follows that P ⊆ A(αγ)−1 and Q ⊆ B(αγ)−1. Hence E(βγ) does not
refine E(αγ) and thus γ is not right compatible.

Theorem 5.9. Let |Y/EY | 6= 2. Then γ ∈ TE(X ,Y ) is right compatible with respect to
≤ if and only if the following statements hold.

(1) |Y γ|= 1 or γ|Y is injective.

(2) EY (γ) = Y/EY or |EY (γ)|= 1.

Proof. (⇒) Assume that γ is right compatible. Then (2) holds by Lemma 5.8. More-
over, if |Y/EY | 6= 2, then (1) holds by Lemmas 5.6 and 5.7.

(⇐) Assume that (1) and (2) hold. Let α,β ∈ TE(X ,Y ) be such that α ≤ β with
α 6= β . It is clear that if |Y γ|= 1, then αγ = βγ for each α,β ∈ TE(X ,Y ). Thus, in this
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case, γ is right compatible. Now, we suppose that γ|Y is injective. We aim to show that
αγ ≤ βγ by using Theorem 4.1.

(1) Let U ∈ E(βγ). Then U = A(βγ)−1 for some class A which implies that Uβγ ⊆
A. Hence Uβ ⊆ Aγ−1 ∩Y ∈ EY (γ). If |EY (γ)| = 1, then Y ⊆ Aγ−1. Thus A(βγ)−1 =
X = A(αγ)−1 from which it follows that E(αγ) = {X} = E(βγ). If EY (γ) = Y/EY ,
then there exists B ∈ X/E such that Uβ ⊆ Aγ−1∩Y = B∩Y and so U ⊆ Bβ−1 ∈ E(β ).
Moreover, since E(β ) refines E(α), there is V ∈ E(α) such that U ⊆V which implies
that V =Cα−1 for some class C. Thus there is a class D such that V αγ ⊆Cγ ⊆ D. We
have U ⊆V ⊆ D(αγ)−1 ∈ E(αγ) and so E(βγ) refines E(αγ).

Let U = y(βγ)−1 ∈ π(βγ). Then Uβγ = {y} and so Uβ ⊆ yγ−1. By the injectivity
of γ|Y , we obtain Uβ = {x} for some x ∈ Y . Thus U ⊆ xβ−1 ∈ π(β ) and then there is
zα−1 ∈ π( f ) such that U ⊆ xβ−1 ⊆ zα−1 since π(β ) refines π(α). We obtain Uα =
{z} which implies that Uαγ = {zγ}. Therefore, U ⊆ (zγ)(αγ)−1 ∈ π(αγ) and so
π(βγ) refines π(αγ).

(2) Let xβγ ∈ Xαγ . Then xβγ = yαγ for some y ∈ X . By the injectivity of γ|Y , we
have xβ = yα ∈ Xα which implies that xβ = xα . Thus xβγ = xαγ .

(3) Let A ∈ X/E. By Theorem 4.1 (3), there is a class B such that Aα ⊆ (B∩Y )β
and so Aαγ ⊆ (B∩Y )βγ .

Finally, if X = Y , we have the following corollaries.

Corollary 5.10. Let |X/E|= 2, say X/E = {A,B}. Then γ ∈ TE(X) is right compatible
with ≤ if and only if γ is injective or |Aγ|= 1 = |Bγ|.

Corollary 5.11. Let |X/E| 6= 2. Then γ ∈ TE(X) is right compatible with respect to ≤
if and only if the following statements hold.

(1) γ is a constant map or an injection.

(2) E(γ) = X/E or |E(γ)|= 1.

6 Maximal and Minimal Elements
In this section, we study maximal and minimal elements in TE(X ,Y ) under the natu-
ral partial order ≤. The subsemigroup FE of TE(X ,Y ) plays an important role in the
characterization of maximal elements.

Lemma 6.1. Let α ∈ TE(X ,Y ). If α /∈ FE , then α is maximal.

Proof. Let β ∈ TE(X ,Y ) be such that α ≤ β . Assume that α 6= β . Then for each
A ∈ X/E, Aα ⊆ (B∩Y )β for some B ∈ X/E by Theorem 4.1 (3). For each aα ∈
Aα ⊆ (B∩Y )β , there is b ∈ B∩Y such that bβ = aα ∈ Xα . Hence, by Theorem 4.1
(2), aα = bβ = bα ∈ (B∩Y )α . We obtain Aα ⊆ (B∩Y )α which is a contradiction.
Therefore, α = β .

Now, we extend the notion of saturating presented in [9].

Definition 6.2. Let α ∈ TE(X ,Y ). A set U ∈ E(α) is said to be Y -saturated if Uα =
A∩Y for some A ∈ X/E.

We remark that if X = Y , then the notions of saturating and Y -saturating are the
same.
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Lemma 6.3. Let α ∈ FE be maximal and U ∈ E(α). Then U is Y -saturated or for each
E-classes A,C ⊆U, if Aα ⊆ (C∩Y )α , then A =C.

Proof. We prove by contradiction. Assume that U =Gα−1 is not Y -saturated and there
are distinct E-classes A,C ⊆U such that Aα ⊆ (C∩Y )α . Then there is b ∈ G∩Y \Uα .
We choose an element a ∈ A and define a function β : X → Y by

xβ =

{
b if x = a;
xα otherwise.

It is clear that β ∈ TE(X ,Y ) and α 6= β . We show that α ≤ β .
(1) Let V ∈ E(β ). Then V = Mβ−1 for some E-class M. We assert that V ⊆

Mα−1 ∈ E(α). Let x ∈ V . Then xβ ∈ M. If x 6= a, then xα = xβ ∈ M which implies
that x ∈ Mα−1. If x = a ∈ A, then xα = aα ∈ Aα ⊆ (C ∩Y )α and so xα = cα for
some c ∈ C∩Y . Hence xβ = aβ = b ∈ G. Then xβ ∈ M ∩G. We obtain M = G and
xα = cα ∈Cα ⊆Uα ⊆ G from which it follows that x ∈ Gα−1 = Mα−1. Therefore,
E(β ) refines E(α).

Let (xβ )β−1 ∈ π(β ). Assume that x 6= a. Then xβ = xα . We claim that (xβ )β−1 ⊆
(xα)α−1 ∈ π(α). Let z ∈ (xβ )β−1. Then zβ = xβ . If z = a, then xβ = zβ = aβ = b
which is a contradiction since x 6= a. Hence z 6= a and zα = zβ = xβ = xα . Thus
z∈ (xα)α−1. Now, we suppose that x= a. We assert that (xβ )β−1 ⊆ (aα)α−1 ∈ π(α).
Indeed, let y ∈ (xβ )β−1. Then yβ = xβ = aβ = b which implies that y = a. Hence
yα = aα and so y ∈ (aα)α−1. Thus π(β ) refines π(α).

(2) Let xβ ∈ Xα . It is clear that x 6= a and then xα = xβ .
(3) Let D ∈ X/E. Assume that D 6= A. Then Dα ⊆ (H ∩Y )α for some E-class

H since α ∈ FE . Let xα ∈ Dα be such that x ∈ D. Then x 6= a since D 6= A. Hence
xα = yα for some y ∈ H∩Y . If y = a, then xα = yα = aα = b which is a contradiction
since x 6= a. Thus y 6= a and so xα = yα = yβ ∈ (H ∩Y )β which implies that Dα ⊆
(H ∩Y )β . Now, we suppose that D = A. Let xα ∈ Dα be such that x ∈ D = A. Then
xα ∈ Dα = Aα ⊆ (C∩Y )α = (C∩Y )β and hence Dα ⊆ (C∩Y )β .

Therefore, α is not maximal which is a contradiction.

Lemma 6.4. Let α ∈ FE be maximal and U ∈ E(α). Then U is Y -saturated or α|A is
injective for each E-class A ⊆U.

Proof. We prove by contradiction. Assume that U is not Y -saturated and there exists
E-class A ⊆ U such that α|A is not injective. Moreover, Aα ⊆ (C ∩Y )α for some
C ∈ X/E since α ∈ FE . If A 6= C, then α is not maximal by Lemma 6.3. Now, we
suppose that Aα ⊆ (A∩Y )α . Since U is not Y -saturated, we have Uα ⊊ B∩Y for
some B ∈ X/E which implies that there is c ∈ B∩Y \Uα . In addition, since α|A is not
injective, there exist distinct elements a ∈ A∩Y and b ∈ A such that aα = bα . Define
β : X → Y by

xβ =

{
c if x = b;
xα otherwise.

We can easily see that β ∈ TE(X ,Y ) and α 6= β . We prove that α ≤ β by using Theorem
4.1.

(1) Let V ∈ E(β ). Then V =Cβ−1 for some C ∈ X/E. We claim that V =Cα−1 ∈
E(α). Let x ∈ V . Then xβ ∈ C. If x 6= b, then xα = xβ ∈ C and so x ∈ Cα−1. If
x = b, then xβ = c ∈ B which implies that xβ ∈ B∩C 6= /0. Hence B =C. Moreover, we
obtain xα = bα ∈ B =C and so x ∈Cα−1. Thus V ⊆Cα−1. Conversely, let x ∈Cα−1.
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Then xα ∈ C. If x 6= b, then xβ = xα ∈ C and hence x ∈ Cβ−1 = V . If x = b, then
xα = bα ∈ B which implies that B = C. Moreover, we have xβ = c ∈ B = C and so
x ∈Cβ−1 =V . Thus Cα−1 ⊆V and then V =Cα−1 ∈ E(α). Therefore, E(β ) refines
E(α).

Let yβ−1 ∈ π(β ). Then there is x ∈ yβ−1. If x 6= b, then xα = xβ = y. We claim
that yβ−1 ⊆ yα−1. Let p ∈ yβ−1. Then pβ = y = xα ∈ Xα from which it follows that
p 6= b. Hence pα = pβ = y and so p ∈ yα−1 ∈ π(α). If x = b, then c = bβ = xβ = y.
We claim that yβ−1 ⊆ (aα)α−1. Let p ∈ yβ−1 = cβ−1. Then pβ = c which implies
that p = b. Thus pα = bα = aα and so p ∈ (aα)α−1 ∈ π(α). Therefore, π(β ) refines
π(α).

(2) Let xβ ∈ Xα . It is easy to see that x 6= b and then xα = xβ .
(3) Let C ∈ X/E. Then Cα ⊆ (D∩Y )α for some E-class D since α ∈ FE . We claim

that (D∩Y )α ⊆ (D∩Y )β . Let xα ∈ (D∩Y )α be such that x ∈ D∩Y . If x 6= b, then
xα = xβ ∈ (D∩Y )β . If x = b, then x = b ∈ A and so A = D. Hence xα = bα = aα =
aβ ∈ (A∩Y )β = (D∩Y )β . Thus, Cα ⊆ (D∩Y )α ⊆ (D∩Y )β .

Therefore, α is not maximal which is a contradiction.

Definition 6.5. Let α ∈ TE(X ,Y ). A set U ∈ E(α) is said to be Y -divisible if there
exist A,B,C ∈ X/E such that A ⊆ U, C ⊆ U \A, Aα ⊆ (C ∩Y )α , B∩Xα = /0 and
|B∩Y | ≥ |Aα|.

Lemma 6.6. Let α ∈ FE . If α is maximal, then U is not Y -divisible for each U ∈ E(α).

Proof. We prove by contrapositive. Assume that there is a Y -divisible set U ∈ E(α).
Let A,B,C be as in Definition 6.5. Let ϕ : Aα → B∩Y be an arbitrary injection. Define
β : X → Y by

xβ =

{
xαϕ if x ∈ A;
xα otherwise.

It is clear that β ∈ TE(X ,Y ) and α 6= β . Next, we prove that α ≤ β by using Theorem
4.1.

(1) Let V ∈ E(β ). Then V = Dβ−1 for some D ∈ X/E which implies that V β ⊆ D.
If D = B, then V ⊆ A ⊆U ∈ E(α). If D 6= B, then V ∩A = /0 from which it follows that
V α = V β ⊆ D. Hence V ⊆ Dα−1 ∈ E(α). Thus E(β ) refines E(α). Let M ∈ π(β ).
Then M = yβ−1 for some y = xβ ∈ Xβ . If y ∈ B, then x ∈ A and y = xβ = xαϕ . Since
ϕ is injective, we have yϕ−1 = {xα}. Define N = (yϕ−1)α−1 = (xα)α−1 ∈ π(α). Let
z ∈ M. Then zβ = y. Since y ∈ B, we have z ∈ A which implies that y = zβ = zαϕ .
Hence z ∈ (yϕ−1)α−1 = N. Thus M ⊆ N. On the other hand, assume that y /∈ B. Let
w ∈ M. Then y = wβ and w /∈ A. Hence y = wβ = wα from which it follows that
w ∈ yα−1 ∈ π(α). We conclude that π(β ) refines π(α).

(2) Let x ∈ X be such that xβ ∈ Xα . It is obvious that x /∈ A. Hence xα = xβ .
(3) Let F ∈ X/E. Then Fα ⊆ (G∩Y )α for some G ∈ X/E since α ∈ FE . If G 6= A,

then Fα ⊆ (G∩Y )α = (G∩Y )β . If G = A, then

Fα ⊆ (A∩Y )α ⊆ Aα ⊆ (C∩Y )α = (C∩Y )β .

Therefore, α is not maximal.

Theorem 6.7. Let α ∈ FE . Then α is maximal if and only if for each U ∈ E(α), at
least one of the following conditions holds.
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(1) Both α|A is injective for each E-class A ⊆ U and for each E-classes A,C ⊆ U, if
Aα ⊆ (C∩Y )α , then A =C.

(2) U is not Y -divisible and U is Y -saturated.

Proof. Assume that α is maximal and let U ∈ E(α). If U is not Y -saturated, then (1)
holds by Lemmas 6.3 and 6.4. Otherwise, U is not Y -divisible by Lemma 6.6.

Conversely, let β ∈ TE(X ,Y ) be such that α ≤ β and U ∈ E(α). We aim to prove
that Uα =Uβ . We consider the following two cases.

Case 1: Assume that (1) holds. Let x ∈ U be such that x ∈ A for some E-class
A ⊆U . Then xα ∈ Aα . We claim that Aα ⊆ (A∩Y )β . Let aα ∈ Aα . Since α ≤ β , we
have Aα ⊆ (C∩Y )β for some C ∈X/E which implies that aα = cβ for some c∈C∩Y .
Hence cβ = cα by Theorem 4.1 (2). Thus aα = cα ∈ (C∩Y )α and so Aα ⊆ (C∩Y )α .
By assumption (1), we get A = C and hence Aα ⊆ (A∩Y )β . So xα = x′β for some
x′ ∈ A∩Y . Again by Theorem 4.1 (2), we have x′α = x′β and then xα = x′α . Thus
x = x′ since α|A is injective. Therefore, xα = x′β = xβ and then Uα =Uβ .

Case 2: U is not Y -divisible and Y -saturated. Then U =Aα−1 such that Uα =A∩Y
for some A ∈ X/E. By Corollary 4.3 (4), there is V ∈ E(β ) such that V ⊆U and

A∩Y =Uα =V α ⊆V β = A∩Xβ ⊆ A∩Y

which implies that Uα =V α =V β = A∩Y . We suppose to a contrary that U /∈ E(β ).
Since E(β ) refines E(α) and U /∈ E(β ), there is W ∈ E(β ) such that W 6= V and
W ⊆ U . Let B ∈ X/E be such that Bβ−1 = W . If B∩Xα 6= /0, then Bα−1 ∈ E(α)
and there is y ∈ B∩Xα ⊆ B∩Xβ = Wβ . Hence y = xβ for some x ∈ W . We obtain
xβ = y ∈ Xα implies xα = xβ = y ∈ B by Theorem 4.1 (2). Thus x ∈ Bα−1 from which
it follows that x ∈ W ∩Bα−1 6= /0. We conclude that W ⊆ Bα−1 since E(β ) refines
E(α). Hence W ⊆U ∩Bα−1 6= /0 and so U = Bα−1 since E(α) is a partition of X . We
obtain Aα−1 = U = Bα−1 which implies that A = B. Thus V = Aβ−1 = Bβ−1 = W
which is a contradiction. Hence B∩Xα = /0. Let D ∈ X/E be such that D ⊆W . Since
Wβ ⊆ B∩Y and π(β ) refines π(α), we have

|B∩Y | ≥ |Wβ | ≥ |Dβ | ≥ |Dα|.

Since α ≤ β , there is C ∈ X/E such that Dα ⊆ (C∩Y )β . Let x ∈ D. Then xα = yβ for
some y ∈C∩Y . By Theorem 4.1 (2), we obtain yα = yβ . Hence xα = yα ∈ (C∩Y )α
which implies that Dα ⊆ (C∩Y )α . We note that Dα ⊆ Wα ⊆ Uα ⊆ A and so /0 6=
(C∩Y )α ∩A ⊆Cα ∩A. Hence Cα ⊆ A from which it follows that C ⊆ Aα−1 =U . If
C = D, then

Dα ⊆ (D∩Y )β ⊆ Dβ ⊆Wβ ⊆ B

which is a contradiction since B∩Xα = /0. Thus C ⊆ U \D. We conclude that U is
Y -divisible which is also a contradiction. Therefore, U ∈ E(β ) from which it follows
that U =V and so Uα =Uβ .

By Corollary 4.3 (1), α = β and so α is maximal.

Finally, we characterize minimal elements in TE(X ,Y ).

Theorem 6.8. Let α ∈ TE(X ,Y ). Then α is minimal if and only if α is a constant map.

Proof. Assume that α is a constant map. Then Xα = {y} for some y ∈ Y . Let β ∈
TE(X ,Y ) be such that β ≤ α . Then Xβ ⊆ Xα = {y} which implies that xβ = y for all
x ∈ X . Hence β = α .

Conversely, suppose that α is not a constant map. Choose y ∈ Y α . Define β ∈
TE(X ,Y ) by xβ = y for all x ∈ X . We can easily see that β ⪇ α .
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7 The Rank of TE(X ,Y )

In this section, we use the notation introduced in [2]. Assume that the set X is {1,2, . . . ,mn}
where m ≥ 2 and n ≥ 3. The equivalence E is defined by

E = (A1 ×A1)∪ (A2 ×A2)∪·· ·∪ (Am ×Am)

where Ai = {(i−1)n+1,(i−1)n+2, . . . , in}, i = 1,2, . . . ,m.
By τ = (12), we denote the permutation of X which maps 1 into 2, 2 into 1 and

maps x into x for y 6= 1,2. Moreover, by ξ = (1,2, . . . ,n), we denote the permutation
of X which maps x into x+1 for 1 ≤ x ≤ n−1, n into 1 and maps x into x for x /∈ A1.
Let τ∗ be the permutation of Y defined by(

1 2 · · · n n+1 n+2 · · · 2n
n+1 n+2 · · · 2n 1 2 · · · n

)
where the image of each x > 2n is x. Let τ ′ = (n+ 1 n+ 2) be the permutation of X
which maps n+1 into n+2, n+2 into n+1 and maps x into x for x 6= n+1,n+2. Let
ξ ′ = (n+ 1,n+ 2, . . . ,2n) be the permutation of X which maps x into x+ 1 (n+ 1 ≤
x < 2n), 2n into n+1 and maps x into x for x /∈ A2.

Let π ∈ T (X) be defined by

1π = 2, xπ = x (x 6= 1)

and denote π = [12]. In addition, define ξ∗ ∈ TE(X) by

xξ∗ =

{
x+n if x /∈ Am;
x− (m−1)n otherwise

and write ξ∗ = (A1A2 . . .Am). We can see that ξ∗ is the permutation which maps Ai into
Ai+1 (1 ≤ i < m) and maps Am into A1. Finally, define π∗ ∈ TE(X) by

xπ∗ =

{
x+n if x ∈ A1;
x otherwise

and write π∗ = [A1A2].
In [2], the author proved the following results.

Theorem 7.1 ([2], Theorem 3.7). TE(X) = 〈τ,ξ ,π,τ∗,ξ∗,π∗〉.

Corollary 7.2 ([2], Corollary 3.8). If m = 2 then the rank of TE(X) is no more than 5.
If m ≥ 3 the rank of TE(X) is no more than 6.

Recall that, in [7], the authors defined a subset F of T (X ,Y ) by

F = {α ∈ T (X ,Y ) : Xα ⊆ Y α}.

Now, we consider the subsemigroup FE of TE(X ,Y ) defined by

FE = F ∩TE(X).

We see that FE ⊆ FE . Clearly, if X = Y , then FE = TE(X) and if E = X ×X , then
FE = F . Moreover, FE becomes T (X) if X =Y and E = X ×X . In this paper, we study
the rank of FE in a special case when |X \Y |= 1.
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From now on, assume that the subset Y of X is {1,2, . . . ,mn} where m ≥ 2 and
n ≥ 3. The equivalence EY of Y is defined by

E = (A1 ×A1)∪ (A2 ×A2)∪·· ·∪ (Am ×Am)

where Ai = {(i−1)n+1,(i−1)n+2, . . . , in}, i = 1,2, . . . ,m.
The equivalence E of X is defined by

E = (A1 ×A1)∪ (A2 ×A2)∪·· ·∪ (Am ×Am)

where A1 = A1 ∪{1′}. Clearly, |X \Y |= |{1′}|= 1 and TE(Y ) = 〈τ,ξ ,π,τ∗,ξ∗,π∗〉.
For each k ≤ n, let ϕk : X → Y be the map 1′ 7→ k and x 7→ x if x 6= 1′. Define

τ = ϕ1τ,ξ = ϕ1ξ ,π = ϕ1π,τ∗ = ϕ1τ∗,ξ∗ = ϕ1ξ∗ and π∗ = ϕ1π∗. We can see that ϕk(k ≤
n),τ,ξ ,π,τ∗,ξ∗ and π∗ are in FE .

By using Theorem 7.1, it is routinely to show that

FE = 〈ϕ1,ϕ2, . . . ,ϕn,τ,ξ ,π,τ∗,ξ∗,π∗〉.

Hence, by Corollary 7.2, we obtain the following result immediately.

Corollary 7.3. If m = 2 then the rank of FE is no more than 5+n. If m ≥ 3 the rank of
FE is no more than 6+n.
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Abstract
Let Y be a subset of X and T(X, Y) the set of all functions from X into Y. Then, under 
the operation of composition, T(X, Y) is a subsemigroup of the full transformation 
semigroup T(X). Let E be an equivalence on X. Define a subsemigroup TE(X,Y) of 
T(X, Y) by 

Then TE(X, Y) is the semigroup of all continuous self-maps of the topological space 
X for which all E-classes form a basis carrying X into a subspace Y. In this paper, we 
give a necessary and sufficient condition for TE(X, Y) to be regular and characterize 
Green’s relations on TE(X, Y) . Our work extends previous results found in the 
literature.

Keywords  Transformation semigroups · Restricted range · Equivalence · 
Regularity · Green’s relations

1  Introduction

The full transformation semigroup is the collection of all functions from a set X into 
X with the composition which is denoted by T(X). In 2008, Sanwong and Sommanee 
[4] studied the subsemigroup T(X, Y) of T(X) which is defined by

TE(X,Y) = {� ∈ T(X,Y) ∶ ∀(x, y) ∈ E, (x�, y�) ∈ E}.
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where Y is a fixed subset of X. In [4], they discussed the regularity of elements and 
then determined the Green’s relations on T(X, Y). Moreover, they obtained a class of 
maximal inverse subsemigroups of T(X, Y). Furthermore, a natural partial order on 
T(X, Y) was studied in some detail in [3, 6].

Let E be an equivalence on X. Write

then TE(X) is a subsemigroup of T(X). We see that TE(X) is the semigroup of all 
continuous self-maps of the topological space X for which all E-classes form a basis. 
In 2005, Pei [2] studied regularity of elements and Green’s relations for TE(X) . In 
2008, Sun, Pei and Cheng [5] investigated TE(X) with the natural partial order.

Now, we aim to generalize the results of Pei [2], Sanwong and Sommanee [4] 
by defining a transformation semigroup with restricted range that preserve an 
equivalence as follows. Let T(X,  Y) be the full transformation semigroup with 
restricted range and E an equivalence on X. Define

Then TE(X, Y) is a subsemigroup of T(X). It is clear that if X = Y  , then 
TE(X, Y) = TE(X) , which means that TE(X) is a special case of TE(X, Y) . Furthermore, 
if E is the universal relation, E = X × X , then TE(X, Y) becomes T(X, Y). The latter 
semigroup was studied in detail in [3, 4, 6]. Moreover, it is not difficult to check that 
TE(X, Y) is the semigroup of all continuous self-maps of the topological space X for 
which all E-classes form a basis carrying X into a subspace Y and is referred to as a 
semigroup of continuous functions (see [1] for details).

In this paper, we give a necessary and sufficient condition for TE(X, Y) to be 
regular and characterize Green’s relations on TE(X, Y).

Let X/E denote the quotient set of X and let Y be a subset of X. The restriction of 
the equivalence E on Y, denoted by EY , is defined by

For each � ∈ TE(X, Y) , let

be the partition of X induced by � . As in [2], for each A ⊆ X , we write

We also define

It is clear that 𝜋̃A(𝛼) is an appropriate extension of �A(�) in the sense that if Y = X , 
then 𝜋̃A(𝛼) = 𝜋A(𝛼) . Obviously, 𝜋̃A(𝛼) ⊆ 𝜋A(𝛼) . For each � ∈ TE(X, Y) , define a 
function �∗ ∶ �(�) → X� by

T(X, Y) = {𝛼 ∈ T(X) ∶ X𝛼 ⊆ Y}

TE(X) = {� ∈ T(X) ∶ ∀(x, y) ∈ E, (x�, y�) ∈ E},

TE(X, Y) = {� ∈ T(X, Y) ∶ ∀(x, y) ∈ E, (x�, y�) ∈ E} = TE(X) ∩ T(X, Y).

EY = {(x, y) ∶ x, y ∈ Y , (x, y) ∈ E} = E ∩ (Y × Y).

�(�) = {y�−1 ∶ y ∈ X�}

�A(�) = {M ∈ �(�) ∶ M ∩ A ≠ �}.

𝜋̃A(𝛼) = {M ∈ 𝜋(𝛼) ∶ M ∩ A ∩ Y ≠ �}.
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P�∗ = x� for each P ∈ �(�) and each x ∈ P.
We obtain the following lemma which will prove useful.

Lemma 1.1  Let � ∈ TE(X, Y) . Then for each B ∈ X∕E , there exists some B� ∈ X∕E 
such that B𝛼 ⊆ B� ∩ Y ⊆ B� . Consequently, for each A ∈ X∕E , A�−1 is either the 
empty set or a union of some E-classes.

For each � ∈ TE(X, Y) , let

We can see that E(�) is also a partition of X and x,  y are contained in the same 
U ∈ E(�) if and only if (x�, y�) ∈ E.

Let E be an equivalence relation on a set X and U,  V subsets of X. Let 
� ∶ U → V  . If (u, u�) ∈ E implies (u�, u��) ∈ E for each u, u� ∈ U , then � is said 
to be E-preserving. In addition, for each u, u� ∈ U , if (u, u�) ∈ E if and only if 
(u�, u��) ∈ E , then � is called E∗-preserving. We remark that if � is an E∗-preserving 
bijection, then so is �−1.

2 � Regularity

In this section, we characterize regular elements in TE(X, Y) and then give a 
necessary and sufficient condition for TE(X, Y) to be regular.

Theorem  2.1  Let � ∈ TE(X, Y) . Then � is regular if and only if for all A ∈ X∕E , 
there exists B ∈ X∕E such that A ∩ X𝛼 ⊆ (B ∩ Y)𝛼.

Proof  Fix y0 ∈ Y  . For each A ∈ X∕E , define a function � as follows. If A ∩ X� = � , 
define x� = y0 for all x ∈ A . If A ∩ X� ≠ � , by assumption, there is a class B ∈ X∕E 
such that A ∩ X𝛼 ⊆ (B ∩ Y)𝛼 . Fix b0 ∈ B ∩ Y  . For each x ∈ A ∩ X� , there is an 
element bx ∈ B ∩ Y  such that x = bx� . Define

It is not hard to see that � preserves E and X𝛽 ⊆ Y  . Hence, � ∈ TE(X, Y) . We claim 
that � = ��� . Let x ∈ X . Then x� ∈ A ∩ X� for some E-class A and, by assumption, 
A ∩ X𝛼 ⊆ (B ∩ Y)𝛼 . By construction, x� = bx�� , where bx� ∈ B ∩ Y  . Note that

Therefore, � = ��� since x is arbitrary, as claimed.
Conversely, suppose that � is regular. Then � = ��� for some � ∈ TE(X, Y) . 

Let A ∈ X∕E . Then A𝛽 ⊆ B ∩ Y  for some B ∈ X∕E . We claim that 
A ∩ X𝛼 ⊆ (B ∩ Y)𝛼 . Let y ∈ A ∩ X� . Then y ∈ A and y = x� for some x ∈ X . 

E(�) = {A�−1 ∶ A ∈ X∕E and A�−1 ≠ �}.

x� =

{
bx if x ∈ A ∩ X�

b0 if x ∈ A ⧵ X�.

x��� = (x�)�� = bx�� = x�.
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We obtain that y𝛽 ∈ A𝛽 ⊆ B ∩ Y  . Hence x�� ∈ B ∩ Y  which implies that 
y = x� = x��� ∈ (B ∩ Y)� and the proof completes. 	�  ◻

By the above theorem, if X = Y  , then � is regular if and only if for all 
A ∈ X∕E , there exists B ∈ X∕E such that A ∩ X𝛼 ⊆ B𝛼 . Hence Theorem 2.1 is a 
generalization of Corollary 2.3 in [2].

In [4], the authors defined a subset F of T(X, Y) by

and proved that F is the set of all regular elements in T(X, Y). Moreover, they also 
proved that F is the largest regular subsemigroup of T(X, Y).

Now, we define a subset FE of TE(X, Y) by � ∈ FE if � ∈ TE(X, Y) and for each 
A ∈ X∕E , there exists B ∈ X∕E such that A𝛼 ⊆ (B ∩ Y)𝛼 . It is easy to see that 
F = FE if E = X × X and FE = TE(X) if X = Y  . In general, FE is a proper subset of 
F ∩ TE(X, Y) . To see this, consider the following example.

Let X = {1, 2, 3, 4, 5} and Y = {1, 2, 4} . Define X∕E = {A,B} by A = {1, 2, 3} 
and B = {4, 5} . Let

Clearly, � ∈ F ∩ TE(X, Y) . We see that A� = {1, 2}, (A ∩ Y)� = {1} and 
(B ∩ Y)� = {2} . Thus � ∉ FE.

The subset FE plays an essential role in the characterization of Green’s 
relations, as shown in Sect. 3.

Lemma 2.2  FE is a right ideal of TE(X, Y) . Consequently, it is a subsemigroup of 
TE(X, Y).

Proof  Let � ∈ FE and � ∈ TE(X, Y) . Then for each A ∈ X∕E , there is B ∈ X∕E such 
that

Thus �� ∈ FE . 	�  ◻

Remark 2.3  FE contains the set of all regular elements in TE(X, Y).

Proof  Let � ∈ TE(X, Y) be a regular element and A ∈ X∕E . Then A𝛼 ⊆ B ∩ X𝛼 for 
some B ∈ X∕E and so there exists C ∈ X∕E such that A𝛼 ⊆ B ∩ X𝛼 ⊆ (C ∩ Y)𝛼 
since � is regular. Hence � ∈ FE . 	�  ◻

In general, the set FE is not a regular subsemigroup of TE(X, Y) . For example, 
let E be an equivalence on X = {1, 2, 3, 4} where X∕E = {{1, 2}, {3}, {4}} and 
Y = {1, 2, 3} . Define � ∈ TE(X, Y) by

F = {𝛼 ∈ T(X, Y) ∶ X𝛼 ⊆ Y𝛼}

� =

(
1 2 3 4 5

1 1 2 2 2

)
.

A𝛼𝛽 = (A𝛼)𝛽 ⊆ ((B ∩ Y)𝛼)𝛽 = (B ∩ Y)𝛼𝛽.
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It is easy to check that � ∈ FE but not regular. Consequently, the set of all regular 
elements in TE(X, Y) is a proper subset of FE.

Next, we give a necessary and sufficient condition for TE(X, Y) to be 
regular. Note that if |Y| = 1 , then TE(X, Y) contains exactly one element and 
so TE(X, Y) is regular. Here, �(Y) stands for the diagonal relation on Y, that is, 
�(Y) = {(y, y) ∶ y ∈ Y}.

Theorem 2.4  Let Y ⊆ X such that |Y| > 1 . Then TE(X, Y) is regular if and only if the 
following statements hold.

(1)	 For each G ∈ X∕E , G ∩ Y  is non-empty.
(2)	 Either EY = �(Y) or E = X × X and X = Y .

Proof  (⇒ ) We prove by contrapositive. Suppose that there exists a class G with 
G ∩ Y  is empty. Since |Y| > 1 , there are a, b ∈ Y  such that a ≠ b . Define a function 
� ∶ X → Y  by x� = a if x ∈ G and x� = b if x ∉ G . We can see that � ∈ TE(X, Y) . 
Let A be the class containing a. We obtain a ∈ A ∩ X� . By the definition of � , for 
each B ∈ X∕E such that B ∩ Y ≠ � , we have (B ∩ Y)� = {b} since (B ∩ Y) ∩ G = � . 
Hence a ∉ (B ∩ Y)� which implies that A ∩ X𝛼 ⊈ (B ∩ Y)𝛼 . Therefore, � is not 
regular by Theorem 2.1.

Assume that EY ≠ �(Y) and E ≠ X × X . Then there is a class A ≠ X such that 
|A ∩ Y| > 1 . Let a, b ∈ A ∩ Y  such that a ≠ b . Define a function � ∶ X → Y  by 
x� = a , ∀x ∈ A ∩ Y  and x� = b , ∀x ∉ A ∩ Y  . We can see that � ∈ TE(X, Y) . For 
each B ∈ X∕E , (B ∩ Y)� = {a} if B = A and (B ∩ Y)� = {b} if B ≠ A . We obtain 
A ∩ X𝛼 = {a, b} ⊈ (B ∩ Y)𝛼 for all class B. Hence � is not regular by Theorem 2.1.

Suppose that EY ≠ �(Y) and X ≠ Y  . Then there exists y ∈ X ⧵ Y  . Since 
EY ≠ �(Y) , there is a class A such that |A ∩ Y| > 1 . Let a, b ∈ A ∩ Y  such that a ≠ b . 
Define a function � ∶ X → Y  by x� = a if x = y and x� = b if x ≠ y . It is obvious 
that � ∈ TE(X, Y) . We see that for each B ∈ X∕E , (B ∩ Y)� = {b} . Therefore, 
A ∩ X𝛼 = {a, b} ⊈ {b} = (B ∩ Y)𝛼 which implies that � is not regular.

(⇐ ) We can see that if E = X × X and X = Y  , then TE(X, Y) = T(X) is 
regular. Now, we suppose that EY = �(Y) . Let � ∈ TE(X, Y) and A ∈ X∕E . Then 
A ∩ X𝛼 ⊆ A ∩ Y = {a} for some a by (1). If A ∩ X� ≠ � , then A ∩ X� = {a} which 
implies that a = x� for some x ∈ X . Let B be a class containing x. Then B ∩ Y  is 
non-empty from which it follows that B ∩ Y = {b} for some b. Further, since 
(b, x) ∈ E , we get (b�, a) = (b�, x�) ∈ E which follows that b� ∈ A ∩ X� = {a} . 
Thus A ∩ X� = {a} = {b�} = (B ∩ Y)� . Therefore, � is regular. 	�  ◻

By Theorem  2.5 of [2], we obtain some properties of regular elements in 
TE(X, Y) as follows.

� =

(
1 2 3 4

1 1 2 1

)
.
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Theorem  2.5  Let � and � be regular elements in TE(X, Y) . Then the following  
statements hold.

(1)	 If �(�) = �(�) , then E(�) = E(�).
(2)	 If X� = X� , then for each A ∈ X∕E , there are B,C ∈ X∕E such that A𝛼 ⊆ B𝛽 

and A𝛽 ⊆ C𝛼.

3 � Green’s relations

In this section, we characterize Green’s relations on TE(X, Y) . We start this section 
by recalling the definition of Green’s relations.

Let S be a semigroup. The following definitions are due to Green. For any 
a, b ∈ S , define

or equivalently; (a, b) ∈ L  if and only if a = xb, b = ya for some x, y ∈ S1.
Dually,

or equivalently; (a, b) ∈ R if and only if a = bx, b = ay for some x, y ∈ S1 and then 
define

or equivalently; (a, b) ∈ J  if and only if a = xby, b = uav for some x, y, u, v ∈ S1.
Finally,

Note that the above relations are equivalence relations. The relation D  is the 
join L ∨R , that is, D  is the smallest equivalence relation containing L ∪R . 
It is well-known that D = L◦R = R◦L  . Moreover, H ⊆ L ⊆ D ⊆ J  and 
H ⊆ R ⊆ D ⊆ J  . The relations L  , R , H  , D  and J  are called Green’s relations 
on S. For each a ∈ S , we denote L -class, R-class, H -class, D-class and J-class 
containing a by La,Ra,Ha,Da and Ja , respectively.

In general, if X ≠ Y  , then the semigroup TE(X, Y) does not contain the identity 
element. Hence TE(X,Y)1 ≠ TE(X,Y).

Now, we prove the following theorem which extends Theorem 3.1 of [2].

Theorem 3.1  Let �, � ∈ TE(X, Y) . Then the following statements are equivalent.

(1)	 (�, �) ∈ R.
(2)	 �(�) = �(�) and E(�) = E(�).
(3)	 There exists a bijective E∗-preserving � ∶ X� → X� such that � = ��.

(a, b) ∈ L if and only if S1a = S1b,

(a, b) ∈ R to mean aS1 = bS1,

(a, b) ∈ J to mean S1aS1 = S1bS1,

H = L ∩R and D = L◦R.
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Proof 

(1)⇒(2). Suppose that (�, �) ∈ R . Then there are � ,� ∈ TE(X, Y)
1 such that 

� = �� and � = �� . If � = � , then �(�) = �(�) and E(�) = E(�) . If � ≠ � , then 
both � and � belong to TE(X, Y) which implies that �(�) = �(�) and E(�) = E(�) 
by Theorem 3.1 of [2].
(2)⇒(3). The proof also follows from Theorem 3.1 of [2].
(3)⇒(1). The proof is an appropriate modification of the proof of (3)⇒(1) in 
Theorem 3.1 of [2]. In fact, suppose that there exists a bijective E∗-preserving 
� ∶ X� → X� such that � = �� . For each A ∈ X∕E , let A� = A ∩ X� . If 
A� = � , define x� = y0 for each x ∈ A and y0 ∈ Y  is fixed. If A′ ≠ ∅ , then 
A�
𝜙 = (A ∩ X𝛼)𝜙 ⊆ B ∩ X𝛽 for some class B since � is E∗-preserving. In the 

case A′ ≠ ∅ , we fix b0 ∈ B ∩ X� and define � by 

It is easy to verify that � ∈ TE(X, Y) and � = �� . Similarly, we can show that 
� = �� for some � ∈ TE(X, Y) . 	�  ◻

Lemma 3.2  Let �, � ∈ TE(X, Y) . If �(�) = �(�) , then either both � and � are in FE , 
or neither is in FE.

Proof  Assume that �(�) = �(�) and let � ∈ FE . It suffices to show � ∈ FE . Let 
A ∈ X∕E . Then A𝛼 ⊆ (B ∩ Y)𝛼 for some class B. We claim that A𝛽 ⊆ (B ∩ Y)𝛽 . 
Indeed, let a ∈ A . Then there is x ∈ X such that (a�)�−1 = (x�)�−1 since 
(a�)�−1 ∈ �(�) = �(�) . Obviously, a ∈ (a�)�−1 = (x�)�−1 which implies 
that x𝛼 = a𝛼 ∈ A𝛼 ⊆ (B ∩ Y)𝛼 . Thus x� = b� for some b ∈ B ∩ Y  . Hence 
b ∈ (x�)�−1 = (a�)�−1 and so a� = b� ∈ (B ∩ Y)� . Therefore, � ∈ FE . 	� ◻

By Theorem 3.1 and Lemma 3.2, we have the following corollary.

Corollary 3.3  For � ∈ TE(X, Y) , the following statements hold.

(1)	 If � ∈ FE , then R
�
= {� ∈ FE ∶ �(�) = �(�) and E(�) = E(�)}.

(2)	 If � ∈ TE(X, Y) ⧵ FE , then

Now, we have already characterized Green’s R-relation of TE(X, Y) . To study 
the remaining Green’s relations, we introduce some definitions for using throughout 
this paper. Actually, we extend the notions of E-admissibility and E∗-admissibility 
presented in [2].

x� =

{
x� if x ∈ A�;

b0 if x ∈ A ⧵ A�.

R
�
= {� ∈ TE(X, Y) ⧵ FE ∶ �(�) = �(�) and E(�) = E(�)}.
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Let �, � ∈ TE(X, Y) and let � be a mapping from �(�) into �(�) . We say that � is 
Ẽ-admissible if and only if for each A ∈ X∕E , there exists B ∈ X∕E such that

Equivalently, � ∶ �(�) → �(�) is Ẽ-admissible if and only if for each A ∈ X∕E , 
there exists B ∈ X∕E such that for each P ∈ �A(�) , B ∩ P� ∩ Y ≠ �.

If � is a bijection such that � and �−1 are Ẽ-admissible, then � is called Ẽ∗

-admissible.
We remark that if X = Y  , then the notions of E-admissibility (resp. Ẽ

-admissibility) and Ẽ-admissibility (resp. Ẽ∗-admissibility) are the same.
Now, we determine Green’s L -relation on TE(X, Y) . The proof of the following 

lemma is straightforward and so it is omitted.

Lemma 3.4  Let �, � ∈ TE(X, Y) . If for each A ∈ X∕E , there are B,C ∈ X∕E such 
that A𝛼 ⊆ B𝛽 and A𝛽 ⊆ C𝛼 , then X� = X�.

Theorem 3.5  Let �, � ∈ FE . Then the following statements are equivalent.

(1)	 (�, �) ∈ L  in TE(X, Y).
(2)	 For each A ∈ X∕E , there are B,C ∈ X∕E such that A𝛼 ⊆ B𝛽 and A𝛽 ⊆ C𝛼.
(3)	 There is a bijective Ẽ∗-admissible � ∶ �(�) → �(�) such that �∗ = ��∗.

Proof 

(1)⇒(2). Suppose that (�, �) ∈ L  . Then � = �� and � = �� for some 
� ,� ∈ TE(X, Y)

1 . If � = � , then (2) holds. If � ≠ � , then � ,� ∈ TE(X, Y) . The 
item (2) follows by [2, Theorem 3.2].
(2)⇒(3). Suppose (2) holds. Note that X� = X� by Lemma  3.4. Then for each 
P ∈ �(�) , we have P�∗ ∈ X� = X� . We can see that (P�∗)�−1 ∈ �(�) . Define 
� ∶ �(�) → �(�) by P� = (P�∗)�

−1 . It is clear that � is well-defined and 
�∗ = ��∗ . Now, we show that � is injective. Let P1,P2 ∈ �(�) be such that 
P1� = P2� . Let y ∈ P1 . Then P1�∗ = y� and so P1� = (P1�∗)�

−1 = (y�)�−1 . 
Since P1� = P2� , we have (y�)�−1 = P2� = (P2�∗)�

−1 which implies that 
y� = P2�∗ . Thus y ∈ P2 and then P1 ⊆ P2 . Similarly, we can show that P2 ⊆ P1 . 
To show that � is surjective, let Q ∈ �(�) . Then Q = x�−1 for some x ∈ X� = X� . 
Choose P = x�−1 ∈ �(�) . We obtain Q = x�−1 = (P�∗)�

−1 = P� . Therefore, � is 
a bijection.
Next, we show that � is Ẽ-admissible. Let A ∈ X∕E . Then there is B ∈ X∕E such 
that A𝛼 ⊆ B𝛽 by the assumption. Hence there is a class D such that B𝛽 ⊆ (D ∩ Y)𝛽 
since � ∈ FE . Thus A𝛼 ⊆ (D ∩ Y)𝛽 . Let P ∈ �A(�) . Then P ∈ �(�) and 
P ∩ A ≠ � . Choose x ∈ P ∩ A . Then P𝛼∗ = x𝛼 ⊆ A𝛼 ⊆ (D ∩ Y)𝛽 from which it 
follows that x� = y� for some y ∈ D ∩ Y  . We have y ∈ D ∩ (y�)�−1 ∩ Y  and then 

𝜋A(𝛼)𝜙 ⊆ 𝜋̃B(𝛽).

y ∈ D ∩ (y�)�−1 ∩ Y = D ∩ (x�)�−1 ∩ Y = D ∩ (P�∗)�
−1 ∩ Y = D ∩ P� ∩ Y .
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 Thus � is Ẽ-admissible since D ∩ P� ∩ Y  is non-empty. Finally, we prove that 
�
−1 is Ẽ-admissible. Let P ∈ �(�) and Q ∈ �(�) be such that Q = P� . We obtain 

Q = (P�∗)�
−1 which implies that Q�∗ = P�∗ . Hence 

 By the same argument as � , we obtain �−1 is also Ẽ-admissible. Therefore, � is 
Ẽ∗-admissible.
(3)⇒(1). Assume that (3) holds. For each A ∈ X∕E , there is B ∈ X∕E such that 
for each P ∈ �A(�) , B ∩ P� ∩ Y ≠ � . For each x ∈ A , let Px = (x�)�−1 . We can 
see that Px ∈ �A(�) . Then B ∩ Px� ∩ Y ≠ � . Choose dx ∈ B ∩ Px� ∩ Y  and define 
x� = dx . First, we show that � ∈ TE(X, Y) . Let (a, b) ∈ E . Then a, b ∈ A for 
some A ∈ X∕E . By the definition of � , we obtain a� , b� ∈ B for some B ∈ X∕E . 
Thus (a� , b�) ∈ E . Next, we prove that � = �� . Let x ∈ A for some A ∈ X∕E . 
Then x�� = dx� where dx ∈ B ∩ Px� ∩ Y  for some B ∈ X∕E . Moreover, since 
dx ∈ Px� , we get dx� = (Px�)�∗ . Hence 

 Similarly, we can show that � = �� for some � ∈ TE(X, Y) . Therefore, 
(�, �) ∈ L  . 	�  ◻

By the above theorem, if X = Y  , then we obtain Theorem 3.2 of [2].

Theorem 3.6  For � ∈ TE(X, Y) , the following statements hold.

(1)	 If � ∈ TE(X, Y) ⧵ FE , then L
�
= {�}.

(2)	 If � ∈ FE , then

Proof  Let � ∈ TE(X, Y) and let � ∈ L
�
 . Then (�, �) ∈ L  which implies that 

� = �� and � = �� for some � ,� ∈ TE(X, Y)
1 . If � ,� ∈ TE(X, Y) , then for each 

A ∈ X∕E , there are B,C ∈ X∕E such that A𝛼 = A𝛾𝛽 = A𝛾𝜇𝛼 ⊆ (B ∩ Y)𝛼 and 
A𝛽 = A𝜇𝛼 = A𝜇𝛾𝛽 ⊆ (C ∩ Y)𝛽 . Thus �, � ∈ FE . 

(1)	 If � ∈ TE(X, Y) ⧵ FE , then � = 1 or � = 1 and hence � = �.
(2)	 If � ∈ FE , then there are two cases to consider. The case � = � is clear. If � ≠ � , 

then � ,� ∈ TE(X, Y) and hence � ∈ FE . In addition, for each A ∈ X∕E , there 
are B,C ∈ X∕E such that A𝛼 ⊆ B𝛽 and A𝛽 ⊆ C𝛼 by Theorem 3.5. The other 
containment is obvious. 	�  ◻

As a direct consequence of Corollary 3.3, Theorems 3.1, 3.5 and 3.6, we have 
the following theorems.

Q�−1 = P = (P�∗)�
−1 = (Q�∗)�

−1.

x�� = dx� = (Px�)�∗ = Px�∗ = ((x�)�−1)�∗ = x�.

L
𝛼
= {𝛽 ∈ FE ∶ (∀A ∈ X∕E)(∃B,C ∈ X∕E) A𝛼 ⊆ B𝛽 and A𝛽 ⊆ C𝛼}.
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Theorem 3.7  Let �, � ∈ FE . Then the following statements are equivalent.

(1)	 (�, �) ∈ H  in TE(X, Y).
(2)	 �(�) = �(�) , E(�) = E(�) and for each A ∈ X∕E , there are B,C ∈ X∕E such that 

A𝛼 ⊆ B𝛽 and A𝛽 ⊆ C𝛼.
(3)	 There exist a bijective Ẽ∗-admissible � ∶ �(�) → �(�) such that �∗ = ��∗ and a 

bijective E∗-preserving � ∶ X� → X� such that � = ��.

Theorem 3.8  For � ∈ TE(X, Y) , the following statements hold.

(1)	 If � ∈ TE(X, Y) ⧵ FE , then H
�
= {�}.

(2)	 If � ∈ FE , then

Now, we characterize Green’s D  relation.

Theorem 3.9  Let �, � ∈ FE . Then the following statements are equivalent.

(1)	 (�, �) ∈ D  in TE(X, Y).
(2)	 There is an E∗-preserving bijection � ∶ X� → X� such that for each A ∈ X∕E , 

there exist B,C ∈ X∕E with

(3)	 There exist a bijective Ẽ∗-admissible � ∶ �(�) → �(�) and a bijective E∗

-preserving � ∶ X� → X� such that �∗� = ��∗.

Proof 

(1)⇒(3). Suppose that (�, �) ∈ D  in TE(X, Y) . Then there exists � ∈ TE(X, Y) 
such that (�, �) ∈ R and (� , �) ∈ L  . By Theorems  3.1 and  3.5, there exist a 
bijective E∗-preserving � ∶ X� → X� such that � = �� and a bijective Ẽ∗

-admissible � ∶ �(�) → �(�) such that �∗ = ��∗ . In addition, we obtain 
�(�) = �(�) and X� = X� . Hence � ∶ �(�) → �(�) and � ∶ X� → X� . Now, we 
show that �∗� = ��∗ . We claim that �∗ = �∗� . Indeed, let x�−1 ∈ �(�) . Then 
(x�−1)�∗ = x . From �(�) = �(�) , there is y ∈ X� such that x�−1 = y�−1 which 
implies that y = (y�−1)�∗ = (x�−1)�∗ . Since y ∈ X� , we get y = z� for some 
z ∈ X . Thus z ∈ y�−1 = x�−1 from which it follows that z� = x = (x�−1)�∗ . We 
obtain 

H
𝛼
={𝛽 ∈ FE ∶ 𝜋(𝛼) = 𝜋(𝛽),E(𝛼) = E(𝛽) and

(∀A ∈ X∕E)(∃B,C ∈ X∕E) A𝛼 ⊆ B𝛽 and A𝛽 ⊆ C𝛼}.

A𝛽 ⊆ (B ∩ Y)𝛼𝛷 and A𝛼 ⊆ (C ∩ Y)𝛽𝛷−1.
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Therefore, �∗� = �∗ = ��∗.
(3)⇒(2). Assume that there exist a bijective Ẽ∗-admissible � ∶ �(�) → �(�) 
and a bijective E∗-preserving � ∶ X� → X� such that �∗� = ��∗ . Define an E∗

-preserving bijection � ∶ X� → X� by x� = x� for all x ∈ X� . Let A ∈ X∕E . 
We have 𝜋A(𝛽)𝜙

−1
⊆ 𝜋̃B(𝛼) for some B ∈ X∕E since �

−1 ∶ �(�) → �(�) 
is Ẽ∗-admissible. We claim that A𝛽 ⊆ (B ∩ Y)𝛼𝛷 . Indeed, let a ∈ A . Then 
(a�)�−1 ∈ �A(�) which implies that (a𝛽)𝛽−1𝜙−1 ∈ (𝜋A(𝛽))𝜙

−1
⊆ 𝜋̃B(𝛼) . Hence 

(a�)�−1�−1 = (b�)�−1 for some b ∈ X and (b�)�−1 ∩ B ∩ Y ≠ � . There exists 
y ∈ (b�)�−1 ∩ B ∩ Y  and then b� = y� . We see that 

 and so a� = b�� = y�� ∈ (B ∩ Y)�� = (B ∩ Y)�� . Therefore, 
A𝛽 ⊆ (B ∩ Y)𝛼𝛷 . Similarly, we can show that A𝛼 ⊆ (C ∩ Y)𝛽𝛷−1 for some class 
C.
(2)⇒(3). Assume that (2) holds. Define a function � ∶ �(�) → �(�) by 
(x�)�−1

� = (x�)��
−1 for all x ∈ X . Then � is well-defined. We first show 

that � is injective. Let (x�)�−1, (y�)�−1 be such that (x�)�−1
� = (y�)�−1

� . 
Then (x�)��

−1 = (y�)��
−1 and so x� = y� since � is injective. Hence 

(x�)�−1 = (y�)�−1 . Next, we prove the surjectivity of � . Let (x�)�−1 ∈ �(�) . 
Then x𝛽 ∈ A𝛽 ⊆ (B ∩ Y)𝛼𝛷 for some classes A and B. Then there is y ∈ B ∩ Y  
such that y�� = x� . Thus (y�)�−1

� = (y�)��
−1 = (x�)�−1 . Therefore, � is 

bijective.
Finally, we show that � is Ẽ∗-admissible. Let A ∈ X∕E . Then there 
exists C ∈ X∕E such that A𝛼 ⊆ (C ∩ Y)𝛽𝛷−1 . Let (x�)�−1 ∈ �A(�) . Then 
(x�)�−1 ∩ A ≠ � which implies that there is a ∈ A such that a� = x� . Hence 
x𝛼 = a𝛼 ∈ A𝛼 ⊆ (C ∩ Y)𝛽𝛷−1 and so x� = c��−1 for some c ∈ C ∩ Y  . Thus 
c ∈ x���

−1 = (x�)�−1
� which implies that c ∈ (x�)�−1

� ∩ C ∩ Y ≠ � and so � 
is Ẽ-admissible. On the other hand, let A ∈ X∕E . Then there exists B ∈ X∕E such 
that A𝛽 ⊆ (B ∩ Y)𝛼𝛷 . Let (x�)�−1 ∈ �A(�) . Then (x�)�−1 ∩ A ≠ � which implies 
that there is a ∈ A such that a� = x� . Hence x𝛽 = a𝛽 ∈ A𝛽 ⊆ (B ∩ Y)𝛼𝛷 and so 
x� = b�� for some b ∈ B ∩ Y  . Thus 

 which implies that b ∈ (x�)�−1�−1 ∩ B ∩ Y ≠ � . Therefore, �−1 is Ẽ-admissible. 
Moreover, we define a function � ∶ X� → X� by x� = x� for each x ∈ X� . It 
remains to show that �∗� = ��∗ . Indeed, let (x�)�−1 ∈ �(�) . Then 

(3) ⇒(1). Assume that (3) holds. Define a function � ∶ X → Y  by x� = x�� . 
Since � is E∗-preserving, we have � ∈ TE(X, Y) . We first show that �(�) = �(�) . 
Let A = x�−1 ∈ �(�) . Then {x} = A� = A�� which implies that A� = x�−1 
since � is a bijection. We obtain A� = {y} where {y} = x�−1 and then y� = x . 

(x�−1)�∗� = y� = z�� = z� = (x�−1)�∗.

a� = (a�)�−1�∗ = (a�)�−1�−1
�∗� = (b�)�−1

�∗� = b��

b ∈ (b�)�−1 = (b�)�−1��−1 = (b�)��
−1
�
−1 = (x�)�−1�−1

(x�)�−1
�∗� = x�� = x�� = (x�)��

−1
�∗ = (x�)�−1

��∗.
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Hence A ⊆ y𝛼−1 . Let z ∈ y�−1 . Then z� = y from which it follows that 
z� = z�� = y� = x . Thus z ∈ x�−1 = A implies y𝛼−1

⊆ A . So A = y�−1 ∈ �(�) . 
We conclude that 𝜋(𝛾) ⊆ 𝜋(𝛼) . On the other hand, let B = a�−1 ∈ �(�) . Then 
B� = {a} which implies that B� = B�� = {a}� = {b} for some b ∈ Y  . 
Hence B ⊆ b𝛾−1 . Let c ∈ b�−1 . Then c�� = c� = b from which it follows that 
{c�} = b�−1 = {a} since � is a bijection. Then c� = a implies c ∈ a�−1 = B . 
So b𝛾−1 ⊆ B . We conclude that B = b�−1 ∈ �(�) . Therefore, 𝜋(𝛼) ⊆ 𝜋(𝛾) and 
then �(�) = �(�) . Moreover, since � ∶ �(�) → �(�) is bijective Ẽ∗-admissible 
and �∗ = �∗� = ��∗ , we get (� , �) ∈ L  and X� = X� by Theorem  3.5. Since 
� ∶ X� → X� is bijective E∗-preserving and � = �� , we obtain (�, �) ∈ R by 
Theorem 3.1. Therefore, (�, �) ∈ D  . 	�  ◻

The above result extends Theorem  3.4 of [2]. In fact, we obtain an additional 
characterization of the D-relation in the case when X = Y  , as shown in the following 
corollary.

Corollary 3.10  Let �, � ∈ TE(X) . Then the following statements are equivalent.

(1)	 (�, �) ∈ D .
(2)	 There is an E∗-preserving bijection � ∶ X� → X� such that for each A ∈ X∕E , 

there exist B,C ∈ X∕E with

We remark that for condition (2) of Theorem 3.9 to be true, it suffices to check 
that � is injective since the surjectivity of � follows from the fact that for each 
A ∈ X∕E , there exists B ∈ X∕E with

Theorem 3.11  For � ∈ TE(X, Y) , the following statements hold.

(1)	 If � ∈ TE(X, Y) ⧵ FE , then

(2)	 If � ∈ FE , then

Proof 

A𝛽 ⊆ B𝛼𝛷 and A𝛼 ⊆ C𝛽𝛷−1.

A𝛽 ⊆ (B ∩ Y)𝛼𝛷.

D
�
= {� ∈ TE(X, Y) ⧵ FE ∶ �(�) = �(�) and E(�) = E(�)} = R

�
.

D
�
= {� ∈ FE ∶ � satisfies (2) of Theorem 3.9}.
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(1)	 Let � ∈ TE(X, Y) ⧵ FE and let � ∈ D
�
 . Then there exists � ∈ TE(X, Y) such that 

(�, �) ∈ R and (� , �) ∈ L  . Hence � ∈ TE(X, Y) ⧵ FE such that �(�) = �(�) and 
E(�) = E(�) . Moreover, we obtain � = � since L

�
= {�} . Thus � ∈ TE(X, Y) ⧵ FE 

such that �(�) = �(�) and E(�) = E(�) . The other containment is clear since 
R ⊆ D .

(2)	 Let � ∈ FE and let � ∈ D
�
 . Then there exists � ∈ TE(X, Y) such that (�, �) ∈ R 

and (� , �) ∈ L  . By Corollary 3.3 and Theorem 3.6, we obtain both � and � 
belong to FE . It is easy to see that � satisfies (2) of Theorem 3.9. The other 
containment is clear.

	�  ◻

For each x ∈ X , denote the equivalence class containing x by [x]. Now, we 
characterize Green’s J-relation. First, we prove the following lemmas.
Lemma 3.12  Let �, � ∈ TE(X, Y) . Then the following statements are equivalent.

(1)	 There is an E-preserving surjection � ∶ X� → X� such that for each A ∈ X∕E 
there exists B ∈ X∕E with A𝛽 ⊆ (B ∩ Y)𝛼𝛷.

(2)	 � = ��� for some � ,� ∈ TE(X, Y).

Proof 

(1)⇒(2). Suppose that (1) holds. Note that for each A ∈ X∕E , (A ∩ X𝛼)𝛷 ⊆ B 
for some B ∈ X∕E since � is E-preserving. Furthermore, (A ∩ X𝛼)𝛷 ⊆ X𝛽 ⊆ Y  
so that (A ∩ X𝛼)𝛷 ⊆ B ∩ Y  . Now, we define a function � as follows. For each 
A ∈ X∕E such that A ∩ X� ≠ � , (A ∩ X𝛼)𝛷 ⊆ B ∩ Y  for some B ∈ X∕E . Choose 
b ∈ B ∩ Y  and define 

 Let x� = x� if x ∈
⋃
{A ∈ X∕E ∶ A ∩ X� = �} . Clearly, � ∈ TE(X, Y) . Next, 

we define a function � as follows. Let A ∈ X∕E . By the condition of � , there 
exists B ∈ X∕E such that A𝛽 ⊆ (B ∩ Y)𝛼𝛷 . Let x ∈ A . Then x� = y�� for some 
y ∈ B ∩ Y  . Define x� = y . It then follows that � ∈ TE(X, Y) and � = ���.
(2)⇒(1). Let � = ��� for some � ,� ∈ TE(X, Y) . Fix y0 ∈ X� . If [x] ∩ X�� ≠ � , 
choose x0 ∈ [x] ∩ X�� for each x ∈ X� . Define a function � ∶ X� → X� by 

 It is easy to verify that � is E-preserving. Let A ∈ X∕E . There exists B ∈ X∕E 
such that A𝛾 ⊆ B ∩ Y  . Therefore, 

x� =

{
b if x ∈ A ⧵ X�;

x� if x ∈ A ∩ X�.

x� =

⎧
⎪⎨⎪⎩

x� if x ∈ X��;

x0� if x ∉ X�� and [x] ∩ X�� ≠ �;

y0 if [x] ∩ X�� = �.
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 In addition, we obtain that � is surjective. 	�  ◻

As a direct consequence of Theorem 3.9, we obtain the following lemma.

Lemma 3.13  Let �, � ∈ FE . If (�, �) ∈ D  in TE(X, Y) , then there are E-preserving 
surjections � ∶ X� → X� and � ∶ X� → X� such that for each A ∈ X∕E there exist 
B,C ∈ X∕E with

Theorem 3.14  Let �, � ∈ TE(X, Y) . Then (�, �) ∈ J  if and only if either

(1)	 �(�) = �(�) and E(�) = E(�) ; or
(2)	 there are E-preserving surjections � ∶ X� → X� and � ∶ X� → X� such that 

for each A ∈ X∕E there exist B,C ∈ X∕E with

Proof  Assume that (�, �) ∈ J  . Then there exist � , �, �,� ∈ TE(X, Y)
1 such 

that � = ��� and � = ��� . If � = 1 = � , then � = �� and � = �� which 
implies (𝛼, 𝛽) ∈ R ⊆ D . If � = 1 = � , then � = �� and � = �� which implies 
(𝛼, 𝛽) ∈ L ⊆ D . Hence (1) or (2) holds by Theorem 3.11 and Lemma 3.13.

If {� , �} ≠ {1} and {�,�} ≠ {1} , then we have � = ��� and � = ��� for some 
�, � , �, � ∈ TE(X, Y) . For example, if � = 1 = � and �, � ∈ TE(X, Y) , then

We have (2) holds by Lemma  3.12. The converse is clear by Theorem  3.1 and 
Lemma 3.12. 	�  ◻

By using Lemma 3.13 with the same proof as given in the above theorem, we 
obtain the following result.

Corollary 3.15  Let �, � ∈ FE . Then (�, �) ∈ J  in TE(X, Y) if and only if there are 
E-preserving surjections � ∶ X� → X� and � ∶ X� → X� such that for each 
A ∈ X∕E there exist B,C ∈ X∕E with

The above result leads to the following corollary which extends the result in [2].

Corollary 3.16  Let �, � ∈ TE(X) . Then (�, �) ∈ J  if and only if there are  
E-preserving surjections � ∶ X� → X� and � ∶ X� → X� such that for each  
A ∈ X∕E there exist B,C ∈ X∕E with

A𝛽 = A𝛾𝛼𝜇 = A𝛾𝛼𝛷 ⊆ (B ∩ Y)𝛼𝛷.

A𝛽 ⊆ (B ∩ Y)𝛼𝛷 and A𝛼 ⊆ (C ∩ Y)𝛽𝛹 .

A𝛽 ⊆ (B ∩ Y)𝛼𝛷 and A𝛼 ⊆ (C ∩ Y)𝛽𝛹 .

� = �� = ��� and � = �� = ���.

A𝛽 ⊆ (B ∩ Y)𝛼𝛷 and A𝛼 ⊆ (C ∩ Y)𝛽𝛹 .



582	 K. Sangkhanan, J. Sanwong 

1 3

Next, we aim to characterize the J-relation on the finite case.

Lemma 3.17  Let �, � ∈ TE(X, Y) be such that �(�) is finite. If � ∶ �(�) → �(�) and 
� ∶ �(�) → �(�) are bijective Ẽ-admissible, then � is Ẽ∗-admissible.

Proof  The proof of this lemma follows the same steps as in Lemma 3.7 of [2]. For 
the sake of completeness, we give the proof as follows. Note that �� is a bijection 
from �(�) onto �(�) which implies that �� is a permutation on �(�) . Moreover, 
since �(�) is finite, we obtain (��)m is the identity permutation for some natural 
number m. We claim that (��)n is Ẽ-admissible for all natural number n. Indeed, 
let A ∈ X∕E . There are B,C ∈ X∕E such that 𝜋A(𝛼)𝜃 ⊆ 𝜋̃B(𝛽) and 𝜋B(𝛽)𝜑 ⊆ 𝜋̃C(𝛼) 
since � ∶ �(�) → �(�) and � ∶ �(�) → �(�) are Ẽ-admissible. We have

Thus �� is Ẽ-admissible. By induction, we conclude that (��)n is Ẽ-admissible for 
all natural number n.

Since (��)m is the identity permutation on �(�) , we obtain (��)m = ��(��)m−1 
which implies that �−1 = �(��)m−1 . Moreover, since � and (��)m−1 are Ẽ-admissible, 
by the same argument as above, we can show that �−1 is Ẽ-admissible. Therefore, � 
is Ẽ∗-admissible. 	� ◻

Lemma 3.18  Let U,V ⊆ X be finite. If � ∶ U → V  and � ∶ V → U are surjective 
E-preserving, then � and � are bijective E∗-preserving.

Proof  It is clear that � and � are bijective since U and V are finite sets. Let 
U∕EU = {A1,A2,… ,Am} and V∕EV = {B1,B2,… ,Bn} be the sets of all distinct 
equivalence classes of U and V, respectively. For each class Bi , we see that Bi�

−1 is 
non-empty since � is surjective. Note that Bi�

−1 is a union of some classes in U∕EU . 
Let ki be the number of classes which are contained in Bi�

−1 . It is not difficult to see 
that ki ≥ 1 for all i and k1 + k2 +⋯ + kn = m . Hence m ≥ n . Similarly, we can show 
that n ≥ m by using � and so m = n . Moreover, we have k1 + k2 +⋯ + kn = n which 
implies that k1 = k2 = ⋯ = kn = 1 and hence U∕EU = {B1�

−1,B2�
−1,… ,Bn�

−1} . 
Now, we show that � is E∗-preserving. Let (x�, y�) ∈ E . Then x�, y� ∈ B for 
some class B ∈ V∕EV from which it follows that (x𝛼)𝛼−1, (y𝛼)𝛼−1

⊆ B𝛼−1 . Thus 
x, y ∈ B�−1 ∈ U∕EU and so (x, y) ∈ E . Similarly, we can show that � is also E∗ 
-preserving. 	�  ◻

From the above lemma, we obtain the following corollary.

Corollary 3.19  If Z is a finite set and � ∶ Z → Z is bijective E-preserving, then � is 
E∗-preserving.

Now, we have the following result which covers Theorem 3.8 of [2].

A𝛽 ⊆ B𝛼𝛷 and A𝛼 ⊆ C𝛽𝛹 .

𝜋A(𝛼)𝜃𝜑 ⊆ 𝜋̃B(𝛽)𝜑 ⊆ 𝜋B(𝛽)𝜑 ⊆ 𝜋̃C(𝛼).



583

1 3

Regularity and Green’s relations on semigroups of…

Theorem 3.20  If �, � ∈ FE such that both X� and X� are finite, then the following 
statements are equivalent.

(1)	 (�, �) ∈ D  in TE(X, Y).
(2)	 (�, �) ∈ J  in TE(X, Y).
(3)	 There are E∗-preserving bijections � ∶ X� → X� and � ∶ X� → X� such that 

for each A ∈ X∕E there exist B,C ∈ X∕E with

Proof  The implication (1)⇒(2) is trivial.
(2)⇒(3). Assume that (�, �) ∈ J  in TE(X, Y) . Then, by Corollary  3.15, there 

are E-preserving surjections � ∶ X� → X� and � ∶ X� → X� such that for each 
A ∈ X∕E there exist B,C ∈ X∕E with

By Lemma 3.18, we have � and � are bijective E∗-preserving since X� and X� are 
finite.

(3)⇒(1). Define � ∶ �(�) → �(�) by (x�)�−1
� = (x�)�−1

�
−1 for all x ∈ X . Then 

� is a well-defined bijection such that ��∗ = �∗�
−1 . We only need to check that � 

is Ẽ∗-admissible. Let A ∈ X∕E . Then there is C ∈ X∕E such that A𝛼 ⊆ (C ∩ Y)𝛽𝛹 
by assumption. Let P = (x�)�−1 ∈ �A(�) . Then P ∩ A ≠ � which implies that there 
exists a ∈ P ∩ A . We obtain x𝛼 = a𝛼 ∈ (P ∩ A)𝛼 ⊆ A𝛼 ⊆ (C ∩ Y)𝛽𝛹 from which it 
follows that x� = c�� for some c ∈ C ∩ Y  . Hence

Thus � is bijective and Ẽ-admissible. On the other hand, define � ∶ �(�) → �(�) by 
(x�)�−1� = (x�)�−1

�
−1 for all x ∈ X . Similarly, we can show that � is also bijective 

and Ẽ-admissible. Hence � is Ẽ∗-admissible by Lemma 3.17. Therefore, (�, �) ∈ D  
by Theorem 3.9. 	�  ◻

Finally, we determine Green’s relations on the regular elements in TE(X, Y).

Theorem 3.21  Let �, � be regular elements in TE(X, Y) . If there exists a bijective E∗

-preserving � ∶ X� → X� , then there is a bijective Ẽ∗-admissible � ∶ �(�) → �(�) 
such that �∗� = ��∗.

Proof  The proof of this theorem is a slight modification of the proof of Theorem 3.12  
of [2]. Actually, we define � ∶ �(�) → �(�) by

Since �∗ , � and �∗ are bijective, we obtain � is also bijective. Moreover, we can 
see that �∗� = ��∗ . Now, we show that � is Ẽ∗-admissible. Let A ∈ X∕E and 

A𝛽 ⊆ (B ∩ Y)𝛼𝛷 and A𝛼 ⊆ (C ∩ Y)𝛽𝛹 .

A𝛽 ⊆ (B ∩ Y)𝛼𝛷 and A𝛼 ⊆ (C ∩ Y)𝛽𝛹 .

c ∈ (x�)�−1
�
−1 ∩ C ∩ Y = (x�)�−1

� ∩ C ∩ Y = P� ∩ C ∩ Y ≠ �.

P� = (P�∗�)�−1
∗

for all P ∈ �(�).
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A� = B� . Then A𝛼 = B�
⊆ B for some B ∈ X∕E by Lemma  1.1. We see that 

B�
𝜓 = C�

⊆ C for some C ∈ X∕E since � is E∗-preserving. Moreover, since � is 
regular, we obtain C�

⊆ C ∩ X𝛽 ⊆ (D ∩ Y)𝛽 for some D ∈ X∕E by Theorem  2.1. 
We claim that 𝜋A(𝛼)𝜙 ⊆ 𝜋̃D(𝛽) . Indeed, let P ∈ �A(�) . Then P�∗ ∈ A� = B� . 
Hence P𝛼∗𝜓 ∈ C�

⊆ (D ∩ Y)𝛽 since B�
� = C� and C�

⊆ (D ∩ Y)𝛽 . Hence 
P� ∩ D ∩ Y = P�∗��

−1 ∩ D ∩ Y ≠ � which implies that P𝜙 ∈ 𝜋̃D(𝛽) . We conclude 
that � is Ẽ-admissible. Similarly, we have �−1 is also Ẽ-admissible since � is 
bijective and �−1 = �∗�

−1
�
−1
∗

 . Therefore, � is Ẽ∗-admissible. 	�  ◻

Recall that the set of all regular elements in TE(X, Y) is contained in FE . Then we 
get the following theorem.

Theorem  3.22  Let �, � be regular elements in TE(X, Y) . Then the following  
statements hold.

(1)	 (�, �) ∈ R if and only if �(�) = �(�).
(2)	 (�, �) ∈ L  if and only if X� = X�.
(3)	 (�, �) ∈ H  if and only if �(�) = �(�) and X� = X�.
(4)	 (�, �) ∈ D  if and only if there exists a bijective E∗-preserving � ∶ X� → X�.

The proof of this theorem follows from Theorems 2.5 and 3.21 so it is omitted. 
Moreover, if X = Y  , then Theorem 3.13 of [2] is true.
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